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Abstract

In this paper, we prove the Saint-Venant compatibility conditions in
Lp for p ∈ (1,+∞), in a simply-connected domain of any space dimension.
As a consequence, alternative, simple and direct proofs of some classical
Korn inequalities in Lp are provided. We also use the Helmholtz decom-
position in Lp to show that every symmetric tensor in a smooth domain
can be decomposed in a compatible part, which is the symmetric part of
a displacement gradient, and in an incompatible part, which is the in-
compatibility of a certain divergence-free tensor. Moreover under suitable
Dirichlet boundary condition, this Beltrami-type decomposition is proved
to be unique. This decomposition result has several applications, one of
which being in dislocation models, where the incompatibility part is re-
lated to the dislocation density and where 1 < p < 2. This justifies the
need to generalize and prove these rather classical results in the Hilbertian
case (p = 2), to the full range p ∈ (1,+∞).

Keywords: Elasticity, Korn inequality, compatibility conditions, strain de-
composition
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1 Introduction

1.1 Intrinsic and displacement-based approaches in elas-
ticity

The classical variational formulation of three-dimensional finite elasticity prob-
lems can be formulated as follows. Let Ω ⊆ R3 be a domain, i.e. an open,
bounded, connected and Lipschitz set which is the reference configuration of a
hyperelastic and homogeneous body. We say that Ω is a smooth domain if its
boundary is C∞. Let φ : Ω → R3 be a deformation, i.e. a sufficiently smooth
map (for example φ is in the Sobolev space H1(Ω,R3)), globally injective on Ω
and which preserves the orientation, i.e. det∇φ > 0 almost everywhere in Ω.
The set φ(Ω) is the current configuration of the body.

The minimization problem of three dimensional elasticity consists in looking
for a solution of

min
φ∈A

I(φ), (1.1)

where A is a family of deformations and

I(φ) :=

∫
Ω

W (∇φ)dx−
∫

Ω

f · φdx (1.2)

is the potential energy. Here W : M3
+ := {A ∈ M3 : detA > 0} → R is the

density of the elastic energy and f : Ω → R3 is the density of the volume
force applied to Ω. If the energy W is polyconvex and satisfies some growth
conditions, a classical result due to J. Ball (see [3], see also [2] and [8]) shows
the existence of minimizers for the functional I.

An alternative way to study this problem, sometimes referred to in literature
as the intrinsic approach (see for example [10]), consists in choosing as problem
unknown the Green St-Venant tensor E instead of the deformation φ. This
physical quantity is the change of metric from the reference to the current
configuration. By a constitutive law, it is also related to the strain, which, being
measured in the current configuration, turns out to be an intrinsic quantity.
We can write E in function of the displacement field u := φ − Id as E =
∇Su + 1

2∇u
T∇u, where ∇Su := 1

2 (∇u + ∇uT ) is the symmetric part of the
Jacobian matrix ∇u. The issue of passing from one description to the other,
can be formulated as follows: given two functional spaces B and C and given
E ∈ B a prescribed symmetric tensor, is there any u ∈ C such that

E = ∇Su+
1

2
∇uT∇u? (1.3)

Equivalently, given two functional spaces B and C and given g ∈ B a symmetric
and positive-definite tensor in Ω (i.e., a Riemannian metric), is there any φ ∈ C
such that

g = (∇φ)
T ∇φ? (1.4)

If B is the space of smooth functions C∞, then (1.4) is true if and only if the
Riemann curvature tensor Rijkl of the manifold Ω is zero and in this case we say
that the metric is compatible. The result is still valid if B = C1 or B = W 2,∞

(for a proof, we refer to [22] and [23]).The case B = C2, which states the Strong
Saint-Venant compatibility conditions, is recalled in Theorem 3.13.
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In linearized elasticity one can also pass from a displacement-based approach
to an intrinsic approach. More precisely let D be a family of displacements and
let

j(u) :=
1

2

∫
Ω

C∇Su · ∇Sudx−
∫

Ω

f · udx, (1.5)

be the linearized functional associated to the potential energy I defined in (1.2),
where C := D2W (I) is the elasticity tensor. Our aim is to minimize j on the set
D. For example, if D = H1(Ω,R3), f ∈ L2(Ω,R3) and

∫
Ω
f · rdx = 0 for every

rigid displacement r, then there exists a unique minimizer of j. If we want to
study this Neumann problem from another point of view, by using an intrinsic
approach, the new unknown will be the strain tensor

e := C−1σ,

with σ the Cauchy stress tensor. In order to pass from one description to the
other, the question in this simpler setting is whether e is the linearized part of
the Green St-Venant tensor E, that is: given two functional spaces B and C and
a symmetric tensor e ∈ B, is there any displacement u such that

e = ∇Su? (1.6)

Observe that the problem to establish when e is the symmetric part of the
gradient of a displacement u is in some sense similar to determining whenever
a vector field h ∈ C1(Ω,R3) is conservative. Indeed, Poincaré Lemma tells us
that if Ω is simply-connected, there exists a scalar function p ∈ C2(Ω) such that
h = ∇p if and only if h is irrotational, i.e. Curl h = 0. Let Sn be the space
of all symmetric matrices of order n. Then Ph.G.Ciarlet and P.Ciarlet in [10]
proved that if B = L2(Ω,S3), then (1.6) is true if and only if

Rijkl(e) := ∂i∂kejl + ∂j∂leik − ∂j∂keil − ∂i∂lejk = 0 in H−2(Ω,S3). (1.7)

These are exactly the Weak Saint-Venant compatibility conditions in linearized
elasticity.

1.2 Article outline and main results

This article is organized as follows. In Section 2.2 we recall the classical problem
of reconstructing a displacement from a given smooth symmetric tensor. An easy
computation shows that the displacement (and the rotation) can be rewritten
as recursive line integrals depending on the strain tensor e, and its curl Curl e.
In Proposition 2.2 we observe that this integral is well defined if and only if the
incompatibility tensor inc e of the strain e, viz.,

inc e := Curl ( Curl e)T , (1.8)

is zero. From this fact, we easily deduce in Corollary 2.4 the Strong Saint-Venant
compatibility conditions in linearized elasticity in the well-known smooth case.
In Section 3.2 we give a geometrical interpretation of the concept of incompat-
ibility in linearized elasticity. If, for η > 0, we define the metric

gη := I + 2ηe,
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then Proposition 3.11 shows that Rijkl(e) is exactly the first order term of the
Taylor expansion at η = 0 of the Riemannian curvature tensors Rηijkl associ-
ated to gη. This geometric linearization justifies the definition of Rijkl(e) as
the Riemann curvature tensor in linearized elasticity. Moreover it is seen that
Rijkl(e) = εijsεklr(inc e)sr, so that it vanishes if and only if inc e vanishes (see
Remark 3.12). This observation allows us to rewrite the weak Saint-Venant
compatibility tensor of Ciarlet in terms of the incompatibility tensor inc e (see
Theorem 3.14).

