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Abstract - This paper is devoted to the study of the homogenization of a porous medium, composed of

di�erent materials arranged in a periodic structure. This provides the pro�le of the saturation function for

the limit material.

1. Introduction

It is well known that, in absence of gravity, the ow of an incompressible liquid in a partially saturated

porous media is ruled by the equation

(1:1) �0(x; u)
@u

@t
= �u in 
T ;

where � is a bounded function, non decreasing and Lipschitz-continuous with respect to the second entry.

Moreover, for physical reasons, we assume the strict monotonicity of �(x; �) for s < 0.

Equation (1.1) is a simple consequence of the mass balance equation and of the Darcy's law. Here, the

unknown u is related to the liquid pressure in the porous medium, while � is the saturation pro�le, giving the

volume fraction occupied by the liquid as a function of u. Moreover, the spatial dependence of � corresponds

to the fact that the properties of the material are changing with the position.

In particular, we can think of a composite porous medium, made of �nely mixed materials, each of them

with a di�erent saturation pro�le. In this case, �(x; s) =
P
�i(s)�Ei

(x), where each Ei represents the i
th-

material. Assuming a microscopic periodic structure of width ", it appears a small parameter in the problem.

We investigate the homogenization limit for " ! 0, proving that the pressure inside the resulting material

satis�es an equation similar to (1.1), where � is replaced by the e�ective saturation �0(s) =
P
�i(s)jEij. For

a general survey on the homogenization in porous media, we refer to [6], and for more details on this topic,

see, e.g. [4] and [8].

It has been discussed for a long time if it makes sense to assume that the limit for s! 0� of the derivative

of the saturation pro�le is strictly positive (see, e.g., [3] and [7]). From the mathematical point of view, this

is a relevant question, since it guarantees the strict parabolicity of the equation (1.1) in the unsaturated

region (see, e.g., [5] and [7]). Our result seems to indicate that, at least for �nely mixed materials, this should

be the case, since it suÆces that this property holds for at least one of the components of the medium, in

order to have that it is satis�ed by the homogenized composite.
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The paper is organized as follows: Section 2 is devoted to some preliminary estimates for the solution

of (1.1), which are crucial for the homogenization result. In Section 3 we �nd the homogenized problem in

the case where the saturation has the general form �("�1x; s), with �(�; s) periodic.

2. Preliminaries

Throughout this paper, C will denote a positive constant which may vary each time. We denote by

LipL(IR) the set of those functions which are Lipschitz-continuous on IR, with Lipschitz constant given by

L. Set Y = (0; 1)n; we say that a function de�ned on IRn is Y -periodic if it is periodic of period 1 with

respect to each variable.

Let 
 � IRn, n � 1, be an open bounded set with Lipschitz boundary and T be a �xed positive number.

We set 
T = 
 � (0; T ). We denote by L2(0; T ;H1(
)) the Sobolev space of all L2-functions g, such that

g(�; t) 2 H1(
) for a.e. t 2 (0; T ), equipped with the natural norm

kgkL2(0;T ;H1(
)) =

 Z T

0

�Z



jrxg(x; t)j
2 dx

�2
dt

!1=2

+

 Z T

0

�Z



jg(x; t)j2 dx

�2
dt

!1=2

:

Let e� : IR! IR be a non-decreasing function belonging to LipL(IR), such that e�(s) � 1, for every s 2 IR,e�(s) � 1, for every s � 0, and e� is strictly increasing for s < 0. Let � : IRn � IR ! IR be a measurable

function satisfying the following conditions:

(2:1)

H1) �(x; �) 2 LipL(IR) for a.e. x 2 IRn ;

H2) �(x; s) � 1 8s � 0; for a.e. x 2 IRn ;

H3) �(x; s) � e�(s) 8s 2 IR; for a.e. x 2 IRn ;

H4) e�0(s) � @

@s
�(x; s) 8s 2 IR; for a.e. x 2 IRn :

Note that previous assumptions imply also

(2:2)

H5) �(x; s) � 1 8s 2 IR; for a.e. x 2 IRn ;

H6) 0 � e�0(s) � @

@s
�(x; s) � L 8s 2 IR; for a.e. x 2 IRn ;

H7) e�0(s) > 0;
@

@s
�(x; s) > 0 8s < 0; for a.e. x 2 IRn :

For the sake of simplicity, in the sequel we will write r instead of rx and �0(x; s) instead of @
@s�(x; s).

