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Abstract

We consider a variational model related to the formation of islands in heteroepitaxial
growth on unbounded domains. We first derive the scaling regimes of the minimal energy in
terms of the volume of the film and the amplitude of the crystallographic misfit. For small
volumes, non-existence of minimizers is then proven. This corresponds to the experimentally
observed wetting effect. On the other hand, we show the existence of minimizers for large
volumes. We finally study the asymptotic behavior of the optimal shapes.

1 Introduction

We consider the epitaxial deposition of a thin crystalline film on a relatively thick rigid substrate
with a misfit between the lattice parameters of the film and those of the substrate. Experimental
and numerical observations suggest that the shape of the film changes with increasing volume
(see [3, 15, 19, 32, 30]). At small volumes, one typically observes a very thin flat layer (“wet-
ting”), while at larger volumes, compact islands form. This transition is often explained as the
result of a competition between two opposing types of energies, namely, the stored strain energy
due to the crystallographic misfit, and the surface energy of the film’s free surface. Heuristically,
at small volumes, the surface energy dominates, and complex structures are avoided, while at
larger volumes, the film forms patterns to release elastic energy at the price of an additional
surface energy.

We study analytically a two-dimensional variational model introduced in [31] (see also [3, 10,
14]), to describe the surface morphologies of the epitaxially strained film. The main difference
to the previous analytical works (see [10, 14, 18]) is that the model explicitly allows for wetting,
which corresponds to film profiles with unbounded support. We assume that the film occupies
a domain Ωh which can be described as a subgraph of a height profile function h : R→ [0,∞),
i.e., Ωh := {x := (x, y) ∈ R2 : 0 < y < h(x)}. The energy functional is then given by

F (u, h) :=

ˆ
Ωh

|∇u|2 dx +

ˆ
R

(√
1 + h′2 − 1

)
dx, (1.1)

where u : Ωh → R. For fixed volume d > 0 of the film, we look for profile functions h and
associated displacement functions u : Ωh → R that minimize the total energy (1.1) subject to
the constraints

´
R hdx = d and u(x, 0) = e0x for all x ∈ R. The latter condition describes the

crystallographic misfit between the substrate and the film, where e0 > 0 measures its amplitude.
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The first term in (1.1) models the strain elastic energy in the film. Recall that we assume that
there is a mismatch between the two crystal lattices, i.e., there is no stress-free configuration
possible, and consequently, a strain is induced in the film while deposition. The second term in
(1.1) models the extra surface energy due to the rearrangement of the atoms in the film. All
typical surface energy constants per unit length are normalized to one. Let us notice that the
functional F bears many similarities with models for capillary surfaces [27, 20].

We point out that, as noted before, in contrast to many previous works (see [10, 14, 18]), we
do not assume a periodic pattern of islands and do not restrict to a single island on a compact
domain. The main difference is that in (1.1) the support of the height profile function h may
be unbounded, which can lead to a loss of compactness for low energy sequences. A short
comparison to the compact setting is given in Proposition 4.6. Many of our results, however,
build on techniques developed in the works on compactly supported islands.

Let us make some comments on several simplifications built into the model. First, the
displacement function u ∈ H1(Ωh) and the elastic energy term |∇u|2 are scalar valued simplifi-
cations of a typical geometrically linear elastic energy density W (U) = µ|12(∇U +∇TU)|2 for
a displacement U : Ωh → R2, µ being a typical elastic modulus. Based on the analysis in [18],
we expect that the simplified energy contains, at least qualitatively, all relevant information.
We note that the proofs of the scaling laws can be carried over to the elasticity setting, and are
generalized to the three-dimensional setting in Section 5. Second, we assume that the domain
occupied by the film can be described as a subgraph of the profile function h, which has the
effect to prevent the formation of droplets or nanorings (see, e.g., [34]). Third, we do not take
into account any plastic effects, such as misfit dislocations (see, e.g., [28]). Finally, we consider
only the stationary setting, and refer to [11, 29, 8] for some recent results on the time evolution
problem for the compact setting.

We consider two different types of approximations of the surface energy, namely for small
and large slopes |h′|. Many physical models are based on the assumption that for small volumes
of the deposited film one expects small slopes of the film’s profile function (see [33, 32] or [20]
where a similar simplification is used in the study of sliding liquid drops). This corresponds to
the approximation (we ignore the factor 1/2)ˆ

R

(√
1 + h′2 − 1

)
dx ∼

ˆ
R
h′2 dx =: Ss(h). (1.2)

If one expects, however, the formation of an island, the small slope approximation might not
be appropriate anymore, and we compare it to the large slope approximationˆ

R

(√
1 + h′2 − 1

)
dx ∼

ˆ
R
|h′|dx =: S`(h). (1.3)

If we insert either of the approximations (1.2) or (1.3) into (1.1), then, due to the specific
structure of the elastic energy term, we can rescale the problem to set e0 = 1, i.e., we consider
(see Section 3 for a detailed derivation)

Fs/`(V ) := inf

{ˆ
Ωh

|∇u|2 dx + Ss/`(h) : h ∈ H1(R), h ≥ 0,

ˆ
R
hdx = V, u(x, 0) = x

}
. (1.4)

It turns out that in both cases there are two scaling regimes of the energy, namely (see Propo-
sitions 3.9 and 4.3)

Fs(V ) ∼ min{V, V 4/5} and F`(V ) ∼ min{V, V 2/3}.
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Heuristically, these scaling laws reflect the transition from a wetting regime in which the surface
energy dominates and, consequently, the film forms a thin flat layer, to a regime in which a
compactly supported island forms, in which case the optimal energy comes from the competition
between elastic and surface energy. We note that in this model, the surface energy prefers
a flat layer, while the elastic energy favors oscillations. This is in contrast to many other
physical situations where the surface energy typically favors compact shapes, and consequently
minimizers exist for small volumes, but not for large volumes (see, e.g., [22, 21, 26, 17] for some
recent works). The situation is opposite here: we prove that for large volumes, there always
exists a minimizer, while for small volumes we prove non-existence of minimizers in the case of
the small slope approximation (see Proposition 3.13). This is due to a loss of compactness of
low-energy sequences, which corresponds to the wetting effect.

To study more quantitatively the optimal shape of an island once it is formed, the limit
V → ∞ is considered. If properly rescaled, the asymptotic shape turns out to be a parabola
(in the case of the small slope approximation) and a rectangle (in the case of the large slope
approximation). We should stress the fact that even though it sheds some light on what can be
(mathematically) predicted by our models, this asymptotic analysis does not tell much about
the physics. In fact, it corresponds to very large mismatch e0 and/or large volume d, for which
the model is not expected to be relevant anymore. Moreover, since in the original variables,
minimizers tend to have large slopes, the small slope approximation is also questionable in this
regime. We believe that adapting our analysis to the original functional (1.1) would lead to
results similar to the one obtained in the large slope approximation.

The remaining part of the text is organized as follows. After setting the notation in Section
2, we first consider the small slope approximation. Some qualitative properties are derived
in Section 3.1, and the scaling law for the minimal energy is proven in Proposition 3.9. The
scaling law is then refined to show more quantitative results. More precisely, we show that
there is a range of volumes 0 < V < V , for which the minimal energy is exactly equal to V ,
and consequently, there does not exist a minimizer for 0 < V < V (see Proposition 3.13). On
the other hand, for volumes such that Fs(V ) < V (i.e., if V > V ), there always exists a smooth
minimizer, which has compact and connected support and meets the substrate at zero angle
(see Proposition 3.16 and Theorem 3.18). Regularity properties and estimates on the support
and its maximal height are provided (see Sections 3.4 and 3.5). The regularity of a minimizer
(see Section 3.4) is shown using arguments from [10] with minor changes required due to a
different form of the surface energy. Though the proof follows a standard approach, for the sake
of completeness we include it in the paper. Finally, the asymptotic behavior for large V → ∞
is studied. It is shown, that, when properly rescaled, minimizers converge to a parabola, and
away from a boundary layer, this convergence occurs at an exponential rate in the L2-topology.

Subsequently, in Section 4, the large slope approximation (1.3) is considered. Note that
this approximation comes along with a loss of regularity of admissible profile functions h, and
we consider the relaxation following [10]. We prove the scaling law of the minimal energy F`
(see Proposition 4.3), and show that in the regime F`(V ) < V there always exists a minimizer
with connected support (see Proposition 4.10). If properly rescaled, a sequence of minimizing
profiles converges, away from a boundary layer, to a rectangular shape for large volumes at
an exponential rate in the L1-topology (see Proposition 3.39). Recall that for the small slope
approximation, non-existence of minimizers at small volumes is due to the fact that Fs(V ) = V .
For the large slope approximation, we only get the weaker result F`(V )/V → 1 as V → 0 (see
Proposition 4.7).

Finally, in Section 5, the three-dimensional setting is considered, and the scaling laws for
both types of approximations are discussed.
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2 Notation and preliminary results

In this section, we set the notation and collect some results that will be used later. Through-
out the text we denote by C and c constants that may vary from expression to expression.
The symbols ∼, &, . indicate estimates that hold up to a constant. For instance, f . g
denotes the existence of a constant C > 0 such that f ≤ Cg. For Ω ⊂ R2, we denote by
H1 (Ω) its one-dimensional Hausdorff measure, and by |Ω| its two-dimensional Lebesgue mea-
sure. When it exists, we will denote by ν its inward normal. Given two sets A, B ⊂ R2, we
define their Hausdorff distance as dH(A,B) := inf{r > 0 : A ⊂ N(B, r) and B ⊂ N(A, r)},
where N(A, r) := {x ∈ R2 : d(x,A) < r}, and d(x,A) denotes the distance from x to A. Given

a vector x := (x, y) ∈ R2, we denote by |x| :=
(
x2 + y2

)1/2
its Euclidean norm.

We will use the following rescaling property for functions on rectangles.

Lemma 2.1. If u ∈ H1 ([0, `]× [0, L] ;R), with u (x, 0) = x, then letting v (x, y) := 1
`u (`x, `y),

there holds ˆ
[0,`]×[0,L]

|∇u|2 dx = `2
ˆ

[0,1]×[0,L/`]
|∇v|2 dx. (2.1)

As a consequence, for every λ > 0, there exists C(λ) > 0 such that

ˆ
[0,`]×[0,λ`]

|∇u|2 dx ≥ C(λ)`2. (2.2)

The following lemma describes the behavior of the elastic energy for small thickness of the
film. It can be seen as a simple special case of a dimension reduction argument (see [24, 2]). A
proof for the more complicated case of vector-valued functions can be found in [18].

Lemma 2.2. There holds

lim
ε→0+

min
u(x,0)=x

1

ε

ˆ
[0,1]×[0,ε]

|∇u|2 dx = 1. (2.3)

Remark 2.3. The analogous statements hold for typical elastic energy functionals for defor-
mations U : R2 → R2, i.e.,

lim
ε→0+

min
U(x,0)=(x,0)

1

ε

ˆ
[0,1]×[0,ε]

W (∇U) dx = 1 (2.4)

if W (∇U) = |∇U |2 or W (∇U) = |12(∇U + ∇TU)|2 (see [18]). This allows to carry over the
qualitative results to the linear elasticity setting.

3 Small slope approximation

In this section we consider the small slope approximation
√

1 + h′2 − 1 ∼ h′2 and study

Fs(e0, d) := inf

{ˆ
Ωh

|∇u|2 dx +

ˆ
R
h′2 dx : h ∈ H1(R), h ≥ 0, u ∈ H1(Ωh),

ˆ
R
h dx = d, u(x, 0) = e0x if x ∈ supph

}
. (3.1)

One main difference between the model considered here and the related models on compact
domains (see [10, 14, 18]) is that it behaves well under rescaling as shown by the following
lemma.
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Lemma 3.1. For h ∈ H1(R), h ≥ 0, u ∈ H1(Ωh), and λ > 0, letting uλ(x, y) = 1
λu(λx, λy)

and hλ(x) = 1
λh(λx), we have

ˆ
Ωh

|∇u|2 dx +

ˆ
R
h′2 dx = λ2

ˆ
Ωhλ

|∇uλ|2 dx + λ

ˆ
R
h′2λ dx

and
´
R h dx = λ2

´
R hλ dx.

By rescaling, we can eliminate one of the two parameters d or e0. We will renormalize such
that e0 = 1:

Proposition 3.2. Let e0 > 0 and d > 0. Set V := e4
0d and

Fs(V ) := inf

{ˆ
Ωh

|∇u|2 dx +

ˆ
R
h′2 dx : (u, h) ∈ AV

}
, (3.2)

where the set of admissible pairs is given by

AV :=

{
(u, h) : h ∈ H1(R), h ≥ 0, u ∈ H1(Ωh),

ˆ
R
h dx = V, u(x, 0) = x if x ∈ supph

}
.(3.3)

Then

Fs(e0, d) =
1

e2
0

Fs(V ).

Proof. Let (h, u) be admissible for Fs(e0, d), and let λ := 1
e20

. Using the notation of Lemma 3.1,

set

h̃(x) := hλ(x), and ũ(x, y) :=
1

e0
uλ(x, y). (3.4)

Then (ũ, h̃) ∈ AV and, by Lemma 3.1,

ˆ
Ωh

|∇u|2 dx +

ˆ
R
h′2 dx =

1

e2
0

(ˆ
Ωh̃

|∇ũ|2 dx +

ˆ
R
h̃′2 dx′

)
.

Since (3.4) induces a bijective correspondence between the admissible pairs for Fs(e0, d) and
AV , this proves the assertion.

In this section we study the problem (3.2). We first prove the scaling law of the optimal
energy. It is shown that there exists a critical volume V > 0 such that for volumes 0 < V < V ,
we have Fs(V ) = V , which leads to the non-existence of minimizers. We also prove that for
V > V , we have Fs(V ) < V and there exists a compact connected smooth minimizer of (3.2),
which has zero contact angle with the substrate. Moreover, we provide estimates on the size of
the support of this island together with estimates on its maximal height. We finally investigate
the large volume limit and prove that, when suitably rescaled, the minimizers converge to a
parabola and that away from a boundary layer this convergence is exponentially fast in the
(strong) L2-topology. We point out that we investigate the asymptotic behavior mostly for
mathematical reasons to better understand the shapes of minimizers. The physical model, and
in particular the small slope approximation implemented here, is expected to give more reliable
results in the case of small volumes.
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3.1 First properties of the minimization problem

For every V > 0 and every (u, h) ∈ AV , we set

EV (u, h) :=

ˆ
Ωh

|∇u|2 dx and SV (h) :=

ˆ
R
h′2 dx.

When it is clear from the context, we will often drop the explicit dependence on (u, h). As a
simple consequence of Lemma 3.1, we have the following important property of Fs.

Proposition 3.3. Fs : (0,∞)→ R is concave and thus locally Lipschitz continuous.

Proof. Let V > 0 be fixed. Then, for every V0 > 0 and for every admissible competitor

(u, h)∈ AV0 , by Lemma 3.1, Fs(V ) ≤ V
V0
EV0(u, h) +

(
V
V0

)1/2
SV0(h). Hence

Fs(V ) = inf
V0>0

inf
(u,h)∈AV0

(
V

V0
EV0(u, h) +

(
V

V0

)1/2

SV0(h)

)
, (3.5)

and since for every V0 > 0 and (u, h)∈ AV0 , the function V 7→ V
V0
EV (u, h) +

(
V
V0

)1/2
SV (h) is

concave, Fs is the infimum of concave functions and therefore also concave.

The scaling behavior from Lemma 3.1 is typical for various discrete and continuous models
for epitaxial growth, and thus, similar properties hold for a large class of models (see also
[12, 32]). Using the same rescaling we obtain the following result.

Proposition 3.4. For every V > 0, if

Fs(V ) = min

{ˆ
Ωh

|∇u|2 dx +

ˆ
R
h′2 dx : (u, h) ∈ AV

}
= EV (u∗, h∗) + SV (h∗),

i.e., if the minimum is attained, then {h∗ > 0} is connected.

Proof. Fix V > 0, and suppose that there exists a minimizer. It suffices to show that for every
(u, h) ∈ AV , for which {h > 0} is not connected, there exists (h, u) ∈ AV with lower total
energy. Assume that h = h(1) + h(2) with h(1) ≥ 0, h(2) ≥ 0, {h(1) > 0} ∩ {h(2) > 0} = ∅,
0 <
´
R h

(1) dx = V1 < V ,
´
R h

(2) dx = V −V1, and h(1), h(2) ∈ H1(R). Up to translation, we can

further assume that h(1) and h(2) were chosen such that

{h(1) > 0} ⊂ R− and {h(2) > 0} ⊂ R+. (3.6)

We set u(1) := u|Ω
h(1)

and u(2) := u|Ω
h(2)

. Then (u(i), h(i)) ∈ AVi for i = 1, 2. We note that

EV (u, h) + SV (h) = EV1(u(1), h(1)) + SV1(h(1)) + EV2(u(2), h(2)) + SV2(h(2)).

