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Abstract. In this paper, we establish the existence theory to nonlinear par-
abolic problems with nonstandard p(x, t)-growth conditions and irregular ob-
stacles related to

∂tu− div a(x, t,Du) = f − div
(
|F |p(x,t)−2F

)
in ΩT .

1. Introduction

The aim of this paper is to establish the existence of solutions to parabolic
obstacle problems related to

∂tu− div a(x, t,Du) = f − div
(
|F |p(x,t)−2F

)
in ΩT . (1.1)

The motivation of this paper and the study of problems with nonstandard growth
and irregular obstacles is on the one hand based on mathematical aspects, on the
other hand the consideration of problems in the sense of (1.1) are motivated by
issues of life sciences. We refer to [13, 34] for an overview of the classical theory
and applications. Moreover, obstacle problems have been exploited in nonlinear po-
tential theory for approximating supersolutions by solutions to obstacle problems,
see [31, 33, 35]. Up to now, the theory for elliptic problems is well understood,
as well the theory for elliptic obstacle problems, see e.g. [6, 14, 22, 37]. There-
fore, parabolic problems arouse interest more and more in mathematics during the
last years. Moreover, parabolic problems are motivated by physical aspects. In
particular, evolutionary equations and systems can be used to model physical pro-
cesses, e.g. heat conduction or di�usion processes. There are many open problems,
e.g. with regard to the Navier-Stokes equation, the basic equation of �uid me-
chanics. Some properties of solutions of the system of a modi�ed Navier-Stokes
equation, describing electro-rheological �uids are studied in [4]. Such �uids, which
are recently of high technological interest, because of their ability to change the
mechanical properties under the in�uence of exterior electro-magnetic �eld, see
[30, 41]. For example, many electro-rheological �uids are suspensions consisting
of solid particles and a carrier oil. These suspensions change their material prop-
erties dramatically if they are exposed to an electric �eld, see [42]. Most of the
known results concern the stationary models with p(x)-growth, see e.g. [1, 2, 3]. In
the context of parabolic problems with p(x, t)-growth conditions, applications are
e.g. the models for �ows in porous media [8, 32]. Moreover, parabolic equations
and systems with p(x, t)-growth were studied intensively in the last years, cf. e.g.
[9, 11, 12, 16, 25, 26, 29, 45, 46].

First existence results for parabolic problems with time-independent obstacles
have been achieved in the linear case by Lions and Stampacchia [38] and for more
general parabolic problems by Brezis [14]. Obstacle functions that depend in some
sense continuously on time are treated in [15]. The article [6] by Alt and Luckhaus
contains existence results for elliptic and parabolic problems in great generality, but
the results on obstacle problems are limited to time-independent or bounded obsta-
cle functions. In the parabolic setting however, a comprehensive theory is available
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only under certain restrictions on the obstacle. An important break-through in the
parabolic case succeeded to Bögelein, Duzaar and Mingione in [17]. Here, we want
to highlight that in [17] the authors established the �rst existence result to par-
abolic problems with irregular obstacles, which are not necessarily non-increasing
in time. They consider general obstacles with the only additional assumption that
the time derivative of the obstacle lies in Lp

′
. This is required since their method

relies on a time molli�cation argument, combined with a maximum construction in
order to recover the obstacle condition, where the pointwise maximum construction
is not compatible with distributional time derivatives. Moreover, they established
the Calderón-Zygmund theory for a large class of parabolic obstacle problems, i.e.
they proved that the (spatial) gradient of solutions is as integrable as that of the
assigned obstacles. Then, Scheven considered a more general class of obstacles in
[43, 44]. He introduced a new concept of solution to parabolic obstacle problems
of p-Laplacian type with highly irregular obstacles, the so-called localizable solu-
tions, see De�nition 1.6. The main feature of localizable solutions is that they solve
the obstacle problem locally, which is a priori not clear by the formulation of the
problem, cf. the remarks preceding De�nition 1.6. This new concept allows to
consider more general settings, i.e. it is no more necessary to assume that the time
derivative of the obstacle function lies in Lp

′
. It su�ces to consider obstacles with

distributional time derivatives. Moreover, we want to emphasize that the concept of
localizable solutions allows to prove more general regularity results. Scheven also
proved Calderón-Zygmund estimates for parabolic obstacle problems. The main
di�erence between the result of Scheven and the result of Bögelein, Duzaar and
Mingione is that in [17] they need an additional assumption on the boundary data,
which seems to be unnatural for proving regularity in the interior. The reason
for the additional assumption on the boundary data arises from the fact that the
formulation of the obstacle problem is not of local nature. Bögelein, Duzaar and
Mingione used a complex approximation argument to approximate the solutions
by more regular ones and since the given solution was not known to be localiz-
able, this approximation procedure had to be implemented on the whole domain.
This problem could be avoid by the concept of localizable solutions. The concept
of localizable solutions allows also to establish further regularity results, e.g. the
higher integrability of solutions and the Hölder continuity of the spatial gradient
of the solution u [18, 28]. Here, we will also use this concept to prove the exis-
tence of solutions to parabolic obstacle problems related to (1.1). Moreover, we
highlight that the concept of localizable solutions permits to derive some regular-
ity results for general parabolic obstacle problems with nonstandard growth. More
precisely, the higher integrability of solutions and the Calderón-Zygmund theory, cf.
[24, 25, 26, 27, 29]. Finally, we want to mention that beside the results we referred,
the regularity of parabolic problems with irregular obstacle has been studied very
intensive in the last years, cf. [10, 19, 20, 21, 36].

1.1. General assumptions. We consider a bounded domain Ω ⊂ Rn of dimension
n ≥ 2 and we write ΩT := Ω×(0, T ) for the space-time cylinder over Ω of the height
T > 0. In this paper, ut respectively ∂tu denotes the partial derivate with respect
to the time variable t and Du denotes the one with respect to the space variable x.
The setting. First of all, we should mention that we denote by ∂PΩT = (Ω̄ ×

{0}) ∪ (∂Ω × (0, T )) the parabolic boundary of ΩT . Furthermore, we write
z = (x, t) for points in Rn+1. We shall consider vector-�elds a : ΩT × Rn → Rn
which are assumed to be Carathéodory functions - i.e. a(z, w) is measurable in the
�rst argument for every w ∈ Rn and continuous in the second one for a.e. z ∈ ΩT -
and satisfy the following nonstandard growth andmonotonicity properties, for
some growth exponent p : ΩT → ( 2n

n+2 ,∞) and structure constants 0 < ν ≤ 1 ≤ L

and µ ∈ [0, 1]:

|a(z, w)| ≤ L(1 + |w|)p(z)−1, (1.2)

(a(z, w)− a(z, w0)) · (w − w0) ≥ ν(µ2 + |w|2 + |w0|2)
p(z)−2

2 |w − w0|2 (1.3)
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for all z ∈ ΩT and w, w0 ∈ Rn. Furthermore, the growth exponent p : ΩT →
( 2n
n+2 ,∞) satis�es the following conditions: There exist constants γ1, γ2 <∞, such
that

2n

n+ 2
< γ1 ≤ p(z) ≤ γ2 and |p(z1)− p(z2)| ≤ ω(dP(z1, z2)) (1.4)

holds for any choice of z1, z2 ∈ ΩT , where ω : [0,∞)→ [0, 1] denotes a modulus of
continuity. More precisely, we shall assume that ω(·) is a concave, non-decreasing
function with limρ↓0 ω(ρ) = 0 = ω(0). Moreover, the parabolic distance is given

by dP(z1, z2) := max{|x1 − x2|,
√
|t1 − t2|} for z1 = (x1, t1), z2 = (x2, t2) ∈ Rn+1.

In addition, for the modulus of continuity ω(·) we assume the following weak
logarithmic continuity condition to hold:

lim sup
ρ↓0

ω(ρ) log

(
1

ρ

)
< +∞. (1.5)

By virtue of (1.5) we may assume for a constant L1 > 0 depending on ω(·) that

ω(ρ) log

(
1

ρ

)
≤ L1, for all ρ ∈ (0, 1]. (1.6)

At this stage it is worth to mention that assuming the existence of such γ1, γ2 is not
restrictive, since the results we are going to prove are of local nature. We mention
that the previous lower bound on γ1 is a typical assumption in the regularity theory
of nonlinear parabolic equations and systems. Moreover, we denote by p1 and p2

the in�mum resp. supremum of p(·) with respect to the domain we are going to
deal with, e.g. p1 := infΩT p(·), p2 := supΩT p(·). Finally, we point out that (1.3)
implies, by using (1.2) and Young's inequality, the coercivity property

a(z, w) · w ≥ ν

c(γ1, γ2)
|w|p(z) − c(γ1, γ2, ν, L) ∀ z ∈ ΩT and w ∈ Rn. (1.7)

1.2. The function spaces. The spaces Lp(Ω), W 1,p(Ω) and W 1,p
0 (Ω) stand for

the usual Lebesgue and Sobolev spaces.
Parabolic Lebesgue-Orlicz spaces. We start by the de�nition of the nonstan-
dard p(z)-Lebesgue space. The space Lp(z)(ΩT ,Rk) is de�ned as the set of those
measurable functions v : ΩT → Rk for k ∈ N, which satisfy |v|p(·) ∈ L1(ΩT ,Rk),
i.e.

Lp(z)(ΩT ,Rk) :=

{
v : ΩT → Rk is measurable in ΩT :

∫
ΩT

|v|p(·) dz < +∞
}
.

