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Abstract. This paper addresses two-dimensional crystallization in the square lattice. A
suitable configurational potential featuring both two- and three-body short-ranged particle

interactions is considered. We prove that every ground state is a connected subset of the

square lattice. Moreover, we discuss the global geometry of ground states and their optimality
in terms of discrete isoperimetric inequalities on the square graph. Eventually, we study the

aspect ratio of ground states and quantitatively prove the emergence of a square macroscopic

Wulff shape as the number of particles grows.

1. Introduction

The understanding of the crystallization process in solids bears a paramount theoretical and
applicative relevance. Still, rigorous mathematical results on crystallization are just a few. In this
paper, we present a comprehensive analysis of the crystallization of a finite number of particles
in the two-dimensional square lattice.

At very low temperature, atomic interactions are expected to be governed solely by the respec-
tive positions of particles. Configurations are identified with the particle positions {x1, ..., xn} ∈
R2 and we are concerned with the minimization of the interaction energy E : R2n → R∪ {+∞}.
The crystallization problem consists in characterizing the local and global geometry of ground-
state configurations of E. More precisely, crystallization occurs when ground states of E are
periodic.

The energy E is here assumed to decompose as E = E2 + E3 where E2 and E3 respectively
describe two- and three-body interactions. The two-body interaction potential E2 is short-ranged
and attractive-repulsive. While E2 favors particles sitting at some specific positive interatomic
distance, E3 encodes three-body interactions by favoring triples of particles forming π/2 and π
bond angles. Under suitable qualifications, specified in Section 2, we prove that finite-particle
minimizers of E are subsets of the square lattice (Section 3, 4 and 5). In particular, note that
E3 needs to satisfy non degeneracy assumptions at minimizers.

Furthermore, we exactly quantify the ground-state energy in terms of the number of particles.
This quantification has a number of consequences as it determines explicitly the global geometry
of ground states. In particular, it provides a complete description of the surface-tension effect
as well as a striking tool toward uniqueness, or rather generic nonuniqueness, of ground states
(Section 6). As the energy E favors particle bonding and ‘boundary’ particles necessarily have
less bonds, ground states can be intuitively expected to have minimal perimeter, or maximal area.
This intuition is made rigorous in Section 7, upon noting that ground states can be characterized
as those configurations which realize equality in a discrete isoperimetric inequality. Additionally,
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we explicitly compute the exact values of ground-state perimeter and area in terms of the number
of particles.

Finally, in Section 8 we prove that ground states converge in a precise quantitative way to a
square as the number of particles grows. In particular, the emergence of a macroscopic Wulff
shape in the large-particle limit is shown. This result nicely reflects the inherent multiscale
nature of the crystallization phenomenon.

To the best of our knowledge this paper represents the first rigorous crystallization results
for the square system. In view of applications, this is of course a quite relevant crystallization
setting. For the sake of setting our contribution into perspective, we shall propose here a minimal
crystallization literature overview. The reader is referred instead to Le Bris & Lions [14] for a
more general perspective.

In the one-dimensional case, crystallization under Lennard-Jones pair interactions E = E2 has
been firstly proved by Gardner and Radin in [8]. Since then, a number of results have emerged,
showing, whether or not, with different choices of E2 the stability (under perturbations) and
the minimality properties apply to the configuration of equally spaced particles. We quote in
particular [9, 18, 21] as well as the more recent [3] where a one-dimensional crystallization problem
is addressed in a quantum-mechanical setting.

The first crystallization result in the two-dimensional triangular lattice was established by
Heitmann and Radin in [13] for highly symmetric and singular interactions. More precisely,
in [13] the authors considered the crystallization of an ensemble of hard disks which maximize
relative tangencies (see also [11]). In [16] and [22] the results were refined for first-neighbour in-
teracting soft disks which allow interaction at distance and have been extended to quasicrystals
in [17]. Instead, the emergence of a macroscopic Wulff shape for short-range two-body interac-
tion potentials has been recently investigated in [24]. With respect to these contributions, the
novelty of our results consists not only in concentrating on a different crystalline structure by
exploiting three-body interactions, but more relevantly in explicitly quantifying the ground-state
and surface energies and relating ground states with perimeter and area extremality. In this
respect, our results of Section 7 on isoperimetric inequalities on the square graph are closely
related to some classical issue in Discrete Mathematics, see [4, 10]. As a consequence of our
analysis an explicit quantification of the optimal area and perimeter is provided.

In [15] another short range interaction including a three-body term is considered, the E3 part
being modeled on the geometry sp2-covalent bonding of carbon atoms, favoring 2π/3 angles be-
tween carbon-carbon bonds. Still an explicit characterization of ground-state energy is provided
therein and ground states are shown to be subsets of the hexagonal lattice (graphene) which
suitably minimize their boundary length. With respect to the hexagonal setting of [15], our
results for the square system provide a more comprehensive description of the global geometry
of ground states as well as the macroscopic large-particle shape.

As far as long-range interactions are considered in two dimensions, the first crystallization
result is due to Theil (see [20]), the interactions being governed by a Lennard-Jones-like two-body
potential. This case is considerably more involved since the effect of long-range interaction needs
to be controlled by means of a specific localization technique. In [20], an infinite crystallization
problem is considered in its thermodynamic limit, and it is proved that the energy of ground
states converges to the energy density of a (suitably rescaled) copy of the regular triangular
lattice as the number of particles tends to infinity. Moreover, by imposing suitable periodic or
well-prepared Dirichlet conditions, Theil proved that ground states necessarily correspond to
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subsets of the regular triangular lattice. Some seminal numerical illustration of two-dimensional
crystallization can be found in [23]. The result by Theil has then been reconsidered in [5]
by including a three-body interaction term which favors 2π/3 angles, so that and one expects
crystallization in the hexagonal lattice instead the triangular one. In [5] the authors establish
the thermodynamic limit and the hexagonal crystallization under periodic Dirichlet conditions.

Regarding rigorous crystallization results in three dimensions, the purely two-body case E =
E2 is still open although the natural candidate ground states are the face-centered cubic (FCC)
and the hexagonally close-packed (HCP) lattices. The reader is referred to [7] for some convincing
evidence in this direction. The only available result in three dimensions ask for an additional
E3 three-body term favoring π/3 bonds: the recent paper [6] extends to three dimensions the
analysis of [20]. In particular, the authors quantify the thermodynamic limit of the energy density
of ground states that corresponds to a suitably rescaled FCC-lattice and to prove that ground
states are actually FCC-lattice subsets under suitable boundary conditions. On the other hand,
by letting E3 favor 2π/3 and 4π/3 bonds, in [15] it is proved that finite ground states need
necessarily to be nonplanar. Furthermore, it is shown in [15] that rolled-up structures like
nanotubes are energetically favorable and that the classical C20 and C60 fullerenes are local
energy minimizers.