We now build a competitor as follows: Consider the two components separately and rescale

them. Precisely, for 0 ≤ µ ≤ V , set λ1 :=
√

V1
µ and λ2 :=

√
V2
V−µ , and, using the notation of

Lemma 3.1 consider
hµ := h

(1)
λ1

+ h
(2)
λ2

(· − τµ),

where τµ is such that {h(1)
λ1

> 0}∩ {h(2)
λ2

(· − τµ) > 0} = ∅ (which exists thanks to (3.6)), and the

associated uµ. Note that h = hV1 , and, by Lemma 3.1,
´
R hµ dx = µ

V1
V1 + V−µ

V2
V2 = V for every

µ ∈ [0, V ]. Hence (hµ, uµ) ∈ AV for every µ ∈ [0, V ]. Let

f(µ) := EV (hµ, uµ) + SV (hµ),
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so that by Lemma 3.1,

f(µ) =
µ

V1
EV1(h(1), u(1)) +

√
µ

V1
SV1(h(1), u(1)) +

V − µ
V2

EV2(h(2), u(2)) +

√
V − µ
V2

SV2(h(2), u(2)).

Since SV1(h(1), u(1)) > 0 and SV2(h(2), u(2)) > 0, the function f is strictly concave. Therefore,
it attains its minimum at the boundary, that is, at µ = 0 or at µ = V . This shows that there
is a configuration with strictly lower energy than (u, h) and proves that the minimizer must be
connected.

Using a different rescaling we obtain the following:

Lemma 3.5. If V > 0, then

Fs(V ) = inf

{ˆ
Ωh

|∇u|2 dx +

ˆ
R
h′2 dx : (u, h) ∈ AV ; ∂yu ≡ 0 or

ˆ
Ωh

(∂yu)2 dx =
3

4

ˆ
R
h′2 dx

}
.

Proof. For (u, h) ∈ AV consider the equivalence class {(uλ, hλ) : λ > 0} ⊂ AV given by the
anisotropic rescaling uλ(x, y) = 1

λu(λx, 1
λy) and hλ(x) = λh(λx). Then

ˆ
Ωhλ

|∇uλ|2 dx +

ˆ
R
h′2λ dx =

ˆ
Ωh

(
(∂xu)2 +

1

λ4
(∂yu)2

)
dx + λ3

ˆ
R
h′2 dx.

Suppose that ∂yu 6≡ 0. Since for every (u, h) ∈ AV we have
´
R h
′2 dx > 0, within one equivalence

class, the energy is minimized for λ = 4
3

´
Ωh

(∂yu)2 dx´
R h
′2 dx

> 0. Therefore, from each such equivalence

class, only the element with
´

Ωh
(∂yu)2 dx = 3

4

´
R h
′2 dx is relevant for the infimum.

Following [3, 10, 18], we prove the lower semicontinuity of the energy and density of Lipschitz
configurations.

Proposition 3.6. For every sequence (hn, un)∈ AV with supnEV (un, hn) +SV (hn) ≤ C, there
exists (u, h) with h ∈ H1(R), h ≥ 0 and u ∈ H1(Ωh) such that up to a subsequence, hn converges
to h in L∞loc(R), un converges weakly in H1

loc(Ωh) to u, u(x, 0) = x, and

lim
n→+∞

EV (un, hn) + SV (hn) ≥
ˆ

Ωh

|∇u|2 dx +

ˆ
R
h′2 dx.

Moreover, if {hn} is tight, then hn → h in L1(R), and
´
R hdx = V .

Conversely, for every (u, h)∈ AV with EV (u, h) + SV (h) < ∞, there exists a sequence
(hn, un)∈ AV such that hn is Lipschitz continuous with bounded support and such that hn con-
verges to h in L∞(R), un converges weakly in H1

loc(Ωh) to u, and

lim
n→+∞

EV (un, hn) + SV (hn) ≤ EV (u, h) + SV (h).

Proof. Let (hn, un)∈ AV be a sequence such that supnEV (un, hn) + SV (hn) ≤ C. From the
compact embedding of H1

loc(R) in L∞loc(R), we get that (up to a subsequence), hn converges
in L∞loc(R) to some (continuous) function h. This implies the local Hausdorff convergence of
R2\Ωhn to R2\Ωh, from which as in [3, 10] we infer the existence of a function u∈ H1(Ωh) with
u(x, 0) = x such that un converges weakly in H1

loc(Ωh), and as in [3, 10] we obtain the lower
semicontinuity

lim
n→+∞

EV (un, hn) + SV (hn) ≥
ˆ

Ωh

|∇u|2 dx +

ˆ
R
h′2 dx.
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If {hn} is tight, then hn → h in L1(R), which implies that
´
R hdx = V .

Let now (u, h) ∈ AV be such that EV (u, h) + SV (h) < ∞. It is readily seen that we can
approximate h from below by compactly supported height profiles so that we will assume from
now on that h itself is compactly supported. It suffices to approximate h by a sequence of
Lipschitz functions hn with 0 ≤ hn ≤ h and SV (hn) ≤ SV (h). We refer the reader to [3, 10, 18]
for the treatment of the volume constraint. Following [3], for n ∈ N and x ∈ R, we define

hn(x) := inf
x′∈R

(
h(x′) + n|x− x′|

)
to be the Yosida transform of h. The latter is an n−Lipschitz function which satisfies 0 ≤
hn ≤ h. As proven in [3], Ωhn converges to Ωh in the Hausdorff topology. Since hn and h are
continuous functions, the set {hn < h} is open and thus made of a countable union of disjoint
intervals (ak, bk), k ∈ N. On each of these intervals (see [3]),

hn(x) = min{h(ak) + n|x− ak|, h(bk) + n|x− bk|}

so that
´ bk
ak
h′2n dx ≤

´ bk
ak
h′2 dx. From h′ = h′n a.e. on {hn = h}, we obtain that SV (hn) ≤ SV (h)

and that hn converges in L∞ to h.

We now prove an interpolation inequality which will be useful later.

Proposition 3.7. For every h∈ H1(R), we have

‖h‖L∞(R) ≤
(

9

16

)1/3(ˆ
R
|h(x)|dx

)1/3(ˆ
R
h′(x)2 dx

)1/3

. (3.7)

Proof. Without loss of generality, we may assume that h ≥ 0 (otherwise consider |h|). By
rescaling the dependent and the independent variables, we may assume that ‖h‖L∞ = 1 and´
R hdx = 1. Indeed, suppose that the inequality holds for some h ∈ H1. For M > 0 and λ > 0

consider the rescaled function h̃(x) = Mh(λx). Then, by changing variables, x̃ = x
λ , we get

that (3.7) holds for h̃ since

‖h̃‖L∞ = M‖h‖L∞ ≤M
(

9

16

)1/3(ˆ
R
|h(x)|dx

)1/3(ˆ
R
h′(x)2 dx

)1/3

= M

(
9

16

)1/3( 1

M

ˆ
R
|(Mh)(x)| dx

)1/3( 1

M2

ˆ
R

(Mh)′(x)2 dx

)1/3

=

(
9

16

)1/3(
λ

ˆ
R
|(Mh)(λx̃)| dx̃

)1/3(
λ

ˆ
R

1

λ2
(Mh)′(λx̃)2 dx̃

)1/3

=

(
9

16

)1/3(ˆ
R
|h̃(x)|dx

)1/3(ˆ
R
h̃′(x)2 dx

)1/3

.

By translation and symmetric decreasing rearrangement (see [25]), we can further restrict our-
selves to functions h with h(0) = suph = 1, which are even and non-increasing on [0,+∞).
Let

g(x) :=


(

1− |x|x0

)2
, if x ∈ (−x0, x0),

0, else,
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where x0 > 0 is chosen so that the volume constraint is satisfied, i.e., x0 = 3/2. Let us prove
that g is the minimizer of

´
R h
′2 dx in the class

M :=

{
h ∈ H1(R) : h ≥ 0, ‖h‖L∞ = h(0) = 1,

ˆ
R
hdx = 1, h(x) = h(−x), h non-increasing on [0,∞)

}
.

Let h ∈M. Then
ˆ +∞

0
h′2 dx =

ˆ +∞

0
g′2 dx+ 2

ˆ +∞

0
g′(h− g)′ dx+

ˆ +∞

0
|(h− g)′|2 dx

=

ˆ +∞

0
g′2 dx− 2

ˆ x0

0
g′′(h− g) dx+

ˆ +∞

0
|(h− g)′|2 dx

where we used integration by parts and the fact that g′(x0) = 0, h(0) = g(0) = 1. Since on
[0, x0], g′′ = 2

x2
0

and since
´ +∞

0 (h− g) dx = 0, we further obtain that

ˆ x0

0
g′′(h− g) dx =

2

x2
0

ˆ x0

0
(h− g) dx = − 2

x2
0

ˆ +∞

x0

hdx

so that ˆ +∞

0
h′2 dx =

ˆ +∞

0
g′2 dx+

4

x2
0

ˆ +∞

x0

hdx+

ˆ +∞

0
|(h− g)′|2 dx ≥

ˆ +∞

0
g′2 dx.

By symmetry, this shows that g minimizes
´
R h
′2 dx in M. Using that

´ x0

0 g′2 dx = 8/9, we
obtain (3.7).

Remark 3.8. In terms of the energy, (3.7) can be rephrased as

‖h‖L∞(R) ≤
(

9

16

)1/3

V 1/3SV (h)1/3.

3.2 Scaling law

In this section, we prove the following scaling law for the energy.

Proposition 3.9. There exists a constant c0> 0 such that for every V > 0,

c0 min{V, V 4/5} ≤ Fs(V ) ≤ c−1
0 min{V, V 4/5}.

Moreover, there exists C > 0 with the following property: If V is large enough, and (u, h)∈ AV
with EV (u, h) + SV (h) ≤ 1

c0
V 4/5, then maxh ≥ CV 3/5.

Proof. We prove the upper bound first. For that, we have to construct two elements from AV
for V > 0. First, for N ∈ N, set

hN (x) :=


V
N2x+ V

N , if −N ≤ x ≤ 0,

− V
N2x+ V

N , if 0 ≤ x ≤ N,
0, if |x| ≥ N,

and set uN (x, y) := x if (x, y) ∈ ΩhN . Then (uN , hN ) ∈ AV , and EV (hN , uN ) + SV (hN ) =

V + 2V 2

N3 ≤ 2V for N large enough. Note that we even have

EV (hN , uN ) + SV (hN )→ V as N →∞. (3.8)

9



For the other regime, set

h̃(x) :=


V 1/5x+ V 3/5, if − V 2/5 ≤ x ≤ 0,

−V 1/5x+ V 3/5, if 0 ≤ x ≤ V 2/5,

0, if |x| ≥ V 2/5,

and let ũ be the restriction to Ωh of

ũ(x, y) :=

{
x(1− V −2/5y), if y ≤ V 2/5,

0, if y ≥ V 2/5.

Then (ũ, h̃) ∈ AV , and

EV (ũ, h̃) + SV (h̃) ≤
ˆ V 2/5

−V 2/5

ˆ V 2/5

0
(1− V −2/5y)2 + V −4/5x2 dx + 2

ˆ V 2/5

0
V 2/5 dx

=

(
10

3
+ 2

)
V 4/5.

For the lower bound, thanks to Proposition 3.6, we can assume that h is a Lipschitz function
with

´
R hdx = V and {h > 0} compact and connected (otherwise consider each of the (possibly

infinitely many) connected components separately). Let then u ∈ H1(Ωh) be the minimizer
of the Dirichlet energy in Ωh with u(x, 0) = x. Let x1 ∈ R be such that h(x1) > 0, and let
t1 > 0 be the maximal t > 0 such that the square [x1, x1 + t] × [0, t] is below the graph of h,
i.e., [x1, x1 + t]× [0, t] ⊂ Ωh. Observe that the maximality of t1 implies the existence of a point
x̄1 ∈ [x1, x1 + t1] such that h(x̄1) = t1. Now let

V1 :=

ˆ x1+t1

x1

hdx , E1 :=

ˆ x1+t1

x1

ˆ h(x)

0
|∇u|2 dx, and S1 :=

ˆ x1+t1

x1

h′2 dx.

We want to show that E1+S1 & min{V1, V
4/5

1 }. By Lemma 2.1 , E1 ≥
´

[x1,x1+t1]×[0,t1] |∇u|
2 dx ≥

Ct21, hence E1 ≥ C
2 V1 provided that V1 ≤ 2t21.

Let us now assume that V1 > 2t21. Since max[x1,x1+t1] h ≥ V1
t1

, we have

S1 ≥
1

t1

(
max

[x1,x1+t1]
h− min

[x1,x1+t1]
h

)2

≥ 1

t1

(
V1

t1
− t1

)2

=
1

t1

(
V1

2t1
+
V1

2t1
− t1

)2

≥ V 2
1

4t31
.

Since E1 ≥ Ct21, we obtain

E1 + S1 ≥ Ct21 +
V 2

1

4t31
≥ CV 4/5

1 ,

where the last inequality follows from Young’s inequality.

We have thus shown that the energy in [x1, x1+t1] is bounded from below by c0 min{V1, V
4/5

1 }.
We define iteratively x2 := x1 + t1, xi+1 := x1 +

∑i
k=1 tk, and repeat the process in each interval

[xi, xi + ti], and similarly in the opposite direction (i.e., going to the left) starting at x1. Since
h is Lipschitz we cover with this procedure the whole set {h > 0}, and the lower bound follows.

It remains to show that if V is large enough, and (u, h) ∈ AV with EV (u, h) + SV (h) ≤
1
c0
V 4/5, then maxh ≥ CV 3/5 for some C > 0 independent of V . Having ti and Vi constructed

in the previous part of the proof, let us assume that V1 is the largest among all {Vi}. Then we
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have

V 4/5

c0
≥ EV (u, h) + SV (h) ≥

∑
i

c0 min{Vi, V 4/5
i }

≥ c0 min{1, V −1/5
1 }

∑
i

Vi = c0 min{1, V −1/5
1 }V,

which gives c10
0 V ≤ max{1, V1}. Assume now that V ≥ c−10

0 so that V1 ≥ c10
0 V . If we set

M := max[x1,x1+t1] h, then as before M ≥ V1/t1, which implies t1 ≥ V1/M . Since E1 ≥ Ct21, we
have

V 4/5/c0 ≥ E1 & t21 ≥ (V1/M)2 ≥ c20
0 V

2M−2,

which implies maxh ≥M & V 3/5.

Remark 3.10. Using the scaling law (see Proposition 3.9) and (3.7), we find that maxh . V 3/5,
and so the previous proposition implies that maxh ∼ V 3/5 for sufficiently large V . Using this
we see that the size of the support of h is at least of order max{1, V 2/5}.

In terms of the original parameters e0 and d, the scaling law reads as follows.

Proposition 3.11. There exists a positive constant c such that for every V > 0,

cmin{e2
0d, d

4/5e
6/5
0 } ≤ F (V ) ≤ 1

c
min{e2

0d, d
4/5e

6/5
0 }.

Remark 3.12. In the original coordinates, for e4
0d & 1, the typical island is of height e

2/5
0 d3/5

and of width
(
d
e0

)2/5
.

3.3 Existence and non-existence of minimizers

Let us start by studying the non-existence case for small V , i.e., the wetting regime. For this,
we prove that for a non-trivial range of volumes 0 < V ≤ V , the infimum of the energy Fs(V )
is equal to V .

Proposition 3.13. There exists V > 0 such that for every 0 < V ≤ V we have Fs(V ) = V .
As a consequence, there exists no minimizer of (3.2) for 0 < V < V .

Proof. Recall that by the construction of flat layers in the proof of the scaling law (see (3.8)), we
have Fs(V ) ≤ V . It remains to show the reverse inequality, i.e., that for every (u, h) ∈ AV , we
have EV (u, h) +SV (h) ≥ V if V is small enough. By density, it suffices to consider (u, h) ∈ AV
for which h is Lipschitz continuous (see Proposition 3.6), and u being the minimizer of the
Dirichlet energy in Ωh subject to the boundary condition u(x, 0) = x on {h > 0}. In particular,
−∆u = 0 in Ωh. Testing the Laplace equation with u(x, y)− x, we obtain

0 =

ˆ
Ωh

div(∇u) · (u− x) dx = −
ˆ

Ωh

(
|∇u|2 − ∂xu

)
dx +

ˆ
∂Ωh

∂νu · (u− x) dH1.

The boundary integral vanishes, because ∂νu = 0 if y = h(x), and u(x, 0) = x. Hence

ˆ
Ωh

|∇u|2 dx =

ˆ
Ωh

∂xu dx,
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and integration by parts yields

ˆ
Ωh

∂xu dx =

ˆ
Ωh

div

(
u
0

)
dx =

ˆ
∂Ωh

(
u
0

)
· ν dH1

=

ˆ
{y=h(x)}

uνx dH1 = −
ˆ
R
u(x, h(x))h′(x) dx.

Here we used that ν = (−h′(x),1)√
1+h′2

, and so νx dH1 = −h′(x) dx.