The set Lp(·)(ΩT ,Rk) equipped with the Luxemburg norm

‖v‖Lp(·)(ΩT ) := inf

{
λ > 0 :

∫
ΩT

∣∣∣ v
λ

∣∣∣p(·) dz ≤ 1

}
becomes a Banach space. This space is re�exive, see [5]. For the elements of
Lp(·)(ΩT ,Rk) the generalized Hölder's inequality holds in the following form:

If f ∈ Lp(·)(ΩT ,Rk), g ∈ Lp′(·)(ΩT ,Rk), where p′(·) = p(·)
p(·)−1 , we have∣∣∣∣∫

ΩT

fg dz

∣∣∣∣ ≤ ( 1

γ1
+
γ2 − 1

γ2

)
‖f‖Lp(·)(ΩT )‖g‖Lp′(·)(ΩT ), (1.8)

see also [5]. Notice that the norm ‖ · ‖Lp(·)(ΩT ) can be estimated as follows:

−1 + ‖v‖γ1
Lp(·)(ΩT )

≤
∫

ΩT

|v|p(·) dz ≤ ‖v‖γ2
Lp(·)(ΩT )

+ 1. (1.9)

Finally, for the right-hand side of (1.1) we assume

F ∈ Lp(·)(ΩT ,Rn) and f ∈ Lγ
′
1(0, T ;W−1,γ′1(Ω)). (1.10)

Parabolic Sobolev-Orlicz spaces. First, we introduce nonstandard parabolic
Sobolev spaces for �xed t ∈ (0, T ). From (1.4), we know that p(·, t) satisfy |p(x1, t)−
p(x2, t)| ≤ ω(|x1 − x2|) for any choice of x1, x2 ∈ Ω and for every t ∈ (0, T ).
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For every �xed t ∈ (0, T ), we de�ne the Banach space W 1,p(·,t)(Ω) as follows:
W 1,p(·,t)(Ω) := {u ∈ Lp(·,t)(Ω,R) | Du ∈ Lp(·,t)(Ω,Rn)} equipped with the norm

‖u‖W 1,p(·,t)(Ω) := ‖u‖Lp(·,t)(Ω) + ‖Du‖Lp(·,t)(Ω).

In addition, W
1,p(·,t)
0 (Ω) ≡ the closure of C∞0 (Ω) in W 1,p(·,t)(Ω) and denote by

W 1,p(·,t)(Ω)′ its dual. For every t ∈ (0, T ) the inclusion W
1,p(·,t)
0 (Ω) ⊂ W 1,γ1

0 (Ω)
holds. Now, we consider more general nonstandard parabolic Sobolev spaces

without �xed t. By W
p(·)
g (ΩT ) we denote the Banach space

W p(·)
g (ΩT ) :=

{
u ∈ [g + L1(0, T ;W 1,1

0 (Ω))] ∩ Lp(·)(ΩT ) | Du ∈ Lp(·)(ΩT ,Rn)
}

equipped by the norm

‖u‖Wp(·)(ΩT ) := ‖u‖Lp(·)(ΩT ) + ‖Du‖Lp(·)(ΩT ).

If g = 0 we write W
p(·)
0 (ΩT ) instead of W

p(·)
g (ΩT ). Here, it is worth to mention

that the notion (u−g) ∈W p(·)
0 (ΩT ) respectively u ∈ g+W

p(·)
0 (ΩT ) to indicate that

u agrees with g on the lateral boundary of the cylinder ΩT , i.e. u ∈W p(·)
g (ΩT ). We

are now ready to give the de�nition of a weak solution to the nonstandard parabolic
equation (1.1):

De�nition 1.1. We identify a function u ∈ L1(ΩT ) as a weak solution of the
parabolic equation (1.1), if and only if u ∈ C0([0, T ];L2(Ω)) ∩W p(·)(ΩT ) and∫

ΩT

[u · ϕt − a(z,Du) ·Dϕ] dz = −
∫

ΩT

[
f · ϕ+ |F |p(·)−2F ·Dϕ

]
dz (1.11)

holds, whenever ϕ ∈ C∞0 (ΩT ).

Our next aim is to introduce the dual space of W
p(·)
0 (ΩT ). Therefore, we denote

by W p(·)(ΩT )′ the dual of the space W
p(·)
0 (ΩT ). Assume that v ∈ W p(·)(ΩT )′.

Then, there exist functions vi ∈ Lp
′(·)(ΩT ), i = 0, 1, ..., n, such that

〈〈v, w〉〉ΩT =

∫
ΩT

(
v0w +

n∑
i=1

viDiw

)
dz ∀ w ∈W p(·)

0 (ΩT ), (1.12)

see [7]. Here and in the following, we will write 〈〈·, ·〉〉ΩT for the pairing between

W p(·)(ΩT )′ and W
p(·)
0 (ΩT ). Furthermore, if v ∈W p(·)(ΩT )′, we de�ne the norm

‖v‖Wp(·)(ΩT )′ = sup{〈〈v, w〉〉ΩT |w ∈W
p(·)
0 (ΩT ), ‖w‖

W
p(·)
0 (ΩT )

≤ 1}.

Notice, whenever (1.12) holds, we can write v = v0 −
∑n
i=1Divi, where Divi has

to be interpreted as a distributional derivate. By

w ∈W (ΩT ) :=
{
w ∈W p(·)(ΩT )|wt ∈W p(·)(ΩT )′

}
we mean that there exists wt ∈W p(·)(ΩT )′, such that

〈〈wt, ϕ〉〉ΩT = −
∫

ΩT

w · ϕt dz for all ϕ ∈ C∞0 (ΩT ).

The previous equality makes sense due to the inclusions

W p(·)(ΩT ) ↪→ L2(ΩT ) ∼= (L2(ΩT ))′ ↪→W p(·)(ΩT )′

which allow us to identify w as an element of W p(·)(ΩT )′. Next, we refer the
properties of the pairing 〈〈·, ·〉〉ΩT .

Proposition 1.2 (Proposition 2.2, [26]). Let u,w ∈W p(·)
0 (ΩT ), v, ṽ ∈W p(·)(ΩT )′,

ζ ∈ C∞cpt(Ω) and a ∈ R, then the pairing 〈〈·, ·〉〉ΩT betweenW p(·)(ΩT )′ andW
p(·)
0 (ΩT )

has the following properties:

(i)
〈〈
v, a2u

〉〉
ΩT

= 〈〈av, au〉〉ΩT =
〈〈
a2v, u

〉〉
ΩT

= a2 〈〈v, u〉〉ΩT ,

(ii) 〈〈v, w + u〉〉ΩT = 〈〈v, w〉〉ΩT + 〈〈v, u〉〉ΩT ,
(iii) 〈〈v + ṽ, w〉〉ΩT = 〈〈v, u〉〉ΩT + 〈〈ṽ, u〉〉ΩT .

If ∂tw, ∂tu ∈W p(·)(ΩT )′, we have also
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(iv) 〈〈∂t(ζ(w − u)), ζ(w − u)〉〉ΩT =
〈〈
∂t(w − u), ζ2(w − u)

〉〉
ΩT

in the distributional sense. �

Finally, from the de�nition of the norm ‖ · ‖Wp(·)(ΩT )′ , we can conclude that

for the elements of W p(·)(ΩT ) the following estimate holds: If f ∈ W
p(·)
0 (ΩT ),

g ∈W p(·)(ΩT )′ we have

〈〈f, g〉〉ΩT ≤ c(γ1, γ2)‖f‖Wp(·)(ΩT )‖g‖Wp(·)(ΩT )′ , (1.13)

see [26]. Notice also that in the case p(·) = const., we deal with the standard
Lebesgue and Sobolev spaces. This means for example, if p(·) = γ1, then we have
W γ1(ΩT ) = Lγ1(0, T ;W 1,γ1(Ω)). Consequently, the dual space ofW γ1(ΩT ) is given

by W γ1(ΩT )′ = Lγ
′
1(0, T ;W−1,γ′1(Ω)).

Obstacle function, boundary, initial values and energy bound. At this stage, we
state the assumptions for the obstacle function, boundary data, initial values and
the obstacle constraint. These assumptions we need to de�ne the function spaces
in which we will formulate the obstacle problems. Therefore, we consider on the
lateral boundary ∂Ω× (0, T ) Dirichlet boundary data given by

g ∈ C0([0, T ];L2(Ω)) ∩W p(·)(ΩT ) and ∂tg ∈ Lγ
′
1(0, T ;W−1,γ′1(Ω)) (1.14)

and initial values g(·, 0) ∈ L2(Ω). The obstacle constraint will be given by a
function ψ : ΩT → R with

ψ ∈ C0([0, T ];L2(Ω)) ∩W p(·)(ΩT ) and ∂tψ ∈ Lγ
′
1(0, T ;W−1,γ′1(Ω)). (1.15)

For the boundary and initial values, we assume the compatibility conditions

g ≥ ψ on ∂Ω× (0, T ) and g(·, 0) ≥ ψ(·, 0) a.e. on Ω, (1.16)

where the �rst one is to be understood in the L1-W 1,1
0 -sense, i.e. (ψ − g)+ ∈

W
p(·)
0 (ΩT ). Now, we are in a situation to introduce the function spaces in which

we will formulate the obstacle problem. These spaces are de�ned as follows:

Kψ,g(ΩT ) :=
{
u ∈ C0([0, T ];L2(Ω)) ∩W p(·)

g (ΩT ), u ≥ ψ a.e. on ΩT

}
,

and the function space

K′ψ,g(ΩT ) :=
{
u ∈ Kψ,g(ΩT ) | ∂tu ∈W p(·)(ΩT )′

}
,

whose members play the role of admissible comparison functions.

1.3. Parabolic obstacle problems with nonstandard p(z)-growth. The main
problem we are going to deal with, are the obstacle problems. More precisely,
problems with irregular time dependent obstacles ψ : ΩT → R. The variational
inequality that we have in mind can be written in two di�erent ways.

De�nition 1.3. We identify a function u ∈ K′ψ,g(ΩT ) as a solution of the strong

formulation of the variational inequality if u(·, 0) = g(·, 0) and

〈〈∂tu, v − u〉〉ΩT +

∫
ΩT

a(z,Du) ·D(v − u) dz

≥
∫

ΩT

|F |p(·)−2F ·D(v − u) + f(v − u) dz,

(1.17)

holds for all comparison functions v ∈ K′ψ,g(ΩT ).

It turns out that in our situation, the solution to the obstacle problem does not
necessarily possess a time derivative in the distributional space W p(·)(ΩT )′, but
only satis�es u ∈ Kψ,g(ΩT ). In this case, only the following formulation makes
sense:
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De�nition 1.4. We identify a function u ∈ Kψ,g(ΩT ) as a solution of the weak
formulation of the variational inequality if

〈〈∂tv, v − u〉〉ΩT +

∫
ΩT

a(z,Du) ·D(v − u) dz + ‖v(·, 0)− g(·, 0)‖2L2(Ω)

≥
∫

ΩT

f(v − u) + |F |p(·)−2F ·D(v − u) dz

(1.18)

holds for all test functions v ∈ K′ψ,g(ΩT ).

Remark 1.5. Although not always explicitly stated, when referring to an initial
condition of the type

u(·, 0) = g(·, 0) a.e. on Ω

we shall always mean

1

h

∫ h

0

∫
Ω

|u− g(·, 0)|2 dx dt→ 0 as h ↓ 0. (1.19)

In particular, when u ∈ C0([0, T ];L2(Ω)), then (1.19) is obviously equivalent with
saying u(·, 0) = g(·, 0).