2. Energy and Elementary Properties of Configurations

A configuration of n identical particles will be indicated by Cn and identified with the respec-
tive particle positions {x1, · · · , xn} ∈ R2n. We denote by `ij the distance between two particles
xi and xj , and by θijk the angle determined by the two segments xi−xj and xk−xj (the choice
of the angle orientation being inconsequential).

xi

xj

xk
θijk

Figure 1. Notation for bonds and bond angles.

The energy E = E(Cn) of a configuration Cn is given by

E(Cn) :=
1

2

∑
i6=j

E2(`ij) +
1

2

∑
(i,j,k)∈A

E3(θijk), (1)

where the functions E2 : [0,∞) → [−1,∞] and E3 : [0, 2π] → [0,∞) are, respectively, the two-
body and the three-body interaction potentials. We choose a strongly-repulsive, short-ranged
two-body potential E2 in the form

E2(`) :=


+∞ if ` < 1,

−1 if ` = 1,

v(`) if 1 < ` < `∗,

0 if ` ≥ `∗,

(2)
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where v is any function taking its values in (−1, 0) and `∗ ∈ (1,
√

2) is a given number. On the
other hand, let σ be some constant in (0, π/8) and define

I1 :=
[π

2
− σ, π

2
+ σ

]
, I2 := [π − σ, π + σ] , I3 :=

[
3π

2
− σ, 3π

2
+ σ

]
, I := I1∪I2∪I3. (3)

The three-body potential E3 is assumed to be vanishing only at π/2, π, and 3π/2, symmetric
with respect to π (which motivates the factor 1/2 in front of the three-body energy term), convex
in I1, and to satisfy the following non-degeneracy and symmetry conditions:

E3(θ) > 8 if θ ∈
(
θmin,

2π

5

]
, (4a)

E3(θ) > 4 if θ /∈ I, (4b)

E3(θ) = E3(θ +
π

2
) = E3(θ + π) if θ ∈ I1, (4c)

E′3,−
(π

2

)
:= lim

t↗0

1

t
E3(t+π/2) < − 2

π
. (4d)

We say that two particles xi and xj are bonded or that there is an (active) bond between xi and
xj , if 1 ≤ `ij < `∗. This particularly entails that E2(`ij) is negative. The set A appearing in
the second sum in (1) is defined as the set of all triples (i, j, k) for which the angle θijk separates
two active bonds. The angle θijk is said to be a (active) bond angle if (i, j, k) ∈ A. Note that
the hard-interaction assumption E2 =∞ on (0, 1) can be relaxed by asking E2 to be very large
in a left neighborhood of 1 (see [20, 5, 24]).

π/2 π 3π/2

E3

∞

−1

1
√
2

E2

Figure 2. The interaction functions E2 and E3.

The set of vertices and line segments corresponding to active bonds forms a graph which we
call bond graph. In the following, we often identify configurations with the respective bond graph,
and use equivalently the terms particle or vertex, and bond or edge. It is worth noting that, as
E2(`) vanishes for ` ≥

√
2, the bond graph is necessarily planar. Indeed, given a quadrilateral

with all sides and one diagonal in [1,
√

2), the second diagonal is at least
√

2. In particular, all
interactions are restricted to nearest neighbors only. Additionally, one can use definition (2) and

check that the minimal angle between two active bonds is θmin := 2 arcsin(1/(2
√

2)) ≈ 0.23π for
all finite-energy configurations.

We recall that the bond graph is said to be connected if each two vertices are joinable by a
simple path. In this case, by a slight abuse of terminology, we will also say that the corresponding
configuration is connected. As all bonds are line segments, every simple cycle in the bond graph
is a polygon (note that, possibly, some internal angles of a polygon may be equal to π). Let us
term acyclic all bonds which do not belong to any polygon. Among these we distinguish between



FINITE CRYSTALLIZATION IN THE SQUARE LATTICE 5

flags and bridges. A bridge is an acyclic bond contained in some simple path connecting two
particles that belong to distinct polygons. Flags are instead all other acyclic bonds, see Figure
3.

Figure 3. Examples of flags (bold in the first two) and a bridge (bold in the last picture).

In the following, we will often refer to the removal of a given bonded particle x from an n-
particles configuration. With this, we mean that we consider another n-particles configuration
such that the particle x is relocated so far away that it has no active bonds. Observe that an
acyclic bond univocally identifies two maximal (by set inclusion), distinct connected subconfig-
urations (each containing one and only one of the vertices of that bond). By removal of the
acyclic bond we mean that we consider another configuration where these subconfigurations are
rigidly moved sufficiently far apart so that such bond is deactivated. Moreover, each flag can be
considered as corresponding to a single particle. In particular, if a configuration has f flags one
may remove the f flag-bonds by removing exactly f particles.

In order to introduce the notion of defect, we define an elementary polygon of a configuration
as a simple cycle with no bonds in its interior region. A defect is an elementary polygon with
more than four bonds. We say that a configuration is defect-free if it has no defects.

The aim of this paper is to investigate the global minimizers of the energy E, for any fixed
n ∈ N. We shall term these global minimizers ground states. Note that ground states exist for
every n ∈ N. Indeed, E is continuous and the ground-state energy is clearly negative (for all
n > 1). Hence, all ground states are necessarily contained in a sufficiently large ball (if particles
are too far apart, no bonds are active and we have E = 0). This proves the coercivity of E.
As the energy is clearly rotation and translation invariant, we shall tacitly assume in all of the
following that statements are to be considered up to isometries.

We refer to Z2 as the square lattice and to the graph binding nearest neighbors in Z2 as the
square graph. A configuration is said to be square if it is a subset of Z2 and its bond graph is a
subset of the square graph. Given a square configuration Cn we define its z-row and z-column
by

Cn(·, z) := {(p, q) ∈ Cn : q = z} and Cn(z, ·) := {(p, q) ∈ Cn : p = z} (5)

for every z ∈ Z. A square configuration Cn is defined to be convex by rows and columns if for
every z ∈ Z both the bond graph of the row Cn(·, z) and the bond graph of the column Cn(z, ·)
of Cn are connected. In particular, we have that a square configuration Cn that is convex by
rows and columns is defect-free.

We also introduce the class of regular configurations, thought as small distorsions of square
ones. We say that a configuration is regular if each of its particles has at most four bonds, each
of the polygons in its bond graph has at least four edges, and all the bond angles are in I. The
relevance of this concept is clarified by the following elementary result.

Proposition 2.1. All ground states are regular.
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Proof. Since the minimum bond angle θmin is greater than 2π/9, the number of bonds of ground-
state particles needs to be less than nine. The case of a particle x with a number of bonds between
five and eight is excluded by hypothesis (4a) since the energy would strictly decrease by removing
x. Moreover, every polygon in a ground state has at least 4 edges from (4a). In fact, if a bond
graph of a ground state contains a triangle, then this will have an internal angle which is smaller
or equal to π/3. Therefore, again in view of (4a), we can find a configuration with strictly lower
energy by removing the particle associated to that angle. This contradicts the fact that the bond
graph of a ground state contains a triangle. Analogously, the fact that all the bond angles of a
ground state need to be in I follows directly from hypothesis (4b). �

Finally, denoting by b = b(Cn) the number of bonds in the bond graph of a given configuration
Cn, it is straightforward to check the lower energy bound

E ≥ −b. (6)

Indeed, (6) follows from the fact that E3 ≥ 0 and E2 ≥ −1. In particular, equality holds in
(6) if and only if Cn is square. We conclude that the energy of square configurations can be
computed by simply counting the number of bonds. Additionally, let us remark that defects in
square configurations necessarily have at least eight bonds.

