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Introduction

The present thesis draws its inspiration from considerations of physical nature
arising in the field of Damage Mechanics. Damage models for linearly elastic materi-
als describe the worsening of the elastic properties of the material as a consequence
of the applied loads. Roughly speaking, when a material is subject to a damage
process, the elastic strain in the mainly damaged regions can become very large.
Therefore one expects that the body develops some fractures in the regions where
damage is concentrated.

One of the main goals of this thesis is the rigorous study, in the static case,
of the asymptotic behaviour of certain damage models under different regimes. In
particular we aim at identifying the limit model, which exhibits a strong dependence
on the regime which is assumed. Certain regimes really lead to a model for fracture,
of brittle or cohesive type. Nevertheless, some other regimes lead to a model for
diffuse plasticity.

In the detailed exposition of the results we shall see that the rigorous mathemat-
ical investigation of the above-mentioned problems relies on the classical notion of
I'-convergence and requires to formulate the problem in a proper functional space.
A crucial tool will be a new density theorem which has an independent theoretical

interest.

In order to explain in details our results we need some terminology and prelim-
inaries from Brittle Damage Mechanics. In [41) 42] Pham and Marigo describe the
foundations of the variational approach to damage as well as the gradient damage

model, which this thesis relies on.

(i) The damage state of the material point is characterized by a scalar internal
variable v, defined on the reference configuration 2 C R™ with values in the
interval [0,1]. The value v = 1 corresponds to the original elastic material,

while v = 0 represents the totally damaged material.

(ii) For a given state v € (0, 1] the behaviour is elastic and described by the elastic

potential 2(v,e(u)), where e(u) is the symmetric gradient of the displacement

X
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u and the function (v,e) — 2(v,e) is, in the simplest case, increasing in v
and quadratic in e. A prototypical example carrying the relevant features is
9(v,e) = vle|?, which we shall consider in this section for the sake of the

exposition.

(iii) In an isotropic, homogeneous, and linearized setting, the total energy for the

damage model at fixed time is given by

/Qv|e(u)|2dx+/Qa¢(v)dm+/gbvu|2dx, (1)

where 1) is strictly decreasing and (1) =0, and a,b < +o0 are positive con-
stants. Here the first term represents the stored elastic energy corresponding
to the displacement u and to the internal variable v, the second term is the
energy dissipated by the damage process, finally the last term, penalizing the
spatial variations of v, guarantees some regularity in the distribution of dam-
age. Assuming that (u,v) € HY(Q,R")x H'(Q,[0,1]), one ensures that the
energy is finite. The functional is complemented by suitable boundary

conditions and lower order terms due to the action of external forces.

(iv) The quasistatic evolution is governed by the following rules: the damage process
is irreversible, the system is in static stable equilibrium at each time ¢, and

the total energy is conserved.

In this thesis we consider a damage model of the type and we assume in
addition that the damage is never complete. We focus on the problem of investigating
the asymptotic behaviour of a solution of the stationary damage problem as the
concentration and the completion of damage are forced, that is when the model
requires regions with smaller and smaller volume where the internal variable tends
to 0. As we shall see, a variety of difficulties arises already in this static context.

Our results can be applied to study the asymptotic behaviour of the incremental
minimum problems used in the standard approximation of the quasistatic evolution
(see, for instance, [27] and [33] for existence results of quasistatic evolutions in brittle
fracture; see also [16] and [I7] for some numerical simulations). With the exception
of the classical Ambrosio-Tortorelli regime in the antiplane context (see the work
[36] by Giacomini), the extension to the continuous time is still an open problem and
it is out of the aims of this thesis.

The mathematical rewording of the above-mentioned convergences under the non-
completion of damage assumption entails the introduction of a positive parameter d
such that

d<v<1 (2)
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and the study of the limit behaviour of a minimizer of under the constraint ,
with suitable boundary conditions, as a — +o0o, b — 0, and d — 0. The choice of
ay)(v) as the cost of the damage is in fact the simplest possible. As a — +o0, the
internal variable v is compelled to tend to 1 L"-a.e. in ), entailing concentration
of damage in regions with vanishing volume. The transition from the damaged to
the undamaged regions occurs in a strip with smaller and smaller width due to the
requirement b — 0. Finally, the completion of damage is forced as the minimum d
of v in the damaged regions tends to 0.

Our approach is based on I'-convergence (see [24] and Section [1.8)): a variational
convergence which guarantees convergence of minimizers (and of minima) of the
damage energies to minimizers (and minima) of the limit models.

The first part of the thesis studies the above-mentioned problem in the case of
antiplane shear. This case is studied in its full generality, establishing a hierarchy
of limit models depending on the asymptotic ratios of the parameters a,b, and d.
The extension of some interesting results from the antiplane to the general case
is the object of the second part of the thesis. As we will see this will not be a
straightforward generalization of the scalar case, requiring the involvement of a new

functional space and the proof of suitable density properties.

The antiplane shear is a special state of strain in a 3-dimensional cylindrical
body, achieved when the displacements are parallel to the axis and depend only on
the projection onto the basis. Under this hypothesis the displacement is described
by a scalar function u defined on the cross section 0 C R? of the cylinder, so that
the gradient Vu replaces e(u) in (1.

In order to state precisely our results we introduce three sequences g, e, np > 0,
with 6 — 0, e — 0, nx — 0, playing the role of the vanishing parameters 1/a, b,
and d, respectively. Without loss of generality we assume that

Tk o and 6—k—>ﬂ, with 0<a,f8 < +o00.

Ok £k
Since this does not require any additional difficulty, we consider the general case
when R? is replaced by R” and |Vv|? in the total energy is replaced by |Vou|P with
1<p<+oo.

Given a bounded open set 2 C R” with Lipschitz boundary, for v € H'(Q) and
v € WHP(Q) with

e <v<1l L"ae. in Q, (3)

we define

Fr(u,v) := /Q (v [Vu|® + 1/’(5:) + »ysg‘lyvmp) dr, (4)
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where 0 < v < 400 and ¥ € C([0,1]) is strictly decreasing with (1) = 0. We set
Fy(u,v) := 400 otherwise in L'(Q)xL(Q).
The limit case p = +00 is also studied, in the sense that the penalization term

Jo si_1|Vv|pd3: is now replaced by the constraint
1
Vo] < —  LM-a.e. in Q.
€k

In this case the energy functional is defined by

Fi(u,v) := /Q (U [Vl + @)dm if (u,v) € H'(Q)x Vg,

—+00 otherwise,

where

1
Vi i = {v IS Wl’OO(Q) e <v <1, |Vl < = L"-a.e. in Q}
k

In Chapter [2l we determine the T-limit in L'(Q)xL!(Q2) of the sequence (F})
and we find that this limit depends on « and 8 (see Theorem . For some values
of the parameters the limit functional is related to a fracture problem; this is due
to damage concentration along the limit cracks. For some other values the limit is
related to perfect plasticity; in this case we see damage diffusion, which leads to
plastic strains. The I'-limit can be described by means of an auxiliary functional
®op: L1(Q) = [0,40oc], depending on the values of 0 < o, 8 < +00. Precisely the

following main regimes can be identified.

e For o, € (0,400) we define

Do p(u) = /Q \Vul*dz + agH" () + ba (]| dH" ! (5)

Ju |
for u € SBV?(Q), and @, p(u) := +oo if u ¢ SBV?(Q). Here Vu is the
density of the absolutely continuous part of the distributional derivative of u,
H" 1 is the (n — 1)-dimensional Hausdorff measure in R, .J,, is the jump set
of u, [u] is the jump of u, and u € SBV?(£)) means that v € SBV (), Vu €
L2(Q,R"), and H""1(J,) < +oo (see [7] and Section [1.2| for the definition of
these quantities). Setting 1/p+1/q = 1, the precise definitions of the constants

ag and b, are

[NIES

ag = 2(2)3(7]9)% /Olwéds, ba := 2(a1)(0))

9 1
= — d ba = 2 0
ag ﬁ/o Y ds, (ay(0))

if 1<p<+4oo, (6)

N|=

if p=+o0.
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e When v =0 and § € (0,4+00) we define
Do 5(u) = / \Vul?dz 4+ agH"1(J,) for ue GSBVA(Q)NLY(Q) (7)
Q

and ®¢ g(u) := 400 otherwise (see Sectionfor the definition of GSBV?2(Q)).

o If « =400 or B =0 we set
®, 5(u) == /Q |Vu|*dz  for u € H'(Q)

and @, p(u) == +oo if u ¢ H'(Q).
e If a =0 and 8= 400 we set Py (u):=0 for ue L(Q).

e Finally for a € (0,+00) and 8 = +oo we define
Doy (11) = / Lu(IVul)dz + b D] (Q)  for u € BV(Q) (8)
Q

and @, o(u) 1= +oo if u ¢ BV(Q). Here fo(t) := t* for 0 < t < by/2,
fa(t) = ba(t — by/4) for t > by/2, and D’u is the singular part of the

distributional derivative of w.
We prove the following theorem (see Theorem [2.1).

Theorem 1. The I'-limit of (Fy) in L'(Q)xLY(Q) is the functional

O, 5(u) ifv=1L"-ae inQ,
Fop(u,v) := “
400 otherwise.
The previous theorem, combined with standard properties of I'-convergence, al-
lows us to establish the following result about the limit behaviour of minima and

minimizers (see Theorem [2.7)).

Theorem 2. Let r > 1, let (0), (ex), and (ng) be infinitesimal sequences of
positive numbers, and let g € L™(Q). For every k, let (ug,vx) be a minimizer of the

functional

Fy(u,v) + /Q lu —g|"dz, (u,v) € LY(Q)xL'(Q). 9)

Then v, — 1 strongly in L'(Q) and a subsequence of (uy) converges strongly in

L™(2) to a minimizer u of the limil functional

@a,ﬁ(uw/ﬂm—gwx, we LYQ). (10)



xiv Introduction

Moreover for every a and [ the minimum values of (@ tend to the minimum

value of the limit problem.

A few comments on the features of the limit problem are in order. The functional
Fyp with 0 < 8 < +o00 has been originally introduced by Mumford and Shah in
[40] for a variational approach to image segmentation and it has been subsequently
used to determine stationary solutions in some brittle fracture models (see [I8]).
Under the latter interpretation the first integral represents the elastic energy stored
in the nonfractured regions of the material, whereas the second term is the amount

of energy paid to create the fracture surface.

Under this regime our convergence result recovers the work by Ambrosio and

Tortorelli [10], where the approximating functionals are of the form
1
/@2 )| VulPda + sk/ Vol2de + — / (v —1)%dz, (11)
Q Q der Jo

with u,v € HY(Q), 0 < v <1, and n/ep — 0. To our knowledge, no convergence
result has been proved for in the other regimes.

The first new result which inspired the study developed within this thesis corre-
sponds to the regime 0 < o < 400 and 0 < § < +0o. With respect to the Mumford-
Shah functional, the energy F,, g now exhibits a further surface term depending on
the amplitude of the jump [u]. While the first term in (5| again represents the stored
elastic energy, the second term plays this time the role of energetic barrier that has
to be overcome to unpin certain surfaces. A first interpretation for the last integral
in can be given using the terminology of fracture mechanics. A constant force
acts between the lips of the crack .J,,, whose displacements are u™ and u ™ ; therefore
the energy for unit area spent to create the crack is proportional to its opening |[u]|.
This interpretation is not properly covered by the classical Barenblatt’s cohesive
crack model [12], due to the presence of an activation energy H"~!(.J,) and to the
fact that the cohesive force bridging the crack lips is not decreasing with respect to

the crack opening and does not vanish for large values of the opening itself.

Another interpretation for the functional has been recently given in [§]. The
unpinned surfaces after the overcoming of the energy barrier are now seen in terms of
sliding surfaces in a strain localization plastic process. Therefore |[u]| here represents
the surface plastic energy, that is the work per unit area that must be expended in
order to produce plastic slip, supposed to occur at constant yielding shear stress. The
model neglects the final failure stage eventually leading to fracture, so that infinite

energy would be necessary to produce a complete separation of the body.

From the mathematical point of view, in [§] a different approximation of the
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energy is also proposed, involving the elliptic functionals

/(U2 + )| Vul?de + e | |Vo|?de + 1/ (v —1)%dz + / (v —1)?|Vu|dz,
) Q der Ja Q
with u,v € HY(Q), 0 <v <1, and n/e, — 0.

Our last interesting result in the case of antiplane shear is obtained when 0 <
a < 400 and 8 = +oo. The functional F, o is now related to the Hencky’s diffuse
plasticity model (see [11] and [44]), so that we are able to simulate a plastic material
by means of damaged elastic materials. To our knowledge, in this case no other
approximation result with phase field models is available in the literature. When
a = —+o0o or 8 =0 the limit functional corresponds to an elasticity problem without

cracks.

The I'-convergence method cousists in proving two inequalities: a liminf in-
equality, which provides a lower bound for the limit functional, together with some
compactness properties for sequences with equibounded energies, and a limsup in-
equality, based on the construction of a recovery sequence, which guarantees that
the lower bound is indeed optimal. In our framework, to prove compactness of dis-
placements with equibounded energies, a key tool is a characterization proved in
[1] which relates L!'-compactness of sequences with L!-compactness of slices (see
Theorem . Crucial ingredients in the construction of the recovery sequences are
the density result for SBV established in [23] (see Theorem and the relaxation

result contained in [15].

To conclude the discussion about the case of antiplane shear, let us stress that the
variational approximation via families of elliptic functionals has also turned out to be
an efficient analytical tool and numerical strategy in order to analyze the behaviour
of those energies and of their minimizers, being the approximating functionals easier
to handle with respect to their limit counterpart (see for instance [I§] and [§]).

For completeness we also recall that some variants of the Ambrosio-Tortorelli
approximation have been introduced by other authors to solve different problems:
for the purpose of approximating energies arising in the theory of nematic liquid
crystals [9], the Blake and Zisserman second order model in computer vision [6], to
provide a common framework for curve evolution and image segmentation [43] 2] 3],
for general free discontinuity functionals defined over vector-valued fields [29] 30],
and finally for functionals defined over bounded fields and corresponding to models
for brittle linearly elastic materials [20} 21], which will be also discussed in the next

part.

In the second part of this thesis we are concerned with studying the convergence
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problem for in the general case of linearized elasticity in dimension n, where

several additional difficulties arise.

Let us consider first the counterpart of the minimum problem for (10) in the
regime a =0, 0 < B < 4o00:

u

min (/ le(u)|?dx + agH™ () +/ |u — gl2d:c), (12)
O\ Ju, Q

where e(u) is the symmetric part of the gradient of u and ag is defined as in (6.
This represents a prototype of the minimum problems occurring in the mathematical
formulation of some variational models in Linearly Elastic Fracture Mechanics (see,
e.g., [34, 135], [18]).

Drawing inspiration from the scalar-valued case, numerical computations con-
cerning and similar problems are performed, e.g., in [I7, 18], and [I6] using a
phase-field approximation, which leads to the minimization of Ambrosio-Tortorelli

type functionals

min/ (v|e(u)|2 + 0 + ver| Vo2 + |u — g|2>dx, (13)
(uv) Jo €k

where g, ex belong to (0,4+00), ni/ex — 0, and (u,v) runs in H'(Q,R?)x H()
with g, <v <1.

Nevertheless, so far in the literature there is no complete rigorous proof of the
convergence of these minimum problems to problem in the vector-valued case.
An important contribution in this direction has been given by Chambolle in [20] 21],
where the problem (12)) is set in the space SBD(Q) (we refer to [44] and to Section
for its definition) and the convergence result is proved under the assumption of
an a priori bound on the L -norm of the function . Actually, even the existence of
solutions in SBD(f2) to the problem is guaranteed only if an a priori L*°-bound
for minimizing sequences is assumed (see [14, Theorem 3.1]).

In Section we provide the first complete proof of the convergence of the so-
lutions to toward a solution to , formulating these problems in a more
convenient framework. Precisely, if (ug,vx) is a sequence of minimizers of the prob-
lem (L3), we prove (see Corollary that vy — 1 in L'(Q) and a subsequence
of uy converges in L?(€2,R™) to a minimizer u of the problem in the space
GSBD(Q) of Generalized Special Functions of Bounded Deformation.

This space has been recently introduced by Dal Maso in [25] to solve minimum
problems of the form without L*-bounds on the minimizing sequences. For
every u € GSBD() it is possible to define the approximate symmetric gradient

e(u) € LY(Q, M), the approximate one-sided limits u® on regular submanifolds,
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and the approximate jump set .J,,, which turns out to be (H"~!,n—1)-rectifiable (see
Section for a summary of these fine properties of GSBD-functions). Therefore
the functional occurring in makes sense in this more general context and a
solution in GSBD(Q) to the minimum problem is ensured by the compactness and
semicontinuity result proved in [25, Theorem 11.3] (see also Theorem [1.12)).

The strategy leading to the proof of the convergence of to is close in
spirit to the one devised by Chambolle in [20} 2I] and consists of three fundamental
steps. The first and crucial step allows us (see Chapter 3 to approximate a function
u € GSBD(Q) N L?(,R"), for which e(u) is square integrable and H" '(.J,) is
finite, with a sequence (ug) C SBV(Q,R") N L*°(2,R") of piecewise continuous

functions in a way that

[ug — ul[2(@rm) — 0,

lle(ur) = e(W)ll 2@ pamymy = 05
H (D) = 0,

/ luf —uF|ALdH"™ — 0,
Juy, Uu

where A denotes the symmetric difference and a A b := min{a, b}.

The second step concerns the I'-convergence of the functionals occurring in (13))
to the one occurring in (12)) (see Theorem . In particular the liminf inequality
is obtained through a slicing technique. The Density Theorem is involved in
the proof of the I'-limsup inequality, allowing us to construct a recovery sequence
starting from more regular functions.

The third step is the proof of the compactness of the minimizing sequences of
. This is established in Proposition [4.5 using again |1, Theorem 6.6] on the L!-
compactness of slices and its adaptation to the GSBD-context [25, Lemma 10.7]

(see Section [1.6)).

The last issue we face within this thesis is the extension to the n-dimensional
case of the convergence result for () (see Section |4.3). To this aim we define

¥(v)

Fr(u,v) := /Q (v]e(u)|2 + = + 7€k|VU|2>dx (14)

if (u,v) € H'(Q,R")xV,,, where V,, = {ve H'(Q) e <v <1 LMae. in Q},

Fy(u,v) := +oo otherwise in L'(€2,R") x L'(2). We prove that the asymptotic
behaviour of the sequence (F}y) is described by the cohesive type energy

/|e(u)|2dx+a17-l”_1(Ju)+b1/ ] © valdH™Y, for u € SBD(Q),  (15)
Q Ju
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where a; and by are defined as in @ and the symbol ® denotes the symmetrized
tensor product between vectors.

Let us stress that the previous results also hold if we replace the term |e(u)|? in
the functionals by a more general quadratic form 2(e(u)); consequently, the term
|[u] ®v| in is replaced by 2'2([u] ©v).

The natural compactness for the problem and the identification of the domain of
the possible limits are two main issues. Solving the former fixes the topology to be
the strong LP one for all p € [1,1*), while the latter is given by the space SBD?(),
an appropriate subset of SBD(). To prove such assertions we establish first the
equi-coercivity in the space BD of the energies Fj in (14)) (see (.52)). Given
this, we use a global technique introduced by Ambrosio in [4] (see also [29, 30]) to
gain coercivity in the space SBD. To this aim we construct a new sequence of
displacements, with SBV regularity, by cutting around suitable sublevel sets of v in
order to decrease the elastic contribution of the energy at the expense of introducing
a surface term that can be kept controlled (see ) Thus, the SBD compactness
result leads to the identification of the domain of the I'-limit, and it provides the
necessary convergences to prove the lower bound inequality for the volume term in
simply by applying a classical lower semicontinuity result due to De Giorgi and
Toffe (see estimate ([£.49)).

From a technical point of view, the preliminary BD-compactness step is in-
strumental in order to fulfill the assumptions of the compactness theorem in SBD
without imposing L*° bounds on the relevant sequences as it typically happens in
problems of this kind. Therefore, our proof is completely developed within the theory
of the space SBD, without making use of its extension GSBD.

The two (n —1)-dimensional terms in the target functional in are the result
of different contributions: the H" ! measure of the jump set is detected as in the
standard case by the Modica-Mortola type term in and it quantifies the energy
paid by the function v, being forced to make a transition from values close to 1 to
values close to e (see ); the cohesive term, instead, is associated to the size of
the zone where v takes the minimal value €, and, in the general case, it is related to
the behaviour close to 0 of the family of quadratic forms in (see assumption
(H4)). A refinement of the arguments developed in establishing the compactness
properties referred to above and the blow-up technique by Fonseca and Miiller are
then used to infer the needed estimate (cp. with (£.51))). All these issues are dealt
with in the proof of Theorem below.

Technical problems of different nature arise when we want to show that the lower
bound that we have established is matched. Recovery sequences in I'-convergence

problems are built typically for classes of fields that are dense in energy and having
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more regular members. In our setting the density result for GSBD established
in Chapter [3| enables us to prove the sharpness of the estimate from below only for
bounded fields in SBD?(2) (see Theorem . Actually, we can extend it also to all
fields in SBV?(Q,R™) by means of classical density theorems (see Remark for
more details). Clearly, these are strong hints that the lower bound we have derived
is optimal, and that we cannot draw the conclusion in the general case for difficulties

probably only of technical nature.

Eventually, let us recall briefly the structure of the thesis: Chapter [1]is devoted
to fixing the notations and recalling some of the prerequisites needed in what follows.
In Chapter [2| we study the asymptotic behaviour of certain damage models in the
case of antiplane shear, as some relevant parameters tend to 0. Chapter [3]is devoted
to state and prove the Density Theorem for GSBD. In Chapter [4] we show the
applications of the density theorem to the Ambrosio-Tortorelli approximation of

(Section [4.2), and (Section {.3)).
The results of Chapter [2| have been published in [26] and in [39], the first being

in collaboration with Gianni Dal Maso and based on [37]. Precisely [26] contains
the results stated in Subsection in the particular case § = 1. The general-
ization to the case 8 # 1, the removal of a technical hypothesis (see (2.44))), and
the involvement of a different penalization condition on the spatial variations of the
damage variable are obtained in [39] and discussed in Subsection [2.2.1] The results
of Subsection of Chapter |3 and of Section will appear in [38]. The content
of Section corresponds to a joint work with Matteo Focardi [31].






Chapter 1

Preliminary results

In this chapter we collect some notation and preliminary results that will be use-
ful in the sequel. We start fixing the Measure Theory notation in Section [I.I} The
main definitions and properties for the functional spaces BV, BD, and GBD are
recalled respectively in Sections [[.2] and In Section we fix the notation
concerning the slicing method, while in Section we recall some compactness prop-
erties descending from compactness of slices. Section is devoted to a significant
density result for the space SBV .

Some fine properties about GBD-functions discussed in Section [I.5]are contained
in [38].

1.1 Notation

Let n > 1 be a fixed integer. The Lebesgue measure and the k-dimensional
Hausdorff measure in R are denoted by £" and H*, respectively.

The unit sphere of R” is indicated by S™ ', while the open ball of R" with
centre x and radius r is indicated by B(z,r) or By(z); if x = 0, we write also B,
in place of B,(0). The Lebesgue measure of the unit ball of R" is denoted by wy,.
Moreover let d(z, E) be the Euclidean distance of the point x from the set £ C R",
let diam(E) be the diameter of F, and let EAF be the symmetric difference of E
and F'. The symbols V and A denote the maximum and the minimum operators
respectively.

For every set A the characteristic function x4 is defined by xa(z) :=1if x € A
and by xa(z):=0 if = ¢ A. Throughout the thesis (2 is assumed to be a bounded
open subset of R™. Moreover ¢ will denote a constant which may vary from line to

line.

For every j € NU{oo}, we will denote by C’g(Q; R™) and CZ(Q; R™) respectively

1
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the standard spaces of C7 functions vanishing on 9Q and with compact support in
Q. When m =1 we omit the second argument R.

Let us denote by M;(€2,R™) the set of all bounded vector Radon measures in
and by M, (2) the set of scalar nonnegative ones. Given pg, u € My(Q,R™), we
say that pp — p weakly* in My(Q, R™) if

/cpd,uk—>/<pdu for every ¢ € CJ(Q,R™).
Q Q

1.2 BV-functions

For the general theory of BV -functions we refer to [7]; here we just recall the
essential notation. For every u € BV(Q,R™) the distributional gradient Du is a
bounded Radon measure. One can define the one-sided approximate limits «™ and
u~ on regular submanifold, the approximate differential Vu, and the jump set J,
(see [T, Sections 3.1, 3.6]). The jump function u™ —u~ is denoted by [u]. The jump
set Jy is (H"1,n — 1)-rectifiable according to [T, Definition 2.57] and a measure
theoretic normal v can be defined on J,.

The strong convergence in BV (£2,R™) is intended with respect to the norm
l[ull By (@rmy = [[ullL1(@rm) + [Dul(£2), whereas the weakly* convergence of wuy, to
u in BV (Q,R™) is intended as the strong convergence uy — u in L'(Q, R™) joined

with the weakly* convergence of the measures Duy to the measure Du.

If w e BV(Q,R™) then the distributional derivative can be decomposed as Du =
D% + DIy + D, where D% is absolutely continuous and D*u = D/u + D is
singular with respect to the Lebesgue measure. In particular D7 denotes the jump
derivative of u and D/u = [u] ® vH"!|J,, where ® denotes the tensor product,
whereas D°u is the Cantor part of the derivative of u (see |7, Section 3.9]). The

approximate differential Vu coincides £"-a.e. in ) with the density of D%u.