Let � 2 H1(
)\L1(
) and � 2 H2(
T ) \L1(
T ) be such that �� = 0 in 
T ; consider the problem

(2:3)

8>>>><>>>>:
�0(x; u)

@u

@t
= �u in 
T ;

u(x; 0) = �(x) on 
 ;

u(x; t) = �(x; t) on @
� (0; T ) :

Note that the �rst equation in (2.3) can be written also in the form

@�

@t
(x; u) = �u in 
T ;
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which is more convenient in order to state the weak formulation of (2.3). Indeed, we will say that a function

u 2 L2(0; T ;H1(
)) is a solution of (2.3), if

(2:4)

Z

T

�(x; u)
@ 

@t
(x; t) dx dt+

Z



�(x; �(x)) (x; 0) dx =

Z

T

rur dx dt

for every  2 C1(
T ), such that  (x; T ) = 0 on 
 and  (x; t) = 0 on @
, and u = � on @
� (0; T ) in the

sense of traces.

By (2.4) it follows that the second equation in (2.3) stands for

(2:5) �(x; u(x; 0)) = �(x; �(x)) on 
 ;

which implies that u and � have the same sign. Then, (2.5) is always satis�ed on the set where u and �

are nonnegative, since in such a case � � 1, while it reduces to u(x; 0) = �(x) on the set where u and � are

strictly negative, since there �(x; �) is strictly increasing and then invertible.

We recall that problem (2.3) has always a unique solution u 2 L2(0; T ;H1(
)), in the sense of (2.4),

whose trace equals � on @
� (0; T ) (see, e.g., [1], [2]).

If we set v = u��, (2.3) can be equivalently written in the form

(2:6)

8>>>><>>>>:
�0(x; u)

@v

@t
= �v � �0(x; u)

@�

@t
in 
T ;

v(x; 0) = �(x)��(x; 0) on 
 ;

v(x; t) = 0 on @
� (0; T ) :

Multiplying by vt the �rst equation in (2.6) and integrating by parts over 
� (0; t), we obtain

(2:7)

0 =

Z

�(0;t)

�0(x; u)v2t dx d� +

Z

�(0;t)

rvrvt dx d� +

Z

�(0;t)

�0(x; u)�tvt dx d�

=

Z

�(0;t)

�0(x; u)v2t dx d� +
1

2

Z

�(0;t)

@

@t
jrvj2 dx d� +

Z

�(0;t)

�0(x; u)�tvt dx d�

=

Z

�(0;t)

�0(x; u)v2t dx d� +
1

2

Z



jrvj2(x; t) dx

�
1

2

Z



jr�(x) �r�(x; 0)j2 dx+

Z

�(0;t)

�0(x; u)�tvt dx d� :

Recalling that �0 � 0 and using Young inequality, this implies

(2:8) kukL2(0;T ;H1(
)) � kvkL2(0;T ;H1

0
(
)) + k�kH1(
T )

� C
�
k�kH1(
) + k�kH1(
T )

�
where C depends only on the dimension n, 
 and T . Moreover, taking into account H6) and H7) of (2.2),

by (2.7) it follows

(2:9)

Z

T

�
@

@t
e�(u)�2 dx dt =

Z

T

(e�0(u))2 u2t dx dt
� C

�Z

T

(e�0(u))2 v2t dx dt+ Z

T

(e�0(u))2�2
t dx dt

�
� C

�
k�kH1(
) + k�kH1(
T )

�
3
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where C depends only on L, n, 
 and T . Finally,

(2:10)

Z

T

jre�(u)j2 dx dt = Z

T

(e�0(u))2 jruj2 dx dt � C
�
k�kH1(
) + k�kH1(
T )

�
where, again, C depends only on L, n, 
 and T . Note that estimates (2.8), (2.9) and (2.10) actually hold

for � < 0 on 
, but they can be achieved by approximation and semicontinuity also for general �.

