EXISTENCE OF SOLUTIONS TO PARABOLIC PROBLEMS
WITH NONSTANDARD GROWTH AND IRREGULAR
OBSTACLES

ANDRE H. ERHARDT

ABsTrRACT. In this paper, we establish the existence theory to nonlinear par-
abolic problems with nonstandard p(z,t)-growth conditions and irregular ob-
stacles related to

Oyu — diva(z,t,Du) = f—div <|F|p(m't)72F) in Qp.

1. INTRODUCTION

The aim of this paper is to establish the existence of solutions to parabolic
obstacle problems related to

dpu — diva(z,t, Du) = f— div (\FWJHF) in Q7. (1.1)

The motivation of this paper and the study of problems with nonstandard growth
and irregular obstacles is on the one hand based on mathematical aspects, on the
other hand the consideration of problems in the sense of (1.1) are motivated by
issues of life sciences. We refer to [13, 34] for an overview of the classical theory
and applications. Moreover, obstacle problems have been exploited in nonlinear po-
tential theory for approximating supersolutions by solutions to obstacle problems,
see [31, 33, 35]. Up to now, the theory for elliptic problems is well understood,
as well the theory for elliptic obstacle problems, see e.g. [6, 14, 22, 37]. There-
fore, parabolic problems arouse interest more and more in mathematics during the
last years. Moreover, parabolic problems are motivated by physical aspects. In
particular, evolutionary equations and systems can be used to model physical pro-
cesses, e.g. heat conduction or diffusion processes. There are many open problems,
e.g. with regard to the Navier-Stokes equation, the basic equation of fluid me-
chanics. Some properties of solutions of the system of a modified Navier-Stokes
equation, describing electro-rheological fluids are studied in [4]. Such fluids, which
are recently of high technological interest, because of their ability to change the
mechanical properties under the influence of exterior electro-magnetic field, see
[30, 41]. For example, many electro-rheological fluids are suspensions consisting
of solid particles and a carrier oil. These suspensions change their material prop-
erties dramatically if they are exposed to an electric field, see [42]. Most of the
known results concern the stationary models with p(z)-growth, see e.g. [1, 2, 3]. In
the context of parabolic problems with p(x,t)-growth conditions, applications are
e.g. the models for flows in porous media [8, 32]. Moreover, parabolic equations
and systems with p(z,t)-growth were studied intensively in the last years, cf. e.g.
[9, 11, 12, 16, 25, 26, 29, 45, 46].

First existence results for parabolic problems with time-independent obstacles
have been achieved in the linear case by Lions and Stampacchia [38] and for more
general parabolic problems by Brezis [14]. Obstacle functions that depend in some
sense continuously on time are treated in [15]. The article [6] by Alt and Luckhaus
contains existence results for elliptic and parabolic problems in great generality, but
the results on obstacle problems are limited to time-independent or bounded obsta-
cle functions. In the parabolic setting however, a comprehensive theory is available
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only under certain restrictions on the obstacle. An important break-through in the
parabolic case succeeded to Bogelein, Duzaar and Mingione in [17]. Here, we want
to highlight that in [17] the authors established the first existence result to par-
abolic problems with irregular obstacles, which are not necessarily non-increasing
in time. They consider general obstacles with the only additional assumption that
the time derivative of the obstacle lies in L?". This is required since their method
relies on a time mollification argument, combined with a maximum construction in
order to recover the obstacle condition, where the pointwise maximum construction
is not compatible with distributional time derivatives. Moreover, they established
the Calderon-Zygmund theory for a large class of parabolic obstacle problems, i.e.
they proved that the (spatial) gradient of solutions is as integrable as that of the
assigned obstacles. Then, Scheven considered a more general class of obstacles in
[43, 44]. He introduced a new concept of solution to parabolic obstacle problems
of p-Laplacian type with highly irregular obstacles, the so-called localizable solu-
tions, see Definition 1.6. The main feature of localizable solutions is that they solve
the obstacle problem locally, which is a priori not clear by the formulation of the
problem, cf. the remarks preceding Definition 1.6. This new concept allows to
consider more general settings, i.e. it is no more necessary to assume that the time
derivative of the obstacle function lies in LP'. Tt suffices to consider obstacles with
distributional time derivatives. Moreover, we want to emphasize that the concept of
localizable solutions allows to prove more general regularity results. Scheven also
proved Calder6n-Zygmund estimates for parabolic obstacle problems. The main
difference between the result of Scheven and the result of Bogelein, Duzaar and
Mingione is that in [17] they need an additional assumption on the boundary data,
which seems to be unnatural for proving regularity in the interior. The reason
for the additional assumption on the boundary data arises from the fact that the
formulation of the obstacle problem is not of local nature. Bogelein, Duzaar and
Mingione used a complex approximation argument to approximate the solutions
by more regular ones and since the given solution was not known to be localiz-
able, this approximation procedure had to be implemented on the whole domain.
This problem could be avoid by the concept of localizable solutions. The concept
of localizable solutions allows also to establish further regularity results, e.g. the
higher integrability of solutions and the Hoélder continuity of the spatial gradient
of the solution u [18, 28]. Here, we will also use this concept to prove the exis-
tence of solutions to parabolic obstacle problems related to (1.1). Moreover, we
highlight that the concept of localizable solutions permits to derive some regular-
ity results for general parabolic obstacle problems with nonstandard growth. More
precisely, the higher integrability of solutions and the Calderon-Zygmund theory, cf.
[24, 25, 26, 27, 29]. Finally, we want to mention that beside the results we referred,
the regularity of parabolic problems with irregular obstacle has been studied very
intensive in the last years, cf. [10, 19, 20, 21, 36].

1.1. General assumptions. We consider a bounded domain 2 C R™ of dimension
n > 2 and we write Qp := Q x (0, T) for the space-time cylinder over Q of the height
T > 0. In this paper, u; respectively 0;u denotes the partial derivate with respect
to the time variable ¢ and Du denotes the one with respect to the space variable .

The setting. First of all, we should mention that we denote by dpQr = (£ x
{0}) U (02 x (0,T)) the parabolic boundary of Q7. Furthermore, we write
z = (w,t) for points in R"T!. We shall consider vector-fields a : Q7 x R" — R"
which are assumed to be Carathéodory functions - i.e. a(z,w) is measurable in the
first argument for every w € R™ and continuous in the second one for a.e. z € Qp -
and satisfy the following nonstandard growth and monotonicity properties, for

some growth exponent p : Qp — (nQ—fQ, o0) and structure constants 0 < v <1< L
and p € [0, 1]:
la(z,w)| < L1+ |w])P&~, (1.2)

p(z)—

(a2, w) — a(z,w0)) - (w —wp) > v(u? + ] + [wol?) 5w —wol*  (1.3)
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for all z € Qp and w, wg € R™. Furthermore, the growth exponent p : Qp —

(n+2 ,00) satisfies the following conditions: There exist constants v1, 2 < 0o, such

that

g <ms p(2) <2 and [p(z1) — p(22)] < w(dp (21, 22)) (1.4)

holds for any choice of z1, 23 € Qr, where w : [0,00) — [0, 1] denotes a modulus of
continuity. More precisely, we shall assume that w(-) is a concave, non-decreasing
function with lim, o w(p) = 0 = w(0). Moreover, the parabolic distance is given
by dp(z1, 22) := max{|xy — xa|, \/|t1 — t2|} for z1 = (z1,t1), 20 = (z2,t2) € R*TL.
In addition, for the modulus of continuity w(-) we assume the following weak
logarithmic continuity condition to hold:

1
lim sup w(p) log () < 400. (1.5)
pl0 p

By virtue of (1.5) we may assume for a constant L; > 0 depending on w(-) that

w(p)log (1) < Ly, for all p € (0,1]. (1.6)
p

At this stage it is worth to mention that assuming the existence of such 71, 75 is not
restrictive, since the results we are going to prove are of local nature. We mention
that the previous lower bound on 7, is a typical assumption in the regularity theory
of nonlinear parabolic equations and systems. Moreover, we denote by p; and ps
the infimum resp. supremum of p(-) with respect to the domain we are going to
deal with, e.g. p; := infq, p(-), p2 := supq,. p(-). Finally, we point out that (1.3)
implies, by using (1.2) and Young’s inequality, the coercivity property

a(z,w) - w > L|w|p(z) —c(y1,72,v, L) V z € Qp and w € R". (1.7)
6(71772)

1.2. The function spaces. The spaces LP(Q), W'P(Q) and W,?(Q) stand for
the usual Lebesgue and Sobolev spaces.

Parabolic Lebesgue-Orlicz spaces. We start by the definition of the nonstan-
dard p(z)-Lebesgue space. The space LP*)(Qr,R) is defined as the set of those
measurable functions v : Qr — R* for k& € N, which satisfy |v|?() € L*(Qp,R¥),
ie.

LPE) (Qp, RF) = {v : Qp — R¥ is measurable in Q : /

l|P) dz < —|—oo} .
Qr

The set Lp(')(QT, R*) equipped with the Luxemburg norm

R v 1)
ol ooy = mf{A 0 / a4 < 1}
Qr

A
becomes a Banach space. This space is reflexive, see [5]. For the elements of
LrO) (Qr, RF) the generalized Hoélder’s inequality holds in the following form:

If f e LPO(Qp,RF), g € LF'O(Qp, RF), where p/(-) = fg )1, we have

1 Y2 — 1
[ gear|< (42 Wlwownlolog, 09
see also [5]. Notice that the norm || - [| Lr() () can be estimated as follows:
Lt ol < 1P a2 < IolBo gy + 1 (19)
T

Finally, for the right-hand side of (1.1) we assume
F e L*O(Qr,R™) and f € L1 (0,T; W~ "71(Q)). (1.10)

Parabolic Sobolev-Orlicz spaces. First, we introduce nonstandard parabolic
Sobolev spaces for fixed t € (0,T). From (1.4), we know that p(-, t) satisfy |p(x1,t)—
p(z2,t)] < w(|zy — x2|) for any choice of 1, z2 € Q and for every t € (0,T).
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For every fixed ¢t € (0,T), we define the Banach space W'2(:1)(Q) as follows:
Wit (Q) := {u € LPCH(QR) | Du € LPCD(Q,R™)} equipped with the norm

lullwrco @) = llull oo @) + 1 Dull Loc.o (@)

In addition, W """ (Q) = the closure of C5°(Q) in WD (Q) and denote by
WD (Q) its dual. For every ¢ € (0,T) the inclusion Wy*""(Q) ¢ Wl ()
holds. Now, we consider more general nonstandard parabolic Sobolev spaces
without fixed ¢. By Wg(')(QT) we denote the Banach space

We(Qr) = {u € [g+ L1 0, T; Wy ()] N L (Qr) | Du € LPO (Qr, R™) }
equipped by the norm
[ullwror@r) = lull oo @p) + 1Dl o) (@)
If g = 0 we write W2 (Qr) instead of W) (Q7). Here, it is worth to mention
that the notion (u—g) € WZ (Q7) respectively u € g+ W2 (Q7) to indicate that
u agrees with g on the lateral boundary of the cylinder Qr, ie. u € Wg(')(QT). We

are now ready to give the definition of a weak solution to the nonstandard parabolic
equation (1.1):

Definition 1.1. We identify a function u € L'(Qr) as a weak solution of the
parabolic equation (1.1), if and only if v € C°([0, T]; L*(Q)) N WP()(Qr) and

| lwei-atDw- Dyl de= = [ [feg4 IFPOPF DY ax )
S)T QT
holds, whenever ¢ € C5° (7).

Our next aim is to introduce the dual space of Wg(') (Q). Therefore, we denote
by WP (Qr)" the dual of the space Wé”(')(QT). Assume that v € W20 (Qr)'.
Then, there exist functions v; € L”'(')(QT), i=0,1,...,n, such that

(v, whq, = /Q (vow + vaiw> dz ¥V w e WY (), (1.12)

i=1
see [7]. Here and in the following, we will write ((-,-)  for the pairing between
WP (Qp) and Wé’(')(QT). Furthermore, if v € WP()(Qr)’, we define the norm

lollwecr @y = sup{ (v, wha, w € WE(Q2), lwllye0 g, < 1}-

Notice, whenever (1.12) holds, we can write v = vg — Y., D;v;, where D;v; has
to be interpreted as a distributional derivate. By

we W(Qyr) = {w e WPO (Qp)|w, € WP(')(QT)’}
we mean that there exists w; € WP()(Q7)’, such that
(we, oD q, = —/ w - dz for all ¢ € C§°(r).

Qr
The previous equality makes sense due to the inclusions

WP (Qr) < L2(Qr) = (L2(Qr)) — WP (Qr)

which allow us to identify w as an element of WP()(Q7). Next, we refer the
properties of the pairing (-, )¢, -

Proposition 1.2 (Proposition 2.2, [26]). Let u,w € WOZ’(')(QT), v, 9 € WPO(Qr),
¢ € C2i(2) and a € R, then the pairing (-, )¢, between wrO(Qr) and Wg(')(QT)
has the following properties:

(i) <<v,a2u>>QT = <<av,au>>QT = <<a2v,u>>QT =a? <<v,u>>QT ,
(i) (v,w+u)g, = (v,whg, + (v, w)g,
(iii) (v + 0, w)g, = (v, u)g, + (0, u)q, -
If yw, Oyu € WP (Qr), we have also
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(iv) (0e(¢(w = w)),C(w —u))q, = (O(w —u),*(w—u),

in the distributional sense. O

T

Finally, from the definition of the norm || - ||yy»¢) (), We can conclude that

for the elements of W?()(Qr) the following estimate holds: If f € WP (Qp),
g € WPO)(Qr)" we have

(£, 9, < i) llweo @ llgllweo @y (1.13)

see [26]. Notice also that in the case p(-) = const., we deal with the standard
Lebesgue and Sobolev spaces. This means for example, if p(-) = ~1, then we have
W (Qp) = L7 (0, T; W1 (Q)). Consequently, the dual space of W (Qr) is given
by W (Qr)" = L%(0, T; W =171 (Q)).

Obstacle function, boundary, initial values and energy bound. At this stage, we
state the assumptions for the obstacle function, boundary data, initial values and
the obstacle constraint. These assumptions we need to define the function spaces
in which we will formulate the obstacle problems. Therefore, we consider on the
lateral boundary 92 x (0,T) Dirichlet boundary data given by

g € C°([0,T]; L2(Q)) n WP (Qr) and 8,9 € L7 (0, T; W 171(Q)) (1.14)

and initial values g(-,0) € L*(Q2). The obstacle constraint will be given by a
function v : Qr — R with

P e CO([0,T); L3(Q)) N WP (Qr) and dpp € L71(0, T; W 71(Q)).  (1.15)
For the boundary and initial values, we assume the compatibility conditions
g > ondNx (0,7) and g(-,0) > ¢(-,0) a.e. on £, (1.16)

where the first one is to be understood in the L'-W,'-sense, i.e. (¥ — g); €

Wg(')(QT). Now, we are in a situation to introduce the function spaces in which
we will formulate the obstacle problem. These spaces are defined as follows:

Ky (2r) = {u € COQO. T LA(Q) N WEO(©r), w > b ae. on O},
and the function space
o) = {u € Ky g (@) | Ou e WO @),

whose members play the role of admissible comparison functions.

1.3. Parabolic obstacle problems with nonstandard p(z)-growth. The main
problem we are going to deal with, are the obstacle problems. More precisely,
problems with irregular time dependent obstacles v : Qp — R. The variational
inequality that we have in mind can be written in two different ways.

Definition 1.3. We identify a function u € Xj; (Qr) as a solution of the strong
formulation of the variational inequality if u(-,0) = ¢(-,0) and

(O, v —uh g, + /Q a(z,Du) - D(v —u) dz
r (1.17)

Z/ [FIPO2F - D(v—u) + f(v—u) dz,
Qr

holds for all comparison functions v € X, (Qr).

