ABSOLUTELY CONTINUOUS CURVES IN EXTENDED
WASSERSTEIN-ORLICZ SPACES

STEFANO LISINI

ABSTRACT. In this paper we extend a previous result of the author [Lis07] of character-
ization of absolutely continuous curves in Wasserstein spaces to a more general class of
spaces: the spaces of probability measures endowed with the Wasserstein-Orlicz distance
constructed on extended Polish spaces (in general non separable), recently considered in
[AGS14]. An application to the geodesics of this Wasserstein-Orlicz space is also given.

1. INTRODUCTION

In this paper we extend a previous result of the author [Lis07] to a more general class of
spaces. The result in [Lis07] concerns the representation of absolutely continuous curves with
finite energy in the Wasserstein space (Z(X, d), W,,) (the space of Borel probability measures
on a Polish metric space (X, d), endowed with the p-Wasserstein distance induced by d) by
means of superposition of curves of the same kind on the space (X, d). The superposition is
described by a probability measure on the space of continuous curves in (X, d) representing
the curve in (2(X,d), W,) and satisfying a suitable property.

Here we extend the previous representation result in two directions: in the first one we
consider a so-called extended Polish space (X, 7,d) instead of a Polish space (X,d); in the
second one we consider the 1-Orlicz-Wasserstein distance induced by an increasing convex
function ¢ : [0,4+00) — [0,400] instead of the p-Wasserstein distance modelled on the
particular case of ¥(r) = r? for p > 1.

The class of extended Polish spaces was introduced in the recent paper [AGS14]|. The
authors consider a Polish space (X, 7), i.e. 7 is a separable topology on X induced by a
distance 6 on X such that (X, ) is complete. The Wasserstein distance is defined between
Borel probability measures on (X, 7) and constructed by means of an extended distance d
on X that can assume the value +o0o. The minimization problem defining the extended
Wasserstein distance makes sense between Borel probability measures on (X, 7), assuming
that the extended distance d is lower semi continuous with respect to 7.

A typical example of extended Polish space is the abstract Wiener space (X, 7,7) where
(X, 7) is a separale Banach space and 7 is the topology induced by the norm, ~ is a gaussian
reference measure on X with zero mean and supported on all the space. The extended
distance is given by d(z,y) = | — y|g if x —y € H, where H is the Cameron-Martin space
associated to v in X and |- |y is the Hilbertian norm of H, and d(z,y) = 40 if x —y & H
(see for instance [Strl1l]).
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The Wasserstein-Orlicz distance is still unexplored. At the author’s knowledge, only the
papers [Stull] and, more recently, [Kuwl3] deal with this kind of spaces. In the paper
[FGY11, Remark 3.19], the authors discuss the possibility to use this kind of Wasserstein-
Orlicz distance to extend their results for equation of the form du — div(uVH (u=*Vu) = 0
to the case of a convex function H with non power growth.

Only the particular case of the Wasserstein-Orlicz distance W, corresponding to the
function ¥ (s) = 0 if s € [0, 1] and 9(s) = 400 if s € (1,+00) has been deeply investigated.
The extension of the representation Theorem of [Lis07] to the W, case has been proved
in [ADM14]. Another refinement of the representation Theorem of [Lis07] is contained in
[BS11, Sec. 5|. The problem of the validity of the representation Theorem of [Lis07] in the
case of a general Wasserstein-Orlicz space is raised in the last section of [AGS13].

For the precise statement of the result we address to Theorem 3.1. The strategy of the
proof is similar to the one used to prove Theorem 5 of [Lis07], but there are several additional
difficulties because (X, d), in general, is non separable and the function ¢ that induces the
Wasserstein-Orlicz distance is not homogeneous.

The paper is structured as follows: in Section 2 we introduce the framework of our study
and some preliminary results, in Section 3 we state and prove the main theorem of the paper,
and finally in Section 4 we apply the main theorem in order to characterize the geodesics of
the Wasserstein-Orlicz space.

2. NOTATION AND PRELIMINARY RESULTS

2.1. Extended Polish spaces and probability measures. Given a set X, we say that
d: X x X — [0,+00] is an extended distance if
e d(z,y) = d(y,x) for every z,y € X,
e d(z,y) =0 if and only if x = y,
e d(z,y) <d(z,z) +d(z,y) for every z,y,z € X.
(X,d)) is called extended metric space. We observe that the only difference between a
distance and an extended distance is that d(z,y) could be equal to +oc.
We say that (X, 7,d) is a Polish extended space if:

(i) 7 is a topology on X and (X, 7) is Polish, i.e. 7 is induced by a distance § such that
the metric space (X, ) is separable and complete;
(ii) d is an extended distance on X and (X,d) is a complete extended metric space;
(iii) For every sequence {z,} C X such that d(z,,z) — 0 with z € X, we have that
rn, — x with respect to the topology 7;
(iv) d is lower semicontinuous in X x X, with respect to the 7 x 7 topology; i.e.,

(1) liminfd(xn,yn) > d(z,y), V(z,y) e X x X, V(zp,yn) = (z,y) wrt. 7 X T
n—-+0oo

In the sequel, the class of compact sets, the class of Borel sets Z(X), the class Cp(X) of
bounded continuous functions and the class &(X) of Borel probability measures, are always
referred to the topology 7, even when d is a distance.

We say that a sequence p, € Z(X) narrowly converges to p € 2(X) if

2) im [ () djn(z) = /X o@)du(z) Vo€ G(X).

n——+oo X
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It is well known that the narrow convergence is induced by a distance on Z(X) (see for
instance [AGS05, Remark 5.1.1]) and we call narrow topology the topology induced by this
distance. In particular the compact subsets of Z2(X) coincides with sequentially compact

subsets of Z(X).
We also recall that if p, € Z(X) narrowly converges to u € Z(X) and ¢ : X — (—o0, +0]
is a lower semi continuous (with respect to 7) function bounded from below, then

3) limint [ p(o)dun(o) > [ o) duta).