3. Homogenization

The aim of this paper is to study an hogenization problem related to (2.3). To this purpose, let

Y = (0; 1)n be the unit cell in IRn. A function f , de�ned on IRn, is said to be Y -periodic if it is periodic of

period 1 with respect to each variable xi, with 1 � i � n. Assume that � : IRn � IR ! IR is a measurable

function satisfying the previous assumptions H1)-H4) in (2.1), which is also Y -periodic with respect to the

variable x 2 IRn. Let " > 0, de�ne �"(x; s) = �("�1x; s) and consider the family of problems

(3:1)

8>>>><>>>>:
�0"(x; u")

@u"
@t

= �u" in 
T ;

u"(x; 0) = �(x) on 
 ;

u"(x; t) = �(x; t) on @
� (0; T ) :

By (2.8), which is clearly independent of ", we obtain that there exists a function u 2 L2(0; T ;H1
0 (
)) such

that, up to a subsequence,

(3:2) u" * u weakly in L2(0; T ;H1(
)) ; when "! 0+ ;

and u = � on @
� (0; T ) in the sense of traces.

Moreover, by (2.9) and (2.10) it follows that ke�(u")kH1(
T )
� C, where C depends on L, � and �, but

not on ". Hence, there exists a function v 2 H1(
T ) such that, up to a subsequence,

(3:3) e�(u")! v strongly in L2(
T ) ; when "! 0+ :

Note that v � 1 almost everywhere in 
T .

PROPOSITION 3.1. Let v 2 H1(
T ) and u 2 L2(0; T ;H1
0(
)) be the functions de�ned in (3.2) and

(3.3), respectively. Then

v = e�(u) :
Proof. Since e�(u")! v strongly in L2(
T ), when "! 0+, for every Æ > 0 we may found a set NÆ � 
,

with jNÆj < Æ, in such a way that e�(u")! v uniformly in 
Æ
T := 
T nNÆ . Let us �x � > 0 and de�ne


Æ;1
T;� = f(x; t) 2 
Æ

T : v � 1� �g ;


Æ;2
T;� = f(x; t) 2 
Æ

T : v � 1� 2�g :

Clearly, 
Æ;1
T;� [ 
Æ;2

T;� = 
Æ
T and their intersection is in general non empty.

By the uniform convergence, it follows that there exists "0 suÆciently small and depending on Æ and �, such

that, for every " � "0, e�(u") � 1� �=2 in 
Æ;1
T;� . This implies that

(i) u" � �C1(�) almost everywhere in 
Æ;1
T;� , for a proper value C1(�) > 0;
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(ii) u" = e��1(e�(u"))! e��1(v) uniformly in 
Æ;1
T;� ;

(iii) since u" * u weakly in L2(0; T ;H1
0 (
)), we have that, almost everywhere in 
Æ;1

T;� , e��1(v) = u; i.e.,

(3:4) v = e�(u) a.e. in 
Æ;1
T;� :

Moreover, by (ii) and (iii), it follows

(3:5) u" ! u uniformly in 
Æ;1
T;� :

In 
Æ;2
T;�, still using the uniform convergence of e�(u")! v, we have that there exists "0 suÆciently small and

depending on Æ and �, such that, for every " � "0, e�(u") � 1� 3� in 
Æ;2
T;� . This implies that

(iv) u" � �C2(�) almost everywhere in 
Æ;2
T;� , for a proper value C2(�) > 0;

(v) by the weak convergence, u � �C2(�) almost everywhere in 
Æ;2
T;� ;

(vi) by the continuity of e�, it follows that, for a proper C3(�) > 0, e�(u) � 1� C3(�), which gives

ke�(u")� e�(u)kL1(
Æ;2

T;�
) � 3� + C3(�) :