It turns out that in our situation, the solution to the obstacle problem does not
necessarily possess a time derivative in the distributional space WP (Qr)’, but
only satisfies u € Ky 4(Qr). In this case, only the following formulation makes
sense:
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Definition 1.4. We identify a function u € Ky 4(Qr) as a solution of the weak
formulation of the variational inequality if

(0w, v —u) g, —|—/ a(z,Du) - D(v —u) dz + ||v(-,0) — g(-, O)H%Q(Q)
fr (1.18)
> [ flo—u)+|FPY2F.D(v—u) dz
Qr

holds for all test functions v € X, (Qr).

Remark 1.5. Although not always explicitly stated, when referring to an initial
condition of the type

u(-,0) = g(+,0) a.e. on

we shall always mean

1 h
E/ /|u—g(-,0)|2 dx dt — 0as h ] 0. (1.19)
0 Q

In particular, when u € C°([0,T]; L?(£2)), then (1.19) is obviously equivalent with
saying u(-,0) = g(-,0).

1.4. The concept of localizable solutions. The concept of localizable solutions
goes back to Ch. Scheven, see [43, 44], and the idea of this concept is the following:
In the general situation that we are considering, the solutions do not necessarily
satisfy 9;u € WP()(Qr), so that the variational inequality can only be written in
the weak formulation (1.18). However, this formulation does not seem to be the
most suitable notion of solution, since it is not of local nature. More precisely, for
a given parabolic cylinder Oy = O x (t1,t2) C Qrp, it is a priori not clear that the
restriction u 0, of a solution u to the weak formulation of the variational inequality
(1.18) again satisfies a variational inequality on O;. Even more, it is unclear if
the space JC;W(O ;) of admissible comparison maps is not empty. In fact, it is not
evident from the formulation (1.18) that there exists any map that agrees with u
on the lateral boundary of O; and at the same time possesses a time derivative in
the distributional space W?()(Qr)’, which would be necessary for the construction
of suitable comparison maps. These considerations motivate the following concept
of a localizable solution to a parabolic obstacle problem.

Definition 1.6. We say that ©v € Ky 4(Qr) is a localizable solution of the
weak formulation (1.18) of the obstacle problem if for every parabolic cylinder
Q7 := 0 x (t1,t2) C Qr, where O = ONQ with a Lipschitz regular domain OCR"
and a time interval I = (¢1,t2) C (0,7) C R, the following two conditions hold.
(i) The map u satisfies the extension property, i.e. there holds ﬂ{;%u((f)l) +
0.
(ii) For all comparison maps v € X, ,(O1), there holds

(Orv, v —uh o, +/ a(z,Du) - D(v —u) dz + [[(v = w) (-, t1) |22 (o)
Or (1.20)
> flo—u)+|FIPO72F . D(v —u) dz,
Or
where ((, ), denotes the dual pairing between WP (0r) and Wéj(')((‘)]).

1.5. Statement of the result. Our first existence result holds on any bounded
domains @ C R™ if the obstacle function satisfies a certain approximation assump-
tion. This is in particular the case for a general obstacle if 92 fulfills some weak
regularity property. For the most general form of our first existence theorem, we
assume that the obstacle function

¥ e CO([0,T); L2(Q)) N WP (Qp) with 9,0 € L1 (Qy), (1.21)
can be approximated by more regular obstacle functions
¥ € CO([0,T); L2(Q)) N WP (Qr) with dyap; € L7 (Qp) (1.22)
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with an additional regularity property

0n0i| + (14 | D PO D] € L () (1.23)
for i € N, which approximate 1) in the sense
vy =P strongly in W?()(Qr) and L>(0,T; L?(Q)), (1.24)
Opp; — Optp  strongly in L (Qr), '

as ¢ — oo. This approximation assumption can be omitted under mild assumptions
on the boundary of the domain 2. Our result on existence and uniqueness reads as
follows.

Theorem 1.7. Let Q) C R™ a bounded domain and p : Qr — [y1,72] satisfies (1.4)-
(1.5). Furthermore, assume that a : Qp x R™ — R™ is a Carathéodory function and
satisfies the growth and monotonicity condition (1.2) and (1.3). Moreover, suppose
that the inhomogeneities

F e LX) (Qp,R™) and f € L' (Q), (1.25)
the boundary data g satisfying
g € CO([0,T]; L2(Q)) N WP (Qr) with 8,9 € L™ (Q7), (1.26)

and the obstacle function ¢ satisfying (1.21) are given. Further, suppose that the
compatibility conditions (1.16) with g(-,0) € L*(Q) is valid. In addition, assume
that the approzimation assumption stated in (1.22)-(1.24) hold. Finally, suppose
that

| divy a(z, t,w)| <Llog(1 + |w|)(1 + |w|)P@H=1

1.27
\Dwa(x,t,wﬂ SL(1+ |U}|)p($’t)_2 ( )

are valid for all (z,t) € Qp and w € R™. Then, there exists a localizable solution
u € Ky ¢(Qr) - in the sense of Definition 1.6 - to the obstacle problem (1.18) with
u(-,0) = g(-,0). Moreover, this solution satisfies the energy estimate

sup /|u(-,1§)|2 dz —l—/ |DulPC) dz < cM, (1.28)
te(0,7) JQ Qr

with a constant ¢, which only depends on (n,~1,ve,v, L, diam(?)), where M > 1 is
defined as follows

M = . PO 19 + |71 dz + |9 (-, 0)[17 200y + 19017 (0.1:22(0) + 1
T
(1.29)

with U := 1+ |Dvy| + |F| 4+ |Dg| + |g|. The localizable solution u constructed above
is unique and even more strongly, every solution to the weak formulation (1.18) of
the obstacle problem coincides with u.

Moreover, we have a result that holds on any, maybe highly irregular domains
Q C R™ and for general obstacle functions ¢ € C°([0, T]; L?(R2)) N WP0) (Q7) with
o € L (Q7). Since in this general situation, we can approximate 1 only locally
by functions with better regularity and integrability properties, we can show strong
convergence to a solution only on every compactly contained subdomain ' € Q.
Consequently, the limit map solves the variational inequality only on such subsets
and the question of uniqueness remains open.

Theorem 1.8. Let QO C R™ be a bounded domain and p : Qr — [y1,72] satisfies
(1.4)-(1.5). Then, assume that a : Qr x R™ — R"™ 4s a Carathéodory function
and satisfies the growth and monotonicity condition (1.2) and (1.8) and additional
(1.27). Moreover, suppose for the inhomogeneity F' and f that (1.25) is valid. Fur-
thermore, assume that the obstacle function i and boundary data g satisfy (1.21)
and (1.26). Finally, the initial values g(-,0) € L*(Q) satisfy the compatibility con-
ditions (1.16). Then, there exists a map v € L>(0,T, L*(Q)) N W_f;(')(QT) with
u > a.e. on Qp, that solves the obstacle problem (1.18) in the following sense.
For every Lipschitz reqular domain Q' € Q, there holds u € C°([0,T); L*(€Y')) and
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u\Q/T is a localizable solution - in the sense of Definition 1.6 - to the obstacle prob-
lem (1.18) with the initial values u(-,0) = g(-,0). Moreover, it satisfies the energy
estimate (1.28).

Plan of the paper. Finally, we briefly describe the strategy of the proof to
our main result and the technical novelties of the paper. We start with some useful
preliminary results before we are able to show the existence results of Theorem 1.7
and Theorem 1.8. After we have shown the needed technical tools, we will refer in
Section 3 the existence of solutions to the parabolic equation (1.1) under certain
boundary and initial data conditions from [26], see also [25]. First of all, we refer
the existence of a weak solution to the Dirichlet problem of (1.1). In [26] we dealed
similar to Antontsev and Shmarev, with the Galerkin approximation. Then, we
will give the existence of a weak solution to the Cauchy-Dirichlet problem of (1.1)
with general boundary data. In Section 4, we will establish existence results to
the strong formulation of the variational inequality (1.17) with regular obstacles
via penalization. Moreover, we will expand this result to irregular obstacles by the
theory of localizable solutions, see Section 5. Here, we will gain the existence and
uniqueness result of Theorem 1.7. Finally in Section 6, we will proof the existence of
localizable solutions to the parabolic obstacle problem (1.18) on arbitrary domains
with general obstacle functions of Theorem 1.8.

Remark 1.9. Here, we want to mention that additional assumption (1.27) is not
necessary if the obstacle 1 satisfies

oy — diva(z, Dy) € LV{(QT).

2. PRELIMINARIES AND NOTATIONS

Moreover, since weak solutions u of parabolic equations possess only weak regu-
larity properties with respect to the time variable ¢, i.e. they are not assumed to be
weakly differentiable, in principle it is not possible to use the solution v itself (also
disregarding boundary values) as a test-function in the weak formulation of the
parabolic equation. In order to be nevertheless able to test the equation properly,
we smooth the solution u with respect to the time direction ¢ using the so-called
Steklov averages. Hence, we introduce the following: The Steklov averages of a
function f € L'(Qr) are defined as

t+h
[fn(z,t) = %/t f(z,s) ds forte (0,7 —h),
0 forte [T —h,T),

for z € Q, for all t € (0,7) and 0 < h < T. Assuming that u € C°([0, T]; L?(2)) N
WP (Qr) is a weak solution to the parabolic equation (1.1) the Steklov average
[u]p, satisfies the corresponding equation

[ o) e+l Dul-Dode = [ (flu-p+ PO, Dy do
Qx{t} Qx{t} (2 2)

(2.1)

for a.e. ¢t € (0,T) and all ¢ € CS°(9).

2.1. Compact embedding - Compactness Theorem. Since L?() is a Hilbert
space which is identified with its dual
L2(Q) = (L*(Q))'
and in which LP(-Y)(Q) is dense and continuously embedded V¢ € [0,7)], where
p(-,t) > 2n/(n+2), see [23, Lemma 5.5], we have
LPCD(Q) = L2(Q) — LY 0D(Q)

for all ¢ € [0, T]. The fact that L?(2) = (L?(£2))’ can be demonstrated by the Riesz
representation theorem. We denote the dual of Wo " (Q) by W12(:)(Q)’ and the
natural pairing between W12(:)(Q) and W3 *""(Q) by (-,-). Moreover, we have
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the embeddings Wol’p("t) (Q) € L?(Q) and (L*(Q))" ¢ Whr(:D(Q). Therefore, we
can conclude

Wo Q) = @) = (12(9)) = W0 (@),
where the injections are compact. This also allows us to identify the duality product
(-,+) with the inner product between L?(Q2) and Wol’p("t)(Q), ie.

F0) = (f,0) = (£, 0) o = /Q frode (2.3)

whenever f € L2(Q) ¢ WP(:0(Q) and v € Wa*"(Q) and ¢ € [0, T]. Next, we
consider the Banach space

Wo(Qr) == {w e WO (Qp)|uw, € Wp(')(QT)’} .
Now, from [25, 26] we could refer the following result.
Lemma 2.1. Let n > 2. Assume that the exponent function p : Qr — [v1,72]

satisfies (1.4)-(1.5). Then W (Qr) is contained in C°([0,T); L*(2)). Moreover, if
u € Wo(Qr) then t — ||u(-,t)H%2(Q) is absolutely continuous on [0,T],

7d ul - 2 xr = u\ - ul - or a.e
[ O do = 2@, (.0, for a.e. € 0.T)

where (-, -) denotes the duality pairing between WPC-1 (Q) and W(Jl’p("t)(Q). More-
over, there is a constant ¢ such that

[ullooo.ry:22(0)) < cllullwar)
for every u € Wo(Q2r).

Now, we are in the situation to refer the compactness theorem in the sense of
Aubin and Lions, see [25, 26].

Theorem 2.2. Let 2 C R" an open, bounded Lipschitz domain with n > 2 and
p(-) > HQ—J_’Q satisfying (1.4)-(1.5). Furthermore, define p(-) := max{2,p(-)}. Then,
the inclusion W (Qr) — LPC)(Qy) is compact.

2.2. Technical tools. First of all, we recall that under the additional regularity
assumption d;u € WP (Qr), both formulations (1.17) and (1.18) are equivalent.
This result reads as follows.

Corollary 2.3 (|26, Corollary 3.8). A function u € X, ,(27) satisfies the strong
formulation (1.17) of the obstacle problem if and only if it satisfies the weak for-
mulation (1.18).

Our next problem is, that we need a Poincaré inequality, but in the parabolic
case, there does not exist such a global estimate. It is only possible to use the
elliptic Poincaré inequality slicewise for a.e. times ¢. For parabolic problems with
nonstandard growth, it is not allowed to apply such an estimate, not even slicewise.
There exists just a "Luxemburg-version", see [7], i.e. [[ullpre) () < cl|Dull Lo (q)

for all u € Wol’p('x)(Q), where ¢ > 0. But we need a "classical" Poincaré type
inequality. The desired result is given by the following lemma, which is stated in

[26].

Lemma 2.4 ([26], Lemma 3.9). Let Q@ C R"™ a bounded Lipschitz domain and
Yo = supq, p(-). Assume that v € C°([0,T]; L*(Q)) N Wé)(')(QT) and the expo-
nent p(-) satisfies the conditions (1.4)-(1.5). Then, there exists a constant ¢ =

e(n,v1,y2, diam(Q),w(:)), such that the following two wversions of the Poincaré
type estimate are valid:

Ava
/ PO dz < c(IIuH Lo (0.T:L2(Q) +1> < / |DuP) 4 1 dz> (2.4)
QT QT

472
e < (1 urwa +1) ([, 100+ 102). @9
T

and
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One main aim of this paper is to show an existence result to degenerate parabolic
obstacle problems on irregular domains via localizable solutions, see Section 5. For
the proof of the extension property of a map w, which is mentioned in Definition
1.6, we will need a more general existence result with more general boundary data.
Hence, we need an other Poincaré type estimate. But this Poincaré type estimate
can be only stated in a local version on a cylinder Q,(z0) := B,(z0) X (to — p?, p?) C
R"*! with a small radius p € (0,1), see the following Lemma.

Lemma 2.5 ([26], Lemma 3.11). Assume that nz—fg <7 < v < o0 and w
[0,00) — [0,1] satisfies (1.5). Then, there exists 0y = 0p(n,v1) € (0,1), such that
for any 6 € (0,00] the following holds: There exists py = po(0,w(-)) € (0,1], such

that for any cylinders Q,(z0) C R with radius p € (0, pol, p: Qp(20) = [11,72]

satisfies (1.4) and v € C°([to — p?,to]; L*(B,(w0))) N Wé)(')(Qp(zo)) the following
Poincaré type estimate holds:

/ PO dz < ¢ sup Hv(~,t)||(22(39($0)) +1 / |DvPC) 41 dz
Qp(20) to—p2<t<to Qp(20)
(2.6)

with a constant ¢ = ¢(n,y1,7v2, L1).

Remark 2.6. Under the assumption of Lemma 2.5, we infer from (2.6) by using
(1.9) the Poincaré type estimate

- <ol wp oDy t1 / DufP©) dz 41,
oIl 7o )(Qp(20)) <to—p2§t§to l[v( )||L2(Bp( 0)) Qp(zo)l |
(2.7)

holds for every radius p < py and any 0 < 6 < 6y with a constant ¢ = ¢(n,y1,72, L1)-

Comparison principle and comparison estimate. In this section we refer a compari-
son principle, which will be a key tool for constructing comparison maps that almost
everywhere satisfy the obstacle constraint v > 1.

Lemma 2.7 ([26], Lemma 3.15). Let Q@ C R™ with n > 2 and p : Qr — [71,72]
satisfies (1.4)-(1.5). Moreover, suppose that v,v € W (Qr) satisfy in the weak sense

(2.8)

oY —div a(z, D) < 0w —div a(z, Dv) in Qr,
Y <w on 0pQr,

where (1.3) are in force. Then, there holds v < v a.e. on Q.