1.4. The concept of localizable solutions. The concept of localizable solutions
goes back to Ch. Scheven, see [43, 44], and the idea of this concept is the following:
In the general situation that we are considering, the solutions do not necessarily
satisfy ∂tu ∈ W p(·)(ΩT )′, so that the variational inequality can only be written in
the weak formulation (1.18). However, this formulation does not seem to be the
most suitable notion of solution, since it is not of local nature. More precisely, for
a given parabolic cylinder OI = O × (t1, t2) ⊂ ΩT , it is a priori not clear that the
restriction u|OI of a solution u to the weak formulation of the variational inequality

(1.18) again satis�es a variational inequality on OI . Even more, it is unclear if
the space K′ψ,u(OI) of admissible comparison maps is not empty. In fact, it is not

evident from the formulation (1.18) that there exists any map that agrees with u
on the lateral boundary of OI and at the same time possesses a time derivative in
the distributional space W p(·)(ΩT )′, which would be necessary for the construction
of suitable comparison maps. These considerations motivate the following concept
of a localizable solution to a parabolic obstacle problem.

De�nition 1.6. We say that u ∈ Kψ,g(ΩT ) is a localizable solution of the
weak formulation (1.18) of the obstacle problem if for every parabolic cylinder

OI := O× (t1, t2) ⊂ ΩT , where O = Õ∩Ω with a Lipschitz regular domain Õ ⊂ Rn
and a time interval I = (t1, t2) ⊂ (0, T ) ⊂ R, the following two conditions hold.

(i) The map u satis�es the extension property, i.e. there holds K′ψ,u(OI) 6=
∅.

(ii) For all comparison maps v ∈ K′ψ,u(OI), there holds

〈〈∂tv, v − u〉〉OI +

∫
OI

a(z,Du) ·D(v − u) dz + ‖(v − u)(·, t1)‖2L2(O)

≥
∫
OI

f(v − u) + |F |p(·)−2F ·D(v − u) dz,

(1.20)

where 〈〈·, ·〉〉OI denotes the dual pairing between W
p(·)(OI)

′ and W
p(·)
0 (OI).

1.5. Statement of the result. Our �rst existence result holds on any bounded
domains Ω ⊂ Rn if the obstacle function satis�es a certain approximation assump-
tion. This is in particular the case for a general obstacle if ∂Ω ful�lls some weak
regularity property. For the most general form of our �rst existence theorem, we
assume that the obstacle function

ψ ∈ C0([0, T ];L2(Ω)) ∩W p(·)(ΩT ) with ∂tψ ∈ Lγ
′
1(ΩT ), (1.21)

can be approximated by more regular obstacle functions

ψi ∈ C0([0, T ];L2(Ω)) ∩W p(·)(ΩT ) with ∂tψi ∈ Lγ
′
1(ΩT ) (1.22)
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with an additional regularity property

|∂tψi|+ (1 + |Dψi|)p(·)|D2ψi| ∈ Lγ
′
1(ΩT ) (1.23)

for i ∈ N, which approximate ψ in the sense{
ψi → ψ strongly in W p(·)(ΩT ) and L∞(0, T ;L2(Ω)),

∂tψi → ∂tψ strongly in Lγ
′
1(ΩT ),

(1.24)

as i→∞. This approximation assumption can be omitted under mild assumptions
on the boundary of the domain Ω. Our result on existence and uniqueness reads as
follows.

Theorem 1.7. Let Ω ⊂ Rn a bounded domain and p : ΩT → [γ1, γ2] satis�es (1.4)-
(1.5). Furthermore, assume that a : ΩT ×Rn → Rn is a Carathéodory function and
satis�es the growth and monotonicity condition (1.2) and (1.3). Moreover, suppose
that the inhomogeneities

F ∈ Lp(·)(ΩT ,Rn) and f ∈ Lγ
′
1(ΩT ), (1.25)

the boundary data g satisfying

g ∈ C0([0, T ];L2(Ω)) ∩W p(·)(ΩT ) with ∂tg ∈ Lγ
′
1(ΩT ), (1.26)

and the obstacle function ψ satisfying (1.21) are given. Further, suppose that the
compatibility conditions (1.16) with g(·, 0) ∈ L2(Ω) is valid. In addition, assume
that the approximation assumption stated in (1.22)-(1.24) hold. Finally, suppose
that

|divx a(x, t, w)| ≤L log(1 + |w|)(1 + |w|)p(x,t)−1,

|Dwa(x, t, w)| ≤L(1 + |w|)p(x,t)−2
(1.27)

are valid for all (x, t) ∈ ΩT and w ∈ Rn. Then, there exists a localizable solution
u ∈ Kψ,g(ΩT ) - in the sense of De�nition 1.6 - to the obstacle problem (1.18) with
u(·, 0) = g(·, 0). Moreover, this solution satis�es the energy estimate

sup
t∈(0,T )

∫
Ω

|u(·, t)|2 dx +

∫
ΩT

|Du|p(·) dz ≤ cM, (1.28)

with a constant c, which only depends on (n, γ1, γ2, ν, L, diam(Ω)), where M ≥ 1 is
de�ned as follows

M :=

∫
ΩT

Ψp(·) + |∂tψ|γ
′
1 + |f |γ

′
1 dz + ‖g(·, 0)‖2L2(Ω) + ‖g‖2L∞(0,T ;L2(Ω)) + 1

(1.29)

with Ψ := 1 + |Dψ|+ |F |+ |Dg|+ |g|. The localizable solution u constructed above
is unique and even more strongly, every solution to the weak formulation (1.18) of
the obstacle problem coincides with u.

Moreover, we have a result that holds on any, maybe highly irregular domains
Ω ⊂ Rn and for general obstacle functions ψ ∈ C0([0, T ];L2(Ω)) ∩W p(·)(ΩT ) with

∂tψ ∈ Lγ
′
1(ΩT ). Since in this general situation, we can approximate ψ only locally

by functions with better regularity and integrability properties, we can show strong
convergence to a solution only on every compactly contained subdomain Ω′ b Ω.
Consequently, the limit map solves the variational inequality only on such subsets
and the question of uniqueness remains open.

Theorem 1.8. Let Ω ⊂ Rn be a bounded domain and p : ΩT → [γ1, γ2] satis�es
(1.4)-(1.5). Then, assume that a : ΩT × Rn → Rn is a Carathéodory function
and satis�es the growth and monotonicity condition (1.2) and (1.3) and additional
(1.27). Moreover, suppose for the inhomogeneity F and f that (1.25) is valid. Fur-
thermore, assume that the obstacle function ψ and boundary data g satisfy (1.21)
and (1.26). Finally, the initial values g(·, 0) ∈ L2(Ω) satisfy the compatibility con-

ditions (1.16). Then, there exists a map u ∈ L∞(0, T, L2(Ω)) ∩ W p(·)
g (ΩT ) with

u ≥ ψ a.e. on ΩT , that solves the obstacle problem (1.18) in the following sense.
For every Lipschitz regular domain Ω′ b Ω, there holds u ∈ C0([0, T ];L2(Ω′)) and
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u|Ω′T is a localizable solution - in the sense of De�nition 1.6 - to the obstacle prob-

lem (1.18) with the initial values u(·, 0) = g(·, 0). Moreover, it satis�es the energy
estimate (1.28).

Plan of the paper. Finally, we brie�y describe the strategy of the proof to
our main result and the technical novelties of the paper. We start with some useful
preliminary results before we are able to show the existence results of Theorem 1.7
and Theorem 1.8. After we have shown the needed technical tools, we will refer in
Section 3 the existence of solutions to the parabolic equation (1.1) under certain
boundary and initial data conditions from [26], see also [25]. First of all, we refer
the existence of a weak solution to the Dirichlet problem of (1.1). In [26] we dealed
similar to Antontsev and Shmarev, with the Galerkin approximation. Then, we
will give the existence of a weak solution to the Cauchy-Dirichlet problem of (1.1)
with general boundary data. In Section 4, we will establish existence results to
the strong formulation of the variational inequality (1.17) with regular obstacles
via penalization. Moreover, we will expand this result to irregular obstacles by the
theory of localizable solutions, see Section 5. Here, we will gain the existence and
uniqueness result of Theorem 1.7. Finally in Section 6, we will proof the existence of
localizable solutions to the parabolic obstacle problem (1.18) on arbitrary domains
with general obstacle functions of Theorem 1.8.

Remark 1.9. Here, we want to mention that additional assumption (1.27) is not
necessary if the obstacle ψ satis�es

∂tψ − div a(z,Dψ) ∈ Lγ
′
1(ΩT ).

2. Preliminaries and notations

Moreover, since weak solutions u of parabolic equations possess only weak regu-
larity properties with respect to the time variable t, i.e. they are not assumed to be
weakly di�erentiable, in principle it is not possible to use the solution u itself (also
disregarding boundary values) as a test-function in the weak formulation of the
parabolic equation. In order to be nevertheless able to test the equation properly,
we smooth the solution u with respect to the time direction t using the so-called
Steklov averages. Hence, we introduce the following: The Steklov averages of a
function f ∈ L1(ΩT ) are de�ned as

[f ]h(x, t) :=

 1
h

∫ t+h

t

f(x, s) ds for t ∈ (0, T − h),

0 for t ∈ [T − h, T ),

(2.1)

for x ∈ Ω, for all t ∈ (0, T ) and 0 < h < T . Assuming that u ∈ C0([0, T ];L2(Ω)) ∩
W p(·)(ΩT ) is a weak solution to the parabolic equation (1.1) the Steklov average
[u]h satis�es the corresponding equation∫

Ω×{t}
∂t([u]h) · ϕ+ [a(·, Du)]h ·Dϕ dx =

∫
Ω×{t}

[f ]h · ϕ+ [F p(·)−2F ]h ·Dϕ dx

(2.2)

for a.e. t ∈ (0, T ) and all ϕ ∈ C∞0 (Ω).