The new contributions of our work are found in Section 3. The first main
result of our work is Theorem 3.17, about Eq. (1.6), which extends the result of
Ph.Ciarlet when e ∈ Lp, with 1 < p < +∞. This extension may be interesting
if the body presents some defects such as dislocations, since the involved ener-
gies are not quadratic (see [25]) and one must consider exponents in the range
1 < p < 2. In Ph.Ciarlet’s proof, the most important tool is the weak Poincaré
lemma, which basically states that every irrotational field h ∈ H−1(Ω,R) is con-
servative. This theorem was proved in an elegant manner by Kesavan in [19].
Its proof relies substantially on the existence of solution for the Stokes equations
if the force f belongs to the space H−1(Ω,R3). In order to prove the same kind
of result in the non-Hilbertian case, i.e. with p possibly different from 2, other
techniques have to be used. Our main idea is to define a tensor T as a sum of e
and of a skewsymmetric tensor ω constructed, in a general form, from the curl
of e (see Lemma 3.15). Then we conclude be noticing that T is irrotational and
applying the weak Poincaré Lemma in Lp. Let us recall that the pioneer work
about this topic is due to E. Cesaro [7].

Our second main result is the structure Theorem 3.19, which contains a
decomposition of a symmetric tensor e ∈ Lp, with p ∈ (1,+∞) in a sum of the
type

e = ∇Su+ incF, (1.9)

where u ∈ W 1,p(Ω,R3) is a Sobolev vector field and F ∈ Lp(Ω,M3) is a
divergence-free tensor field with appropriate boundary conditions. We call ∇Su
the compatible part of the decomposition and incF its incompatible part. Here,
a crucial lemma will consist in exhibiting those symmetric gradients which write
also as the incompatibility of a tensor (see Lemma 3.17). Such a decomposition
has potentially many applications. In particular, it was used in [29] to study
the mathematical properties of countable families of dislocation lines.

Such a decomposition is often named after E. Beltrami for his pioneer article
[4]. Let us precise that at the best of our knowledge such a decomposition,
though regularly mentioned in the physical literature since [27], was not given a
mathematical proof. Here the proof holds not only for the Hilbertian case p = 2
but for the whole range p ∈ (1,+∞).

1.3 Application to Korn inequality in Lp

A related issue is the Korn inequality, whose study is the object of the Section
4. By using the same argument as in [10], we show in an alternative way two
classical Korn inequalities in Lp (see Theorem 4.2 and 4.3) in a simply-connected
domain. Korn inequalities are of utmost importance in linear and nonlinear
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theories of elasticity. Let us recall that Korn inequality basically asserts that
if Ω is a bounded domain and p ∈ (1,+∞) there exists a constant C > 0 such
that

‖ u ‖W 1,p≤ C ‖ ∇Su ‖Lp , (1.10)

for all u ∈ W 1,p
0 (Ω,R3). For p = 1 or p = ∞, some counterexamples show

that this result does not hold. However, Korn inequality is very important in
elasticity not only in the case p = 2, where it allows one to show that the
functional (1.5) is coercive, but also for an exponent p different from 2. For
example, it is essential to prove a geometric rigidity estimate (see, e.g., [11])
asserting that there exist a constant C > 0 and a rotation Q ∈ SO(n) such that

‖ ∇φ−Q ‖Lp≤ C ‖ dist(∇φ, SO(n)) ‖Lp , (1.11)

for every deformation φ ∈W 1,p(Ω,Rn).

There exists several proofs of Korn inequality in the literature for p = 2. The
most classical one (see for example [8]), valid in a domain Ω ⊆ Rn, is based on
the J.-L. Lions Lemma, which says that every distribution v whose derivatives
are in L2(Ω), belongs to the Sobolev space H1(Ω). An other proof of (1.10) for
p = 2 was provided for open sets with cone property by Nitsche in [24]. Here the
idea is to construct an extension operator from Ω to the whole space Rn which
preserves the strain. If p 6= 2, the proof is more complicated. If Ω ⊆ R2, i.e. Ω is
a plane domain, a Korn inequality type was proved by Wang (see [32]) in a quite
simple way. The proof is based on the existence of solutions φ0 ∈ W 1,p

0 (Ω,R3)
for the equation divφ0 = f , where f ∈ Lp(Ω) with null average. For a general
proof in Lp in arbitrary dimension we refer to [20] (see also [12] in the case of C2

domains). In the present paper we propose a simple and direct proof of Korn
inequality in Lp which is a direct consequence of our results (cf. Theorem 3.19
and in particular, Theorem 3.17).

2 Preliminaries

2.1 Notations and conventions

Assumption 2.1. Unless otherwise specified, the considered domain Ω is a
open connected and bounded subset of R3 with Lipschitz boundary and outward
unit normal N .

Smoothness of the boundary is not a too strong assumption for this problem,
as discussed in Remark 3.5.

The space of the square matrices of order n is denoted by Mn. Let B ∈Mn

be a square matrix. Then BS := B+BT

2 is the symmetric part of B, while

BA := B−BT
2 is its skew-symmetric part of B. Moreover Sn is the space of

all symmetric matrices of order n, while An is the space of all skew-symmetric
matrices of order n.
Here δij is the Kronecker symbol, while εijk is the Levi-Civita symbol. We will
use the relation

εijkεklm = δilδjm − δimδjl.

Let Ω ⊆ Rn be an open set. We will use the following functional spaces:
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• Ck(Ω,Rn) is the space of continuous function whose derivative up to order
k are continuous;

• Lp(Ω,Rn) with 1 ≤ p ≤ +∞, and the usual norm ‖ . ‖Lp is the usual
Lebesgue space;

• Wm,p(Ω,Rn) with 1 ≤ p ≤ +∞, m ∈ N and the usual norm ‖ . ‖Wm,p is
the usual Sobolev space;

• D(Ω,Rn) is the topological vector space of indefinitely differentiable func-
tions with compact support on Ω;

• D′(Ω) is the space of distributions on Ω;

• W 1,p
0 (Ω,Rn), where 1 ≤ p < +∞ is the closure of D(Ω,Rn) with respect

to the usual Sobolev norm;

• W−m,q(Ω,Rn) := (Wm,p
0 (Ω,Rn))′, where 1 ≤ p +∞ and q = p

p−1 , is the
dual of the usual Sobolev space;

• W
1
p ,p(∂Ω,Rn) denotes the set of all Sobolev functions which are trace of

a function u ∈W 1,p(Ω,Rn).