Moreover, we refer the following comparison estimate, which will be used to
transfer estimates from homogeneous equation to weak solutions to obstacle prob-
lem. The following lemma will provide the comparison between an obstacle problem
and a suitable parabolic equation stated and is established in [26].

Lemma 2.8 ([26], Lemma 3.16). Let p € (0,1]. Assume that the assumptions (1.2)-
(1.8) with exponents (1.4)-(1.5) are in force. Moreover, suppose that the obstacle
function ¢ and the inhomogeneities F, f satisfy (1.21) and (1.25). Further, suppose
that v € W(Q,(20)) solves the parabolic equation

Oy — diva(z, Dv) = 0pp — diva(z, DY) in Q,(z0) (2.9)

and that u € Ky ,(Q,(20)) is a solution to the variational inequality

(Orw, w —u g (.0 +/ a(z, Du) - D(w — u) dz
’ Qp(20)

1
+ 51w =w) )z (3, (00 (2.10)

> / [FIPO=2F - D(w —u)+ f - (w—u) dz
Qp(z0)
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with t, = to — p? for all comparison functions w € Kipm(Qp(ZO))' Then, for any
k € (0,1), there exists a constant c; = c(k,n,v1,7v2,v, L) > 1, such that the com-
parison estimate

/ |D(u—v)[P¢) dz < /%/ (v + |Du))P) dz
Qp(ZO) Qp(z())

(2.11)
+ Cg/ |D¢\p(') + |F|p(~) + |0 + |f]" +1 dz
Qp ZO)
holds. Moreover, for every p(-) > nQ—fQ, we have the energy estimate
/ |DoPC) dz < c/ (1t + |Du))P) dz
Qp(ZO) Qﬁ(ZO) (2 12)

+ c/ |DY[PO) + |FPO 4 |9 + |1 + 1 de
Qp(ZO)

where ¢ = ¢(n,v1,v2,v, L) > 1.

Minty type lemma. The next lemma is a slightly modified version of Browder-
Minty’s Lemma, which employs a certain monotonicity condition to justify the
passage to weak limits. An elliptic version of this Lemma can be found in [34] and
some Minty type Lemma for parabolic problems with p-growth is established in
[17]. Our Minty type Lemma reads as follows.

Lemma 2.9 ([26], Lemma 2.13). Suppose that p(-) > HQ—fQ satisfies (1.4)-(1.5) and

ec {v e 000, T]; LA(Q2)) N WPO(Qq) < v, € Wp('>(QT)’}

is closed and convex. Moreover, let A : C — WP (Qr) be a monotone operator
which is continuous on a finite dimensional subspaces of C. Here, monotonicity has
to be understood in the sense that

(Av — Av,v = D) >0V v, v€C.
Finally, let B : WP (Qr) = R be a continuous linear operator. Then, for u € €
(Opu + Au,v —u)) > B(v—u) Vv eC (2.13)
holds if and only if

1
(O + Av,v —u) g + §||(v - u)(~70)||%2(m >Bv—u) VoveC. (2.14)

3. EXISTENCE RESULTS TO DEGENERATE PARABOLIC EQUATIONS WITH
NONSTANDARD GROWTH

In this section, we will refer from [26] (see also [25]) some existence results to
degenerate parabolic equations. These results we will use to obtain our existence
theorems. For the proofs of Lemma 3.1 and Lemma 3.2 and of the local versions of
Corollary 3.3 and Corollary 3.4 we refer to [26]. The starting point is to consider
the initial data problem of (1.1)

Owu — diva(z, Du) = f — div(|F|PO~2F) in Qr,
u= 0on 90 x (0,T), (3.1)
u(-,0) = ¢g(-,0) on  x {0}.

The approach to prove the existence to the Dirichlet problem is to construct a
solution, which solve the problem (3.1). In [26] we start by constructing a sequence
of the Galerkin’s approximations, where the limit of this sequence is equal to the
solution in (3.1). Then, we had shown that this approximate solution converges to
a general solution, where we used some energy bounds, which derive by the proof
and finally, the compact embedding of Theorem 2.2 yield the desired convergence
of the approximate solutions to general solutions. The results reads as follows.
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Lemma 3.1 (|26], Lemma 4.1). Let Q C R™ be an open, bounded Lipschitz domain
and p : Qr — [y1,72] satisfies (1.4)-(1.5). Then, suppose that the vector-field
a: Qr x R" — R™ is a Carathéodory function and satisfies, for a given function
v e CO[0,T); LA(Q) N WEY(Qr) with dyv € LY (0,T;W=171(Q)), the growth
condition

a2, )] < ey, L) (14wl 4 o O (3:2)

and the monotonicity property

p()—2
v(p? + w +vf” + [wo +v[*) 7= [w — wol* < (alz,w) — alz,w)) - (w — wo)

(3.3)

for all z € Qr and w,wy € R™. Moreover, let (1.10) and g(-,0) € L*(Q) hold.
Then, there exists a weak solution u € Wo(Q2r) of the parabolic boundary problem
(8.1) and this solution satisfies the following energy estimate

sup [ fuC.F do+ [ |pupO dz3c< [ 4 1mpe s e a:
Q Qr Qr

0<t<T

o .02
F I oty + 19Oy + 1)

with u(-,0) = g(-,0) and a constant ¢ = c(n,y1,y2, diam(Q2)).

Moreover, the existence of solutions to initial value problem (3.1) can be ex-
tend to general boundary problems. Therefore, we consider the Cauchy-Dirichlet
problem of the parabolic problem (1.1):

O — div a(z,Du) = f—div (|F|PO72F) in Qp
g on 982 x (0,T) (3.4)
u(-,0) = g¢(-,0) on £ x {0}.

S
|

We used the result of Lemma 3.1 to the Cauchy-Dirichlet problem (3.4) to get
existence of solutions to (1.1) with general boundary data. Therefore, we have to
change the problem (3.4) into a problem comparing to (3.1). Then, we can conclude
the existence of solution to the modified problem. Hence, we get the existence result
to the primal Cauchy-Dirichlet problem (3.4). This result is stated in the following
lemma.

Lemma 3.2 (]26], Lemma 4.3). Let Q@ C R™ be an open, bounded Lipschitz do-
main and p : Qr — [y1,72] satisfies (1.4)-(1.5). Then, suppose that the vector-field
a: Qpr x R" = R" is a Carathéodory function and satisfies the growth condition
(1.2) and the monotonicity condition (1.3). Moreover, let (1.10) fulfilled. Fur-
thermore, the boundary data g satisfy (1.14). Then, there exists a weak solution
u € C°([0,T); L3(Q)) N Wf(')(QT) with dyu € WP (Qr)" of the parabolic Cauchy-
Dirichlet problem (3.4) and this solution satisfies the following energy estimate

sup [ a0 dot [ (Dl dz < e (gt 0By + ol so +6,).
0<t<T JQ Qr

where ¢ = ¢(n,v1, vz, v, L, diam(Q)) and My is defined as follows
M, = /Q L+ [FIPO 4 [DgPY dz + [ 13,y + 1069 0y + 1-

Finally, we need local versions of Lemma 3.2, since we need more general data
to prove the existence of localizable solutions. But these existence results we get
only local on a cylinder Q,(z0) = (to — p?,to) x B,(zo) C Qp, with radius p <
po(0,w(-)) € (0,1], where the maximal radius py and 8 < 6y(n,v1) € (0,1) are
introduced in Lemma 2.5. Before, we are able to prove a local versions of Lemma
3.2, we have to prove a local versions of Lemma 3.1. Therefore, we begin by
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considering the Dirichlet problem for the parabolic equation (1.1):

O —diva(z,Du) = f —div(|F[PY72F) in Q,(20),
u= 0on dB,(z ) (to - % to), (3.5)
u(-to — p*) = ¢(-,0) on B,(xo) x {to — p} .

Corollary 3.3 ([26], Corollary 4.4). Let Q2 C R™ be an open, bounded Lipschitz do-
main and p : Qr — [y1,72] satisfies (1.4)-(1.5). Then, suppose that the vector-field
a: Qr x R" — R™ is a Carathéodory function and satisfies, for a given function
v € W(Qr), the growth condition (3.2) and the (3.3) monotonicity property. More-
over, let ' € LPO)(Qp, R™), f € WP (Qr) and g(-,0) € L*(Q) hold. Then, there
exist 8y = Op(n,v1) € (0,1) and a radius py = po(0,w(-)) € (0,1] with 6 < 6y,
such that the following holds: Whenever 0 < p < pg, there exists a weak solution
u € Wo(Qp(20)) of the parabolic boundary problem (3.5) and this solution satisfies
the following energy estimate

sup / lu(-,t)|* dz —|—/ |DulP®) dz < ¢ </ 1+ |FPO + orO) dz
t€(to—p2,t0) J B,(wo) Qo (20) Qp(z0)

y1+1

1156 ey + 19 O3, o0 + 1)

with a constant ¢ = ¢(n,y1,%ve,v, L, L1).

Now, we give a local existence result with more general data similar to the
Cauchy-Dirichlet problem 3.4. Therefore, we consider the local Cauchy-Dirichlet
problem

ou—div a(z,Du) = f—div (|F]PO72F) in Q,(20),
u = gondB (mo) (to - % to), (3.6)
u(to — p*) = g(-,0) on By(zo) x {to — p*}.

Corollary 3.4 (]26], Corollary 4.5). Let  C R™ be an open, bounded Lipschitz
domain and Q,(z0) C Qr. Assume that p : Qr — [y1,72] satisfies (1.4)-(1.5).
Then, suppose that the vector-field a : Qp xR™ — R™ is a Carathéodory function and
satisfies (1.2)-(1.3). Moreover, assume that F € LPO)(Qp,R™), f € WPO(Qp),
g € W(Qr) and g(-,0) € L?(Q) are in force. Then, there exist 6y = 0p(n,v1) €
(0,1) and a radius po = po(0,w(-)) € (0,1] with 6 < Oy, such that the following
holds: Whenever 0 < p < po, there exists a weak solution v € W(Q,(20)) of
the local parabolic boundary problem (3.6). Moreover, this solution satisfies the
following energy estimate

sup / lu(-, t)|? dx—l—/ |DulP®) dz < ¢ Migea (3.7)
te(to—p2,to) J B,(xo) Qp(20)
with a constant ¢ = c¢(n,y1,7y2,V, L, L1), where Miyeq is defined as follows

y1+1

Miocar :=1 +/Q ) |F|p() + ‘Dglp( ) dz + ||f||Wp< )(Qp(20))’
p(Z0

1+l

+||9('70)||%2(Q) + ||g||2L°°(to—p2,t0;L2(B,,(rc0))) + ||at9||;1};<%>(Q,,(20))"

4. EXISTENCE OF STRONG SOLUTIONS TO DEGENERATE PROBLEM WITH
REGULAR OBSTACLES

The first step to the existence in degenerate problem with irregular obstacles
and nonstandard growth, is to consider more regular data. In this situation, we
can deduce from the existence results of the previous section the following lemma.
This lemma will play an important role for the proof of the existence of localizable
solutions to nonlinear problems with irregular obstacles.

Lemma 4.1. Let Q@ C R" an open, bounded Lipschitz domain and p : Qp —
[v1,72] satisfies (1.4)-(1.5). Suppose that the vector-field a : Qr x R™ — R"™ is a
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Carathéodory function and satisfies (1.2) and (1.3). Moreover, assume that the ob-
stacle function v, the inhomogeneities F, f and the boundary data g satisfy (1.21),
(1.25), (1.26) and g(-,0) € L*(Q). Furthermore, suppose that the additional regu-
larity assumptions

A — diva(z, DY) € L1 (Qr), div(|F|PO72F) € L (Qr) (4.1)
are in force and that the compatibility condition (1.16) is valid. Then, there exists
a solution u € Kﬁbﬂ(QT) of the strong formulation of variational inequality (1.17).

Moreover, there exists a constant ¢ = c(n,v1, 2, v, L, diam(R2)), such that the energy
estimate

sup / \u(-,t)|2 dx+/ |Du|p(') dz < cé (4.2)
te(0,7) JQ Qr
holds with
& =llg(-, 0172y + 9117 < (0.7:12(0)) + 10:% — div a(Z,D’t/))Hzii )

— div(|F|PO-2F)|" »() 7
= a2 e [ DaPO s 1l oy

Proof. The proof is divided into several steps. We begin with

Step 1: Regularization. We will revert the existence of a solution to the
obstacle problem to the existence of solutions to certain penalized parabolic equa-
tions by certain approximation scheme. To construct such a penalization, we define
(s € WH°(R), such that (s5(t) := 0if t € (—o0, 0], (s(t) := 1+§ ift € (—0,0) and
Cs(t) = 1if t € [0,00), for § € (0,1]. Then, by us € C°([0,T); L2(Q)) N WFY)(Qy)
and O;u; € WP (Qr)" we denote the solution to the following Cauchy-Dirichlet
problem:

dyus — diva(z, Dus) = Cs(v —us)Vy — div(|[FIPO2F) 4+ f in Qp
us =gondQdx(0,T) (4.3)
us(-,0) = g(:,0) on £ x {0},
where U := 9,0 — div a(z, D) + div(|F|P¢)~2F) — f. The existence of us follows
from Lemma 3.2. Notice that, we write ky := max {k,0} and k_ := max {—k,0}.
Step 2: Obstacle constraint. Our first aim is to show that us > 1 on Qp for

any 4 € (0,1]. We start by rewriting the weak formulation of the Cauchy-Dirichlet
problem (4.3) in its Steklov-form. Then, for a.e. 7 € (0,T) we have

| @luslh o+ latz. Dus)l - D) () do = [ o ([est = us)¥],

Q
— |di p(-)—2 .
[aiv (IFPO2F)] +1/1a) (,7) da
for all test functions ¢ € Wo*""”)(Q). First, we add on both sides the term
= [ @b+ lala DoY) - D) (7) da
Q

and then, multiply the resulting equation by —1. Next, we integrate by parts and
utilize the fact that div([a(z, Dv)],) = [div a(z, D)],. Hence, we have

/Q (@4l — ugln - @+ ([alz, V)] — [a(z, Dus)ly) - D) (-, 7) da

= [e([#], - [eotw —us)i], ) () a

Now, we choose as admissible test function ¢ = ([t) — us]n), . We note that this
particular choice is allowed, since us = g > 1 on 9 x (0,T) in the sense of traces.
For t € (0,T) we integrate both sides with respect to 7 over (0,t). Here, denotes
Q; the cylinder © x (0,t). Therefore, it yields for the first term on the left-hand
side of (4.5) that

O — uslp - o dz = %/ ([ — usln)+ 2, t) = [([ — us]n)+ (-, 0) da.
Q

(4.4)

(4.5)

Q¢
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Combining this with (4.5) and then, using the Steklov average property as h | 0.
Together with us(-,0) = g(-,0) > ¢(-,0), we have

3 10w P dr s [ (ol DY) - ae Dug) - D@ - s

= /Qt (@ — G — Uzs)‘i’+> (¥ — us)+ dz

— [ (#-0) @)y g
Q
Here, we have used that () — us)+(z) > 0 for some z € € implies (5(¢) — ug) = 1.
Moreover, \il—\il+ =—U_is valid, since \i/—\ibr = ‘i/—max{\i!ﬂ} = min {@,0} =
—max{—\il,O} = —U_. Thus, it gaing

3 10w P det [ (a(e, DY) — ate, Dug) - DO )

= _/ (¢ — ug)+ dz < 0.
Q

Since, the second integral on the left side is non-negative, that is obvious by (1.3),
we can conclude

/ (6 = us)+ [2(-,1) dz = 0 for ae. £ € (0,T),
Q

which implies that
us > 1 on Q. (4.6)