2.1. Compact embedding - Compactness Theorem. Since L2(Ω) is a Hilbert
space which is identi�ed with its dual

L2(Ω) ∼= (L2(Ω))′

and in which Lp(·,t)(Ω) is dense and continuously embedded ∀t ∈ [0, T ], where
p(·, t) > 2n/(n+ 2), see [23, Lemma 5.5], we have

Lp(·,t)(Ω) ↪→ L2(Ω) ↪→ Lp
′(·,t)(Ω)

for all t ∈ [0, T ]. The fact that L2(Ω) ∼= (L2(Ω))′ can be demonstrated by the Riesz

representation theorem. We denote the dual ofW
1,p(·,t)
0 (Ω) byW 1,p(·,t)(Ω)′ and the

natural pairing between W 1,p(·,t)(Ω)′ and W
1,p(·,t)
0 (Ω) by 〈·, ·〉. Moreover, we have
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the embeddings W
1,p(·,t)
0 (Ω) ⊂ L2(Ω) and (L2(Ω))′ ⊂ W 1,p(·,t)(Ω)′. Therefore, we

can conclude

W
1,p(·,t)
0 (Ω) ↪→ L2(Ω) ∼= (L2(Ω))′ ↪→W 1,p(·,t)(Ω)′,

where the injections are compact. This also allows us to identify the duality product

〈·, ·〉 with the inner product between L2(Ω) and W
1,p(·,t)
0 (Ω), i.e.

f(v) = 〈f, v〉 = 〈f, v〉L2(Ω) =

∫
Ω

f · v dx (2.3)

whenever f ∈ L2(Ω) ⊂ W 1,p(·,t)(Ω)′ and v ∈ W 1,p(·,t)
0 (Ω) and t ∈ [0, T ]. Next, we

consider the Banach space

W0(ΩT ) :=
{
w ∈W p(·)

0 (ΩT )|wt ∈W p(·)(ΩT )′
}
.

Now, from [25, 26] we could refer the following result.

Lemma 2.1. Let n ≥ 2. Assume that the exponent function p : ΩT → [γ1, γ2]
satis�es (1.4)-(1.5). Then W (ΩT ) is contained in C0([0, T ];L2(Ω)). Moreover, if
u ∈W0(ΩT ) then t 7→ ‖u(·, t)‖2L2(Ω) is absolutely continuous on [0, T ],

d

dz

∫
Ω

|u(·, t)|2 dx = 2 〈∂tu(·, t), u(·, t)〉 , for a.e. t ∈ [0, T ],

where 〈·, ·〉 denotes the duality pairing between W 1,p(·,t)(Ω)′ and W
1,p(·,t)
0 (Ω). More-

over, there is a constant c such that

‖u‖C0([0,T ];L2(Ω)) ≤ c‖u‖W (ΩT )

for every u ∈W0(ΩT ).

Now, we are in the situation to refer the compactness theorem in the sense of
Aubin and Lions, see [25, 26].

Theorem 2.2. Let Ω ⊂ Rn an open, bounded Lipschitz domain with n ≥ 2 and
p(·) > 2n

n+2 satisfying (1.4)-(1.5). Furthermore, de�ne p̂(·) := max {2, p(·)}. Then,

the inclusion W (ΩT ) ↪→ Lp̂(·)(ΩT ) is compact.

2.2. Technical tools. First of all, we recall that under the additional regularity
assumption ∂tu ∈ W p(·)(ΩT )′, both formulations (1.17) and (1.18) are equivalent.
This result reads as follows.

Corollary 2.3 ([26], Corollary 3.8). A function u ∈ K′ψ,g(ΩT ) satis�es the strong

formulation (1.17) of the obstacle problem if and only if it satis�es the weak for-
mulation (1.18).

Our next problem is, that we need a Poincaré inequality, but in the parabolic
case, there does not exist such a global estimate. It is only possible to use the
elliptic Poincaré inequality slicewise for a.e. times t. For parabolic problems with
nonstandard growth, it is not allowed to apply such an estimate, not even slicewise.
There exists just a "Luxemburg-version", see [7], i.e. ‖u‖Lp(x)(Ω) ≤ c‖Du‖Lp(x)(Ω)

for all u ∈ W
1,p(x)
0 (Ω), where c > 0. But we need a "classical" Poincaré type

inequality. The desired result is given by the following lemma, which is stated in
[26].

Lemma 2.4 ([26], Lemma 3.9). Let Ω ⊂ Rn a bounded Lipschitz domain and

γ2 := supΩT p(·). Assume that u ∈ C0([0, T ];L2(Ω)) ∩ W p(·)
0 (ΩT ) and the expo-

nent p(·) satis�es the conditions (1.4)-(1.5). Then, there exists a constant c =
c(n, γ1, γ2,diam(Ω), ω(·)), such that the following two versions of the Poincaré

type estimate are valid:∫
ΩT

|u|p(·) dz ≤ c

(
‖u‖

4γ2
n+2

L∞(0,T ;L2(Ω)) + 1

)(∫
ΩT

|Du|p(·) + 1 dz

)
(2.4)

and

‖u‖γ1
Lp(z)(ΩT )

≤ c

(
‖u‖

4γ2
n+2

L∞(0,T ;L2(Ω)) + 1

)(∫
ΩT

|Du|p(·) + 1 dz

)
. (2.5)
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One main aim of this paper is to show an existence result to degenerate parabolic
obstacle problems on irregular domains via localizable solutions, see Section 5. For
the proof of the extension property of a map u, which is mentioned in De�nition
1.6, we will need a more general existence result with more general boundary data.
Hence, we need an other Poincaré type estimate. But this Poincaré type estimate
can be only stated in a local version on a cylinder Qρ(z0) := Bρ(x0)×(t0−ρ2, ρ2) ⊂
Rn+1 with a small radius ρ ∈ (0, 1), see the following Lemma.

Lemma 2.5 ([26], Lemma 3.11). Assume that 2n
n+2 < γ1 ≤ γ2 < ∞ and ω :

[0,∞) → [0, 1] satis�es (1.5). Then, there exists θ0 = θ0(n, γ1) ∈ (0, 1), such that
for any θ ∈ (0, θ0] the following holds: There exists ρ0 = ρ0(θ, ω(·)) ∈ (0, 1], such
that for any cylinders Qρ(z0) ⊂ Rn+1 with radius ρ ∈ (0, ρ0], p : Qρ(z0) → [γ1, γ2]

satis�es (1.4) and v ∈ C0([t0 − ρ2, t0];L2(Bρ(x0))) ∩W p(·)
0 (Qρ(z0)) the following

Poincaré type estimate holds:∫
Qρ(z0)

|v|p(·) dz ≤ c

(
sup

t0−ρ2≤t≤t0
‖v(·, t)‖θL2(Bρ(x0)) + 1

)(∫
Qρ(z0)

|Dv|p(·) + 1 dz

)
(2.6)

with a constant c = c(n, γ1, γ2, L1).

Remark 2.6. Under the assumption of Lemma 2.5, we infer from (2.6) by using
(1.9) the Poincaré type estimate

‖v‖γ1
Lp(z)(Qρ(z0))

≤ c

(
sup

t0−ρ2≤t≤t0
‖v(·, t)‖θL2(Bρ(x0)) + 1

)(∫
Qρ(z0)

|Dv|p(·) dz + 1

)
,

(2.7)

holds for every radius ρ ≤ ρ0 and any 0 < θ ≤ θ0 with a constant c = c(n, γ1, γ2, L1).

Comparison principle and comparison estimate. In this section we refer a compari-
son principle, which will be a key tool for constructing comparison maps that almost
everywhere satisfy the obstacle constraint v ≥ ψ.

Lemma 2.7 ([26], Lemma 3.15). Let Ω ⊂ Rn with n ≥ 2 and p : ΩT → [γ1, γ2]
satis�es (1.4)-(1.5). Moreover, suppose that ψ, v ∈W (ΩT ) satisfy in the weak sense{

∂tψ − div a(z,Dψ) ≤ ∂tv − div a(z,Dv) in ΩT ,

ψ ≤ v on ∂PΩT ,
(2.8)

where (1.3) are in force. Then, there holds ψ ≤ v a.e. on ΩT .

Moreover, we refer the following comparison estimate, which will be used to
transfer estimates from homogeneous equation to weak solutions to obstacle prob-
lem. The following lemma will provide the comparison between an obstacle problem
and a suitable parabolic equation stated and is established in [26].

Lemma 2.8 ([26], Lemma 3.16). Let ρ ∈ (0, 1]. Assume that the assumptions (1.2)-
(1.3) with exponents (1.4)-(1.5) are in force. Moreover, suppose that the obstacle
function ψ and the inhomogeneities F, f satisfy (1.21) and (1.25). Further, suppose
that v ∈W (Qρ(z0)) solves the parabolic equation

∂tv − div a(z,Dv) = ∂tψ − div a(z,Dψ) in Qρ(z0) (2.9)

and that u ∈ Kψ,v(Qρ(z0)) is a solution to the variational inequality

〈〈∂tw,w − u〉〉Qρ(z0) +

∫
Qρ(z0)

a(z,Du) ·D(w − u) dz

+
1

2
‖(w − u)(·, t1)‖2L2(Bρ(x0))

≥
∫
Qρ(z0)

|F |p(·)−2F ·D(w − u) + f · (w − u) dz

(2.10)
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with t1 = t0 − ρ2 for all comparison functions w ∈ K′ψ,v(Qρ(z0)). Then, for any

κ̃ ∈ (0, 1), there exists a constant cκ̃ = c(κ̃, n, γ1, γ2, ν, L) ≥ 1, such that the com-

parison estimate∫
Qρ(z0)

|D(u− v)|p(·) dz ≤ κ̃
∫
Qρ(z0)

(µ+ |Du|)p(·) dz

+ cκ̃

∫
Qρ(z0)

|Dψ|p(·) + |F |p(·) + |∂tψ|γ
′
1 + |f |γ

′
1 + 1 dz

(2.11)

holds. Moreover, for every p(·) > 2n
n+2 , we have the energy estimate∫

Qρ(z0)

|Dv|p(·) dz ≤ c
∫
Qρ(z0)

(µ+ |Du|)p(·) dz

+ c

∫
Qρ(z0)

|Dψ|p(·) + |F |p(·) + |∂tψ|γ
′
1 + |f |γ

′
1 + 1 dz

(2.12)

where c = c(n, γ1, γ2, ν, L) ≥ 1.

Minty type lemma. The next lemma is a slightly modi�ed version of Browder-
Minty's Lemma, which employs a certain monotonicity condition to justify the
passage to weak limits. An elliptic version of this Lemma can be found in [34] and
some Minty type Lemma for parabolic problems with p-growth is established in
[17]. Our Minty type Lemma reads as follows.

Lemma 2.9 ([26], Lemma 2.13). Suppose that p(·) > 2n
n+2 satis�es (1.4)-(1.5) and

C ⊂
{
v ∈ C0([0, T ];L2(Ω)) ∩W p(·)(ΩT ) : vt ∈W p(·)(ΩT )′

}
is closed and convex. Moreover, let A : C → W p(·)(ΩT )′ be a monotone operator
which is continuous on a �nite dimensional subspaces of C. Here, monotonicity has
to be understood in the sense that

〈〈Av −Aṽ, v − ṽ〉〉ΩT ≥ 0 ∀ v, ṽ ∈ C.