The divergence of a vector v and of a tensor T are defined componentwise as
follows:

• ( divv) := ∂jvj ; ( divT )i := ∂jTij ,

where sum is intended on the repeated indices. The curl of a vector v and of a
tensor T are defined componentwise as follows:

• ( Curl v)i := εikl∂kvl; ( Curl T )ij := εjkl∂kTil.

The incompatibility of a tensor E is defined componentwise as follows:

• ( incE)ij := ( Curl ( Curl E)T)ij = εikmεjln∂k∂lEmn.

Moreover, we will use the following spaces:

Lpdiv(Ω,R3×3) := {F ∈ Lp(Ω,M3) s.t. divF = 0}
= adhLp{F ∈ C∞(Ω̄,M3) s.t. divF = 0}, (2.1)

X pdiv(Ω) :=
{
V ∈ Lpdiv(Ω,M3) s.t. Curl V ∈ Lp(Ω,M3)

}
,

Vp(Ω) := {V ∈ X pdiv(Ω) s.t. V ×N = 0 on ∂Ω} , (2.2)

Ṽp(Ω) := {V ∈ X pdiv(Ω) s.t. V N = 0 on ∂Ω} . (2.3)

Let (M, (gij)) be a Riemannian manifold and let ∇ be a Levi-Civita connection
on M . We denote by Γkij the Christoffel symbols and with symbol Rijkl the

Riemannian curvature tensor, with the convention that Γijk := Γlijgkl.
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2.2 A classical result: Michell-Cesaro-Volterra decompo-
sition

As a first step, let us recall the problem of reconstructing a displacement from a
given symmetric tensor. In linearized elasticity, if all the functions involved are
smooth enough, we prove that the displacement field u is completely defined in
terms of the linearized strain tensor e by a recursive integral formula (cf. (2.5)),
which we compute explicitly.

Let e ∈ C∞(Ω,M3) be a symmetric tensor field such that inc e = 0 on Ω.
Let us fix x0, x ∈ Ω, and let γ ∈ C1([0, 1],Ω) be a curve in Ω such that γ(0) = x0

and γ(1) = x. We define the following quantities:

wi(x; γ) := wi(x0) +

∫
γ

εipn∂pemn(y)dym (2.4)

ui(x; γ) := ui(x0) +

∫
γ

(eil(y)− εilkwk(y)) dyl. (2.5)

Let us now prove that the quantities w(x) and u(x) defined in (2.4) and
(2.5) do not depend on the choice of the path from x0 to x. We will show that
this is a consequence of the fact that inc e = 0. In such a case the quantities
w and u define two C∞ functions on Ω that will be called the rotation and the
displacement vectors associated to the strain e, respectively. In order to prove
this fact, we compute the jump of w and u between two arbitrary curves with
the same endpoints, and observe that this quantity is zero if and only if the
incompatibility tensor vanishes. These are exactly the well known Saint-Venant
compatibility relations.

The rotation and displacement jumps are defined as

[[wi]](x;x0) := wi(x; γ)− wi(x; γ̃), (2.6)

[[ui]](x;x0) := ui(x; γ)− ui(x; γ̃), (2.7)

respectively.

Proposition 2.2. Let Ω ⊆ R3 be a simply-connected domain, let x0 ∈ Ω be
prescribed, and let w, u ∈ C∞(Ω,R3) be the functions defined in (2.4) and (2.5),
respectively. Then the following formulae hold:

[[wi]](x;x0) =

∫
Sγ−γ̃

(inc e(y))imdSm(y), (2.8)

[[ui]](x;x0) =

∫
Sγ−γ̃

(ym − xm)εimk(inc e(y))qkdSq(y), (2.9)

for all x ∈ Ω, and where Sγ−γ̃ is a surface enclosed by the the closed path γ− γ̃.
In particular,

[[wi]], [[ui]] = 0 for each couple of curves γ, γ̃ ⇐⇒ inc e = 0.

Remark 2.3. As a consequence of inc e = 0, (2.4) and (2.5) do not depend on
the choice of the curve γ ∈ C1([0, 1],Ω) connecting x0 to x. In particular, the
vector fields w ∈ C∞(Ω,R3) and u ∈ C∞(Ω,R3) are univoquely defined. Thus,

in (2.4) and (2.5), one can use the notation

∫
γ

=

∫ x

x0

.
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Proof. Let us first compute [[wi]]. The domain being simply-connected, there is
always a surface S := Sγ−γ̃ in Ω which has as boundary the closed path γ − γ̃
(here −γ̃ : [0, 1]→ Ω is the curve defined by −γ̃(t) := γ̃(1− t) for all t ∈ [0, 1]).
Then By Stokes formula it results that

[[wi]](x;x0) =

∫
S

εmqrεipn∂q∂perndSm(y) =

∫
S

(ince(y))imdSm(y).

This proves the formula for [[wi]]. Since the closed path γ − γ̃ is arbitrary and
the domain simply-connected, it results that [[wi]] = 0 if and only if inc e = 0.

Now, observe first that (2.5) rewrites by part integration as

ui(x; γx0,x) =

∫
γ

(eil(y) + (ym − (x0)m)εimk∂lwk(y)) dyl

− εimkwk(x)(xm − (x0)m). (2.10)

For [[ui]], apply again Stokes formula to deduce that

[[ui]](x;x0) =

∫
S

εqpl∂p [eil(y) + (ym − (x0)m)εimk∂lwk(y)] dSq(y)

− εimk[[wk]](x)(xm − (x0)m)

=

∫
S

(εqpl∂peil(y) + εqmlεimk∂lwk(y)

+ (ym − (x0)m)εqplεimk∂p∂lwk(y)dSq(y)− εimk(xm − (x0)m)

∫
S

(ince(y))kqdSq.

We have already proved that wi(x; γ) = wi(x;x0) :=

∫ x

x0

εipn∂pemn(y)dym in

the simply-connected domain Ω, and hence the relation ∂iwq(x) = εqpl∂peil(x)
holds. Since ∂lwl = 0,

εqmlεimk∂lwk = (δqiδlk − δqkδli)∂lwk = δqi∂lwl − ∂iwq = −∂iwq,

and hence, by identity ∂lwk = εkrn∂reln and the fact that (inc e)qk = εqplεkrn∂p∂reln,
it holds

[[ui]](x;x0) =

∫
S

(ym − (x0)m)εimkεqplεkrn∂p∂reln(y)dSq(y)

− εimk(xm − (x0)m)

∫
S

(inc e(y))kqdSq(y)

=

∫
S

(ym − xm)εimk(inc e(y))qkdSq(y).