Step 3: Energy bounds, weak and strong convergence. The next step is
devoted to the derivation of uniform bounds with respect to & for us in W?()(Qy)
and L>(0,7;L*(Q)) and for dyus in WP (Qr). As before, we start with the
Steklov-formulation (4.4). But now, we add on both sides

- / Bulgln (g de
Q

to infer that

/Q (Ot[us — gln - @ + [a(z, Dug)]p - Do) (-, 7) dz
~ [ ¢ ([60 —us)P.], g — [aiv (PPO2F)] 41710 (7) da

holds for all ¢ € Wy """ (Q) and for a.e. 7 € (0,T) . In this equation we choose the
admissible test function ¢ = [us — g]n and recall again that us = g on 9 x (0,T).
Next, we integrate with respect to 7 over (0,t), where ¢t € (0,T"). Hence, it follows
for the first term on the left-hand side that

1
Olus — gln - dz == | Ofus — g]} dz
Q¢ 2 Q4

=5 [ s —ali 0y do— 5 [ fus gl (0) da

At this stage, we want to pass the limit h | 0. The only term which causes some
problems is the one involving d;[g],. Here, we have to apply (2.3) for f € L?(Q) C
W=17(Q), v € Wy (€2). This implies, in the case p(-) =const., that

T
Fovdz= [ (7000 d5 = (oD, (4.7)

Qr

for f € L2(Qr), v e L7 (0, T; W, " (R2)). Therefore, we can obtain

E%/Qt Oclgln - v dz = <<gt780>>§2t )
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since g, € L7(0,T;W~171(2)). Keeping in mind that the initial value of wus
satisfies us(-,0) = g(-,0) on €, this leads us to

1
f/ lus — g|(-,t) dx+/ a(z, Dug) - Dugs dz
2 Ja (N

:/Q (<5(¢ — us)¥y —div (|F|P(')‘2F) + f) (us —g) dz

+/ a(z, Dug) - Dg dz — ((g¢, us — 9>>Qt .
Q4

Using Young’s inequality with an arbitrary € > 0 and (1.13). Then, utilizing the
standard Poincaré inequality slicewise, the growth assumption (1.2) on a(-), Young’s
inequality once more and (1.9), we get for any € > 0 that

1
- / lus — g|*(-,t) da +/ a(z, Dug) - Dugs dz
2 Ja Q,
<ce||0ugll i, (@ry Tec (/Q |Dus|P) + |D(us — )|+ +1 dz + 1)
+ee ( (0|7 4 |f — div(|F[PO72F)|" + |Dglp®) dz)
Q

with constants ¢ = ¢(n, 1,72, L, diam(Q)) and ¢ = cz(1,71,72). Then, we use the
coercivity property (1.7) to bound the second integral on the left-hand side from
below. Proceeding this way and recalling the definition of ¥ we find for ¢ > 0 and
a.e. t € (0,T) that

1/ 9 v / ]
- ug(-, t)|° de + — DusPO) — ¢ dz
5 Q| (.0l ) Qtl |

< NgllE oo (0,0:22(02y) + € (/ |Dus|P®) + |DglP") + 1 dz + 1)
Q4
+ Ce( Qlaﬂﬁ — diva(z, Dy)["+|f — div(|F[PO72F)["4|Dg[POdz +(| 0] -, (Qﬂ)
t

with constants ¢ = ¢(n,y1,72, L, diam(Q2)) and ¢, = ca(%,yl, v2). Choosing ¢ small
enough we can reabsorb th |Dus|P¢) dz on the left-hand side, e.g. ec < m
Then, taking the supremum over ¢t € (0,T") in the first integral and ¢ = T in the

second one, we finally arrive at
oo [ JusC 0 de o+ [ Dul0 d < e (48)
te(0,T) JQ Qr
where ¢ = ¢(n,v1, 72, v, L,diam(f2)). By the Poincaré type inequality (2.5), (1.9)
and (4.8), we also get the following uniform LP(")-bound for us
Avg 1
s Loy < c€lrrz AT, (4.9)

with a constant ¢ = ¢(n, y1, ¥2, v, L, diam(2), w(-)).
Finally, we want to derive an uniform bound for d;us in W?()(Qr)’. For this

aim we consider ¢ € Wg(')(QT). From the weak formulation of (4.3) we get, by
using the generalized Holder’s inequality (1.8) and (1.2), the following estimate:

|<<atU5,<p>>QT|§/ la(z, Dus)| - 1Dl + (9] + |7 — div(FPO2F)]| -] dz

Qp

<[ (191417 = av(FPO2E) + 1+ 1Dus PO ) (1Dl + i) d
Qr

Here, we should mention that ¥ € L' () (Qy), since L1 (Q7) € L) (Qy) is dense.
Therefore, we are allowed to use the generalized Holder’s inequality (1.8). This
yields

| (@rss, N, | < (1Dus+ 1] Lo + 1T vy + 1 = AVUFPO2F) | s s
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where ¢ = ¢(71, 72, L). Now, we estimate the term || Dus + 1|| v () from above

1

Y1

[ Dus + 1”L”(')(QT) < c(71,72) </ |Du5|p() dz + 1) < c(y1,72,€),
Q

where we used (1.9) and (4.8). Therefore, we can conclude that
| (0w Doy | < ey L& 1 oo 1f = div([FPOT2E) | o) ellwee r)-
This shows Oyus € Wp(')(QT)’ with the estimate
10cusllwoe @y < ey v2s Ly € W vy, [Lf = div([FIPOT2F) [ ry). (4.10)

Due to the uniform bounds in (4.8), (4.9) and (4.10), there exists a subsequence,
also labeled with ¢, and a function u € W»()(Qr) N L>®(0,T; L*(Q)) with u = g on
9 x (0,T) and Oyu € WP (Qr)’, such that

Us — U strongly in L) (Q7),

us —* u weakly* in L°°(0,T; L?(12)),

Dus — Du  weakly in LP0)(Qp, R™),

dyus — Oyu weakly in WP Q).

T

Note that the convergence us — u in LP()(Q7) is strong due to the compactness of
the embedding W(Qr) < LP()(Qr) which results from the Aubin-Lions Theorem
2.2

Step 4: Continuity in time and initial values. First of all, we note also
that u € C°([0,T]; L*(2)) by Lemma 2.1 and the fact that we assume p(-) > 2.
Furthermore, the strong convergence us — u in LP()(Qr) together with (4.6), i.e.
ug > 1 a.e. on Qp, ensure that also u > 1) a.e. on {p, since

0< lim/ (us — w)ﬂ{u<w} dz = / (u— ’(/))]l{u<w} dz,
510 Qr Q

T
where T,y is the characteristic function of the set {z € Qr : u(z) < ¥(2)}.
Hence, we have u € X, (Qr). Next, we want to show that u(-,0) = g(-,0) in the
usual L?-sense. For § >0, h > 0 and 0 < t < h we have by the standard Hélder’s
inequality, (4.10) and the fact that W12(:0(Q) € W=122(Q) for every t € (0,T)
and WPO) (Qq) C LP2(0, T; W—1r2(Q))

t
Js11) = 9Oy < [ 1015,y 10 7
T

1
7

1 ’ Py
< b7z . LI
< ( JRECETCE T, dr)

2 1
< chrz||0rus (-, ) [wee) (o) < chP2,

and therefore, we can conclude that

1 h 1 [P o, 1
E/() ué('at) dt—g(~,0) < E/O ||u5('7t) _g(.’o)HV[i’l*p,z( dtgchpz 1

’
P2
Q)
LUGRRET()

where ¢(vy1,7v2, L, M'). This implies in particular that [us]n(-,0) — g(-,0) as h | 0
uniformly with respect to § in W 1Pz (©). Therefore,
s Ph
= lim lim
1., hl0610
W™ P2

1 [h 1"
lim f/ u(-,t) dt — g(-,0) f/ ugs(+,t) dt — g(-,0) =0,
hio || Jo h Jo WP

proving that u admits the initial trace g(-,0) in the sense of W ~1%2(Q). Moreover,
since u € C°([0,T7]; L*(Q)), it has also a strong trace in the sense of (1.19). Due to
the uniqueness of traces the previous estimate implies that the initial datum g(-, 0)
is indeed assumed in the sense of (1.19), i.e.

1t )
g [ ) =90 at =0, (4.11)
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Step 5: Variational inequality for the limit map. Finally, the last step is
to address the variational inequality for the limit map. Therefore, we let § | 0 in
the Cauchy-Dirichlet problem (4.3) to show that w is in fact the desired solution
to the obstacle problem. To this aim we take ¢ = v —us with v € K, (Q2r) as
test function in (4.3) and apply Lemma 2.9, i.e. the Minty type Lemma, to the
monotone operator A : w — — diva(z, Dw) — (5(¢ —w) ¥ with the obvious choice
for the linear continuous operator B determined by — div(|F|?()=2F) + f and the
closed convex set C =X,  (Qr) to infer

(@00~ usha, + [ a(z,Dv)- D(w = us) dz + 3 o(-0) = o, Ol

o (4.12)

> / [FIPO72F - D(v —us) + f(v —us) dz+ | C5(¢p —v) Ty (v —us) dz
Qr Qr

for any choice of v € 9%7 g(QT). In the preceding inequality we now would like
to get rid of the last term on the right-hand side as § | 0. To this aim we fix a
cut-off function in space 15 € C§°(Q), such that 0 < ns < 1, ns = 1 on Q\Q°
and §|Dns| < ¢, where Q0 := {z € Q : dist(x,0Q) < §}. Recall that Q is an open,
bounded Lipschitz regular domain. For v € X/, / (S2r) we now define vs := v + dns
and choose v = v;s in (4.12) to get (note that dyvs = 9pv)

(@000 = usha, + [ a(z.D0)- Do = us) dz -+ 30 0) = 90, 0) o

Qp

2/ |FIPO=2F . D(v — us) 4+ f(v —us) dz
Qr

— (O, 0ns) ., —|—/Q a(z, Dv) - D(v — us) — a(z, Dvs) - D(vs — ug) dz  (4.13)

5 (I106,0) — 90, 0) gy — s 0) — g 0320

+/ |F|PO=2F . §Dns + fons dz + Cs( — v5) Wy (vs — us) dz.
Qr Qr

Now, we want to ensure that the last five terms - those in the last three lines of
(4.13) - disappear in the limit 6 | 0. For the first one we have by (1.13), that
(0,050, < ey, v2)lvllwee @y 19n5lwee) (@) — 0 @as 6 | 0. Note that
the convergence follows from the facts that d17s — 0 in LP")(Qr) and moreover,
|6Dns| < ¢ and §Dns = 0 on Q\Q° and hence also 6Dns — 0 in LPO)(Qp, R™).
For the second term in (4.13), we first note that Dvs = Dv on Q7\Q3, where
QF := Q% x (0,T). Then, using the growth condition (1.2) of a(z,-), the fact that
|Dvs| < |Dv| + ¢ and generalized Holder’s inequality (1.8) we get

/Q a(z,Dv) - D(v — us) — a(z, Dvs) - D(vs — us) dz

T

/Q a(z,Dv) - D(v — us) — a(z, Dvs) - D(vs — us) dz

)
T

< /5 la(z, Dv)| (|]Dv| + Dus) + |a(z, Dvs)| (|Dvus| + |Dus|) dz
Q

T

< dlla(z, D)| +la(z, Dvs)|l| o> (s [(1DV] + [Dus| + )| 1o @3.) = 0,
as § J 0, where the convergence follows from |Q%.| — 0. Here, we also used for the

convergence that Dus is bounded in LP¢) (Q, R™). The terms involving g(-,0), F, f
are treated similarly. Notice also that

(1105 0) = g, O3z g = v (-, 0) = 9, 0) 32y ) = O,
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since vs tends to v as ¢ | 0. Finally, for the last term on the right-hand side we get
in the limit § | O that

Cs(1h — v) W (vs — ug) dz = /Q(S Cs(th — v5) U (v5 — us) dz

Qr

2/ () — vs) Ty (v — us) dz
Q%

> - / = sl ds > = e g 9]+ s o ag) — O

Q7

since, ug is bounded in LP()(Q7). Here, we used that (s(1)—vs) = (5(¢ —v—6n5) =
Cs(Y — v —3) = 0 on Qp\QF, since vs = v+ s, N5 = 1 on Q\Q?, ¥ —v < 0 ae.
on Qp and (s(t) = 0 if t € (—o0, —d]. Therefore, using the preceding observations
together with the strong convergence of us in LP()(Qr) and the weak convergence
of Dus in LP0)(Q7,R™) we can pass to the limit 6 | 0 in (4.13) to obtain

(@0 =), + [ alzD0)- Do =) dz+ 50(,0) = (.0

Qr

> [ IFPO2P D)+ 0w a
Qr

for all v € ﬂqb’g (7). A second application of Minty’s lemma, now to the monotone
operator A : w — —diva(z, Dw), the same linear continuous operator B and the
same closed convex set C as above, yields that

(O, v —uh g, + /Q a(z,Du) - D(v —u) dz

Z/ |FIPO2F - D(v—u) + f(v—u) dz,
Qr

for all v € X, (7). Hence, we conclude that u is the (unique) solution to the
considered obstacle problem satisfying the asserted estimate. The latter assertion
follows from (4.8), (4.9) and (4.10) and the lower semi continuity of the involved

norms with respect to weak convergence. This finishes the proof of the lemma. [

The next part of this section is concerned with the following refinement of the
above result in Lemma 4.1. It will be crucial in the proof of uniqueness of localizable
solutions, since it will enable us to test certain regularized variational inequalities
with less regular comparison functions whose distributional time derivative might
not be contained in W?0)(Q7)".

Lemma 4.2. Let Q C R™ an open, bounded Lipschitz domain and p : Qp —
[v1,72] satisfies (1.4)-(1.5). Suppose that the vector-field a : Qr x R™ — R™ is
a Carathéodory function and satisfies (1.2) and (1.3). Moreover, let (1.16) with
g(-,0) € L?(Q), (1.21), (1.25), (1.26) and (4.1) hold. Then, there exists a solution
u € fKﬁb’g(QT), which satisfies the strong formulation of the variational inequality

(1.17) more generally for all comparison function v € Wg(')(QT) with v > 1 a.e.
on Qp. Moreover, the energy estimate (4.2) holds true.

Proof. We begin by defining us as the solution to the Cauchy-Dirichlet problem
(4.3), where us is constructed as in the proof of Lemma 4.1. Then, our assumptions
implies that ¥ € Lm (Qr) and the preceding Lemma assured that, there exists a
solution us € C°([0,T]; L3(Q)) N ng(')(QT) with G;us € WP (Qr)’, where the
solutions satisfies the obstacle constraint us > ¢ a.e. on Qp for every § > 0 and
they satisfy the uniform energy bound

sup{ sup)/ lus (-, t)[* da +/ |Dus [P dz +||atu5||wp(-)(QT)'} < oo (4.14)
Q Qr

6>0 | te(0,T
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cf. (4.8)-(4.10). These bounds and the Aubin-Lions compactness argument from
Theorem 2.2 imply the convergences
Us, = U strongly in L) (Q7)
us, =* u weakly™ in L>(0,T; L*(Q))
Dus, — Du  weakly in WP0)(Qrp)
Opus, — Opu weakly in WP (Qr)’

(4.15)

as i — oo for some sequence §; | 0 and a limit map u with u € ng(')(QT) and du €
WP (Qr)’. Further, the Lemma 2.1, applied to u — g, yields u € C°([0,T]; L*(Q)),
and the limit map attains the prescribed initial values u(-,0) = g(-,0).