Finally, let B : W p(·)(ΩT )→ R be a continuous linear operator. Then, for u ∈ C

〈〈∂tu+Au, v − u〉〉ΩT ≥ B(v − u) ∀ v ∈ C (2.13)

holds if and only if

〈〈∂tv +Av, v − u〉〉ΩT +
1

2
‖(v − u)(·, 0)‖2L2(Ω) ≥ B(v − u) ∀ v ∈ C. (2.14)

3. Existence results to degenerate parabolic equations with

nonstandard growth

In this section, we will refer from [26] (see also [25]) some existence results to
degenerate parabolic equations. These results we will use to obtain our existence
theorems. For the proofs of Lemma 3.1 and Lemma 3.2 and of the local versions of
Corollary 3.3 and Corollary 3.4 we refer to [26]. The starting point is to consider
the initial data problem of (1.1)

∂tu− div a(z,Du) = f − div(|F |p(·)−2F ) in ΩT ,

u = 0 on ∂Ω× (0, T ),

u(·, 0) = g(·, 0) on Ω× {0} .
(3.1)

The approach to prove the existence to the Dirichlet problem is to construct a
solution, which solve the problem (3.1). In [26] we start by constructing a sequence
of the Galerkin's approximations, where the limit of this sequence is equal to the
solution in (3.1). Then, we had shown that this approximate solution converges to
a general solution, where we used some energy bounds, which derive by the proof
and �nally, the compact embedding of Theorem 2.2 yield the desired convergence
of the approximate solutions to general solutions. The results reads as follows.
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Lemma 3.1 ([26], Lemma 4.1). Let Ω ⊂ Rn be an open, bounded Lipschitz domain
and p : ΩT → [γ1, γ2] satis�es (1.4)-(1.5). Then, suppose that the vector-�eld
a : ΩT × Rn → Rn is a Carathéodory function and satis�es, for a given function

v ∈ C0([0, T ];L2(Ω)) ∩ W p(·)
0 (ΩT ) with ∂tv ∈ Lγ

′
1(0, T ;W−1,γ′1(Ω)), the growth

condition

|a(z, w)| ≤ c(γ2, L)
(

(1 + |w|)p(·)−1 + |v|p(·)−1
)

(3.2)

and the monotonicity property

ν(µ2 + |w + v|2 + |w0 + v|2)
p(·)−2

2 |w − w0|2 ≤ (a(z, w)− a(z, w0)) · (w − w0)
(3.3)

for all z ∈ ΩT and w,w0 ∈ Rn. Moreover, let (1.10) and g(·, 0) ∈ L2(Ω) hold.
Then, there exists a weak solution u ∈ W0(ΩT ) of the parabolic boundary problem
(3.1) and this solution satis�es the following energy estimate

sup
0≤t≤T

∫
Ω

|u(·, t)|2 dx+

∫
ΩT

|Du|p(·) dz ≤ c
(∫

ΩT

1 + |F |p(·) + |v|p(·) dz

+ ‖f‖γ
′
1

L
γ′
1 (0,T ;W

−1,γ′
1 (Ω))

+ ‖g(·, 0)‖2L2(Ω) + 1

)
with u(·, 0) = g(·, 0) and a constant c = c(n, γ1, γ2,diam(Ω)).

Moreover, the existence of solutions to initial value problem (3.1) can be ex-
tend to general boundary problems. Therefore, we consider the Cauchy-Dirichlet
problem of the parabolic problem (1.1):

∂tu− div a(z,Du) = f − div (|F |p(·)−2F ) in ΩT

u = g on ∂Ω× (0, T )

u(·, 0) = g(·, 0) on Ω× {0} .
(3.4)

We used the result of Lemma 3.1 to the Cauchy-Dirichlet problem (3.4) to get
existence of solutions to (1.1) with general boundary data. Therefore, we have to
change the problem (3.4) into a problem comparing to (3.1). Then, we can conclude
the existence of solution to the modi�ed problem. Hence, we get the existence result
to the primal Cauchy-Dirichlet problem (3.4). This result is stated in the following
lemma.

Lemma 3.2 ([26], Lemma 4.3). Let Ω ⊂ Rn be an open, bounded Lipschitz do-
main and p : ΩT → [γ1, γ2] satis�es (1.4)-(1.5). Then, suppose that the vector-�eld
a : ΩT × Rn → Rn is a Carathéodory function and satis�es the growth condition
(1.2) and the monotonicity condition (1.3). Moreover, let (1.10) ful�lled. Fur-
thermore, the boundary data g satisfy (1.14). Then, there exists a weak solution

u ∈ C0([0, T ];L2(Ω)) ∩W p(·)
g (ΩT ) with ∂tu ∈ W p(·)(ΩT )′ of the parabolic Cauchy-

Dirichlet problem (3.4) and this solution satis�es the following energy estimate

sup
0≤t≤T

∫
Ω

|u(·, t)|2 dx+

∫
ΩT

|Du|p(·) dz ≤ c
(
‖g(·, 0)‖2L2(Ω) + ‖g‖2L∞−L2 + Mg

)
,

where c = c(n, γ1, γ2, ν, L, diam(Ω)) and Mg is de�ned as follows

Mg :=

∫
ΩT

1 + |F |p(·) + |Dg|p(·) dz + ‖f‖γ
′
1

Wγ1 (ΩT )′ + ‖∂tg‖
γ′1
Wγ1 (ΩT )′ + 1.

Finally, we need local versions of Lemma 3.2, since we need more general data
to prove the existence of localizable solutions. But these existence results we get
only local on a cylinder Qρ(z0) = (t0 − ρ2, t0) × Bρ(x0) ⊂ ΩT , with radius ρ ≤
ρ0(θ, ω(·)) ∈ (0, 1], where the maximal radius ρ0 and θ ≤ θ0(n, γ1) ∈ (0, 1) are
introduced in Lemma 2.5. Before, we are able to prove a local versions of Lemma
3.2, we have to prove a local versions of Lemma 3.1. Therefore, we begin by
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considering the Dirichlet problem for the parabolic equation (1.1):
∂tu− div a(z,Du) = f − div(|F |p(·)−2F ) in Qρ(z0),

u = 0 on ∂Bρ(x0)× (t0 − ρ2, t0),

u(·, t0 − ρ2) = g(·, 0) on Bρ(x0)×
{
t0 − ρ2

}
.

(3.5)

Corollary 3.3 ([26], Corollary 4.4). Let Ω ⊂ Rn be an open, bounded Lipschitz do-
main and p : ΩT → [γ1, γ2] satis�es (1.4)-(1.5). Then, suppose that the vector-�eld
a : ΩT × Rn → Rn is a Carathéodory function and satis�es, for a given function
v ∈W (ΩT ), the growth condition (3.2) and the (3.3) monotonicity property. More-

over, let F ∈ Lp(·)(ΩT ,Rn), f ∈ W p(·)(ΩT )′ and g(·, 0) ∈ L2(Ω) hold. Then, there
exist θ0 = θ0(n, γ1) ∈ (0, 1) and a radius ρ0 = ρ0(θ, ω(·)) ∈ (0, 1] with θ ≤ θ0,
such that the following holds: Whenever 0 < ρ ≤ ρ0, there exists a weak solution
u ∈ W0(Qρ(z0)) of the parabolic boundary problem (3.5) and this solution satis�es
the following energy estimate

sup
t∈(t0−ρ2,t0)

∫
Bρ(x0)

|u(·, t)|2 dx+

∫
Qρ(z0)

|Du|p(·) dz ≤ c

(∫
Qρ(z0)

1 + |F |p(·) + |v|p(·) dz

+ ‖f‖
γ1+1
γ1−1

Wp(·)(Qρ(z0))′
+ ‖g(·, 0)‖2L2(Bρ(x0)) + 1

)
with a constant c = c(n, γ1, γ2, ν, L, L1).

Now, we give a local existence result with more general data similar to the
Cauchy-Dirichlet problem 3.4. Therefore, we consider the local Cauchy-Dirichlet
problem 

∂tu− div a(z,Du) = f − div (|F |p(·)−2F ) in Qρ(z0),

u = g on ∂Bρ(x0)× (t0 − ρ2, t0),

u(·, t0 − ρ2) = g(·, 0) on Bρ(x0)×
{
t0 − ρ2

}
.

(3.6)

Corollary 3.4 ([26], Corollary 4.5). Let Ω ⊂ Rn be an open, bounded Lipschitz
domain and Qρ(z0) ⊂ ΩT . Assume that p : ΩT → [γ1, γ2] satis�es (1.4)-(1.5).
Then, suppose that the vector-�eld a : ΩT×Rn → Rn is a Carathéodory function and
satis�es (1.2)-(1.3). Moreover, assume that F ∈ Lp(·)(ΩT ,Rn), f ∈ W p(·)(ΩT )′,
g ∈ W (ΩT ) and g(·, 0) ∈ L2(Ω) are in force. Then, there exist θ0 = θ0(n, γ1) ∈
(0, 1) and a radius ρ0 = ρ0(θ, ω(·)) ∈ (0, 1] with θ ≤ θ0, such that the following
holds: Whenever 0 < ρ ≤ ρ0, there exists a weak solution u ∈ W (Qρ(z0)) of
the local parabolic boundary problem (3.6). Moreover, this solution satis�es the
following energy estimate

sup
t∈(t0−ρ2,t0)

∫
Bρ(x0)

|u(·, t)|2 dx+

∫
Qρ(z0)

|Du|p(·) dz ≤ c ·Mlocal (3.7)

with a constant c = c(n, γ1, γ2, ν, L, L1), where Mlocal is de�ned as follows

Mlocal :=1 +

∫
Qρ(z0)

|F |p(·) + |Dg|p(·) dz + ‖f‖
γ1+1
γ1−1

Wp(·)(Qρ(z0))′

+‖g(·, 0)‖2L2(Ω) + ‖g‖2L∞(t0−ρ2,t0;L2(Bρ(x0))) + ‖∂tg‖
γ1+1
γ1−1

Wp(·)(Qρ(z0))′
.

4. Existence of strong solutions to degenerate problem with

regular obstacles

The �rst step to the existence in degenerate problem with irregular obstacles
and nonstandard growth, is to consider more regular data. In this situation, we
can deduce from the existence results of the previous section the following lemma.
This lemma will play an important role for the proof of the existence of localizable
solutions to nonlinear problems with irregular obstacles.