This achieves the proof that [[wi]], [[ui]] = 0 if and only if inc e = 0.

Now it is straightforward to prove the following result:

Corollary 2.4 (Saint-Venant compatibility conditions in C∞). Let Ω be a
simply-connected and bounded open set in R3 and let e ∈ C∞(Ω,M3) be a sym-
metric tensor field. Then there exists u ∈ C∞(Ω,R3) (given by (2.5)) such that
e = ∇su, if and only if

inc e = 0. (2.11)
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Proof. If e is the symmetric gradient of a displacement it is straightforward that
its incompatibility vanishes. Then let us prove the converse. Therefore assume
inc e = 0 and define the vector fields w and u as in (2.4) and (2.5). Proposition
2.2 shows that w and u are independent of the path γ, so that we can write

wi(x) = wi(x0) +

∫ x

x0

εipn∂pejn(ξ)dξj ,

ui(x) = ui(x0) +

∫ x

x0

(eij(ξ)− εijkwk(ξ)) dξj , (2.12)

thus ∂jwi = εipn∂pejn and ∂jui = eij − εijkwk, from which the thesis follows
since e is symmetric, and εijkwk skewsymmetric.

The Lp counterpart of Corollary 2.4 will be proved in Theorem 3.17 with
other techniques. It represents the cornerstone of the proof of Korn inequality
in Lp. Now, the following classical quantities can be introduced:

Definition 2.5. Let u : Ω→ R3 be a smooth displacement field. Let us introduce
the following quantities:

(i) eij := 1
2 (∂jui + ∂iuj) is said strain tensor (it is the linear part of Green

St-Venant tensor Eij := eij + ∂iuk∂kui) ;

(ii) ωij := 1
2 (∂jui − ∂iuj) is said rotation tensor;

(iii) wi := 1
2εijkωkj is said rotation vector.

Remark 2.6. A simple computation allows us to express the rotation tensor
wij in terms of the rotation vector wi, since

εijkwk =
1

2
εijkεkmnωnm

=
1

2
(δimδjn − δinδjm)ωnm =

1

2
(ωji − ωij) = −ωij .

3 Decomposition of a symmetric tensor in Lp

3.1 Some preliminary results

Let us recall some results and remarks which will be used in the sequel.

Lemma 3.1 (Helmholz-Weyl-Hodge-Yanagisawa). Let 1 < p < ∞ and let
Ω be a smooth domain in R3. For every F ∈ Lp(Ω,M3), there exists u0 ∈
W 1,p

0 (Ω,R3) and a solenoidal V ∈ Ṽp(Ω), such that

F = Du0 + Curl V,
(
Lp(Ω,M3) = ∇W 1,p

0 (Ω,R3)⊕ Curl Ṽp(Ω)
)
, (3.1)

Alternatively, there exists u ∈ W 1,p(Ω,R3) and a solenoidal V0 ∈ Vp(Ω), such
that

F = Du+ Curl V0,
(
Lp(Ω,M3) = ∇W 1,p(Ω,R3)⊕ Curl Vp(Ω)

)
. (3.2)

Moreover the decompositions are unique, in the sense that u0, V , V0 are uniquely
determined, while u is unique up to a constant, and it holds ‖Du0‖p, ‖Du‖p ≤
C‖F‖p, respectively.
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Remark 3.2. When F is smooth with compact support, decompositions such
as (3.1) and (3.2) are classically given [31, 5] by explicit formulae involving the
divergence and the curl of F . Notice that no boundary data for F is here given.

Remark 3.3. Let F ∈ C1. In the particular case Curl F = 0 the Helmholtz
decomposition is trivial when Ω is a simply-connected domain. Indeed a well-
known consequence of the Stokes theorem is that in such a case there exists u ∈
C2(Ω,R3) satisfying F = Du. This result extends for F ∈ Lp with 1 < p < +∞
as shown in [15]. See [21] for a complete treatment of Helmholtz decomposition
in Lp, relying on the pioneer paper [18].

Remark 3.4. Let Ω be a smooth simply-connected domain, and let F ∈ Lp with
1 < p < +∞. If divF = 0 then, by Lemma 3.1, F = Curl V with V ∈ Ṽp(Ω).
Remark that for smooth functions F , this result holds for any simply-connected
domain.

Remark 3.5. Smoothness of the boundary is a strong requirement which is
needed for the following reason: (3.1) and (3.2) require to solve a Poisson equa-
tion ∆u = divF with the right-hand side in some distributional (i.e., Sobolev-
Besov) space for which smoothness of the boundary is needed. It is known [17]
that for a Lipschitz boundary the solution holds for 3/2− ε ≤ p ≤ 3 + ε, where
ε = ε(Ω) > 0. Note that for p = 2 a Lipschitz boundary would be sufficient.

Lemma 3.6. Let Ω be a domain, and H be a function in Lp(Ω) with
∫

Ω
Hdx =

0. Then there exists a function h ∈W 1,p(Ω,R3) solution of{
divh = H in Ω,
h = 0 on ∂Ω,

(3.3)

satisfying ‖h‖W 1,p ≤ ‖H‖p.

A proof of this Lemma can be found in [15, Theorem III.3.3]. Moreover it
also holds that if H ∈ C∞c (Ω), then

‖h‖Ck ≤ Ck‖H‖Ck−1 , (3.4)

for every k ∈ N∗ (see [15, Theorem III.3.5]). The following estimate can be
found in [21].

Lemma 3.7 (Kozono-Yanagisawa). Let F ∈ Vp(Ω) or F ∈ Ṽp(Ω). Then F ∈
W 1,p(Ω,R3×3) and it holds

‖∇F‖p ≤ C (‖Curl F‖p + ‖F‖p) . (3.5)

This shows that Vp(Ω) and Ṽp(Ω) are closed subspaces in W 1,p(Ω,R3×3). By
virtue of Lemma 3.7 and for simply-connected and bounded domains, a better
estimate, found in [31], reads as follows. Again, this classical result for smooth
functions with compact support is less standard in our setting.

Lemma 3.8 (von Wahl). Let F ∈ Vp(Ω) or F ∈ Ṽp(Ω). Then it holds

‖∇F‖p ≤ C‖Curl F‖p. (3.6)

As a direct consequence the following result holds.
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Lemma 3.9. Let F ∈ Vp(Ω) or F ∈ Ṽp(Ω). Then Curl F = 0 ⇐⇒ F = 0.