3. Boundary Energy

Given a configuration Cn, we say that x ∈ Cn is a boundary particle if it is not contained in the
interior region of any polygon of the bond graph, and we call boundary bond a bond connecting
two boundary particles. In the following, we denote by d = d(Cn) the number of boundary
particles of Cn. Accordingly, the remaining n− d vertices will be addressed as interior vertices.
Furthermore, we define the bulk configuration Cbulk

n as the configuration consisting of all the
n − d interior vertices of Cn and denote by Ebulk = Ebulk(Cn) the energy (1) corresponding to
Cbulk
n . Moreover, we call boundary energy Ebnd = Ebnd(Cn) the function defined by

Ebnd(Cn) := E(Cn)− Ebulk(Cn) = E(Cn)− E(Cbulk
n ). (7)

In addition, we denote by Γ = Γ(Cn) and by Θ = Θ(Cn), respectively, the set of all bonds and
the set of all bond angles which are deactivated in Cn by removing boundary particles. We stress
that some of the angles in Θ(Cn) may be adjacent to interior vertices of Cn. In the following we
will often omit the dependence of these objects on the configuration Cn being considered, when
no ambiguity arises.

Since E2 ≥ −1 we observe that Ebnd satisfies

Ebnd ≥ −#Γ +
∑
θi∈Θ

E3(θi) (8)

and the latter holds with an equality if (and not only if) the configuration is square. In such
case Ebnd equals the cardinality of Γ up to sign.

The following lemma provides the crucial estimate on Ebnd.

Lemma 3.1. Let n ≥ 4 and let Cn be a connected regular configuration without flags and bridges.
Then,

Ebnd ≥ −2d+ 4. (9)



FINITE CRYSTALLIZATION IN THE SQUARE LATTICE 7

Proof. Since Cn is connected and does not have any flags or bridges, its bond graph contains a
boundary polygon, made by the d boundary particles and the bonds between them, and containing
all the other n− d particles in its interior region. In the following, we will denote the boundary
polygon by Pd. Furthermore, since Cn is also regular, all the internal angles of Pd need to be in
I, the set defined in (3). Let ε, η, and ν be the ratios of the internal angles of Pd that belong
to I1, I2, and I3, respectively. Furthermore, we denote by ϕi, for i = 1, · · · , εd, the internal
angles of Pd that are in I1, by ψi, for i = 1, · · · , ηd, the internal angles of Pd in I2, and by ξi,
for i = 1, · · · , νd, the internal angles of Pd in I3.

Since the sum of the internal angles of a polygon with d sides is π(d− 2), we observe that

εdϕ+ ηdψ + νdξ = π(d− 2), (10)

where

ϕ :=
1

εd

εd∑
i=1

ϕi, ψ :=
1

ηd

ηd∑
i=1

ψi, and ξ :=
1

νd

νd∑
i=1

ξi.

Furthermore, by (4c) and by the convexity of E3 in I1 we have that

E3(ψi) = E3

(
ψi−

π

2

)
+ E3

(π
2

)
≥ 2E3

(
ψi
2

)
(11)

for every i = 1, · · · , ηd, and

E3(ξi) = E3 (ξi−π) + E3

(π
2

)
+ E3

(π
2

)
≥ 3E3

(
ξi
3

)
(12)

for every i = 1, · · · , νd.

Let us consider a boundary vertex x and the associated internal angle θ of Pd. Since Cn is
regular and since σ < π/8 in (3), we may observe the following facts. If θ is in I1, then x needs
to be two-bonded, because otherwise there would be a bond angle at x smaller than 5π/16 and
so not in I. Both bonds at x are then edges of Pd. If θ ∈ I2, then x is at most three-bonded
since, otherwise, by arguing as above there would be a bound angle smaller than 3π/8. Finally,
for the case in which θ is in I3 we remark that x has at most two interior bonds, still because
Cn is regular. As a consequence, we get an elementary estimate on the cardinality of Γ, that is

#Γ ≤ d+ ηd+ 2νd = εd+ 2ηd+ 3νd. (13)

By estimates (8), (11), (12), and (13) we obtain that

Ebnd ≥ −εd− 2ηd− 3νd+

εd∑
i=1

E3(ϕi) + 2

ηd∑
i=1

E3

(
ψi
2

)
+ 3

νd∑
i=1

E3

(
ξi
3

)
(14)

≥ −εd− 2ηd− 3νd+ εdE3(ϕ) + 2ηdE3

(
ψ

2

)
+ 3νdE3

(
ξ

3

)
≥ −(ε+2η+3ν)d+ (ε+2η+3ν)dE3

(
π(d−2)

(ε+2η+3ν)d

)
,

where we used the convexity of E3 in I1 in the second inequality, while the third inequality
follows from (10) and again the convexity of E3 in I1. Therefore, we have that

Ebnd ≥ −δd+ δdE3(α(δ)), (15)

where

δ := ε+ 2η + 3ν and α(δ) :=
π(d− 2)

δd
.
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Now, we observe that if δ ≤ δ∗ := 2− 4/d, the assertion (9) holds true. In fact, we have

Ebnd ≥ −δ∗d = −2d+ 4, (16)

since E3 is always nonnegative. Thus, it remains to verify the assertion for δ > δ∗. In this case,
since α(δ) < α(δ∗) = π/2, the hypothesis (4d) yields

E3(α(δ)) ≥ E3

(π
2

)
+ V ′3,−

(π
2

)(
α(δ)−π

2

)
> − 2

π

(
α(δ)−π

2

)
=
δd− 2d+ 4

δd
. (17)

From the latter it easily follows that

−δd+ δdE3(α(δ)) ≥ −2d+ 4.

In view of relation (15), this completes the proof. �

An immediate corollary of the boundary-energy estimate of Lemma 3.1 reads as follows.

Corollary 3.2. Let n ≥ 4 and let Cn be a connected regular configuration without flags and
bridges. If Cn is nonsquare and Cbulk

n is square, then inequality (9) is strict.

Proof. By following the proof of Lemma 3.1 we aim at verifying that if a bond in Γ has not
length 1 or a bond angle of Θ is not in {π/2, π, 3π/2}, then

Ebnd > −2d+ 4. (18)

We begin by observing that the inequality (14) is strict if the length of a bond in Γ is not 1 or
if an angle in Θ which is adjacent to an interior vertex differs from π/2, π, or 3π/2, and thus in
these cases relation (18) holds.