By the fundamental theorem of calculus, u(x, h(x)) = x+
´ h(x)

0 ∂yu dy, and we deduceˆ
R
u(x, h(x))h′(x) dx =

ˆ
R
xh′(x) dx+

ˆ
Ωh

∂yu(x, y)h′(x) dx.

For the first integral on the right-hand side, integration by parts impliesˆ
R
xh′(x) dx = −

ˆ
R
h(x) = −V,

and so altogether, ˆ
Ωh

|∇u|2 dx = V −
ˆ

Ωh

∂yu(x, y)h′(x) dx.

We add SV =
´
R h
′2 dx to both sides of the equation to obtain

EV + SV =

ˆ
Ωh

|∇u|2 dx + SV = V + SV −
ˆ

Ωh

∂yu(x, y)h′(x) dx. (3.9)

To show that the energy of (u, h) is not smaller than V , it suffices to prove thatˆ
Ωh

∂yu(x, y)h′(x) dx ≤ SV .

By Lemma 3.5, we have either ∂yu ≡ 0, in which case the inequality holds trivially true, or,
using Hölder’s inequality,

ˆ
Ωh

∂yu(x, y)h′(x) dx ≤
(ˆ

Ωh

(∂yu)2(x, y) dx

)1/2(ˆ
Ωh

h′2(x) dx

)1/2

≤
√

3

4
SV
√

suph, (3.10)

which implies that EV (u, h)+SV (h) ≥ V for any admissible (u, h) ∈ AV which satisfies suph ≤
4/3. Note that by (3.7),

suph ≤
(

9

16

)1/3

V 1/3S
1/3
V ≤

(
9

16

)1/3

V 2/3.

Hence, the infimum of the energy is exactly V for 0 < V ≤ 25

9
√

3
, and so there exists a

maximal V > 0 such that Fs(V ) = V for V ∈ (0, V ].
To show non-existence of a minimizer, let us argue by contradiction and assume that there

exists a minimizer (u, h) ∈ AV for some V with 0 < V < V . Choose V0 with V < V0 ≤ V ,

and set λ :=
√

V
V0

. Then by Lemma 3.1, since (uλ, hλ) ∈ AV0 and SV (h) > 0, we obtain a

contradiction:

V0 = Fs(V0)≤ EV0(uλ, hλ) + SV0(hλ) =
V0

V
EV (u, h) +

(
V0

V

)1/2

SV (h)

<
V0

V
(EV (u, h) + SV (h)) = V0.
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We next consider the regime {V > V } and aim to prove that minimizers exist for every
V > V . For that, we need some auxiliary properties. For V > 0, we set

β(V ) :=
Fs(V )

V
. (3.11)

By (3.5) and Fs(V ) ≤ V , we see that β(V ) ≤ 1 for every V , and that β is a non-increasing
function of V. Using that Fs(V ) = V for V ∈ (0, V ], we can say more about β:

Lemma 3.14. The function β is strictly decreasing in the region {Fs(V ) < V } = {β < 1}.

Proof. We assume the contrary, i.e., that there exist V < V0 < V1 < ∞ and β0 < 1 such that
Fs(V ) = β0V < V for all V ∈ [V0, V1] ⊂ (V ,∞). We use the concavity of Fs, Fs(0) = 0, and
the previous assumption, to get for every V ∈ (0, V )

Fs(V ) ≥ (1− V

V0
)Fs(0) +

V

V0
Fs(V0) =

V

V0
Fs(V0) =β0V,

and

β0V0 = Fs(V0) ≥ V1 − V0

V1 − V
Fs(V ) +

V0 − V
V1 − V

Fs(V1).

Since Fs(V1) = β0V1, the second relation simplifies to Fs(V ) ≤ β0V , which together with the
first relation implies Fs(V ) = β0V . This is a contradiction, since β0 < 1 and by assumption
Fs(V ) = V .

The essential step to prove existence of minimizers is to derive compactness of minimizing
sequences. It is based on the following auxiliary lemma:

Lemma 3.15. Let V > V and δ > 0. Then there exist a length l = l(V, δ) > 0 and C(V, δ) > 0
with the following property: For every (u, h) ∈ AV with ε := EV (u, h)+SV (u)−Fs(V ) ≤ C(V, δ),
and every x0 < x1, with x1 − x0 = l, we have

ˆ x0

−∞
hdx ≤ δ or

ˆ ∞
x1

hdx ≤ δ. (3.12)

Proof. Let V > V and δ > 0. Note that by the strict monotonicity of β in [V ,∞), we have
β(V ) < β

(
V
2

)
. Choose C(V, δ) > 0 and let 0 < α < 1 be such that

C(V, δ) <
δ

2

(
β

(
V

2

)
− β(V )

)
, and α <

(
δ

156

[
β

(
V

2

)
− β(V )

])2

. (3.13)

Assume further that α > 0 is such that V
3α = n ∈ N. Set l := V

α , and let [x0, x1] be an arbitrary
interval of length x1 − x0 = l. Since α−1V = 3n with n ∈ N, we can decompose [x0, x1] as an
essentially disjoint union of 3n intervals of length 1, i.e.,

[x0, x1] =

3n−1⋃
k=0

[x0 + k, x0 + (k + 1)].

Since
´
R hdx = V = n ·3α, there are at most n intervals which satisfy

´
Ik
hdx ≥ 3α. Similarly,

since SV (h) < V , we find at most n intervals such that
´
Ik
h′2 dx ≥ 3α. Hence, among Ik there

is an interval I such thatˆ
I
hdx ≤ 3α and

ˆ
I
h′2 dx ≤ 3α, (3.14)
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in particular

3α ≥
ˆ
I
h′2 dx ≥ (sup

I
h− inf

I
h)2.

Since we also have 3α ≥
´
I hdx ≥ infI h, we get that

sup
I
h = (sup

I
h− inf

I
h) + inf

I
h ≤
√

3α+ 3α ≤ 3(α+ α1/2). (3.15)

Without loss of generality (translating h), we may assume that I = [0, 1]. Now we “cut” the
profile into three parts. Precisely, we set

h0(x) :=


h(x), if x ≤ 0,

min(−2h(0)x+ h(0), h(x)), if 0 ≤ x ≤ 1
2 ,

0 otherwise,

and u0 := u|Ωh0
,

and

h1(x) :=


min(2h(1)x− h(1), h(x)), if 1

2 ≤ x ≤ 1,

h(x), if x ≥ 1,

0 otherwise,

and u1 := u|Ωh1
.

We use the notation

V0 :=

ˆ 1/2

−∞
h0 dx, V1 :=

ˆ ∞
1/2

h1 dx, Vlo := V − V0 − V1.

We may assume without loss of generality that V0 ≤ V1, which implies that V0 ≤ V
2 . Note that

by construction (u0, h0) ∈ AV0 , (u1, h1) ∈ AV1 ,

Vlo ≤ sup
I
h ≤ 3(α+ α1/2), (3.16)

and

EV (u, h) ≥ EV0(u0, h0) + EV1(u1, h1). (3.17)

Further, again by construction and (3.15),

SV (u, h) ≥ SV0(h0) + SV1(h1)−

[ˆ 1/2

0
h′20 dx+

ˆ 1

1/2
h′21 dx

]
≥ SV0(h0) + SV1(h1)− (2 sup

I
h)2 ≥ SV0(h0) + SV1(h1)− 36(α+ α1/2)2. (3.18)

Since Fs(V ) = β(V )V with β < 1 we have by (3.17) and (3.18),

β(V )V + ε = Fs(V ) + ε = EV (u, h) + SV (h) ≥ Fs(V0) + Fs(V1)− 36(α+ α1/2)2

= β(V0)V0 + β(V1)V1 − 36(α+ α1/2)2.

Moreover, since β is non-increasing and since V = V0 + V1 + Vlo, and V0 ≤ V
2 ,

β(V0)V0 + β(V1)V1 = β(V )V + V0(β(V0)− β(V )) + V1(β(V1)− β(V ))− β(V )Vlo

≥ β(V )V + V0(β(V/2)− β(V ))− Vlo
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which together implies V0(β(V/2) − β(V )) ≤ ε + Vlo + 36(α+ α1/2)2. Since V > V , the strict
monotonicity of β implies β(V/2)− β(V ) > 0, and so, since α2 < α < α1/2,

V0 ≤
ε+ Vlo + 36(α+ α1/2)2

β(V/2)− β(V )
≤ ε+ 78α1/2

β(V/2)− β(V )
. (3.19)

By (3.13), we obtain that V0 < δ, and thus

ˆ x0

−∞
hdx =

ˆ x0

−∞
h0 dx ≤

ˆ
R
h0 dx = V0 ≤ δ.

Proposition 3.16. For any V > V , a minimizer of (3.2) exists.

Proof. Let V be such that Fs(V ) < V , and let (un, hn) be a minimizing sequence. First we
claim that Lemma 3.15 implies tightness of (un, hn).

Indeed, let 0 < δ < V/2 be fixed and let l = l(V, δ) be obtained from Lemma 3.15. Then for
n large enough the energy of (un, hn) is close enough to Fs(V ) (i.e., ε := EV (un, hn)+SV (hn)−
Fs(V ) from Lemma 3.15 is small enough). Then we choose xn such that

´ xn
−∞ hdx = 2δ and

observe that by Lemma 3.15 ˆ ∞
xn+l

hdx ≤ δ.

Hence, for n large enough we have
´ xn
−∞ h ≤ 2δ and

´∞
xn+l h ≤ δ, which implies tightness of the

minimizing sequence (up to translations). The existence of a minimizer then follows from the
lower semicontinuity of the energy (see Proposition 3.6).

We will prove in Corollary 3.34 that also for V = V a minimizer exists.

3.4 Regularity of minimizers

Notation: In this section, for given x ∈ R (xi ∈ R, etc.), we will denote by z (zi) a point in
R2 defined by z := (x, y) = (x, h(x)) (zi = (xi, yi) = (xi, h(xi))).

In this subsection we prove the regularity of minimizers of (3.2) if they exist. For this we
follow the strategy of [10] (see also [9]) which in turn was inspired by [5]. Let us first notice
that as in [10], the volume constraint can be relaxed. For µ > 0 and V > 0 set

Fµs (V ) := inf

{ˆ
Ωh

|∇u|2 dx +

ˆ
R
h′2 dx+ µ

∣∣∣∣ˆ
R
hdx− V

∣∣∣∣ : (u, h) ∈ A
}

with
A :=

{
(u, h) : h ∈ H1(R), h ≥ 0, u ∈ H1(Ωh), u(x, 0) = x if x ∈ supph

}
.

Note that AV = {(u, h) ∈ A :
´
R hdx = V }. We have the following relation between Fµs and

Fs:

Proposition 3.17. Let C ≥ 2
c0

, where c0 is the constant from Proposition 3.9. Then, for

µ := C min {1, V −1/5}, we have Fµs (V ) = Fs(V ).

Proof. We closely follow the proof of [16, Theorem 2.8]. Let V > 0. First, since AV ⊂ A, and

ˆ
Ωh

|∇u|2 dx +

ˆ
R
h′2 dx+ µ

∣∣∣∣ˆ
R
hdx− V

∣∣∣∣ =

ˆ
Ωh

|∇u|2 dx +

ˆ
R
h′2 dx

15



for every (u, h) ∈ AV , we have Fµs (V ) ≤ Fs(V ). Assume now for the sake of contradiction that
Fµs (V ) < Fs(V ), i.e., there exists (u, h)∈ A such that1

E(u, h) + S(h) + µ

∣∣∣∣ˆ
R
hdx− V

∣∣∣∣ < Fs(V ). (3.20)

We note first that by rescaling we can assume that
´
R hdx ≤ V : Indeed, assume that there

exists (u, h) ∈ A with (3.20) and
´
R hdx =: W > V . Then for the rescaled pair (see Lemma

3.1) (uλ, hλ) ∈ AV with λ :=
√

W
V > 1, we also have by Lemma 3.1 and (3.20),

E(uλ, hλ) + S(hλ) < E(u, h) + S(h) < Fs(V ).

On the other hand, if
´
R hdx ≤ V

2 , then µ|
´
R hdx − V | ≥ µV2 =C

2 min {1, V 4/5} ≥ Fs(V ) by

the choice of C and Proposition 3.9. Hence we can assume that
´
R hdx ≥ V

2 . Now we construct
a competitor from AV for (u, h) ∈ A \AV by rescaling. Denoting α :=

´
Ωh
|∇u|2 dx +

´
R h
′2 dx

and W :=
´
R hdx, we find by (3.20) that

α+ µ(V −W ) = E(u, h) + S(h) + µ

∣∣∣∣ˆ
R
hdx− V

∣∣∣∣ < Fs(V ) ≤ α V
W
.

From this we get µ < α
W (since otherwise α + µ(V − W ) ≥ αV

W ), and from the scaling law
(Proposition 3.9) finally (recall that W ≥ V/2)

µ <
α

W
≤ Fs(V )

W
≤ 1

W

1

c0
min{V, V 4/5} ≤ 2

c0
min{1, V −1/5},

from which we get a contradiction by the choice of C.

In order to prove more properties of the minimizers, we will need to use the Euler-Lagrange
equation. This requires to know some smoothness of the minimizer of (3.2).

Theorem 3.18. If (u, h) ∈ A is a minimizer of (3.2), then h is analytic in {h > 0} and
satisfies the zero contact angle condition.

Following [5, 10, 9], we divide the proof of the regularity of (u, h) into several lemmas. We
first prove that h is locally Lipschitz continuous. Then, in the spirit of [5], we prove a uniform
sphere condition. From this, we derive decay estimates for |∇u| which as in [10] leads to the
regularity of h.

Lemma 3.19. Let the pair (u, h) be a minimizer of (3.2). Then in the set {h > 0} the height
profile h is a locally Lipschitz function.

Proof. Let m > 0, and x0, x1 ∈ supph be such that x0 < x1, h(x0) < h(x1) and m ≤ h(x) for
x ∈ [x0, x1]. Since h is continuous, there exist

x0 := max{x ∈ [x0, x1) : h(x) = h(x0)},
x3 := min{x > x1 : h(x) = h(x0)}, and

x2 := max{x < x3 : h(x) = h(x1)}.

Note that h ≥ h(x0) in [x̄0, x3] and h > h(x0) in (x̄0, x1). We denote δ := h(x1)− h(x0).

1We denote here for simplicity E(u, h) :=
´

Ωh
|∇u|2 dx and S(h) :=

´
R h
′2 dx.
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Let us now define a competitor (ũ, h̃) for (u, h). In R \ [x̄0, x3] we set h̃ := h, and in [x̄0, x3]
we set

h̃(x) :=

{
h(x0) if h(x0) ≤ h(x) < h(x1)

h(x)− δ if h(x) ≥ h(x1).

Since h̃ ≤ h, we have Ωh̃ ⊂ Ωh and the following definition makes sense

ũ(x) := u(x), x ∈ Ωh̃. (3.21)

We denote M := {x ∈ [x̄0, x3] : h(x0) ≤ h(x) < h(x1)}. Then h′(x) = h̃′(x) for a.e. x 6∈ M
and h̃′(x) = 0 for a.e. x ∈M , and so

ˆ
R
h̃′2 dx =

ˆ
R
h′2 dx−

ˆ
M
h′2 dx ≤

ˆ
R
h′2 dx−

ˆ x1

x̄0

h′2 dx ≤
ˆ
R
h′2 dx− δ2

x1 − x̄0
,

where the last inequality follows from δ2 = (h(x1)−h(x̄0))2 =
(´ x1

x̄0
h′ dx

)2
≤ (x1−x̄0)

´ x1

x̄0
h′2 dx.

We now estimate
´
R h̃dx:

ˆ
R
h̃dx =

ˆ
R
hdx−

ˆ
{x̄0<x<x3}

min{h(x)− h(x0), δ} dx ≥ V − (x3 − x̄0)δ.

Since h(x) ≥ m in [x̄0, x3], we have that V ≥
´ x3

x̄0
h(x) dx ≥ (x3 − x̄0)m, and so

V ≥
ˆ
R
h̃dx ≥ V − δV

m
. (3.22)

Finally, by (3.21) we see that
´

Ωh
|∇u|2 dx ≤

´
Ωh̃
|∇ũ|2 dx.

Since (u, h) is a minimizer, the previous estimates and Proposition 3.17 imply

ˆ
Ωh

|∇u|2 dx +

ˆ
R
h′2 dx ≤

ˆ
Ωh̃

|∇ũ|2 dx +

ˆ
R
h̃′2 dx+ µ

∣∣∣∣ˆ
R
h̃dx− V

∣∣∣∣
≤
ˆ

Ωh

|∇u|2 dx +

ˆ
R
h′2 dx−

(
δ2

x1 − x̄0
− µδV

m

)
,

where µ = CV −1/5. Hence δ
x1−x̄0

≤ µ Vm , which implies

h(x1)− h(x0)

x1 − x0
≤ h(x1)− h(x0)

x1 − x̄0
=

δ

x1 − x̄0
≤ µV

m
.
V 4/5

m
.