A subset . C Z(X) is said to be tight if
(4) Ve >0 3JK.C X compact: u(X \ K.) <e VYue T,

or, equivalently, if there exists a function ¢ : X — [0, +o00] with compact sublevels A.(¢) :=
{z € X : ¢(x) < ¢}, such that

(5) sup/ o(z)dp(r) < 400.
ne7 JX

By Prokhorov Theorem, a set .7 C (X)) is tight if and only if .7 is relatively compact in
Z(X). In particular, the Polish condition on 7 guarantees that all Borel probability measures
ueE P(X) are tight.
2.2. Orlicz spaces. Given
Y [0, +00) — [0, 400] convex, lower semicontinuous, non-decreasing, 1(0) = 0,

lim ¢(x) = +o0,

T—-+00

(6)

a measure space (£2, ) and a v-measurable function u : @ — R, the L¥(€) Orlicz norm of u

is defined by
. , |ul
[ull gy = inf {/\ >0: /QQ#(T> dv <1;.

The Orlicz space L¥(2) := {u : Q — R, measurable : [ull gy < +oo} is a Banach space.

For the theory of the Orlicz spaces we refer to the complete monography [RR91].
Given a bounded sequence {w, } C L¥(Q2), the following property of lower semi continuity
of the norm holds:

(7) ligi;lfwn(x) >w(z) forrv-ae € = ligg}f lwnll vy = 1wl L2 -

Indeed, denoting by A, := ||w,]| 1¥(q) and A := liminf, Ay, up to extract a subsequence we
can assume that A = lim, A\,. By the lower semicontinuity and the monotonicity of v we

have
lim inf¢<wz\—(x>) > z/;(w) for v-a.e. x € €.

n—00 n A

Finally, by Fatou’s lemma

1> liminf /Q w(w’;ix)) dv(z) > /Q gp(w(;))du(x)

which shows that A > ||w||L¢(Q).
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We denote by ¥* := [0, 4-00) — [0, +00] the conjugate of ¢ defined by ¥*(y) = sup,>o{zy—
(x)}. The following generalized Hélder’s inequality holds

(8) /Qu(x)v(x) dv(z) < 2”“”L$(Q)HUHL$*(Q)’

and the following equivalence between the Orlicz norm in LY () and the dual norm of LY ()
holds

O lull gy < 00 / u@)o(e)| () - v € LY (), o]y ) < 1} < 2l 0

In the statement of our main theorem we will assume, in addition to (6), that ¢ is super-
linear at 400, i.e.

(10) lim ¥lz) = +00,
T—+00 €T
and it has null right derivative at 0, i.e.
(11) tim 28 _
x—0

It is easy to check that conditions (10) and (11) are equivalent to assume that ¢*(y) > 0
and ¢*(y) < +oo for every y > 0.
Typical examples of admissible ¢ satisfying (6), (10) and (11) are:

e (x) = aP for p € (1,400) and the corresponding Orlicz norm is the standard L?
norm;

e Y(x) =0if z € [0,1] and ¢(x) = +o0 if z € (1,+00) and the corresponding Orlicz
norm is the L*> norm;

e (x) =e” —x — 1, exponential growth;

o Y(x) =€ — 1 for p € (1,+00), power exponential growth;

o Y(z) = (1+2)In(l +2z)— =z, Llog L-growth.

2.3. Continuous curves. Given (X, 7,d) an extended Polish space, I := [0,T], T" > 0,
we denote by C([; X) the space of continuous curves in X with respect to the topology 7.
C(I;X) is a Polish space with the metric

(12) Joo(u, @) = sup 6(u(t), a(t)),

tel

where ¢ is a complete and separable metric on X inducing 7.
Given v satisfying (6), we say that a curve u : I — X belongs to AC¥(I;(X,d)), if there
exists m € L¥(I) such that

(13) d(u(s),u(t)) < /tm(r) dr  Vs,itel, s<t.

We also denote by AC(I;(X,d)) the set ACY(I;(X,d)) for ¢»(r) = r. We call a curve
u € ACY(I;(X,d)) an absolutely continuous curve with finite L¥-energy.



ABSOLUTELY CONTINUOUS CURVES IN EXTENDED WASSERSTEIN-ORLICZ SPACES 5

It can be proved that (see [AGS05, Theorem 1.1.2]) for every u € ACY(I;(X,d)), there
exists the following limit, called metric derivative,

(14) | (t) = Jim SR, ult))

for L'ae. tel.
h—0 ’h’

The function ¢ — [u|(t) belongs to L¥(I) and it is the minimal one that satisfies (13).
The following Lemma will be useful in the proof of our main theorem.

Lemma 2.1. Let ¢ be satisfying (6), (10) and (11). Ifu: I — (X,d) is right continuous at
every point and continuous except at most a countable set, and
d(u(- + h),u(:

QEORT0)] I

h o)

where u is extended for t > T as u(t) = u(T), then u € ACY(I; (X,d)).
Proof. Since I is bounded, by the assumptions on u we have that the d-closure of u([) is
compact in (X,d). Consequently u(I) is d-separable. We consider a sequence {y, }nen dense
in (u(l),d). We fix n € N. Defining u,, : I — R by u,(t) := d(u(t),y,), the triangular
inequality implies
(16) [un(t + h) —un(t)] < d(u(t+ h),u(t)), Vte I,h > 0.
Given a test function n € C2°(I) and h > 0, recalling Holder inequality (8) we obtain

/Iun(t)n(t — h})L —n(t) dt‘ _ /In(t)un(t + h) — u,(t) dt‘

h
Un (- +h) = un(-))
<2 HUHLW(I)

h ()
By the last inequality, (15) and (16), passing to the limit for A — 0 we have that