Then, we notice that Ebnd = −2d + 4 implies that the sum of the images through E3 of all
the bond angles in Θ is equal to δdE3(α(δ)). Thus, if we prove that α(δ) = π/2 or, in other
words, that δ = δ∗, then it would follow that all the bond angles are in {π/2, π, 3π/2} and the
assertion of the corollary would hold. Therefore, we are reduced to prove the following claim:
Ebnd = −2d+ 4 implies δ = δ∗. To establish the claim we can easily show that, if δ 6= δ∗, then
(18) holds. In fact, if δ > δ∗, then inequality (18) follows from relation (17), while if δ < δ∗,
then the inequality in (16) is strict and this again implies the inequality (18). Hence, the claim
holds and the proof is complete. �

4. Construction of candidate ground states

The aim of this section is to present by construction a family of configurations that will be
later proved to be ground states in Theorem 5.1. In particular, for all n we find a configuration
Dn with energy

E(Dn) = −β(n),

where, the function β is defined by

β(n) := b2n− 2
√
n c

and bxc := max {z ∈ Z : z ≤ x} denotes the lower right-continuous lower integer-part function.
Let us firstly record here a remark on the function β which actually stands as an alternative
(and equivalent) definition by recursion of β.

Proposition 4.1. We have that

β(n+1) = β(n) +

{
1 if n = m2 or n = m2 +m for some m ∈ N
2 else.
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Proof. Let us firstly discuss the case n = m2. One has that β(n+1) = β(m2+1) = β(m2) + 1 if
and only if ⌊

1− 2
√
m2+1

⌋
= −2m.

The latter is indeed equivalent to the inequalities

−2m ≤ 1− 2
√
m2+1 < −2m+ 1

which can be easily checked.

In case n is not a square, we define m = b√nc and let ` = n −m2 so that 1 ≤ ` < 2m + 1.
We have that

β(n) = β(m2+`) = 2m2 + 2`2 +
⌊
−2
√
m2+`

⌋
.

Since −2m − 2 < −2
√
m2+` < −2m we have that −2m − 2 ≤ b−2

√
m2+`c ≤ −2m − 1. The

assertion follows upon proving that the function ` 7→ b−2
√
m2+`c takes the values −2m− 2 for

` ≤ m and −2m − 1 for ` ≥ m + 1. As the latter function is monotone, it suffices to find the
first integer `∗ such that −2m − 1 = b−2

√
m2+`∗c. Given the above considerations, such `∗ is

the smallest integer such that

m+
1

2
≤
√
m2+`

which is in turn is equivalent to

m2 +m+
1

4
< m2 + `

which holds if and only if ` > m+ 1/4. Hence, `∗ = m+ 1 and the assertion follows. �

In the sequel, we will make use of the following property of the function β in order to discuss
the connectedness of ground states, see Theorem 5.1.

Proposition 4.2. Let n ≥ 2 and let m < n be an integer. Then,

β(n−m) + β(m) + 1 < β(n).

Proof. The assertion follows by computing

β(n−m) + β(m) + 1 ≤
⌊
2(n−

√
n−m−√m) + 1

⌋
≤
⌊
2n− 2

√
n+ 1

⌋
= β(n) + 1

where we have used the fact that
√
n <
√
n−m+

√
m. �

The main result of this section is the following proposition which provides an upper bound in
the ground state energy for every n ∈ N.

Proposition 4.3. For all n there exists a configuration Dn with E = −β(n).

Proof. The proof consists in constructing subsets of the square lattice with exactly β(n) bonds.
This is immediate for n ≤ 4. Let n > 4 and m = b√nc. If n = m2 then the m ×m square has
exactly β(m2) bonds. If n = m2 + ` for some 1 ≤ ` < 2m+ 1 we construct Dn by starting from
the m ×m square and adding progressively ` particles at specific sites of the square lattice. In
particular, we add the first particle right above the uppermost among the leftmost particles in the
m×m square and then proceed clockwise by adding additional particles bonded to the previously
added ones and, whenever possible, to the original m × m square, see Figure 4. By means of
the representation of Proposition 4.1 it may be easily proved that this procedure produces a
configuration with exactly β(m2+`) bonds. �
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1 2 3 4 5

Figure 4. Construction of Dn with E(Dn) = −β(n).

5. Ground states are square

This section brings the main result of the paper consisting in a characterization of the ground-
state geometry as well as an explicit determination of the ground-state energy.

Theorem 5.1. If Cn is a ground state, then Cn is square, connected, and

E(Cn) = −β(n). (19)

Proof. Thanks to Proposition 2.1 we may work with regular configurations.

Let n < 4 and let Cn be a ground state. Since polygons with less than 4 edges are excluded
in the bond graph of Cn, the maximum number of bonds is n − 1. Thus, the assertion follows
from (6) and the fact that we can easily construct square connected configurations with n − 1
bonds. Note also that for n = 4 the maximum number of bonds is 4 and the unit square is the
ground state. So, we now assume that the assertion holds for any ground state Cm with m < n
(in particular this entails that the energy of any m-particles configuration with m < n is greater
than or equal to −β(m)). We will prove that it holds also for Cn in some steps.

Step 1: Cn not connected. Suppose by contradiction that the ground state Cn has two or more
distinct connected components. Let Cm, Cn−m be two subconfigurations such that no bond joins
each other. By the induction assumption E(Cn) = E(Cm) + E(Cn−m) ≥ −β(m) − β(n−m).
This implies E(Cn) > −β(n) by using Proposition 4.2, contradicting the fact that Cn is a ground
state, see Proposition 4.3.

Step 2: Nonsquare Cn with flags or bridges. Suppose by contradiction that the ground state Cn
is nonsquare. If a bridge is there, consider the two subconfigurations Cm and Cn−m obtained by
removing that bridge. If both Cm and Cn−m are square and Cn is not, then the bridge is not of
unit length or creates an angle which is not a minimum of E3. In particular, its contribution to
the energy of Cn is strictly greater than −1. By the inductive assumption we obtain

E(Cn) > −β(m)− β(n−m)− 1. (20)

If one of the two configurations Cm or Cn−m is not square, than E(Cm) +E(Cn−m) > −β(m)−
β(n−m) by induction. Since the bridge contribution to the energy is in general greater than or
equal to −1, we still get (20). In both cases by (20) and by Proposition 4.2 we conclude that
E(Cn) > −β(n), and this contradicts the fact that Cn is a ground state. If flags are present,
then there is a one-bonded particle x (the bond being a flag) and we let Cn−1 = Cn \ {x}. If
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Cn−1 is nonsquare, by induction E(Cn−1) > −β(n−1), therefore

E(Cn) > −β(n−1)− 1 (21)

since the energy drop in removing x is in modulus at most 1. Such a drop is strictly less than 1
if Cn−1 is square, as in such case the flag under consideration is not of unit length or creates an
angle which is not a minimum of E3 (otherwise Cn would have been square itself). Then by the
inductive assumption (21) still holds. In both cases, by combining (21) and β(n−1) + 1 ≤ β(n)
from Proposition 4.1, we obtain again that E(Cn) > −β(n), a contradiction.