Lemma 4.1. Let Ω ⊂ Rn an open, bounded Lipschitz domain and p : ΩT →
[γ1, γ2] satis�es (1.4)-(1.5). Suppose that the vector-�eld a : ΩT × Rn → Rn is a
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Carathéodory function and satis�es (1.2) and (1.3). Moreover, assume that the ob-
stacle function ψ, the inhomogeneities F, f and the boundary data g satisfy (1.21),
(1.25), (1.26) and g(·, 0) ∈ L2(Ω). Furthermore, suppose that the additional regu-
larity assumptions

∂tψ − div a(z,Dψ) ∈ Lγ
′
1(ΩT ), div(|F |p(·)−2F ) ∈ Lγ

′
1(ΩT ) (4.1)

are in force and that the compatibility condition (1.16) is valid. Then, there exists
a solution u ∈ K′ψ,g(ΩT ) of the strong formulation of variational inequality (1.17).

Moreover, there exists a constant c = c(n, γ1, γ2, ν, L, diam(Ω)), such that the energy
estimate

sup
t∈(0,T )

∫
Ω

|u(·, t)|2 dx+

∫
ΩT

|Du|p(·) dz ≤ cE (4.2)

holds with

E ≡‖g(·, 0)‖2L2(Ω) + ‖g‖2L∞(0,T ;L2(Ω)) + ‖∂tψ − div a(z,Dψ)‖γ
′
1

L
γ′
1 (ΩT )

+‖f − div(|F |p(·)−2F )‖γ
′
1

L
γ′
1 (ΩT )

+

∫
ΩT

|Dg|p(·) dz + ‖∂tg‖
γ′1
Wγ1 (ΩT )′ .

Proof. The proof is divided into several steps. We begin with
Step 1: Regularization. We will revert the existence of a solution to the

obstacle problem to the existence of solutions to certain penalized parabolic equa-
tions by certain approximation scheme. To construct such a penalization, we de�ne
ζδ ∈W 1,∞(R), such that ζδ(t) := 0 if t ∈ (−∞,−δ], ζδ(t) := 1+ t

δ if t ∈ (−δ, 0) and

ζδ(t) := 1 if t ∈ [0,∞), for δ ∈ (0, 1]. Then, by uδ ∈ C0([0, T ];L2(Ω)) ∩W p(·)
g (ΩT )

and ∂tuδ ∈ W p(·)(ΩT )′ we denote the solution to the following Cauchy-Dirichlet
problem:

∂tuδ − div a(z,Duδ) = ζδ(ψ − uδ)Ψ̃+ − div(|F |p(·)−2F ) + f in ΩT

uδ = g on ∂Ω× (0, T )

uδ(·, 0) = g(·, 0) on Ω× {0} ,
(4.3)

where Ψ̃ := ∂tψ − div a(z,Dψ) + div(|F |p(·)−2F ) − f . The existence of uδ follows
from Lemma 3.2. Notice that, we write k+ := max {k, 0} and k− := max {−k, 0}.
Step 2: Obstacle constraint. Our �rst aim is to show that uδ ≥ ψ on ΩT for

any δ ∈ (0, 1]. We start by rewriting the weak formulation of the Cauchy-Dirichlet
problem (4.3) in its Steklov-form. Then, for a.e. τ ∈ (0, T ) we have∫

Ω

(∂t[uδ]h · ϕ+ [a(z,Duδ)]h ·Dϕ) (·, τ) dx =

∫
Ω

ϕ
([
ζδ(ψ − uδ)Ψ̃+

]
h

−
[
div
(
|F |p(·)−2F

)]
h

+ [f ]h

)
(·, τ) dx

(4.4)

for all test functions ϕ ∈W 1,p(·,τ)
0 (Ω). First, we add on both sides the term

−
∫

Ω

(∂t[ψ]hϕ+ [a(z,Dψ)]h ·Dϕ) (·, τ) dx

and then, multiply the resulting equation by −1. Next, we integrate by parts and
utilize the fact that div([a(z,Dψ)]h) = [div a(z,Dψ)]h. Hence, we have∫

Ω

(∂t[ψ − uδ]h · ϕ+ ([a(z,Dψ)]h − [a(z,Duδ)]h) ·Dϕ) (·, τ) dx

=

∫
Ω

ϕ
([

Ψ̃
]
h
−
[
ζδ(ψ − uδ)Ψ̃+

]
h

)
(·, τ) dx.

(4.5)

Now, we choose as admissible test function ϕ = ([ψ − uδ]h)+. We note that this
particular choice is allowed, since uδ = g ≥ ψ on ∂Ω× (0, T ) in the sense of traces.
For t ∈ (0, T ) we integrate both sides with respect to τ over (0, t). Here, denotes
Ωt the cylinder Ω × (0, t). Therefore, it yields for the �rst term on the left-hand
side of (4.5) that∫

Ωt

∂t[ψ − uδ]h · ϕ dz =
1

2

∫
Ω

|([ψ − uδ]h)+|2(·, t)− |([ψ − uδ]h)+|2(·, 0) dx.
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Combining this with (4.5) and then, using the Steklov average property as h ↓ 0.
Together with uδ(·, 0) = g(·, 0) ≥ ψ(·, 0), we have

1

2

∫
Ω

|(ψ − uδ)+|2(·, t) dx+

∫
Ωt

(a(z,Dψ)− a(z,Duδ)) ·D(ψ − uδ)+ dz

=

∫
Ωt

(
Ψ̃− ζδ(ψ − uδ)Ψ̃+

)
(ψ − uδ)+ dz

=

∫
Ωt

(
Ψ̃− Ψ̃+

)
(ψ − uδ)+ dz.

Here, we have used that (ψ − uδ)+(z) > 0 for some z ∈ Ωt implies ζδ(ψ − uδ) = 1.

Moreover, Ψ̃−Ψ̃+ = −Ψ̃− is valid, since Ψ̃−Ψ̃+ = Ψ̃−max
{

Ψ̃, 0
}

= min
{

Ψ̃, 0
}

=

−max
{
−Ψ̃, 0

}
= −Ψ̃−. Thus, it gains

1

2

∫
Ω

|(ψ − uδ)+|2(·, t) dx+

∫
Ωt

(a(z,Dψ)− a(z,Duδ)) ·D(ψ − uδ)+ dz

= −
∫

Ωt

Ψ̃−(ψ − uδ)+ dz ≤ 0.

Since, the second integral on the left side is non-negative, that is obvious by (1.3),
we can conclude ∫

Ω

|(ψ − uδ)+|2(·, t) dx = 0 for a.e. t ∈ (0, T ),

which implies that

uδ ≥ ψ on ΩT . (4.6)

Step 3: Energy bounds, weak and strong convergence. The next step is
devoted to the derivation of uniform bounds with respect to δ for uδ in W

p(·)(ΩT )
and L∞(0, T ;L2(Ω)) and for ∂tuδ in W p(·)(ΩT )′. As before, we start with the
Steklov-formulation (4.4). But now, we add on both sides

−
∫

Ω

∂t[g]h(·, τ)ϕ dx

to infer that∫
Ω

(∂t[uδ − g]h · ϕ+ [a(z,Duδ)]h ·Dϕ) (·, τ) dx

=

∫
Ω

ϕ
([
ζδ(ψ − uδ)Ψ̃+

]
h
− ∂t[g]h −

[
div
(
|F |p(·)−2F

)]
h

+ [f ]h

)
(·, τ) dx

holds for all ϕ ∈W 1,p(·,τ)
0 (Ω) and for a.e. τ ∈ (0, T ) . In this equation we choose the

admissible test function ϕ = [uδ − g]h and recall again that uδ = g on ∂Ω× (0, T ).
Next, we integrate with respect to τ over (0, t), where t ∈ (0, T ). Hence, it follows
for the �rst term on the left-hand side that∫

Ωt

∂t[uδ − g]h · ϕ dz =
1

2

∫
Ωt

∂t[uδ − g]2h dz

=
1

2

∫
Ω

[uδ − g]2h(·, t) dx− 1

2

∫
Ω

[uδ − g]2h(·, 0) dx.

At this stage, we want to pass the limit h ↓ 0. The only term which causes some
problems is the one involving ∂t[g]h. Here, we have to apply (2.3) for f ∈ L2(Ω) ⊂
W−1,γ′1(Ω), v ∈W 1,γ1

0 (Ω). This implies, in the case p(·) ≡const., that∫
ΩT

f · v dz =

∫ T

0

〈f(s), v〉L2(Ω) ds = 〈〈f, v〉〉ΩT , (4.7)

for f ∈ L2(ΩT ), v ∈ Lγ1(0, T ;W 1,γ1
0 (Ω)). Therefore, we can obtain

lim
h↓0

∫
Ωt

∂t[g]h · ϕ dz = 〈〈gt, ϕ〉〉Ωt ,
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since gt ∈ Lγ
′
1(0, T ;W−1,γ′1(Ω)). Keeping in mind that the initial value of uδ

satis�es uδ(·, 0) = g(·, 0) on Ω, this leads us to

1

2

∫
Ω

|uδ − g|2(·, t) dx+

∫
Ωt

a(z,Duδ) ·Duδ dz

=

∫
Ωt

(
ζδ(ψ − uδ)Ψ̃+ − div

(
|F |p(·)−2F

)
+ f

)
(uδ − g) dz

+

∫
Ωt

a(z,Duδ) ·Dg dz − 〈〈gt, uδ − g〉〉Ωt .

Using Young's inequality with an arbitrary ε > 0 and (1.13). Then, utilizing the
standard Poincaré inequality slicewise, the growth assumption (1.2) on a(·), Young's
inequality once more and (1.9), we get for any ε > 0 that

1

2

∫
Ω

|uδ − g|2(·, t) dx+

∫
Ωt

a(z,Duδ) ·Duδ dz

≤cε‖∂tg‖
γ′1
Wγ1 (ΩT )′ + εc

(∫
Ωt

|Duδ|p(·) + |D(uδ − g)|γ1 + 1 dz + 1

)
+cε

(∫
Ωt

|Ψ̃|γ
′
1 + |f − div(|F |p(·)−2F )|γ

′
1 + |Dg|p(·) dz

)
with constants c = c(n, γ1, γ2, L,diam(Ω)) and cε = cε(

1
ε , γ1, γ2). Then, we use the

coercivity property (1.7) to bound the second integral on the left-hand side from
below. Proceeding this way and recalling the de�nition of Ψ we �nd for ε > 0 and
a.e. t ∈ (0, T ) that

1

2

∫
Ω

|uδ(·, t)|2 dx+
ν

c(γ1, γ2)

∫
Ωt

|Duδ|p(·) − c dz

≤ ‖g‖2L∞(0,t;L2(Ω)) + εc

(∫
Ωt

|Duδ|p(·) + |Dg|p(·) + 1 dz + 1

)
+ cε

(∫
Ωt

|∂tψ − div a(z,Dψ)|γ
′
1+|f − div(|F |p(·)−2F )|γ

′
1+|Dg|p(·)dz +‖∂tg‖

γ′1
Wγ1 (ΩT )′

)
with constants c = c(n, γ1, γ2, L,diam(Ω)) and cε = cε(

1
ε , γ1, γ2). Choosing ε small

enough we can reabsorb
∫

Ωt
|Duδ|p(·) dz on the left-hand side, e.g. εc ≤ ν

2c(γ1,γ2) .