In the case h(x0) > h(x1) ≥ m we proceed analogously. Altogether we get that if both x0

and x1 belong to the set {x : h(x) ≥ m}, then

|h(x0)− h(x1)| . |x0 − x1|
V 4/5

m
,

in particular h is locally Lipschitz in the set {h > 0}.

We now prove that the graph of h satisfies a uniform sphere condition. The proof is inspired
by, but slightly different from, the proof of a similar statement in [5] (see also [10, 9]). The
main difference to the aforementioned papers is that in our setting, the surface energy is not
invariant by rotation of the axis.
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Lemma 3.20. Let V > 0, and let the pair (u, h) be a minimizer of (3.2). Then, there exists a
radius r0 = r0(V ) > 0 with the following property: For every circle Sr(x0) (x0 := (x0, y0)) and
every interval (a, b) ⊂ R such that (a, h(a)) ∈ Sr(x0), h(a) > y0, (b, h(b)) ∈ Sr(x0), h(b) > y0,
and such that the graph of h is above Sr(x0) in (a, b), we have that r > r0.

Proof. Let Sr(x0) and (a, b) ⊂ R be as in the lemma. We define (h̃, ũ), a competitor for (u, h),
by

h̃(x) :=

{
h(x) if x 6∈ (a, b)

h(a) + h(b)−h(a)
b−a (x− a) if x ∈ (a, b),

and ũ(x) := u(x) for x ∈ Ωh̃ ⊂ Ωh. Since (u, h) is a minimizer, Proposition 3.17 implies

ˆ
Ωh

|∇u|2 dx +

ˆ
R
h′2 dx ≤

ˆ
Ωh̃

|∇ũ|2 dx +

ˆ
R
h̃′2 dx+ µ

∣∣∣∣ˆ
R
h̃dx− V

∣∣∣∣ .
Since u = ũ in Ωh̃ and Ωh̃ ⊂ Ωh, we see that

´
Ωh̃
|∇u|2 dx ≤

´
Ω |∇ũ|

2 dx. We use this together

with the fact that h = h̃ outside of (a, b) to derive

ˆ b

a

(
h′2 − h̃′2

)
dx ≤ µ

∣∣∣∣ˆ
R
h̃dx−

ˆ
R
hdx

∣∣∣∣ = µ

∣∣∣∣ˆ b

a

(
h− h̃

)
dx

∣∣∣∣ . (3.23)

Using the definition of h̃ and Hölder’s inequality, we obtain for every x ∈ (a, b)∣∣∣h(x)− h̃(x)
∣∣∣ ≤ ˆ x

a

∣∣∣∣h′(x′)− h(b)− h(a)

b− a

∣∣∣∣ dx′

≤ (b− a)1/2

(ˆ b

a

(
h′(x′)− h(b)− h(a)

b− a

)2

dx′

)1/2

. (3.24)

We observe that
´ b
a h
′ dx = h(b)− h(a) implies that

ˆ b

a

(
h′(x′)− h(b)− h(a)

b− a

)2

dx′ =

ˆ b

a

(
h′2(x′)− h̃′2(x′)

)
dx′.

We plug this relation into (3.24) to show

ˆ b

a

(
h′2 − h̃′2

)
dx

(3.23)

≤ µ

ˆ b

a
|h̃− h|dx ≤ µ(b− a)3/2

(ˆ b

a

(
h′2 − h̃′2

)
dx

)1/2

.

Hence ˆ b

a

(
h′2 − h̃′2

)
dx ≤ µ2(b− a)3,

and subsequently ˆ b

a

(
h− h̃

)
dx ≤ µ(b− a)3. (3.25)

Let us now estimate
´ b
a

(
h− h̃

)
dx using the fact that in the interval (a, b) the height function

h is above the circle Sr(x0), i.e., that h(x) ≥ y0 +
√
r2 − (x− x0)2 =: f(x) for x ∈ (a, b). The

trapezoidal rule implies that

ˆ b

a
f(x) dx− (b− a)

f(a) + f(b)

2
= −(b− a)3

12
f ′′(ξ)
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for some ξ ∈ (a, b). Using that
´ b
a h̃dx = (b− a)h(a)+h(b)

2 = (b− a)f(a)+f(b)
2 , we get that

ˆ b

a

(
h− h̃

)
dx ≥

ˆ b

a
f dx− (b− a)

f(a) + f(b)

2
= −(b− a)3

12
f ′′(ξ).

Finally, we compute f ′′(ξ) = − r2

(r2−(ξ−x0)2)3/2 to show

ˆ b

a

(
h− h̃

)
dx ≥ −(b− a)3

12
f ′′(ξ) =

(b− a)3

12

r2

(r2 − (ξ − x0)2)3/2
≥ 1

12r
(b− a)3.

We conclude by combining the previous estimate with (3.25) to get r ≥ µ/12.

Arguing as in [10, 9], we obtain the following result:

Lemma 3.21. Let the pair (u, h) be a minimizer of (3.2). Then for every point x ∈ supph
there exists a ball Br0(x0, y0) ⊂ Ωh ∪ {y ≤ 0} (with r0 defined in Lemma 3.20) such that
∂Br0(x0, y0) ∩ graph h = (x, h(x)).

From this and [5, Lemma 3], we obtain:

Corollary 3.22. Let the pair (u, h) be a minimizer of (3.2). Let x0 ∈ R be such that h(x0) > 0.
Then there exists a neighborhood U⊂ R of x0 such that h|U is Lipschitz and admits left and right
derivatives at every point of U , that are respectively left and right continuous.

The previous corollary implies that to prove that h is a C1 function in the set {h > 0}, it
suffices to consider points x0 ∈ R, h(x0) > 0, for which h′+(x0) 6= h′−(x0), where h′+ and h′−
denote the right and left derivatives. Following [10, 9] we call such points corner points. Our
aim is to prove that if (u, h) is a minimizer of (3.2), then there are no corner points. In order to
show this, we first obtain the following estimate on |∇u| (which is also an important ingredient
in the proof of [10, 9]):

Lemma 3.23. Let the pair (u, h) be a minimizer of (3.2), and let x0 be a corner point. Then
there exist α > 1 and r1 > 0 such that

´
Bρ(z0)∩Ωh

|∇u|2 dx ≤ C̄ρα for all ρ ∈ (0, r1), where

C̄ := r−α1

´
Ωh
|∇u|2 dx.

Proof. Since h(x0) > 0, h is locally Lipschitz in the neighborhood of x0 and we can find δ, L > 0
such that

|h(x)− h(x′)| ≤ L|x− x′| ∀x, x′ ∈ (x0 − δ, x0 + δ). (3.26)

Since by assumption, x0 is a corner point, we can choose r1, 0 < r1 < min {δ, h(x0)}, small
enough such that for every ρ ∈ (0, r1) both the graph of h|(x0,+∞) and of h|(−∞,x0) intersect
Sρ(z0) exactly once. For ρ ∈ (0, r1), let us denote the arc of Sρ(z0), which connects two
intersections of the graph of h with Sρ(z0), and which belongs to Ωh (i.e., the bottom arc), by
Aρ. By virtue of (3.26) this arc has length at most

H1(Aρ) ≤ 2πρ(1− arctan(1/L)). (3.27)

For any a ∈ R and any ρ ∈ (0, r1), since ∆(u− a) = 0 in Bρ(z0) ∩Ωh and ∂ν(u− a) = 0 on
∂Ωh ∩Bρ(z0), we get ˆ

Bρ(z0)∩Ωh

|∇u|2 dx =

ˆ
Aρ

(u− a)∂νu dH1. (3.28)
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Then Poincaré’s inequality with the optimal constant implies

ˆ
Aρ

(u− ū)2 dH1 ≤
(
H1(Aρ)

π

)2 ˆ
Aρ

|∂τu|2 dH1
(3.27)

≤ (2ρ(1− arctan(1/L)))2
ˆ
Aρ

|∂τu|2 dH1,

(3.29)
where ū denotes the average of u on Aρ and ∂τu denotes the derivative of u in the tangential
direction. Hence, by Hölder’s and Young’s inequality we get from (3.28) with a := u and (3.29)

ˆ
Bρ(z0)∩Ωh

|∇u|2 dx =

ˆ
Aρ

(u− ū)∂νudH1

≤

(ˆ
Aρ

(u− ū)2 dH1

)1/2(ˆ
Aρ

|∂νu|2 dH1

)1/2

≤ 2ρ(1− arctan(1/L))

(ˆ
Aρ

|∂τu|2 dH1

)1/2(ˆ
Aρ

|∂νu|2 dH1

)1/2

≤ 2ρ(1− arctan(1/L))
1

2

ˆ
Aρ

(
|∂τu|2 + |∂νu|2 dH1

)
= ρ(1− arctan(1/L))

ˆ
Aρ

|∇u|2 dH1.

We let F (ρ) :=
´
Bρ(z0)∩Ωh

|∇u|2 dx and observe that the last estimate can be rewritten as

F (ρ) ≤ ρ(1− arctan(1/L))F ′(ρ). By integrating this inequality, we obtain for any ρ ∈ (0, r1),

F (ρ) ≤ F (r1)

(
ρ

r1

)α
,

where 1/α = (1− arctan(1/L)) < 1. To conclude we observe that F (r1) ≤
´

Ωh
|∇u|2 dx implies

ˆ
Bρ(z0)∩Ωh

|∇u|2 dx = F (ρ) ≤ ραF (r1)r−α1 ≤ C̄ρα.

Following [10, Th. 3.13], we can now prove that in the set {h > 0} there are no corner
points, and so h ∈ C1({h > 0}):

Lemma 3.24. Let the pair (u, h) be a minimizer of (3.2). Then in the set {h > 0} the height
profile h is a C1 function.

Proof. To prove the lemma it is enough to show that there are no corner points. Let us argue by
contradiction and assume that x0 is a corner point. Then, by Corollary 3.22 and Lemma 3.23
there exist r1 > 0 and α > 1 such that for ρ ∈ (0, r1)

ˆ
Bρ(z0)∩Ωh

|∇u|2 dx ≤ C̄ρα, (3.30)

and h|(x0−r1,x0+r1) is a Lipschitz function with right and left derivatives, which are respectively
right and left continuous. Moreover, x0 being a corner point implies h′+(x0) 6= h′−(x0).

First, we observe that by Lemma 3.21, h′−(x0) < h′+(x0), and so ε := (h′+(x0)−h′−(x0))/4 >
0. Then (possibly by diminishing r1), we can assume that for every x ∈ (x0, x0 + r1)∣∣∣∣h(x)− h(x0)

x− x0
− h′+(x0)

∣∣∣∣ ≤ ε, (3.31)
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and similarly for x ∈ (x0 − r1, x0)∣∣∣∣h(x)− h(x0)

x− x0
− h′−(x0)

∣∣∣∣ ≤ ε. (3.32)

By Lemma 3.20, for any ρ ∈ (0, r1) there exist unique points xl, xr∈ Sρ(z0) ∩ ∂Ωh with
xl < x0 and xr > x0. Using xl and xr we define h̃, a competitor for h by

h̃ :=

{
h(x) if x 6∈ [xl, xr]

a(x) if x ∈ [xl, xr],

where a(x) := h(xl) + x−xl
xr−xl (h(xr)− h(xl)) is an affine function which connects (xl, h(xl)) and

(xr, h(xr)). Using (3.30) and the fact that ∂Ωh ∩ Bρ(z0) is Lipschitz, we can extend u to Ωh̃
(still denoted by u) such that

ˆ
Bρ(z0)∩Ωh̃

|∇u|2 dx ≤ C̄1ρ
α, (3.33)

where C̄1 depends only on C̄ and the Lipschitz constant of h|(x0−r1,x0+r1). Since (u, h) is a
minimizer of (3.2), Proposition 3.17 implies

ˆ
R

(
h′2 − h̃′2

)
dx ≤

ˆ
Ωh̃\Ωh

|∇u|2 dx + µ

ˆ
R

(
h̃− h

)
dx. (3.34)

First we will estimate the left-hand side of (3.34) from below. The definition of h̃ implies

ˆ
R

(
h′2 − h̃′2

)
dx =

ˆ x0

xl

h′2 dx+

ˆ xr

x0

h′2 dx−
ˆ xr

xl

h̃′2 dx. (3.35)

We set dl := h(x0)−h(xl)
x0−xl and dr := h(xr)−h(x0)

xr−x0
. Then

ˆ x0

xl

h′2 dx+

ˆ xr

x0

h′2 dx ≥ d2
l (x0 − xl) + d2

r(xr − x0), (3.36)

and ˆ xr

xl

h̃′2 dx =
(dl(x0 − xl) + dr(xr − x0))2

xr − xl
. (3.37)

We plug (3.36) and (3.37) into (3.35) to get

ˆ xr

xl

(
h′2 − h̃′2

)
dx ≥ d2

l (x0 − xl) + d2
r(xr − x0)− (dl(xl − x0) + dr(xr − x0))2

xr − xl
.

A simple algebraic manipulation shows that

d2
l (x0 − xl) + d2

r(xr − x0)− (dl(xl − x0) + dr(xr − x0))2

xr − xl
=

(x0 − xl)(xr − x0)

xr − xl
(dr − dl)2 ,

and so the estimates on dl and dr (see (3.31) and (3.32)) imply that

ˆ xr

xl

(
h′2 − h̃′2

)
dx ≥ (x0 − xl)(xr − x0)

xr − xl
(h′+(x0)− h′−(x0)− 2ε)2 ≥ 2 min{x0 − xl, xr − x0}ε2,

(3.38)

21



where in the last step we used that 2ab/(a + b) ≥ min {a, b} and the definition of ε. Let us
now observe that since h is Lipschitz, we have that x0 − xl ≥ Cρ and xr − x0 ≥ Cρ, where C
depends only on the Lipschitz constant of h|(x0−r1,x0+r1). Therefore, for any ρ ∈ (0, r1) and the
corresponding xl, xr we obtain that

ˆ xr

xl

(
h′2 − h̃′2

)
dx ≥ Cρ, (3.39)

where C > 0 depends on h|(x0−r1,x0+r1), but not on ρ.

Finally, we observe that |
´
R

(
h̃− h

)
dx| = |

´ xr
xl

(
h̃− h

)
dx| ≤ |Bρ|, and so (3.34), (3.33),

and (3.39) imply that there exists α > 1 and constants C > 0, C̄1 such that for every ρ ∈ (0, r1)
we have Cρ ≤ C̄1ρ

α+µπρ2, which yields a contradiction for sufficiently small ρ. This concludes
the proof.

We proved that in the set {h > 0} the height profile h is a C1 function. It then follows that
in fact h is more regular. Indeed, for any x0 such that h(x0) > 0 we observe that given ε > 0
there exists r1 > 0 such that for any ρ ∈ (0, r1)

H1(Sρ(z0) ∩ Ωh) ≤ (1 + ε)πρ. (3.40)

Then we can repeat the proof of Lemma 3.23 while replacing (3.27) by (3.40) to show the
following result.

Lemma 3.25. Let the pair (u, h) be a minimizer of (3.2), and let x0 ∈ R be such that h(x0) > 0.
Then for any 0 < α < 2 there exists r1 > 0 such that for any ρ ∈ (0, r1)

ˆ
Bρ(z0)∩Ωh

|∇u|2 dx ≤ C̄ρα,

where C̄ = r−α1

´
Ωh
|∇u|2 dx. Moreover, given α < 2, the corresponding r1 depends (through

relation (3.40)) only on the modulus of continuity of h′ in the neighborhood of x0.

Similar ideas as in the proof of Lemma 3.24 then give the following result.

Proposition 3.26. Let the pair (u, h) be a minimizer of (3.2). Then for every β ∈ (0, 1/2) the

height profile h|{h>0} is a C1,β
loc function.

Proof. Let x̄ ∈ R, h(x̄) > 0, and α ∈ (0, 2) be fixed. Then by Lemma 3.25 and the fact that
h ∈ C1({h > 0}) there exist U , a neighborhood of x̄, a radius r1 > 0, and a constant C1 such
that for any point x ∈ U and any ρ ∈ (0, r1) we have

ˆ
Bρ(z)∩Ωh

|∇u|2 dx ≤ C1ρ
α. (3.41)

Moreover, we can assume that h′ is bounded in U .
Let x0 ∈ U be fixed. Using standard extension argument and estimate (3.41) we can extend

u to Bρ(z0) \ Ωh (the extension still denoted by u) such that
´
Bρ(z0) |∇u|

2 dx ≤ C̄1ρ
α, where

C̄1 is independent of ρ and the choice of x0.
Now let x1 > x0 be such that |z0 − z1| < r1. We set ρ := |z0 − z1| and define h̃ by

h̃(x) :=

{
h(x) if x 6∈ [x0, x1]

a(x) if x ∈ [x0, x1],
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where a(x) := h(x0) + x−x0
x1−x0

(h(x1) − h(x0) is an affine function connecting z0 and z1. We

observe that Ωh̃ ⊂ Ωh∪Bρ(z0), and so (h̃, u|Ωh∪Bρ) is a well defined competitor for (u, h). Since
(u, h) is a minimizer of (3.2), Proposition 3.17 implies

ˆ x1

x0

(
h′2 − h̃′2

)
dx ≤

ˆ
Bρ(z0)\Ωh

|∇u|2 dx + µ|Bρ(z0)| ≤ C̄1ρ
α + µπρ2 ≤ C̄ρα.