Let us now state the linear elasticity problem in Lp. Let Ω ⊆ R3 be a smooth
domain, let 1 < p < +∞ and let e := ∇Su be the linearized strain tensor and
f ∈ Lp(Ω,R3), a volume force. The elasticity system reads{

divCe+ f = 0 on Ω,

u = U on ∂Ω.

with U ∈ W 1/p,p(∂Ω), the prescribed boundary datum. Alternatively the Neu-
mann problem is associated with the boundary condition

(
C∇Su

)
N = g on ∂Ω,

with g ∈ W−1/p,p(∂Ω) the exerted boundary force. If the material is homoge-
neous and isotropic and its reference configuration is a natural state, it is well
known that the constitutive relations depend only on the Lamé constants of the
material λ and µ and are given by the formula Ce = 2µe+ λ(tre)I. These two
Lamé constants satisfy the relations µ > 0 and 3λ + 2µ > 0: in this case C is
a coercive tensor, i.e. there exists α > 0 such that CA · A ≥ α ‖ A ‖2 for all
symmetric 3× 3 matrix A. Therefore

divCe = div(2µe+ λ(tre)I) = 2µdive+ λ∇tre

= 2µdiv(
∇u+∇uT

2
) + λ∇tr(

∇u+∇uT

2
) = (λ+ µ)∇divu+ µ∆u,

and the Dirichlet problem in this particular case reads{
(λ+ µ)∇divu+ µ∆u+ f = 0 in Ω

u = U on ∂Ω.
(3.7)

By the regularity theory for partial differential elliptic equations, this problem
admits a strong solution u ∈ W 2,p(Ω) in Ω. The same fact also holds for the
Neumann problem.

3.2 Geometrical view of compatibility in nonlinear and
linearized elasticity

Definition 3.10. Let Ω ⊆ R3 be an open subset and let η > 0 be a real number.
Then a family of elastic metrics on Ω is given by

gη := I + 2ηe, (3.8)

where I is the identity matrix and e a smooth symmetric tensor.

Now let us compute the Riemannian curvature tensor of an elastic metric.

Proposition 3.11. Let Ω ⊆ R3 be an open set, η > 0 be a real number, and
gη a family of elastic metrics in Ω. Then the Riemann curvature tensor Rηijkl
associated to the elastic metrics gη is given in terms of e by the formula

Rηijkl = ηεijsεklr(inc e)sr + o(η). (3.9)

11



Proof. Let gij,η be the inverse matrix of gη = (gηij). It is given by

gij,η = δij − 2ηeij + o(η). (3.10)

The Christoffel symbols of the Riemannian metric gηij reads

Γηijk = η(∂jeik + ∂iejk − ∂keij) + o(η). (3.11)

Thus ∂iΓ
η
jkl = η(∂i∂jekl + ∂i∂kejl− ∂i∂lejk) + o(η), and ΓηiskΓs,ηjl = o(η). Hence

Rηijkl = η(∂i∂kejl + ∂j∂leik − ∂j∂keil − ∂i∂lejk) + o(η). (3.12)

Let us finally rewrite Rηijkl in terms of the incompatibility tensor inc e:

Rηijkl = ηεijmεmab(∂a∂kebl − ∂a∂lebk) + o(η)

= ηεijmεmabεklnεncd∂a∂cebd + o(η) = ηεijmεkln(inc e)sr + o(η).
(3.13)

This concludes the computations and the proof.

The above result suggests the following definition.

Remark 3.12. Let Ω ⊆ R3 be a domain and let e ∈ Lp(Ω,M3) be a tensor.
Then it follows from (1.7) that the Riemann curvature tensor is a distribution
fourth-order tensor whose components are given by

Rijkl(e) = εijmεkln(inc e)mn. (3.14)

Therefore (3.9) reads
Rη = ηR+ o(η).

It is clear that inc e = 0 if and only if Rijkl(e) = 0. In fact it is easy to rewrite
the incompatibility tensor in terms of Rijkl(e) as (inc e)ij = εiklεjmnRklmn(e).
Observe that inc e is a second-grade tensor, whereas R(e) is fourth grade.

We conclude this section recalling two classical results about Saint-Venant
compatibility conditions in finite and in linearized elasticity.

Theorem 3.13 (Saint-Venant compatibility conditions in finite elasticity [9].).
Let Ω ⊆ R3 be an open and simply-connected domain, let C = (gij) ∈ C2(Ω,S3

>)
be a symmetric and positive definite tensor and let E := 1

2 (C − I). Then the
following conditions are equivalent:

1. there exists a map Φ ∈ C3(Ω,R3) with det∇Φ > 0 on Ω such that

C = ∇ΦT∇Φ.

2. there exists a vector field u ∈ C3(Ω,R3) such that

E =
1

2
(∇u+∇uT ) +∇uT∇u.

3. The Riemann curvature tensor vanishes, i.e., Rijkl = 0.
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Lemma 3.11 has shown that inc e is the counterpart for linearized elasticity
of the Riemann curvature tensor. Formula (3.14) allows us to rewrite the weak
Saint-Venant compatibility conditions in L2, proved in [10], in the following
way:

Theorem 3.14 (Saint-Venant compatibility conditions in linearized elasticity).
Let Ω ⊆ R3 be a simply-connected domain and let e ∈ L2(Ω,S3) be a symmetric
tensor. Then there exists a displacement field u ∈ H1(Ω,R3) such that e = ∇Su
if and only if inc e = 0 in H−2(Ω,S3). Moreover u is unique up to rigid
displacements.

3.3 First main result: Saint-Venant compatibility condi-
tions in Lp

We want to extend Theorem 3.14 for p 6= 2. As we said, if p = 2 the proof is
based on the existence of solutions for the Stokes equations when the external
force f is in H−1(Ω,R3). If we want to extend its result in Lp, we have to use
other techniques. The following lemma is essential to the proof of our first main
result. No smoothness of the boundary is assumed.

Lemma 3.15. Let Ω ⊂ R3 be a simply-connected domain and let G ∈ Lp(Ω,M3)
be such that inc G = 0 in D′(Ω,M3). Then, there exists w ∈ Lp(Ω,R3) such
that ∇w = ( Curl G)T in D′(Ω,M3).