The spaces SBV (Q,R™), GBV(Q,R™), GSBV (2, R™) are defined as in [7]. We
recall that a GBYV -function is weakly approximately differentiable £™-a.e. in Q (see
[7, Definition 4.31, Theorem 4.34]). Since an approximately differentiable function u
is also weakly approximately differentiable and the approximate differential coincides
L"-a.e. in Q with the weak approximate differential £™-a.e. in ), we also denote
the weak approximate differential by Vu.

For p € (1,+00) let us define

SBVP(Q,R™) :={u € SBV : Vu € LP(Q,M™™), H""1(J,) < +oo},
GSBVP(Q,R™) := {u € GSBV : Vu € LP(Q,M"*™), H"'(J,) < +o0},
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being M"*™ the space of all nxm matrices.

Let us point out that for n = m = 1 one has that u € SBV?(Q) entails
u € HY(Q\ J,). Conversely, if  C R and there exists a finite set F such that
uw € HY(Q\ F), then u € SBV?(Q) and J, C F. By a truncation argument one
deduces that in the one-dimensional case GSBV?(Q) N L'(Q) = SBV2(Q).

1.3 BD-functions

We recall briefly some notions related to the space BD(2) and to its subspace
SBD(Q). For complete results we refer to [45], [44], [13], [5], [14], and [28].

The symmetrized distributional derivative Fu of a function v € BD(Q2) is by
definition a finite Radon measure on 2. Its density with respect to the Lebesgue
measure on §) is represented by the approximate symmetric gradient e(u), the ap-
proximate jump set .J,, is a (H" 1, n—1) rectifiable set on which a measure theoretic
normal v and approximate one-sided limits u* can be defined H" '-a.e.. Further-
more, we denote by [u] := u™ —u~ the related jump function.

For ug,u € BD(Q), we say that u; — w weakly* in BD(Q) if up — u in
LY(Q,R") and Euy — Fu weakly* in M (2, Mg ), where MEZER is the space of
all nxn symmetric matrices.

We point out that if Q has Lipschitz boundary and u € L'(Q,R") satisfies
Eu e LQ(Q,M?;#), where ME7P is the set of all nxn symmetric matrices, then u
actually belongs to H'(£2,R™). A key instrument to prove this result is the Korn’s
inequality [44] Proposition 1.1].

We define SBDP(2), 1 < p < 400, by

SBDP(Q) := {u € SBD() : e(u) € LP(Q,MZ") and H" (J,) < +o0}. (1.1)

sym

1.4 Slices

Fixed £ € S"™1:= {£ € R" : |¢| = 1}, let m¢ be the orthogonal projection onto
the hyperplane II¢ := {y eR":y- &= 0}, and for every subset A C R" set

Ag::{tER:y+t§€A} for y e I1¢.

For v: Q - R, u: Q - R", and e: Q — M2X" we define the slices vg,ui,ei: Qg —

sym
R by

vg(t) = v(y+1§), ug(t) = u(y+t§)-¢&, and eg(t) =e(y+tE-€. (1.2)
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If ug,w € L'(Q,R") and up — u in L'(Q,R"), then for every & € S"~! there

exists a subsequence (u;) of (ux) such that
(uj)g — ug in Ll(Qg) for H" t-ae. y € II°.

If u € BV (), then for every ¢ € S"~! the following properties hold:

/ v €l ) = [ M)A ), (1.3)

11é

/Ju v - €[l [dH" " (y) = /m [/uu)g |[u]§|d7—t0(t)} dH"(y), (1.4)

for H" L-a.e. y € II° we have |V(u§)| = |(Vu)§ ] < ](Vu)§| L'a.e. on Qg

(1.5)
Moreover for every & € S~ 1 and for H" '-a.e. y € II¢ we have
(Ju)g = ‘]u§ and \[u]§| = |[u§]| on Qg (1.6)

We also make use of the fine properties of GBV -functions collected in [7, Theorem
4.34].
We recall next the slicing theorem in SBD (see [3]).

Theorem 1.1. Let u € LY(Q,R"™) and let {¢1,...,&,} be an orthonormal basis of

R™. Then the following two conditions are equivalent:
(i) For every & = &+ &5, 1 < 0,5 < n, the slice ug belongs to SBV(Q%) for
H' Loae. y € TI¢ and

/m ’Dug‘ (Q5) dH™ L (y) < oo;

(ii) uwe SBD(Q).
Moreover, if u € SBD(Q) and £ € R™\ {0} the following properties hold:
(a) V(ug)(t) =ec(u) (y+t&)&-€ for L1-ae. t € QS and for H" 1-a.e. y € 1I¢;

3
(b) Je= <J§)y for H" 1-a.e. y € II¢, where

Uy

JSi=A{x € Jy: [u)(x)- & # 0}

(c) for H 1-ae. £€SVE
H (T, \ JS) = 0. (1.7)
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1.5 GBD-functions

We now summarize the definition and the main properties of GBD-functions,
referring to [25] for more details. The space GBD(f?) is defined as follows (see |25,

Definition 4.1] for related comments).

Definition 1.2. An £"-measurable function u: @ — R™ belongs to GBD(Q) if
there exists A\, € M; (€2) such that the following equivalent conditions hold for
every £ € S* L

(a) for every 7 € CY(R) with —3 <7 <1 and 0 <7/ < 1, the partial derivative
De¢(m(u-§)) belongs to My(£2) and its total variation satisfies

[ De(7(u-8))(B) < Au(B), (1.8)
for every Borel set B C (Q;

(b) for H"l-a.e. y € QF the function ug belongs to BVZOC(Qg) and for every Borel
set B C Q it satisfies

[ (DaSIB§\ 7l + 1B 0 ) ar < auB), (19

where we have set
Jlei={te e |uW§](t)] > 1}
uy ’lLy

The space GSBD(f2) is the set of all functions v € GBD(2) such that for every
€eS™ ! and for H" '-ae. y € Qf the function uf/ belongs to SBVZOC(QE).

For every u € GBD() one can define the approximate one-sided limits u* on

regular submanifolds |25, Theorem 5.2].

Theorem 1.3. Let u € GBD(Q) and let M C ) be a O -submanifold of dimension
n — 1 with unit normal v. Then for H" -a.e. x € M there exist ul,(x), uy(z) €

R™ such that
ap lim u(y) = ui(z). (1.10)
+(y — z)-v(z)>0
y—T

Moreover for every &€ € S"™1 and for H" '-a.e. y € II¢ we have
uﬁ(y +t)- &= ap lim ug(s) for every t € Mf, (1.11)

o5 (t)(s — )>0
s—t
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where aplim denotes the approrimate limit and o: M — {—1,1} is defined by
o(x) :=sign(§ - v(z)).

One can also introduce the jump function [u] := v — «~ and the approximate
jump set J, [25, Definition 2.4|, which turns out to be (H"~!, n — 1)-rectifiable [25]
Section 6].

Let £ € S"! and let
JSi={rx e, ut(x) €—u(z)-€#0}. (1.12)
Then for H" '-a.e. y € Qf we have

(Ja)5 = ¢ (1.13)

uF(y +18) - €= (W) (t) for every t € (J,)5, (1.14)

where the normals to J, and Juf;j are oriented so that & -v, > 0 and I/ug =1 (see
[25, Theorem 8.1]).

For u € GBD(Q) the approximate symmetric gradient e(u) in the sense of [I3]
Definition 8.1] exists and belongs to L!(Q; M2X") (see [25, Theorem 9.1]). Moreover

sym

for every ¢ € S"! and for H" '-a.e. y € QFf one has
(e(u))s = Vi L'-a.e. on Qg (1.15)
Let us define GSBDP(Q2) for 1 < p < +o0 by
GSBDP(Q) := {u € GSBD(Q) : e(u) € LP(Q,MZ<") and H"(J,) < +oo}.
Using the Fubini Theorem one can show that
W' ( T\ JS) =0, (1.16)
for H* t-ae. £ € SPL.

1.5.1 Continuity of the trace

The rest of the section is devoted to the proof of some fine properties of GBD
functions. Such results are included in the paper [3§].

With the following lemma we deduce the existence of an orthonormal basis (e;)7;
for which holds for every £ € D :={e;fori=1,...,n, ¢, £ejforl <i<
j < n}. We denote by p the invariant Radon measure on the rotation group SO(n)
with pu(SO(n)) = H*1(S"1).
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Lemma 1.4. Let &1,...,& € S" 1. Then each &€ € {R¢,..., REL} satisfies equa-
tion (1.16)), for p-a.e. R € SO(n).

Proof. Let N C S"~! be the set where (1.16) fails and let
M; :={R e SO(n): R¢j € N}.
For j=1,...,k we have
u(M;) = H*(N) = 0.

Therefore for every R ¢ U?Zl M; we find that R¢y, ..., R, ¢ N and this concludes
the proof. O

The following remark is about the extension by zero of GBD-functions.

Remark 1.5. Assume that € has Lipschitz boundary and consider a bounded open
set O with Q € Q. Let u € GBD(Q) N LY(Q,R") and let us define @:  — R”
by 4 := u in  and by @ := 0 outside of €. Then the extension @ belongs to
GBD(Q). Indeed, for every € € S*! and for H" '-a.e. y € Q¢ the slice ug belongs
to BV(Q%). Since Q has Lipschitz boundary, for every € € S*~! and for H" '-a.e.
y € QF the set Qg has finitely many connected components, so that ﬂg € BV(R).

Moreover an easy computation and the coarea formula show that
/Qg (1DASIBE TLe) + HO(BE . 7L) ) aH™™" < 2(B 1 9) + 1" [00(B),

for every Borel set B C Q and for \, satisfying 1}

The next result provides an estimate for the trace tr(u) at the boundary 09 of
a function u belonging to GSBD(Q) N LY(Q,R").

Lemma 1.6. Assume that 0 has Lipschitz boundary and define 7(s) := Larctg(s)
for s € R. Then there exists a constant c¢(Q2) < +oo, depending on 2, such that

[ rutharet < @ (s @ + M) (117
o0

holds for every u € GSBD() N LY(QL,R™) and for A\, € M () satisfying .
Proof. 1t is not restrictive to assume that ) has the form

{y+tneR":ye B", 0<t<a(y)} (1.18)

and that u has compact support in Q U graph(a), where n € S*~!, B" Cc II" is a
relatively open ball, and a: B7 — R is a Lipschitz function. Indeed, let (4;)%_; be



8 1. Preliminary results

an open covering of 9Q in a way that A; NQ has the form ( - Let Ag CC Q be
such that (A4;)%_, covers Q. Let us consider also a partition of unity (¢;)¥_,, such
that ¢; € C°(4;), 0<p; <1, and Zz’:O ©; =1 on Q. Then each p;u belongs to
GSBD(A;NQ)NLY(A;NQ,R") and has compact support in A; N Q. Moreover p;u
satisfies with A\, (B) replaced by

Vil /B luldz + Ao(B), (1.19)

for every Borel set B C A; N Q. Note that the measure defined in (1.19)) belongs to

Using the triangle inequality for 7 and inequality ((1.17)) for ¢;u with the measure

(L.19)), we obtain

k
n—1 ) n—1
/a ROCOIZASEDY /A i

e(llullzr@zn) + M),

IN

where ¢ < +oo depends on Q and (p;)%_,
Let us prove now (|1.17) under the assumption that € has the form (1.18) and

that u has compact support on QUgraph(a). We may also assume that there exists
a basis (n;)_; such that M := graph(a) is still a Lipschitz graph in the direction
determined by each 7; and that v(x)-n; > § >0 for H" '-a.e. © € M, where § is

constant and v is normal to M.

Therefore we obtain

/aQT(|tr(u)\)dH"_1:/MT(\tr(u))d’Hn_l g/ Zm )dH™ L, (1.20)

where ¢ < +o0o depends only on (7;)?" ;. The very definition of 7 implies that

n

. n—1 T I‘ ; n— 1 )
[ redtutw) mhart < [ Z| ORI (1.21)

i=1
where the constant ¢ < 400 can possibly change from the first to the second term.

Since Theorem [1.3]and the choice of (1;)/; ensure that 7(tr(u)-n;) = tr(7(u-n;))
holds for H" !-a.e. 2 € M, we deduce by ([1.20) and (1.21)) that

r(u n—1 cn r(t(u - n; n—1 .
/mrat()\)om <ed /M|t<< i) dH (1.22)
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We observe now that 7(u - ;) belongs to L'(2) and its derivative D, 7(u - ;)
belongs to M; (), so that [45, Lemma 1.1] yields

cn r(t(u-mn; n—l :cn r(7(u-n; n—1
;/Mlt(( i)\ dH ;/ngt(( ni))|dH

< eyl (|Im(m)llp) + 1Dy m) ()
=1

< C(HUHLl(Q,Rn) + )\u(Q)>7 (1.23)

where ¢ < +oo depends on  and A\, € M} (Q) satisfies (1.8). Inequality (1.17)
follows from ([1.22)) and (L.23). O

Remark 1.7. Let u € GSBD(Q) N LY(Q,R") with H" 1(J,) < +oo and let us
define

Au(B) = /B le(u)|dz +H"(J, A B), (1.24)

for every B C Q Borel set. Then (1.13]), (1.15)), and the coarea formula imply that

S\U satisfies .

The following theorem concerns the continuity of the trace operator. For the
proof we follow the lines of [44] Section 3.2]. We recall that a sequence iy, € M; ()
weakly* converges in (CP)’ to p € M; () if

/ odpy, — / edp,
Q Q

for every bounded continuous function ¢ defined on 2.

Theorem 1.8 (Continuity of the trace). Let us assume that Q has Lipschitz bound-
ary. Let ug,u belong to GSBD(Q) N LY (Q,R™) with H"1(Jy,), H* 1(Ju) < +oo0,
and let

up —u in L'(Q,R™) and Ay — Ay weakly* in (CYY (1.25)
where \ has been introduced in (M} Then
/ r(ug) — tr(u)| A 1dHP 0. (1.26)
o002

Proof. Let n >0 and let Qg CC Q be such that

M@\ Q) <n and A, (8) = 0. (1.27)
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Let po € C2°(2) be such that w9 =1 on Qg and 0 < ¢ <1, and let ¢p:=1— ¢y.
By (1.25) and (1.27) we obtain for k large

U
up — uldr < 1.28
/Q‘ ¢~ ulde < L+ {[Viol| Lo () (1.28)
M (2, Qo) < Xu(Q\ Q) + 7 < 20, (1.29)

Applying inequality (1.17)) to the function (ur — )1 we find

/ 7(Jtr(ug) — tr(u)JdH" " <
oN

IN

(11t = wpoll g + | letlun = w)en)lde + 1 Ty -yi))

c(llue = ullssamn + [ letwnldo+ [ je(wds
AN\ Qo Q\Qo
+lue — ullpr ) [Vl o) + H™ ™ (Ju, N (2 Qo))

FHY (TN Q) ﬁo)))

< C(Huk — ull 1 orn) (1 + V0l oo (@) + Mg (2 \ Qo) + (2 \50)) < den,

IN

where in last inequalities we have used (1.27)—(1.29). Since n > 0 is arbitrary we
deduce that 7(|tr(u) — tr(u)]) — 0 in Lj,_,(0Q). Finally using the dominated
convergence theorem we obtain (|1.26)). O

1.6 Compactness results

This section is devoted to recall some compactness results. We start with the
following theorem which guarantees compactness of sequences as consequence of
compactness of one-dimensional slices (see [I]).

For every set F C L(Q) we define ]—"5 = {ug cu € F}, for £ € S"! and
y € II¢.

Theorem 1.9. Let F be an equibounded subset of L™ (). Assume that there exist
n linearly independent unit vectors & which satisfy the following property: for every
d > 0 there exists an equibounded subset Fs of L>°(Q2) such that F lies in a -

neighborhood of Fs with respect to the L'(Q) distance and (.7:5)5 is pre-compact in
Ll(Qi) for H" t-a.e. y € Q. Then F is pre-compact in L*(Q).

A slight generalization of the previous theorem is the following proposition, whose
assumptions avoid the requirement of L°° bounds and concern only the components

u - & of u and the corresponding slices in the same direction £ (see [25, Lemma



1.6 Compactness results 11

10.7]). We recall that a modulus of continuity is an increasing continuous function
w: RT — R* such that w(0) = 0.

Proposition 1.10. Let U be a set of L™ -measurable functions from Q into R™ and

let Yg: RT — RT be an increasing continuous function satisfying

lim o(s) = +o0.

s—+400

Assume that there exist M € RT such that
[ woubds <
Q

holds for every uw € U and a modulus of continuity & such that
|hs| < @(R)ebo(s)

holds for every 0 < h < 1 and for every s € RT. Assume also that for every § > 0
we can find a modulus of continuity ws such that for every & € S*™1 there exists a

set Vf of L™ -measurable functions from Q into R with the following properties:

(a) for every uw € U there exists v € V? with
[ @) €~ vildo < 5
(b) for every v € Vf and for H" '-a.e. y € II¢ we have

/]R 05 (t + h) — oS (8)|dt < ws(h)

for every 0 < h < 1.

Then every sequence in U has a subsequence that converges strongly in L*(Q,R"™) to

an L"-measurable function u: Q@ — R™.

The following lemma estimates the modulus of continuity in L' of the translations
of BV functions when n =1 (see [25, Lemma 10.8]).

Lemma 1.11. Let z € BV(R). Assume that there exist two constants a > 0 and
b> 0 such that

|Dz|(R\ JY) + HO(J}) <a and |[2]| oo (m) < b.

Then
/ 2t + h) — 2(8)|dt < (a + 2ab)h
R
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for every h > 0.
Finally we recall a compactness result for GSBD (see [25, Theorem 11.3]).

Theorem 1.12. Let uy be a sequence in GSBD(Q). Suppose that there exist a
constant M € RT and two increasing continuous functions 1o: RT — RT and
P1: RT — RT, with

lim p(s) = +o0 and lim 210

s—+o0 s—+o0 S

= —'—007

such that

/ volluxl)dz + / (le(u) e + H V() < M
Q Omega

for every k. Then there exist a subsequence, still denoted by uy, and a function
u € GSBD(Q), such that

up > u  L"-a.e. on

e(ug) — e(u) weakly in L*(Q, M2X"7),

sym

HH(J,) < liminfy_ oo HP ().

If, in addition,
lim 2008
s—+00 S

holds, then uy, € LY(,R™) for every k, u € L*(Q,R"), and the subsequence con-
verges strongly in L'(Q,R™).

1.7 A density result for SBV

We recall next a density result in SBV [23, Theorem 3.1|, for which we need to
introduce further terminology. We say that v € SBV(Q,R") is a piecewise smooth
SBV -function if u € W™>®(Q\ J,,R") for every m, H" 1((J, N Q) \ J,) = 0,
and the set J, N Q is a finite union of closed pairwise disjoint (n — 1)-simplexes

intersected with €.

Theorem 1.13. Assume that ) has Lipschitz boundary. Let u belong to the space
SBVZN L*®(Q,R™). Then there exists a sequence (uy) of piecewise smooth SBV -

functions such that
(1) [lug — ullp2@rny = 0,

(2) |[Vuk = Vul[p2@umxny = 0,
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(3) limsup/ go(x,ug,u;,uuk)d”ﬂ"_l §/ (@, ut,u”, v dH L,

k AN, ANy,
for every open set A C Q and for every function p: QxR*xR"xS"~! — [0, +00)

upper semicontinuous and such that

o(z,a,b,v) = @(x,b,a,—v) for x €,
lim sup o(y,a' bV, p) < +oo  for x € 09,

(y,a’ b\ )= (x,a,b,v)
yeN

for every a,b € R, and v € S* L.

Remark 1.14. Note that if 2 C R™ is an open cube, then the intersection .J,, N
is a polyhedron. Therefore, adapting the arguments in [23] Remark 3.5| and |22,

Corollary 3.11] we can construct a new approximating sequence (1) satisfying all
requirements of Theorem and such that J;, CC Q.

1.8 [I'-convergence

In this last section we briefly recall the definition and the main properties of

I'-convergence, for whose exhaustive treatment we refer to the book [24].

Definition 1.15. Given a metric space (X,d) and a sequence of functionals Fy, F
defined on X with values in R we say that Fj, I'-converges to F if for every u € X
the following properties hold:

(a) for every sequence uy with ug — u we have F(u) < lkun inf Fy(ug);
—+400

(b) there exists a sequence wuy with u; — w such that limsup Fy(u;) < F(u).
k—+o00

The most valuable property of the I'-convergence concerns the convergence of

minima and minimizers.

Theorem 1.16. Let (X,d) be a metric space and let Fy: X — R be a sequence of
equi-mildly cohercive functions, that is there exists a nonempty compact set K C X
such that infx Fy, = infg Fy,. Let F = T'-limg_ 400 Fi, then

dmin F' = lim inf F}.
X k—+oo X

Moreover, if (ux) is a precompact sequence such that

lim F = lim inf F,
D Tl = B0 T

then every limit of a subsequence of (uy) is a minimum point for F.






Chapter 2

Asymptotic behaviour of certain
damage models: the case of

antiplane shear

2.1 Overview of the chapter

Damage models are used to describe the progressive degradation and failure in
engineering materials such as metal, concrete, or rocks. The standard presentation of
damage problems describes the state of the elastic body by means of two functions:

the displacement u and the internal variable v.

In this chapter we consider a variational damage model for homogeneous iso-
tropic materials in the case of antiplane shear. Our model depends on three small
parameters 0, £k, and 7, which are related respectively to the cost of the damage,
to the width of the damaged regions, and to the minimum elasticity constant attained
in the damaged regions. Denoting by « := limg_ 1o 7k /0 and 5 := limg_ 1o Ok /Ek
the asymptotic ratios as these parameters tend to zero, we analyse the limit behaviour
of the damage model as «, 8 € [0, +00] vary. We rigorously obtain, by I'-convergence
techniques, limit models for brittle fracture, for fracture with a cohesive zone, or for

perfect plasticity, according to the relative magnitude of the three parameters.

The chapter is organized as follows. In Section we describe the setting of the
problem. In Section [2.3we discuss the one-dimensional case. Section is devoted
to the proof of the liminf inequality in the n-dimensional case, while Section to
the construction of the corresponding recovery sequence. Finally in Section we

deal with the compactness result and the convergence of minima and minimizers.

We introduce in Subsection the results published in [26], obtained in col-

15
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laboration with Gianni Dal Maso and based on [37]. Here the pointwise constraint
[[Vv[| oo (@) < 1/ is supposed to penalize the spatial variation of the internal dam-
age variable, under the assumption 8 = 1. Subsequently, with [39] the previous study
is generalized to the case 8 # 1 and a technical hypothesis (see (2.44))) is removed,;
it is also considered the case when the penalization constraint is replaced by the
penalization term of integral type in the total energy [, Ei_l\Vv]pda:, 1<p<+o0.
These results are described in Subsection From a technical point of view in the
two subsections distinguished approaches are proposed for the regime which leads to

the cohesive model.

2.2 The I'-convergence result

Let € be a bounded open subset of R™ and let o > 0, e > 0, mx > 0 be

infinitesimal sequences. We assume that the limits

. Nk .
= 1 - d = 1 — 2.1
@ k—1>r-|I—1c>o O an b k—1>r-&{loo Ek ( )

exist. We also introduce a parameter 1 < p < 400 which will be involved in the
penalization condition on the spatial variation of the internal variable v.
2.2.1 The case p < 400

Fixed 1 < p < 400, our purpose is to study the I'-limit in L'(Q)xL(Q) of the
sequence of functionals Fj: L'(Q)x L' (2) — [0, 400] defined by

¥(v) -1 .
Fi(u,v) = /Q (U\Vu|2 + 5 +yeb \Vv]f”)dx if (u,v) € HY(Q)xV,,,
400 otherwise,
(2.2)
where ¢ > 0,
¥ € C([0,1]) is strictly decreasing with (1) = 0, (2.3)
Vi = {v e W2(Q) i g, <v <1 L ae. in Q}. (2.4)

When 0 < a < 400 and 0 < 8 < +oo we define @, 5: L(Q) — [0, +00] by

/ \Vul*dz + agH" () + ba/ [u]|[dH™!  if u € SBVZ(Q),
(I)a7ﬁ(u) = Q Ju
400 otherwise,

(2.5)
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where

R L 1 11
ag :zQ(Z)q(vp)p/O ads, by :=2(ap(0))z, and 54—6:1. (2.6)

In the limiting case when oo =0 and 0 < 8 < +00 we define

/ \Vu|?dz + agH" 1 (J,) if ue GSBV?(Q)N LY(Q),
<I>0”3(u) = Q

(2.7)
+00 otherwise.
If « =+00 or § =0 we define
/ |Vu|?dz  if u e HY(Q),
O, 5(u) =14 Ja (2.8)

+00 otherwise.

It remains to define the functional ®,3 when 0 < o < +00 and 3 = 4+00. When

a=0 and S = +oco we set

0 if u e LY(Q),
D00 (u) := (2.9)
400 otherwise,

whereas for 0 < a < +00 and § = 400 we set

. /Qfa(|Vu])dx+ba\Dsu|(Q) if u e BV(Q),

D 00 (u (2.10)

400 otherwise,

where f,(t) =12 for 0 <t < by/2 and fo(t) = bo(t — ba/4) for t > by /2.

The following I'-convergence result holds.

Theorem 2.1. Assume (2.1)—(2.4) and assume that Q has Lipschitz boundary. The
U -limit of (Fy) in LY(Q)xLY(Q) ewists and is given by

D, 5(u) ifv=1L"-a.e. in,
Fslu,v) = | Pe?) 0=t (211)
400 otherwise.

Theorem directly follows from the estimates for the functionals

F, g := I-liminf F}, and Fy, 5 :=D-limsup Fy (2.12)

k—+o00 k——+o0

stated in the following theorems.
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Theorem 2.2. Assume (2.1)—(2.4). Let (u,v) € LY (Q)xL'(Q) be such that the
functional F}, g(u,v) is finite. Then v=1 L"-a.e. in @ and

Do () < F plu,1). (2.13)

Theorem 2.3. Assume (2.1)—(2.4) and assume that Q has Lipschitz boundary. For
every u € LY(Q) the following estimate holds

(Z,,B(ua 1) < (I)a,ﬁ(u)' (2.14)

Theorem is an immediate consequence of the following proposition.