(15) lim sup

h—0t

(17) [utentoa] <l

The linear functional .2, : (C°(1), || - || v+ (1)) — R defined by Z,(n) = [, un(t)n/(t) dt, by
(17), is bounded and we still denote by %, its extension to E¥" (] ) the closure of C’f;o( )
with respect to the norm [ - || v+ . Since, by (10) and (11), ¥* is continuous and strictly

positive on (0, +00), %, is uniquely represented by an element v, € L¥""(I) (see Theorem

6, pag. 105 of [RR91]). The element v, coincides with the distributional derivative of wu,

and then u, € ACY(I;R) (we observe that )** = 1) because 9 is convex and lower semi

continuous). We denote by u/ (t) the pointwise derivative of u,, which exists for a.e. t € I.
We introduce the negligible set

N = U {t € I:u)(t) does not exists},
neN

and we define m(t) := sup,,cy |u,(¢)| for all ¢ € I'\ N. By the density of {yn }nen in u(1), we
have that for all t,s € I, with s < t,

(18) d(u(t),u(s)) = sup |u,(t) — u,(s)| < sup/ lur, ()| dr < / m(r

neN neN
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We show that m € L¥(I). Actually, by (16), if t € [ \ N then

(1)) = lim LoD T g A R), uld)
h—0+ h h—0+ h

which implies m(t) < liminf d(u(t + h), u(?))
h—0+ h

. By (15) and (7) we conclude. O

2.4. The M(I; X) space. We denote by .# (I; X) the space of curves u : I — X which are
Lebesgue measurable as functions with values in (X, 7). We denote by M(I; X) the quotient
space of . (I; X) with respect to the equality Z!-a.e. in I. The space M(I; X) is a Polish
space endowed with the metric

01 (u, v) ::/0 S(u(t), v(t)) dt,

where 0(z,y) := min{d(z,y),1} is a bounded distance still inducing 7 and § is a distance
inducing 7.

The space M(I; X) coincides with L*(I; (X,4)). It is well known that &;(u,,u) — 0 as
n — +oo if and only if u,, — u in measure as n — 4o00; i.e.

lim L2 ({t € I:6(u,(t),u(t)) >0o}) =0, Vo >0.

n—-+00
We recall a useful compactness criterion in M(I; X'), [RS03, Theorem 2].

Theorem 2.2. A family o/ C M(I; X) is precompact if there exists a function ¥ : X —
0, +00] whose sublevels \.(V) := {x € X : ¥(x) < ¢} are compact for every ¢ > 0, such that

(19) sup /0 " D(u(t)) df < oo,

and there exists a map g : X x X — [0, 00] lower semi continuous with respect to 7 X T such
that

g(z,y) =0 = x=y

and

lim sup/0 ! g(u(t+ h),u(t))dt = 0.

h—0% yeor

2.5. Push forward of probability measures. If Y, Z are topological spaces, yp € Z(Y)

and F': Y — Z is a Borel map (or a p-measurable map), the push forward of u through F),
denoted by Fup € P(Z), is defined as follows:

(20) Fyu(B) = f(F-'(B)) VB e #(Z),
It is not difficult to check that this definition is equivalent to
(21) [ erdEan ) = [ o) duty)

for every bounded Borel function ¢ : Z — R. More generally (21) holds for every Flpu-
integrable function ¢ : Z — R.
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We recall the following composition rule: for every p € (YY) and for all Borel maps
F:Y —Zand G:Z — W, we have

(G o F)pp = Gy(Fyp).
The following continuity property holds:
F:Y — Z continuous = Fu:2(Y)— P(Z) narrowly continuous.

We say that p € £(Y) is concentrated on the set A if u(X \ A) = 0. It follows from the
definition that Flp is concentrated on F'(A) if p is concentrated on A.

The support of a Borel probability measure y € Z(Y) is the closed set defined by supp p =
{y € Y : u(U) > 0,YU neighborhood of y}. p is concentrated on supp p and it is the smallest
closed set on which p is concentrated.

In general we have F'(supp p) C supp Fup C F(supp p) for F': Y — Z continuous.

It follows that Flyp(supp Fep \ F(supp p)) = 0.

The following Lemma is fundamental in our proof of Theorem 3.1. It allows to recover a
pointwise bound assuming an integral bound.

Lemma 2.3. Let Y be a Polish space and {p,}neny C P(Y) be a sequence narrowly con-
vergent to p € P(Y) as n — +oo. Let F,, :' Y — [0,+00) be a sequence of p,-measurable
functions such that

(22) sup [ Fuly) dua(y) < +20.
neN JYy
Then there exists a subsequence pi,, such that
(23)
for p-a.e. y € supp . Jy,, € SUPD iy, : lim y,, =7 and  sup F,, (Yn,) < +00.

k——+o00 keN

Proof. Let us define the sequence v, 1= (ix F},) g1, € P(Y xR), where i denotes the identity
map in Y. We denote by 7! : Y x R — Y and 72 : Y x R — R the projections defined by
m'(y,2) = y and 7%(y, 2) = 2. The set {v;, }nen is tight because {7y vy bnen and {7504, bnen
are tight. Indeed W#Vn = i, is narrowly convergent, and W;éun = (F},) ¢/t has first moments
uniformly bounded because

[ 1w = [ Rl dut).

F, > 0 and (22) holds. By Prokhorov’s Theorem there exists v € Z(Y x R) and a subse-
quence {vy, }ren C Z(Y x R) narrowly convergent to v. Since w14, = pin, and myvy,, — myv
as k — +oo we have that 7,v = p.