Since h′ is bounded in U , we have that x1 − x0 ≥ C−1ρ, where C does not depend on ρ or x1.
Then

−
ˆ x1

x0

(
h′(x)−−

ˆ x1

x0

h′
)2

dx = −
ˆ x1

x0

(
h′2 − h̃′2

)
dx ≤ Cρ−1

ˆ x1

x0

(
h′2 − h̃′2

)
dx,

and so

−
ˆ x1

x0

(
h′(x)−−

ˆ x1

x0

h′
)2

dx ≤ Cρα−1. (3.42)

A relation similar to (3.42) holds also for the choice x1 < x0, and we can use [1, Th. 7.51]
to conclude that h ∈ C1,(α−1)/2(U).

We showed that h ∈ C1,β
loc ({h > 0}) for any β ∈ (0, 1/2), and so (u, h) satisfies all the

assumptions of the following theorem (see [1, Th.7.49]).

Theorem 3.27. Let Ω be an open set in R2, g ∈ L∞(Ω) and u ∈ H1(Ω) be a solution of the
Neumann problem

−∆u = g in Ω
∂νu = 0 on S.

If S ⊂ ∂Ω is a C1,β curve relatively open in ∂Ω, β < 1, then ∇u has a C0,β extension up to S.

We apply this theorem to show that for every s > 0, |∇u| is C0,β in the neighborhood of
∂Ωh ∩ {y > s}. As a consequence we obtain the following:

Proposition 3.28. A minimizer (u, h) of (3.2) satisfies the Euler-Lagrange equation

|∇u|2(x, h(x))− 2h′′(x) = λ for a.e. x ∈ {h > 0}, (3.43)

where λ= λ(V ) is a constant that depends on V , namely the Lagrange multiplier associated to
the volume constraint.

Having (3.43), a simple bootstrap argument implies that in fact h ∈ C∞({h > 0}) and
u ∈ C∞(Ωh) (see [10] for more details). If κ denotes the mean curvature of ∂Ωh, observing that
(3.43) can be rewritten as

κ =
|∇u|2 − λ

2
ν3
y ,

we see that [23, Th. 3.1] implies that h is analytic in {h > 0}. To prove Theorem 3.18 it
remains to show that h satisfies the zero contact angle condition. To do so we first derive a
lemma analogous to Lemma 3.23 which applies to the points of contact with the substrate:

Lemma 3.29. Let the pair (u, h) be a minimizer of (3.2), and let x0 ∈ supph be such that
h(x0) = 0. Then x0 ∈ ∂ supph and there exist r0 > 0 and C̄ such that for every ρ ∈ (0, r0)

ˆ
Bρ(z0)∩Ωh

|∇u|2 dx ≤ C̄ρ4/3. (3.44)
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Proof. First note that by Proposition 3.4, the set {h > 0} is connected if (h, u) is a minimizer
of (3.2). Therefore, if h(x0) = 0 and x0 ∈ supph, then x0 ∈ ∂ supph. Consequently, h vanishes
in (−∞, x0) or in (x0,∞). Let us now assume that h vanishes in (−∞, x0), the other case being
symmetric. Then by Lemma 3.21 and [5, Lemma 3] there exists a radius r0 > 0 such that
h|(x0−r0,x0+r0) has left and right derivatives at every point, that are respectively left and right
continuous (but could possibly attain infinite values). Moreover, we can assume (by possibly
diminishing r0 > 0) that for every ρ ∈ (0, r0), the graph of h intersects Sρ((x0, 0)) in exactly
two points (x0 − ρ, 0) and (xr, h(xr)).

Let us fix ρ ∈ (0, r0) and the corresponding xr. Since u minimizes the Dirichlet integral in
Ωh subject to boundary conditions u(x, 0) = x, we get thatˆ

Bρ(z0)∩Ωh

∇u · ∇(u− x) dx =

ˆ
Sρ(z0)∩Ωh

(u− x)∂νudH1.

Let δ := 1/5. By Hölder’s and Young’s inequality the previous relation gives

ˆ
Bρ(z0)∩Ωh

|∇u|2 dx =

ˆ
Sρ(z0)∩Ωh

(u− x)∂νu dH1 +

ˆ
Bρ(z0)∩Ωh

∇u ·
(

1
0

)
dx

≤

(ˆ
Sρ(z0)∩Ωh

(∂νu)2 dH1

)1/2(ˆ
Sρ(z0)∩Ωh

(u− x)2 dH1

)1/2

+ δ

ˆ
Bρ(z0)∩Ωh

|∇u|2 dx +
C

δ
|Bρ(z0)|. (3.45)

We estimate the second integral on the right-hand side using Wirtinger’s inequality, which states
that if f(0) = 0, then ˆ l

0
f(t)2 dt ≤

(
2l

π

)2 ˆ l

0
f ′(t)2 dt.

More precisely, we apply Wirtinger’s inequality to u(x, y)−x on Sρ(z0)∩Ωh (observe that
u(x, 0)− x = 0 if x = 0), which, together with Young’s inequality, yields

ˆ
Sρ(z0)∩Ωh

(u− x)2 dH1 ≤ ρ2

ˆ
Sρ(z0)∩Ωh

|∂τ (u− x)|2 dH1

≤ρ2

ˆ
Sρ(z0)∩Ωh

(1 + δ)(∂τu)2 + (1 + δ−1) dH1,

where τ denotes the tangent vector to Sρ, and we used that |∂τx| ≤ 1. Hence, using Young’s
inequality again and |Sρ(z0) ∩ Ωh| ≤ ρπ/2, it follows from (3.45):

(1− δ)
ˆ
Bρ(z0)∩Ωh

|∇u|2 dx ≤ C

δ
ρ2 +

ρ

2

ˆ
Sρ(z0)∩Ωh

[
(∂νu)2 + (1 + δ)(∂τu)2 + (1 + δ−1)

]
dH1

≤ Cρ2δ−1 +
ρ(1 + δ)

2

ˆ
Sρ(z0)∩Ωh

|∇u|2 dH1.

Since δ = 1/5, one has (1− δ)/(1 + δ) = 2/3, and soˆ
Bρ(z0)∩Ωh

|∇u|2 dx ≤ C1ρ
2 +

3

4
ρ

ˆ
Sρ(z0)∩Ωh

|∇u|2 dH1.

If we denote G(ρ) :=
´
Bρ(z0)∩Ωh

|∇u|2 dx + 2C1ρ
2, then the last relation is equivalent to

G(ρ) ≤ 3

4
ρG′(ρ).
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Integrating this relation (the same way as we did in the end of the proof of Lemma 3.23) we
obtain (3.44).

Proceeding along the lines of the proof of Lemma 3.24, we derive the following result from
Lemma 3.29.

Lemma 3.30. Let the pair (u, h) be a minimizer of (3.2). Let x0 ∈ supph be such that
h(x0) = 0. Then h′(x0) = 0, and so h ∈ C1(R).

3.5 More qualitative results

It has been observed for various variational models for the epitaxial growth that minimizers are
often not unique. For instance, for a model for periodic island formation, there is a regime of
volumes and periods in which the flat configuration is not the only minimizing configuration
(see [14, Theorem 2.13]). We do not obtain uniqueness of minimizers here, but part of the
following result is the weaker statement that for almost every V , any two minimizers have the
same surface and the same elastic energy. For a similar result for faceted islands see [12].

Proposition 3.31. The function Fs: V 7→ Fs(V ) is Lipschitz continuous with Lipschitz constant
less than C min {1, V −1/5}. Moreover, if Fs is differentiable at V , then

F ′s(V ) = λV =
1

V
(EV + 1/2SV ). (3.46)

At such points of differentiability, if (u, h) and (ũ, h̃) are two different minimizers of (3.2),
EV (u, h) = EV (ũ, h̃) and SV (u, h) = SV (ũ, h̃). Finally, there holds,

lim
ε→0+

Fs(V + ε) + Fs(V − ε)− 2Fs(V )

ε2
≤ − SV

4V 2
.

Proof. We already know from Proposition 3.3 that Fs is locally Lipschitz continuous. The
estimate on the Lipschitz constant can be obtained by two different ways. The first approach is
to use Proposition 3.17, and test for two volumes V and W the minimization problem Fµs with
the minimizers for each of these volumes. Another approach is to compute the derivative of Fs
directly. For this, we see that for ε > 0, using the rescaling argument (see Lemma 2.1),

Fs(V + ε)− Fs(V ) ≤ (1 + ε/V )EV + (1 + ε/V )1/2SV − EV − SV ,

where EV and SV are the elastic and surface energy of the minimizer, respectively. If Fs is
differentiable at V , this implies by Proposition 3.9 that F ′s(V ) ≤ 1

V (EV + 1/2SV ) ≤ Fs(V )/V ≤
c−1

0 min {1, V −1/5} with c0 > 0 from Proposition 3.9. Similarly, by rescaling from V to V − ε,
we find by Lemma 3.1 that

Fs(V − ε)− Fs(V )

−ε
≥ 1

ε
(EV + SV − (1− ε/V )EV − (1− ε/V )1/2SV ),

and thus F ′s(V ) ≥ EV +1/2SV
V ≥ c0

2 min {1, V −1/5}, which implies F ′s(V ) = 1
V (EV + 1/2SV ).

Moreover, this also implies that two minimizers for volume V have the same elastic and the
same surface energy. The same rescaling argument also gives the bound

lim
ε→0+

Fs(V + ε) + Fs(V − ε)− 2Fs(V )

ε2
≤ − 1

4V 2
.

It remains to show that

λV V = Fs(V )− 1

2
SV (3.47)
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(where λV is the Lagrange multiplier) for V > V . We test the Laplace equation for u in Ωh

with the function y∂yu to find

0 =

ˆ
Ωh

−div

(
∂xu
∂yu

)
(y∂yu) dx =

ˆ
Ωh

(
∂xu
∂yu

)
·
(

y∂xyu
y∂yyu+ ∂yu

)
dx.

Using integration by parts we obtain

2

ˆ
Ωh

∂xu(y∂xyu) dx = −
ˆ

Ωh

(∂xu)2 dx +

ˆ
∂Ωh

(∂xu)2yνy dx, and

2

ˆ
Ωh

∂yu(y∂yyu) dx = −
ˆ

Ωh

(∂yu)2 dx +

ˆ
∂Ωh

(∂yu)2yνy dx,

which together with the previous relation imply

ˆ
Ωh

[
(∂xu)2 − (∂yu)2

]
dx =

ˆ
∂Ωh

|∇u|2yνy dH1.

Using the Euler-Lagrange equation, the right-hand side can be written as−2
´
R h
′2 dx+λ

´
R hdx,

which implies ˆ
Ω

[
(∂xu)2 − (∂yu)2

]
dx = −2SV + λV V.

From this and Lemma 3.5, we finally obtain (3.47). From (3.47) we get that if F is differentiable,
then F ′(V ) = λV .

We can now use this information to study the compactness properties of minimizers.

Proposition 3.32. Let V > V . Then for every minimizer (u, h) of (3.2), the height function
h has bounded support, and H1(supp(h)) ≤ λV SV

1−λV . V 3/5.

Proof. Let us first prove that any minimizer of (3.2) is compactly supported. For the sake of
contradiction, assume it is not. Since

ˆ
R
h′2 dx+

ˆ
R

(ˆ h(x)

0
|∇u|2(x, y) dy

)
dx < +∞,

for any ε > 0 and K > 0 there exist x1 < x2 such that x2 − x1 ≥ K and

|h′(xi)|+
ˆ h(xi)

0
|∇u|2(xi, y)dy < ε i = 1, 2. (3.48)

Using

u(x2, h(x2))− u(x1, h(x1)) =

ˆ x2

x1

∇u(x, h(x)) ·
(

1
h′(x)

)
dx

we find

|u(x1, h(x1))− u(x2, h(x2))| ≤
ˆ x2

x1

|∇u(x, h(x))|
√

1 + h′2(x) dx

Hölder
≤

(ˆ x2

x1

|∇u|2(x, h(x)) dx

)1/2(ˆ x2

x1

(1 + h′2(x)) dx

)1/2

.
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We use the Euler-Lagrange equation (3.43) to replace the first term on the right-hand side of
the previous relation, and get

|u(x1, h(x1))− u(x2, h(x2))|≤
(ˆ x2

x1

(λ+ 2h′′(x)) dx

)1/2(ˆ x2

x1

(1 + h′2(x)) dx

)1/2

≤ (λ(x2 − x1) + 2|h′(x1)− h′(x2)|)1/2(x2 − x1 + SV )1/2

(3.48)

≤ (λ(x2 − x1) + 2ε)1/2(x2 − x1 + SV )1/2. (3.49)

Finally, since u(x, h(x)) = x+
´ h(x)

0 ∂yu(x, y)dy, we have

|u(x1, h(x1))− u(x2, h(x2))| ≥ |x1 − x2| −
ˆ h(x1)

0
|∂yu(x1, y)|dy −

ˆ h(x2)

0
|∂yu(x2, y)|dy

(3.48)

≥ |x1 − x2| − 2ε1/2(suph)1/2,

so that
x2 − x1 ≤ (λ(x2 − x1) + 2ε)1/2(x1 − x2 + SV )1/2 + 2ε1/2 suph1/2.

Since λ < 1 and x2 − x1 ≥ K, we get a contradiction for K large enough. We thus see that the
support of h must be bounded.

To prove the estimate on the size of the support of h, take x1 < x2 on the boundary
of the support. From the zero contact angle condition (see Lemma 3.30) we get h′(xi) = 0.
Since u(xi, h(xi)) = xi, (3.49) with ε = 0 implies x2 − x1 ≤ λ(x2 − x1 + SV ). Note that by

Proposition 3.31 and the scaling law, λV ≤ V 4/5

c0V
. Putting things together, we get

x2 − x1 ≤
λSV
1− λ

. V 3/5.

Remark 3.33. The bound on the size of support of h derived in Proposition 3.32 is slightly sub-
optimal since we expect from the proof of the scaling law (see Proposition3.9) that H1(supp(h)) ∼
V 2/5.

Using Proposition 3.32, we can prove existence of a minimizer at the critical volume.

Corollary 3.34. There exists a minimizer of (3.2) for V = V .

Proof. The existence of a minimizer will follow from a general estimate on λV . From (3.47) we
know that for V > V we have V > Fs(V ) = λV V + SV /2, from where we get

λV < 1− 1

2

SV
V
. (3.50)

To show that λV is bounded away from 1 as V → V , it is enough to show that SV /V does
not tend to zero as V → V . Let us fix V > V . Then, from (3.9), (3.10) and Fs(V ) ≤ V we

get that V ≥ V + SV −
√

3
4SV
√

suph, which implies that suph > 4
3 . By Remark 3.8 we have

suph ≤ (9/16)1/3V 1/3S
1/3
V , and thus

SV
V

>

(
4

3

)3 16

9
V −2.
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We thus get with (3.50)

λV ≤
16

9

(suph)2

V 2
≤1− 29

35
V −2

for any V > V . By Proposition 3.32, the size of the support of h for any minimizer h (for any
V > V ) is bounded by λV

1−λV SV . Hence, the limit of minimizers as V → V exists. This limit is

a minimizer of Fs(V ) (as a consequence of a simple Γ−limit type argument along the lines of
Proposition 3.6).

3.6 Asymptotic analysis

For every V > V and every (u, h)∈ AV with u the minimizer of the Dirichlet energy in Ωh

subject to the boundary condition, we define an (anisotropically) rescaled height profile h̃(x) :=
V −3/5h(V 2/5x) and a rescaled energy

GV (h̃) := V −4/5(SV (h) + EV (u, h)) =

ˆ
R
h̃′2 dx+ V −4/5

ˆ
Ωh

|∇u|2 dx.

Observe that the rescaled h̃ satisfies
´
R h̃dx = 1.

Theorem 3.35. For every sequence Vn → +∞ and every minimizer (hVn , uVn) of (3.2), the
corresponding h̃Vn (possibly translated) converge, up to a subsequence, in L∞(R) to some func-
tion h, which minimizes the functional

G(h) :=

(
inf

u(x,0)=x

ˆ
{h>0}×[0,+∞)

|∇u|2 dx

)
+

ˆ
R
h′2 dx (3.51)

under the constraint
´
R hdx = 1.