Proposition 2.4. Assume (2.1)—(2.4). Let (ug,vi) be a sequence in the space
LY (Q)xLY(2) such that

(u, vp) — (u,v) in LY(Q)x L1 (Q), (2.15)

(Fi(ug,vg)) is bounded. (2.16)

Then v=1 L™-a.e. in Q and

o Y (vk) -1
<I>a”3(u)<1]§§igof/ﬂ<kauk|2+ 5 +veb |Vvk|p)dx. (2.17)

Moreover, when 0 < a < +o0o and 0 < 8 < 400 the following estimates hold

/|Vu]2d:v Sliminf/ vp| Vug|2de, (2.18)
QO k—+oco Jq

n—1 <1 . w(vk) p—1 p . .
agH (J“)lklglig/g< 5 + v el Vgl )d:c, (2.19)

estimate also holds if a = +o00 or =0.

We shall prove the one-dimensional case of Proposition [2.4] and Theorem [2.3]in
Section whereas the n-dimensional case will be studied in Section [2.4]

2.2.2 The case p = +o00

In [26] the limiting case p = 400 when = 1 is faced. In order to give a
complete frame we state now the I'-convergence results when p = 400 for different

values of o and (3.
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We define Fy: L'(Q)xL'(Q) — [0, +o0] by
2, Y(v) : 1
Fy(u,v) = /Q <U|Vu! + 5 )dx if (u,v) € H(Q)x Vg,
400 otherwise,
where,
Y € C([0,1]) is strictly decreasing with (1) =0,

1

Vi = {v € Wl’OO(Q) < v <1, |Vu < = L"-a.e. in Q} .
k

Let «, 8 be defined as in (2.1) and ®, 3 be defined as in (2.5)—(2.10) with the

only modification that ag and b, are now set equal to

N

9 1
ag = ﬁ/o Pds, by = 2(ap(0))2. (2.20)

Under these hypotheses Theorems holds. Proofs are similar to the ones
given below for p < +oo and will be in part omitted. We will provide in details
the estimate from below in dimension one when 0 < o < 400 and 0 < 8 < +o©
contained in [26], representing an alternative approach to that proposed in [39]. We
also give the proof of the estimate from above, which turns out to be slightly simpler

in the case p = 400.

2.3 Proof in the one-dimensional case

2.3.1 The case p < +00

Let us fix 1 < p < +00 and start proving the liminf inequality in the case n = 1.

Proof of Proposition[2.4. Let (uk,vx) be a sequence satisfying (2.15) and (2.16)) with
bounding constant C'. First we note that (2.16) and (2.3) imply v = 1 Ll-a.e. in

Q. This in particular concludes the proof in the case with o =0 and S = 400.

Let now o = 4o00. Up to subsequences we can suppose that the lower limit in
the right-hand side of (2.18) is a limit and that 7, > 0. We are going to prove that
the sequence (|Vuyg|) is equi-integrable. Let A C Q be a measurable set, then the

Hoélder inequality and (2.16]) imply

/A\Vuk\dx (/ka\Vuk\def(/Al/vkdm);

1
Cé(/ l/vkdac+/ 1/vkdm)2
An{vp>1/2} An{u,<1/2}

IN

IN
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1 L 0 [ (ug) , N2
< 1 k
< LW+ gy [, w)
1 C  Op\3
< C3 (251(A) + w(1/2)77z)2 (2.21)
Given o > 0, the inequality ﬁ% < % is true for k large since a = +4o0.

Therefore £1(A) < % implies the last term in is less than o for k large. Using
for the first terms of the sequence the absolute continuity of the Lebesgue integral, we
conclude that (|Vuy|) is equi-integrable. Now the Dunford-Pettis Theorem implies
u € WHH(Q) and Vuy, — Vu weakly in L'(Q). By a classical lower semicontinuity
result (see, for instance, [19, Theorem 2.3.1]) finally we obtain and then u €
H(Q).

Let 0 < a < 400 and 0 < 8 < +oo. In what follows we shall use the notation
I(x, p) for the interval (x — p,z + ), whereas we shall write Fj(u,v,I) to indicate
the functional in (2.2)) when the integrals are defined on the set I.

Proof of (2.18). Let g € Q and p > 0 be such that u is absolutely continuous
in I(zg,pn) C Q. Now the same argument used by Ambrosio and Tortorelli in [9]

Lemma 4.2| and [10, Lemma 2.1] works here with obvious adaptations. We conclude

that u € H'(I(zo, 1)) and holds in I(xg, u).

Proof of . Let now xg be a point such that w is not absolutely continuous
in any interval of the form I(xg, ). We sketch the argument proposed by Ambrosio
and Tortorelli in [I0] Lemma 2.1] in order to prove that there are only finitely many

points of such a type.

Let > 0 small enough; since w is not absolutely continuous in I(zg, x/2), the
infimum I(xiorfﬂ) v, tends to 0 and this guarantees the existence for every k of a
point xo—p/2 < xp < xo+u/2 such that vg(xg) — 0. Moreover, up to subsequences,
vy — 1 L'-ae. in Q, so that we can find two points zg—p < y1 < T < Yo < To+

with vg(y1) — 1 and vg(y2) — 1. The Young inequality now gives
Fk(uka (D I(l'(], ,LL)) Z
1 Tk
1 r7qgeg
> (yp)? (T) ’
k Y1

> ot (S8)7 [ pioptas + ot (22) [ optas 222

v (zg) v (o)

1 1/gepN\s [V 1
w(vk)q |V1}k’d$ + (’yp)P (%) / 1/1(1%) q \Vvk|dx
T

Passing to the lower limit in the previous inequality we obtain

lim inf Fj, (ug, vk, I (20, ) > ag > 0 (2.23)

k——+o0
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in the case 0 < 8 < +00. Since the left-hand side in is bounded by , the
number of disjoint intervals such as I(zg, ) is bounded by a constant independent
by . This implies u € SBV(Q2) and follows. From we also deduce
u € SBV?(Q).

In the case 8 = 0 we achieve a contradiction since the left-hand side of
is bounded by , whereas the right-hand side tends to infinity. Therefore, each
point of ) satisfies the previous step, so that u € H*(Q) and holds.

Proof of (2.17) in the case 0 < 8 < +o00. First we note that (2.18) and (2.19)
lead to (2.17) in the case a =0, 0 < 8 < +o00.

It remains to consider the case 0 < a < 400, 0 < 8 < 4+00. We shall define
suitably six points in place of yi1,xp,y2; in this way we determine some intervals
we shall study separately. In the external intervals, we shall be able to repeat the
previous argument by Ambrosio and Tortorelli, the two in-between intervals will be

neglected, and the central one will give rise to the cohesive term.

Let zo € J, and assume u™ (zg) < u™*(zg). Let 0 < o < |[u(x)]|/2 and let p > 0
be such that |u(z) —u*(20)| < 0/2 for 0 < |z — xo| < p/2; since uy, — u L'-ae. in
2 up to subsequences, it is not restrictive to assume wug(xo £ u/2) — u(xo £ 1/2).
We prove that there exist six points y; < x}g < icllg < aﬁi < :L'i < yo in the interval
I(xg, 1), such that

li = 1li =1
Jm ven) = T en(v) = 1

li =1 2Y=0
k—gloovk(xk) I{:—1>I—Poovk($k) '

up(Z}) = u=(zo) + 0, up(@i) =ut(zo) —o.
Let us define
Fr = max{z € [xo — p/2, 20 + 11/2] : up(z) < u” (x0) + 0}
Since |ug (o £ 11/2) — u(z0)| < o for k large, the continuity of uy, implies that 7}

is well-defined, that #} < wo + p/2, and that ug(Z}) = u™ (zo) + 0.

We now verify that x¢p < liminfg 1o :Ic/,lC If not up to subsequences we have
i‘,lg < ¢o < xg, where ¢y is a constant. Using the definition of i,lc we obtain, as

k — 400, that u(z) > u™(z9) + ¢ in (co,x0). As x — x5 we get a contradiction.

We claim now that

limsup inf v <O0. (2.24)
k——+oo [to—p/2,E}]

By contradiction we assume that the opposite inequality holds. By this and
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(2.16) we have, up to subsequences, that

51

/ " |Vuy|’de is bounded. (2.25)
To—p/2

Let us verify now that limsup,_,, . #1 < x9. We argue again by contradiction
and suppose 57,1€ > ¢1 > x0, where ¢y is a constant. Up to subsequences the inte-
gral f;;_#/Q |Vug|?dz is bounded by 1) so that w is continuous in xg and this

contradicts the assumption xg € J,,. Therefore we conclude i“,i — X0
Now, by the absolute continuity of u, and the Hélder inequality we obtain for
every y € (v — 1/2.})

1

51

~ - 1 Tk b _ 1

un(h) — )| < lat - ol ([ VwPa)” <alst -t 20
Y

where in the last inequality c3 < +00 is a constant and we have used . Let us
fix y € (xo — p, o) such that ug(y) — u(y); then y € (vo — p, 1) for k large, so
that inequality
[ (20) + 0 — un(y)| < calh — |2

follows from wug(Z}) = u™ (z9) + o and . Passing to the limit first as k — +oo
and then as y — x; we achieve a contradiction and the claim is proved.

By we are able to find a sequence zg—pu/2 <z} < &} such that vy (z}) — 0.
Since v, — 1 L'-a.e. in Q, we also find a point y; € (zg — p, wo — p1/2) such that
vg(y1) — 1.

Let us define now
3 = min{x € [T}, z0 + p/2] : up(z) > u(z0) — o}

We can easily prove that it is well-defined, that u(72) = u*(zo) — o, and that

5?% — x9. Note that the convergence 5:% — x¢ implies the convergence fv,lg — xg.
As before we can also prove that
limsup inf v =0
k——4oo [22,20+1/2]
and the existence of z7 and yo follows.

Now let us proceed with the computation. In the intervals (yi,z}) and (27, y2)
we can repeat the argument by Ambrosio and Tortorelli in (2.23)), so that

lim inf Fy, (ug, vk, (y1, 21) U (23, 92)) > ag. (2.27)

k—+4o0
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It remains to estimate the functional in the interval Ij := (Z},#7). Let us define
Wi = {w € H'Y(I}), w(i}) = u (x0) + 0, w(@2) = uT(20) — 0},

Zy =1z € lep(lk), e <z<1 Lla.e. on Iy},

Hi(w, 2) ::/ <Z|Vw\2 + 1/}(Z))dx, for (w, z) € Wi xZy,
I O

h = min H f € Zg.
k(z) wnel%/{}k k(U),Z), or z k

By elementary computation we find that this minimum is achieved and that

hi(z) = (o) =20 [ 92) (2.28)

/1dac Tk Ok
Iy #

Let now 0 < A < 1. We observe that

1
/ idxgﬁ(fk)
{ A

QEEI)C:’U]CZA} Uk

/ idﬂs < L6—]6( ¢(vk)dx)
(welyvp<A} Uk YN e \ Sy, Ok

We use the previous inequalities to estimate the functional Fj(ug,vg, Ix):

)

Fi(ug, v, Iy) > Hp(ug, vg)
> hy(vg)
S ([u(zo)] — 20)* ka)dx
= ,Cl(Ik) L%( wu}k)dw) I 5k
A YA N1, Ok
1 1
> 2(%?}5)\)) ® ([u(a0)] — 20) — nkw(i)(i (Ik)’

where to get the last inequality we have minimized in [0, co[ the function

oy () — 20

+ 2.

X Ty

Passing to the limit first as & — +oco, then as A — 0, and finally as ¢ — 0 we
obtain

lim inf Fy(ug, vk, Ix) > bal[u(zo)]|- (2.29)

k—+oo

Inequalities (2.18) for the set I(zo, ), (2.27), and (2.29) lead to (2.17).
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It remains to study the case 0 < a < 400, f = +00. By [I5, Theorem 2.1]
the functional ®, o is weakly* lower semicontinuous in BV (§2) and strongly lower

semicontinuous in L!(Q), so that it is sufficient to prove that

lim inf B o (ur) < lim inf Fy(ug, vg). 2.
im inf Do, o0 (up) < lim inf F (uy, vy) (2.30)

In order to simplify the notation we set Ay = {|Vug| < bo/2}; we compute the
integrals of fo(|Vug|) on Ay and on Af.

Let us fix 0 < A < u < 1. First we note that the convergence in measure v — 1

implies

/A fa(|Vuk|)dz+/A fa(\Vudexg/A LI Vg dz + o(1).

M {vp<p} rN{vp>p} {vs>p}
(2.31)
On Aj we have
[ avuhdo+ [ fol( Vo + [ fa(url)de <
A {vp>p} Acn{A<vp<p} A {vr <A}
ba
g/ |Vuk|2d:c+/ ba(|wk| - —)d;v
ASO{vp>p} AS{A<vp<pi} 4
+/ ba<|Vuk| - b—a)dm, (2.32)
Azn{vp<A) 4

where we have used the definition of f, and the fact that b, (t — b/4) < t? for
t > by /2. The last term in (2.32) by the Hélder inequality is less than or equal to

1 1 1
/ |Vuk|2dx+ba(/ vk\Vuk|2dx>2 (/ —d:c)z
A Q {<vp<pu} Yk

cn{vg>p}

+ba</{vk§/\}vk|Vuk|2dw)%(/{vky\} Ulkdac>é

1
< / |Vuk|2d:c + by (%) 2£1({vk < u})%
A

en{ve>p}
1 0p\2 / 5. \3 / Y(vk) , \2
+bo | ——— vi|Vug|“dx dx)”, 2.33
<¢(/\) 77k> ( {vkg)\}k’ g ) ( {op <A} Ok ) (2:33)

where the last inequality follows from property (2.16) and an easy computation.
Finally from the Cauchy inequality and the convergence in measure vy — 1 we find
that the last term in ([2.33)) is less than or equal to

ba 1 0 % 1/’(”1@)
Vouy|?de + 2 —— =2 / | Vug|? + dr +o(1). (2.34
/A;m{upu} t 2 <1/1()\) m) {vk<)\}< el Vo Ok ) (). (234)
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From ([2.31) and (2.34) we deduce

cI)a,oo(uk)S
ba/ 1 6p\3 Y (vi)

< Vug|?de + 2 —— 2= / k| Vug|? + ——2 )dz + o(1

/{UkZM}| k| 2 <¢()\) 77k> {UkSA}< k| k| Ok ) ( )
< 1/ (vk|Vuk\2+M)d$

1 {or>p) O

bo/ 1 6 é/ o U(vk)

+2 (s Vaug|? + =2 ) dz + o1

2 (1#()\)%) {vkgx}<vk| i Ok )m o(l)

1 bay 1 0i\3

< — 2 === :
< max <.U’ 5 <¢(>\) nk) )Fk(Uk,Uk)+O(1)

Passing to the limit first as £k — +o00 and then as A — 0, g — 1 we obtain (2.30). O

Let us complete the one-dimensional case of the I'-convergence result by proving

the upper estimate.

Proof of Theorem [2.5 The cases a = 400 or 8 = 0 are trivial since I, 5(u,v) <
+00 implies u € H'(Q) and v =1 Ll-a.e. in Q.

Let now 0 < o < 400 and 0 < # < 400 and let u be such that @, g(u,1) < +00.
A truncation argument shows that in dimension n = 1 a function w such that
@ 5(u, 1) < +oo actually belongs to SBV?(2). Therefore, both for o = 0 and for
0 < a < 400, we start with a function u € SBV?2(Q); for simplicity we also suppose
Jy = {z}. Let (of) and (p) be positive infinitesimal sequences which we shall

specify later and let
Ay =T —o0p,T+0y) and Bi:=(T—o0f —puk, T —0p) U (T+ 05, T+ o) + i)

Let us define u; by uw out of Ay and linking linearly in Ay.

1

Let f(p) == (1 —p), g(p) = 1_% and h = (fg)2 for 0 < p <1; we
[o P rds

0
note that h is strictly increasing and that h and f/g are infinitesimal in 0. Then
the sequence py := h~1(d;) is infinitesimal and

f(pk) 0 O

Ok 9(pr)

—0. (2.35)

We now set vp equal to 7 in Ag and equal to 1 — pg out of A U By.

In order to define vy everywhere, we first consider the following Cauchy problem

1

1
r_ q )E ) L
e () et
wi(0) = .

(2.36)
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Since 7 < 1 and % is continuous and strictly positive in [0, 1), the previous problem

has only one solution wy, in the interval [0,7}), where T} € (0, 4+00] is defined by
SN Lol
Ty == (m)pslg/ P rds.

q Mk
Precisely, the solution wy is obtained by taking the inverse of the function

SNy L [F  _1

z € g, 1) — <M>P€,§ v rds € 10,Ty).
q Tk

By this we can define

vp(z) == wi(lx — T| — of) on By, (2.37)

SN Lopl=pe
g = (’ka>p€]g/ ) Ilﬂds, (2.38)
q Tk

where iy, is infinitesimal by ([2.35)).
Then (ug,vr) € HY(Q)xV,, and (ug,vg) — (u,1) in LY(Q)xLY(Q). An easy
computation shows that

/ v | Vug|?dz </ \Vu|?dz, (2.39)
Q\Ay, Q
1—
O\(AwUBy) Ok O

2 w(’l)k) o Nk — a _ a2 U’?
ol Va2 + L gy = (@ 4 00) — (@ — o)) + 20(m) 5. (2.41)
Ok 20 Ok

Ag, k
We note that the integral in (2.40)) tends to 0 by (2.35). If @ = 0 we take 02 such
that n/0Y — 0 and ¢9/6; — 0; by this choice the integral in (2.41) converges to
0. Whereas if 0 < a < +00 we define o} := %(ﬁ)%\[u(f)ﬂék and the integral in
(2.41)) tends to by |[u(T)]].

Let us compute now the integral on Bj. Thanks to the choice of wy the Young

inequality holds with equality, so that

v B 1rgepN\e M 1
/ (M + el 1]Vvk\p)dx = 2(7p)1’<q k)q P(wy) 5wy, da
B, \ Ok Ok 0

= 2 (L) [ ppias @

Ok Mk

As k — 400 this term tends to ag and the proof is complete.

Let us consider now the case o = 0, § = +oo. First we suppose that u is

piecewise constant with J, = {Z}. If this is the case we define all parameters
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as before, so that by repeating the computations in (2.39)—(2.42) we obtain that
Fy o (u,1) is null. In the general case when u € L'(Q2) we argue by approximation

with piecewise constant functions; since F})__ is lower semicontinuous we achieve the

0,00

same conclusion as before.

The last case to study is 0 < o < +00, 8 = +o0o. By [15] Theorem 3.1] if we
prove that for every u € SBV2(Q) we have

B! (u1) < / Vul2dz + b / ]| O (2.43)
Q Ju

we are done, since the left-hand side is lower semicontinuous in L!(Q2) and the lower
semicontinuous envelope of the right-hand side is ®q o . Inequality (2.43)) is easily
proved by defining all parameters as before and repeating the computation in (2.39)—
(12.42)). O

2.3.2 The case p = +0o0

The proofs proposed in the previous subsection can be easily adapted to the
case p = +o0o. In this subsection we provide the proofs in the case 0 < 8 < 400,
showing an alternative argument for the estimate of the cohesive term in the case
0 < a < +00. For simplicity we assume Jp = €, which corresponds to 8 =1, so
that we can omit g from the notation.

We also assume that 1 satisfies a very mild technical condition, which is fulfilled

in the standard examples 1(z) =1 — 2", with r > 0: for every ¢ >0
the equation s%¢’(s) = —c has a finite number of solutions. (2.44)

This condition will be used under the regime 0 < a < 400 in order to obtain a

lower estimate involving >, |[u](z)].

Proof of Proposition[2.4) 1t is sufficient to prove the statement when € is an interval,

since the left-hand sides of (2.18)), (2.19) and (2.17) are o-additive with respect to

1, whereas the right-hand sides are o-superadditive. Therefore we can assume
Q=1]0,1].

Let (ug,vx) be a sequence satisfying and with bounding constant
c. Note that ¥(vy) — 0 in L1(Q) by and (2.16); as (vx) — ¥(v) in L(Q)

we deduce v =1 L'-a.e. on Q.

Proof of (2.18). It is not restrictive to assume that the lower limit in the right-
hand side of (2.18) is actually a limit. Let us divide the proof into two steps.
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(a) Since vy is a Lipschitz function, the set

By, = {33 €Q: vk(x) > 1/2}

is relatively open in Q. By Chebyshev inequality we get
1

w(2L B < [ dlwd,
0

so that (2.2]) and (2.16) imply

L£YB§) — 0. (2.45)
We write
B.= |J rju | 75, (2.46)
1<j<Ng J>Ni
where I}, ... ,Iﬁ,k are the connected components of By such that El(IJI-“) > e /4,

whereas JJ’? are the connected components satisfying the opposite inequality. Let
aé? and bé‘? be the end points of the interval I f By changing the numeration, we
may assume that 0 < af < 0¥ <af <bf <. < aﬁ“vk < bﬁ“\,k < 1. Moreover we set
bf :=0 and a’kaH =1.

By definition vy, < 1/2 on Bj; moreover vy, < 3/4 on each Jj'?, since at least one
end point belongs to By, the length of JJ’-" is less than /4, and |Vug| < 1/ep L1-

a.e. in Q by , , and . Then v, < 3/4 in [b;‘?,a;?H] for j=0,...,Ng.

From this estimate and from (2.16)) it follows that

3 ol < (2.47)
. Cy
J>Ng
where C :=1(3/4).
Let us show that (Nj) is bounded. To this aim we choose a point r; in each
interval [b?_l,a;?]. We have v < 7/8 in Jr; — %, r; + %[, since vi(rj) < 3/4 and
|Vug| <1/ L1-ae.in Q. Then

1 Tj*F%
— Y(vg)dr > Oy,

€k Jrj—k

where Co := 1/44(7/8). We note that the intervals |r; — <&, r; + 5[ are pairwise
disjoint, since EI(I]’?) > ¢r/4. By summing on the index j we find

Co(Np+1) <ec.

This shows that (N) is a bounded sequence of integers. Up to subsequences, we can
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assume N = N for a certain N; by compactness we can also assume the existence
of the limits

k k
kgrfoob =:b; and kgrfooa] =: a;, (2.48)

with 0 =bp < a1 <b; <---<an <by <ant1 =1. Now, by (2.45)) and (2.47) we

have

Mz

(akyy — by = £MB) + > LI =0 (2.49)
7=0 j>N

it follows that b; = aj4q,for j =0,...,N. Let 0 =29 <21 <--- <2p, = 1 be an
increasing enumeration of the set {bg,...,bn}.

Let o > 0 be such that ;1 +0 < x; — o for ¢ = 1,...,m. For large values of

k we have a;? , b;‘? ¢ [xi—1 + 0,z; — o]. Using 1’ and 1} we can deduce that

for every k and every ¢ there exists j such that

[xio1+ 0,2, — 0] C ]a] , bf[

therefore vy, > 1/2 in [x;1 + 0,2, — o], for i = 1,...,m. By (2.2) and (2.16) we
find

T;—0
/ Vg |?de < 2¢, (2.50)
Ti—1t0
e., (Vug) is bounded in L%(z;_1 +o,2; — o), for i =1,...,m.

(b) Using the Poincaré-Wirtinger inequality, we deduce from and
that (uy) is bounded in H'(Jx;_1 + 0,2; — o). This ensures that v € H(z;_1 +
o,z; — o) and that u, — u weakly in H!(z;_1 + o, 2; — 0).

By the Severini-Egorov Theorem for every p > 0 there exists a measurable set
A, C [zi1+ 0,2, — o], with L1(A,) < p, such that, up to a subsequence, vy — 1
uniformly in [z;—1 + o,2; — o] \ A,. Then, fixed 6 > 0, we have v, > 1 —§ in
[zi—1+0,2;— 0]\ A, for large k. By the weak lower semicontinuity of the L?-norm,

we have

T;—0
(1-— 5)/ |Vul*dz < hmlnf/ v | Vg 2 da.
[xi—1+o,mi—0]\Ay k=400 Jai 140
We pass to the limit first as 6 — 0 and then as p — 0; adding on the index i we
find

T;—0 T;—0

Z/ |Vu|?dz < hmmfZ/ vk | Vug [ dz. (2.51)
Ti—1+0

zi—1+0

As 0 — 0, from (2.16) we obtain u € H'(z;_1,7;) for i = 1,...,m. Inequality

(2.18) follows.



30 2. Asymptotic behaviour of damage models: the case of antiplane shear

Proof of (2.19)). If u is continuous in a certain z;, then v € H'(z;_1,7;41) and
we can remove x; from the list. Therefore it is not restrictive to assume that every
x; is a jump point for u, for i =1,...,m — 1, so that H°(J,) =m — 1. Fix 0 >0

such that 20 < x; — x;_1 for every ¢ and let
6;, = min{v(z) : v € [x; — §, 2 + 5]}

Let us prove that 52 — 0 as k — 4o00; by contradiction, we suppose that there
exists a subsequence of (52), not relabeled, and a constant K > 0 such that 5,’; > K
for every k, ie., vy > K >0 in [z; — §,2; + |. By repeating the argument used
in steps (a) and (b) we find that v € H'(z; — §,z; + §) and this contradicts the
assumption that x; is a jump point.