Let §y € 7! (supp v), and we observe that pu(supp p\7! (suppv)) = 0. By definition of § there
exists z € R such that (7, z) € suppv. Let h € Nand Dy (9, 2) := Bi/n(y) x(2—1/h,2+1/h)
where B, (y) denotes the open ball of radius r and center g, when a distance in Y is fixed.
By (3), with ¢ the characteristic function of Dy, (¥, 2), we obtain

lim inf v, (D1/a(5, 2)) 2 v(Dy/a(5, 2)) > 0.
Then there exists k(h) € N such that
(24) Vni(Din(9,2)) >0 Yk > k(h).
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By definition of v,

Vi (D1yn(y, 2)) = g ({y €Y 2 (i x Fo ) (y) € Diyn(y, 2)})
=t ({y €Y 2 (y, Foy (v)) € Buyn(y) x (2 = 1/h, 2+ 1/h)}).

By (24) and (25) we have that

(26)  supp pin, N{y €Y : (v, Fo, (y)) € Bin(§) X (z—=1/h,z+1/h)} #0  Vk > k(h).

(
Since we can choose the application h +— k(h) strictly increasing, by (26) we can select a
sequence Yy, € supp fin, N{y €Y : (y, F,, (y)) € Bin(y) X (2 —1/h, 2+ 1/h)}. By definition
Yn, — y and F,, (yn,) — 2z as k — +o0. Smce F,.,. (yn, ) converges in R we obtain the bound
n (23). O

2.6. The extended Wasserstein-Orlicz space (Z(X),Wy). Given pu,v € Z(X) we
define the set of admissible plans I'(u, v) as follows:

D(p,v) = {y € P(X x X) 1 myy = p, 73y = v},
where 7 : X x X — X, for i = 1,2, are the projections on the first and the second
component, defined by 7!(x,y) = x and 7%(z,y) = .
Given v satisfying (6), the 1-Wasserstein-Orlicz extended distance between u,v € Z(X)
is defined by

(25)

d
Wy(p,v) = inf inf {)\ >0 / o( (‘”’y)) dy(z,y) < 1}
(27) vel(1yv) XxX A
B veil“r(lﬁ,u) Id ')HW(XXX)‘

It is easy to check that

: : d(z,y)
= inf : f <1
Wy (p,v) = in {A >0 welrr%um/XXxw( 3 )dv(x,y) < }

which is the definition given in [Stull] (see also [Kuw13]).
When the set of v € I'(i, v) such that ||d(-,-)] ¥ (xxx) < 100 is empty, then Wy(p,v) =

+00. Otherwise it is not difficult to show that a minimizer v € I'(u, ) in (27) exists. We
denote by 'Y (u, v) the set of minimizers in (27). We observe that

v dl@,y)
(28) velwy) = | e(in) dlew <1
Since 1 satisfies (6) it is well defined ¢~!(s) for every s > 0, with the convention that in the
case that ¥ (r) = +oo for r > 19 and ¥ (ry) < +o0o we define ¥ ~1(s) = ry for every s > 1(rg).
Moreover if v € I'Y(u, ) then

(20) /X da)dal) < T OWu)

Indeed, for p # v (the other case is trivial) using Jensen’s inequality and (28)

1/}( Xxx%‘h(%y)) < /)(Xx?#(%) dy(z,y) <1

and (29) follows.
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Being (X,d) complete, (Z(X), Wy), is complete too (the proof of [AGS05, Proposition
7.1.5] works also in the case of the extended distance d and the Orlicz-Wasserstein distance).
We observe that (X,d) is embedded in (£ (X), Wy) via the map x + §, and it holds

1
—d(x,y).
Y

Thanks to the compatibility condition (iii) in the definition of extended Polish space we
also have the following fundamental property:

(30) Ww(5m 53/) =

(31) Wy (tn, p) -0 = p, = p narrowly in Z(X).

The space (Z(X), Wy) is an extended Polish space, when in #(X) we consider the narrow
topology.

3. MAIN THEOREM

In this section we state and prove our main result: a characterization of absolutely contin-
uous curves with finite LY-energy in the extended 1-Wasserstein-Orlicz space (2(X), Wy,).
Before to state the result, we define, for every ¢t € I, the evaluation map e; : C(I; X) — X
in this way
(32) ei(u) = u(t)

and we observe that e; is continuous.

Theorem 3.1. Let ¢ be satisfying (6), (10) and (11). Let (X,7,d) be an extended Polish
space and I := [0, T), T > 0. If p € ACY(I; (P(X),Wy,)), then there exists n € P(C(I; X))
such that

(i) n is concentrated on AC¥(I;(X,d)),

(ii) (er)an = pu vVt el,
(iii) for a.e. t € I, the metric derivative |u'|(t) exists for n—a.e. uw € C(I; X) and it holds
the equality

W10 = IV g oy, forae tel
Proof. We preliminary assume that
(33) W|=1  forae. tel,

and we will remove this assumption in Step 6 of this proof. We also assume for simplicity
that I = [0, 1].
For any integer N > 1, we divide the unitary interval I in 2V equal parts, and we denote
by t* the points '
it . N
t_Q_N Z—O,l,...,Q .
We also denote by X y the product space
Xy =Xox Xy X...x Xy~

where X;, with i =0,1,...,2", are 2" + 1 copies of the same space X.
Choosing optimal plans

Vi € T (s, pyinr)  i=0,1,...,28 — 1,
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there exists (see for instance [AGS05, Lemma 5.3.2 and Remark 5.3.3]) a measure vy €
P (X n) such that

' i1 ,
TYYN = [y and TN = N

where we denoted by 7° : Xy — X; the projection on the i-th component and by 7%/ :
Xy — X, x X, the projection on the (7, j)-th component.
We define o : Xy — #(I; X), and we use the notation = (zg, ..., Ton) > 0z, by

op(t) =z if  te [t ), i=0,1,...,2Y — 1.
Finally, we define the sequence of probability measures
v = oy € P(M(L; X)).