Step 1: Strong convergence of the gradient. Now, our aim is to derive the
even stronger convergence Dus, — Du with respect to the LP()-norm and then,
the claimed variational inequality. For the proof of the strong convergence, we test
the equation (4.3) for us, with the testing function (us, — u) € Wé’(')(QT), which
yields for all i € N

/Qa(za Du5i)D(u5i - U) dz = <<8tu5wu - u5i>>QT + 0 Cfs'i (w - u5i)®+ (u5i - u) dz

T

+/ |FIPO=2F . D(us, —u) + f(us, —u) dz =: I; + II; + ITI;.
Qr

(4.16)
Here, we apply Lemma 2.1 to I;. Hence, we can conclude that
: . L >
limsup I; =limsup | (Oru,w —us, ), — 5 [ Oll(us, —u)(,1)[72q) dz
i—00 i—00 2 Jo (4 17)

1.
= — g limsup ll(us, = w)(-, T)[[ 720 <0,

i—00
where we used that d,u € WP (Qr)’, us, — u weakly in W) (Qr) according to
(4.15) and us, (+,0) = g(-,0). Next, we use the fact 0 < (5, < 1, generalized Holder’s
inequality (1.8) and the strong convergence us, — u in LPC)(Q7) by (4.15), which
gives

L] <4 | oo g s, =l pocr gy = 0, as i — oo (4.18)
Finally, the weak convergence us, — u in W?()(Q7), that holds by (4.15), implies
III; 0 as i — oo. (4.19)
Plugging (4.17), (4.18) and (4.19) into (4.16), we arrive at
hmsup/ a(z, Dusg,) - D(us;, —u) dz < 0.
71— 00 Qr
Moreover, we note that the weak convergence Dus, — Du in LP()(Qr) yields
lim sup/ a(z, Du) - D(ugs, — u) dz = 0.
71— 00 Qr
Joining the two preceding formulae affords
lim sup/ (a(z, Dus,) — a(z, Du)) - D(us, —u) dz < 0.
1—00 Qr
In view of the monotonicity condition (1.3), this implies

lim sup/ (1% + |Dus,
Qr

17— 00

2 4 |Dul?) "5 | Dus, — Dul? dz = 0,

from which we can infer the desired convergence
us, — u strongly in WP (Qg), as i — oo, (4.20)
since in the case p(-) > 2 this implication is immediate, because of

[ 1Dus, = Dup® dz < [+ [Dus [+ 1DuP) "5 |Dus, - Duf
QT QT



EXISTENCE TO PARABOLIC OBSTACLE PROBLEMS WITH NONSTANDARD GROWTH 21

while for f—fz < p(-) < 2, we have to use the following calculus:

p()(P()—=2)
1

|Dus, — DulP) = (1® + [ Dug,|* + | Dul?) |Dus, — Dul*®)

)(2=pC)
x (4* + |Dus, |* + [Duf?) "7

(p()-2)
< ¢ (4 +|Dus,|> + |Du*) "= |Dus, — Dul”

r()
2

+ ¢ (0® + |Dug, |* + | Dul?)

with a constant ¢ = ¢(1,72), where we applied the Young’s inequality with expo-
nents p(-)/2+(2—p(+))/2 = 1. Next, we estimate the second term on the right-hand
side as follows:

p() ®()=2)
(4 + [Dus, |* + [Dul*) = = (4® + | Dug, | + [ Duf*) "= (u* + | Dus,|* + | Duf?)

(()=2)
< 2 (4* + |Dus, [* + |Du|*) "= | Dus, — Dul?

+3 (-t [Dul),

where we utilized the fact that p(-) — 2 < 0. Combining the last two estimate,
integrating over {27 and using the energy bound (4.14) yields the claim.

Step 2: Variational inequality for the limit map. Now, we are in a position
to prove the variational inequality (1.17) for the limit map, for every comparison
function v € Wé’(')(QT) with v > 1) a.e. on Qp. The basic idea is to test the weak
formulation of the parabolic Cauchy-Dirichlet problem (4.3) for the approximating
functions us, with the test functions v — v and then to pass to the limit. However,
some effort has to be made in order to deal with the correction term (s(v) — us)W
appearing in the equation. For this aim, we fix a cut-off function in space n; €
C§°(), such that 0 < ms < 1, gy = 1 on Q\Q° and |Dn;| < £, where Q° :=
{z € Q: dist(x,00) < §}. Now, we fix an arbitrary v € Wf(')(QT) with v > 1) a.e.
on Qr and define vs := v + dns € Wé’(')(QT). Notice that the choice of 75 implies

/ |Dvs — Du|PO) dz = T/ |6Dns|PO) da < 2 T|Q\Q°| — 0,
Qr Q\Q8

as ¢ | 0, and consequently

vs — v strongly in WP (Qr), as d | 0. (4.21)

Next, we test the equation (4.3) for us, with vs, — us, € W(f(')(QT), this yields

<<8tu5wv5i - u5i>>QT +/ a(z, Du&) ’ D(vtSi - u5i) dz
Qr

:/ ‘F‘p(‘)_QF : D(U5i - u5i) +f- (U5i - u5i) dz (422)
Qr
+ C(Si (1/1 - u5i)@+(v5i - uéi) dz.

Qr

Our next aim is to show that the last integral appearing on the right-hand side is
non-negative in the limit. Here, we have to consider the two cases vs, < us, and
vs;, > us,. Keeping in mind that the function (s, is monotonously non-decreasing,
we know that

0 <6'i (w - u5i)\i/+(v5i - u&i) dz > 0 <5i W - U(Si)\i/"l‘(v&i - ufsi) dz.

In the case vs, > us,, we know that —vs, < —us, and therefore, (5, (¢ — us,) >
Cs; (¥ — vs,). While in the case vs, < us,, we know that —vs, > —us, and therefore,
Co, (0 — us,) < (5,(¢ — vs,). But we have also that (vs, — us,) < 0 and finally,
Cs, (0 —us, ) (vs, —us,) > Cs, (Y —vs,)(vs, —us,). By the choice of v and the definition

of vs,, there holds v — vs, < —&;ns, = —6; on Q\Q% x (0,7), and therefore, the
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integrand of the last integral vanishes on the set Q\Q% x (0, 7). This implies

; G, (¥ — us )W (vs, —us,) dz = » G — us,) W (vs, — up,) dz

> _

/Q&i \I~I+(v51‘, - U(Si) dz

T

+ |u5i

> e ICHe, |+ it Dl ey = 0

as i — oo, where the convergence follows from [25/| — 0 and the uniform bounds
(4.14). Joining this with (4.22) of the last integral and using (4.20), (4.21) and
(4.15), we have

T

(0w, v —uh g, + / a(z,Du) - D(v —u) dz = lim (Orus,, vs, — us, ) q

QT 71— 00

+ lim a(z, Dus,) - D(vs, — us,;) dz

1—00 Qr

> lim |F|p()72F : D(IU(S'L' - u&) + f(vtSi - u&') dz

i—00 Qr
= / |FIPO=2F . D(v —u) + f(v —u) dz.
Qr

This finishes the proof of the lemma. O

5. PROOF OF THEOREM 1.7: EXISTENCE AND UNIQUENESS OF LOCALIZABLE
SOLUTIONS

In this section, we want to consider a more general domain with irregular bound-
ary. To this aim, we need to assume an additional approximation assumption on
the obstacle function ¢, which are introduced in (1.22)-(1.24). More precisely, we
give the proof of the existence and uniqueness Theorem 1.7.

Proof of Theorem 1.7. The proof is divided into several steps. We begin with

Step 1: Regularization. We start by assuming that the obstacle function
1 can be approximated by more general functions as in (1.22) with an additional
regularity property (1.23), which approximate v in the sense of (1.24). Next, we
define boundary data g; := § — ¢ + ¢; with § := max {g,v}, which adapted to 1;
and respects the obstacle constraint g; > ; a.e. on Q. In addition, g; satisfies
gi € CO([0,T); L2()) N WP (Qr) with d;:g; € L1 (Qr) and the convergence

{gi — g strongly in W?()(Qp) and L>°(0,T; L*(Q)), (5.1)

d:Gi — 0, strongly in L™ (Qr),

as i — oo, which follows directly from (1.24). Here, we should also mentioned that
by the compatibility condition (1.16), we have §; = g — ¥ + ¥; on 9Q x (0,T) and
Gi(-,0) = g(+,0) — ¥(-,0) + 9;(-,0) on Q. Therefore by (5.1) resp. (1.24), we have
gi — g on 9Q x (0,7) and g;(-,0) — g¢(-,0) on  as i — oco. Next, we need a
mollifier to regularize the inhomogeneity. Therefore, we choose a standard, radially
symmetric mollifier, e.g. a Friedrich’s mollifier, ¢ € C§°(B1), ¢ > 0 with fBl pdx =
1 and let ¢g,(x) := 6; "¢ (x/d;) for some sequence ¢; € (0,1), which tends to zero
as i — o0o. Now, we extend F by zero outside of Qr over the whole R™*!, then
we let Fi(-,t) := F(-,t) x ¢5, for almost every ¢t € (0,T) and f;(-,t) := f(-,t) —
p()—2

div (((512 +|F?) 2 F,»). These functions satisfy f; € L7 (Qp) and converge in
the sense

fi = f — div(|F|PY2F) strongly in WPO) (Qr), (5.2)
as i — co. Moreover, by standard results on mollifications, we have the convergence

Fi(-,t) — F strongly in LPO) (Qp, R™), (5.3)
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p(

since §; } 0, as i — oo and therefore, (67 + |F;|?) 2 Fy — |[F|PO-2F strongly in

LP' O)(Qp, R™). Moreover, we can infer

| diva(z, Dy;)| < |divy a(z, Dy;)| + |D21pi| - | Dya(z, D;)|

0 ) , (5.4)
< L1+ [Dyi )7 (1 + [D74i]) € L7 (Qr).
This holds true by the property (1.23) of ¢; and (1.27). Finally, we define u; €
K%y, 5, (Qr) as the solution to the regularized problem

(Orui, v —ui))g, + /

a(z, Du;) - D(v —u;) dz > fi-(v—u;)dz  (5.5)
QT QT

for every v € ngi(')(QT) with v > 1; a.e. on Qp, where we impose the initial and
boundary values

u;(+,0) = g;(-,0) on Q x {0} and u; = g; on 9N x (0,7). (5.6)

By Lemma 4.2 we know, that this solution exists, since f; and 1; satisfy (4.1). This
is fulfilled by (1.23) and (5.4).

Step 2: Energy bounds and weak convergence. Next, we will deduce
an energy estimate to get the energy bounds and finally, to conclude the weak
convergence. For this aim, we define abbreviate €, := Q x (0,¢) with arbitrary

fixed time ¢ € (0,7) and v := u; + (§; — ui)L(o,4)(7) € WEY(Qr) as comparison
function in the variational inequality (5.5). The map v is admissible as comparison
function, since v > v; a.e. on §; and :Kim,gi (Qr) is dense in Ky, 5,(Qr). Hence,

we derive from (5.5) that

(Opuiy §i — wig, +/ a(z, Du;) - D(G; —ug) dz > [ fi- (3 — us) dz.
Q Q4

Moreover, we add — ((0:gi, §i — ui))q, on both sides and multiply the inequality by
—1, thus it follows

<<8tu1 — 8t§i7ui - gz»gt +/ G(Z, Duz) . D(ul — f]l) dz
Q¢

< . fir (i — gi) dz + {0:Gi, Gi — wi))q, (5.7)

= fi- (ug —gi) dz + 0¢Gi - (gi — wi) dz.
Qy Q

Here, we should mention that we are allowed to identify the duality product by the
inner product between L2(Q7) and L7 (0,T; Wy (Q)), since §; — u; € Wg(')(QT),
WEY (Qr) C L (0,T; Wy () € L7 (Qr) and 8,g; € L7 (Qr) € W (7)), cf.
(4.7). Furthermore, we can conclude by means of Lemma 2.1

1

(Ovui — 04 Gisui — Gi))g, = 5/ u; — | du,
Qx{t}

where we used the fact u;(-,0) = g;(-,0) that holds by (5.6). Next, we will estimate
the second term on the left-hand side of (5.7) from below. Furthermore, we use first
the coercivity property (1.7), then the growth condition (1.2) and finally Young’s
inequality. Hence, we can conclude

/ a(z, Duy)D(u; — §;) dz >~ | Dy |[PO) dz—c/ 1+ |Dg:P") de.
Qt

2C(’I’L, V1, fYQ) Qy Qy
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Now, we combine the last three equations and use Young’s inequality several times,
then it follows for any € > 0 that

1
- lu; — §;|* dz + z | Dug|PC) dz
2 2

Qx{t} CJq,

Ji (g — g;) dz + 0:Gi - (Gi — u;) dz + C/ (1+|Dgi[P)) dz
Q¢ Q

Qy
’ p()
<ce (1117 g + 10017 o+ /Q 62+ 1FR) 5 PO a )

€c<(ui 17 / D(us — i) PO dz> + c/ (1+ |Dg:P0)) d=
Q

with a constant ¢. = c(e,n,y1, Y2, v, L). Moreover, we apply the standard Poincaré
inequality slicewise to the right-hand side and choose ¢, such that (3 — 2ec) < %,
where ¢ = ¢(n,v1,72, v, L,diam(Q2)). Thus we have

=2 1p() " ~
u; i dx + Duy;|PVV dz < ¢ , + c||0sgs|| L,
/X{t}l 9il o, 1P AU,y T clOGill oy

p()

[DgP 4167 + B ) RO +1de

Q
with a constant ¢ = ¢(n,y1,72, v, L,diam(2)). Combining this with the definition
of §; and the convergences in (5.1) and (5.3), we can conclude the following energy
estimate

sup /|ul )7 dx —|—/ |Du; [P dz < eM (5.8)
te(0,T) Qr

for all sufficiently large ¢ € N with a constant ¢ = ¢(n,y1,7v2,v, L,diam(Q?)). Fur-
thermore, we use the Poincaré type inequality (2.5) to infer an uniform LP()-bound.
This yields

il gy < M2 / |DusfP©O + DGO + (3P0 +1dz < eMEH
Qr
(5.9)

with a constant ¢ = ¢(n, 1,72, ¥, L, diam(Q),w(:)). From the last two estimates,
we can conclude that the functions w; are uniformly bounded in L*°(0,T; L?(Q))
and in W?()(Qr). Therefore and by the convergence property of the function g; in
(5.1), we may find a function v € L®(0,T; L?(2)) ﬂWp (QT) such that - possibly
after passing to a subsequence - there holds

U — U weakly in LPC) (Q7),
Du; — Du  weakly in LPO) (Qr, R™), (5.10)
u; —* u weakly™ in L>(0,T; L*(Q)),

as ¢ — oo. Finally, we can infer - with respect to the weak convergence - from (5.8)
and (5.9) that the energy estimate (1.28) holds true. Furthermore, the growth as-
sumption (1.2) of a(-) and (5.8) imply that the sequence {a(z, Du;)},y is bounded
in L") (Qz, R™). Consequently, after passing to a subsequence once more, we can
find a limit map Ay € L” ) (Q7, R") with

a(z, Du;) — Ap weakly in L7 O(Qp, R™) as i — oco. (5.11)

Step 3: Strong convergence. The next aim is to show the strong convergence.
Therefore, we choose the comparison function v := uy, — by, + ¥; € WP (Qr), for
arbitrary 4, k € N, in the variational inequality (5.5). This function is admissible
as comparison function for u;, since ux = g = g — ¥ + ¥y holds on 9pQ7, which
implies v = § — ¥ + ¥; = §; on 0pQ7, and further, the obstacle constraint v > 1;
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a.e. on Qp is valid. Therefore, we can conclude from (5.5) that

(Ouisui — i — ug + i) g, + / a(z, Du;) - D(u; — ¥ — ug + y) dz
ar (5.12)

< A fi - (ui — ¥ —up + Yy dz.