This implies that, for every Æ > 0, every � > 0 and every " � "0,Z

T

je�(u)� vj dx dt =

Z

Æ
T

je�(u)� vj dx dt+

Z
NÆ

je�(u)� vj dx dt

�

Z

Æ;1

T;�

je�(u)� vj dx dt+

Z

Æ;2

T;�

je�(u)� vj dx dt+

Z
NÆ

je�(u)� vj dx dt

� 0 +

Z

Æ;2

T;�

je�(u)� e�(u")j dx dt+ Z

Æ;2

T;�

je�(u")� vj dx dt+

Z
NÆ

je�(u)� vj dx dt

� [3� + C3(�)] j
T j+

Z

T

je�(u")� vj dx dt+

Z
NÆ

je�(u)� vj dx dt ;

where we used (3.4). Using 3.3 and letting �rst " ! 0+, then � ! 0+ and �nally Æ ! 0+, we obtain thate�(u) = v almost everywhere in 
T , and this concludes the proof.

For every s 2 IR, assume that �(�; s) is Y -periodic and de�ne

�0(s) =

Z
Y

�(y; s) dy ;

i.e., the mean value of �(�; s), with respect to the �rst variable, when s is �xed.

REMARK 3.2. Clearly, �0 2 LipL(IR). It is well known that, due to the periodicity of the function

�(�; s), for every s 2 IR, �("�1x; s) * �0(s) ��weakly in L1(IR), when " ! 0+. Moreover, taking into

account the Lipschitz continuity of �("�1x; �) and �0(�) and recalling that every L2-function can be strongly

approximated by step functions, it is possible to prove that, for every u 2 L2(
T ),

�("�1x; u)* �0(u) � �weakly in L1(
T )

when "! 0+.
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In order to prove the homogenization result (see Theorem 3.4 below), we need the following lemma.

LEMMA 3.3. Assume that � : IRn�IR! IR is a measurable function satisfying all the hypotheses in (2.1)

and such that �(�; s) is Y -periodic. For every " > 0, set �"(x; s) = �("�1x; u") and let u" 2 L2(0; T ;H1
0(
))

be the solution of (3.1). Then, for every "! 0+, we have

�"(x; u")* �0(u) � �weakly in L1(
T ) :

Proof. We have that ku"kL1(
T ) � M , with M in dependent of ", which is a consequence of the

maximum principle. This implies that there exists fM > 0, such that k�"(x; u")kL1(
T ) �
fM , for every

" > 0. Hence, up to a subsequence, it follows that there exists w 2 L1(
T ) such that

(3:6) �"(x; u")* w � �weakly in L1(
T ) :

In order to prove that w = �0(u), we proceed in a similar way as in Proposition 3.1. For every Æ > 0 and

every � > 0 let 
Æ;1
T;� ; 


Æ;2
T;� and NÆ be the sets de�ned in the proof of Proposition 3.1. By (iv) and (v) of

Proposition 3.1 we have that, for " small enough, u; u" � �C2(�), in 
Æ;2
T;� . By the continuity of �(x; �),

uniformly with respect to x, this implies that �"(x; u") � 1� C4(�) and �"(x; u) � 1� C4(�), for a suitable

C4(�) > 0. Hence,

(3:7) j�"(x; u")� �"(x; u)j � C4(�) :

Then, using H1), (3.7) and (2.8), it follows

j

Z

T

h
w � �0(u)

i
 dx dtj � j

Z

T

h
�"(x; u")� w

i
 dx dtj+ j

Z

T

h
�"(x; u")� �0(u)

i
 dx dtj

� j

Z

T

h
�"(x; u")� w

i
 dx dtj

+ k kL1

"Z

Æ;1

T;�

j�"(x; u")� �"(x; u)j dx dt+

Z

Æ;2

T;�

j�"(x; u")� �"(x; u)j dx dt

+

Z
NÆ

j�"(x; u")� �"(x; u)j dx dt

�
+ j

Z

T

h
�"(x; u)� �0(u)