Proof. Let w be defined by

〈w,ϕ〉 := −〈( Curl G)T, ψ〉, (3.15)

for every test function ϕ ∈ D(Ω,R3), where ψ ∈ C∞0 (Ω,M3) is a solution of
(3.3) with H = ϕ − ϕ̂, ϕ̂ being the mean value of ϕ on Ω. Let us prove that
w is well defined as a distribution. First of all fix ϕ, and let us check that
〈w,ϕ〉 does not depend on the choice of ψ. If ψ1, ψ2 ∈ C∞0 (Ω,M3) are such that
divψ1 = divψ2 = ϕ− ϕ̂, then div(ψ1−ψ2) = 0 and there exists ζ ∈ C∞c (Ω,M3)
such that Curl ζ = ψ1 − ψ2 (see Remark 3.4). Hence by assumption,

〈( Curl G)T, ψ1 − ψ2〉 = 〈 inc G, ζ〉 = 0.

Moreover w is clearly linear, while if ϕn → 0 in D(Ω,R3), then, denoting by ψn
a solution of (3.3) with H = ϕ − ϕ̂, we have that ψn → 0 in D(Ω,M3) thanks
to estimate (3.4). This proves that w is a distribution. Now, for every test
function ψ, −〈∇w,ψ〉 = 〈w, divψ〉 = −〈( Curl G)T, ψ〉, by (3.15), so the thesis
will follow as soon as we prove that w ∈ Lp(Ω,R3). Let ϕ ∈ Lq(Ω,R3) be a
function with zero average such that ‖ϕ‖q ≤ 1, where 1

q = 1− 1
p . By Lemma 3.6

there exists ψ ∈W 1,q(Ω,M3) with ‖ψ‖W 1,q ≤ C‖ϕ‖q ≤ C such that divψ = ϕ.
Thus,

|〈w,ϕ〉| ≤ |〈G, ( Curl ψ)T〉| ≤ C‖ϕ‖q‖G‖p,
and the Lemma is proved, observing that the linear functional w vanishes on
the finite dimensional subspace of Lq(Ω,R3) of constant functions.

Remark 3.16. The distributional gradient ∇w of Lemma 3.15 generalizes in
the Lp-case the gradient found in the path integral of (2.4) for smooth fields.
Moreover, w is divergence-free.
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With this Lemma we are now ready to state and prove our first main result.

Theorem 3.17 (Saint-Venant compatibility conditions in Lp). Let Ω ⊆ R3 be a
simply-connected domain, let 1 < p < +∞, and let e ∈ Lp(Ω,S3) be a symmetric
tensor. Then

inc e = 0 in W−2,p(Ω,S3) ⇐⇒ e = ∇Su

for some u ∈W 1,p(Ω,R3). Moreover, u is unique up to rigid displacements.

Proof. Let us assume that inc e = 0. Let w be defined by Lemma 3.15 with G =
e and define also ωij := −εijkwk. Using the relation εijkεklm = δilδjm − δimδjl
and the fact that e is symmetric, we compute Curl ω = −Curl e, so that
T := e + ω ∈ Lp(Ω,M3) satisfies Curl T = 0. Hence by Lemma 3.1 and
Remark 3.3, it results that T = ∇u for some u ∈ W 1,p(Ω,R3). Observing
that ω is skewsymmetric and recalling that ∇Sv = 0 if and only if v is a rigid
displacement (see [8]) concludes the proof.

3.4 Second main result: structure theorem - Beltrami de-
composition

The second main result of this work stands on the following lemma:

Lemma 3.18. Let Ω be a domain and u0 ∈ W 1/p′,p(∂Ω,R3), and let u be the
solution of the system {

∇divu+ ∆u = 0 in Ω,

u = u0 on ∂Ω.
(3.16)

Then there exists F̃ ∈ Lp(Ω,M3) with Curl F̃ ∈ Lp(Ω,M3), divF̃ = 0 in Ω and
F̃N = 0 on ∂Ω, and such that

∇su = incF̃ . (3.17)

Proof. From (3.16) we see that ∇su is divergence free. By Remark 3.4, there
exists a divergence-free G such that

∇su = Curl G
(

(∇su)ij = εjlk∂lGik

)
. (3.18)

Let H be the zero-average solution of{
∆H = −∂i∂jGij = 0 in Ω
∂NH = −∂iGijNj on ∂Ω

, (3.19)

and let h be the solution of the problem (3.3). We then define G′ := G +∇h.
We obviously have

∇su = Curl G′
(

(∇su)ji = εilk∂lG
′
jk

)
. (3.20)

Since ∇su is symmetric and divergence-free, we have also

0 = ∂j(∇su)ji = εilk∂l∂jG
′
jk. (3.21)
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Moreover by the definition of G′, H, and by (3.19), we have

∂i∂jG
′
ji = ∂i∂jGij + ∂i∂j∂jhi = ∆H = 0. (3.22)

Equation (3.19) implies also

Ni∂jG
′
ji = Ni∂jGji + ∂NH = 0, (3.23)

so that from (3.21), (3.22), and (3.23), we see that F = Fi := ∂jG
′
ji is the

solution of the system Curl F = divF = 0 of Lemma 3.9, and then it holds
∂jG

′
ji = 0 in Ω. From Remark 3.4 again, we entail the existence of F̃ satisfying

divF̃ = 0 in Ω and F̃N = 0 on ∂Ω such that

G′ij = εilk∂lF̃jk

(
G′ = ( Curl F̃ )T

)
,

and the thesis follows by (3.20).

We are now ready to state and prove our second main result.

Theorem 3.19 (Structure theorem-Beltrami decomposition). Let Ω ⊆ R3 be
a simply-connected domain with smooth boundary, let p ∈ (1,+∞) be a real
number and let e ∈ Lp(Ω,S3) be a symmetric tensor. Then,

1) There exist a vector field ū ∈ W 1,p(Ω,R3) and a tensor F 0 ∈ Lp(Ω,S3)
with Curl F 0 ∈ Lp(Ω,S3), incF 0 ∈ Lp(Ω,S3), divF 0 = 0 and F 0N = 0
on ∂Ω such that

e = ∇S ū+ incF 0. (3.24)

2) For any U ∈ W 1/p,p(∂Ω), there exists u ∈ W 1,p(Ω,R3) with u = U on
∂Ω and F ∈ Lp(Ω,S3) with Curl F ∈ Lp(Ω,R3×3), incF ∈ Lp(Ω,S3) and
divF = 0 and FN = 0 on ∂Ω such that

e = ∇Su+ incF. (3.25)

This pair {u, F} is unique.

We call ∇Su the compatible part and incF the incompatible part of the decom-
position (3.24) and (3.25).

Proof. 1) By Helmholtz decomposition (3.2) there exist two vector fields ũ ∈
W 1,p(Ω,R3) and v ∈ Vp(Ω) such that

e = ∇ũ+ Curl v,

or componentwise
eij = ∂j ũi + εjkl∂kvil.