Proof. We start by noticing that Proposition 3.9 and (3.7) give V 3/5 . maxh . V 1/3S
1/3
V ,

which implies SV & V 4/5. If Fs(V ) is differentiable at V , then Proposition 3.31 gives β′(V ) =(
Fs(V )
V

)′
= − SV

2V 2 . This together with SV & V 4/5 implies β′(V ) ≤ −CV −6/5, and so

β(V ) ≤ β(V/2)− C
ˆ V

V/2
t−6/5 dt = β(V/2)− CV −1/5(21/5 − 1). (3.52)

Since GVn(h̃Vn) = V
−4/5
n (SVn(hVn) + EVn(uVn , hVn)) and by the scaling law (see Proposi-

tion 3.9) Fs(Vn) = SVn(hVn) + EVn(uVn , hVn) . V
4/5
n , we see that GVn(h̃Vn) ≤ C.

Let us prove that (after possible translation) the sequence h̃Vn is tight. For this we follow the
argument from the proof of Lemma 3.15. Since

´
R h̃Vn dx = 1 and

´
R h̃
′2
Vn

dx ≤ C (independently
of Vn), for every ε > 0 there exists l = l(ε) such that in every interval of length at least l we
can cut the profile h̃V in two parts of volume α1 and α2, respectively, with 1 − (α1 + α2) ≤ ε
(for the precise construction we refer to the proof of Lemma 3.15). Moreover, we can assume
that the cost (surface energy) of the cut is bounded by a multiple of ε. Then we get

β(Vn)Vn
1/5 + Cε = GVn(h̃Vn) + Cε ≥ Vn1/5(α1β(Vnα1) + α2β(Vnα2)),

and thus

ε(C + V 1/5
n β(Vn)) ≥ V 1/5

n (α1(β(Vnα1)− β(Vn)) + α2(β(Vnα2)− β(Vn)))

≥ V 1/5
n (α1(β(Vn/2)− β(Vn)),
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where we used that β is non-increasing and α1 < 1/2. Using that V
1/5
n β(Vn) ≤ C and (3.52)

we find
α1 ≤ Cε,

which by the same argument as in the proof Proposition 3.16 implies tightness of (possibly
shifted) h̃Vn . As a consequence of tightness we get L1(R) convergence of (possibly a subsequence
of) h̃Vn to h. Using the compact embedding (on bounded domains) of H1 into L∞ we get locally
uniform convergence of h̃Vn to h. Moreover, tightness of the sequence h̃Vn implies that outside
of a compact set we can use a half-line version of (3.7) to show that h̃Vn is uniformly small
there. These two facts together yield uniform convergence.

Let us now show that
lim

Vn→+∞
GVn(h̃Vn) ≥ G(h).

Since the surface energy is lower semicontinuous, to prove the previous relation it is enough to
prove the inequality for the elastic part of the energy. For every ε > 0 and for Vn large enough
we can assume that {h > ε} ⊂ {h̃Vn > ε/2}, and so

ˆ
ΩhVn

|∇uVn |2 dx ≥
ˆ

ΩhVn
∩
[
{hVn>εV

3/5
n /2}×[0,∞)

] |∇uVn |2 dx ≥
ˆ
{h>εV 3/5

n }×[0,εV
3/5
n ]
|∇uVn |2 dx.

Using the change of variables x = V
2/5
n x̂, y = V

2/5
n ŷ, and uVn = V

−2/5
n ûVn we find

V −4/5
n

ˆ
ΩhVn

|∇uVn |2 dx ≥
ˆ
{h>ε/2}×[0,εV

1/5
n ]
|∇ûVn |2 dx.

Since for any interval I ⊂ R

lim
L→∞

min
u(x,0)=x

ˆ
I×[0,L]

|∇u|2 dx = min
u(x,0)=x

ˆ
I×[0,∞)

|∇u|2 dx,

we obtain

lim
n→+∞

V −4/5
n

ˆ
ΩhVn

|∇uVn |2 dx ≥ min
u(x,0)=x

ˆ
{h>ε/2}×[0,+∞)

|∇u|2 dx.

By letting ε→ 0 we obtain the desired lower bound.
For any other admissible function g, it is easily seen that

lim
Vn→+∞

GVn(g) ≤ G(g).

By a classical argument of Γ−convergence (see [4]), we deduce that h is a minimizer of G.

Remark 3.36. Notice that

G(h) := CW
∑
i∈N

(bi − ai)2 +

ˆ
R
h′2 dx,

where the intervals (ai, bi) are the connected components of {h > 0}, and CW is a constant
defined by

CW := inf

{ˆ
[0,1]×[0,+∞)

|∇u|2 dx : u(x, 0) = x

}
. (3.53)

We now study the limiting problem.
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Proposition 3.37. The minimization problem (3.51) admits (up to translations) a unique
minimizer h given by

h(x) :=


3
2`
−3
(
`2 − x2

)
, if x ∈ [−`, `]

0, if x /∈ [−`, `],

where ` :=
(

9
16CW

)1/5
.

Proof. The existence of a minimizer follows either by Theorem 3.35 or by the following direct
argument, which is similar in spirit to [18, Proposition 4.5]. Let h be an admissible function.
If Si denotes the surface energy of the i−th connected component of h, `i its length, and
Vi its volume (assuming Vi are in a non-increasing order), we observe that h(x) =

´ x
ai
h′ dx for

x ∈ [ai, bi], and so Vi ≤ `3/2i S
1/2
i . We sum this inequality for i ≥ n and apply Hölder’s inequality

to get ∑
i≥n

Vi ≤
(∑
i≥n

`3i

)1/2(∑
i≥n

Si

)1/2
.

Since
∑

i∈NCW `
2
i + Si = G(h) ≤ C, we get that n`2n ≤ C, i.e., `n ≤ Cn−1/2. We deduce∑

i≥n Vi ≤ Cn−1/2, which shows tightness of a minimizing sequence.

Let now h be a minimizer. Then in each of its connected component [ci − `i, ci + `i], h

satisfies h
′′

= −λi, and so h = −λi
2 ((x− ci)2− `2i ). Since

´ ci+`i
ci−`i hdx = Vi, the form of h implies

λi = 3Vi
2`3i

. Then by direct computation the energy inside [ci − `i, ci + `i] equals

4CW `
2
i +

2

3
λ2
i `

3
i = 4CW `

2
i +

3V 2
i

2`3i
.

This expression is minimized (under the constraint of volume Vi) by `i =
(

9
16CW

)1/5
V

2/5
i . Then

the total energy G(h) is ∑
i

(
324 · C3

W

)1/5
V

4/5
i

with the constraint
∑
Vi = 1. Thus, this energy is minimized by a single island.

Remark 3.38. By the uniqueness of the minimizer of G, we see that the whole sequence h̃V
(possibly translated) converges in L∞ to h̄.

We will finally prove the exponential rate of convergence of optimal profiles. For that, we
need, the following quantitative inequality, which can be considered as a very simple quantitative
isoperimetric inequality (see [13, 6]).

Proposition 3.39. Let L > 0, V > 0, and let hmin∈ H1(R) be the minimizer of
´ L
−L h

′2 dx

under the constraints h(−L) = h(L) = 0 and
´ L
−L hdx = V . Then for every other h∈ H1(R)

satisfying the same constraints,

ˆ L

−L
h′2 dx−

ˆ L

−L
h′2min dx ≥ 1

4L2

ˆ L

−L
|h− hmin|2 dx. (3.54)
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Proof. Let L, V, and hmin be as in the statement. Then, for every competitor h we write h =
(h−hmin)+hmin, and so

´ L
−L h

′2 dx =
´ L
−L(h−hmin)′2 dx+

´ L
−L h

′2
min dx+2

´ L
−L h

′
min(h−hmin)′ dx.

Since h′′min is constant and
´ L
−L hdx =

´ L
−L hmin dx, integration by parts implies

ˆ L

−L
h′2 dx =

ˆ L

−L
(h− hmin)′2 dx+

ˆ L

−L
h′2min dx.

For x ∈ [−L,L] we have

|h(x)− hmin(x)|2 ≤
(ˆ x

−L
|h′ − h′min|dx

)2

≤ 2L

ˆ L

−L
(h− hmin)′2 dx,

and so by integration we obtain

ˆ L

−L
|h− hmin|2 dx ≤ 4L2

ˆ L

−L
(h− hmin)′2 dx = 4L2

(ˆ L

−L
h′2 dx−

ˆ L

−L
h′2min dx

)
,

which shows the claim.

We now prove the exponential convergence of h̃V to a truncated parabola. To state our
result, we will need the following notation. Let V > V and h̃V , a minimizer of GV , be fixed.
Then for s > 0, we let Ĩs be the largest connected component of {h̃V > s} and h̄s be the
minimizer of

´
Ĩs
h′2 dx with the constraint

´
Ĩs
hdx =

´
Ĩs
h̃V dx and h = h̃V on the boundary of

Ĩs.

Proposition 3.40. Let ε > 0. Then there exist constants C0 = C0(ε) and C1 = C1(ε) such
that for every V > V and for every minimizer h̃V of GV ,

‖h̃V − h̄s‖L2(Ĩs)
≤ C0 exp(−C1V

1/5) ∀s ≥ ε.

Proof. Let ε > 0, V > V , and h̃V be as in the statement. If V is large enough, then

‖h̃V − h‖L∞ ≤ ε/2.

We observe that for any s ≥ ε, this implies {h̃V > s} ⊂ {h > ε/2}, and so H1(Ĩs) ≤ H1({h >
ε/2}) ≤ H1(supph) = C for any s ≥ ε. From this follows that if Is denotes the largest connected
component of {hV > s}, where hV is obtained by the inverse rescaling of h̃V , then

H1(Is) ≤ CV 2/5 ∀s ≥ εV 3/5. (3.55)

Now we claim that for some t ∈ [2εV 3/5, 3εV 3/5], we have

‖uV (·, t)‖2
Ḣ1/2(It×{t})

:= min
v(·,t)=uV (·,t)

ˆ
It×[t,+∞)

|∇v|2 dx . V 4/5ε−1 exp
(
−CεV 1/5

)
. (3.56)

Indeed, fix s ≥ εV 3/5. Then since uV is the minimizer of the Dirichlet energy, it satisfies
the Laplace equation with Neumann boundary conditions at the upper part of the boundary.
Denoting by ūV the average value of uV on Is × {s}, Ωs

V := ΩhV ∩ (Is × [s,+∞)), and using
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Hölder’s and Poincaré’s inequality, we getˆ
ΩsV

|∇uV |2 dx =

ˆ
Is×{s}

(uV − ūV )∂yuV dx

≤

(ˆ
Is×{s}

|uV − ūV |2 dx

)1/2(ˆ
Is×{s}

(∂yuV )2 dx

)1/2

≤ H
1(Is)

π

(ˆ
Is×{s}

(∂xuV )2 dx

)1/2(ˆ
Is×{s}

(∂yuV )2 dx

)1/2

≤ H
1(Is)

2π

ˆ
Is×{s}

|∇uV |2 dx
(3.55)

≤ CV 2/5

ˆ
Is×{s}

|∇uV |2 dx.

Since for F (s) :=
´

ΩsV
|∇uV |2 dx, s ≥ εV 3/5, this is equivalent to F (s) ≤ −CV 2/5F ′(s), an

integration in s yields that for s ≥ εV 3/5,

ˆ
ΩsV

|∇uV |2 dx ≤
ˆ

Ωh

|∇uV |2 dx · exp

(
−C s− εV

3/5

V 2/5

)
≤ V exp

(
−C s− εV

3/5

V 2/5

)
.

In particular, the previous relation with s = 2εV 3/5 implies

ˆ 3εV 3/5

2εV 3/5

ˆ
Is

|∇uV (x, s)|2 dx ds ≤ V exp(−CεV 1/5),

and so there exists t ∈ [2εV 3/5, 3εV 3/5] such thatˆ
It×{t}

|∇uV |2 dx ≤ V 2/5ε−1 exp(−CεV 1/5).

Finally, we use Wirtinger’s inequality

‖uV − ūV ‖L2(It×{t}) . H
1(It) · ‖uV ‖Ḣ1(It×{t}),

where ūV denotes the average of uV on (It × {t}), together with

‖uV ‖2Ḣ1/2(It×{t})
≤ ‖uV − ūV ‖L2(It×{t}) · ‖uV ‖Ḣ1(It×{t})

(see, e.g., [7, Eq. (9)]), to get ‖uV ‖Ḣ1/2(It×{t}) . H
1(It)

1/2 · ‖uV ‖Ḣ1(It×{t}) and thus (3.56).

As a final step of the proof, for s ≥ 3ε we want to construct (ũ, h̃), a competitor for (ũV , h̃V ).
Outside of Ĩs let h̃ := h̃V , and in Ĩs let h̃ := h̄s. Take then ũ to be equal to uV outside of Ωt

V

and to the restriction of a minimizer of

min
u(·,t)=uV (·,t)

ˆ
It×[t,+∞)

|∇u|2 dx

elsewhere. By minimality of (h̃V , uV ) we infer thatˆ
Ĩs

h̃′2V dx+ V −4/5

ˆ
ΩsV

|∇uV |2 dx ≤
ˆ
Ĩs

h̃′2 dx+ V −4/5‖uV (·, t)‖2
Ḣ1/2(It×{t})

,

hence ˆ
Ĩs

(
h̃′2V − h̃′2

)
dx ≤ V −4/5‖uV (·, t)‖2

Ḣ1/2(It×{t})

(3.56)

. ε−1 exp
(
−CεV 1/5

)
.

Using Proposition 3.39 we conclude the proof.
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4 The large slope approximation

If at large volume, a compact island forms, then |h′| is expected to be large on its support.
In this case, the small slope approximation

√
1 + |h′|2 − 1∼h′2 from Section 3 might not be

appropriate, and we rather work with the large slope approximation√
1 + h′2 − 1 ∼ |h′|, (4.1)

i.e., we consider now the functional
ˆ

Ωh

|∇u|2 dx +

ˆ
R
|h′|. (4.2)

Note that this approximation comes along with a loss of regularity of Ωh since for low-energy
configurations, h is no longer bounded in H1(R) but only in BV (R). Hence, we consider the
relaxation of the energy as determined in the case of compact support in [10]. We follow the
notation of [10, 3, 18]. If h : R → [0,+∞) is lower semicontinuous (l.s.c.), then we denote the
pointwise variation of h by

ˆ
R
|h′| := Var h := sup

{
n∑
i=1

|h (xi)− h (xi−1)| : x1 < · · · < xn

}
.

If Var h is finite then h is said to be of bounded pointwise variation (see [1]). For a function h
of bounded pointwise variation, set

h− (x) := min
{
h
(
x+
)
, h
(
x−
)}

= lim inf
z→x

h (z) ,

h+ (x) := max
{
h
(
x+
)
, h
(
x−
)}

= lim sup
z→x

h (z) ,

where h (x±) := limz→x± h (z). We denote by Γcuts the at most countable collection of vertical
cuts,

Γcuts :=
{

(x, y) : x ∈ S (h) , h (x) ≤ y ≤ h− (x)
}

where S (h) := {x : h (x) < h− (x)}. For h lower semicontinuous and of bounded pointwise
variation, we set

EV (u, h) :=

ˆ
Ωh

|∇u|2 dx and S
(`)
V (h) :=

ˆ
R
|h′|+ 2H1(Γcuts).

Note that H1(Γcuts) = 0 for locally Lipschitz functions h. If for a sequence of bounded energy
we restrict ourselves to a compact set, we are in the situation of [10, 18], and we obtain a local
compactness result by [10, Lemma 2.1, Proposition 2.2, and Theorem 2.8]. The result becomes
a global result, if we have strong L1-convergence of {hn}, which, in turn, follows from tightness.

Proposition 4.1. Assume (un, hn) is admissible for (4.2) with
´
R hn(x) dx = V . Then there

exists a subsequence (hn, un) (not relabeled) such that hn → h in L1
loc(R) with

h(x) := inf{ lim
n→∞

hn(xn) : xn → x}.

It holds that
´
R hdx ≤ V . Further, R2 \ Ωhn → R2 \ Ωh in the local Hausdorff topology, and

un ⇀ u in H1
loc(Ωh). If {hn} is tight, then the convergences hold globally,

´
R hdx = V , and

lim
n→∞

S
(`)
V (hn) + EV (un, hn) ≥ S(`)

V (h) + EV (u, h).
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Conversely, if h is a lower semicontinuous, nonnegative function of bounded pointwise variation,
with

´
R hdx = V , then there exists a sequence of compactly supported Lipschitz functions hn

with
´
R hn(x) dx = V , and un ∈ H1(Ωhn) such that hn → h in L1(R), un ⇀ u in H1

loc(Ωh), and

S
(`)
V (h) + EV (u, h) ≥ lim

n→∞
S

(`)
V (hn) + EV (un, hn).