Step 3. Nonsquare and connected Cn with no flags nor bridges. Owing to Steps 1-2, we are left
with the more relevant case of a connected ground state Cn with no flags nor bridges. Suppose
by contradiction that Cn is not square. Then, either the bulk is nonsquare or we are in the
assumptions of Corollary 3.2. In the first case, by induction

Ebulk > −β(n− d).

In the second case, by Corollary 3.2, we have

Ebnd > −2d+ 4.

Thus, by (9) and by the fact that from the inductive hypothesis it follows that Ebulk ≥ −β(n−d),
in both cases we obtain

E = Ebulk + Ebnd > −
⌊
2(n−d)− 2

√
n−d

⌋
− 2d+ 4 = −2n−

⌊
−2
√
n−d

⌋
+ 4.

Since the right-hand side is integer, the strict inequality implies

−(b−Ec+1) ≥ −2n+ 2
√
n−d+ 4. (22)

We now prove that
n− d ≥ 2(b−Ec+1)− 3n+ 4, (23)

by adapting an argument from [16, 22]. To this end, let hj be the number of elementary j-gons
in the bond graph and h be the total number of elementary polygons. We clearly have∑

j≥1

jhj = 2b− d,

and so we obtain that
4h ≤ 2b− d (24)

since all elementary polygons have at least four edges. Combining this with the Euler formula
h+ n = b+ 1 we get

n− d ≥ 2b− 3n+ 4. (25)

On the other hand, as Cn is not square we have from relation (6) that E > −b. Since b is integer,
−E < b implies b−Ec ≤ b− 1, which, together with relation (25), entails (23).

By (22) and (23) we finally obtain that

−(b−Ec+1) ≥ −2n+ 2
√

2(b−Ec+1)− 3n+ 4 + 4.

Since the function x 7→ x + 2n − 2
√
−2x− 3n+ 4 − 4 is nondecreasing and vanishes at x =

−2n+ 2
√
n, the above inequality implies

−(b−Ec+1) ≥ −2n+ 2
√
n,

but now the above left-hand side is integer, therefore

E > −(b−Ec+1) ≥ −
⌊
2n−2

√
n
⌋
.
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We have obtained E > −β(n) which is in contradiction with the fact that Cn is a ground state.

Step 4: Energy equality. In order to complete the induction proof we need to check that the
ground state Cn enjoys (19). Since we already know that E ≤ −β(n) by Proposition 4.3, what
we are left to prove is the opposite inequality, for square connected configurations only (in the
other cases Cn would fail to be a ground state by the previous steps).

As Cn is square and connected, in case it has a flag, by using induction and the fact that a
flag decreases the energy at most by 1, we have that E ≥ −β(n−1)− 1. Then, the lower bound
E ≥ −β(n) follows by Lemma 4.1. If Cn has two subconfigurations of n and n − m particles
connected by a bridge, by induction we find E ≥ −β(n−m)− β(m)− 1. Then, the lower bound
E ≥ −β(n) follows by applying Proposition 4.2. If Cn has a single connected component, no
flags and no bridges, by (7), induction, and Lemma 3.1 we get that

E ≥ −β(n−d)− 2d+ 4 ≥ −2n−
⌊
−2
√
n−d

⌋
+ 4. (26)

Next we argue as in the previous step: we observe that (25) holds and then from (6) we get
n− d ≥ −2E − 3n+ 4, which, together with (26), yields E ≥ −2n+ 2

√
−2E−3n+4 + 4, hence

E ≥ −2n+ 2
√
n. But (6) holds with equality since Cn is square. In particular, E is integer, and

so the assertion E ≥ −β(n) follows. �

The exact quantification of the ground-state energy E(Cn) = −β(n) = −b2n − 2
√
nc has a

number of remarkable consequences which will be illustrated in all of the remainder of the paper.
It allows not only to recover the thermodynamic limit

lim
n→∞

1

n
E(Cn) = −2

in the spirit of [5, 20] but also to precisely quantify boundary effects. We shall draw from the
knowledge of E(Cn) a detailed geometrical description of ground states. For instance, by knowing
E(Cn) and using Proposition 4.2 we readily check the following.

Corollary 5.2. Ground states have no bridge.

As far as flags are concerned, we can prove the following.

Corollary 5.3. Let Cn be a ground state. If Cn has a flag then n = 1, 2, 3, n = m2 + 1, or
n = m2 +m+ 1.

Proof. We can surely assume n ≥ 4 as the other cases are easily checked. Let Cn contain a
flag. Then, there is a single bonded particle x, the bond being a flag, and we consider the
(n−1)-particle configuration Cn−1 := Cn \ {x}. We compute

−β(n−1) ≤ E(Cn−1) = E(Cn) + 1 = −β(n) + 1.

Owing to Proposition 4.1 we conclude that n = m2 + 1 or n = m2 +m+ 1. �

6. Uniqueness and defects

Ground states are generally not unique, see Figure 5. Still, we have the following characteri-
zation result for some specific values of n.

Theorem 6.1. Let Cn be a ground state for n ≥ 4. If n = m2 then Cn is an m×m square. If
n = m2 +m then Cn is an m× (m+1) rectangle.
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Proof. Let n = m2 or n = m2 + m. In this case, the (boundary polygon of the) ground state
Cn is necessarily convex. Indeed, if it was not convex it would present at least one reentrant
corner. This would lead to the possibility of activating at least two bonds by adding an extra
particle. Hence, one would have that β(n+1) ≥ β(n) + 2, a possibility which is excluded by
Proposition 4.1.

As Cn is convex it has to coincide with an a× b rectangle. In particular, the number of bonds
in Cn is (a−1)b+(b−1)a. By maximizing the latter over the integers under the constraint ab = n
we obtain the thesis. �

For all other values of n ground states are not unique. In particular, we have the following.

Corollary 6.2. Ground states are unique for n = 1, 2, n = m2, n = m2 + m, n = m2 − 1, or
n = m2 +m− 1 and are nonunique in all other cases.

Proof. The assertion is obvious for n = 1, 2. Uniqueness for n = m2 or n = m2 + m follows
from Theorem 6.1. For n = m2 − 1 and n = m2 + m − 1 the ground states correspond to an
m×m square minus a two-bonded corner particle and to an n = m2 + m− 1 the ground state
corresponds to m× (m+1) rectangle minus a two-bonded corner particle, respectively. As such,
they are unique.

Let us now come to nonuniqueness. For n = 3 we have exactly two ground states depending
on the fact that the three particles form a π or a π/2 bond. For n ≥ 5 one can consider Dn to be
constructed as in the proof of Proposition 4.3. If n 6= m2 or n 6= m2 +m then Dn is nonconvex.
It is hence possible to remove a two-bonded corner particle and place it in correspondence to
the reentrant corner. This produces another configuration which is not isomorphic to Dn if
n 6= m2 − 1. This entails nonuniqueness. �

Figure 5. Nonisomorphic ground states for n = 17.