Step 1. (Tightness of {ny}yey in P(M(I;X))) In order to prove the tightness of
{nn}neny in P(M(I; X)) (we recall that M(I; X) is a Polish space with the metric ;) it
is sufficient to show the existence of a function ® : M(I; X) — [0,+o0c] whose sublevels
Ae(P) :={u e M([; X) : ®(u) < ¢} are compact in M([; X) for any ¢ € R, and

(34) sup/ O (u) dnn(u) < +oo.
NeN J M(I;X)

First of all we observe that o/ := {u; : t € I} is compact in (Z(X), Wy) (because it
is a continuous image of a compact) and consequently in Z(X). Since, by Prokhorov’s
Theorem, 7 is tight in &2(X) there exists a function ¥ : X — [0, 4+o00] whose sublevels
Ae(U) :={z € X : ¥(z) < ¢} are compact in X for any ¢ € R, such that

(35) Sup/X U(x)dut(x) < 400.

tel

We define ¢ : M(I; X) — [0, +oo] by

i o [ A B (o)
B(u) ._/O ( (t))dt+he(0%)/o u dt.

The compactness of the sublevels A\.(®) in M(I; X) follows by Theorem 2.2 with the choice
g(x,y) =d(z,y). In order to prove (34) we begin to show that

(36) sup /M - /O B(u(t))) dt di (1) < +oo.
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By the definition of 7y we have

/ IX/ ) dt dny(u) = /XN /Olllf(am(t))dtd%,(m)

1 2N 1

~ [ o X v d(a)

XN i=0

1 2N _1
3 [ v duato

1 2N _1
< — su U(x)du(x) = su U(x) du(x
< v 2w [ @) dnte) = s [ ¥ duie)

and (36) follows by (35). The second bound that we have to show is

=hd(u U
(37) sup /M(IX) sup / d(ult +hh)’ ®)) dt dny (u) < +oo.

NeN he(0,1) Jo

First of all we prove that for x € X y we have

1-h 2V~
(38) sup / d(a(t + h), 0(1)) dt <2 Z d(zi, wiq1).
he(o,1) Jo h =0

We fix h € (0,1). When h < 27" we have that o, (t + h) = ox(t) for every t € [t!,t1 — h]
andi=0,...,2Y —1. Then

N1 it 2N _2

) /Olhd(o—m(t—irh ), 05(t)) dt = Z/ d(ox(t+h), 0 ())dt:th(xi,xiH).

Now we assume that h > 27" and we take the integer k(h) = [h2"], where [a] := max{n €
Z :n < a} is the integer part of the real number a. Since the triangular inequality yields

(
d(og(t +h),o2(t)) < d(oz(t +t™h), ot + 1)),

=

@
Il
=)
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we have that
1—tk()

/1_hd(aw(t+h),am(t))dt < d(oa(t+ h),o0(t)) di

S~

1—¢k(h) k(h) }
(40) g/ > d(og(t + ), ot + 1)) dt
0 =0
k(h) 2N _k(h)—
1
= o d($i+j+17 Titj)-
i=0 §=0

Observing that in (40) the term d(zgy1, 1), for every k = 0,1,...,2Y — 1, is counted at
most k(h) + 1 times, we obtain that

1-h k(h) + 2N _1
) [ doatiot moatnar < MO thx]H,x] <2 S dlaynmy),
0 j=0

because
k(h)+1 < k(h)+1
N = k(h)
The inequality (38) follows from (41) and (39). Finally, by (38), (29) taking into account
the optimality of the plans 7 # "yx, and (33) we have

<2

. = d(u(t + h), u(t)) 27l .
/M( p/ dt dny (u) < 2 > d(w, wi1) dyn ()

1.x) he(o,1) Jo h Xy =

2N _1

(42) <2071 Y W, puiss)

2N —1
1
<)Y 5y =27)
i=0
and (37) follows.

Then, by Prokhorov’s Theorem, there exist n € Z(M(I; X)) and a subsequence N,, such
that ny, — n narrowly in Z(M(I; X)) as n — +oc.

Step 2. (n is concentrated on BV right continuous curves) We apply Lemma 2.3
in order to show that n-a.e. u € suppn has a right continuous BV representative.

Given a curve u : [a,b] — X, we denote by pV(u, [a,b]) = sup{d>__, d(u(t;),u(tis1)) : a =
t1 <ty <...<t, <t,s1 = b} its pointwise variation and by eV(u, [a,b]) = inf{pV(w, [a,b]) :
w(t) = u(t) for a.e. t € (a,b)} its essential variation.

We define Fy : M(I; X) — [0, +00) by

V(u, I if
(43) FN(U) — € (U, ) 1 UAS supp 71w,
0 if u & suppny.
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If u is a.e. equal to oy then eV(u,I) = pV(og, ). Taking into account this equality, the
proof of bound (36) shows that

(44) sup/ Fy(u) dny(u) < +00.
NeN Jm(1:x)

Since Fy > 0 by definition, we apply Lemma 2.3 with the choice Y = M(I; X) and u,, = n,,.

We still denote by 7y, the subsequence of 7y, given by Lemma 2.3. Let u € supp(n) be such

that (23) holds and we denote by uy, € supp(ny, ) such that uy, — v in M(/; X) and C a

constant independent of n such that

Moreover, up to extract a further subsequence, we can also assume that uy, (t) — u(t) with
respect to the distance § for a.e. ¢ € I. Since uy, € supp(ny,) we can choose the piecewise
constant right continuous representative of uy, , still denoted by wuy,, . From (45) we obtain
that

(46) eV(uy, ) = pV(uy,) < C.

Defining the increasing functions v, : I — R by v,(t) = pV(uy,,[0,t]), from the Helly
theorem, up to extract a further subsequence still denoted by v, there exists an increasing
function v : I — R such that v, (t) converges to v(t) for every ¢t € I (we observe that for
(46) v < (). Since the set of discontinuity points of v is at most countable we can redefine
a right continuous function o by o(t) = lim,_,+ v(t). Since

(47) d(un, (t),un,(s)) < v,(s) —va(t) Vi,sel, t<s,
from the property (1) it follows that
(48) d(u(t), u(s)) < v(s) —v(t) forae t,sel, t<s.
Since (X, d) is complete, by (48) we can choose the representative of u, @ : I — X defined
by @(t) = limg_,;+ u(t), which is right continuous by (48).