Next, we define functions u; := u; — ; for all ¢ € N and similarly, 4 := v — .
Notice that #; = @ holds on d9Qr for all ¢ € N, since 4; = §; — ¥; = g — ¥ on
0pQr. By the convergence of 9; and u; in (1.24) and (5.10), we have

ii; — @ weakly in WP (Qr) (5.13)

as i — oo. Now, we can conclude from the preceding inequality the following
estimate

(Opti, i — ) g, —|—/Q a(z, Du;) - D(u; —u) dz

S/ a(z, Du;) - D(tg —u+ 1)) dz (5.14)
Qr

+ A fir (G —tg) dz + (Outhi, T — k) g, -

Since the indices ¢, k € N are arbitrary, we can exchange ¢ and k in (5.12) and add
the term ((Oyix, U — 1s))g,, on both sides of (5.12). Then, we add the resulting
estimate with (5.14) and get

1
7/ |t — i |? dx—i—/ a(z, Du;) - D(u; — u) + a(z, Dug) - D(ug —u) dz
2 Jax{ry Qr

< / (fi = ) - (1 — ) dz + (@rads — Do, s — ),
Qr
+/ (a(z, Du;) — a(z, Dug)) - D(v; — ¢y,) dz
Qr
+/ a(z, Du;) - D(ug — u) + a(z, Dug) - D(u; — u) dz,
Qr

where we used Lemma 2.1. Next, we utilize the strong convergence of ¢, — ¢ and
fx = f —div(|F|P)~2F) as k — oo according to (1.24) and (5.2). In addition, we
apply the weak convergence of Du; stated in (5.10), (5.11) and (5.13). Thus, we
can deduce the following estimate

/ a(z, Du;) - D(u; —u) dz + limsup/ a(z, Dug) - D(ug, — u) dz
QT QT

k—o0

< / (fi = f + div(FPO-2F)) - (2 — ) dz + (00ths — 00tb, & — @),

—|—/ (a(z, Du;) — Ap) - D(¢; — ) + Ao - D(u; —u) dz.
Qr
Finally, we let ¢ — oo. Therefore, we arrive at

lim sup/ a(z, Du;) - D(u; —u) dz <0, (5.15)
1—00 Qr

where we exploited (1.24), (5.2), (5.10) and (5.13). Then, by the weak convergence

of Du; — Du in LPO)(Qp,R™) as i — oo, there holds

lim sup/ a(z,Du) - D(u; —u) dz = 0. (5.16)
Qr

1—00

Combining (5.15) and (5.16) we conclude that

i—00

limsup/ (a(z, Du;) — a(z, Du)) - D(u; —u) dz < 0.
Qr
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Finally, we know by the monotonicity condition (1.3) that the left-hand side of the
preceding inequality is non-negativ, such that

limsup/ (@ + |Dug)® + | Dul?)
Qr

1—00

IJ()

|Duz Dul? dz =0,

which yields the desired strong convergence
u; — u strongly in WPO) (Qp) (5.17)

as 7 — oo. This is obvious because we can conclude

limsup/ (B2 + |Dug|? + | Duf?) "+
Qr

i—00

— Dul* dz

> hmsup/ |Du; — DulP®) dz = 0.
71— 00 Qr

This last implication is straightforward in the case p(-) > 2, while for exponents

p(+) < 2, it follows from the same calculus as in the proof of Lemma 4.2, see page

20. Possibly after extracting another subsequence, we also have Du; — Du a.e. on

Q7 and we can conclude that
a(-, Du;) — a(-, Du) for almost every z € Qr, as i — oco. (5.18)

Step 4: Continuity in time and initial values. Now, we have to show the
continuity in time and initial values. For this aim, we choose a comparison function
v =+ (g — ;)L o,7)(t) € Wfl.(')(QT) for an arbitrary time 7 € (0,7) and where
U; := u; — ; for all 4 € N. This function we use to test the variational inequality
(5.5) for u;. Moreover, that we use 9y, f; € LP'O)(Qy), since dply, fi € L7 (Qp).
Thus, it follows by the generalized Holder’s inequality (1.8) that

(Optti, Gl — ) < /Q a(z, Du;) - D(tiy — 4;) dz — /Q (fi + 0ps) - (g — i) dz

T

< 2fill o> oy s — @il ey @,y + (1 2 1060ill Lor o (o 1 — Gill Loy 2,
+c(v2, L)1+ |Dui|)p( “Hlpwor oy 1D (@ — @)l Locr o,

where we also used the growth assumption (1.2). Now, we can estimate the right-
hand side of the preceding inequality from above, by exchanging €. by the Qrp.
Then, notice that the right-hand side is independent from 7 € (0,T). Moreover, we
note that the right-hand side vanishes as i,k — oo, since the strong convergence
(5.17) of u; in WP (Qr) implies, in combination with the convergence of 1; in
(1.24), that {D;};oy is a Cauchy sequence in LP()(Qp,R™). Therefore, it yields
lim sup; 00 (O¢tii, 4 — k) < 0. Applying furthermore Lemma 2.1 and keeping
in mind, that 4; = 4, on 0pQr, we conclude

limsup sup / |(th; — @) (-, 7)|* do = 2limsup sup ((Oyit; — Oyptig, U; — g)) = 0.
i,k—oo T7€(0,7)JQ i,k—o0 7€(0,7)

Thus, we have established that {i;},.y is a Cauchy sequence in C°([0,T7]; L*()),
which implies in view of the strong convergence v; — ¢ in C°([0,T]; L*(Q2)) ac-
cording to (1.24), that

u; — u strongly in C°([0,T]; L*(Q2)), (5.19)

(
as i — oo and in particular v € C°([0,7T]; L*(9)). Because of u;(-,0) = g;(-,0) —
g(-,0) = g(-,0) as i — oo, the convergence (5.19) implies, that u attains the pre-
scribed initial values u(-,0) = g(-,0).

Step 5: Proof of the extension property. For our next aim, we fix a domain
0:=0n Q, where O CR™ is any Lipschitz regular domain which is contained in a
ball with radius py = po(6,w(-)) € (0,1] with 8 < 6y = 0g(n,~v1) € (0,1) is given by
Lemma 2.5. Moreover, we choose a time interval I := (¢1,%2) C (0,7) and define
Or := O x I. Then, we consider the parabolic boundary value problems

{&wi —diva(z, Dw;) = 0wh; —diva(z, Dip;) in Oy,

(5.20)
w; = U on OOy,
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where we defined w; as the solutions to (5.20). By Corollary 3.4 we know that, there
exists a solution w; € W(Oy). In addition, the comparison principle in Lemma 2.7
yields the obstacle constraint w; > v; a.e. on O;. Furthermore, we have the energy
bound (2.12) from the comparison Lemma 2.8. This yields

/ |Dw; [PV dz gc/ (N+|Dui|)p(')dz+c|:/ 10|+ || dz
Or Or Or

p()

4 [ DO+ (3 + R PO £ 15|
Or

where ¢ = ¢(n,v1,72,v, L), for every i € N Here, we have to mention that we
replaced |F|P0) by [(82 + |Fy|2) "5
(67 4 [F[?) 5
see that we gain accurately (2.12). Combining this with the bound (5.8), the
convergences of 1; in (1.24) and of F; in (5.3), we infer

F; |P(> 1. This is possible, since we consider

limsup/ |Dw; [P¢) dz < eM (5.21)
Or

i—00
with a constant ¢ = ¢(n, 1,72, v, L). Next, we utilize the Poincaré type inequality
(2.7), as follows

failzoonon < ¢ [ DO +Duft) + PO+ 14z + e
Oy

for every i € N, where ¢ = ¢(n, 71,72, L, L1, M). This LP()-bound for w; together
with (1.9), (5.8), (5.9) and (5.10) imply that

limsup [[willLrer(0,) < climsup/ |Dw; PO + [ Dug PO + |ug PO + 1 dz

i—00 i—00 Or (522)
< cM(?LPz* )32

where the constant ¢ depends on n,~;,v2,v, L, L1,0, M. Finally, the equation (5.20)

gives [cf. e.g. proof of (4.10)] the following

lim sup |G wi|lyee) 9,y < chmsup/ 1+ [Dw; PO + | Dy PO dz
71— 00 1—00 Oy

(5.23)
+climsup ([0l oy (0,) < €

1— 00
with a constant ¢ = ¢(n,v1,7v2,v, L, L1, M, |04 s ()), where we used the fact
op; € m (Oy) implies O,; € ') (Or). Notice also, that we gain from the energy
bound (3.7) that w; is bounded in L>°(I; L%(0)), i.e.

sup/ [w; (-, |L2 / |Dw; P dz < eM (5.24)
tel
for every ¢ € N. Due to the bounds (5.21), (5.22), (5.23) and (5.24) and the
compactness argument from Theorem 2.2, we can find a limit map w € WY (')(O 1)
with d;w € WP (0r)’, such that
w; = w strongly in L?() (0, R),
Dw; — Dw  weakly in LPO) (O, R"),
dyw; — Oyw  weakly in WP (O;),
w; —* w weakly™ in L>°(I; L*(0)),

(5.25)

as 1 — 0o, possibly after extraction of a suitable subsequence. In addition, we may
assume w; — w and ¥; — ¥ a.e. on Oy as ¢ — co. Therefore, we can conclude that
w satisfies the obstacle constraint w > v a.e. on Oj.

Now, we want to remove the smallness condition on O, i.e. we want to consider
also domains O, which are not contained in a ball of radius pg = po(8,w(:)) € (0,1].
Therefore, we have to cover the domain O by smaller subdomains which allow
the application of Corollary 3.4. Thus, we choose a family of disjoint open cubes
{Cy(2;)};2, with p < pg and x; € R™, such that (J;Z, C,(z;) = R"\N, where
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L"(N) = 0. Then, we consider O; = O N C,(z;) C Qp, = 1,...,N, such that
0= Ujvzl O,;\N. Then, we consider the parabolic boundary value problems

4 5.26
w! = on 0p0; x I, ( )

{atwg — div a(z,Dwf) = Oy, —diva(z, D;) in O x I,
where we defined w’ as the solutions to (5.26). By Corollary 3.4 we know that,
there exists a solution wf € W(0; x I). In addition, the comparison principle in
Lemma 2.7 yields the obstacle constraint wf > 1; a.e. on O; x I. At this stage,
we have to mention that the conclusions from above are available. The next step is
to compose the functions wf . This is possible, since the boundary values of wf are
equal to the boundary data of its "‘neighbors"’. Thus, we have w; = Zjv ]lojwf,
where 1o, is the characteristic function of the set O;. This allows us to infer from
(5.21) that

N N

limsup [ |Duw;|P") dz < limsup E |Dw! PO dz < ¢ E / (1 + |Dul)P®) dz
- - JO;xI
J i J

i—00 Or i—00 O ;%I

N N
+e Z/ Ot + [ £ dz+Z/ |DyPO + [FPPO +1dz | <eM
j O]‘XI j OJ‘XI

with a constant ¢ = ¢(n,v1,72,v, L). Similar to (5.22), (5.23) and (5.24), we get

the same convergences as in (5.25), i.e. we can find a limit map w € Wf(')(OI)
with 90 € WP (0r)’, such that

W; — W strongly in L) (07, R),
Diw; — Db weakly in LPO) (O, R™),
Oy — Oy weakly in WPO(0;),

W —* b weakly” in L>(I; L?(0)),

as i — 00, possibly after extraction of a suitable subsequence. In addition, we may
assume w; — w and ¥; — ¥ a.e. on Oy as ¢ — oo. Therefore, we can conclude that
w satisfies the obstacle constraint w > ¢ a.e. on Oj.

From now on, we will use the preceding results [(5.21)-(5.25)] for any fix domain
0:=0n Q, where O is any Lipschitz regular domain. Here, we should accentu-
ate that the function @ is not the solution of (5.20) with the smallness condition
on the domain O. The function w is only on O; (without smallness condition),
which satisfies the obstacle constraint, the boundary data and the needed regular-
ity properties. This is important for the construction of the extension map. Next,
we relabel @ by w and use the conclusions (5.21)-(5.25) for the function w; from
above on a domain O without the smallness assumption, where we also relabel w;
by w;. But we keep in mind that the function w don’t solve (5.20) on O;. Our
next desired aim is to show that w € X/,  (Or). Therefore, we have only to show
that w € CO([t1, t2]; L?(0)). Unfortunately, this property we can not conclude from
Lemma 2.1, since w does not vanish on 00 X (t1,t2). Thus, we apply Lemma 2.1
to the function (1 — ¢(z)) w(z, t), where ¢ € C®(0), 0 < ¢ < 1 is a suitable cut-off
function with ¢ = 1 on dO. Hence, (1 — ¢)w vanish on 8O x (t1,t5) and we can infer
from Lemma 2.1 that (1 — {)w € C°([t1,t2]; L?(0)). Here we should also mention,
that in the case 9Q N OO # 0, we apply Lemma 2.1 to (1 — ((z))(w(z,t) — g(z,1)),
which vanishes on 90 N 0O, and use the regularity assumptions on g. Next, we
choose ¢. € C*®(0), 0 < (. <1 with

0 on O\Us®, c
€ = d D IS S ) 527
¢ {1 on 00, and | DC| € ( )

where we defined U® := {x € 0 : dist(z, 8(9) < 5} for any € > 0. Furthermore, we
write U§ := U® x (t1,t2) C Or. Now, we will apply a version of the Poincaré type
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inequality (2.5) to w; —u; € CO([t1,ta]; L*(0)) N Wg(‘)((?]). This is possible since

we assumed that O = O N Q with a Lipschitz regular domain O C R™ and yields

272
”wi - UiHLp(-)(UIE) <c-e [Mn+22 (/
U

where ¢ = ¢(n, 1,72, v, L, L1). Note that it is crucial that O is a Lipschitz regular
domain in order to gain a factor ¢ in (5.28). Consequently, we can conclude from
(5.27), (5.28) and (1.13) that, there holds

1
71

|Dw; — Du; [P + 1 dz) (5.28)

€
I

1D(¢2 (wi — )| Lo sy S2[¢DCe - (wi = wi)l| oo ()
272

2 (L.ﬁ.l)i (529)
¢ - D(wi — ug)|| Loy sy £ eM 270

for sufficiently large i € N, where we used (5.8), (5.21) and Young’s inequality for the
last step. Next, we choose a comparison function v := wu; + (w; —u;)¢? ()1, 7 (t) €

fi(')(QT) for an arbitrary time 7 € (t1,%2). Note that, v holds the obstacle con-
straint v > 1; a.e. on Oy, since w; > 1; and u; > v¥; a.e. on O;. Now, we test (5.5)
with v and infer

— ((Buui, C(wi = wi))) —/O a(z, Du;) - D(C(w; — u;)) dz

I

272 49y L p(:)=2
< MY (||f||Lp'<»>(U§) + 167+ |F?) FiHLP/(‘>(UIE))

with a constant ¢ = ¢(n,v1,72,v, L, L1). Here, we used the generalized Holder’s
inequality (1.8) and finally, (5.8), (5.21), ¢Z < 1, (5.28) and (5.29). In addition, we
test the weak formulation of (5.20) with the test-function (w; —u;)(Z(2) 1, - (t) €

WP (UF), which yields

{Oywi,  (w; — Uz’)>>ol+/a(27Dwz‘)D(C52(wi —w;)) dz = (B, (2 (w; — ui))>>(91

O
+ /G(Z,D’(/JZ') - D(C(w; — uy)) dz
Or
< MUBTIE (||a(z,D¢i)\|L,,,<.>(U;) + ||atwi\|Lp,<.>(U;))
with a constant ¢ = ¢(n, 1, ¥2, v, L, L1). Here, we employed the generalized Holder’s

inequality (1.8), the Poincaré type inequality (2.5), (5.8), (5.21) and (5.29). Adding
the last two inequalities, using Proposition 1.2(iv), we arrive

(1]