Let us close this section with another observation on the geometry of ground states.

Proposition 6.3. Ground states are convex by rows and columns. Hence, defect-free.

Proof. Given the ground state Cn ⊂ Z2, we consider the configuration

C ′n = {(i, q) ∈ Z2 | #Cn(·, q) 6= 0 and i = 1, . . . ,#Cn(·, q)}
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which corresponds to move particles on each row in order to make it connected and aligned,
see Figure 6. In case a row Cn(·, z) is not connected we have that E(C ′n) < E(Cn) as this
rearrangement activated at least one new bond. This contradicts the fact that Cn is a ground
state. An analogous observation holds for columns. �

C D

Figure 6. Construction of C ′n. One has E(Cn) = −17 whereas E(C ′n) = −21.

7. Ground states and discrete isoperimetric inequality

Let us consider the subproblem of minimizing E on square configurations only, that is, looking
for the square configurations with maximal number of bonds. Under the a priori assumption
that ground states are square (which is in turn something that we prove in Theorem 5.1) energy
minimization turns out to be a classical problem in Discrete Mathematics. In particular, by
introducing the combinatorial notion of edge perimeter of a square configuration Cn as

Q(Cn) := #
{

(x, y) ∈ Z2×Z2 | x ∈ Cn, y 6∈ Cn, |x− y| = 1
}
, (27)

we immediately check that
−2E(Cn) +Q(Cn) = 4n, (28)

since each particle in Z2 has exactly four bonds. In particular, the square configuration that
maximizes the number of bonds (that is −E) is the one that minimizes the edge perimeter. This
corresponds to a suitable discrete isoperimetric inequality as argued in [10]. The reader is also
referred to [1, 4] for extensions to higher dimensional square lattices, and to the monograph [12]
for an overview.

We shall revisit this fact in this section and sharpen the result by including an explicit quan-
tification of the involved isoperimetric constant.

In the following, we prefer to work with suitable geometric notions of area and perimeter of a
configuration instead of the combinatorial notion of edge perimeter. This change of perspective is
motivated in order to highlight the geometric nature of the argument, directly relate to geometric
approximations, and possibly allow extension to regular albeit nonsquare configurations.

Let Cn be a regular configuration. We denote by F (Cn) ⊂ R2 the closure of the union of
the regions enclosed by the elementary cycles of Cn that have only 4 bonds (no defects), and by
G(Cn) ⊂ R2 the union of all bonds in the bond graph of Cn which are not included in F (Cn).
Then, we may define the area and the perimeter of Cn by

A(Cn) := L2(F (Cn)), P (Cn) := H1(∂F (Cn)) + 2H1(G(Cn)).

In the above definitions, L2 is the two-dimensional Lebesgue measure, ∂F (Cn) is the boundary of
F (Cn) and H1 denotes the one-dimensional Hausdorff measure. Notice that P (Cn) = d+ f + 2g
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if Cn is defect-free with d boundary particles, f flags and g bridges, since acyclic bonds are
counted twice. In particular, recalling Corollary 5.2 and Corollary 5.3, if Cn is a ground state
and n ≥ 4 we have that P (Cn) = d if it has no flags and P (Cn) = d + 1 otherwise (that is, if
n = m2 + 1 or n = m2 +m+ 1). Notice also that this definition of perimeter is consistent with
external approximations. Indeed one can prove that

P (Cn) = lim
ε↘0
H1
(
∂
(
∂F (Cn) ∪G(Cn) +Bε

))
where Bε = {y ∈ R2 | |y| ≤ ε}. The energy of a square configuration Cn may now be rewritten
in terms of a linear combination of its area and its perimeter, as expected. Namely,

−E(Cn) = 2A(Cn) +
1

2
P (Cn), (29)

which corresponds to the equality case in (24) (that is, for connected defect-free square configu-
ration without flags and bridges, in such case d is the perimeter).

In order deal with the isoperimetric inequality, we introduce a discrete monotone rearrange-
ment procedure, that we call rectangularization, similar to the reordering of [10, 4, 12].

Definition 7.1. We say that a square configuration Cn is quasirectangular, or a quasirectangle,
if it is connected, convex by rows and columns, and there exists a triplet (r, c, e) in

Tn := {(r, c, e) ∈ N3 | rc+ e = n, 1 ≤ e ≤ max{r, c}}
such that the particles of Cn are all arranged in r rows with c particles each plus an extra
connected line consisting of e particles, each bonded to one and only one particle of Cn outside
of such line and such that the boundary polygon has at most one reentrant corner. We will use
the notation Rr,c,en for a quasirectangle with n particles organized in r rows, c columns, and in
one extra line with e particles.

Examples of quasirectangles are all the configurations of Section 4, see Figure 4, as well as
the first and the last two configurations in Figure 5. Note that, since in the definition of Tn we
excluded triples (r, c, e) with e = 0, the m×m- square is interpreted as a quasirectangle for with
(r, c, e) = (m−1,m,m) or (r, c, e) = (m,m−1,m). This choice will simplify notation later on.

Definition 7.2. Letting Cn be a square configuration. We define its rectangularization R(Cn)
as the quasirectangle resulting from rearranging the particles of Cn according to the following
three steps:

1. Rearrange Cn in C ′n by letting

C ′n := {(i, q) ∈ Z2 | #Cn(·, q) 6= 0 and i = 1, . . . ,#Cn(·, q)};
2. Rearrange C ′n in C ′′n by letting

C ′′n := {(p, j) ∈ Z2 | #Cn(p, ·) 6= 0 and j = 1, . . . ,#Cn(p, ·)};
3. Define R(Cn) as the configuration obtained from C ′′n by performing for p = 2, 3, . . .

the following iterative procedure: if #C ′′n(·, p) < #C ′′n(·, p−1) then move the rightmost
among the uppermost particles of C ′′n to the (empty) location (#C ′′n(·, p)+1, p).

It is immediate to realize that R(Cn) is a quasirectangle, hence in particular it is convex by
rows and columns. The following result shows how the rectangularization interacts with energy,
area, and perimeter.

Lemma 7.3. For any connected square configuration Cn we have
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(i) E(R(Cn)) ≤ E(Cn);
(ii) P (R(Cn)) ≤ P (Cn);

(iii) A(R(Cn)) ≥ A(Cn).

Proof. We begin by observing that, in view of the equality (29), assertion (iii) is a consequence
of (i) and (ii). Thus, it suffices to prove (i) and (ii).

Assertion (i) follows from the fact that the number of bonds does not decrease in the rect-
angularization of Cn. In fact, first in passing from Cn to C ′′n it is clear that no bonds are lost,
whereas it is possible that new bonds are activated. Finally, we observe that every time it is
necessary to move a particle to pass from C ′′n to R(Cn), we move a one or two-bonded particle
to a two-bonded particle. Thus, also in this last process the total number of bonds does not
decrease.