Apply again Helmholtz decomposition to vTli to deduce the existence of W̃ ∈
W 1,p(Ω,R3) and W ∈ Vp(Ω) such that

vTli = vil = ∂iW̃l + εipq∂pWlq.

Moreover by the decomposition in symmetric and skew-symmetric parts, it holds
that:

Wlq = WS
lq +WA

lq = WS
lq +

1

2
εlqmεmijWij .
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Since the rotation vector is given by ωm = 1
2εmjiWij , then

Wlq = WS
lq +WA

lq = WS
lq − εlqmωm.

Let us define F := WS . Therefore

εipq∂pWlq = εipq∂pFlq − εipqεlqm∂pωm
= εipq∂pFlq + (δilδpm − δimδpl)∂pωm
= εipq∂pFlq + δildivω − ∂lωi.

Now we want to show that there exists φ ∈ W 2,p(Ω,R3) such that the tensor
F 0
lq := Flq + 1

2 (∂lφq + ∂qφl), satisfy Curl F 0 ∈ Lp(Ω,S3), F 0N = 0 on ∂Ω and

divF 0 = 0 on Ω. The first requirement on the Curl is true by definition of F0.
Since F ∈W 1,p(Ω,S3) by Remark 3.7, the Neumann problem{

div∇Sφ = ∇divφ+ ∆φ = −divF in Ω,(
∇Sφ

)
N = 0 on ∂Ω,

(3.26)

admits a strong solution φ ∈ W 2,p(Ω,R3) a.e. in Ω by Remark 3.7 (here λ = 0
and µ = 1). This solution is unique up to rigid displacements. Hence F 0 satisfy
all the conditions required. Therefore it results that

eij = ∂j ũi + εjkl∂kvil = ∂j ũi + εjkl∂k(∂iW̃l + εipq∂pWlq)

= ∂j ũi + εjkl∂k(∂iW̃l + εipq∂pFlq + δildivω − ∂lωi)
= ∂j ũi + εjkl∂k∂iW̃l + εjklεipq∂k∂pFlq + εijk∂k(divω)

= ∂j ũi + εjkl∂k∂iW̃l + εjklεipq∂k∂pF
0
lq + εijk∂k(divω)

− 1

2
εjklεipq∂k∂p∂qφl −

1

2
εjklεipq∂k∂p∂lφq

= ∂j ũi + εjkl∂k∂iW̃l + εjklεipq∂k∂pF
0
lq + εijk∂k(divω).

Since e is symmetric, then inc e is also symmetric. Thus

eij =
eij + eji

2

=
∂j ũi + ∂iũj

2
+ (incF 0)ij +

1

2
εjkl∂k∂iW̃l +

1

2
εikl∂k∂jW̃l.

(3.27)

Let us define the vector field ū = (ūi)i ∈W 1,p(Ω,R3) as

ūi := ũi + εikl∂kW̃l.

Therefore

eij =
∂j ūi + ∂iūj

2
+ (incF 0)ij ,

proving 1).

Let us now prove 2). Let w be the solution of (3.16) with boundary datum
v = ū − U . Then Lemma 3.18 provides F̃ such that ∇sw = incF̃ . So that
setting u := ū− w, we find e = ∇su+ incF with F := F̃ + F ◦, and the sought
decomposition follows. To see uniqueness of such u, consider another û and
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another F̂ satisfying e = ∇S û + incF̂ and û = U on ∂Ω. Then its difference
v := u − û satisfies (3.16) with v = 0 on ∂Ω and hence u = û. Let us now
prove that F is unique. Assume that there exist another such F̂ and define
G := F − F̂ . It holds inc G = 0. By virtue of Theorem 3.17 and taking the
divergence of G = ∇Sζ, it holds ∆ζ +∇divζ = 0 in Ω and (∇Sζ)N = 0 on ∂Ω.
Thus ζ is a rigid displacement and G = 0.

Remark 3.20. It is easily verified that taking inc e = 0 in (3.24) and since F
is divergence free yields the PDE ∆∆F = 0. The issue of finding appropriate,
well-posed boundary conditions for this problem can be addressed by recalling the
classical theory by Agmon, Douglis and Nirenberg [1] (see also[16]) of comple-
mentary boundary conditions. For instance it results from this analysis that the
following system is well posed (see [30] for detail):

∆2F = f in Ω
FN = ϕ1 on ∂Ω
divF = g on ∂Ω

∂N divF = h on ∂Ω

(∂NF ×N)
t ×N = ϕ2 on ∂Ω

. (3.28)

Taking f = inc e, h = g = 0, it is immediately seen that such F is divergence
free, since div F is the solution of the homogeneous Dirichlet problem with
vanishing RHS .

4 Application to the Korn inequalities in Lp

Our first main result allows us to deduce an alternative proof of Korn inequal-
ities, which are crucial in elasticity. We follow the same procedure as of P.
Ciarlet and Ph.G. Ciarlet in [10]. Let Ω be a domain and define the spaces

Ep(Ω) := {e ∈ Lp(Ω,S3) : inc e = 0},
R(Ω) := {u(x) = Ax+ b : A ∈ A3, b ∈ R3},
Ẇ 1,p(Ω,R3) := W 1,p(Ω,R3)�R(Ω),

where R(Ω) is the closed subspace of W 1,p(Ω,R3) consisting of rigid displace-
ments. Ẇ 1,p(Ω,R3) turns out to be a Banach space if endowed with the norm

‖u‖Ẇ 1,p := inf
r∈R(Ω)

‖u′ + r‖W 1,p ,

where u′ is a representative of the class of u.
Theorem 3.17 has the following consequence:

Corollary 4.1. Let Ω ⊆ R3 be a simply-connected domain, let p ∈ (1,+∞).
Let us define the linear application

Fp : Ep(Ω)→ Ẇ 1,p(Ω,R3)

given by
Fp(e) = u̇ for all e ∈ Ep(Ω),

where u̇ ∈ Ẇ 1,p(Ω,R3) is the unique element such that ∇S u̇ = e. Then Fp is
bijective, continuous and its inverse is continuous.
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Proof. First of all we recall that Ep(Ω) is a closed subspace of Lp(Ω), therefore
a Banach space. Moreover F is a bijection by Theorem 3.17. If we prove that
F−1
p is continuous, thesis follows from open mapping Theorem. But

‖ F−1
p (u̇) ‖Lp=‖ ∇S u̇ ‖Lp≤‖ u̇ ‖Ẇ 1,p ,

then F−1
p is continuous.