Now let t}; be a minimum point for vy, in [z; — §,2; + §]. For large value of &
we have [t} —e(1 — 60),t% +ex(1 — 8})] C |zi — 0,2 + o[, Since vg(t}) = &) and
|V < 1/ep, L'-a.e. in Q, it follows that v, < i|x—t}c\ +6;.. Since 1) is decreasing

we deduce
1 ti+ep(1-6%) _ zi+o
1 kTCk x —th 1
P(s)ds = — ¢(| k| + 5,€) < = Y (vg)dx;
5}2 €k t']icfsk(lf(;]zc) gki kJ Xr;—0O

adding with respect to ¢ and passing to the lower limit we obtain (2.19]).

Proof of (2.17)). In the case o = 0 inequality (2.17)) is obtained by adding ([2.18])

and (@-19).

Let o > 0. Up to subsequences, we have u; — u L'-a.e. on Q; we write
Ju ={x1...xm-1}, where 0 = 29 < 21 < -+ < Tpy—1 < Ty, = 1, and we choose
o >0, with 20 < z; — x;_1, such that

up(ri—o) = u(ri—o) and ug(zi—1+0) = u(rim1+0) fori=1,...,m. (2.52)

We want to estimate from below the integrals

) xTi+o 1 xTi+o
I = / vp(Vug)2da + — Y (vg)dx. (2.53)

i—0 €k Jx,—0

To this aim fix 1 <¢ <m — 1 and for k large we define
Wi :={w e H(z; — 0,2; + 0), w(x; — 0) = up(z; — o), wlz; +0) = up(z; + o)},
Zy = {2z € Wh™(z; —0,2;+0), m < 2 <1, |Vz| < 1/ex L1-a.e. on |z —0, 2 +0]},

Ti+o 1 Ti+o
Hy(w, z) := / 2| Vw|2dx + 8/ Y(z)dx, for (w,z) € WixZg,

i—0
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h := min H .
k(2) = min Hy(w,2)

By elementary computation we find that this minimum is achieved and that

2 1 x;+o
hi(z) = % +— P(z)dx, (2.54)
‘ 1 €k Jzi—0o
/ —dx v
Ti—0 <
where
Br = lug(zi + o) — up(z; — o). (2.55)

Let z; be a minimum point for hy in Zj. It follows from the definition of h; and

from (2.53) that
hi(ew) < Ti- (2.56)

We note that hy is invariant with respect to symmetric rearrangements of z, there-
fore we can assume that zp is symmetric with respect to x; and nondecreasing on

[z, z; + o[. Now we want to prove that zj is piecewise affine.

First of all, by monotonicity and continuity, the sets
A =1z =} Nxg,zi + o] and By :={zp =1} N[z, x; + o]
are closed intervals of [z;,x; + o[. Let us define

Ck = {T]k < Zk < 17 ‘VZk‘ < 1/<€k} m [x’iaxi + 0[7

Ui :={m+ 3 <z <1=3}N [z o, Ejp={Val < - — 3} NUjp,

so that C} is the union of the sets E;; for j € N. For every j, Ujj is open
in [z;,2; + o[ and E; is measurable. Suppose £'(Cy) > 0 and fix j such that
LY(Ej)) > 0; let ¢ be a Lipschitz function such that

{e#0} CUjr and |Vo| <1g,, L'-a.e. on R; (2.57)

then zp + t¢ € Zj for t small enough. So 0 is a a minimizer for the function

t — hi(zr + te) and, imposing that 0 is a critical point, we find

J,

J

)\ /
[’; + w(z’“)} wdz = 0, (2.58)
Jk Ze €k

where X, := 37 (2 f;iﬁo idm) “2 Let us prove that

=0 L'ae on Ejy, (2.59)
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arguing by contradiction. Let

+ -—_ . — + —_—
EjJﬂ ' ik 1 {Zl?; €k =0

and suppose EI(E]'DC) > 0. By the continuity of z; and ¢/ and by the Lebesgue
Differentiation Theorem there exist xg € E;'k and 6 > 0 such that

A /
[1‘0—(5,$0—|—5]CUijﬁ{Z;-f—w(EZk)>O} and ﬁl(Ej7kﬁ[:B0—5,iL'o+(5])>O.
k k

Now let y be such that

El (E],k N [IO - 57 y]) = Ll (Ej,k N [?J,xo + 5])7

0(z) := L' (E;p N[z — 6,y N [xo — 6,2]) — L1 (Ejp N [wo — 6, 2] N [y, mo + ]),
for x € [z;,x; + o[. In particular 6 is a Lipschitz function satisfying (2.57)), so that

(2.58) implies
1‘0+(5 )\ /
/ [’; ¥ (Z’“)} Odz = 0; (2.60)

0= L%k €k

since # > 0, O(y) > 0, and % + %}‘:k) > 0 in [zg — 0, ¢ + ¢] the integral in (2.60
k
is positive and we get a contradiction. This concludes the proof of (2.59)).

From (2.59) it follows that z; maps C} into the set of solutions of the equation
521’ (s) = —A\ger, where \iey is infinitesimal since (\) is bounded. Then, assump-
tion implies that z; takes only a finite number of different values on Cj and,
by monotonicity and continuity, C} is a finite union of intervals. It follows that
[xi, ©; + o can be written as union of a finite number of intervals, where either zj

is constant or Vz, = 1/eg.

We now estimate from below hg(zx). In order to simplify the computation, we
suppose that zp assumes a unique value & in Cp, mp < & < 1, so that Cj is
an interval. Let ay := L1(A4y) and v, := LY(Cy); since Vzi, = 1/eg in [z, 7; +
o[\(Ax U Bt UC}), the measure of [z;,x; + o[\(Ax U B UCY) is —exng + € so that
LYBy) =0 — v, — o + i — €k

By (2.54) we get

Bi’
hi(z) = - = + 20y, + 2 + K,
200,20 + 2925 + G €k €k
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2
> B +2(04k+’Yk:)L(£k) + Kk,

21208 (o, + k) + G €k

where ( = 20 + 2epnp — 261 — 26 log . and Ky = 2 fnlk P(s)ds.

The map

B’ L e (&)
t+ G exl—m

can be estimated differently in the cases a = +o00 and 0 < a0 < 4-00.

It @ = 400, by @16, [53), and ([50) we find

t—

t+ kg

2 .
@ < hp(zx) < I, < c.

Ck

By (2.52)), this implies, as k — +o00,

(u(z; + o) —u(z; — 0))? “ e
20 -

As 0 — 0, we obtain |[u(x;)]| = 0; this contradicts our assumption that z; is a
jump point and proves that H°(J,) = 0, so that u € H'(Q) and (2.17) follows from

@.13).
If 0 < a < 400 we have
m(zﬁ(&) nk)% V(&) e

— T T+ kg < hg(z) < TG,
L—mng ek 1 —nk ek (20) < I

then taking £ — 400 and summing on the index i we get

m—1

>~ 2 (O ute + o) ~ utei — o)~ av O + [ v(s)as]

=1

m T +o
< lim inf/ [vk(Vuk)zdx + 1#(;%)] dx.

i —0
By adding (2.51)) and (2.61)), as 0 — 0, we obtain (2.17).

Let us give below the proof of the I'-limsup inequality.

(2.61)

Proof of Theorem [2.3, Let us consider u € SBV?(£)). We are going to construct a

recovery sequence converging to (u,1) in L'(Q)xL}(Q).

The case o = +oo is trivial since the right-hand side of (2.14) is finite if and

only if v € H'(Q2) and in this case it is sufficient to choose the recovery sequence

identically equal to (u,1).
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Now we suppose a < +00. In order to simplify the discussion we assume u has

only one jump point Z. Let (of) be an infinitesimal sequence and let
A =T —o0p,T+oy] and By:=[T—o) —ep(l —nk), T+ o +ep(l —n)];

moreover let us define vy by m in Ag, by 1 out of By, and connecting linearly in
By \ Ag; finally let us define uy by u out of Ay and linking linearly in Ay.
Then (uy,vi) € HY(Q)x V) and (ug,vr) — (u,1) in LY(Q)xL'(2). We have

1 1
lim (vk|Vuk|2 + —¢(vk))dx = / |Vul|?dz + 2/ W(s)ds,
k- Ja\4, €k Q 0

«

1 o

[ (oelVunl + (e de = ) o+ o) — ala o)) + 20(m) % (262
Ay, €k 207, £t

If @ = 0 we take of) such that n;, /o) — 0 and o} /e, — 0; by this choice the integral

in (2.62)) converges to 0. Whereas if 0 < a < 400 we define of := %(ﬁ)%\[u@)]]ek

and the integral in (2.62]) tends to by |[u(T)]|. O

The following remark exhibits an example, in the case n > 1, of a function
u€e GSBV(Q)\ BV(Q) for which Fy(u,1) < +o0.

Remark 2.5. Let us note that, if n > 1, then the inequality Fy(u,1) < +o0o does
not imply u € BV(Q) nor u € L?(2). Indeed, let Q be a bounded open set in
R™ and consider a sequence of pairwise disjoint balls B, (x;), contained in €, with
centres z; and radii 7; := 27%. Moreover assume that also the balls Ba,. (z;) are
contained in 2 and pairwise disjoint. Let u € L'(2) be defined by

i if By, (x),
u(w) = G HTEBr(@) (2.63)
0  otherwise,

where a; := 2*~1¢, Clearly u € L'(Q) \ L*(Q). Moreover u belongs to GSBV ()
but does not to BV (£2) since

|DIu)(Q) = > air™ ! = +oo.
=1

Let 0 > 2, ¢ := 27" and n;, = €7 this implies o = 0. Let us show that
F{(u,1) < +00. To this aim let us consider 0y := 21k(1=0) and let us define uy, as a;
in By,_5,(x;), 0 out of By, s, (x;), and with constant slope in By, 15, (2:)\ Br,—s, (i),
for i < k; we set u := 0 otherwise. Let vy be defined as n, in By, 45, (i) \
B, s, (xi), with constant slope in (B;, 5,4, (1-ny)(Ti) \ Bri1s, (7)) U (By, 5, (z:) \
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By, —ep(1—np) (@), for i <k, and as 1 otherwise. Note that (uy,vx) € H'(Q)xV;
and (ug,vg) — (u,1) in LY(Q)x L' (). A direct computation shows that

lim inf F(ug, vg) < +00,
k—4o00

so that Fp(u,1) < +o00.

2.4 Proof in the n-dimensional case

We are now concerned with the general case n > 1. Let us prove first the liminf

inequality.

2.4.1 The estimate from below

In this subsection we use the slicing argument (see Section to prove the
estimate from below (2.13)) when n > 1. We also make use of the fine properties of
GBYV -functions collected in |7, Theorem 4.34].

In order to obtain the I'-liminf inequality it is sufficient to prove Proposition

2.4

Proof of Proposition[2.4 The case @ = +o0 and the case 0 < a < 400, = +00
can be faced as for n = 1.

We shall prove the theorem in the case 1 < p < oo for 0 < a < 400 under the
assumption 0 = € (then 5 =1 will be omitted as usual from the notation). Indeed
first this case models each one with 0 < a < 400 and 0 < 8 < 4o00. With obvious

modification one can extend the proof to the regime 8 = 0 and to the case p = +00.

Let (ug,vr) be a sequence satisfying (2.15)) and (2.16) with bounding constant
c; as in the one-dimensional case we can deduce that v =1 L™-a.e. in . In the

first part of the proof we assume that (uy) is bounded in L*°(2) and we want to
prove that u € SBV?((Q).

Proof of (2.18) in the bounded case. Given ¢ € S"~!, we extract a subsequence
(up,vy) of (ug,vy) such that

((ur)g, (v,«)g) — (ug, 1) in Ll(Qg)xLl(Qg) for H" tae. y € 11 (2.64)

and
lim U,.]Vur~§\2dmzliminf/ v |V, - €2 dx. (2.65)
Q k—+oco J

r—+00
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Let 0 < k < 1; by the Fubini Theorem and (1.5) we can write

fomw | (O e e IV (IP) ot <

T

< / <UT|VUT|2 + H(M + 75’;_1|V1}T|p)>d:c <e¢,
Q r

e

where the last inequality follows from (22.16]). From the Fatou Lemma it follows that

& T—>+00 r

3
o 13 £\[2 Y(vr)y p—1 Evip n—1
/H hmmf[ /Q : (<vr>yrv<<ur>y> (S V()5 ))dt]cm (v)
is bounded, so that for H" '-a.e. y € II¢

lim inf /Q6 ((UT)S|V((ur)§)|2 + m(w(:ﬁ + VEQ_IIV((UT)S)p>>dt < too. (2.66)

r—+00 r

Let F,, be the one-dimensional functional on the set Qg, defined by

/5 (z]Vw|2 + @E(Z) +’?€§1\Vz|p>dt if (w,z2) € Hl(Qg)xVyﬂﬂ,

Fyr(w,z) = ¢
400 otherwise,
(2.67)
where ¢ := k¥, ¥ := k7, and
V= {z eWWP(QS) i, <2< 1Hlae in Qg} . (2.68)

The corresponding I'-lim inf will be denoted by Fy

For 0 < a < 400 let @, 4: L1(Q5) — [0,+00] be defined by

/ \Vw|?dx + aH" (Jy) + ba/ [w]|dH®  if w e SBV2()
®y7a(w) = Qg\Jw w

400 otherwise,

where a and b, are defined as in (2.6) with ¢ and 4 which replaces ¢ and ~.

In the limiting case @ = 0 we define

/ \Vw[?dz + aH’(J,) if w e SBV2(Q5) N LY(Q5)
Py 0(w) = ¢ /2w
400 otherwise,
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For H" !-a.e. y € II* we can find a subsequence (uy,, vm) of (w,,v,) such that

i [ (o) + oLl Ve T ()P )t =

m—-+o00 Q§ m

r—+00 r

~tmngnt [ (@515 + (Ll S V()P Jat, (260

so that (2.64) and (2.69) in particular imply

Fé,a(ugv 1) < ml—lg-loo Fy,m((um)gy (Um)g) < +00,
for H" -a.e. y € II¢. Applying Theorem in the case n = 1 we obtain that
u§ € SBV2(9),
By o) < Fy o (uf 1), (2.70)

and that 1D is true for ((um)g, (vm)g)
Now let us prove that u € SBV (). Let M < +oc be such that |[um||pe@) < M

for every m. Then decomposing the derivative of ug (see [T, Section 3.9]) we get

D)I5) = |

IV (ug)ldt+ > [[ug]
Qg\Jug Te

<£'(Qf) + /QE\J |V (u$)[*dt + 2M’H°(Ju§) < A[l+ F) ,(uf, 1)),
Y 3
U.y

where in the last inequality A := diam(Q) + 1+ 2 and we have used 1} Since
(u,) does not depend on y, we can integrate on the projection 7¢(Q) of € on II¢

and we obtain

ué € n—1
Ly PN

IN

n—1 : . n—1
AHTHIE@) + A | limind By ((ur)f, (vr)5)dH" ™ (0)

< AHTHITE(Q)) + Ac < +oo0.

By taking & = eq,...,en, the elements of the canonical basis of R", we get u €
BV (Q) by [7, Remark 3.104]; since ug € SBV2(Q§), we obtain also u € SBV(Q)
by [7, Theorem 3.108].

From 1) applied to ((um)g, (vm)g) and from (D it follows that

/. )P <
9\ S
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<tmint [ (v n(*8 s w@pr) )a

r—+00 r

for H" '-a.e. y € II¢. Integrating on II¢ and applying the Fatou Lemma we get

/ dH (y) / V() [2dt <
¢ AV
TLy

0.8
<timint [ w10 | (TR + (P22 12 () )

r——+00 r

gnminf/ d?-[”_l(y)/ (o) ((ur)$) [Pt + rec.
Ié Q8

k—4o00
Y

where the last inequality follows from (2.16) and (2.65). We observe that (uy,vg)
does not depend on k; as kK — 0 in the previous inequality we find

/|Vu-£|2dm§hminf/Uk|Vuk-§|2dx, (2.71)
Q k—+oco JO

using (|1.5) and the Fubini Theorem. By taking £ = ey,...,e, and summing the
results we obtain (2.18)).

Proof of (2.19) in the bounded case. Given £ € S™7!  the first subsequence
(ur,vy) of (ug,vg) is now chosen so that (2.64) holds and (2.65) is replaced by

i [ [ (P4 e o) -

r——+400 Er

— liminf /H & [ /Q 5 (w(“’“)g +76§1|V((vk)§)|p)dt} ). (272)

k—+o00 €k

Let 0 < k < 1; by the Fubini Theorem and the Fatou Lemma we find

st [ [ (s @+ X et

¢ T—>+00 r

and this implies, for H" '-a.e. y € II¢,
r—+00 r

£
liminf/g <Ii (vr)§|V((ur)§)|2 + d)(:r)y +75£—1|V((vr)§)|p> dt < 4o0.
Qy

It follows that for H" '-a.e. y € II¢ there exists a subsequence (U, vm) of (u,v;)
such that

v )8
lim <H (0m)§ |V (um)5)[? + 1/’(8”‘” - ve&‘l\v((vm)i)p> dt

m—-+00 Qf, m
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)6
= liminf /Qs </<; (UT)S\V((ur)g)\z + T/J(Er)y + ’765_1|V((U7«)§)’p> dt. (2.73)

r—+00 r

Let us consider the one-dimensional functional Fy,, defined in (2.67) with ¢ :=
and 7 := .

By 1} and 1} the sequence Fy’m((/{l/Qum)g,(vm)g) is bounded, so that
Theorem in the case n = 1 implies that inequality (2.19) holds for the sequence

((Kl/Zum)g, (vm)g); using formula 1' we get

u)E
aH (] ¢) < lim inf /QE <m ()5IV ((un))? + w(e)y + 7£$1|V((vr)§)]p) dt.

r—-+00 r

Let us observe that (u,) does not depend on y. Then we can integrate on II¢ both

sides of the previous inequality and apply the Fatou Lemma

a | H(Je)dH" " (y) <

G he -
4
< lﬂl{}f/ng dH" " (y) /Qg <,<; (vﬁiIV((ur)g)IQ—FT’bt}:)y +ve§31\V((vr)§)\p>dt
- W (vk)§

. . n—1 p—1 5 p
< tminf [ ) [ (TR R )i+ e

by (2.16) and (2.72). As k — 0, using (1.3) and (1.6) we find

k—+o0

a/ vy - EldHE < liminf/ <M + 75%71|Vvk]p)dx <e. (2.74)
Ju Q> Ek

Applying (2.74) with € = eq,...,e, we get H""1(J,) < +o0. Since we have already
proved that u € SBV(2), we deduce from (2.16) and (2.18) that u € SBVZ(1Q).

In order to obtain (2.19) we use a particular case of the localization method
developed in [19, Theorem 2.3.1]. First we note that (2.74) holds also for an open
set A C 2, hence

a/ Iy - EJdH L < liminf/ (
JuNA k=+oo Jq

wil:“) + 75§_1|Vvk|p>daz. (2.75)

Since v, is a Borel function with values in S"!, there exists a sequence (w;) of

simple functions with values in S"~! converging to v, pointwise H" !-a.e. in J,.

. m; y . my
We can write w; = §]1-131_ +- -+ 71 gm; , where £} are unit vectors and le», By
J i
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is a Borel partition of J,. By the dominated convergence theorem we have

m;

li A dHT = HT (). 2.76
jglm;/% - € () (2.76)
For every j we can find Ajl., . ,A;-nj a family of pairwise disjoint open subsets of 2

such that ’H”_l((Aé- N JU)ABé) <1/(jm;). Then 1} holds with B;- replaced by

Ju N A% Since by

; - o ¥ (vk) -1
§ w - EdHTTE <] f 2 4 AP ulP ) d
ai:1/ v - EdH im in /Q( - vep |Vl ) x,

JuﬁA; k—+o00

we obtain (2.19) as j — +oo.

Proof of in the bounded case. If a = 0 inequality can be obtained
by adding and ([2.19).

Let now 0 < a < +oo. Given ¢ € S"1 we choose a subsequence (u,,v,) of
(ug, v) such that holds and

@b(vr)g
€

r

lim . d?-[”%y)/f ((w)i\v(uﬁilz +

r—+00 Qy

e V(P )b

o)
— nminf/m dH"(y) /Q5 ((vk)g\V(uk)g\z + w(E:)y +~ys§‘1!V((vk)§>\”> dt.

k——+o0
y

By (L.5), using the Fubini Theorem and the Fatou Lemma we get

[ e | [ 5 (A vl YT (P e ) <

& T—>+00 r
and then for H" '-a.e. y € II¢ we have

3
o ¢ evi2 , Yoy -1 13
imint [ (@SIVHE + PER et D Jar < oo
Let Fy, be the one-dimensional functional defined in (2.67), where ¢ := 1 and
4 := . For H" '-a.e. y € TI we can find a subsequence (um,vy) of (ur,v,) such
that

v 3
i [ (VP + P g e P ar -
1/’(“7")5

r—+00 r

— lim inf /Q 5 (<vr>§rv<<ur>§>12 - B 762?‘1|V((vr)§)|”> dt;(277)
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then Theorem [2.2]in the case n =1 implies

3 im 13 €
q)yva(uy) < l,llgl_igg Fyﬂ‘((uf)y’ (UT’)y)'
Let us observe that (u,) does not depend on y; integrating on II¢ both sides of the

previous inequality and applying the Fatou Lemma we get
| ot ) < (279)
NG

)6
< nmmf/H£ dH" " (y) /Qg ((vk)§|V((Uk)§)12 + ‘b(g:)y +’75§1‘V((0k)§)’p>dt‘

k——+o00
v

We now apply the localization method to the measure p = L£"|Q + H" 1| J,
instead of H"!|J,. Since (2.78) holds with an open set A C Q in place of Q, by

(1.3)—(1.6) and by the Fubini Theorem we get

[ 196100, + - €lta+ ballull L]

k—+o0

< lim inf/ [kauk P+ wg”’“) + mg*lywkﬂ dz. (2.79)
A k

Let us define w := v, on J,, w = Vu/|Vu| on {Vu # 0} \ J,, and w = e;
elsewhere. Since w is a p-measurable function with values in S™~!, there exists a

sequence (w;) of simple functions with values in S"~!, converging to w p-a.e. in Q.

. m ; . ms
We can write w; = 5}131_4-- . '—i-fj ’1,m; , where £ are unit vectors and le», e ,Bj ’
J i

is a Borel partition of €2. By the dominated convergence theorem we have

m;

tin S0 [ 1V P o, + - €llat balluDi Jdu = alw). (250)
J—+oo 1 Jz
For every j we can find a family Ajl-, e ,A;ﬂj of pairwise disjoint open subsets of

Q such that ,u(A;ABJi-) <1/(jm;). Then 1’ holds with B; replaced by A; By
([2.79) we find

m;
> [ 190 €P10n + - gla + bl de
=1 J
< timint [ [orfVaa? + 20 o ]
Q Ek

k——+o0

and we obtain (2.17)) as j — +oo.

The general case. We now remove the assumption that (uy) is bounded in
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L>*(Q). Let us fix M > 0 and let us consider the sequence of truncated func-
tions u} = (=M Vu) A M. We have that v} — uM in LY(Q), vy — 1 in LY(Q),

and by (2.16)

Fk(ukMaUk) < Fj(ug,vx) < c.

From the proof in the bounded case it follows that u* € SBV?(2) and that

/|VuM|2da?§hminf/vk|Vuk]2dx, (2.81)
Q k—+oco J

n—1 < limi ¥ (vk) p—1 p ' .
aM (J“M)_lklgigof/ﬂ< - +ye, |V )dx (2.82)

This implies u € GSBV (). As |[VuM| = |Vu|l{,<uy by Theorem [7, Theorem

4.34], using the monotone convergence theorem we obtain

/]Vu\Qda;: lim /\VUM\Qda:,
Q M—+oco J

which together with (2.81)) proves (2.18). Moreover, taking M — +o0 in (2.82) we
find (2.19). Therefore u € GSBV?3(Q).

Let us prove now (2.17). When « = 0, this inequality can be obtained by adding

and (2T0).

Let 0 < a < +00. The proof in the bounded case, applied to (u]k\/[, vg), gives

Do (uM) < lim inf/ [vk]Vuk\Q G fygﬁ‘lywkﬂ dz < c. (2.83)
k—+oco J €k

Since uM € SBV?(Q), inequality gives |DuM|(Q) < £7() + cmax(1,1/bg)

for every M > 0. From u™ — u in L'(Q), we conclude that v € BV(Q) and

uM — u weakly* in BV (Q). Using the Closure Theorem for SBV [7, Theorem 4.7,

we deduce from (2.83) that u € SBV?(2). Estimate , as M — +oo, leads to

@17). O

2.4.2 The estimate from above

Now our purpose is to prove the I'-limsup inequality. In order to work with
more regular functions and jump sets, we first introduce an approximation result.
The following theorem is a small modification of a theorem due to Cortesani and
Toader (see [23, Theorem 3.1| and Section [L.7).

Theorem 2.6. Let Q C R™ be an open cube, let 1 < p < 2, and let u belong
to SBVP(Q,R™) N L>*(Q,R™). Then for every € > 0 there exist a function v €
SBVP(Q,R") and a set S = U",S;, with S; closed and pairwise disjoint (n —1)-
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simplezes contained in Q, such that
(a) H* 1S\ Jy) =0;
(b) ve Whk>(Q\ S,R") for every k;
(©) [lv—ullprgrny <e;
(d) [[Vv = Vullprgumnxny <&;
(e) H1(J,) < H Y J,) +¢;

(f) [v] © v|ldH" ! < [u] ® vy |[dH™ ™ + €.

T | Ju |
Proof. Using [23] Theorem 3.1] and [23] Remark 3.5] we can find a function w €
SBVP(Q,R") and a set T'= U, T}, not necessarily contained in @, with 7} closed
and pairwise disjoint (n — 1)-simplexes, such that conditions (a)—(f) hold for w in
place of v and T'NQ in place of S. Since T'N(Q is a polyhedron, we can adapt the
arguments in [23, Remark 3.5] to obtain a function v and a set S C @ satisfying

conditions (a)—(f). O
Let us focus now on the I'-limsup inequality.