(0 (e (wi = ui)), Ce(w; — ui)>>ol+/o(a(z, Duw;) — a(z, Du;)) D(¢Z (w; — u;)) dz <

for every i € N, every 7 € (t1,1t2) and € > 0, where

— 272 41y L
= 1= M (Jla(z, D) | s + 100 s sy + 1 Lo

p()=2

) ) (5.30)
162 + 1B Fillrows)) -

From this estimate, we can conclude the following inequality

(O (Ce(wi — uy)), Ce(w; — Uz‘)»o, +/ (a(z, Dw;) — a(z, Duy)) - C?D(wi —u;) dz

Or

<

[1]

— /O (a(z, Dw;) — a(z, Du;)) - 2C. D¢ (w; — u;) dz

. c
< E+ = (Jlalz, D)l o) + lalz, Dus) ooy ) e = will oo sy
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with a constant ¢ = ¢(n,v1,7v2, v, L). Finally, we utilize Lemma 2.1 and the mono-
tonicity condition (1.3) to the left-hand side and the Young’s inequality with expo-
nents v; and ¥4 and (1.9) to the right-hand side, then we have

C
oy / Co(wi —ug)|? do < —|Jw; — wl| Ty ey + 2
rE(tr t2) O><{7—}| E( % z)‘ 5“{1H % ZHLPU(UI)

7
+ e (llalz Dwi o i + lalz, Dus)l o )

for i € N, where Z is defined in (5.30). Now, we use the growth condition (1.2) and
pass to the limit ¢ — oo, apply Fatou’s Lemma to the left-hand side and employ
(5.28) and the convergences (1.24), (5.2), (5.17) and (5.25) on the right-hand side.
Then, we can conclude

sup / ICo(w — u)|? dox < CM%/ |Dw — DulP®) 41 dz
Te(tl,tz) OX{T} U

+cM (H(l + DY oo ey + 10l Lo ey + 1 s sy + HFlle<->(U;>)

e
I

v
¢ (I +1DwPO ™) s gy + 10+ IDUPO™ s gy ) = T + L+ T
(5.31)

with a constant ¢ = ¢(n, v1,72, v, L). Finally, we want to shows that the right-hand
side can be made arbitrarily small by choosing € > 0 small enough. This allows us
to conclude that by the absolute continuity of the integral the expressions I, 1.
and ITI. tend to zero as ¢ | 0. Therefore, we get from (5.31) the following

sup / |Ce(w —u)]? dv —0asel0
Ox{t}

TE(t1,t2)

and since, we already know that u € C°([0,T], L?(Q2)), we are able to deduce that

sup / |Ccw|* dz — 0 ase | 0.
TE(t1,t2) JOX{T}
Moreover, as mentioned above, there holds (1 — (.)w € C°([0,T]; L?*(Q2)) as a con-
sequence of the Interpolation Lemma 2.1. In view of the above convergence we
deduce w € C°([t1,t5]; L2(0)) and thus conclude the proof of the claimed property
w € X ,(01) of the extension map.

Step 6: Variational inequality for the limit map. First, we fix a Lipschitz
regular domain O C R™ contained in a ball of radius py = po(6,w(-)) with 6 <
Oo(n,v1) € (0,1) from Lemma 2.5 and a time interval I = (¢1,t2) C (0,7) and
abbreviate O := O N Q. As always, O; denotes the space-time cylinder O x I.
Next, we choose an arbitrary comparison map v € X/ 7u(O 1), which exists by Step

5. Furthermore, we choose a cut-off function ¢ € C§°(0), 0 < ¢ < 1, which will
be specified later and define an admissible comparison function in the variational
inequality (5.5) for u;. In addition, we let v; := C2(v—th+1h;)+(1—C2)u; € WED (0))
for i € N, and we extend the function by u; on Q7\O;. This function satisfies the
obstacle condition v; > 1);, since it is a convex combination of the functions v—+1;
and wu;, where both satisfy the same obstacle constraint. Thus, v; is the desired
function. For this reason, we have the following variational inequality

(Ouiyvi — ui)) g, +/ a(z, Du;) - D(v; — u;) dz > fi-(vi—wu;) dz  (5.32)
Oy Or

for i € N. Utilizing the definition of v;, the first integral can be rewritten by
Proposition 1.2 as follows:

(Ovuisvi — ui)) o, = (0s(v — P + i), vi — ui)) o,
— (0 (C(v =Y + i —u;)), (v — Y + i — ;) o, (5.33)
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In order to calculate the limit of the first term, we observe
vi —u; = (v — P+ P —uy) g ¢*(v —u) in Wé’(')(oj) (5.34)

because of (1.24) and (5.17). Combining this with the strong convergence 9y); —
dytp in L1 (O;) according to (1.24) and (5.19), we can conclude

zlif?o I = (O, (v — u)>>OI (5.35)

Next, we use Lemma 2.1 and then the convergence ¢; — ¢ and u; — u in
L>(0,T; L?(£2)) according to (1.24) and (5.19), with the result

1 1
—1Li =5 [IC(v =¥ + i — wi) (5 t) || T2 0y — SIS =2+ = wi) (5 t2) 172 (0)

1
<SSI =+ i = w) (1) 72 0) — %IIC(U — ) (- 11)[|72(0)
(5.36)

as i — o0o. Now, we use (5.35) and (5.36) while passing to the limits in (5.33), so
we have

lipisup (Oui, vi — ui))o, < ((Orv, C*(v — u)>>oI + %”C(U — ) (- t1)[|72(0)-

Combining this with the variational inequality (5.32) and applying the convergences
a(-, Du;) — a(-, Du) for a.e. z € Qp by (5.18), fi — f — div(|F|P)=2F) by (5.2)
and the convergence (5.34) of v; — u;. Hence, we can conclude that

1
(O, v =)y, + / alz, D) D(C—w) dz + S —w)(,0)3a0)
> | FC-w+ [F[PO-2F . D(C*(v —u)) dz.

(5.37)

Finally, we choose cut-off functions (. € C§°(0), 0 < (. < 1 with ¢, = 1 on the
set OF .= {x € O : dist(z,90) > 5} for every £ > 0. This can be done in such

a way that [D(.| < 2 holds for every ¢ > 0. Since we have assumed, that 0
is a Lipschitz regular domain, get in the same fashion of (5.28) that every ¢ €

CO([t1,t2]; L2(0)) N Wg(')(OI) satisfies the following version of the Poincaré type
inequality (2.4):

Ava
/ [P dz<ce%( sup (0752 5. +1) / Do) + 1 dz
(O\O)x I ty <t<ts (0\O=) (O\O=)xI

for any ¢ € (0, 1], where ¢ = ¢(n,v1,7v2,v, L, L1). This implies in particular, since
v e WPY(0;), that there holds

272
2 1 n
1D [(1 = C2) 0 = )] ll oo (o060 yx 1y <€ ( sup ||<v—u>(-,t>L;;O\@g)+1)

t1<t<ts

x/ |ID(v —u)PY) +1dz—0
(0\O=)xT

as € } 0 and consequently, (3(v —u) — v —u in Wé'(‘)((‘)[). Choosing ¢ = (. in
(5.37) and letting ¢ | 0, we can conclude

<<5tv,v7u>>ol +/OI

> [ flo—u)+|FPY2F.D(v —u) dz,
Or

1
a(z,Du) - D(v —u) dz + iH(”U —u)(t1)[172(0)

which is the desired local version of the variational inequality.
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Step 7: Uniqueness. For the proof of uniqueness, we consider an arbitrary
solution u, € Ky 4(Qr) with u.(-,0) = ¢(-,0) of the variational inequality

(O, v —us) g, + /

1
; a(z, Du.) - D(v = u.) dz + Z[lv(,0) = g( 0|72
T

> [ flo—u,)+|FPY2F.D(v—u,) dz
Qr

for all comparison maps v € qu’g(QT), and wish to show that wu, agrees with
the solution u from above. Next, we use the abbreviations w; := u; — v; and
introduce the analogous notation . := u, — 1. These functions satisfy the initial
and boundary conditions %; = § — ¥ = U, on JpQr. Now, we may choose v :=
w; —; +1 = U; — Uy +us as comparison function in the above variational inequality,
which gives

(Ovus — Butps + Outp, s — ), + / alz Du,) - D(it; — ) dz
Qr
> [ flu; — i)+ |[FIPO72F - D(u; — @) dz.
Qr
Obversely, we plug v; := u, — ¥ — ¥; = U4 — U; + u; into the variational inequality
(5.5) for u,;, with the result

(D, s — )y, +/ a(z, Dus) - Dlite — i) dz > | fi- (s — 1) dz.
QT QT
We point out, that for the last step, it is crucial that (5.5) holds for every comparison
map v € Wfi(')(QT) with v > ;. Subtracting the two preceding inequalities, we
have

/ (a(z: Du) — alz, Dus)) - D{iin — ii5) dz < (Dyt) — Oyt s — ).
Qr
+/ (FIPO2F . Dt — ) + (f — fi) (s — 1) dz.
Qp

Because of the strong convergence f; — f — div(|F[P0)=2F) in L7 (Qr) according
to (5.2) and since the sequence {i;}, y is bounded in WP()(Qr), the last integral
vanishes in the limit ¢ — co. Analogously, the first integral on the right-hand side
vanishes, since 0;¢); — 0y strongly in n (1), as i — oo. Consequently, the
preceding inequality implies

1—00

lim sup/ (a(z, Duy) — a(z, Du;)) - D(ts — ;) dz <0,
Qr

and recalling the definition of u, and ;, the strong convergences (5.17) and (5.18)
and the strong convergence Dv; — Dt in LPC)(Qp, R™), this implies

/Q (a(z, Duy) — a(z,Du)) - D(u. —u) dz < 0.

But in the view of the monotonicity (1.3) of a(-), this can only hold if Du, = Du,
and since u, agrees with u on the lateral boundary of Q7, we have the desired
identity u, = u. This completes the proof of the theorem. O

6. PROOF OF THEOREM 1.8: EXISTENCE RESULT TO DEGENERATE PARABOLIC
OBSTACLE PROBLEMS ON IRREGULAR DOMAINS

Finally, we consider general bounded domains and general obstacle functions .
Since in this general situation, we can approximate v only locally by functions with
better regularity and integrability properties, we can show strong convergence to a
solution only on every compactly contained subdomain Q' € Q. More precisely, we
give the



EXISTENCE TO PARABOLIC OBSTACLE PROBLEMS WITH NONSTANDARD GROWTH 33

Proof of Theorem 1.8. First, we may replace the boundary data g by a function
§ € CO([0,T); L2(Q) N WEY(Qy) with 9,§ € L (Qr), which satisfies the obstacle
constraint § > 1 a.e. on Qp and attains the initial values assumption. Therefore,
we define § := max {g,¥}.

Step 1: Regularization. In the general case, that is without any regularity
condition on the boundary of the domain 2, we can only approximate the obsta-
cle function locally by more regular functions. For this regularization, we follow
classical ideas by Meyers and Serrin [40], see also [43, 44]. Therefore, we define a
countable open cover of § by letting U, := {x € Q: dist(z,00) € (ZJ%p ﬁ)} for
every £ € N and choose a partition of unity {(¢},cn C C5°(Up), where 0 < ¢, <1,
subordinate to the cover {Us},cy. By ¢ € C§°(B1), we denote a standard, radially
symmetric smoothing kernel with [;, ¢ dz = 1 and we write ¢, () := p~"¢ (x/p)
for the rescaled versions. Then, we define w,(f)(~,t) = [Cep(-,t)] * ¢p,, for all
t € (0,T) and k,¢ € N, where the radii pg ¢ € (0, 84%1) are chosen so small, such
that

¢ ¢
W/(c ) — Cebllweer () + ||1/J;(€) — ol Lo 0,122 (02))
(0) 1
+ ||3t¢k - 8t<lw||Lwi (Qr) < W
Then, let 1 := > w,(f). By the choice of the smoothing radii in (6.1) and since

£eN
{Ce}yen 18 a partition of unity, we have

(6.1)

E

YA
1 — Vllwstr iy < DML = v lwroar <

LeN
and similarly, || — ¥||L=(0,1;12(0)) < 7 and [|Opr — Ol @) < +. We have
thereby shown

{wk ) in WO (Qz) and in L=(0,T; L2(Q)),

O, — Oy in L1 (Qyp), (6.2)

as k — co. Moreover, the regularized obstacle functions 9y, € LM (Qr) satisfy
obviously 8,y € L™ (Q7%) for every subdomain €' € 2 and

sup(| D¢y | + [Dyg]) < e(n, Q, 9,4, k, ) < oo, (6.3)
Qp

since ¢ € C°([0,T); L*(€2)). Next, we define boundary data adapted to the regu-
larized obstacle functions by letting gi := § — ¢ + ¥y, for all k € N. This defines
functions that satisfy the obstacle constraint g, > ¥y a.e. on Qp, since § > ¥ a.e.
on (17, and they converge to g in the sense

gk — g in WPO)(Q7) and in L>(0,T; L*(Q)), (6.4)

Oge — 0§ in L7(Qr), ‘
as k — oo. Moreover, we extended f and F by zero outside of 27 and define
mollifications Fy(-,t) := F(-,t) x¢s, for every ¢t € (0,T), with an arbitrary sequence

p()—2

5s 1 0, and let fu( 1) :== f(-,t) — div ((6,%+|Fk(~,t)|2) : Fk(-,t)). Thus f, €

LY (Q7) and these functions converge in the sense

fx — f —div(|[F[P)~2F) strongly in WP (Qr), (6.5)
as k — oco. Moreover, by standard results on mollifications, we have the convergence
Fy(-,t) — F strongly in LPO)(Qp, R™), (6.6)

p()—2

since 0; | 0, as i — oo and therefore, (02 + |Fi.|?)" 2 Fy — |F|PO)72F strongly
in LP"O)(Qp,R™). Moreover, since |Dyy|, |[D>*¢y| € L=(0,T; L=()) for every
Q' € Q according to (6.3), we can conclude that

|div a(-, Diy)| € L>=(0,T; L () for every Q' € Q, (6.7)
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cf. the approach of (5.4).