Now it is trivial to prove a Korn inequality in the quotient space Ẇ 1,p(Ω,R3),
where p ∈ (1,+∞). Remark that no smoothness of the boundary is required.

Theorem 4.2 (Korn inequality in Ẇ 1,p)). Let Ω ⊆ R3 be a simply-connected
domain and let p ∈ (1,+∞). Then there exists C > 0 such that

‖ u̇ ‖Ẇ 1,p≤ C ‖ ∇S u̇ ‖Lp for all u̇ ∈ Ẇ 1,p(Ω,R3). (4.1)

Proof. By Corollary 4.1 Fp is a continuous map. Then there exists C > 0 such
that

‖ Fp(e) ‖Ẇ 1,p=‖ u̇ ‖Ẇ 1,p≤ C ‖ ∇S u̇ ‖Lp

Now we want to prove another useful Korn inequality. Let Γ0 ⊆ R3 be a
subset of ∂Ω with H2(Γ0) > 0, where H2 denotes the two-dimensional Hausdorff
measure. Let us define the spaces

W 1,p
Γ0

(Ω,R3) = {u ∈W 1,p(Ω,R3), u = 0 on Γ0},

EpΓ0
(Ω) := {e := ∇Su : u ∈W 1,p

Γ0
(Ω,R3)},

the latter being a closed subspace of Ep(Ω) since the trace operator is continuous
on W 1,p(Ω,R3). The linear application

F̂p : EpΓ0
(Ω)→W 1,p

Γ0
(Ω,R3),

given by
F̂p(e) = u,

for every e ∈ EpΓ0
(Ω), is well defined by Theorem 3.17, since there is a unique

u ∈ WΓ0

1,p(Ω,R3) such that ∇Su = e. Indeed, suppose ∇Su1 = ∇Su2 = e,
then ∇S(u1 − u2) = 0, and hence u1 and u2 differ by a rigid displacement, that
is well known to be zero by the assumption that u = 0 on Γ0 with H2(Γ0) > 0.
Thus u1 − u2 = 0 on Ω. Moreover it is straightforward that F̂p is a bijection.

The continuity of F̂−1
p readily follows from the fact that

‖ e ‖Lp=‖ ∇su ‖Lp≤‖ u ‖W 1,p .

Then the open mapping Theorem implies the following result:

Theorem 4.3 (Korn inequality in W 1,p
Γ0

). Let Ω ⊆ R3 be a simply-connected
domain and let p ∈ (1,+∞). Then there exists C > 0 such that

‖ u ‖W 1,p≤ C ‖ ∇su ‖Lp for every u ∈WΓ0

1,p(Ω,R3). (4.2)
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These proofs of Korn inequalities are valid in simply-connected domains. It is
easy to extend them to the case of more general domains. For instance, Theorem
4.3, is valid for domains which are finite union of simply-connected open sets
(each one with a nonnegligible part of the boundary intersecting Γ0). For a
path-connected and locally simply-connected domain, we can argue as follows:
we first split the domain in a countable union of disjoint simply-connected open
sets Ωi (plus a negligible set), and then obtain the Korn inequality for each one
of them by an approximation argument. This can be done adding to Ωi a small
open neighborhood of a path connecting it to Γ0, and then letting the width of
it go to zero. Korn inequalities are classical results already proved for general
domains with other methods (see, e.g., [20, Theorem 8]).

5 Concluding remarks

The aim of this paper was to be on the one hand to write a brief survey on
the intrinsic approach in elasticity, emphasizing the role of the incompatibility
operator in linearized elasticity. On the other hand, our aim was to provide and
prove new results on general and incompatibility-free symmetric tensors in Lp

for for p ∈ (1,+∞). The obvious mechanical interpretation of these tensors are
the strain tensors, related to the stress tensor by a constitutive law, a linear law
in most cases, and providing the deformation of the elastic body under analysis.

Saint-Venant-type relations are well known in the Mechanical literature, and
the Hilbertian case was long established. However, to the knowledge of the au-
thors, it had not been demonstrated in Lp for any space dimension. Therefore,
generalizations to p ∈ (1,+∞) was the first motivation of the present work.
The structure theorem is also a new contribution of this paper, and might be
seen as a generalization of Saint-Venant result in Lp. Remark that both results
are intimately related, but none follows directly from the other in our setting.
Let us observe that the first main result holds for any simply-connected do-
main, whereas the structure theorem was proved with an additional smoothness
assumption of the domain boundary. In a second stage, the first main result
has been applied to suggest another proof of certain Korn inequalities in Lp.
From an application viewpoint, it should be stressed that the structure theo-
rem is useful in dislocation models since it can be proved (see, e.g., [28, 29])
that in the presence of dislocations inc e is related to the curl of the disloca-
tion density κ, and hence the field F is a dislocation-induced tensor satisfying
inc inc F = f( Curl κ), whereas u is related to the mechanical equilibrium equa-
tions, and f a certain material-dependent function.

It should in fact be emphasized that in dislocation models, first, it is not true
that the strain e = C−1σ equals a symmetric gradient everywhere. Second, the
structure theorem would split e = C−1σ in two contributions, each with a clear
physical interpretation. Indeed, u is identified with a displacement provided by
equilibrium of Newtonian forces, while F is a defect variable obeying specific
transport-diffusion-reaction equations for the dislocation density. Moreover, in
a complete elasto-plastic model, this incompatible part is undoubtly related to
plasticity. This also justifies the interest of our structure theorem with a view
to modeling. To conclude let us justify the study of the case p 6= 2 by recalling
that dislocations are singularities that prohibit for intrinsic physical reasons the
use of quadratic energies (see [25], [26]). Indeed, in [30] simple approach based
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on linear PDEs is suggested, where the classical Lamé system of elasticity is
solved, though with a variable u which is not primarily the displacement field,
rather originating from a Beltrami-strain decomposition which also provides a
dislocation-dependent field F . This latter field solves an incompatibility-based
PDE, as given in Remark 3.20. Specifically, being f, g and U the body and
surface forces, and the prescribed boundary load, the following result will is
proved in [30]: there exists u ∈W 1,p(Ω) with 1 ≤ p ≤ 3/2 such that −div

(
A∇Su

)
= f + F in Ω(

A∇Su
)
N = g + G on Γ1

u = U on Γ0,
, (5.1)

where F and G are dislocation-induced body and surface forces in W−1,p(Ω) and
W−1/p,p(Γ1), respectively, with 1 ≤ p ≤ 3/2, depending on F and vanishing as
soon as the dislocation density vanishes.
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