Proof of Theorem [2.3 Given u € L'(Q) such that ®,p(u) < +oo, we have to
construct a recovery sequence (uy,vy) converging to (u,1) in L'(Q)xLY(Q).

Let us assume first 1 < p < +00. The cases a = 400 or 8 = 0 are trivial since
in these cases ®, g(u) < 400 is finite if and only if u € H'(2), and in this case it
is sufficient to define (ug,vy) := (u,1).

Let now 0 < a < +00 and 0 < 8 < +oo. Let u € GSBV?(Q) N LY(Q) and we
consider first the case u € L>®(Q), so that u belongs in effect to SBV?2(Q)NL>®(Q).

It is enough to prove for a cube @ and for a function u satisfying properties
(a) and (b) of Theorem Indeed, if Q is an arbitrary bounded open set 2 with
Lipschitz boundary and v € SBV?(2) N L°(£), then a local reflection argument
provides an extension of u to a function @ € SBV?(Q)NL>(Q) such that H"~1(JzN
02) = 0. Through this paragraph we shall write explicitly the domain of the integrals
in the functionals , , , , and . By Theorem for every
k we can find a function wy € SBV?(Q) satisfying properties (a)-(f). Assuming
that holds for wy,, we have FO’Z’B’Q(wk, 1) < ®,3,0(wg). Then by the lower

semicontinuity of Fy 5 5 we obtain

Fopo(,1) < limsup @4 pq(wk)

k—o0
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. . 1 2 ag+b
< limsup [P, g o(1) + =T %HVUH[}(QJR?L) 4 28 . a:|
k—oo
= Busg (@). (2.84)

Let us check that this implies Iy 5 o(u,1) < ®450(u). By Theorem and in-

equality (2.84) we have

Fop,o(l,1) = ®apgalu) + 0, 5 0\q(d),
o po(u) < Fhsa1), O, 400(@) < F. 050, (2.85)

so that
Fopq(u,1) < F), 50(u,1)+ F;@Q\ﬁ(a). (2.86)

Moreover |24, Proposition 6.17] implies

g,ﬁ,ﬂ(uv 1) + F(;ﬂ,Q\ﬁ(ﬂ) < FoawB,Q(a, 1),

this estimate together with (2.85)) and (2.86) gives F 5 o(u,1) = ®ag.0(u).

Therefore, in the rest of the proof we assume that Q = Q, u € SBVZ(Q)NL>(Q),
and that properties (a) and (b) of Theorem hold for w. Finally, in order to
simplify the computation, we suppose that S is a unique (n — 1)-simplex and that
S C {x, = 0}. We write a point z € R" as x = (Z,7,) € R" xR and we orient
Ju so that v, = (0,1). Let

Qi::{xEQ::I:mn>0}

and let L be the maximum between the Lipschitz constants of u in QT and Q.

Let us define of(Z) = %5143(%)1/2\[11@, 0)]| for z = (Z,z,) € Q in the case
0 < o < +00; whereas for « = 0 we define 02 as any sequence of constant functions
such that n /0% — 0 and o9 /8; — 0. We observe that ¢ is Lipschitz since u™ and
u~ are; moreover in the case 0 < o < +00 we have o} (7) = 0 for 7 € 95, where
dS is the boundary of S in the relative topology of R"~1x{0}.

Let
Ak = {ID (S Rn . (E, 0) (S S, ‘mn‘ < O']?(CU)},
b = {x eR":(z,0) ¢S, d(z,05) < a,‘j(:r)},

where d(z, S) is the distance from the point = to the set S. The closure of AU A}

is contained in Q for k large.
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Let

o
w(u(f’ O-ICCX) - U(f’ _O-]C;)) +U(E,—Ug) ifzx c Ak’a
ug(T, Tpn) 1= 20},

u(x) if z € Q\ (4r U A}).

Here and henceforth of denotes of(Z). Let us verify that uy € WH°(Q\ A}).
If x = (%, x,) € Ag, we have

| Dy uk (T, xn)|
w(Z, o) —u(T, —of)
200
w(@, o) —ut(z,0) u'(Z,0)—u (z,0) u (T,0)—u(T, —0of)
200 200 207
[[u(z, 0)]|
200

< L+ (2.87)

where the last inequality follows from the Lipschitz continuity of v on Q%. Using

the previous estimate we also obtain

T w(x, o) —u(x, —oy _
< O%Dj"? ( k)QO,a( ) + ’Dju(l’a —oy) — Dou(Z, —0o)) Djoy;
k k

+‘Dju(x, o) + Dpu(Z, 01 ) Djoy — Dju(T, —oy)) + Dpu(T, —oy ) Djoy

< Djo} (w +4L) +3L, (2.88)
207
for j=1,...,n—1 and for every (Z,z,) € Aj.

By the definition of off and the boundedness of u, the quotient |[u(zZ,0)]|/of is
bounded uniformly with respect to Z; since Djoj < (ﬁ)l/QLék, we deduce from
and that u, € WH(Q\ A}), so that in the case 0 < a < 0o we obtain
ur, € WH(Q). In the case a = 0 inequalities (2.87) and (2.88)) imply that wuy is
Lipschitz continuous in {z € Q: (Z,0) € S}, with Lipschitz constant (M/o%)+3nL,
where M := |[ul|pe(q)-

To prove that wy is Lipschitz continuous in § \ A} we will show that

4M
lug(z) — up(y)| < (F + 12nL)(|f—§| +|on —yn|) for z,y € Q\ A, (2.89)
k

Let z,y € Ay U By U By.. It is enough to prove (2.89) when x, and y, have the
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same sign. Indeed, if (7,0) € S we can write

‘uk(‘r) - uk(y)’ < |uk(f7 xn) - uk(fa yn)‘ + ‘uk(f7 yn) - Uk(y, yn)’ (2'90)

and the estimate for the first term in the right-hand side comes from the Lipschitz
continuity of uy in {xr € Q:(7,0) € S}. If (7,0) ¢ S and (y,0) ¢ S, then

() — u(y)| = [u(z) = u(y)] < Ju(@,2n) = (T, yn)| + (T, yn) — w(@; yn)|-

Since the segment with end points (7, z,,) and (T, yy) is contained in Q\ S, the first
term in the right-hand side is estimated by L|z, — y,|, whereas the second term is

estimated by L|Z — 7| due to the Lipschitz continuity of u in QF.

Therefore, it is enough to prove when x, > 0 and y, > 0. If y, > 02,
then we can write and the right-hand side reduces to |ug (T, zn) — uk (T, yn)| +
|u(Z, yn) — u(Y, yn)|- The second term is estimated by L as before. If (Z,0) € S the
first term is estimated using the Lipschitz continuity of ug in {x € Q: (7,0) € S}.
If (z,0) ¢ S, the first term can be written as |u(Z, ) —u(Z, yn )|, which is estimated
by L|zn — yn|, since z,y € QF.

It remains to consider the case 0 < z, < o9 and 0 < y, < 0. If (7,0), (y,0) € S
then x,y € Ay and the estimate has already been proved. If (z,0), (7,0) ¢ S then
lug(z) — ug(y)| = Ju(xz) — u(y)|, which can be estimated by the Lipschitz continuity
of w in Q1. Assume now (7,0) ¢ S and (7,0) € S. Let (z,0) be an element of 95
in the segment of end points Z and ¥, and let 2 := (2,0%). Then

() —un ()] < Ju(@) =) |+ un(z) —ur(y)] < (ﬁgwm)(x—zrﬂz—yw. (2:91)
We have

=zl +]z—yl < [T—2+|zn—opl+ 2 =7+ |yn — opl
= T2+ |27 +2zn — oY + |T0 — ynl; (2.92)

since x ¢ A} we obtain
(092 < |, ) — (2, 0) < [7— 22 + 22,
so that we can estimate (o) — z,,)? as follows

(0 —z,)2 < (60?2 — 22 < |z — 7|~ (2.93)

Inequality ([2.89) follows from (2.91)), (2.92), (2.93), and from |[z—Z|+|z—y| = [z—7]|.
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This concludes the proof of the Lipschitz continuity of uj in Q\ Aj. We are now
in a position to apply the McShane Theorem, so that there exists a function, still

denoted wuy, that extends wuy to Aj and has the same Lipschitz constant as wy, i.e.,

4M
lug () — ug(y)| < <? + 12nL)(|T— Y|+ |xn —yn|) for x,y € Q. (2.94)
k

From the definition of uj, we immediately deduce that uz — u in L'(Q).
Let now pg, wy and pi be defined as in the one-dimensional case by (2.35)),
(2.36)), and (2.38)); we are able to define now

By, = {x eR":(z,0) €S, 0< |z,| — 0o (T) < ,uk},
By, = {x eR": (7,0) ¢S, 0<d(z,05) — o (T) < ,uk},

and
Tk ifxe Ay UA],

wp(an| —of(@) itz e By,

wi(d(z,08) — o (z)) if x € By,

1—pg otherwise.

By this choice np < vp <1 L"-ae.in Q, v € WHP(Q), and vy — 1 in LY(Q).

Let us proceed with the computation. The sequence Fj(ug,vr) can be written

now as

Fy(ug,vr) = /kaVudeer/ w(vk)der/ <¢(Uk)
Q o\(ByuB,) Ok B \ Ok

+7521|Vvk|p)dx+/ (M+75§*1|Vuk|p>dm (2.95)
By,

O

As for the first term of the previous expression we note that

n—1
/nk‘vuk|2d$ = /ﬁk(DnUk)2d$+Z/ i (Djuy)dx
Ag j=1"4%

Ag
— _a\ _ T —5¢ 2
< / nk(u(x’ak)g;é(x’ &) dH" ! eny, (2.96)
u k

for a suitable constant ¢+ o0; if @ = 0 the right-hand side of the previous inequality
tends to 0, since u € L®(Q) and n;/o) — 0; if 0 < a < oo, by the dominated
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convergence theorem it tends to

ba n—1
b /J [ullamn.

In the case o =0, when A) # O, we get by (2.94)

/ k| Vug|?de < ¢ Tk L7(AL) + eng, (2.97)

Ay (02)2

where ¢ < 400 is constant. First we note that Aj C (85)02, where (85)02 ={z €
R" : d(x,0S) < 0V}. From a well-known result about the Minkowski content, (see,

for instance, 7, Theorem 2.106]), we can write
LM(AL) < O((0R)?),

so that the integral in (2.97) tends to 0. Finally let us note that

/ vk\Vu|2da:§/ |Vu|?dz.
O\(ARUAL) Q

Taking into account the computation in (2.40]), we deduce for 0 < o < +00

/vk\Vuk\Qda:—i—/ Lo )d </]Vu\ dx + by / |[u]|dH™ " + o(1);
Q o\(ByuB,) Ok
(2.98)

whereas if &« =0 we find

O,

/vk|Vuk|2d$+/ w(vk)dxg/ |Vu|?dz + o(1). (2.99)
Q O\(BLUBY,) Q

Let us consider now the integral on By in (2.95). By the choice of By and vy

we obtain
/ (T/J( ) Vo \p>da: <
By N Ok

2<w>i((§f)3 / [ vt o o

IN

— 2(yp)¥ (q;f) (/n: pk;b%ds)H”—l(Ju). (2.100)

Moreover coarea formula implies

/;C <¢55k ) Vo ]p)dx <
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L prop+tpk 1
< cl<?;>/ Dt — o®)) il (t — oYM ({d(z, DJ,) = £})dt

€k €k

< alf +m)(5) 0 Ywn)uf,di < esloft + ) (5)" (2.101)

where cq, ¢g, c3 < 400 are constant and we have used the fact that
H"‘l({d(:n, oJy) =t}) = O(1).

The last term in (2.100) tends to 0 by the choice of §, of, and u. By (2.98),
(2.99)), (2.100)), and (2.101) we obtain (2.14)).

In the general case when u ¢ L°°(€), we obtain (2.14) through a truncation

argument.

Let now 0 < a < +00, 8 = 400; as in the case n = 1 it is sufficient to prove by
[15, Theorem 3.1] that for every u € SBV?(Q) we have

Fll o (u, 1)§/ \Vul|?dz +be [ |[u]|dH"
Q

|
Ju
We define all parameters as in the previous case; the computations in (2.98)), (2.99),
and (2.101)) give the same results as before, whereas the last term in (2.100) tends
to 0 since 8 = +oo. Estimate (2.14)) follows.

We conclude the proof of the estimate from above by studying the case a = 0,
B = +oo. We shall prove that Fy, (u,1) =0 for every u € L'(Q).

Since [y, is lower semicontinuous, it is sufficient to prove the estimate on a
set which is dense in L!(Q). To this aim we consider the set of functions which are
constant on finitely many disjoint balls and null otherwise. For simplicity we consider
only the case of a function w which is constant on a ball B well-contained in  and
null out of A. Let 02, Pk, Wk, and pp be defined as before; let ¢ be a cut-off
function such that ¢ =1 on (9B),0/5, ¢x = 0 out of (8B)02, and |Vy| < 4/09,
where (0B), := {d(z,0B) < r}. We define uy := (1—¢x)u and vy, as n; on (0B)02,
as 1 — p out of (aB)anguk’ and as wg(d(z,0B) — 0?) in (8B)02+M \ (83)02. By
this choice u, € HY(Q), vy € Vy, and (ug,vg) — (u,1) in LY(Q)xL'(Q). Let us
proceed with the computation.

We have that

¥ (vg) o Mk Y(0m)
v Vu 2d1‘—|—/ ——dx < (16u + L"((0B),
/Q el Vel @B).o Ok ( (0% Ok ) (0B)ap)
0
< 0117f’8+cz(7’C

R
o O
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where c¢1,co are constant; the last term in the previous expression tends to 0 by the
choice of 02.
Since py, satisfies (2.35) we also obtain

/ de < o(1).
O\(8B) Ok

024—;%

Finally we note that

/ (d)évk) + ’ysi_lka\p)dx -
(63)02+#k\(63)02 k
er\a [M* Loy 0yn—1 €k 7
=c3 (£> P(wg) 1wy, (t+ o))" dt < q(a) ,
0

where c3, ¢4 are constant; since § = 400 also the last term in the previous expression
tends to 0. Equality F,(u,1) =0 follows.

In the case p = 400 one can reproduce the same arguments and computations as
before. For convenience of the reader, we just provide below the slight modifications
to make to the definitions of By, By, and vy in the regimes 0 < o < +0o0 when
0r = €k (and then S=1). The sets By, and Bj, can be redefined as follows

ek (1 _Wk)}’

By := {x eR": (7,0) € S, 07 (T) < |zy| <0 (T) +
Ck,a

By, = {ac eR": (z,0) ¢ S, o (7) <d(z,05) < op(T) + M}

Ck,a
o

where ¢ := 1 for a = 0, whereas cj o =1 — z—:k(w)l/zL for 0 < a0 < 00; finally

v can be set equal to

Mk ifrxe ALUAL,

c
a(\xnl—a,‘g‘) if x € By,

Nk + Cg’a (d(z,0S) —of) ifxe By,
k

1 otherwise.

2.5 Convergence of minimizers

Throughout this section we assume 1 < p < 400 and we use the notation Fj
to indicate both the functionals introduced in Sections [2.2.1] and [2.2.2] respectively
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for 1 < p < +o0 and for p = 400. The most important result of the chapter is
the following theorem on the convergence of minimizers of some variational problems

involving the functionals Fj, and Fj, 3.

Theorem 2.7. Let r > 1; let (0;), (), and (nx) be infinitesimal sequences of
positive numbers, and let g € L™(Q). For every k, let (ug,vg) be a minimizer of the

functional

Fy(u,v) +/ lu — g|"dz (2.102)
Q

with the constraint n, < v < 1. Then vy — 1 strongly in L*(Q)) and a subsequence

of (ug) converges strongly in L™ (Q) to a minimizer u of the following limit problem:

min (/ Vu\zd:c—&—ag?-[”_l(Ju)—i—ba/ ][u]]d?—[”_l—i—/ u—gl"dz),
Q Ju Q

uESBV2(Q)

if 0 < a,B < +oo,

. 2d n—1 ., / —ol"d
uEG%€2(9)<A|vu’ z+agH" (Jy) + Q|u ql x),

ifa=0, 0<f <400,

min (/ |Vu]2d:1:+/ ]u—g|Td:c>, if « = 400 or =0,
Q Q

u€H1 ()
i X dz + b D*ul (9 —glrdz),
min ([ Ve +ba (@) + [ fu—gl'do)

if 0 < a < 400, f=4o00.

Moreover for every a and [ the minimum values of tend to the minimum

value of the limit problem.

In order to prove Theorem we need a compactness result, whose proof makes
use of Theorem about the compactness of sequences and slices. Our compactness

result is then given by the following theorem.
Lemma 2.8. Let a > 0 or 8 < +oo. Let (ug,vx) be a sequence in L'(Q)xL'(Q)
such that (uy) is bounded in L'(Q2) and

lim inf Fy (ug, vg) < +o00.
k—+o0

Then there ezists a subsequence (uj,vj) of (ug,vr) and a function u € GSBV(2) N
LY(Q) such that uj —u L"-a.e. on Q and v; — 1 in L1().
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If 0 <a< 400 and 8 = 400, or a = +00, the convergence u; — u 1s also in

LY(9Q).

The previous lemma does not apply when a = 0 and 8 = 400, but we shall be
able to prove Theorem also in this case.

Proof. We can suppose, up to subsequences, that Fj(ug, vy) is bounded by a constant
M < +o0; in particular then vy — 1 in L'(Q). Now let 0 < a < +oo and
0<8 < +00.

We divide the proof into three steps.

The bounded case for n =1. Let n =1 and let (ug) be bounded in L*(Q). It
is not restrictive to assume 2 = (0, 1); if this is not the case we prove the statement
for each connected component and then we use a diagonal argument.

Repeating the first part of the proof of Theorem in the case n = 1, we
can find m 4+ 1 points 0 = 29 < -+ < x,, = 1 such that Vug is bounded in
L?(x; + p, 2441 — p) uniformly with respect to k, 4 >0, and i =0,...,m — 1. This
implies by assumption that ug is bounded in H'(z; + p, 241 — p) uniformly with
respect to k, wu, and i. For every u > 0, we can find a subsequence of (uy), not
relabeled, that converges in L?(x; + p, 2541 — p), for i = 0,...,m — 1. Then by a
diagonal argument we extract a further subsequence (u;) of (ux) that converges in
LY(Q) to some u € L>(£2). From this convergence and from Proposition We also
deduce u € SBV?(Q).

The bounded case for n > 1. Let n > 1 and let (ug) be bounded in L*>(Q).

Let £ € R™ be a unit vector and let F ;, V) be defined as in (2.67) and (2.68))
in the case 1 < p < 400 (obvious modification can be provided to prove the case
p=+00).

Moreover we set
Ap = {y € II* : Fyp((up), (0r)5) < L},
where L is a fixed constant, so that by the Chebyshev inequality we obtain

M
HH(AR)Y) <+
L
Let 6 > 0; we can choose L so that diam(Q)cM/L < §, with ¢ := supy, ||uk||re~
Let us define

0 otherwise
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and let wg(y +t€) := (wk)g(t), for y € TI¢ and t € Qg Then
Hwk - ukHLl(Q) <c diam(Q)’Hnil((Ak)c) < 0.

Let F := (ug) and Fs := (wg), then F lies in a d-neighborhood of F5 with respect
to the L'(Q) distance; moreover Fj is pre-compact by the first part of the proof.
From Theorem we deduce the existence of a function v € L>(f2) and of a
subsequence (uj,v;) of (ug,vr) such that (uj,vj) — (u,1) in LY(Q)xLY(Q) and
|[u]|poe (@) < c. Since

Fl, 5(u,1) < lim Fj(uj,v5) < M,

Jj—00

by Theorem P.1] we conclude v € GSBV?(Q) N L>®(Q), i.e., u € SBV(Q)NL=(Q).
The general case. For every p € N we can consider u’k‘ = (—p Vug) A p, then

Fio(u},, vi) < Fi(ug, vg)

and by the first part of the proof there exists a subsequence (uf ) of (u}) and a
function u, € SBVZ(Q) N L>®(2), with [|uy||z=() < p, such that uy — Uy in
LY(Q) and L"-a.e. in . This implies that the complement of the set

A={zeQ: (u?(m)) converges for every pu € N}
is negligible. Let us observe that

(u#(x))A = lim (uf(m)))‘ = lim u}(x) = ur(x) for every p > \. (2.103)

Jj—00 Jj—o0 J

We claim that the subset of A
E:={z € A:|u\(x)] =\ for every XA € N}

has measure zero. Indeed, for every A € N and € > 0 we have

1 c
Ndp < —Z
)\—E/Q‘uj‘ TENTe

for j large enough, where c is the bounding constant of (u;) in L1(Q); as ¢ — 0 and
A — 0o we obtain L"(E) =0. Let now = € A\ E, so that there exists A € N with
lux(z)| < A; this condition, together with equalities gives u,(x) = uy(zx) for
every (> A.

L"(E) < En({\u])‘] >A—¢e}) <
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Let us define for £L™-a.e. x € )

u(z) = )\h—{go ux(z),
then by uy coincides with the truncated function u* L"-a.e. in Q. This
implies that u; — v L"-a.e. in ; since (uy) is contained in SBV () we deduce
that v € GSBV(Q). Finally, since ui‘ is uniformly bounded in L'(Q) with respect
to A and j, we also conclude that u € L1(Q).

Let @ = 400. Repeating the computation in we deduce by assumptions
that (uy) is bounded in BV (£2). This implies the existence of a function u to which
up, converges in L'(Q2) and L£"-a.e. in Q, up to subsequences. The same argument
works in the case 0 < a < 400, f = 400. O

To prove Theorem we shall consider the functionals F,j: L"™(Q)xL1(Q) —
[0, +00] defined by

Frp(u,v) := Filpr@)x 1 ()

where the functionals (F}) are defined in Section
The second step in the proof of Theorem is the following lemma.

Lemma 2.9. Under the hypotheses of Theorem the functionals F,.j 1'-converge
in L"(Q)xLY(Q) to the functional F, o5 := Fopliryxpi(q), where Fy g is defined
in Section [2.2

Proof. Let F, , 5 and I 5 be the I'-liminf and the I'-limsup of £, in the space
L"(Q)xLY(Q) and let (u,v) € L"(Q)xLY(Q).

Proof of the estimate from below. The I'-lim inf inequality follows from Fr/aﬂ >
F, 5 (see, for instance, [24, Proposition 6.3]) and from Theorem

Proof of the estimate from above. Let uw € GSBV?(Q)NL"(2) with F, g(u,1) <
+oo. First we suppose u € L>®(Q2). Theorem ensures the existence of a sequence
(ug,vp) € HY(Q)x Vi (Q) such that (ug,vr) — (u,1) in LY(Q)xL1(Q) and

lim Fj(ug,vg) = Fop(u,1).
k—o00

The T'-limsup inequality follows from this equality, from the convergence of the
truncated functions u — u in L"() with M := |[u]| oo (), and from the fact that
Fnk(ufc\/l,vk) < Fy(ug, vk) -

In the general case when u ¢ L*°(Q2) the I'-limsup inequality follows from the
previous step applied to the truncated function u™ , from the lower semicontinuity
of I, 5 and from the fact that F,p(uM 1) < F, (u,1). O
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Let us define the sequence of functionals

Gr(u,v) := Fj(u,v) —|—/ lu — g|"dz, (2.104)
Q
Gul:0) i= Faglus) + [ Ju—glda, (2.105)
Q

where u,v € L1(Q).

Lemma 2.10. Let 1 < r < +oo and let g € L"(?). Then the functionals Gy in

2.104)) T -converge in LY(Q)x L' (2) to the functional Gy p in .

Proof. Let G’aﬁ and G;ﬁ be the I'-liminf and the I'-limsup of G} in the space
LY(Q)xLY(). First we observe that the functional H : L'(Q)xL'(Q) — [0, +o0]
defined by

H(u,v) ::/ lu — g|"dx
Q

is lower semicontinuous.

In the case r = 1 the functional H is continuous; since (Fj) I'-converges to Fy, g
by Theorem [2.1] we can apply [24, Proposition 6.21] about the sum of I'-limits to
conclude that Gy, I'-converges to F, g+ H.

Let » > 1. Since H is not continuous, we need a different argument. To this
aim we introduce G, 5, the T-limsup of Gy, in L"(Q)xL'(Q).

If (u,v) € (LY(Q)\ L™(Q))x L' (2) we obtain by [24, Proposition 6.17]

+oo = Fy, g(u,v) + H(u,v) < G’aﬁ(u,v);

let now (u,v) € L™(Q)x L' (). By [24, Proposition 6.3, 6.17, and 6.21], by Theorem
2.1 and by Lemma 2.9 we can deduce that

Faﬁ(ua U) + H(u7 U) < Gla,ﬁ(”? ’U) < G/alz,ﬁ (’LL, 'U) < GH (U, U)

T',CM,B

= FT,Oéﬁ(uv U) + H(u’ U) = Fa,ﬂ(”? U) + H(uv U))
so that the functionals G}, I'-converge to the functional Gy g. O

Remark 2.11. In Theorem we assume 7 > 0 only to guarantee the existence
of a minimum point for Gj. In the case n; > 0, the thesis of Theorem [2.7] continues

to hold if (ug,vy) is a sequence which satisfies

lim Gk(uk,vk) - inf Gk =0.
k—o0 LT (Q)x L1(Q)

The proof is essentially the same.
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We are now in a position to prove Theorem [2.7]

Proof. We fix k and prove that each functional Gg, defined in , attains its
minimum. Let (uj,v;) be a sequence such that

jllglo Grlug v5) = LT(Q%gle(Q) G-
Since (Gk(uj,v;)) is bounded, from the definition of Gj we deduce (uj,v;) €
HY(Q)xVi. In particular (u;) is bounded in L"(2) and (Vu;) is bounded in
L%*(Q,R™); this implies that (u;) is bounded in H().