We now establish (ii). To this end, we define e1 := (1, 0) and e2 := (0, 1) and, for i =
1, 2, we denote by Pi(Cn) the perimeter of the part of the boundary of Cn in the direction ei.
Furthermore, we observe that the projection of the bond graph of Cn onto the ei-axis is an
interval, and we denote its length by Πi(Cn). From the definition of perimeter it easily follows
that

P1(Cn) ≥ 2Π1(Cn) and P2(Cn) ≥ 2Π2(Cn) (30)

and that we have two equalities in (30) if and only if Cn is also convex by rows and columns.
Indeed, in the latter case the perimeter of Cn is the perimeter of the smallest closed rectangle,
with edges in the directions of e1, e2, which contains Cn. Furthermore, by Definition 7.2 we
observe that

Π1(Cn) ≥ Π1(C ′n) = Π1(C ′′n) and Π2(Cn) = Π2(C ′′n). (31)

Thus, by (30) and (31) we obtain

P (Cn) = P1(Cn) + P2(Cn) ≥ 2Π1(C ′′n) + 2Π2(C ′′n) = P1(C ′′n) + P2(C ′′n) = P (C ′′n) (32)

where we used that C ′′n is convex by rows and columns. Finally, when we need to move a two-
bonded particle in passing from C ′′n to R(Cn) the perimeter does not change while when we need
to move a flag into a two-bonded particle the perimeter strictly decreases by two. Therefore we
obtain P (C ′′n) ≥ P (R(Cn)), which together with (32) concludes the proof of assertion (ii). �

A consequence of the above construction is the following

Corollary 7.4. Let Cn be a connected square configuration. The following assertions are equiv-
alent:

(a) Cn is a ground state,
(b) Cn minimizes perimeter over connected square configurations of n particles,
(c) Cn maximizes area over connected square configurations of n particles.

Proof. If (a) ⇔ (b) holds, then (b) ⇔ (c) follows immediately from equality (29). Thus, we are
reduced to establish the equivalence between (a) and (b). From the proof of Proposition 7.3, we
see that if (b) holds, Cn is necessarily convex by rows and columns (otherwise we would get a strict
inequality in (30) and then we would find P (R(Cn)) < P (Cn) against (b)). As a consequence,
P (Cn) is the perimeter of the rectangle with edges Π1(Cn),Π2(Cn), the notation being still the
one of (30). Since Cn is convex by rows and columns, it is also clear that Q(Cn) = P (Cn) + 4.
By this relation, with (28) and Proposition 6.3 we see that Cn minimizes the edge perimeter
(whose minimality also implies convexity by rows and columns) and we infer that Cn is a ground
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state. On the other hand, if (a) holds, by Proposition 6.3 Cn is convex by rows and columns,
then similarly we conclude that Cn is a minimizer for both Q and P . �

From the previous corollary it follows in particular that on ground states the quantities E, P ,
and A are invariant by R. More precisely, we are provided with the possibility of characterizing
all ground states for those n for which nonuniqueness occurs, see Section 6. Indeed every ground
state corresponds to a quasirectangle and we can list all the quasirectangular ground state. In
particular, all ground states can be obtained by transforming quasirectangle ground states and
thus can, at least in principle, be enumerated and described.

We are ready for the isoperimetric characterization of ground states. In the following, we let
d·e denote the left-continuous upper integer-part function dxe = min{z ∈ Z : x ≤ z}.
Theorem 7.5. Let Cn be a connected square configuration, n > 1. Then,√

A(Cn) ≤ knP (Cn) (33)

where the isoperimetric constant kn is given by

kn =

√
n− d2√n−1e

2d2√n−1e − 2
. (34)

Moreover, equality corresponds to ground states.

Proof. Step 1. Let us start by checking the inequality(33). In view of Lemma 7.3 it suffices to
establish inequality (33) for quasirectangles. Thus, let us define kn by

kn := max
(r,c,e)∈Tn

√
A (Rr,c,en )

P (Rr,c,en )
(35)

where we recall that Rr,c,en denotes the quasirectangle with n particles organized in r rows, c
columns and in one extra line with e = n− rc particles (Definition 7.1). It is immediate to check
that the area and the perimeter of a quasirectangle Rr,c,en are respectively given by

A(Rr,c,en ) = (r−1)(c−1) + e− 1 = n− (r + c),

P (Rr,c,en ) = 2(r−1) + 2(c−1) + 2 = 2(r + c)− 2.
(36)

Hence, (35) is equivalent to

kn = max

{√
n− (r+c)

2(r+c)− 2

∣∣∣∣∣ r, c ∈ N and n−max{r, c} ≤ rc < n

}
.

As the function under maximization in the previous formula decreases with respect to r + c, kn
is realized at the minimum admissible value of r + c, i.e.,

k∗ := min{r + c | r, c ∈ N and n−max{r, c} ≤ rc < n}.
We claim that

k∗ = d2√n− 1e (37)

To prove the claim, we first remove the constraint that restricts r and c to be integers. In fact,
it is easy to verify that

k := min{r + c | n−max{r, c} ≤ rc < n}
is equal to 2

√
n − 1. As k∗ = dke, we obtain (37). Consequently, we can compute kn and see

that it is given by (34).
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Step 2. We now show that every ground state Cn satisfies (33) with the equality. We begin
by observing that if Dn is the configuration constructed in Proposition 4.3, then√

A(Dn) = knP (Dn). (38)

In fact, this is an easy consequence of

2b√nc = d2√n− 1e for 1 ≤ n− (b√nc)2 ≤ b√nc

and of

2b√n+ 1c = d2√n− 1e for b√nc ≤ n− (b√nc)2 ≤ n− 1.

Since Dn is a ground state by Proposition 4.3 and Theorem 5.1, we may apply Corollary 7.4
to both the ground states Dn and Cn and obtain that P (Cn) = P (Dn) and A(Cn) = A(Dn).

Therefore, from (38) it follows that
√
A(Cn) = knP (Cn).

Step 3. In this last step we consider a connected square configuration Cn such that√
A(Cn) = knP (Cn), (39)

and we prove that Cn is a ground state. Denote again by Dn the ground state provided by Propo-
sition 4.3 and note that Dn minimizes perimeter over among square n-particles configurations
by Corollary 7.4. Then, we get

E(Dn) ≤ E(Cn) = −2A(Cn)− 1

2
P (Cn) = −2k2

nP
2(Cn)− 1

2
P (Cn)

≤ −2k2
nP

2(Dn)− 1

2
P (Dn) = E(Dn),

where we used (29), (39) and (38). This shows that E(Cn) = E(Dn) and concludes the proof. �

In view of Theorem 7.5 we are able deduce explicit formulas for area and perimeter of ground
states. In particular, we have this further characterization of ground states.

Corollary 7.6. Let Cn be a connected square configuration. The following assertions are equiv-
alent:

(a) Cn is a ground state,
(b) A(Cn) = n− d2√n− 1e,
(c) P (Cn) = 2d2√n− 1e − 2.