i
 dx dtj

� j

Z

T

h
�"(x; u")� w

i
 dx dtj

+ k kL1

"
L

Z

Æ;1

T;�

ju" � uj dx dt+ C4(�)j
T j+ L

Z
NÆ

ju" � uj dx dt

#

+

����Z

T

h
�"(x; u)� �0(u)

i
 dx dt

����
� j

Z

T

h
�"(x; u")� w

i
 dx dtj

+ Ck kL1

"Z

Æ;1

T;�

ju" � uj dx dt+ C4(�) + jNÆj

#
+

����Z

T

h
�"(x; u)� �0(u)

i
 dx dt

����
for every test function  2 C0(
T ), such that  (x; T ) = 0 on 
 and  (x; t) = 0 on @
� (0; T ). Taking into

account (3.6), (3.5) and Remark 3.2, and letting " ! 0+, � ! 0+ and �nally Æ ! 0+, we obtain that the

right hand side in the previous inequality converges to 0. This implies that w = �0(u) and that the whole

sequence (not only a subsequence) converges. So the required result is achieved.
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THEOREM 3.4. Assume that � : IRn � IR ! IR is a measurable function satisfying all the hypotheses

in (2.1) and such that �(�; s) is Y -periodic. Let � 2 H1(
) \ L1(
) and � 2 H2(
T ) \ L
1(
T ), with

�� = 0 in 
T . For every " > 0, let u" 2 L2(0; T ;H1
0(
)) be the solution of (3.1). Then, the sequence fu"g,

converges weakly in L2(0; T ;H1(
)) to the solution u 2 L2(0; T ;H1(
)) of the problem

(3:8)

8>>>><>>>>:
�00(u)

@u

@t
= �u in 
T ;

u(x; 0) = �(x) on 
 ;

u(x; t) = �(x; t) on @
� (0; T ) :

Proof. Taking into account the weak formulation of (3.1), we have that, for every " > 0,

(3:9)

Z

T

�"(x; u")
@ 

@t
(x; t) dx dt+

Z



�"(x; �(x)) (x; 0) dx =

Z

T

ru"r dx dt

for every test function  2 C1(
T ), such that  (x; T ) = 0 on 
 and  (x; t) = 0 on @
� (0; T ), with u" = �

on @
� (0; T ) in the sense of traces. Taking into account Lemma 3.3, (3.2) and passing to the limit in (3.9)

for "! 0+, we obtainZ

T

�0(u)
@ 

@t
(x; t) dx dt+

Z



�0(�(x)) (x; 0) dx =

Z

T

rur dx dt

which implies that u is a weak solution of (3.8). Hence, the whole sequence converges and the thesis is

accomplished.

REMARK 3.5. In the framework of physical applications, the model we have in mind is given by

�(x; s) =
NX
i=1

�i(s)�Ei
(x)

where, for every i = 1; : : : ; N , �i 2 LipL(IR), �i(s) � 1 for every s 2 IR, �i(s) � 1 for every s � 0, �0i is

strictly positive for s < 0, Ei � Y , [Ei = Y , \Ei = ; and �Ei
is the characteristic function of the set Ei,

extended by periodicity to the whole space IRn. It follows that � satis�es all the required assumptions in

(2.1), with e� de�ned by the relation e�0(s) = min�0i(s). Hence, by Theorem 3.4, we obtain the homogenization

result, where now the function �0 in (3.8) is given by �0(s) =
P

i �i(s)jEij.

REMARK 3.6. Clearly, Theorem 3.4 continues to hold, if we assume that, for every " > 0, �"(x; s)

satis�es all the hypotheses in (2.1) and there exists �(x; s) such that, for every s 2 IR,

�"(�; s)* �(�; s) � �weakly in L1(
)

when "! 0+. Note that, in this more general setting, the limit saturation can depend on the position.

As an example, we can think of a microstructure of concentric sperical layers of two di�erent alternating

materials; note that, also in this case, the e�ective saturation does not depend on x.
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