Then we can find a function v € H'(Q) N L"(Q) and a subsequence of (u;),
not relabeled, such that u; — u weakly in H'(2) and L"-a.e. in Q. From the
boundedness of (v;) in W1P(Q) we can deduce the existence of a function v €
WLP(Q), with n < v <1 and of a subsequence of (v;), not relabeled, such that
v; — v in L1(Q) and L"-a.e. in Q. By [19, Theorem 2.3.1] and by the Fatou lemma,

this implies that the estimates

/ |Vu|*vdz < liminf/ \Vuj|*v;dzr, / lu —g|"dx < liminf/ luj — g|"dx
[¢) J—00 0 0 J—0 [¢)

(2.106)
hold, so that we obtain

Gr(u,v) < jlggo Gk(uj',vj) = LT(Qi)erle(Q) Gy.

This shows that the infimum of G} is achieved.

Let o > 0 or 8 < 400 and let (ug,vg) be a minimizer of Gy, which obviously
belongs to H!(Q)xV;. Since the sequence (F},(ug,vy)) is bounded, by the compact-
ness theorem there exists a function v € GBV(Q2) N L"(§2) and a subsequence
of (ug,vy), not relabeled, such that uy — u L"-a.e. in Q and v, — 1 in LY(Q).
Let us prove that u, — u in L'(). By the the dominated convergence theorem we
get [ |ug — ul|lpedr — 0, where By, := {|ur, — u| > 1}; moreover using the Hélder

inequality we obtain
_1 n _1
/B lug —uldz < (Huk_QHLT(Q)+Hu_g”L?“(Q))£n(Bk)l < 2||gllzr )L™ (Br)' 7,
k

where the last inequality follows from the estimate Gy (ug, vi) < Gi(0,1) = ||g]| |ET(Q)
and from (2.106). Since uy — u in measure we conclude that £"(Bj) — 0 and the
convergence uy — u in L(Q) follows.

By the I'-convergence of G to G, (Lemma and by a general property of
I'-convergence (see Section[1.8), we find that (u,1) is a minimizer for G4, . Moreover
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we have the convergence of minimum values and the convergence of minimizers in
LY Q) xLY(9).

Let us prove now that ux — u in L"(€2), up to subsequences. Since

F, p(u,1) +/ lu — g|"dz = lim (Fk(uk,vk) —|—/
Q k—o0

|uk - g|7'dx>’
Q

Fo p(u,1) < liminf Fj(ug,vg), and / lu—g|"dx < liminf/ lug — g|"dx,
k—ro0 Q k—oo Jq

we obtain

/|u—grdx— lim / lug, — g|"dz. (2.107)
(9] k—o0 9}

This fact, together with the L£™-a.e. convergence in Q of up — g to u — g, implies

that uy — w in L"(2) by the generalized dominated convergence theorem.

We suppose now that a = 0 and § = 40co0. We fix £ and we consider a min-
imizer (uy,vg) € HY(Q)xV,, of Gy. Since Gi(ug,vy) is bounded, we can find a
subsequence of wuy, not relabelled, and a function u € L"(£2) to which wuy converges

weakly in L"(Q2). Therefore we have
/ lu —g|"dx < liminf/ lug — g|"dx < liminf G (ag, 0;) = / |lu — g|"dz,
Q k—4o00 Q k—+o00 Q

where we have chosen (i, ) — (u,1) in L' () x LY () with limy_, | oo Gy (g, U%) =
Goplu,1).

Since now ug — g — u — g weakly in L"(Q) and ||lugx — gl|rr) — l|v — gllr @)
we also conclude that uy — u strongly in L" ().

Again by the I'-convergence of G}, to G4 g and |24, Corollary 7.20], we find that

(u,1) is a minimizer for G, g, so that v =g L"-a.e. in Q. O






Chapter 3

A density result for the space of
Generalised Special Functions of

Bounded Deformation

3.1 Overview of the chapter

The space of Generalised Special Functions with Bounded Deformation has been
recently introduced in [25] as the natural functional framework for weak formulations
of variational problems arising in fracture mechanics in the setting of linearized
elasticity. Roughly speaking, it provides the natural completion of SBD when no
uniform bounds in L* can be assumed for the problem at hand, analogously to SBV
and its counterpart GSBV . For preliminary results and notation about GSBD-
functions we refer to [25] and to Sections and [1.6]

In this chapter we present an approximation result for functions u: Q — R"
belonging to the space GSBD(Q) N L?*(Q,R") with e(u) square integrable and
H"~1(J,) finite. The approximating functions uy are piecewise continuous functions
such that u, — w in L*(Q,R"™), e(ug) — e(u) in L*(Q, M), H' (T, Ady) = 0,
and fJukUJu ]uf—ui IANLdH™ ! — 0. Two applications of this result to the Ambrosio-

Tortorelli convergence will be presented in the next chapter.

The chapter is composed of four sections. In Section we state the density
theorem, which is the main result of the chapter. Following the approach used by
Chambolle in [20, 21] for the SBD context, we divide the proof into three steps. The
first step is faced in Section [3.3] where a first unified approximation of the energies
with bad constants is provided. The second step and the third step are described in
Section [3.4] The former consists in proving a further unified approximation for the

29
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energies with the right constants, the latter in the application of the Compactness
Theorem [[.12 for GSBD.

The results presented in this chapter will appear in [38].

3.2 The density theorem

Let us assume n > 2. In this section we present the main result of the chapter:

the approximation theorem for GSBD functions.

Theorem 3.1 (Density). Assume that Q has Lipschitz boundary. Let u belong
to GSBD?(Q) N L?(Q,R"). Then there exists a sequence (ux) C SBV2(Q,R") N
L>(Q,R"™) such that each J,, is contained in the union Sy of a finite number of
closed connected pieces of C'-hypersurfaces, each wuy, belongs to W1°(Q\ Sy, R"),
and the following properties hold:

(1) |Juk = ull2@rny = 0,
(2) lle(ur) — e(u)ll 2 qumxny = 0,

(3) H Y (JyAJy) — 0,

(4) / luf —uF|A1dH"™ — 0.
Juy, Uy

We remark that Theorem [3.I] can be combined with the SBV density theorem
by Cortesani and Toader |23 Theorem 3.1] (see also [22] and Section to obtain

better approximating functions.

A useful tool for the proof of Theorem [3.1]is the following lemma, which allows us
to substitute a GSBD?-function with another function of the same type, defined in
a larger set, in a way that the norm of the function and of its approximate symmetric

gradient, the measure of the jump set, and the trace on 92 do not increase too much.

Lemma 3.2. Assume that ) has Lipschitz boundary. Let Q: Mgit — R be a
positive definite quadratic form and let v € GSBD?*(Q) N L*(Q,R"™). Then for
every € > 0 we can find a Lipschitz open set Q with Q cc Q, and a function

@ e GSBD?(Q) N L2, R™), such that
(1) 1t = ull 2o rmy <e,

2) /Q Q(e(@)) dz < /Q Qle(u)) da + <,



3.2 The density theorem 61

(3) H* '(Ja) SH " (Ju) +e,
(4) H* 1 (JanoN) =0,

(5)/ i — tr(u)| A1 dHP < 5.
o0

Proof. For the first three properties of the lemma we follow the proof of [20], Lemma
3.2] and we only summarize the essential lines. Property (4) will be an easy conse-
quence of a well-known result in Measure Theory. Eventually, property (5) will be
obtained through Theorem

Since € has Lipschitz boundary, we can cover 9€) with open sets (Ai)le, in a
way that each A; N Q is the subgraph of a Lipschitz function f;: II% — R, for a
suitable & € S"!. Then we consider an open set Ay CC Q, such that Q C Uf:o A;.

We define

u :=u in Ag

ul(z) :=u(x —t&) forx € A; N (Q+10,1)&),

for ¢+ small enough; we extend u by 0 in the rest of A;.
Clearly we are going to glue the functions u} together through a partition of
unity, but the choice of the partition has to be done properly in view of property (3).
We choose a partition of unity (p;)%, subordinate to (4;)%_; in a way that
E?:o ©; =1 on Q and

3

k
Hn_l(Ju N U {0< ¢ <1}) < m?

1=0

(3.1)

this is possible through [20, Lemma 3.3] applied to the positive Borel measure
H" 1| J,, which is finite on R™. We set

k k
ugp == Z up @i and Q=AU ( U(Al Nn(Q+ [0, tl)fl))>,
i=0 i=1
where we have set ¢ = (¢1,...,¢;) and each ¢; is small. Arguing as in |20, Lemma

3.2] we prove that the pair (ug, Q) satisfies properties (1)—(3) for ¢ small enough.

Proof of (4). Let us fix i =1,...,k, then for every ¢t € R we have
H' (T N OQ) = H (T N AN Q) = H (TN ((AiN0Q) — t&)).  (3.2)

Since the measure H" 1| .J, is finite, a classical result of measure theory implies that
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the pairwise disjoint Borel sets ((A; NIN) —t&;); are H" | J,-negligible, except for
a countable set of indices ¢ € R. This proves that u; also satisfies property (4) for

Lk ae TeRk.

Proof of (5). First we note that

/ 7(Jtr(uz) — tr(u))dH" ™ < Z/ T([tr(uf ) — tr(u)))dH" ",
oQN{pi#0}
where 7(s) := larctg(s) for s € R. Let us fix ¢ = 1,...,k and let us define
M = 00nN{yp; # 0}. Let Q; CC A; be such that 9 is smooth, M CC (2, N0Q),
and H"1(0Q; N J,) =0
We aim to apply Theorem to the functions uf;l_,u on the set 1 N Q. Clearly
we have uj — w in L'(Q; N Q,R") and e(uj,) — e(u) in L'(Q; N Q,R"™) by the

L'-continuity of the translations. It remains to check that

/ YdH" — YdH L, (3.3)
J ; NN JuN1NOQ

for every ¢ € CP (21 N Q). Fixed 1 € CP( N ), one easily shows that

Y(x + ;&) xane (e + 6&) — v(T)xa,ne(x)

when z € J, \ 9Q1. By our assumptions on §; we find that H" l-ae. z € J, is
out of 9€;. By the dominated convergence theorem we eventually obtain and
finally Theorem [I.8] gives the continuity of the trace. We conclude that there exists
t small enough such that properties (1)—(5) hold for the pair (ug, ). O

3.3 A first unified approximation of the energies with

bad constants

The proof of Theorem is quite technical, so we break it into three steps. The
first step is the following theorem, which will give a rough and unified approximation

of the energies.

Theorem 3.3. Assume that Q has Lipschitz boundary and let u € GSBD?*(Q) N
L?(Q,R™). Then there evists a sequence (uy) C SBV?(Q,R")N L3(,R") such that
Ju,, 1s contained in the union Xy of a finite number of (n — 1)-dimensional closed
cubes, up € WH(Q\ T, R"), and the following properties hold:

(1) [lug — ullp2@@rny = 0,
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(2) limsup /Qn (ug)) dx + H"( zk /Qn ))dx + e H" 1 (T,).
k—+o00
Here c1 is a positive constant depending only on the dimension n and @, is

the positive definite quadratic form on MZX"™ defined by

sym

Qn(A) = 3(n7—2 Z aj; + Tr(AA") + (Tr(A))Q, for Ae MZx" (3.4)

sym 7
=1

where Tr(A) denotes the trace of the matriz A;
(3) / \tr(ug) — tr(u)| A 1dH"™ =0,
o0

(4) if (0y); 00 is a fized sequence of C'-manifolds contained in 2, then (uy)
can be chosen such that also H" 1(3, NT;) =0, for i =1,...,400.

Proof. We follow the lines of |20, Proof of Theorem 1]. We first substitute the
function w with a similar function @ defined on a larger set Q. Then we discretize
4 on a suitable lattice and interpolate it with a continuous function. Finally the
approximating function will be obtained redefining the interpolating function on

some cubes of the lattice which intersect J;.

Let u € GSBD2(Q) N L2(Q,R"), let £ > 0, and let @ and  as in Lemma .
By Lemma we can find a basis eq,..., e, of R" such that, for every vector e in
the set

D:={e,i=1,....n, este;, 1 <i<j<n},

one has

H " {x € Jy : [4)(x) -e = 0}) = 0.

For each small discretization step h > 0 and for each y € [0,1)", we define the

discretized function of @
aY (&) = a(hy +€), for & € KZ" N (Q — hy).

We also define the continuous interpolation of ﬂ%

w () == Z A aZ(f)A(w> for z € Q,

where
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We note that w) € W°°(Q,R"). In view of the definition of the discrete energies

we introduce

JT = U [z,x — 7] for T € R",
z€Jy
lgh(é) = xyne(hy +&) for & € hZ"™ and e € D.

)

In what follows ¢ is intended to belong to hZ™.

We are now in a position to define the discrete energies

oY e) — Y e)?
B Y Y o EHER O ) o

B2
e€D  ¢eQ-hy
£€Q—hy—he

ly
BYMQ) =ahm Y TZ(}? , (3.6)

eeD éeQ hy
£eQ—hy—he

where (a(e))ecp are positive parameters, chosen in a way that we shall be able to
keep the constant 1 for the bulk term in estimate (2). Precisely, we define a(e) :=
n—1ife=e¢;, for i=1,...,n and a(e) :=1/4 for 1 <i < j <mn. Moreover ¢; is
a constant depending only on the dimension n which will be chosen later. We also

set € :=¢/le].

The first part of the proof is devoted to the choice of a suitable y € [0,1)", and
a suitable subsequence of h, not relabelled, such that the following properties hold:

(1) Mwy = dll2@rn) = 0,

h——+o00
depends on ¢1,

(2')  lim [Ely’h(f)) + BV / Qn(e())dz + cyH"(Jz), where ¢; < +00

(3'&)/ ! — | A LM 0,
[eJ9)

(3'b) EY"((8)nn) — 0. Here (9Q)n, = {z € R : d(z,09) < nh} and the
expression Eg’h((aQ)nh) means that (99), replaces ) in the definition 1 ;

(4') if (T;); 00 is a fixed sequence of C'!'-manifold contained in €2, then y and the
subsequence of h can be chosen such that also H"~((hy+hZ"+[0, h)e;)NI;) =
0,fori=1,...,4c0c and j=1,...,n

The first part of the proof (properties (1') and (2')) is analogous to that in [20]

Theorem 1]. We summarize it for completeness and for future convenience.



3.3 A first unified approximation of the energies with bad constants 65

Proof of (1'). By the very definition of wj , the Fubini Theorem, and a change

of variable we find

/[01 dy/’w;zi(m)—ﬁ(x)m:cg

—|—hy) N “N2
< [ A e ) i i
£enzrnQ
< > dx A(2)|i(z — hz) — a(z)|? dz
5ehzan/Q /whg )
iz — hz) — a(x)|? da
< /(_M)HA(z)dz /Q iz — hz) — i) 2 d

where to infer the last inequality we notice that the sets foé —[0,1)"™ are pairwise

disjoint as £ varies in hZ"™ N Q). The last term in the previous inequality converges
to 0 by the dominated convergence theorem. Then property (1') is satisfied for a
subsequence of h, not relabelled, and for y varying in a subset of [0,1)" with full

measure.

Proof of (2'). Let us estimate

h@
| B, (3.7
[0,1)"
for j = 1,2. For convenience we introduce IS := {s € R : z 4 sé € Q} and
If,={seR:z+sé€ Q,z + (s + hle|)é € Q). First a change of variable gives
/ EYMQ) dy =
[0,1)"
|((x + he) — a(x)) - e|?
- oY [ NG - (1 x e (@) da
eeD ¢ehzn Y TR0 1)"

= /5 /F |a (s + hle D—U () (1 — xgne(z + s€))ds. (3.8)

eED

As in the SBD-case [20], when @& € GSBD?(Q) N L*(Q,R™) the slice <(s) :=
(2 + sé) - é belongs to SBV2(I¢), for e € D and for H" !-a.e. z € II°. Noticing
that x jne(z 4 sé) = 0 is equivalent to Jae N[s, s + hle|] = 0, we deduce that (3.8)) is

less than or equal to

,ﬁ/e
z < .
s t dt / E Je - e|*dr, (3.9)

e)/edz/zea
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where we have used (1.15). Eventually the very definitions of a(e) and Q,, give

Y ale)le(@)e - ef* = Qule(a)),

ecD

/[ , EYMQ dy</Qn (3.10)
0,1

The same argument applied to EY h gives

/ EYM () dy—ch/ dz/ Xohe ‘Zh*“)d <ch7-[ Jae) < aaH" M (Ja)
[0’1)77. e P 6

eeD
(3.11)

so that

where ¢ 1= ¢ max),|—1 (D _.cp |V - €|/|e]) and we have used (1.13).
For technical reasons, which will be clear at the end of the proof, it is convenient

to prove properties (3'a)-(4") before completing the proof of (2').

Proof of (3'a). Using the very definition of w; and defining z := (z — §)/h —y

we obtain

/ dy/ (2)] A 1™\ (z) <

[0,1)n o0

< 3 / / A€ + hy) — a(x)| A 1dH " (x)
cenzmng 00" OON(E+hy+h(—1,1)7)

< > / cm" Ya )/ li(z — hz) —a(x)| Aldz
cchznnt ANN(E+h(—1,2)" 28 [0, 1)

< Z / d’H”_l(x)/ |i(z — hz) —a(z)| A 1dz
cenzing ! ONETR(=1,2)") (—2.2)n

< ¢ / () ][ ') — ()| A 1da,
o B(z,ch)

where ¢ < 400 depends only on the dimension n.
Now, for H" -a.e. z € OQ we obtain

][ |i(2") — a(z)| Aldx’ — 0,
B(z,ch)

by Theorem and property (4) of Lemma applied to w. Eventually the
dominated convergence theorem implies [y, |w}(2) — @(x)| A 1dH™ '(z) — 0 in
([0, 1)").

Hence property (3'a) holds for a subsequence of h, not relabelled, and y in a

subset of [0,1)" with full measure.
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Proof of (3'b). This step requires a computation analogous to that in (3.11]),
which leads to

| B @) dy < M (i (00, (3.12)
[0,1)"

Since u satisfies property (4) of Lemma we find that E‘g’h((@Q)nh) converges
to 0 in L'([0,1)") and then a subsequence of h and a set of full measure of [0,1)"
satisfy (3'b).

Proof of (4"). Let usfix i =1,...,400, j=1,...,n, and let us consider the set

r;n U {x e R" 1z = hy; + &}

y;€[0,1)
& ERL

Since Ugjehz{w € R" : z; = hy; + ¢} are disjoint sets as y; varies in [0,1) and
since the measure H"~!|I; is finite, we infer for H" !-a.e. y; € [0,1) the following
holds

H (| @in{z € R™:aj = hy; + &) = 0.
&ERZ

Taking the union as i =1,...,400 and j =1,...,n we obtain (4').

Continuation of the proof of (2'). Let us consider the subsequence of h given by

the proofs of (1'), (3'a), (3'b), and (4') and write inequalities (3.10) and (3.11) for

this subsequence. Now we are in the position to apply the Fatou Lemma, so that

/ lim inf [E%’“‘(Q)JFE;/”‘(Q)}dyg / Qnle()) da + crH™ 1 (Ja).
[0,1)" h—0 O

Eventually we can find y € [0,1)" and a further subsequence of h, not relabelled,
such that properties (1')—(4") hold. In what follows we shall omit y, writing, e.g.,

wy, in place of w}.

In this second part of the proof we redefine the function wj, within some cubes.

Precisely, we say that a hypercube
C=&4+hy+1[0,h)"
is “bad” if either J; crosses an edge of C
&+ hy + hn+ [0, he;], where i =1,...,n and n € {0,1}" with n; =0 (3.13)

(namely if le, n,(§ + hn) = X ne; (§ + hy + hn) = 1), or J; crosses a diagonal of a
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2-dimensional face
&+ hy+hn+[0,h(e; +e;)], where i < j and n € {0,1}" with n; =n; =0 (3.14)
(namely if lei-i-ej,h(f + hn) = X jh(eite;) (§+hy+hn)=1), or

&+ hy + hn + [hej, he; + h(e; — e;)], where i < j and n € {0,1}" with n; =n; =0

(3.15)
(namely if le, ¢, n(§ + hn + hej) = X jne;—ep (§ + hy + hn + hej) = 1). We define
vp, := 0 in every bad hypercube and vy := wp, otherwise.

Thanks to the previous definition the following properties hold:
") [lwn = vnllL2@rn) = 0,
(2") the constant ¢;(n) in can be chosen in a way that
| Qutetonyde + 11 (7)< BYA@) + B (@),

(3" / lwp, — tr(vy)| A1TdH™! — 0, where tr(vy,) is the trace from the interior of
0

The proof of (1') and of (2") work as in [20, 21] since the definition of v;, and of the

discrete energies are the same. Let us prove now (3'").

Proof of (3'""). First we note that

/ jwn, — tr(on)| A TdH" L <HI (00N | o))
Y C bad cube

and that for each cube we have
H L {0 N CY) < ch™ 7Y, (3.16)

where ¢ depends on 2. Now the contribution of a bad cube C to EF((0Q),s) is
given by

n—1 "
%Z > e n(€+ hn) +

i=1 ne{0,1}"
n;=0
hnil ler‘re-,h(g + h77) + lei—e-,h(g + h77 + hej)
+2n—2 Z Z ’ \/Q ’ ’ (317)
1<i<j<nne{0,1}"
ni=1;=0

where the coefficients take into account the fact that each edge is common to 27!

hypercubes and a diagonal of a 2-face is common to 2”2 hypercubes. Since at least
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one of the . in the sum is equal to 1, we find that the term in (3.17)) is greater
than or equal to g:—:i Hence by this and lb we find

S HTN{02N CY) < B (09 ).
C bad cube

for a suitable constant ¢ < 400 depending on 2. Thanks to property (3'b) we
eventually obtain (3'").

Finally properties (1')—(4"), (1")—(3""), and (1)—(5) of Lemma yield (1)—(4).

O

3.4 A unified approximation of the energies with the
right constants
With the next theorem we provide a further approximation of the given function

in a way that the unified estimate for the bulk and the surface energies has now the

right coefficients. The proof follows the line of |20, Theorem 2].

Theorem 3.4. Assume that Q has Lipschitz boundary. Let v € GSBD?*(Q) N
L*(Q,R"). Then there ezists a sequence (uy,) C SBV2(Q,R")N L?(Q,R") such that
Ju, 15 contained in the union Sy of a finite number of closed connected pieces of
Cl-hypersurfaces, up € WH(Q\ S, R"), and the following properties hold:

(D) Nug = ul[2@rn) — 0,

(2) limsup /Qn (uy)) do +H" Sk /Qn ))dx +H" (T,

k—4o00

) / uf —uF|ALdH"™ =0,
Ju

(4) H" YTy \ Ju,) — 0, where Qy, is defined in .

Proof. Since J, is (H""!,n — 1)-rectifiable, we can find a sequence (T';) of C*-
hypersurfaces such that H"~(J, \ U;_; ocl;) = 0. We fix now ¢ > 0 and use a
Besicovitch recovering argument, as in [20), Theorem 2], to find a sequence of pairwise
disjoint closed balls B; C Q and an index jo such that

(a) for every j there exists i; for which I';; divides B; into two connected com-

ponents,

(b) H* H(J,NOB;) =0
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() # ' (L \ | B)) =0,

j=1
d) Y H"(JuNBy) <e,
J>jo

(e) H" M((JuALy,) N Bj) < ——H" 1 (J,NBy), for j=1,..., 5

1—-=¢
Applying Theorem in both of connected components of B; \ I';;, we find a
sequence of functions ufg defined L"-a.e. on B; for which property (1) of Theorem
holds in Bj, property (3) holds in dB; and in I';;, property (4) holds for the

sequence (I';) introduced above, and

lim Sup/ Qule(u]))dz + H'' (T, N By) / Qule(w))dz +H"(Ju N B;)

k—4o00

e H" YJ.NBj), (3.18)

for a suitable universal constant ¢ < +o0o. Defined

Jo

Ay —{$€Rn dlSt(iL’ Q\U ><t}

7=1

we observe that

’H"’I(Juﬂﬂ At) Hr 1( u\U ><€ and  lim On(e(u))dz = 0,

t—0 J0
t>0 Ay ﬂU 1 Bj

therefore we can choose ¢ > 0 such that

/  Qule(w)dz <& and HU(J, N A <e. (3.19)
A

Let (ul) be the sequence obtained applying Theorem in A; N Q. Then using

(3.19) we find

lim sup Qnle(ud))dz +H" H(Tp) < Qn(e(u))dx + ce. (3.20)
k—+o0 JAnQ ¥ AN

Now we construct a suitable partition of unity to glue together the functions u{c
For j =0,...,jo we find a compact set K, with EcﬂBj CC K, CC Bj, such that

H (B \ K;) NTy,) < ]30 (3.21)

Let p; € C*(Bj) for j =1,...,jo such that ¢; =1 in K; and 0 < ¢ < 1. Let
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also g € C°(A;) be such that ¢o:=1—¢; in Bj and ¢g:=1 in '\ Ugozl B;.