Proof. By Corollary 7.4 ground states minimize the perimeter and maximize the area among
square n-particles configurations. Moreover there are quasirectangular ground states, see Propo-
sition 4.3 Hence, the assertion follows from (36) and (37). �

Notice that the above characterizations of area and perimeter are consistent with (19) via
equality (29). Indeed, by Corollary 7.6 we have that Cn is a ground state if and only if

−E(Cn) = 2A(Cn) +
1

2
P (Cn) = 2(n− d2√n− 1e) +

1

2
(2d2√n− 1e − 2)

= 2n− d2√n− 1e − 1 = β(n).
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8. Ground states converge to squares as n→∞

Theorem 6.1 provides a complete geometric characterization of ground states for specific values
of n. For all other values, nonuniqueness occurs. Note that, even by restricting to the class of
quasirectangles, no uniqueness holds. Indeed, it suffices to consider the quasirectangles identified
by the triples (9, 9, 7) and (10, 8, 8) which are both ground states but not isomorphic.

The aim of this last section is to provide some precise description of the aspect ratio of ground
states in case of nonuniqueness. We show that ground states approach a square as the number
of particles n gets large. We give a quantitative description of this phenomenon in the following
Theorem 8.1 where we state that the Hausdorff distance between a ground state Cn and the
square of side b√nc is of order n1/4. In particular, suitably rescaled ground states converge to the
square. More precisely, by letting Cn be a ground state and Gn = Cn/

√
n := {x/√n | x ∈ Cn},

we prove that Gn → [0, 1]2 (up to isometries) with respect to the Hausdorff topology.

In this respect, let us mention the analysis by Yeung, Friesecke, and Schmidt [24] where an
analogous observation was made for the triangular-lattice case. In that paper, the description of
the limiting geometry and the emergence of a hexagonal macroscopic Wulff shape was investigated
by Γ-convergence. See also in this context Alicandro, Braides, and Cicalese [2]. Our approach is
quite different as we concentrate on minimizers instead (rather than on energies) and provide a
sharp quantitative estimate in terms of Hausdorff topology for all n. We have the following.

Theorem 8.1. The ground state Cn approaches the square Sn of side b√nc as n gets large.
Precisely, we have that

d(Cn, S
′
n) ≤ 1

2
n1/4 + 1

where d is the Hausdorff distance and S′n = Sn + a for some a ∈ R2.

Proof. Let Cn be a ground state and `1, `2 ∈ N be the number of particles of the minimal
`1×`2 rectangular configuration including Cn. Recall that ground states are convex by rows and
columns and so we have two equalities in (30), thus `1 = Π1(Cn) + 1, `2 = Π2(Cn) + 1. Assume
with no loss of generality that `1 ≥ `2. Then, by Corollary 7.6 (c) we have that

P (Cn) = 2d2√n−1e − 2 = 2((`2−1) + (`1−1))

so that, in particular, `1 +`2 = k∗+1, where k∗ is given by relation (37). We shall hence consider
the maximization problem

max{`1 − `2 : `1, `2 ∈ N, n ≤ `1`2, `1 + `2 = k∗ + 1}
which can be solved analytically. We can compute the optimal pair (`∗1, k∗+1−`∗1) which corre-
sponds to

`∗1 =

⌊
(k∗+1) +

√
(k∗+1)2−4n

2

⌋
=

⌊
d2√ne+

√
(d2√ne)2−4n

2

⌋
.

In particular, the maximal value of `1 − `2 reads

`1 − `2 = 2`∗1 − k∗ − 1 = 2

⌊
d2√ne+

√
(d2√ne)2−4n

2

⌋
− d2√n−1e − 1

≤ 2

⌊√
(d2√ne)2−4n

2

⌋
≤
√

(d2√ne)2−4n ≤
√

(2
√
n+1)2−4n

=

√
4
√
n+ 1 ≤ 2n1/4 + 1.
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As we have that `2 = d2√ne − `1, from `2 ≤ `1 ≤ `2 + 2n1/4 + 1 we deduce that

1

2
d2√ne ≤ `1 ≤

1

2
d2√ne+ n1/4 +

1

2
.

By using the elementary inequalities x ≤ dxe ≤ x+ 1 we obtain
√
n ≤ `1 ≤

√
n+ n1/4 + 1.

Correspondingly, we also have that
√
n− n1/4 − 1 ≤ `2 ≤

√
n. In particular, by referring to the

notation of Figure 7, one can check that d(Cn, S
′) ≤ n1/4 + 2 so that the assertion follows by

translating S′ (to the right). �

b√nc

√
n

√
n+n1/4+1

`2

`1

S′

Cn

Figure 7. Construction for the proof of Theorem 8.1. Note that the depicted
configuration Cn is chosen for illustrative purposes only. In particular, it is not
a ground state.

For the sake of completeness and of comparison with [24], we conclude this section by restating
the above aspect-ratio result in terms of weak∗-convergence of empirical measures. Indeed,
Assume Cn = {x1, . . . , xn} be a ground state and let µn be the probability measure in R2 given
by

µn =
1

n

∑
i

δxi/
√
n.

Then, Theorem 8.1 entails in particular that, up to isometries, µn → µ in the weak∗ sense where
µ is the Lebesgue measure restricted to the square [0, 1]2. The latter observation corresponds to
the square-lattice version of the former [24, Theorem 1.2]. In particular, given two ground states
Cn, Gn ⊂ Z2 we have that

d(Cn, G
′
n) ≤ n1/4 + 3

where G′n = Gn + a for some a ∈ Z2. As the diameter of a ground states is controlled by√
2n+ O(n1/4), we readily conclude that

#(Cn4G′n) ≤
√

2n3/4 + O(n1/2).

That is, two n-particles ground state differ at most by O(n3/4) particles.

This same conclusion has been recently obtained by Schmidt [19] in the frame of the so-called
Heitmann-Radin sticky potentials. These correspond to choose v = 0 in (2) and E3 = 0 entailing
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finite crystallization on the triangular lattice [13]. Also in this case, ground states deviate at
most by O(n3/4) particles from the ideal (hexagonal) Wulff shape configuration.
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(Edoardo Mainini) Università degli Studi di Genova, Dipartimento di Ingegneria meccanica, ener-

getica, gestionale e dei trasporti (DIME) - sezione MAT, Piazzale Kennedy 1, I-16129 Genova, Italy

(Paolo Piovano) Istituto di Matematica Applicata e Tecnologie Informatiche “E. Magenes” - CNR,
via Ferrata 1, I-27100 Pavia, Italy, & Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-

Platz 1, A-1090 Vienna, Austria

(Ulisse Stefanelli) Istituto di Matematica Applicata e Tecnologie Informatiche “E. Magenes” - CNR,
via Ferrata 1, I-27100 Pavia, Italy, & Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-

Platz 1, A-1090 Vienna, Austria