For V > 0, we set (see [10, (2.8)])

A`V :=

{
(u, h) : h ∈ BV (R), h l.s.c, h ≥ 0, u ∈ H1(Ωh),

ˆ
R
h dx = V, u(x, 0) = x if x ∈ supph

}
,

and

F`(V ) := inf

{ˆ
Ωh

|∇u|2 dx +

ˆ
R
|h′| : (h, u) ∈ A`V

}
. (4.3)

4.1 Basic properties

Note that the rescaling property for the small slope approximation from Lemma 3.1 carries over
to the case of the large slope approximation (4.1). Precisely, for a lower semicontinuous function
h ∈ BV (R), u ∈ H1(Ωh) and λ > 0, consider the rescaled quantities hλ ∈ BV (R) and uλ ∈
H1(Ωh) given by hλ(x) := 1

λh(λx) and uλ(x, y) := 1
λu(λx, λy). Then

´
R hdx = λ2

´
R hλ(x) dx,

and ˆ
Ωh

|∇u|2 dx +

ˆ
R
|h′|+ 2H1(Γcuts) = λ2

ˆ
Ωhλ

|∇uλ|2 dx + λ

ˆ
R
|h′λ|+ 2λH1(Γcuts).

Further, we again have F`(V ) ≤ V by considering a sequence hn(x) = V
nχ(0,n) and un(x, y) = x

in Ωhn . Hence, some results from the previous sections carry over essentially verbatim to the
large slope approximation. We collect some properties in the following proposition.

Proposition 4.2. (i) F` is concave, and hence in particular locally Lipschitz continuous. At
every point of differentiability,

F ′`(V ) =
1

V
(EV +

1

2
SV ).

Minimizers for a fixed volume have the same surface and the same elastic energy. Further,

limε→0
F`(V + ε) + F`(V − ε)− 2F`(V )

ε2
≤ − SV

4V 2
.

(ii) For every V > 0, if a minimizer exists, i.e., if there is (u∗, h∗) ∈ A`V such that F`(V ) =

EV (u∗, h∗) + S
(`)
V (h∗), then {h∗ > 0} is connected.

(iii) For every V > 0,

F`(V ) = inf

{ˆ
Ωh

|∇u|2 dx +

ˆ
R
|h′| : (u, h) ∈ A`V , ∂yu ≡ 0 or

ˆ
Ωh

(∂yu)2 dx =
1

4

ˆ
R
|h′|
}

(iv) We have

‖h‖L∞(R) ≤
ˆ
R
|h′|.
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Proof. (i) See proofs of Propositions 3.3 and 3.31.

(ii) See proof of Proposition 3.4.

(iii) Consider the anisotropic volume-preserving scaling from the proof of Lemma 3.5, i.e.,
hλ(x) := λh(λx), and uλ(x) := 1

λu(λx, 1
λy). Then

ˆ
Ωh

|∇uλ|2 dx +

ˆ
R
|h′λ| =

ˆ
Ωh

(
(∂xu)2 +

1

λ4
(∂yu)2

)
dx + λ

ˆ
R
|h′|,

and for ∂yu 6≡ 0, minimization in λ yields the claim.

4.2 Scaling law

The scaling law for F` can be derived arguing along the lines of the proof of Proposition 3.9.

Proposition 4.3. There is a constant c0 > 0 such that for all V > 0, we have

c0 min{V, V 2/3} ≤ F`(V ) ≤ 1

c0
min{V, V 2/3}.

Further, there is a constant c > 0 with the following property: If V is large enough, and (u, h)
is admissible for (4.2) with F (u, h) ≤ 1

c0
min{V, V 2/3}, then suph ≥ cV 2/3.

Proof. We prove the upper bound first. If V ≤ 1, for L > 0 we set h := V L−1χ[0,L] and
u(x, y) := x for all (x, y) ∈ Ωh. Then

F`(V ) ≤
ˆ L

0

ˆ V L−1

0
|∇u|2 dx +

ˆ
R
|h′| = V + 2V L−1.

Since L > 0 can be chosen arbitrary large, we have that F`(V ) ≤ V .
In the case V ≥ 1, choose L := V 1/3, h := V

Lχ[0,L], and let u be a minimizer of the Dirichlet

energy on Ωh = [0, L]× [0, h] subject to u(x, 0) = x. Since L = V 1/3 � V 2/3 ∼ V
L , we have

ˆ
Ωh

|∇u|2 dx ∼ L2 ∼ V 2/3 and

ˆ
R
|h′| = 2V 2/3.

The lower bound together with the estimate on suph can be obtained by repeating the proof

of Proposition 3.9 replacing the estimate S1 & V 2
1

t31
by S1 & V1

t21
. .

Remark 4.4. Just as for Fs, using (iv) of Proposition 4.2, we can obtain that for an almost
minimizer, suph ∼ V 2/3, and the size of the support of h is at least ∼ V 1/3.

Remark 4.5. If we rescale V := e4
0d, and F`(e0, d) = 1

e0
F`(V ), we find

minF`(e0, d) ∼ min{e2
0d, e

2/3
0 d2/3}.

Over the last years, much work has been devoted to the analysis of island formation in a
compact setting (see [10, 14, 18]). Precisely, assuming that h : [0, 1]→ [0,∞) is Lipschitz, set

F̃ (d) := inf

{ˆ
Ωh

|∇u|2 dx +

ˆ 1

0
(
√

1 + (h′)2 − 1) dx :

h ∈W 1,∞(R), u ∈ H1(Ωh),

ˆ 1

0
hdx = d, u(x, 0) = e0x, h(0) = h(1) = 0

}
. (4.4)
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In this case, the surface energy is always bounded below by min{d, d2} since by the compact
support there is a point x∗ ∈ (0, 1) with h(x∗) ≥ d, and thus

ˆ 1

0
(
√

1 + h′2 − 1) dx =

ˆ x∗

0
(
√

1 + h′2 − 1) dx+

ˆ 1

x∗
(
√

1 + h′2 − 1) dx

≥
√

1 + (2d)2 − 1 ≥

{
cd if d is large

cd2 if d is small.
(4.5)

Consequently, for compact support, the scaling law is the following.

Proposition 4.6. The following holds

F̃ (d) ∼ max{min{d, d2}, min{de2
0, d

2/3e
2/3
0 }}. (4.6)

Proof. We prove the upper bound first.

(i) If d . 1, let Ωh be a triangle of length 1 and height 2d, and set u(x, y) = e0x in Ωh. Then,
since |h′| is small,

F̃ (u, h) . e2
0d+ d2 .

{
d2 if e2

0 . d

e2
0d if e2

0 & d.

(ii) If 1 . e2
0 . d, let Ωh be close to a rectangle of length 1 and height d, i.e., supph ⊂

(0, ε) ∪ (1 − ε, 1), and let u be a minimizer of the Dirichlet energy in Ωh subject to the
boundary condition u(x, 0) = e0x. Then, since |h′| is large on its support,

F̃ (u, h) . e2
0 + d . d.

(iii) If 1
e40

. d . e2
0, let Ωh be a Lipschitz approximation of a rectangle of length L ∼ d1/3

e
2/3
0

. 1,

and height h ∼ d2/3e
2/3
0 , and let u be a minimizer of the Dirichlet integral in Ωh subject

to the boundary condition u(x, 0) = e0x. Then, since |h′| is large on its support,

F̃ (u, h) . e2
0L

2 + d2/3e
2/3
0 ∼ e2/3

0 d2/3.

The lower bound follows from (4.5) and a proof similar to that of Proposition 3.9 since in case
V1 > 2t21, the slope used to estimate the surface energy in large.

The scaling law (4.6) resembles essentially results from [18], where a model without normal-
ization of the surface energy has been considered, i.e.,

F̃2(d) := inf

{ˆ
Ωh

|∇u|2 dx +

ˆ 1

0

√
1 + (h′)2 dx :

h ∈W 1,∞(R), u ∈ H1(Ωh),

ˆ 1

0
hdx = d, u(x, 0) = e0x, h(0) = h(1) = 0

}
.

There, the scaling law turns out to be

inf F̃2 ∼ max{1, d, e2/3
0 d2/3}.

We note that the proof uses essentially the large slope approximation
√

1 + h′2 ≥ max{1, |h′|},
and small slopes (which are likely only for small volumes) are not seen by the first order behavior.
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4.3 Existence of minimizers

In case of the small slope approximation, non-existence of minimizers follows from the fact that
there is a regime of volumes for which Fs(V ) = V (see Proposition 3.13). In case of the large
slope approximation, we can prove only a weaker statement in this direction.

Proposition 4.7. For every δ > 0 there is Ṽ (δ) > 0 such that for every 0 < V < Ṽ ,

(1− δ)V ≤ F`(V ) ≤ V.

In particular,

lim
V→0

1

V
F`(V ) = 1.

Proof. First, the upper bound F`(V ) ≤ V is showed in the proof of Proposition 4.3. To prove
the other estimate, we refine the argument from the proof of the lower bound for the minimal
energy in Proposition 4.3.

Let h be any locally Lipschitz function with
´
R hdx = V and 0 < δ < 1 be fixed. Let

λ > 0 be a parameter which will be chosen below. Pick x1 ∈ R and define t1 := max{t > 0 :
[x1, x1 + λt]× [0, t] ⊂ Ωh}. Set V1 :=

´ x1+t1
x1

hdx > 0.

Let us first prove that there exists Ṽ :=Ṽ (δ) such that if V1 < Ṽ , then

ˆ x1+t1

x1

ˆ h(x)

0
|∇u|2 dx dy +

ˆ x1+t1

x1

|h′| ≥ (1− δ)V1. (4.7)

Assume for the sake of contradiction thatˆ x1+t1

x1

ˆ h(x)

0
|∇u|2 dx dy +

ˆ x1+t1

x1

|h′| < (1− δ)V1. (4.8)

Since h is locally Lipschitz, we have that max[x1,x1+t1] h − min[x1,x1+t1] h ≤
´ x1+t1
x1

|h′|. Then
max[x1,x1+t1] h ≥ V1/t1 and min[x1,x1+t1] h = λt1, which implies that V1/t1 − λt1 < (1 − δ)V1,
and subsequently

V1(1− (1− δ)t1) < λt21. (4.9)

Next, by Lemma 2.3, there exists ψ = ψ(λ) such that

ˆ x1+t1

x1

ˆ λt1

0
|∇u|2 dx ≥ ψλt21, and ψ → 1 as λ→ 0. (4.10)

In particular, we can choose λ = λ(δ) > 0 small enough such that ψ(λ) > 1− δ. By (4.10), the
assumption (4.8) implies ψλt21 < (1− δ)V1. We combine this with (4.9) to obtain

t1 >
1− 1−δ

ψ

1− δ
> 0. (4.11)

Now we define Ṽ (δ) := λ

(
1− 1−δ

ψ

1−δ

)2

> 0 and observe that (4.11) implies V1 ≥ λt21 ≥ Ṽ , a

contradiction to the assumption V1 < Ṽ .
If we choose Ṽ as above, we can continue the same way as in the proof of Proposition 3.9

and use that Vi ≤ V < Ṽ to get

F`(V ) ≥ (1− δ)
∑
i

Vi = (1− δ)V. (4.12)
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This slightly weaker statement still allows us to derive an analogue to Lemma 3.14. We
define β` by F`(V ) =: β`(V )V . Note that again β`(V ) < 1 for large V .

Lemma 4.8. The function β` is strictly decreasing in {F`(V ) < V } = {β` < 1}.

Proof. Assume for a contradiction that there are V0 < V1 such that F`(V ) = β0V < V for
all V ∈ [V0, V1] with some 0 < β0 < 1. By Proposition 4.7, there exists Ṽ > 0 such that
F`(V ) ≥ 1

2(1 + β0)V for all V < Ṽ . As in the proof of Lemma 3.14, concavity of F` and

F`(0) = 0 imply that F`(V ) = β0V for V ∈ (0, Ṽ ), which yields a contradiction.

Proceeding along the lines of Section 3, we show tightness of minimizing sequences for
V ∈ {β` < 1}.

Lemma 4.9. Let V ∈ {β` < 1} and δ > 0. Then there exist ` = `(V, δ) > 0 and C(V, δ) > 0
with the following property: If (u, h)∈ A`V with ε := EV (u, h) + SV (h) − F`(V ) ≤ C(V, δ), and
x0 < x1 with x1 − x0 = `, then

ˆ x0

−∞
hdx ≤ δ or

ˆ ∞
x1

hdx ≤ δ.

Proof. We proceed along the lines of the proof of Lemma 3.15. Fix V ∈ {β` < 1} and δ > 0.
Let

0 < C(V, δ) ≤ δ

2

(
β`

(
V

2

)
− β`(V )

)
, and 0 < α <

δ

36

(
β`

(
V

2

)
− β`(V )

)
be such that V/(3α) = n ∈ N. Define ` := α−1V , and consider an interval [x0, x1] of length
`, and write it as a disjoint union of 3n intervals of length 1. As in the proof of Lemma 3.15,
taking into account the different surface energy term, there is an interval I such that

ˆ
I
h dx≤ 3α and

ˆ
I
|h′| ≤ 3α,

which implies

3α ≥
ˆ
I
|h′| ≥ sup

I
h− inf

I
h.

Since also 3α ≥
´
I hdx ≥ infI h, we have

sup
I
h = (sup

I
h− inf

I
h) + inf

I
h ≤ 3α+ 3α= 6α.

Following the lines of the proof of Lemma 3.15, we make two cuts in I such that the profile
is separated into two pieces of volumes V0 < V1, with V = V0 + V1 + Vlo, with Vlo ≤ 16α such
that the surface energy is increased by at most Scut ≤ 2 supI h ≤ 12α. Then as in (3.19),
V0 (β`(V/2)− β(V )) ≤ ε+ Vlo + Scut, and thus,

V0 ≤
ε+ Vlo + Scut
β`(V/2)− β`(V )

≤ ε+ 6α+ 12α

β`(V/2)− β`(V )
< δ.

The proof is concluded as in Lemma 3.15.

As worked out in Proposition 3.16, Lemma 4.9 implies tightness (up to translations) of min-
imizing sequences. Using lower semicontinuity of the energy we obtain existence of minimizers:

Proposition 4.10. Let V be such that F`(V ) < V . Then there exists a minimizer (u,h) of
(4.3).
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4.4 Asymptotic behavior

We proceed along the lines of Section 3.6. According to the slightly different scaling law (see
Proposition 4.3), we define for admissible h with

´
R h dx = V the rescaled quantities by h̃(x) :=

V −2/3h(V 1/3x), and

GV (h̃) := V −2/3 (EV (u, h) + SV (h)) = V −2/3

ˆ
Ωh

|∇u|2 dx +

ˆ
R
|h̃′|.

Note that
´
R h̃dx = 1.

Theorem 4.11. For every sequence Vn → ∞, let (uVn , hVn) be a sequence of minimizers of
(4.3) . Then there exists a subsequence such that the rescaled profile functions h̃Vn converge to
h in L1(R), which minimizes

G(h) :=

(
inf

u(x,0)=x

ˆ
{h>0}×[0,+∞)

|∇u|2 dx

)
+

ˆ
R
|h′|+ 2H1(Γcut) (4.13)

subject to the constraint
´
R hdx = 1. Moreover, R2\Ωh̃Vn

converges in Hausdorff topology to

R2\Ωh.

Proof. We first observe that GVn(h̃Vn) ≤ C, and that (up to translations) the sequence h̃Vn is
tight (see proofs of Theorem 3.35 and Lemma 4.9). Thus, a subsequence of h̃Vn converges to h
in L1(R). Thanks to the bound on the surface energy, we also have local Hausdorff convergence
of R2\Ωh̃Vn

to R2\Ωh which then improves to Hausdorff convergence thanks to Proposition 4.2

(iv). By the lower semicontinuity, we obtain the lower bound for the surface energy, i.e.,

lim
n→∞

ˆ
R
|h̃Vn | ≥

ˆ
R
|h′|+H1(Γcut).

For the elastic energy, we proceed as in [18, Proposition 4.3]. By the Hausdorff convergence
of Ωh̃V

to Ωh, we have convergence of the “boundary layers” {h̃Vn > 0 and h > 0} × [0,∞) to

{h > 0} × [0,∞) in the local Hausdorff topology. Changing variables, x = V
1/3
n x̂, y = V

1/3
n ŷ,

uVn = V
−1/3
n ûVn , there is a subsequence such that ûVn ⇀ û locally weakly in H1({h > 0} ×

[0,∞)). Thus as in [18, Proposition 4.3],

V −2/3
n

ˆ
ΩhVn

|∇uVn |2 dx ≥
ˆ

Ωh̃Vn
∩[{h>0}×[0,∞)]

|∇ûVn |2 dx ≥
ˆ
{h>0}×[0,∞)

|∇ûVn |2 dx.

The lower bound follows. For the upper bound construction, it is enough to consider h̃Vn = h.
We conclude by Γ-convergence, as in the proof of Theorem 3.35.

Remark 4.12. We note that

G(h) := CW
∑
i∈N

(bi − ai)2 +

ˆ
R
|h′|+ 2H1(Γcuts),

where the intervals (ai, bi) are the connected components of {h > 0}, and CW is as in (3.53).

We next study the minimizer of the limiting functional.