We finally define
jo
ug = Z iUy
j=0

Then property (1) is satisfied by construction. As for property (2), inequalities

(19, E19). and (20) vield

lim sup /Q Qn(e(ug))dx + /Hn_l(Tuk) < /QQn(e(u))dl‘ + Hn_l(ju) + cg,

k—+4o0

where ¢ < 400 is a universal constant.
Let us prove property (3). Using (c), (d), and (e) we find

/ luf —uF|ALdH" < luf —uF| A TdH™™ ! + ce
J/IL

/Jumujo_ 1(BjNTy)

IN

Jo
Z/ luf — | ATdH" ™ + ce. (3.22)
‘=1 /B0y,

The very definition of wy implies now that (3.22) is less than or equal to

Jjo Jo

S ald At
B

j=1 1=0 Y BiNl's;
Jo

= Z(/ goo\ugi—uﬂ/\ld?-[n*l

j=1 7 Binly

i+
+/ ojluy, —ui]/\ldfi-["fl) +ce
Bjﬂl‘ij

IN

Jo

4 .
Z/ |, —uF A TdH + ce,
‘51 /BNy,

where ¢ < +oo and the last two inequalities follow from the assumptions on ¢; and

from (3.21f). By the definition of ui, passing to the limit as k& — +oo we find

lim sup/ |uf —uF| A TdH ! < ce.
k—4o00 w
Eventually a diagonalization argument conclude the proof of properties (2) and (3).

Now property (4) easily follows from property (3). Indeed, the measure H"~1|.J,
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is absolutely continuous with respect to the measure defined by

v(B) := /BN |[u]| A 1dH™ 1,

for every Borel set B C 2. Moreover
/ [[u]| A1dH™™' =0 (3.23)
Ju\r]uk

holds true by property (3); this yields property (4) and concludes the proof. O

We are now in a position to prove the Density Theorem The proof follows
the lines of |20, Theorem 3|.

Proof of the Density Theorem [3.1l Let us consider the sequence (uy) given by The-
orem [3.4] Using the compactness result for GSBD [25, Theorem 11.3] we infer that

a subsequence of (uy), not relabelled, satisfies

(up) — e(u) weakly in L*(Q,Mzx"), (3.24)
/Q Quew)dz < liminf /Q On(e(up))dz, (3.25)
H () < liminfy oo H 7 (Ju,)- (3.26)

From property (2) of Theorem (3.4 and from (3.25)) and (3.26)) we deduce

/ Qn(e(u))dx = klim Qn(e(ug))dx, (3.27)
QO —+00 JO
H () = limp g oo ' H( Ty )- (3.28)

Now (3.24)) and (3.27) yield property (2) of the thesis. Property (3) follows from
property (4) of Theorem [3.4and from (3.28)). To obtain property (4) it is sufficient to

use property (3) of Theorem [3.4]and the already proved property (3) of the thesis. [



Chapter 4

Asymptotic behaviour of certain

damage model: the general case

4.1 Overview of the chapter

In this Chapter we deal with two applications of the density result for GSBD
presented in Chapter [3] Precisely, we extend some results presented in the asymp-
totic study of Chapter [2 to the vector-valued case, in the framework of Linearized
Elasticity.

We consider damage energies of Ambrosio-Tortorelli type , depending on two
small parameters 7, and € (we assume §; = £ using the notation of Chapter [2)).
We first analyze the asymptotic behaviour of the models under the regime 7 /e, — 0,
as mg,er — 0 (Section [£.2). The limit energy (see .2)), rigorously obtained via
I'-convergence, involves a functional used in some brittle fracture models. This
functional is finite when valued on functions u running in the space GSBD?*(Q),
i.e., on special generalised fields with bounded deformation such that the symmetric
gradient e(u) is square integrable and the jump set J,, has finite (n — 1)-Hausdorff
measure in R™. This represents the vector counterpart of the I'-convergence result
in GSBV () proved by Ambrosio and Tortorelli in [9, 10].

The second regime we consider corresponds to n; = €, with g — 0 (Section
[£.3). The limit energy now includes a further surface term depending linearly
on the amplitude of the jump of u. The field w is therefore required to be slightly
more regular: it belongs to the subspace SBD?(f) of special fields with bounded
deformation with e(u) square integrable and J, having finite (n — 1)-Hausdorff

measure in R™.

The Chapter is organised as follows: in Section we focus on the extension
to the vector-valued case of the classic Ambrosio-Tortorelli result (see Theorem

73
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of Chapter 2 regime corresponding to ny/e;, — 0, d; = ). The I'-convergence
result (Theorem is proved as usual through a lower estimate, based on a slic-
ing argument (Theorem , and an upper estimate, for which the contribution of
the Density Theorem turns out to be crucial (Theorem [4.4). The proof of the
compactness (Proposition and the convergence of minimizers (Corollary
complete the result and the section.

Section studies the vector-valued counterpart, under the regime n = 0 =
€k, of Theorem described in Chapter 2] The main result of the section is the
convergence Theorem The liminf inequality (Theorem is now performed
through more global arguments with respect to Theorem of the previous section.
The more delicate limsup inequality is finally discussed in Remark and is proved
under suitable hypotheses in Theorem

The results stated in Section {4.2| will be appear in [38]. Those of Section are

contained in [31] and are obtained in collaboration with Matteo Focardi.

4.2 Application 1: approximation of brittle fracture en-

ergies

Throughout the chapter we shall assume n > 2. In this section we compute the
[-limit in L'(Q,R™)x L}(Q) of the sequence of functionals

/ (Q(v, e(u)) + wg(v) +yep Vol + fu - gl2)dw

Q k

Gr(u,v) :== if (u,v) € H'(Q,R™)xV,,,
+oo otherwise,

(4.1)

where

(a) ©Q C R™ is a bounded open set and ¢ > 0, n, > 0 are infinitesimal sequences

with 77k/5k — 0,

(b) 2: RxMg' — R is lower semicontinuous,

(c) for every s € R, the function 2(s,-) is a positive definite quadratic form on
MTLXTL

sym

(d) there exist two constants 0 < ¢1,co < 400, such that ¢1s]A]? < 2(s, A) <
c2s|A|?, for every s € R and A € M2X"

sym

e € ,1]) is strictly decreasing wit =0 and g € , ,
P e ([0 is strictly d i ith 4(1) = 0 and L?(Q,R™
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(f) a,p € R with @ > 0 and p > 1 (the extension to the case p = 400 immediately

follows),
(8) Vi = {U eWP(Q):mp <v <1 L%ae in Q}

We also define the functional ¥: L'(Q,R™) — [0, +o0] by

/Q Ndz + aH u)—i—/\u—g|2dm
Q

U(u) = if w € GSBD*(Q) N L2(Q,R),

400 otherwise,
(4.2)
where 2(e(u)) := 2(1,e(u)) and

1 1 1
a—2qq yp;/wqcls -+ -=1 (4.3)
p q
Then the following result holds.

Theorem 4.1. Assume (a)—(g) and assume that Q has Lipschitz boundary. Then
the T-limit of (Gy) in LY(Q,R™)xLY(Q) is given by

U(u) ifv=1L"-a.e in,
G(u,v) =
+o0o  otherwise.

The previous theorem, together with a compactness result for the functionals Gy,
(Proposition {4.5)), will give in turn the convergence of minima and minimizers in the
space L2(,R")xL}(Q).

Corollary 4.2. Assume (a)—(g) and assume that ) has Lipschitz boundary. For

every k, let (ug,vr) be a minimizer of the problem

: P(v
( )EH{I(léan)XV /Q (Q(v e(u)) + L +yeh NYolP + |u — g ) (4.4)
u,v kl Nk

Then v, — 1 in LY(Q) and a subsequence of (uy) converges in L?(,R™) to a

minimizer u of the following problem

min / D(e(u))dz 4+ aH " ( / lu — g|? dx (4.5)
u€GSBD(Q2

Moreover the minimum values in tend to the minimum value in .
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As usual, we shall prove Theorem [4.1] giving a lower estimate for the I'-lower limit
of G and an upper estimate for the I'-upper limit of G. To simplify the notation
we introduce the functionals Fj: LY(Q,R")x LY(Q) — [0, +oc] and ®: L1(Q,R") —
[0, +00] defined by

Fi(u,v) := /Q (9(%6(10) +

400 otherwise,

1/’;11) —i—’yaﬁ_l]Vv]p)dx if (u,v) € HY(Q,R")xV,,,
k

/ 2(e(uw))dx + aH" 1(J,) if ue GSBD?*(Q)N L' (Q,R"),
O(u) =< Ja

+00 otherwise.

For technical reasons which will be clear in the last part of the proof, we first study
the T'-lower limit of F in the space L'(Q,R")xL!(Q) (Theorem and the I'-
upper limit of (the restriction of) Fj in the space L?(Q,R™)xL!(Q) (Theorem [4.4).

Theorem 4.3. Assume (a)—(g). Let (u,v) € LY(Q,R")xLY(Q) and let (ug,vy) be

a sequence such that
(ug, vi) — (u,v) in LY(Q,R)xL1(Q), (4.6)

(Fi(ug,vg)) is bounded. (4.7

Then u € GSBD*(Q)N LY (Q,R™), v=1 L"-a.e. in Q, and

/Q(e(u))dw < liminf/ (v, e(u))dz, (4.8)
Q k—+oco J

n—1 . ¥ (vk) p—1 p
aH" (J) glklgig/ﬂ <7€k + v el Vg )dm. (4.9)

Proof. The convergence vy — 1 in L'(Q) is an immediate consequence of (4.6)
and (4.7). In the first part of the proof we argue by slicing following the lines of

Proposition

Proof of [1.8). We fix £ € R", £ # 0. We are going to prove that w € GSBD(Q)
and that satisfies

/ (e(u)€ - €)*dx < liminf / vg(e(up)é - €)%da. (4.10)
Q k—+oco Jq
To this aim we first extract a subsequence (u,,v,) of (ug,vy) such that

((ur), (0r)§) = (uf, 1) in LN(Q5)x L () for H" -ae. y € QF (4.11)
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and
lim vy (e(uy)€ - €)%dz = lim inf/ vg(e(ug)€ - €)*de. (4.12)
Q

r—+o00 [o k——+o0

Fixed 0 < k < 1, the Fubini Theorem, [5, Structure Theorem 4.5|, and (4.7)) imply

< [ (wtetwe- 24 (P b qetwup) Jar<e, a1y

/Qs [/Qs <(”’”)§ V() )2 + n(”’(j’“)g +yebt ’V(Ur)§|p>>dt] aH" () <

where ¢ < 400 is constant. Using the previous inequality and the Fatou Lemma,

for H" '-a.e. y € Qf we can find a subsequence (uy,, vy) of (u,,v,) such that

i ((vm)g V()| + K(w(g’")g + yefn—lw(vm)gw))dt -

m——+00 m

_ liminf/Qé ((vr)g)V((ur)g)rer(W+76§?_1|V(v,,)§yp)>dt (4.14)

r—-+00 r

and the last term is finite. Since (4.11)) and (4.14) hold, we can apply the scalar
result Proposition to ((um)g, (vm)g), so that ug € SBVQ(QS) and

V124t < Tim i ¢ €2
/Qg IV (u)|2dt _}ggirg/gg(vm)JV((um)y)\ dt, (4.15)
3
n—1 < Timi ¥ (vm)g p—1 EVIP) dt. )
aH" "} (J,¢) < liminf /Q : (P2 e V()P )t (416)

To check that w € GSBD(S)), we observe the following inequalities hold

[ (D680 \ 1) + 1) ) <

< [ (e [ VP ) i ) <
o o5 ¢ ;

vy

< / c[l +liminf/ <(vr)§ ‘V((u,,)g)‘z + K(M +75§—1|v(vr)|p>>dt},
Qs r=too Jof Er
where ¢ := diam(Q2) + 1 + a and we have used ([£.13)—(£.16)). The last term in the
previous estimate is bounded by and this gives u € GSBD((2).
Now we integrate on Q¢ both sides of (4.15); by (4.12)-(.14), (1.15), and the
Fubini Theorem we find as k — 0.

Now we observe that

k—+o00

/(e(u)f € —w)?dr < lim inf/ vp(e(u)é - € —w)dx (4.17)
Q Q
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follows from (4.10) for every w € L2(Q). Indeed, (4.17) trivially holds if w is

piecewise constant on a Lipschitz partition of {2; then a density argument proves

([4.17) for an arbitrary w € L?(1).
The next step is to deduce by (4.17) that

e(ug)v — e(u) weakly in L*(Q, M3, (4.18)

sym

To this aim, we first extract a subsequence (u;,v;) of (ug,vk) such that v; — 1
1
L"-a.e.in Q and e(y;)v — A weakly in L%Q,M?Jng), for a suitable function A in

L?(Q,M™x") . Now we apply 1} tow=A¢-&—tz, for t €R and z € L3(Q).

sym

After an easy computation we find

/((e(u) —A)¢- 5)2d9& + Zt/ z(e(u) — A)§ - &dx < lim inf/ vr((e(uy) — A)E - 5)2da:.
Q Q

Q =400

As t — +oo, the previous inequality leads to a contradiction unless [, z(e(u) —
A)¢ - &dx = 0 for every z € L?(Q) and every ¢ € R”, namely unless e(u) = A
L™-a.e. in . Therefore (4.18]) holds true.

We use now the Egorov Theorem to find, in correspondence of > 0, a Borel
set B, C Q such that £"(2\ B,) < ¢ and vy > 1 —p on B, for k large. An easy

computation then shows that

e(ur)xm, — e(u)xp, weakly in L2(Q, M), (4.19)

sym

We are now in a position to apply [19, Theorem 2.3.1], so that

2(e(u)) §liminf/ﬂ£(vk,e(uk)xgu)dx < /QQ(Uk,e(uk))dx.

B/L k—+oco

By the absolute continuity of the Lebesgue integral the left-hand side of the previous
inequality tends to [, 2(e(u))dz as p — 0, and this concludes the proof of (4.8).

Proof of (4.9). For this part we refer to Theorem We only point out that
arguing again by slicing, using (|1.13)) and the coarea formula, we find

oz/J5 vy - EldH™ L < 1]i1rninf/Q (ws;k) +76£71\V1}k|p)d$, (4.20)

—+00

namely the set JS replaces the set J, appearing in (2.74)). Nevertheless, inequality
1} still holds true with J, in place of J§ by 1 , being the set

{eesm 1 (I, JS) =0}
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dense in S"~!. Eventually, inequality (4.9) follows from this and from a classical

localization argument. O

Let us prove now the upper estimate. We denote by Fy the I'-limsup of Fj in
L2(Q,R") < LY(Q).

Theorem 4.4. Assume (a)-(g) and assume that Q has Lipschitz boundary. Then
Fy(u,1) < ®(u), (4.21)
for every u € GSBD?*(Q) N L*(Q,R").

Proof. The crucial point of this proof is the approximation of a function w in
GSBD?(Q) N L?(Q,R"™) with more regular functions, through the Density Theo-
rem Precisely, it provides a sequence ux € SBV?(£2,R") N L*°(£2,R™) such
that

up — win L*(Q,R")  and  ®(ug) — ®(u), (4.22)

so that if we prove that uy satisfies (4.21), then also u satisfies (4.21)), being FY

lower semicontinuous in L2(Q, R")x L' ().

The proof of for functions in SBV2(, R™) N L>(2, R") is now standard
(see, for instance, [20, 21]). Let us give a brief description of the construction of the
recovery sequence, following the approach of Theorem

Using a local reflection argument we reduce to prove the statement for {2 open
cube in R™. Now Theorem [[.13 and Remark allow us to assume in addition
that J, is contained in 2 and that u satisfies properties (1)-(3) of Theorem m
Moreover, it is not restrictive to consider only the case when .J,, is a (n—1)-simplex,
which we denote by S'.

Let us fix a sequence of constants oy such that ng/or — 0 and o /e, — 0. We
introduce now the sets Ay, A}, By, and By, defined precisely in Theorem [2.3} Here
we just recall that Ay U A} is a neighborhood of S such that

LY(Ag) < cop and L"(A}) < cop (4.23)
and the set By U By, is a layer which envelops Ay U A} and satisfies
L"(By) <ce, and L"(B}) < ce?, (4.24)

for a suitable constant ¢ < +o0.
Also the definition of the recovery sequence (ug,vy) is given in analogy with
Theorem In particular uy is set equal to u out of Ay U A} and it is a linear
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link in Ay in the direction of e,,. With this definition uy is a Lipschitz function in

'\ A} with constant ¢/, where ¢ < +00. To check this it is sufficient to apply

the arguments given in 1'1' to each components u; of ug. Thanks to the
Mc Shane Theorem we are now able to define uy, also in A} in a way that

|Dug| < ¢/o, L"-a.e. in Q. (4.25)

In addition, we define vy by 7 in Ay U A}, by 1 out of Ay UA) UB,UBy, and in
a way that, in terms of energy, the transition in By, U B, is optimal.

As for the computation of Fj(ug,vy), we only observe that

| 2lnetunds o (4.26)
AkUA;C

by (4.23)), (4.25), and by the convergence 7 /o, — 0. This concludes the proof, since
the computation for the other terms work as in Theorem [2.3] O

Let us prove the I'-convergence Theorem {.1{for (Gy).
Proof of Theorem [[.1 Let us introduce H: L'(Q,R")x L' () — [0, +00], defined
by

/ lu — g|?dz  if u e L*(Q,R"),
Q

H(u,v) := (4.27)

400 otherwise.

On the one hand we notice that
F'+H<{d, (4.28)

where F' G’ represent the I'-lower limits of Fj, and G}, in L'(,R?)xL'(Q)) and
we have used the fact that H is lower semicontinuous in L'(€2,R")x L*(Q). Then
if (u,v) € LY(Q,R")xL}(Q) satisfies G'(u,v) < +0o, one deduces by Theorem
that u belongs to GSBD?(Q) N L*(Q,R"), v =1 L"-a.e., and

U(u) = &(u) + H(u,1) < G'(u,1).

On the other hand if u € GSBD?(2) N L?*(2,R™), then the continuity of H in
L2(Q,R")x L' (Q) and Theorem [4.4] yield

G"(u,1) < G5(u,1) = Fy(u,1) + H(u,1) < ®(u) + H(u,1) = ¥(u), (4.29)

where G”,GY represent the T-upper limits of G} in L'(Q,R")xL'(Q) and in
L2(Q,R™")x L}(). The thesis follows from (4.28) and (4.29). O
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A key point for the proof of Corollary is the compactness of a minimizing
sequence. This is obtained in the following proposition, through a characterization
which relates compactness of sequences to compactness of slices (see [I, Theorem
6.6], [25, Theorem 10.7], and Section [1.6)).

Proposition 4.5. Let (up,vr) € LY(Q,R")xLY(Q) be such that (Gi(ug,vi)) is
bounded. Then v; — 1 in LY(QY) and a subsequence (uj) of (ux) converges in
LY (,R™) to a function v € L?(Q,R").

Proof. The proof follows the lines of [25, Theorem 11.1]. It is sufficient to prove the
statement for any open set which is relatively compact in 2. Furthermore we assume
that (2 is a finite union of open rectangles and we extend each function by zero out
of Q. Let M < 400 be such that Gy (ug,vr) < M.

Since (Fg(ug,vx)) is bounded, the sequence vy converges to 1 in L'(Q) and

L™-a.e. in Q, up to subsequences. We fix now k € N and ¢ € S*"!. For y € Qf we
consider the one-dimensional functional F Ll(Qg)xLl(Qg) — R defined by

[ Grvu + 22 s o) ar
L Y
Fyr(w, z) :== if (w,z) € HY(Q5) % Vyp,,

—+00 otherwise,

where V, = {Z € Wl’p(Qg) e < 2 <1Hae. in Qi} We also define for every
A>0

2EA AEA AEN
A= {y € 085 () € HYQ5), Fua((un)fs (u)§) <A f, B 1= 06\ AP,

A%A = {:c cQ:TI¢(x) € Ai)‘}, Bi’)‘ = {x €0 :TI¢(x) € BE’)‘},

being T1¢(z) the projection of  on the plane II¢. Since (Fy(ug,vy)) is bounded,
the Chebychev Inequality and the Fubini Theorem yield

LB < diam(Q)% (4.30)
Here and henceforth ¢ represents a finite constant; in particular ¢(d) will denote
its possible dependence on §. For p > 0 and ¢t € R, we introduce the truncation

function 7,(t) := —p Vt A p and we set

. A
Wi Tu(ug - €)  in AP,
0 in B;™.
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Let .
(1) ::/ pids for t € [0,1]
0

and let ¢ be a constant which uniformly bounds ¢(vg). For 6 > 0 we are able to

find \s and pg large enough to guarantee
~ A
&llug - € — w2 || pagey < 0 (4.31)

uniformly with respect to k. Indeed, let ps > 0 be such that s < ﬁsz for s > us
and let As be such that ,u[;E”(BIE’A‘;) < §/2, (this is possible by ) Therefore
we find

wee—ufide = [ jug-ufldos [ ju- €lda
/ﬂ e {Ju-€l>ps} o B {Jug<ps}

2 / luldz + ps £ (BE)
{uel>ns}

5 .5

For simplicity in what follows we write wy, in place of w

IN

IN

&As
ks -

In order to apply Proposition we set

U= (r)ur), V5= (¢(vp)wy),

and we show that for every k and for H" '-a.e. y € Qf we have

/R|(¢(vk)wk)§(t +h) = (d(on)wr)§(t)|dt < ws(h) for h € (0,1), (4.32)

for a suitable modulus of continuity ws independent on k, y, and £. To this aim we
check that for every k and for H" '-a.e. y € Qf the function (gb(vk)wk)g satisfies
all requirements of Lemma [I.11] uniformly with respect to k and y.

First note that for every k and for H" !-a.e. y € Q¢ the function ((;S(vk)wk)g
belongs to SBV?(R)NL>*(R), that HO((ka)g) < ¢, and that H(¢('U]€)wk)§HLoo(R) <
¢(d). Moreover the Young Inequality, the estimate ¢(t) < ct, and the Holder In-
equality yield

€k

/Q€ IV ((¢(or)wr)j)|dt < 6(5)/

7 Q

)8
(P oty (w5

Fe(diam(Q))3 ( /Q (on) ]vm)gfdt)é < ¢(d).
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We are now in a position to apply Lemma[l.11] so that holds with wgs(h) :=
¢(6)h. Through Proposition inequalities and imply the existence
of a subsequence (¢(vj)u;j) of (¢(vg)ug) and of a function @ € LY(Q,R™) such that
#(vj)u; — @ in L1 (Q,R™). The Fatou Lemma also gives @ € L*(Q,R™). Eventually
the thesis follows for u := @/¢(1). O

We conclude proving Corollary (4.2}

Proof of Corollary[{.Z Let us fix k and check that the functional Gy achieves its
infimum. If (uj,v;) is a minimizing sequence for Gy, the sequence (u;) belongs
to H'(Q,R"), is bounded in L%(Q,R"), and the sequence of symmetric gradients
e(uj) is bounded in LQ(Q,MQJJLL). By Korn’s inequality this implies that (u;) is
bounded in H!(Q,R"), so that there exist a subsequence of (u;), not relabelled,
and a function v € H'(Q,R") such that u; — u weakly in H'(Q,R").

Being (v;) bounded in W1P(Q) we also infer that there exists a further subse-

quence of (v;), not relabelled, and a function v € V;,, such that
v; — v weakly in W'P(Q) and L™-a.e. in Q.

By the Ioffe-Olech semicontinuity theorem (see, for instance, [19, Theorem 2.3.1.])

and the Fatou lemma we deduce that

/Q 2(v, e(u))dz < liminf /Q D(v;, e(u;))dz

j—+oo

/ lu — g|?dx < ljminf/ luj — g|*da (4.33)
Q =t Ja

hold, therefore (u,v) minimizes Gy.

Now a sequence (uy,vy) of minimizers of Gy is compact in L*(Q, R")x LY(Q)
by Proposition Let (u,1) be the limit point of a subsequence, not relabelled,
of (ug,v). By Theorem and by a general result of I'-convergence (see Section
, we infer that (u,1) is a minimizer for G’ and that the convergence of minimum

values holds.

To conclude the proof it remains to show that uy — w in L?(Q,R™). To this aim

it is sufficient to prove that

/Q luy, — g|*dz — /Q lu — g|*da. (4.34)

By the convergence of the minimum values Gp(ug,vi) — G(u,v), the following



84 4. Asymptotic behaviour of damage model: the general case

inequalities
®(u) < liminf Fj(ug,vr) and / lu — g|*dx < liminf/ luy, — g|?dx
k—+o0 Q k—+oco J

(holding true by Theorem and the lower semicontinuity of H) are actually equal-
ities. This gives (4.34) and concludes the proof. O

4.3 Application 2: approximation of cohesive fracture
energies
We conclude the chapter showing the second application of the density result

proved in Chapter [3] which generalizes Theorem [2.1]to the vector-valued case for the
regime given by 0 < a < 400 and 0 < 8 < 4o00.

4.3.1 The main results

Let © C R™ be a bounded open set, let 1 < p < 400, and let € > 0 be an
infinitesimal sequence.
Consider the sequence of functionals Fy: LY(Q, R")xL'(Q) — [0, +oc] defined

/ <£2(v, e(u)) + @ZJS(U) + 752_1|Vv|p>dx
Q k
Fie(u, v) = if (u,v) € HY(Q,R™)XVz, |
400 otherwise,
(4.35)
where 0 < v < 400 and
Y € C°([0,1]) is strictly decreasing with (1) = 0, (4.36)
Vo, ={ve WP(Q) e, <v <1 L"%ae. in Q}. (4.37)

Moreover, the function 2 : (0,1]xMZx" — R satisfies

sym

(H1) 2 is lower semicontinuous and for every A € MZ7h the function 2(-,A) is

continuous as s 1 1;
(H2) for every s € (0, 1], the function 2(s,-) is a positive definite quadratic form;

(H3) for every s € (0,1] and A € M7Zx"  the following inequalities hold

sym

c18|A]? < 2(s,A) < cos|A? (4.38)
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for suitable positive constants ¢; and co;

(H4) the quadratic forms s™12(s,-) converge uniformly on compact sets of M7

to some function 2y as s | 07.