Step 2: Construction of the solution. Next, we will construct the solution
as the limit of a regularized variational inequality. Therefore, notice that the prop-
erties 9,1y, € L7 () and (6.7) permit us to conclude the strong existence Lemma
4.1 on the subsets QF = QF x (0,T), where Q% := {2z € Q: dist(x,0Q) > & }.
More precisely, we will construct the solution as the limit of solution as the limit
of solutions to the regularized variational inequalities

{(Orug, v — uk»gl% —|—/ a(z, Duy) - D(v —u) dz > fe(v —uk) dz  (6.8)

Q Qf

for every v € ng(')(QT) with v > 9 a.e. on Q% since X/, . (Q%) is dense in

brs Gk
K 5 (%) and where we prescribe the initial and boundary values

Uk = gk on 8?91% (6.9)
Due to fx,dptbp € L71(05) and (6.7), we can utilize Lemma 4.1 in order to find
solutions uy € CO([0,T]; L*(Q%)) N WP (Qk) with dyur € WP (QL), satisfying
ug > Yy a.e. on Q. (6.8) and (6.9) for every k € N. Notice that by Lemma 4.2,
the solution also satisfies the weak formulation of the variational inequality, that is

1
(@00 =y + [ ale, D) - Do =) de + 5 1o(-0) = g0 0) o

T

> fre(v —uy) dz

Qr
(6.10)
for all comparison functions v € 5{;% n (Q%). Similar to Step 2 of Theorem 1.7, we
get the following energy estimate
sup / lug (-, t)|* dz +/ |Dug [P dz < eM, (6.11)
te(0,T) JQF Qk,

for all sufficiently large k € N with a constant ¢ = ¢(n,v1, ¥2, v, L, diam(£2)) and an
uniform LP()-bound lukllLeorny < ¢ = e(n, 71,72, v, L, diam(2), M). Recalling
(6.4), we deduce from the above estimates that the extended functions

- ur  on QF
Uk ‘= § . b
g on Q\Q7,

are uniformly bounded in L>(0,T; L?*()) and in W?()(Qr). Therefore, we may
find a function v € L>(0,T; L*(2)) N Wg(‘)(QT), such that - possibly after passing
to a subsequence - there holds
Uk — U weakly in LP) (Qr),
Diy, — Du  weakly in LPO)(Qp, R™), (6.12)
U —* u weakly in L>°(0,T; L2(2)),
as k — oo. Finally, we can infer - with respect to the weak convergence - that
sup lu(-,t)]* da —l—/ |Du|P?) dz < eM,
t€(0,T) JQ Qr
with a constant ¢ = ¢(n,v1, v, v, L,diam(Q2)). This implies the claimed estimate
(1.28). Furthermore, the growth assumption (1.2) of a(z,-) and (6.11) imply that
the sequence {a(z, Dig)},cy is bounded in LP O)(Qp,R™). Consequently, after
passing to a subsequence once more, we can find a limit map Ay € Lp/(')(QT,R”)
with
a(z, Dii) — Ao weakly in LP O)(Qp, R™) as k — oco. (6.13)
Step 3: Construction of extensions and convergence of boundary val-
ues. Notice that this step is similar to the first part of Step 5 in the proof of

Theorem 1.7 - see page 26 - with the difference that at this stage, we are not yet
able to show the second part, even that the extensions satisfy w € C°([0,T]; L(0)).
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This will be proved in the last step of this proof. For this aim we observe a sub-
domains O € €2, which are compactly contained in 2 and contained in a ball with
radius pg = po(f,w(-)) € (0,1] with 6 < 6y = bp(n,11) € (0,1) [cf. Lemma 2.5],
while the times ¢; < t5 can be arbitrary with ¢1,t2 € (0,7). Moreover, we define
Oy := O x I. Then, we observe the boundary value problems

dywy, — diva(z, Dwg) = Oy, — diva(z, Dyy) in WP (O)
wr =ug on 90 x I (6.14)
wk('vtl) 9(70) on O x {t1}7
where we defined wy, as the solutions to (6.14). By Corollary 3.4 we know that,
there exists a solution wy, € C°(I; L?(0)) N WP (0;) with dyw, € WPO(O;).
In addition, the comparison principle in Lemma 2.8 yields the obstacle constraint
wy > Yy a.e. on Oy, Furthermore, we have the energy estimate (2.11)

—_ ¢) ¢) , , 1
OJDwk DuglPtdz < 4§ Og,u + |Dug )P\ dz + Cé(HatW”m(o,) + ”fHL”l(OI))’Yl

a1 7
p()— p() et
m((/ DGO + (57 + |F ) 5 B dz) “) ’
Or

where ¢5 = ¢(d,n,v1,72,v, L, L1), for every k € N. Next, we choose in particular
0 = 1. Then, combining this with the bounds (6.11), the convergences of 1 in
(6.2) and of F}, in (6.6), and the growth condition on a(z,-) in (1.2) we infer

k—o0

limsup/ |Dwy[PY) dz < eM (6.16)
Or

with a constant ¢ = ¢(n, 1,72, v, L, L1). Next, we utilize (1.9), the local Poincaré
type inequality (2.6), (6.11) and (6.12) to infer that

. m_;,_l
limsup [|wk[Loc)(0,) < eM 72717, (6.17)
k—o0

where ¢ = ¢(n,v1,72,v, L, L1). Finally, the equation (6.14) gives similar to (5.23)
that
limsup [|Oswi |l w0,y < € (6.18)
k—o0
with a constant ¢ = ¢(n, v1,v2,v, L, L1, M, ||0¢9|| 7). Due to the bounds (6.16),
(6.17) and (6.18) and the compactness argument from Theorem 2.2, we can find a

limit map w € Wﬁ’(')(OI) with dyw € WP (0;)’, such that

Wi — W strongly in L?() (0, R),
Dwy, — Dw  weakly in LP() (07, R"), (6.19)
Oywg, — Oyw  weakly in Wp(')((‘)l)',

as k — oo, possibly after extraction of a suitable subsequence. In addition, we may
assume wg — w and Y — Y a.e. on Oy as k — oo. Therefore, we can conclude
that w holds the obstacle constraint w > 1 a.e. on O;. Finally, we have to remove
again the smallness condition on O. Using the same argument as in the preceding
proof, cf. page 28 with j replaced by k, we get the conclusions from above on a
domain O without smallness condition.

Step 4: Locally strong convergence of the gradient. Our next aim, is to
prove the strong convergence of the gradient Duy — Du, locally in Q7. In addition,
we consider a cut-off function ¢ € Cg5(2), 0 < ¢ < 1 that will be specified later.
For i, k € N that are large enough to guarantee Q' N QF O spt(, we test the
variational inequality (6.8) for u; with the comparison map v := ¢?(uy, — ¥y, +;) +
(1—¢?u; € Wf,g')(QiT), since €' O spt(. This comparison function respects the
obstacle constraint, v > 1; because it is a convex combination of the functions
uk — Y + ¥; and u;, where both of which respect the same obstacle condition. For
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this reason, the function v is an admissible comparison map for the solution wu; of
(6.8). Therefore, we have the following estimate

{(Opus, P (us — i + i — Uk)>>QT +/Q a(z, Du;) - D(C*(u; — ¥; + ¥y — ug)) dz

< fi P lug = s + g — ug) da.
Qr
Next, we define 4; := u; — 1;, so we can rewrite the last estimate

(00, i = 1)), + [ (e D) DG s =)

Qr
< /Q a(z, Dug) D(C? (ug, — u + 0y — bx)) + fi¢? (0 — x) dz

+ (Opthi, iy — k),
Now, we exchange the roles of i and k£ and adding the resulting estimate to the
previous one, we get

(0t — Dy, ¢ (@i — r)))g, +/ a(z, Dug) - D(¢*(u; — w)) dz

Qr

+ /QT a(z, Duy,) - D(¢(uy, — u)) dz

/Q a(z, Du;) - D(¢*(wr = w)) + a(z, Duy) - D(¢*(ui — u)) d= (6.20)

/ a(z Dug) — alz Dug)] - D(C (s — ) + (fs — ) (s — i) e

Qp
(i = Oupr, (s — Wr))) g, -

Here, the first integral on the left-hand side is non-negative because of Lemma, 2.1,
since @;(-,0) = §;(-,0) — ¢;(-,0) on spt¢ and consequently, the initial values of 4,
are independent from the index i. Now, we plug the above estimate into (6.20) and
let kK — oco. Moreover, we utilize the strong convergence (6.2) and (6.5) of the data
fr and 1. Therefore and together with the weak convergence (6.12) and (6.13) of
Duy, we can conclude

/ a(z, Du;) - D(¢*(u; —u)) dz + limsup/ a(z, Duy) - D(¢*(ug — u)) dz
Qr Qrp

k—o0

< / Ao+ D(C(us — ) + [a(z, Dus) — Ao] - D(C (s — ) da

+ / (i — )i — ) dz — [FPO2F - D(C3 (s — 1)) da
+ (O — O, (P (11 — ﬂ)>>QT ,

where 4 := u — 1. In the next step, we let ¢ — oo and apply the same convergences
stated above in oder to check that the right-hand side of the preceding estimate
vanishes in the limit. Hence, we have shown that

limsup/ a(z, Duy,) - D(C*(uy, — u)) dz < 0.
k— o0 Qr

This together with the growth condition (1.2) of a(z,-), the bound (6.11), the
generalized Holder’s inequality (1.8) and (1.9), we can conclude

lim sup C%a(z, Duy,) - D(uy, —u) dz < ¢M limsup || D¢ (uy, — )|l o) (7 -
k—o0 Qr k—o0
(6.21)

At this stage, we specify the cut-off function {. For this aim, we first fix an arbitrary
ball Br(zo) € Q and let € € (0, R/2) be arbitrary. We employ the notations A® :=
Br(x0)\Br—c(zo) for an annulus in Br(z¢) of width € and write A% := A° x (0,T")
for the corresponding space-time cylinder. Then, we choose (. € C5°(Bg(xo)), 0 <
¢- <1, such that (. =1 on Br_c(w0), ¢ =0 on dBr(wo) with | D | 1o (Br(0)) <
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<. Moreover, we consider the extension maps constructed in Step 3 for the domain
Or =A%, ie. wy € Wf,g')(A%), and denote by w their limit in the sense of (6.19).

For sufficiently large values of k € N, we estimate

D¢ (ur — u)|| Loy az) < (HUk — willLro Az + [k — Wl Lo (as)

e (6.22)

+ w = ull o agy) -

Now, we apply a version of the Poincaré type inequality (2.5) to the functions
(w, —ug) € C°([0,T]; L2(A%))N Wé?(‘)(AET). This yields similar to (5.28) the bound

1
c 295 8 71
e = wnll oo a5 < ¢ | M / \Dw; — Du; PO +1dz ]| .
I

At this stage, it is crucial that we gain a factor € in the Poincaré type inequality
(2.5), which is true since wy — u, vanishes on A and the annulus A° has width e.
The right-hand side of the above estimate can be bounded further by the comparison
estimate (6.15) in the form

/5 |Dwy — Dug P dz <6 - M + cs (H(&% + |Fk|2) |Lp "()(A%)
T

I DDy agy 1056l 1A )

for any § € (0,1), where ¢s = ¢(d,n,71,72, v, L, L1). Combining the last two esti-
mates, letting k — oo and using the convergences (6.2) and (6.5), we can conclude
that

c bR
lim sup g||wk —ugllLecr(ag) < Mo (OM + ¢50,), (6.23)
k—o0
where we used (6.11), (3.7) for w; (modulus the covering argument from above)
and

U, = [|(67 + | Fef?)[™

Lp()(As +||(1+‘Dwk|)||zli'()(A%)

7 7
HIARY )+ 100

Then, the absolute continuity of the integral implies that W, vanish in the limit,
so that U, — 0 as € | 0. Next, we use the lower semi continuity of the norm with
respect to the weak convergence. Therefore, we conclude from (6.23) that

c 1
g||w — u||Lp(.>(AsT) < eM T (0M + ¢sV.) (6.24)
for every § > 0 and € € (0, R/2). Finally, the convergence (6.19) implies
. cC
klggo gHwk — w||Lpcr a5y = 0. (6.25)

Plugging (6.23), (6.24) and (6.25) into (6.22), we deduce limsup;,_, . || D¢ (ur —
w)[Lroragy < Mt (0M + ¢5U.). At this stage, we utilize the estimate (6.21),
where we use the cut-off function ¢( = (. from above and combine it with the
preceding estimate. This yields

lim sup ¢2a(z, Duy,) - D(ug — ) dz < M3 (OM + ¢59,), (6.26)
k—o0 Qr
where § € (0,1) and ¢ € (0, R/2) can be chosen arbitrarily. Therefore and together
with the weak convergence Duy — Du in LPO)(Qp, R™) by (6.12), we can conclude
that

lim sup ¢2a(z, Duy,) - D(up —u) dz = 0 (6.27)

k—oc0 Qr
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for every ¢ € (0,R/2). Joining (6.26) with (6.27) and applying the monotonicity
condition (1.3) of a(z,-), we arrive at

lim sup C2(ji* + |Dug|* + |Du|2)p<gi2 |Duy, — Dul? dz < cdM + c5 P,
k—o0 Qp

where 6 € (0,1) and € € (0, R/2) can be chosen arbitrarily. By the choice of (.,
this implies in particular

T
limsup/ / (@ + | Dug|* + |Du|2)p(; : |Duy, — Du|? dz < CM%((;M +c50,).
0o JB

k—o0 E(ajo)
2

Notice, the left-hand side does not depends on . Therefore, we can first choose
d € (0,1) and then ¢ € (0, R/2) so small that the right-hand side becomes arbitrarily
small. So, we can infer

p(

T
limsup/ / (i + |Dug|* + | Dul?) a |Duy, — Dul* da dz = 0.
0 Bg({ro)

k— o0

Since the ball Br(xzg) € € is arbitrary, this implies in a standard way the desired
convergence

Duy, — Du strongly in LPO)(Q' x (0,T),R™) (6.28)

for every subdomain ' € , as k — co.

Step 5: Continuity in time and initial values. Our next aim is to show
that u € C°([0,T]; L?(Q2)) for any subdomain O €  and that u attains the initial
values g(-,0) at the time ¢t = 0. We consider i, k € N so large that O € Q¢ N QF
and fix a time 7 € (0,7). Moreover, we choose a cut-off function ¢ € C§°(Q),
0 < (¢ <1,suchthat ( =1on O, ¢ =0on O\(Q NN*) and continue to use the
notation u; := u; —1);. Now, we test the variational inequality (6.8) for u; with the

comparison map v := u; + (lx — ;)¢ (@)L, (t) € Wfi(')(QT). This map respects
the obstacle constraint v > 1); since it can be written as a convex combination of the
functions u; and ui —v+1;, both of which satisfy the mentioned obstacle condition.
Therefore, the variational inequality (6.8), considering the growth property (1.2)
of a(z,-) and using the generalized Holder’s inequality (1.8) and (1.9), yields the

bound
(Brtii, (s — i), <c (/Q |DwilPO Az + (| fill Lo gy + 1063l Loy + 1)

x[|¢? (i, — @) [[woo ()

with a constant ¢ = ¢(n,y1, 71, L, diam(Q)). Taking into account the energy bound
(6.11), the convergences (6.2) and (6.5), and the locally strong convergence (6.28)
of Du;, we observe that the right-hand side of the above estimate tends to zero as
i, k — oo, uniformly in 7 € (0,T"). This yields

limsup sup (O, C*(it; — i))) g, < 0-
i, k—oo 7€(0,T)

Adding the same inequality with exchanged roles of i and k and then applying
Lemma 2.1, we deduce

1
—limsup sup / ¢ (t; — ug)|* dx < 0.
2 i, k—oo 7€(0,T) JOx{r}

Moreover, since ¢ = 1 on O, we infer that {@;1o,},cy is a Cauchy sequence in
CY([0,T]; L*(Q)). Since 1; — 1 strongly in C°([0,T]; L?(€2)) according to (1.24),
we deduce

u; — u strongly in C°([0,T]; L*(0)), (6.29)

as i — oo. This yields on the one hand the claimed regularity v € C°([0,T7]; L*(0))
and on the other hand, we can calculate the initial values of u by



EXISTENCE TO PARABOLIC OBSTACLE PROBLEMS WITH NONSTANDARD GROWTH 39

where we used the convergence (6.4) of §; and the limits have to be understood
with respect to the norm in L?(0). Since O €  was arbitrary, we infer the claimed
values u(-,0) = g(-,0).

Step 6: Proof of the extension property and the variational inequality.
Since at this stage, we have established the strong convergence u; — wu in the
spaces WP (Q4) and C°([0, T); L?(R)) for every subdomain Q’ € , the remainder
of the proof is analogous to the Step 5 and Step 6 of the preceding proof - see
page 26 and page 30. The only difference is that since the mentioned convergence
holds only locally, we have to restrict ourselves to subdomains O € (2 that are
compactly contained in 2. For such domains, extension maps w to u were already
constructed in Step 3. For the proof of w € X, ,(O) it only remains to show
that w € C°([0,T]; L?(0)). This follows by repeating the arguments after (5.25)
from the proof of Theorem 1.7, which completes the proof of the extension property

wu(0r1) # 0 of the limit map w.

The derivation of the variational inequality (1.20) on the domain O; now follows
with the same arguments as developed in Step 6 of the proof of Theorem 1.7 - see
page 30 - using the strong convergence u; — u in WP()(0;) and CO([ty, t5]; L?(0))
that hold according (6.28) and (6.29). This concludes the proof of the Theorem. [
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