Proposition 4.13. The minimization problem (4.13) admits a unique minimizer up to trans-

lations, namely the rectangle with base 21/3C
−1/3
W .
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Proof. The proof follows as in [18, Proposition 4.5], and we briefly sketch it only for the reader’s
convenience. The optimal function h is of the form h =

∑N
i=1 hiχ(ai,bi) with

∑N
i=1 hi(bi−ai) = 1,

and ai < bi < ai+1 since the rectangle minimizes
´
|h′| among profiles with given volume. We

set `i := bi − ai. Then by Remark 4.12, the energy is given by

CW

N∑
i=1

`2i + 2

N∑
i=1

hi.

Assume that there are two connected components, say, of lengths `1 ≥ `2 > 0, then for η ∈
[−h1,

`2
`1
h2], we consider the volume-preserving variation of h changing h1 and h2 to h1 + η and

h2− η `1`2 , respectively. The minimality condition then gives `1 = `2, from which we deduce that
`i = ` ≡ const for every i = 1, . . . , N . The minimization problem then reduces to minimizing

CWN`
2 + 2

` subject to N ∈ N, which yields N = 1 and ` = 21/3C
−1/3
W .

To prove the exponential convergence, we have an analogue to Proposition 3.39.

Lemma 4.14. Let L > 0 and V > 0. Consider hmin := V
Lχ[0,L], which is the minimizer of´

R |h
′| in

X := {h ∈ BV (R) : h ≥ 0,

ˆ
R
h(x) dx =

ˆ L

0
h(x) dx = V }.

Then for all h∈ X we have

ˆ
R
|h′| −

ˆ
R
|h′min| ≥

1

L

ˆ
R
|h− hmin| dx.

Proof. By rescaling the dependent and independent variables (see the proof of Lemma 3.7), it
suffices to consider L = 1 and V = 1, i.e., hmin = χ[0,1] and

´
R |h

′
min| = 2. By density, we may

assume that h ∈ W 1,∞(R). Then the function h(x) − 1 attains its non-negative maximum at
some x ∈ [0, 1]. We have

´ 1
0 |h

′| ≥ 2h(x), and thus,

ˆ 1

0
|h′| − 2 ≥ 2(h(x)− 1) ≥ 2

ˆ 1

0
(h− 1)+ dx =

ˆ 1

0
|h− hmin|dx,

where we used
´ 1

0 hdx = 1 to show that 2
´ 1

0 (h− 1)+ dx =
´ 1

0 |h− 1|dx.

Finally, we prove exponential convergence of a sequence of minimizing profiles of GV to the
rectangle, which minimizes the limit functional (see Proposition 4.13). We denote by Is the
largest connected component of {hV > s}, and by Ĩs the rescaled one. Given a function h̃, we
denote by h̄s the function that agrees with h̃ outside Is, has the same volume as h̃, and is such
that the surface energy term is minimized.

Proposition 4.15. For every ε > 0 there exist constants C0 and C1 such that for every V > V ,
and for every minimizer h̃V of GV , for all s ≥ ε,

‖h̃V − hs‖L1(Ĩs)
≤ C0 exp(−C1V

1/3).

Proof. Let ε > 0. Since (after possible translations), R2\Ωh̃V
converges in Hausdorff topology

to R2\Ωh and since h is a characteristic function,

H1(h̃ > s) ≤ C ∀s ≥ ε.
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Hence, by rescaling, we obtain that for s ≥ εV 2/3, the largest connected component Is of
{hV > s} satisfies

H1(Is) ≤ CV 1/3. (4.14)

By density, possibly slightly changing ε, we may instead of minimizers consider Lipschitz func-
tions H̃V with ‖H̃V − h̃V ‖L1 ≤ exp(−C1V

1/3) and EV (uV , HV ) + SV (HV ) ≤ EV (u, hV ) +
SV (hV )+exp(−C1V

1/3). Similarly to the derivation of (3.56) we then obtain that there is some
t ∈ [2εV 2/3, 3εV 2/3] with

‖uV ‖2Ḣ1/2(It×{t})
≤ V 2/3ε−1 exp(−CεV 1/3). (4.15)

Indeed, since H̃V is Lipschitz, and uV is a minimizer of the Dirichlet energy, we have as in the
proof of Proposition 3.40,

ˆ
ΩsV

|∇uV |2 dx ≤ CH1(Is)

ˆ
Is×{s}

|∇uV |2 dx ≤ CV 1/3

ˆ
Is×{s}

|∇uV |2 dx,

i.e., f(s) :=
´

ΩsV
|∇uV |2 for s ≥ εV 2/3 satisfies f(s) ≤ −CV 1/3f ′(s). Thus, for s ≥ εV 2/3, we

have f(s) ≤ V exp
(
−C s−εV 2/3

V 1/3

)
. In particular,

ˆ 3εV 2/3

2εV 2/3

|∇uV |2 dx ≤ V exp(−CεV 1/3),

and it follows by Wirtinger’s inequality that there is some t ∈ [2εV 2/3, 3εV 2/3] such that (4.15)
holds. Now we choose as a competitor the function ht, which by definition agrees with H̃ outside
of It, and the corresponding optimal deformation u with boundary data u(x·, t) = uV (x, t) for
all x ∈ It. Using the almost optimality, we conclude as in Proposition 3.40, using Lemma 4.14.
Note that the factor V 2/3 cancels with the rescaling factor of the elastic energy.

5 The scaling law in three space dimensions

In this section we will identify the scaling law for the energy in the (2 + 1) -dimensional setting.
More precisely, we consider a 3D analog of (3.2): Given V ∈ (0,∞), we define

F 3D
s (V ) := inf

{ˆ
Ωh

|∇u|2 dx +

ˆ
R2

|∇h|2 dx dy : h ∈W 1,∞(R), u ∈ H1(Ωh),

ˆ
R2

hdx dy = V, u(x, y, 0) = (x, y) in supph

}
, (5.1)

where Ωh := {x := (x, y, z) ∈ R3 : 0 < z < h(x, y)}.

Theorem 5.1. There exists a positive constant c such that for every V > 0

cmin{V, V 6/7} ≤ F 3D
s (V ) ≤ c−1 min{V, V 6/7}.

Proof. To prove the upper bound, we consider two different constructions – a thin layer and a
pyramid.
Thin layer construction: For ε > 0, let L be such that

´
R2 hdx dy = V for h defined by

h(x, y) := min {ε, [(L + ε) − max(|x|, |y|)]+}, where by f+ := max{0, f} denotes the positive
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part of f . By setting u(x, y, z) := (x, y) we get
´

Ωh
|∇u|2 dx = 2V . We observe that |∇h| = χM

with M the difference of two concentric squares with sidelengths 2(L+ ε) and 2L, and so

ˆ
R2

|∇h|2 dx dy = |M | = 4ε(2L+ ε) ≤ 4(
√
V ε+ ε2),

where we used that (2L)2ε ≤ V . Hence F (V ) ≤ 2V + 4(
√
V ε+ ε2) for arbitrarily small ε > 0,

which implies F (V ) ≤ 2V .
Pyramid construction: Let L := V 2/7 and H := 3V 3/7/4. We define
h(x, y) := H (1−max(|x|, |y|)/L)+ and u(x, y, z) := (x, y)(1 − z/L)+, and so

´
R2 hdx dy = V .

Then |∇h| = χ[−L,L]2H/L, and
´
R2 |∇h|2 dx dy = 4L2(H/L)2 = 4H2. To estimate the elastic

energy we observe that for (x, y, z) ∈ Ωh ∩ {z ∈ (0, L)} we have |∇u(x, y, z)|2 = 2(1− z/L)2 +
(x2 + y2)/L2, and ∇u = 0 otherwise. Since x2 + y2 ≤ 2L2, we have that

´
Ωh
|∇u|2 dx ≤

4|Ωh ∩ {z < L}| ≤ 4(2L)2L = 8L3, and finally F (V ) ≤ 4H2 + 8L3 = (9/4 + 8)V 6/7.

It remains to prove the lower bound. First we describe the notation. For (x0, y0) ∈ R2 and
l > 0 we define the square Sl(x0, y0) := [x0, x0 + l)× [y0, y0 + l). Let Φ be a function, which for
a given square Sl(x0, y0) counts on what portion of slices the function h is larger than l:

Φ(Sl(x0, y0)) := |{x ∈ [x0, x0 + l) : h(x, y) ≥ l for all y ∈ [y0, y0 + l)}| /l.

We observe that this definition makes sense since h ∈ H1(R2), and so there exists a representa-
tive which is defined everywhere on almost every slice. Let ε > 0 be such that

´
{h≥ε} hdx ≥ V/2.

Given ε, we assume that the following Calderón-Zygmund type lemma holds:

Lemma 5.2. There exists a collection of disjoint squares {Sln(xn, yn)} such that their union
covers the set {h ≥ ε}, and each square Sln(xn, yn) from the collection satisfies:

• Φ(Sln(xn, yn)) ≤ 1/2,

• there exists a point (x′n, y
′
n) such that Sln/2(x′n, y

′
n) ⊂ Sln(xn, yn) and Φ(Sln/2(x′n, y

′
n)) ≥

1/2.

We postpone the proof of the lemma and first show how the lemma implies the lower bound.
Let Sln(xn, yn) be one of the squares obtained in Lemma 5.2. We denote

Sn := Sln(xn, yn), Vn :=

ˆ
Sn

hdx dy, S′n := Sln/2(x′n, y
′
n),

X ′n := {x ∈ [x′n, x
′
n + ln/2) : h(x, y) ≥ ln/2 for all y ∈ [y′n, y

′
n + ln/2)}.

Observe that

ˆ
Sn×(0,∞)∩Ωh

|∇u|2 dx ≥
ˆ
S′n×(0,∞)∩Ωh

|∇u|2 dx

≥
ˆ
X′n

(ˆ y′n+ln/2

y′n

ˆ ln/2

0
|∇u|2 dy dz

)
dx & |X ′n|l2n

Φ(S′n)≥1/2

& l3n, (5.2)

where we used that for x ∈ X ′n the whole square {x} × [y′n, y
′
n + ln/2)× [0, ln/2) ⊂ Ωh, and we

used the one-dimensional argument to get
´ y′n+ln/2
y′n

´ ln/2
0 |∇u|2 dy dz & l2n.

We consider two cases: Vn < 2l3n and Vn ≥ 2l3n. If Vn < 2l3n, then by (5.2) we have
Vn .

´
Sn×(0,∞)∩Ωh

|∇u|2 dx.
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Now suppose that Vn ≥ 2l3n. Since Φ(Sn) ≤ 1/2, we can find x′ ∈ [xn, xn + ln) such that

h(x′, y′) ≤ ln for some y′ ∈ [yn, yn + ln) and
´ yn+ln
yn

|∂yh(x′, y)|2 dy ≤ 2l−1
n

´
Sn
|∇h|2 dx dy. Then

for any y ∈ [yn, yn + ln), Hölder’s inequality implies

|h(x′, y)− h(x′, y′)| ≤
ˆ y′

y
|∂yh(x′, ŷ)|dŷ

≤ l1/2n

(
2l−1
n

ˆ
Sn

|∇h|2 dx dy

)1/2

=

(
2

ˆ
Sn

|∇h|2 dx dy

)1/2

. (5.3)

Since h(x′, y′) ≤ ln, we get that maxy∈[yn,yn+ln) h(x′, y) ≤ ln +
(

2
´
Sn
|∇h|2 dx dy

)1/2
and that

´ yn+ln
yn

h(x′, y) dy ≤ l2n + ln

(
2
´
Sn
|∇h|2 dx dy

)1/2
. Finally, another application of Hölder’s in-

equality shows that for every x ∈ [xn, xn + ln):

ˆ yn+ln

yn

h(x, y) dy ≤
ˆ yn+ln

yn

h(x′, y) dy +

∣∣∣∣ˆ yn+ln

yn

h(x, y) dy −
ˆ yn+ln

yn

h(x′, y) dy

∣∣∣∣
≤ l2n + ln

(
2

ˆ
Sn

|∇h|2 dx dy

)1/2

+

ˆ
Sn

|∇h| dx dy

≤ l2n + 3ln

(ˆ
Sn

|∇h|2 dx dy

)1/2

,

and thus

Vn =

ˆ
Sn

hdx dy =

ˆ xn+ln

xn

(ˆ yn+ln

yn

h(x, y) dy

)
dx ≤ l3n + 3l2n

(ˆ
Sn

|∇h|2 dx dy

)1/2

.

Since Vn ≥ 2l3n, we have that V 2
n /(36l4n) ≤

´
Sn
|∇h|2 dx dy. Then (5.2) and Young’s inequality

imply ˆ
Sn×(0,∞)∩Ωh

|∇u|2 dx +

ˆ
Sn

|∇h|2 dx dy & l3n + V 2
n /(36l4n) & V 6/7

n . (5.4)

Summarizing, we get that
ˆ
Sn×(0,∞)∩Ωh

|∇u|2 dx +

ˆ
Sn

|∇h|2 dx dy & min {V 6/7
n , Vn}.

Since
⋃
n Sln(xn, yn) ⊃ {h ≥ ε} and

´
{h≥ε} h ≥ V/2, we have that

∑
n

ˆ
Sln (xn,yn)

hdx dy =
∑
n

Vn ≥ V/2.

Hence, summing (5.4) over all the squares Sln(xn, yn) and using the concavity of f(t) :=
min {t6/7, t} yields

F 3D
s (V ) ≥

∑
n

(ˆ
Sn×(0,∞)∩Ωh

|∇u|2 dx +

ˆ
Sn

|∇h|2 dx dy

)
&
∑
n

min {V 6/7
n , Vn} & min {V 6/7, V }.
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Proof of Lemma 5.2: Since h is Lipschitz, we see that δ := dist({h ≥ ε}, {h ≤ ε/2}) > 0. Let

l′ := (2V )1/3, and let Sl′(x
(0)
n , y

(0)
n ) be a (finite) disjoint covering of the set {h ≥ ε}. The choice

of l′ implies that Φ(Sl′(x
(0)
n , y

(0)
n )) ≤ 1/2 for every n. Let us now fix one square Sl′(x

(0)
n , y

(0)
n ).

We aim to construct a finite collection N of disjoint squares with the following properties:

• all squares in N satisfy the two conditions given in Lemma 5.2,

• Sl′(x
(0)
n , y

(0)
n ) ∩ {h ≥ ε} ⊂

⋃
S∈N S.

We observe that if we construct such N for each initial square Sl′(x
(0)
n , y

(0)
n ), taking the

union of all those N will give a collection of squares which satisfies all the required conditions
of Lemma 5.2.

We now describe the iterative construction. We define M0 := {Sl′(x
(0)
n , y

(0)
n )} and Nk := ∅.

Assume that Mk is constructed, and let Sl(x, y) ∈ Mk. We divide Sl(x, y) into four disjoint
squares S1, S2, S3, S4 with sidelength l/2, and consider two cases. If Φ(Si) ≤ 1/2 for all i =
1, 2, 3, 4, then we add to Mk+1 all those Si which satisfy Si ∩ {h ≥ ε} 6= ∅. Otherwise (i.e., if
Φ(Si) > 1/2 for some i), we add Sl(x, y) into Nk.

First, we observe that at any step k0 of the procedure we have

Sl′(x
(0)
n , y(0)

n ) ∩ {h ≥ ε} ⊂
⋃

S∈Mk0
∪
⋃
k<k0

Nk

S. (5.5)

We also see that any square S ∈ Nk satisfies the two conditions given in Lemma 5.2, and so we
are done with the construction of N :=

⋃
Nk provided we show that Mk = ∅ for large enough

k. Let k be such that l′2−k ≤ min {δ/
√

2, ε/2}, and let us assume that S ∈ Mk. From the
way Mk was constructed we see that Φ(S) ≤ 1/2, the length of the side of S is l′2−k, and
S ∩ {h ≥ ε} 6= ∅.

On the other hand, since l′2−k ≤ δ/
√

2, we see that S ⊂ {h ≥ ε/2}. Then, l′2−k ≤ ε/2
implies h ≥ l′2−k in S, and so Φ(S) = 1, which contradicts Φ(S) ≤ 1/2.

We showed thatMk is empty for large enough k, and so theN we just constructed satisfies all
the requirements of Lemma 5.2. This finishes the proof of Lemma 5.2, and thus of Theorem 5.1.

Using the same line of proof, we can also show the scaling law for the large slope approxi-
mation, i.e., for the functional

F 3D
` (V ) := inf

(u,h)

{ˆ
Ωh

|∇u|2 dx +

ˆ
R2

|∇h| dx dy : h ∈ BV (R2), h ∈W 1,∞(R2), u ∈ H1(Ωh)

ˆ
R2

hdx dy = V, u(x, y, 0) = (x, y)

}
,

Theorem 5.3. There exists a positive constant c such that for every V > 0

cmin {V, V 3/4} ≤ F 3D
` (V ) ≤ 1

c
min {V, V 3/4}. (5.6)

Notice that in contrast to [18, Proposition 5.1], we do not need here any hypothesis on V .
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