We have just proved that n-a.e. u € suppn is equivalent (with respect to the a.e. equality)
to a d-right continuous function with pointwise d-bounded variation, continuous at every
points except at most a countable set.

Step 3. (Proof of (i))
Since we want to apply Lemma 2.1, we prove that

‘d(U(- +h),u()

(49) < +oo, forn—ae ue M(I; X).

h

he(0,1) L¥(0,1—R)

Let us define the sequence of lower semi continuous functions fy : M(I; X)) — [0, 00| by

fv(u) == sup /Olhw(dW(t + h),u(t))) dt,

1/2N<h<1 2h

that satisfies the monotonicity property
(50) fn(u) < frvia(w) Vu e M(I; X).
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For h € 27V 1), and u € supp(ny), by the monotonicity of 1, the discrete Jensen’s inequality
and taking into account that (k(h) + 1)/(2h) < 2V, we have that

/Olh ¢<d(u(t + h), u(t))) gt

2h
:/l_hw<d<xk(t+h)axk(t))>dt
0 2h
_ /l—tk(h) ¢<d($k(t+h) xk )) dt
0 2h
1_¢k(h) k(h) k
= /0 ( )+ 1 ; d(@(e)tit1, xk(t)-&-i)) dt
1—tk(h) k(h)
E( h + 1
_/0 +1 2 ID (@h(e)+i+1, Th(e)+i)
2N _k(h)—1 1 k(h)
= Z 2 sz@ d($g+z+1,$]+z)>
j:O =0
2N 1

< Z 27Ny <2Nd(x]~+1, x])> :
=0

It follows that
2N 1

fa(u) < Z 27Ny (2Nd(xj+laxj)>

for every u € supp(ny). Integrating the last inequality, taking into account that Wy, (pu, p+1) <

27N and " )
Ljt1, Lj
— | dyn(x) < 1,
/XNw(Ww(MtJ‘H?MtJ‘)) fYN( )_

we obtain that

/ f d77N
M(L:X)

22_:12 N/ (2Nd(%’+17%‘)) dyn(z)

2N1

< Z o- N/ (M) dyn(x) < 1.

W¢(Mtﬂ+1 fes)
The lower semi continuity of fy, the monotonicity (50) of fy and the last inequality yield

/ fv(w)dn(u) <1 VN €N,
M(I;X)

and consequently, by monotone convergence Theorem, we have that

/ sup fiv (1) dy(us) < 1,
M(I;X)

X) NeN
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and
(51) sup fn(u) < +o0  for n —a.e. u e M(I; X).
NeN
Since

sup fulu) = sup /1h¢<d(u(t+h)’u(t)))dt,

NeN 0<h<1 2h
and fl_h <M> dt < C implies HM‘
0 LY(0,1—h)

Finally, taking into account Step 2, we can associate to n-a.e. u € suppn a right continuous
representative @, with at most a countable points of discontinuity satisfying (15). By Lemma
2.1 this representative belongs to ACY(I; (X,d)).

Defining the canonical immersion 7" : C(I; X) — M([; X) and observing that it is con-
tinuous, we define the new Borel probability measure 7 € 2(C(I; X)) by 7(B) = n(T(B)).
For the previous steps 7 is concentrated on ACY(I; (X, d)).

Step 4. (Proof of (ii)) In order to show (ii) we prove that for every t € I,

(52) L c@ i = [ etwamtz)  vee )
Let ¢ € Cp(X). Since g : I — R defined by

g(t) = /X () dyu(2)

is uniformly continuous in I, we have that the sequence of piecewise constant functions
gy - I — R defined by

on(t) = glti) = /X o(x) dup(x) it € 1670,

converges uniformly to g in I when N — +o00. Then, for every test function ¢ € Cy(I), we
have that

1 1
(53) Jim / C(E)gn () dt = / C(t)g(t) dt
On the other hand

[ ooty = [Fcw [ ey i

< max{C, 1} we obtain (49).

Since the map

is continuous and bounded from M(I; X) to R, then by the narrow convergence of ny, we

have
lim / / ¢(t) ) dt dny, (u / / (%) )) dt dn(u).
=100 J M(1;X) M(I:X)



ABSOLUTELY CONTINUOUS CURVES IN EXTENDED WASSERSTEIN-ORLICZ SPACES 16

By Fubini’s Theorem and the definition of 7

Ju SOttt = [ [ crgtuen s

= [ [ et

By the uniqueness of the limit then

U dn(u) dt = o(x)du(x)d V(¢ e Cy(I),
/0 C(ﬂ/C(I;X)‘P( (t)) 77( ) t /0 g(t)/x ( ) N( ) t ¢ ( )
from which

(54) /C 1 P ) = / o(x)du(z)  forae tel.

X

Since the applications ¢ — [, ¢(x) dp(z) and ¢ — fC(I;X) o(u(t)) di(u) are continuous, (54)
is true for every ¢ € I and (52) is proved.

Step 5. (Proof of (iii))

First of all we check that for a.e. t € I, |v/|(f) exists for 7—a.e. u € C(I;X). We set
A= {(t,u) € I x C(I; X) : |u/|(t) does not exist}. A is a Borel subset of I x C'(I; X) since
the maps Gy, : I x C(I; X) — R defined by Gj(t,u) := w are lower semi continuous
for every h # 0, and A = {(t,u) € I x C([; X) : liminf, o Gi(t,u) < limsup,_,, Gu(t,u)}.
Since 7 is concentrated on AC(I;(X,d)) curves, we have that for f-a.e. u € C(I;X),
L1{t € I : (t,u) € A}) = 0 and then Fubini’s Theorem implies that for a.e. t € I,
n{ue CI; X): (t,u) € A}) =0.