Then, taking the supremum over t ∈ (0, T ) in the �rst integral and t = T in the
second one, we �nally arrive at

sup
t∈(0,T )

∫
Ω

|uδ(·, t)|2 dx+

∫
ΩT

|Duδ|p(·) dz ≤ cE, (4.8)

where c = c(n, γ1, γ2, ν, L, diam(Ω)). By the Poincaré type inequality (2.5), (1.9)
and (4.8), we also get the following uniform Lp(·)-bound for uδ

‖uδ‖Lp(·)(ΩT ) ≤ cE(
4γ2
n+2 +1) 1

γ1 , (4.9)

with a constant c = c(n, γ1, γ2, ν, L, diam(Ω), ω(·)).
Finally, we want to derive an uniform bound for ∂tuδ in W p(·)(ΩT )′. For this

aim we consider ϕ ∈ W
p(·)
0 (ΩT ). From the weak formulation of (4.3) we get, by

using the generalized Hölder's inequality (1.8) and (1.2), the following estimate:

| 〈〈∂tuδ, ϕ〉〉ΩT | ≤
∫

ΩT

|a(z,Duδ)| · |Dϕ|+
[
|Ψ̃|+ |f − div(|F |p(·)−2F )|

]
· |ϕ| dz

≤ L
∫

ΩT

(
|Ψ̃|+ |f − div(|F |p(·)−2F )|+ (1 + |Duδ|)p(·)−1

)
(|Dϕ|+ |ϕ|) dz.

Here, we should mention that Ψ̃ ∈ Lp′(·)(ΩT ), since Lγ
′
1(ΩT ) ⊂ Lp′(·)(ΩT ) is dense.

Therefore, we are allowed to use the generalized Hölder's inequality (1.8). This
yields

| 〈〈∂tuδ, ϕ〉〉ΩT |≤c
(
‖Duδ+1‖Lp(·) +‖Ψ̃‖Lp′(·) +‖f − div(|F |p(·)−2F )‖Lp′(·)

)
‖ϕ‖Wp(·) ,
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where c = c(γ1, γ2, L). Now, we estimate the term ‖Duδ + 1‖Lp(·)(ΩT ) from above

‖Duδ + 1‖Lp(·)(ΩT ) ≤ c(γ1, γ2)

(∫
ΩT

|Duδ|p(·) dz + 1

) 1
γ1

≤ c(γ1, γ2,E),

where we used (1.9) and (4.8). Therefore, we can conclude that

| 〈〈∂tu, ϕ〉〉ΩT | ≤ c(γ1, γ2, L,E, ‖Ψ̃‖Lp′(·) , ‖f − div(|F |p(·)−2F )‖Lp′(·))‖ϕ‖Wp(·)(ΩT ).

This shows ∂tuδ ∈W p(·)(ΩT )′ with the estimate

‖∂tuδ‖Wp(·)(ΩT )′ ≤ c(γ1, γ2, L,E, ‖Ψ̃‖Lp′(·) , ‖f − div(|F |p(·)−2F )‖Lp′(·)). (4.10)

Due to the uniform bounds in (4.8), (4.9) and (4.10), there exists a subsequence,
also labeled with δ, and a function u ∈W p(·)(ΩT )∩L∞(0, T ;L2(Ω)) with u = g on
∂Ω× (0, T ) and ∂tu ∈W p(·)(ΩT )′, such that

uδ → u strongly in Lp̂(·)(ΩT ),

uδ ⇀
∗ u weakly* in L∞(0, T ;L2(Ω)),

Duδ ⇀ Du weakly in Lp(·)(ΩT ,Rn),

∂tuδ ⇀ ∂tu weakly in W p(·)(ΩT )′.

Note that the convergence uδ → u in Lp̂(·)(ΩT ) is strong due to the compactness of
the embedding W (ΩT ) ↪→ Lp̂(·)(ΩT ) which results from the Aubin-Lions Theorem
2.2.
Step 4: Continuity in time and initial values. First of all, we note also

that u ∈ C0([0, T ];L2(Ω)) by Lemma 2.1 and the fact that we assume p(·) > 2n
n+2 .

Furthermore, the strong convergence uδ → u in Lp̂(·)(ΩT ) together with (4.6), i.e.
uδ ≥ ψ a.e. on ΩT , ensure that also u ≥ ψ a.e. on ΩT , since

0 ≤ lim
δ↓0

∫
ΩT

(uδ − ψ)1{u<ψ} dz =

∫
ΩT

(u− ψ)1{u<ψ} dz,

where 1{u<ψ} is the characteristic function of the set {z ∈ ΩT : u(z) < ψ(z)}.
Hence, we have u ∈ K′ψ,g(ΩT ). Next, we want to show that u(·, 0) = g(·, 0) in the

usual L2-sense. For δ > 0, h > 0 and 0 < t ≤ h we have by the standard Hölder's
inequality, (4.10) and the fact that W 1,p(·,t)(Ω)′ ⊆ W−1,p′2(Ω) for every t ∈ (0, T )

and W p(·)(ΩT )′ ⊆ Lp′2(0, T ;W−1,p′2(Ω))

‖uδ(·, t)− g(·, 0)‖
W
−1,p′

2 (Ω)
≤
∫ t

0

‖∂τuδ(·, τ)‖
W
−1,p′

2 (Ω)
dτ

≤ h
1
p2

(∫ T

0

‖∂τuδ(·, τ)‖p
′
2

W
−1,p′

2 (Ω)
dτ

) 1
p′
2

≤ ch
1
p2 ‖∂τuδ(·, τ)‖Wp(·)(ΩT )′ ≤ ch

1
p2 ,

and therefore, we can conclude that∥∥∥∥∥ 1

h

∫ h

0

uδ(·, t) dt− g(·, 0)

∥∥∥∥∥
p′2

W
−1,p′

2 (Ω)

≤ 1

h

∫ h

0

‖uδ(·, t)− g(·, 0)‖p
′
2

W
−1,p′

2 (Ω)
dt ≤ ch

1
p2−1 ,

where c(γ1, γ2, L,M). This implies in particular that [uδ]h(·, 0) → g(·, 0) as h ↓ 0

uniformly with respect to δ in W−1,p′2(Ω). Therefore,

lim
h↓0

∥∥∥∥∥ 1

h

∫ h

0

u(·, t) dt− g(·, 0)

∥∥∥∥∥
p′2

W
−1,p′

2

= lim
h↓0

lim
δ↓0

∥∥∥∥∥ 1

h

∫ h

0

uδ(·, t) dt− g(·, 0)

∥∥∥∥∥
p′2

W
−1,p′

2

= 0,

proving that u admits the initial trace g(·, 0) in the sense of W−1,p′2(Ω). Moreover,
since u ∈ C0([0, T ];L2(Ω)), it has also a strong trace in the sense of (1.19). Due to
the uniqueness of traces the previous estimate implies that the initial datum g(·, 0)
is indeed assumed in the sense of (1.19), i.e.

lim
h↓0

1

h

∫ h

0

‖u(·, t)− g(·, 0)‖2L2(Ω) dt = 0. (4.11)
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Step 5: Variational inequality for the limit map. Finally, the last step is
to address the variational inequality for the limit map. Therefore, we let δ ↓ 0 in
the Cauchy-Dirichlet problem (4.3) to show that u is in fact the desired solution
to the obstacle problem. To this aim we take ϕ = v − uδ with v ∈ K′ψ,g(ΩT ) as

test function in (4.3) and apply Lemma 2.9, i.e. the Minty type Lemma, to the

monotone operator A : w 7→ −div a(z,Dw)− ζδ(ψ−w)Ψ̃+ with the obvious choice
for the linear continuous operator B determined by −div(|F |p(·)−2F ) + f and the
closed convex set C = K′ψ,g(ΩT ) to infer

〈〈∂tv, v − uδ〉〉ΩT +

∫
ΩT

a(z,Dv) ·D(v − uδ) dz +
1

2
‖v(·, 0)− g(·, 0)‖2L2(Ω)

≥
∫

ΩT

|F |p(·)−2F ·D(v − uδ) + f(v − uδ) dz +

∫
ΩT

ζδ(ψ − v)Ψ̃+(v − uδ) dz

(4.12)

for any choice of v ∈ K′ψ,g(ΩT ). In the preceding inequality we now would like
to get rid of the last term on the right-hand side as δ ↓ 0. To this aim we �x a
cut-o� function in space ηδ ∈ C∞0 (Ω), such that 0 ≤ ηδ ≤ 1, ηδ ≡ 1 on Ω\Ωδ
and δ|Dηδ| ≤ c, where Ωδ := {x ∈ Ω : dist(x, ∂Ω) < δ}. Recall that Ω is an open,
bounded Lipschitz regular domain. For v ∈ K′ψ,g(ΩT ) we now de�ne vδ := v + δηδ
and choose v ≡ vδ in (4.12) to get (note that ∂tvδ = ∂tv)

〈〈∂tv, v − uδ〉〉ΩT +

∫
ΩT

a(z,Dv) ·D(v − uδ) dz +
1

2
‖v(·, 0)− g(·, 0)‖2L2(Ω)

≥
∫

ΩT

|F |p(·)−2F ·D(v − uδ) + f(v − uδ) dz

−〈〈∂tv, δηδ〉〉ΩT +

∫
ΩT

a(z,Dv) ·D(v − uδ)− a(z,Dvδ) ·D(vδ − uδ) dz

+
1

2

(
‖v(·, 0)− g(·, 0)‖2L2(Ω) − ‖vδ(·, 0)− g(·, 0)‖2L2(Ω)

)
+

∫
ΩT

|F |p(·)−2F · δDηδ + fδηδ dz +

∫
ΩT

ζδ(ψ − vδ)Ψ̃+(vδ − uδ) dz.