Note that by items (H3) and (H4) above 2y is a quadratic form satisfying

alA? < 20(A) < co]A?  for every A € MRX"

sym*

. 1/2 .
In particular, QO/ is a norm on MZ7P, and

c3's Do(A) < 2(s,A) < c352p(A)  for all (s,A) € (0,1] x MX" (4.39)

sym»

with ¢3 := ¢9 cfl >1.

Remark 4.6. Let us stress that thanks to (H2) and (H3), assumption (H4) is rather
natural as it is satisfied by families eglg(ak, ), €k 4 07, up to the extraction of
subsequences.

For instance, given 2y and 2; two coercive quadratic forms on MZ7h, the

family 2(s,A) = s(s21(A)+(1—5)Z2o(A)) satisfies all the assumptions (H1)-(H4)

above.

The asymptotic behaviour of the family (Fj) is described in terms of the func-
tional ®: L1(Q,R™) — [0, 4+oc] given by

/Q D1(e(w)dz + aH™  (J) +b [ 2Y(ju] © v)dH" !

Ju
P (u) if u e SBD%(Q),
~+00 otherwise,
(4.40)
where we have set 21(A) := 2(1,A) for all A € My ", and

! 11
a:= qu/qu)l/p/ YY(s)ds, b:=2¢"%(0), with -~ + - =1. (4.41)

0 p g

The I'-limit of F}, is identified in suitable subspaces of L'(, R™)xL!(2) (cp. with
Theorem [4.7| and Remark below).

Theorem 4.7. Assume the conditions in (4.35))-(4.41) to be satisfied, and let
be a bounded open set with Lipschitz boundary. The T'-limit of (F}) in the strong
LY(Q,R")x LY(Q) topology is given on the subspace L>=(Q,R™)xL'(2) by

Flu,v) = O(u) ifv=1L"-ae. inQ, (4.42)

+o00  otherwise.
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As usual, we shall prove the previous result by showing separately a lower bound

inequality and an upper bound inequality. To this aim we define

F' :=T-liminf F}, and F" :=T-limsup F}. (4.43)

k——+o0 k—+o0

Then, Theorem (.7 follows from the ensuing two statements, in which on one hand
we establish the lower bound inequality in full generality, and on the other hand we
prove the upper bound inequality on L*° (and SBV') due to a difficulty probably of
technical nature (see Remark [£.10)).

Theorem 4.8. Assume (4.35)-(.41). Let (u,v) € L*(Q,R")xLY(Q) be such that
F'(u,v) is finite. Then, v=1 L"-a.e. in Q and

®(u) < F'(u,1). (4.44)

Theorem 4.9. Assume (4.35))-(4.41) and assume that Q is a bounded open set with
Lipschitz boundary. Then, for every u € L>=(Q,R™) we have

F'(u,1) < ®(u). (4.45)

4.3.2 Proof of the main results

We start off by establishing the lower bound estimate. We need to introduce
further notation: we consider the strictly increasing map ¢: [0, 1] — [0, +00) defined
by

o(t) := /Otwl/q(s) ds for every t € [0, 1]. (4.46)

Proof of Theorem[{.8 By the definition of I'-liminf it is enough to prove that if
(u,v) belongs to L*(Q,R")xLY(Q) and if (ug,vs) € L' (2, R")x L}(Q) is a sequence
such that

(u, v) — (u,v) in L (Q,R")x LY (Q), (4.47)

sup F,(ug, vi) < L < 400, (4.48)
k
then u € SBD?(Q), v =1 L"-a.e. in €, and the ensuing estimates hold true with

Ae(0,1)

lim inf Q(vk,e(uk))dmZ/Ql(e(u))d:ﬁ, (4.49)
k—+o00 Q\Qé Q

lim inf /n\szz (wgik) + vaﬁ_llvmp> dz > 2q"(yp) P (H(1) — N H" (),
(4.50)
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and with fixed § > 0 there is A\s > 0 such that for all A € (0, \s)

o ¥(r) / n—
lim inf /Q2 (Q(vk,e(uk)) + Tk)dx > 2p1/2()) /Ju Q(l) 2([u] ® v)dH" T + 0(6),

k—4o0 k

(4.51)
where we have set Qp = {v;, < A}. Given (£.49)-(4.51)) for granted, we conclude
by letting first A | 0 and then ¢ | 0.

In order to simplify the notation, we set

Iy = 2(vg, e(uy)) dr,
o\

I? = Plow) + vl VP ) da,
oo \ &k F

I = /QA (Q(vk,e(uk)) + M) dx.

k Ek

Clearly, if (ug,vy) satisfies (£.47) and (£.48), then vy — v =1 in L'(Q). The fact
that u belongs to SBD?() and inequalities (4.49) and (4.50) can be obtained as
a by-product of a slicing argument, following the lines of Theorem {.3] Here, we

pursue a global approach, arguing as in [30, Lemma 3.2.1] (see also [29]).

We first notice that (uy) is pre-compact in the weak™ topology of BD(2). To
verify this it is sufficient to prove that

sup/ le(ug)|dx < 4o0. (4.52)
k JQ

Now, on one hand by (4.38) and the Jensen inequality we have

I, = (v, e(ug))dx > ¢ )\/ le(ug)|“dx > </ ]e(u@\dx) ,
o\ 2\2) L)\ Joro
(4.53)

and on the other hand by the Cauchy-Schwartz inequality we find
A

@:/(gm@m»+wWUWZQ@/ymm&m+W)ﬁm@
O] €k % Ek

> 2(er (V)2 / e(ug)|dz. (4.54)

A
Qk

Estimates (4.53), (4.54) together with (4.48)) eventually imply

/Q le(up)ldz < ¢ ()2 + I3 < e,
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for some positive constant ¢ = ¢(Q, A\, 4, L, ¢1). In conclusion, (4.52)) follows.
From (4.52)), as u; converges to u in L'(£2,R"), we deduce that u € BD(Q)
and that actually up — u weakly*-BD(Q).

Proof of estimate (£.49) and that uw € SBD?(Q2). We construct a function @ in
a way that it is null near the jump set J, of v and coincides with uy elsewhere.
Recalling the very definition of ¢ in (#.46) we have that ¢(vy) € WHP(Q), and

moreover, Young inequality and the BV Coarea Formula yield
B2 g [ i) Voo
oA\

#(1)
= [ V@@l =t [ per (0(u) > 1), Q).
o\ o(N)

(4.55)

Fix X' € (A, 1), the Mean Value theorem ensures for every k € N the existence of
ti € (p(A), (X)) such that

#(1)
/(b o Per (6000 > 0120 > (6() = S0))Per ({9(u) > t}. D). (456)

Set A := ¢~ '(tx), then note that Q\Qz’“ = {¢(vk) > ti} is a set of finite perimeter
satisfying by the latter inequality and (4.48)

Per (Q\ %, Q) < ¢ (4.57)

for some ¢ = c¢(\, N, ¢, L). Let now ay : ap Uk, then the Chain Rule Formula

= Xo\?
in BV [7, Theorem 3.96] yields that u € SBV]ZQ,R") with

Duy = ae Vup L7 Q 4 g ®l/8*9,\k7—[”_1L8*sz,
k

Xoa)

In particular, H" *(Ja, \8*921“) =0, then by (4.53)), (4.55) and (4.57) the functions
uy, satisfy

[ te@Pds 2 (3,) < (158)

for some ¢ = c¢(\, N, ¢, L,c1) < 00, and in addition
[t — ullprrey < llur — ullpyorey + /QA |uldz. (4.59)
k

As v — 1 in LY(Q) we find £%(Q) | 0, thus (£59) implies that i — u in
LY(Q,R™). Since we have established that u € BD(f), it is easy to deduce from the
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SBD Compactness Theorem [14, Theorem 1.1] (see also [20, Lemma 5.1]) and from
inequality (4.58)) that actually u € SBD?(Q), with

e(ig) — e(u) weakly in L?(Q, M), (4.60)
and
HY(T,) < lim inf H"~ Y(Jay)- (4.61)
k—oo

Eventually, by taking into account that

lim inf 2(vg, e(ug dm-hmlnf/ 2(vg, e(ur))
k—+o00 Q\Qi k—+4o0

{@.49) follows from (4.60), from the convergence vy — 1 in LY(Q), and from [19]

Theorem 2.3.1].

Proof of estimate (4.50). Regrettably, inequality is not a straightforward
consequence of the previous arguments. Indeed, (4.55)), (4.56)), (4.61) and H"~1(Jaz, \
G*QQ’“) = 0 lead to an estimate differing from by a multiplicative factor 2 on
the left-hand side. Therefore, we need a more accurate argument. To this aim, we
note that by and the Fatou Lemma we have

o(1)
liminf I? > ql/q('yp)l/p/ lim inf Per ({¢(vy) > t}, Q) dt
k—ro0 d(N\) k—ro0

then in order to conclude (4.50)) it suffices to prove that
lim inf Per ({¢(vx) > £}, ) > 2H™(J,)  for all t € (o(N), p(1)). (4.62)

This follows via a slicing argument as established in [30, Lemma 3.2.1]. We report
in what follows the proof of estimate for the sake of completeness.

Fixed t € (¢(A), ¢(1)) for which the right-hand side of is finite, we define
7:=¢ () and UJ :=Q\ QF. For every open subset A C  and vector £ € S"71,

we claim that

vp NA) 22 HO(Jug NA)dH" L, (4.63)

liminf #" 1 (J.
k me(A)

for H" 1 a.e. y € me(A) (recall the notations and the results in Theorem . Given

(4.63) for granted, the Coarea Formula for rectifiable sets and the Fatou lemma yield

the following lower semicontinuity estimate

hmlaner {op(vg) > o(1)}, A) =
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= liminf H" " (Jy,, N A) > 2/ HO(J e NA)dH ! = 2/ vy - EldH™ L
k & e (A) v JENA

(4.64)

Since H" 1 (J, \ JS) =0 for H" l-ae. £ €S™! (see (1.7)), we infer from (4.64)

lim inf Per ({6(ux) > 0(r)}, 4) > 2 / V- €E]dHm Y, (4.65)

JuNA
In conclusion, inequality (4.62)) follows from (4.65)) by passing to the supremum on
a sequence (&) dense in "1 and applying [[7, Lemma 2.35], since the function

A— limkinf Per ({o(vk) > o(7)}, A)

is superadditive on disjoint open subsets of €.

Let us finally prove (4.63). Note that there exists a subsequence (u,,v,) of
(ug, vx) such that

lim inf H"‘l(JXUZ NA), (4.66)

NA) =limH" " (J

Xuz
((ur); (vr)§> = (ug 1) in LY(Q5)x LM(Q5), for H" L-ae. y € me(Q), (4.67)

and with fixed n > 0, for H" '-a.e. y € () we find

vr)5
lim inf (n /A (@ [v()] + M +
yebt ‘v((vr)g)‘p> dt + HO(JX(U;>€ N A)) < 400, (4.68)

by (4.38)), (4.48), our choice of 7, and the Fatou lemma.

Fix y € m¢(2) be satisfying (4.67), , and assume also that H° (Ju§ N A)
is strictly positive. Moreover, up to extracting a further subsequence (depending on

y and not relabeled for convenience), we may suppose that the lower limit in (4.68])

is actually a limit.

Let {t1,...,t;} be an arbitrary subset of J ¢ N A, and let (I;)1<i<; be a family
¢ <i<
of pairwise disjoint open intervals such that t; € I;, I; CC Ag. Then, for every
1 < <1, we claim that

s; := lim sup illrlf(vr)g =0.
T i
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Indeed, if s;, was strictly positive for some h € {1,...,1}, then

inf(vj)f/ >

Sh
I, 2

for a suitable subsequence (v;) of (v,), and thus ({.68)) would give

J,

for some constant c¢. Hence, Rellich-Kondrakov’s theorem and (4.67) would imply
the slice ug to be in W1I(I;,R"), which is a contradiction since by assumption
HO (J,s 1) > 0. So let ti € I; be such that

Yy

V((uj)g)fdt <e

li;n(’ur)g(ti) =0,
and «;, B; € I;, with a; < tL < f3;, be such that
lirm(vr)g (o) = lign(v,n)g (6;) = 1.

Then, there follows
NI > 2.

lim inf H°(J,,

D5

Hence, the subadditivity of the inferior limit and the arbitrariness of [ yield

NA)>2H(J ¢ N A).

WD ug

lim inf H°(.J,,
Therefore, we obtain

v
imin ([ (005wt + L) g V()] a+

Y 87‘
0 > 0
+H (JX(Umg N A)) > 2H (Jug NA),
which integrated on m¢(A) gives

limkinf Hn_l(JXU;’ nA)> 2/ HO(Ju’E N A)d?-[”_l —ne
' me(A) Y

for some positive constant ¢ = ¢(L). As n | 0 we find (4.63)).

Proof of estimate (4.51). We employ the blow-up technique introduced by Fon-
seca and Miiller in [32]. First, we observe that by the Cauchy-Schwartz inequality
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we have

2

Vg €k )

<Q(vk, S(Uk))>1/2 dr,
Uk
(4.69)
thus in order to get it suffices to show that for all § > 0 there is As > 0 such
that for A € (0, \s) we have

1/2
lim inf / 20k, elun) )77 22 ([u) @ v)dH™ ' + 0(5).  (4.70)
ko Jay Uk Ju

Actually the uniform convergence on compact sets of Mg " assumed in (H4) above

implies that, with fixed § > 0, for some As > 0 and all X € (0, \s) we have

/% (W)/ o= [ 2l )Y oy

le(ur)
elu
> / (23/2( (1) )- 5) le(uy)|dz > / 25 (e(uy))da — 5 | Eug|(9),
o) le(ux)| )
where we have set 2,(A) := s 12(s, A). Thus, inequality (4.70)) is reduced to prove
lim inf 22 (e(uwe))dz > [ 2V ([u] @ v)an T, (4.71)
Q) Ju

being § > 0 arbitrary and (|Eug|(£2)) being bounded as shown in (4.52]).

Let (u,) be a subsequence of (uy) such that

limkinf 38/2(6(1%))6[1’ = lim Qé/Q(e(ur))d:c.

(o7 "oJap

In order to prove (4.71)), for every Borel set A C Q we introduce

pe(d)i= [ 2 elw))a.

0,(4) = [ @ (etur)aa,

and
CT'(A) = Fr(um Ur, A)7

where F.(-,-, A) denotes the functional defined in (4.35)) with the set of integration
Q replaced by A.

It is evident that the former set functions are finite Borel measures, with (u,),
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(0,) and (¢,) actually equi-bounded in mass thanks to inequalities (4.48) and (4.52]).
Hence, up to subsequences not relabelled for convenience, we may suppose that

fr — i, 6. —0, and ( — (¢ weakly® in M;(Q), (4.72)

for some p, 6 and ¢ € M; (2), respectively.

Being
lim 1 (©2) > (),

to infer (4.71)) we need only to show that

d _ .
ﬁ > 38/2([14 ® Vu) Hn l—a.e. m Ju, (473)
where cmniliél] is the Radon-Nikodym derivative of p with respect to H" 1L J,.

We shall prove the latter inequality for the subset of points xg in J, for which
the Radon-Nikodym derivatives

du de d¢
dH 1L J, (w0), AR 1, (wo), m(l’o)a (4.74)
exist finite,
d2y/* (42w | Eul
[Eu] 1/2
Gt @) = 20 ([ © v (20) (4.75)
and -
O Cf”(xo’p)) =1, (4.76)
p—0 pn
where v = 1,(xg), @, is any unitary cube centred in the origin with one face

orthogonal to v, and Q,(zg, p) := xo+ p Q.. Formula (4.76|) is a consequence of the
(H™ 1, n—1) rectifiability of J, (see [T, Theorem 2.83]). Note that all the conditions

above define a set of full measure in J, .

By selecting one of such points zg € J,, we get

dp o MQu(@o,p) . e (Qu(To, p))
dHP1 A (xO) - /1)11)1[1] pn—l - }.}g} Tl}g_noo pnfl
p—0
= lim lm (60-(Qu(w0,0)) = 0, (Qula0, )\ ), (477)
p—0

where
2

I::{pE(O,\/ﬁ

diSt(xo,aQ)) : M(aQu(x(va)) = 9(8@,,(-%0,,0)) -
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= ((9Qu(0,p)) = 0.

Note that I is a subset of radii of full measure in (0, %dist(xo, 092)), and that the
second equality in (4.77) easily follows from the convergence u, — p weakly* in
My (Q).

Further, we claim that

pel r—+o0 pn1
p—0

= 0. (4.78)

Indeed, the Holder inequality, the very definition of Fj in (.35, and (4.39)) imply

(Qu (o, Q) 1
0, (Q (xg_q)\ ) - / 38/2(e(ur))dx
P P Qu (z0,p)\

/2
< 3 / 2,1 (e(ur))da
P Voo

(CSL"(QV(QJO,P)\Qﬁ))l/% 1 / Dy, (2 (e(u ))d:c>1/2
prt P Ju@omar

. (c3p)1/2)\1/2(FT(UT>U;’,”Q1V($07P)))1/2 — (e3p) /222 (W)l/l

<

Finally, equality (4.78]) is a consequence of the latter estimate and condition (4.74)).

By taking (4.78]) into account, (4.77) rewrites as

du do

S e 1.
dHn—lLJu(‘TO) dH”—lLJu(%) (4.79)

The convergence of the symmetrized distributional derivatives, i.e.

Eu, — Eu  weakly™ in M, (Q,MZ2x")

sym

is a result of (4.47) and (4.52)), in turn implying that

oy ( a2t )diEu (4.80)

0(Qu(xo,p)) > / d|Eu)

Qv (z0,p)

by the convexity of Qé/ ? and the stated convergence. Thus, by (4.75) and (4.80) we
get

do L. 1 1/2 dEu 1/2

a1, o) 2 limiat e /Q 2 () 1Bl = 201 © ) o).
u v(Zo0,p

4.81)

(
Eventually, (4.79) and (4.81]) conclude the proof of (4.73)), and then of (4.71). O
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The proof of the I'-limsup inequality in Theorem takes advantage of the
Density Theorems for GSBD(R?) and for SBV(Q,R") |23, Theorem 3.1] (see

Theorem |1.13]).

Remark 4.10. The I'-limsup inequality in Theorem is stated only for fields in
the subspace L>®(Q,R")xL'(Q) of L'(Q,R")xL'(Q) since Theorem does not

guarantee the convergence
/ ug] — [u]] dH™ 0 (4.82)
Ju,Uu

for every u in SBD?(Q) N L?(,R™). If was true, then Theorem com-
bined with Theorem would allow us to prove the I'-lim sup inequality for those
fields » that are piecewise smooth. In such a case, the construction of recovery
sequences follows quite classical lines, and by density the I'-limsup inequality in
L?(Q,R")x L*(Q) would be completely proved.

Nevertheless, this argument applies to fields in L*°(£2,R™) since the approxi-
mating sequence (uy) in Theorem [3.1]is constructed in a way that [ug||ze@rr) <
[ull oo (,rn) -

The same conclusion of Theorem [4.9|can be drawn for all fields in SBV?2(Q,R").
Indeed, the functional in is continuous on sequences of truncations, therefore
the conclusion follows by Theorem and a diagonal argument. In this respect,
take also into account the equality GSBV?2(Q,R") N BD(Q)) = SBV?2(Q,R").

Finally let us prove the upper bound estimate.

Proof of Theorem [[.9 Let u € SBD*(Q) N L% (0, R"), then by the lower semicon-
tinuity of F” and Theorem it is not restrictive to assume that w belongs to
SBV2NL>®(Q,R"). By a local reflection argument we can also assume that Q C R"
is a open cube and again by the lower semicontinuity of F”, by Theorem and
by Remark we can reduce ourselves to prove for a piecewise smooth
SBV -function u with J, C Q. Finally, up to a truncation argument, condition
u € L>®(Q,R"™) is preserved.

For the construction of the recovery sequence we shall follow the lines of Theorem
[2.3] For convenience of the reader we recall the main steps.

Since J, is a finite union of closed pairwise disjoint (n — 1)-simplexes well-
contained in Q, we reduce to study the case when S := J, is a (n — 1)-simplex.
In order to simplify the computation we also assume S C {z,, = 0}, we denote
the generic point 2 € R® by = = (Z,7,) € R" ! x R, and we orient .J, so that
v, =(0,1).
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Let
Qi::{xeﬂzixn>0}

and let L be the maximum between the Lipschitz constants of v in Q7 and Q~.

Let also

ou(@) = w(i)’“)w@é“aum 0)] @ en), (4.83)

for every (Z,z,) € Q. Being vt and u~ Lipschitz functions, we deduce that oy is

in turn a Lipschitz function and that
[Vor(T)| < cep, (4.84)

for L™-a.e. (T,x,) € 2 and for a suitable constant ¢ = ¢(¢, L, Zp) > 0. Moreover,
or = 0 on 95, where 95 is the boundary of S in the relative topology of R"~1x{0}.

We set for p € (0,1)

1— _
fo = v =ph alp)i= ([0 0ds) L and i) = (£0)%(0)

and we introduce the infinitesimal sequence py := h~!(e) having the property that

f(pr) _
€k 9(p)

—0 ask7Too. (4.85)

Denote by wy the only solution of the following Cauchy problem in the interval
[0,Tk),
1/p
W — <i> 5*177!)1/1” W
c=\5,) o (w)
wk(O) = &k,

(4.86)

where T, € (0,+00] is given by

p\/P /1 -1/
T, = (— € Y~ P(s)ds.
= () e 0T
Furthermore, define puy € (0,T})
1/ 1-pk
p = (%) pak/ Y~YP(s) ds, (4.87)
€k

thus py is infinitesimal by (4.85)).

We are now in a position to introduce the sets

Ay = {x eR™: (7,0) €S, |z,| < Uk(f)}a
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By = {3: eER": (7,0) €S, 0< |z,] — op(T) < uk},
Cri={w €R": (7,0) ¢ 5, d(z,08) < i},

where d(x,0S) is the distance of the point = from the set 95.

Consider the sequence (ug,vy) defined by

Ty + Uk(f) _ _ _ _ _ _
T@(U(% ok(T)) — u(®, —ox(T))) + u(T, —ok(T))
(T, Tn) = if v € Ay,
and
€k ifzx e Ak,
wk(|xn| — O’k(f)) if x € By,
v (@) =

wi(d(x,08) — ox(z)) if x € Ck,

1— pr otherwise.

Then, (ug,vx) — (u,1) in LY(Q,R?)x L'(Q), moreover we shall show that it provides
a recovery sequence following the arguments used in (2.87)—(2.94). First note that,
for every component u}, of uj for L™-a.e. (T,x,) € A we have that

|Djui (T, @n)| <

UH(T, 0% (T)) — ui(T, —op(T)) ’
20%(7)

+|Dju'(Z, —ok(T)) — D' (T, —ox(T)) Djor(T)

+|Dju'(F, ok (T)) + Dot (T, 01 (T)) Djor(T)

—Dju' (T, —ok(T)) + Dypu' (T, —ok(Z)) Dok (T)

| CAEAV) 4L) +3L<c,  (4.88)

<D (*g,

where j=1,...,n—1, and

(T, 03(T)) — vl (T, —01(T)) ’

QUR(T)
| @ ox@) — v (@,0) W (@,0)—u(7,0)  u(7,0) - u'(F,—0k(7))
207, (T) 207, (f) ' 20 (T)
<p+ @O ey g

B QUk(T) o 8]6,
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in the previous estimates ¢ = ¢(L) and we have used (4.84). In particular, we deduce

that uy is a Lipschitz function.

For what the computation of the energy Fj(ug,vy) is concerned we shall mainly
focus on the term

2(vg, e(ug))dx.
Ag

The others are estimated in an elementary way following Theorem More pre-

cisely, we have

lim sup Q(vg, e(ug))dr = limsup Q(vk, e(u))dx
k Q\ Ay k ON\Ag
< / 21(e(u))dx (4.90)
Q

by dominated convergence thanks to assumptions (H1) and (H3); then as a result of

a straightforward calculation we infer

lim sup (ve) dr <
k A, €k
< lim L E0) / D2 ey anrt =2 [ 9V ([ en)dmnY; (4.91)
Tk (02 [, 70 " 2/, 7° " 7

furthermore from the very definition of wy and (4.87) we find

/B <¢(vk) Jrvgz—lyv?}k’p)dl,S

€k

1—py
< (1+0(e) () a5 / " (s) ds ) () (4.92)

€k

finally by the Coarea formula and again by the definition of wy, it follows that

1-p
/ (w(szk) + vai_llvqjk’p)dﬂf < CMk/ PH9(s) ds < e, (4.93)
Ck

€k

where ¢ < +o00. Therefore, by collecting (4.90))-(4.93), to conclude we need only to

verify that

lim Q(Uk,e(uk))dx:é 202 ([u) © en)dH" .
k Ak 2 Ju

To this aim, observe first that assumption (H3), the very definition of uy, vy and

estimates (4.88)), (4.89)) imply, as k 1 +oo,

1
(v, e(ug))dz = / Q(gk, §A(Dnu}€, ey Dyt 2Dnu2)>d:c +0(1),

Ay Ag
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where A: R™ — M”*" ig defined by

sym
(A(z1,...,20))i; =0 ifi,5<n, (Alz1,...,20))in =ax; ifi<n. (4.94)

In addition, the definition of oy in (4.83) and an easy computation yields

1
/ Q(sk, §A(Dnu,1€, . ,Dnuz_l, 2Dnu’,$)>dx =
Ag

= g p o@sk(gk(f» . QO_I/QGU](fy 0) o) €n)dHn_1,

where
G(T) := %A(Ul(ﬁ o (T)) — u' (T, —0k(T)), ..., u" (T, 01(T)) — u"H(T, —ok(T)),
2" (%, 04(3)) — u"(F, ~0(7)))).

Eventually, the conclusion follows by (4.94), by (H4), and by the dominated conver-

gence theorem as ((x) converges uniformly to [u](-,0) ® e, on S as k1 co. O
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