Let a,b € I such that a < b and let h > 0 such that b+h € I. Recalling that k(h) = [2Vh],
for every N € N such that 2=% < h, by the monotonicity of 1 and the discrete Jensen’s
inequality we have

b k(h) d(ult + R),u(t))
//\/I(I;X)/a w<k(h) +1 t+h : > dt dnn (u)
)

b k(h)  d(@kgsny, Tr))

<

_/XN/a ¢<k3(h 1 - >dtd%v(:v)
b

)

1 k(h
Z k(h) + 1¢( (h)d(xk(t)-&-i—i-laxk(t)-i-i)) dt dyy ().
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Since k(h)/h < 2N and, by (33), Wy (pek, prrt1) < 27V, we have that

b k(h)
1 k(h)
d 1 ) dtd
/XN/a ; k(h) + 1w< h (Th()+i+1, Tr) )) ()
b k(h)
1
< D ————
- /XN/ Z k(h) +1 (2 d(xk(t)+z+1,l‘k -H)) dt dyy ()

'\~ d(@k()+it1s Thi)+i)
— Y dyn(z)dt < b—a,
/ Z k' —|' 1 / ¢<W¢(,Utk(t)+i+l, lu/tk(t)+i>> /YN( ) -

where we used the mequahty

/X ¢< d(Th(t)rit1s Th(e) i) )d,y (@) < 1.

W¢(Mtk(t)+z+1 /,(/tk(t)+z)
It follows that

L k(h) d(u(t+ h),u(t))
/M(I;X) b—a/a ¢<k(h)+1 h )dtdmv(u) <1

and then, passing to the limit along the sequence ny,,,

/C(I.X) : i : /abz/;(d(U(t —I—:),u(t))) dt i) < 1.

Taking into account (i), Fubini’s Theorem and Lebesgue differentiation Theorem we obtain

(55) /C (I;X)w<|u’|(t)> di(u) <1  forae tel

and this shows that

H|UI’(UHL%&( (IX)) ’,LL |( ) for a.e. t € 1.

Step 6. (Conclusion) Finally we have to remove the assumption (33). Let p €

ACY(I; (2(X),W,)) with length L := fo | |(¢)
If L = 0, then u; = po for every t € I and it is represented by n = oxpy, where
(Z;

o : X — C(I; X) denotes the function o(x) = ¢, ¢,(t) := x for every t € I.

When L > 0 we can reparametrize p by its arc-length (see Lemma 1. 1 4(b) of [AGSO5]
for the details). We define the increasing function s : I — [0, L] by s(t) := fo || (r
observing that s is absolutely continuous with pointwise derivative
(56) s'(t)=||(t)  forae. tel

Defining s™' : I — [0, L] by s7'(s) = min{t € I : s(t) = s} it is easy to check that the
new curve i : [0, L] — (X)) defined by jis = ps-1(s) satisfies |fi'|(s) = 1 for a.e. s € [0, L]
and p; = fls). By the previous steps, we represent fi by a measure 7 concentrated on
AC¥(]0, L]; (X,d)). Denoting by F' : C([0, L]; X) — C(I; X) the map defined by F(ii) = tos,
we represent p by n := Fyun. Clearly (e;)4n = (e 0 F)un) = figy = pi. Moreover, 7 is
concentrated on curves u of the form u(t) = a(s(t)) with @ € AC¥([0, L]; (X,d)). Since s
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is monotone and AC(I;R) and @ is AC([0, L]; (X,d)) then @ o s is AC(I;(X,d)), and the

metric derivative satisfies
(57) | (t) < |u'|(s(t))s(t) for a.e. t € 1.

Let t € I such that s/(t) and |¢/|(t) exist and s'(¢) = |¢/|(t) > 0. Taking into account (55)
and Jensen’s inequality we have for h > 0

d(ult + 1), u(t)) d(i(s(t + b)) u(s(®)y .-
/C(I;X) ID( s(t itl) - S(Z) ) dn(w) = /C([O,L};X) ¢< S(tt‘:_h) - S(t)t ) (@)
S(t+h)
fiémﬂxg((ﬁ+5_ﬂ ‘LO wu>dﬁdm>

S(t+h)
s(t+ hl) — s(t) /S(t) / 00X )> dij(a) dr < 1.

By Fatou’s lemma, taking into account that 7 is concentrated on AC’ (1 ;(X ,d)) curves, we
obtain the inequality

[ 0052

On the other hand, if |¢/[() = 0 on a set J C I of positive measure, then for n-a.e. u
we have |v'|(t) = 0 for a.e. t € J because of the inequality (57). Taking into account this
observation and (58) we obtain the inequality

(59) H’U/Kt)HLg(C(I;X)) < ]//|(t), for ae. t € 1.

We prove that n is concentrated on ACY(I;(X,d)). For every v € LY (I), v > 0,
[Vl s 1y < 1, from (59) we have that

/Wﬂ|m(m ﬁ</m

By the inequality (9) it follows that, for every w € Lg (C(; X)), w >0, [Jw|| v <1,
n

(C(I;X))
// (8w (ae) dy(ae)o(t) dt < Al o
IX)

By Fubini Theorem and (9) we obtain that

|||||u (Dl e llzy ey < Ao

and (i) holds.

In order to show the opposite inequality of (59), we assume that ¢ € I is such that |«/|(¢)
exists for n—ae. uw € C(I;X) and \; := |||u'|(t)||L$(C(I,X)) > 0. We fix ¢ > 0. Since

, )dn(u) < 1 and 9 is strictly increasing on an interval of the form (rg,7)

'] (1)
fC(I;X) 1/’( )

where 79 > 0, 71 < 400 and ¢(r) = 0 for r < rq, ¥(r) = 400 for r > r1, we have that

/C(I;X) w<|;j/|fi> dip(u) < 1.
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For hn > 0, let vsyn = (e, errn)n. Taking into account that 7 is concentrated on
ACY(I;(X,d)), we have

lim sup /X Xﬂ(hd(x—’y)) B ron () = limsup /cm w<d(U(t),u(t+h))> ()

h—0+ (A +¢) h—0+ h(A: +€)
. d(u(t), u(t + h))
(60) < /C - h}ri %gpfﬂ( w1 2) ) dn(u)

) /C(I;X> w“@%) di(u) < 1.

Consequently there exists i (depending on ¢ and t) such that

/xXx ¢<%> dyesn(z,y) <1 Vh e (0,h).

Since Yern € T'(fe, pegn), the last inequality shows that
W (ke tren) < h(Ae +€) Vh e (0,h).
Finally, dividing by i and passing to the limit for ~ — 0% we obtain
W) (t) < |||u’\(t)||L:b](C(I;X)) for a.e. t € 1.
0

Remark 3.2. The following example shows that the assumptions on 1 are necessary for the
validity of Theorem 3.1.

Since 1 is convex, if (10) and (11) are not satisfied there exist a,b € R such that 0 <
a <b< +oo and at < ¢(t) < bt for every ¢ > 0. Then it holds aW;(u,v) < Wy(p,v) <
bWi(u,v), where W, denotes the distance Wy for ¢(t) = t. Given two distinct points
xg,x1 € X, consider the curve p : [0,1] — P(X) defined by p; = (1 — )0z, + td,,. We
observe that supp(u;) = {zo,z1} for t € (0,1) and supp(u;) = {x;} for i = 0,1. Clearly p
is Lipschitz with respect to the distance W, and in particular p € ACY(I; X). If there is
a measure 7 satisfying properties (i) and (ii) of Theorem 3.1, then for n-a.e. u there holds
u(i) = x; for i = 0,1 and u(t) € {xg,x1} for every t € (0,1) and u cannot be continuous.

4. GEODESICS IN (Z((X,d)), Wy)

We apply Theorem 3.1 in order to characterize the geodesics of the metric space (Z(X), Wy,)
in terms of the geodesics of the space (X, d).

In this section I denotes the unitary interval [0, 1].

We say that u : I — X is a constant speed geodesic in (X, d) if
(61) d(u(t),u(s)) = |t — s|d(u(0),u(1)) Vs, t € 1.

We define the set

G(X,d) :={u:I — X :uis a constant speed geodesic of (X,d)}.

Proposition 4.1. Let (X, 7,d) be an extended Polish space and v be satisfying (6). If

n € P(C(I; X)) is concentrated on G(X,d) and vo1 := (eo, e1)4n € T¥((e0)4n, (e1)4n), then
the curve p: I — P(X) defined by p, = (e;)4n is a constant speed geodesic in (P (X), Wy).
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Proof. Since vy1 := (eg, €1)4n € T'Y(po, 111), the following inequality holds

d(z,y)
62 / ¢< ’ ) d z,y) < 1.
(62) xxx \Welpo, 1) 10:(@9)
Since 7 is concentrated on constant speed geodesics and 7s; = (es,er)un € I'(ps, pr) we

have, for every t,s € I, t # s.

[t = [ oSG i

d(u(t), u(s))
(95) - /C( <\t - 5|Ww(ﬂo H1)> ()

(0
/X><X <]t — S’WdJ M0>u1)> dyes(x,y).

From (62) and (63) it follows that
(64) Wy (g, pos) < |t — s| Wy (o, 1) Vs, t € 1.
By the triangular inequality we conclude that equality holds in (64). O

Theorem 4.2. Let (X, 7,d) be an extended Polish space and ) be satisfying (6), (10) and
(11). Let pp: I — P(X) be a constant speed geodesic in (P (X),Wy) and n € ZP(C(I; X))
a measure representing pu in the sense that (i), (i1) and (iii) of Theorem 3.1 hold. Then
Yor := (€5, er)4n belongs to TV (s, j1) for every s,t € 1. 1If, in addition, ¢ is strictly convex
and

(65) | (i) daten) =1

Wy (o, 111)
then n is concentrated on G(X,d).

Proof. Let L = Wy(po, ). Since p is a constant speed geodesic and (iii) of Theorem 3.1
holds

(66) L=u|(r)= |Hu’|(r)\|L¢(C (1:X)) for a.e. r € 1.
Let t,s € I, t # s. Since, by (66 it holds

!u’l

) n(u)dr < 1,

C(I;X)

Fubini’s theorem and Jensen’s mequahty yield

[l ] )<

By the monotonicity of ¢) and (67) we obtain

/C(I;X) Tﬁ(%) dn(u) < 1.
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Since |t — s|L = Wy (s, pie) we have

d(u(s),u(t)y
(68) /C(I;X) ¢< Wy (s, 1) >d77( )=1

and, recalling (28), this shows that v, is optimal.
Assuming (65) and using Jensen’s inequality we have

1:/ @z;(w)dn(u)s/ w(/l|“‘L<)dt)d()
/IX/ ’/| )t dn( //]X) lu/’ )) dn(u) dt < 1.

It follows that equality holds in (69) and, still by Jensen’s inequality, we have

(70) ¢</01 |u[‘/()dt> /0 ¢<‘ul())dt for n-a.e. uw e C(I; X).

The strict convexity of ¢ implies that, if u satisfies the equality in (70), then |u/| is constant,
say |u'|(t) = L, for a.e. t € I. Analogously equality in (69) shows that w(M) =

(69)

¢<%> for n-a.e. u € C(I; X). The strict monotonicity of ¢ implies that d(u(0),u(1)) = L,
and we conclude that v € G(X,d) for n-a.e. u € C(I; X). O
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