(4.13)

Now, we want to ensure that the last �ve terms - those in the last three lines of
(4.13) - disappear in the limit δ ↓ 0. For the �rst one we have by (1.13), that
〈〈∂tv, δηδ〉〉ΩT ≤ c(γ1, γ2)‖vt‖Wp(·)(ΩT )′‖δηδ‖Wp(·)(ΩT ) → 0 as δ ↓ 0. Note that

the convergence follows from the facts that δηδ → 0 in Lp(·)(ΩT ) and moreover,
|δDηδ| ≤ c and δDηδ ≡ 0 on Ω\Ωδ and hence also δDηδ → 0 in Lp(·)(ΩT ,Rn).
For the second term in (4.13), we �rst note that Dvδ = Dv on ΩT \ΩδT , where
ΩδT := Ωδ × (0, T ). Then, using the growth condition (1.2) of a(z, ·), the fact that
|Dvδ| ≤ |Dv|+ c and generalized Hölder's inequality (1.8) we get∣∣∣∣∫

ΩT

a(z,Dv) ·D(v − uδ)− a(z,Dvδ) ·D(vδ − uδ) dz

∣∣∣∣
=

∣∣∣∣∣
∫

ΩδT

a(z,Dv) ·D(v − uδ)− a(z,Dvδ) ·D(vδ − uδ) dz

∣∣∣∣∣
≤
∫

ΩδT

|a(z,Dv)| (|Dv|+Duδ) + |a(z,Dvδ)| (|Dvδ|+ |Duδ|) dz

≤ c‖|a(z,Dv)|+ |a(z,Dvδ)|‖Lp′(·)(ΩδT )‖(|Dv|+ |Duδ|+ c)‖Lp(·)(ΩδT ) → 0,

as δ ↓ 0, where the convergence follows from |ΩδT | → 0. Here, we also used for the

convergence thatDuδ is bounded in L
p(·)(ΩT ,Rn). The terms involving g(·, 0), F, f

are treated similarly. Notice also that(
‖v(·, 0)− g(·, 0)‖2L2(Ω) − ‖vδ(·, 0)− g(·, 0)‖2L2(Ω)

)
→ 0,
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since vδ tends to v as δ ↓ 0. Finally, for the last term on the right-hand side we get
in the limit δ ↓ 0 that∫

ΩT

ζδ(ψ − vδ)Ψ̃+(vδ − uδ) dz =

∫
ΩδT

ζδ(ψ − vδ)Ψ̃+(vδ − uδ) dz

≥
∫

ΩδT

ζδ(ψ − vδ)Ψ̃+(ψ − uδ) dz

≥ −
∫

ΩδT

Ψ̃+|ψ − uδ| dz ≥ −‖Ψ̃+‖Lp′(·)(ΩδT )‖(|ψ|+ |uδ|)‖Lp(·)(ΩδT ) → 0

since, uδ is bounded in Lp(·)(ΩT ). Here, we used that ζδ(ψ−vδ) = ζδ(ψ−v−δηδ) =
ζδ(ψ − v − δ) = 0 on ΩT \ΩδT , since vδ = v + δηδ, ηδ ≡ 1 on Ω\Ωδ, ψ − v ≤ 0 a.e.
on ΩT and ζδ(t) = 0 if t ∈ (−∞,−δ]. Therefore, using the preceding observations
together with the strong convergence of uδ in L

p(·)(ΩT ) and the weak convergence
of Duδ in L

p(·)(ΩT ,Rn) we can pass to the limit δ ↓ 0 in (4.13) to obtain

〈〈∂tv, v − u〉〉ΩT +

∫
ΩT

a(z,Dv) ·D(v − u) dz +
1

2
‖v(·, 0)− g(·, 0)‖2L2(Ω)

≥
∫

ΩT

|F |p(·)−2F ·D(v − u) + f(v − u) dz,

for all v ∈ K′ψ,g(ΩT ). A second application of Minty's lemma, now to the monotone

operator A : w 7→ −div a(z,Dw), the same linear continuous operator B and the
same closed convex set C as above, yields that

〈〈∂tu, v − u〉〉ΩT +

∫
ΩT

a(z,Du) ·D(v − u) dz

≥
∫

ΩT

|F |p(·)−2F ·D(v − u) + f(v − u) dz,

for all v ∈ K′ψ,g(ΩT ). Hence, we conclude that u is the (unique) solution to the
considered obstacle problem satisfying the asserted estimate. The latter assertion
follows from (4.8), (4.9) and (4.10) and the lower semi continuity of the involved
norms with respect to weak convergence. This �nishes the proof of the lemma. �

The next part of this section is concerned with the following re�nement of the
above result in Lemma 4.1. It will be crucial in the proof of uniqueness of localizable
solutions, since it will enable us to test certain regularized variational inequalities
with less regular comparison functions whose distributional time derivative might
not be contained in W p(·)(ΩT )′.

Lemma 4.2. Let Ω ⊂ Rn an open, bounded Lipschitz domain and p : ΩT →
[γ1, γ2] satis�es (1.4)-(1.5). Suppose that the vector-�eld a : ΩT × Rn → Rn is
a Carathéodory function and satis�es (1.2) and (1.3). Moreover, let (1.16) with
g(·, 0) ∈ L2(Ω), (1.21), (1.25), (1.26) and (4.1) hold. Then, there exists a solution
u ∈ K′ψ,g(ΩT ), which satis�es the strong formulation of the variational inequality

(1.17) more generally for all comparison function v ∈W p(·)
g (ΩT ) with v ≥ ψ a.e.

on ΩT . Moreover, the energy estimate (4.2) holds true.

Proof. We begin by de�ning uδ as the solution to the Cauchy-Dirichlet problem
(4.3), where uδ is constructed as in the proof of Lemma 4.1. Then, our assumptions

implies that Ψ̃ ∈ Lγ′1(ΩT ) and the preceding Lemma assured that, there exists a

solution uδ ∈ C0([0, T ];L2(Ω)) ∩ W p(·)
g (ΩT ) with ∂tuδ ∈ W p(·)(ΩT )′, where the

solutions satis�es the obstacle constraint uδ ≥ ψ a.e. on ΩT for every δ > 0 and
they satisfy the uniform energy bound

sup
δ>0

{
sup

t∈(0,T )

∫
Ω

|uδ(·, t)|2 dx +

∫
ΩT

|Duδ|p(·) dz + ‖∂tuδ‖Wp(·)(ΩT )′

}
<∞ (4.14)
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cf. (4.8)-(4.10). These bounds and the Aubin-Lions compactness argument from
Theorem 2.2 imply the convergences

uδi → u strongly in Lp̂(·)(ΩT )

uδi ⇀
∗ u weakly∗ in L∞(0, T ;L2(Ω))

Duδi ⇀ Du weakly in W p(·)(ΩT )

∂tuδi ⇀ ∂tu weakly in W p(·)(ΩT )′

(4.15)

as i→∞ for some sequence δi ↓ 0 and a limit map u with u ∈W p(·)
g (ΩT ) and ∂tu ∈

W p(·)(ΩT )′. Further, the Lemma 2.1, applied to u− g, yields u ∈ C0([0, T ];L2(Ω)),
and the limit map attains the prescribed initial values u(·, 0) = g(·, 0).
Step 1: Strong convergence of the gradient. Now, our aim is to derive the

even stronger convergence Duδi → Du with respect to the Lp(·)-norm and then,
the claimed variational inequality. For the proof of the strong convergence, we test

the equation (4.3) for uδi with the testing function (uδi − u) ∈ W p(·)
0 (ΩT ), which

yields for all i ∈ N∫
ΩT

a(z,Duδi)D(uδi − u) dz = 〈〈∂tuδi , u− uδi〉〉ΩT +

∫
ΩT

ζδi(ψ − uδi)Ψ̃+(uδi − u) dz

+

∫
ΩT

|F |p(·)−2F ·D(uδi − u) + f(uδi − u) dz =: Ii + IIi + IIIi.

(4.16)

Here, we apply Lemma 2.1 to Ii. Hence, we can conclude that

lim sup
i→∞

Ii = lim sup
i→∞

(
〈〈∂tu, u− uδi〉〉ΩT −

1

2

∫ T

0

∂t‖(uδi − u)(·, t)‖2L2(Ω) dz

)

=− 1

2
lim sup
i→∞

‖(uδi − u)(·, T )‖2L2(Ω) ≤ 0,

(4.17)

where we used that ∂tu ∈ W p(·)(ΩT )′, uδi ⇀ u weakly in W p(·)(ΩT ) according to
(4.15) and uδi(·, 0) = g(·, 0). Next, we use the fact 0 ≤ ζδi ≤ 1, generalized Hölder's
inequality (1.8) and the strong convergence uδi → u in Lp(·)(ΩT ) by (4.15), which
gives

|IIi| ≤ ‖Ψ̃+‖Lp′(·)(ΩT )‖uδi − u‖Lp(·)(ΩT ) → 0, as i→∞. (4.18)

Finally, the weak convergence uδi ⇀ u in W p(·)(ΩT ), that holds by (4.15), implies

IIIi → 0 as i→∞. (4.19)

Plugging (4.17), (4.18) and (4.19) into (4.16), we arrive at

lim sup
i→∞

∫
ΩT

a(z,Duδi) ·D(uδi − u) dz ≤ 0.

Moreover, we note that the weak convergence Duδi ⇀ Du in Lp(·)(ΩT ) yields

lim sup
i→∞

∫
ΩT

a(z,Du) ·D(uδi − u) dz = 0.

Joining the two preceding formulae a�ords

lim sup
i→∞

∫
ΩT

(a(z,Duδi)− a(z,Du)) ·D(uδi − u) dz ≤ 0.

In view of the monotonicity condition (1.3), this implies

lim sup
i→∞

∫
ΩT

(µ2 + |Duδi |2 + |Du|2)
p(·)−2

2 |Duδi −Du|2 dz = 0,

from which we can infer the desired convergence

uδi → u strongly in W p(·)(ΩT ), as i→∞, (4.20)

since in the case p(·) ≥ 2 this implication is immediate, because of∫
ΩT

|Duδi −Du|p(·) dz ≤
∫

ΩT

(µ2 + |Duδi |2 + |Du|2)
p(·)−2

2 |Duδi −Du|2 dz,
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while for 2n
n+2 < p(·) < 2, we have to use the following calculus:

|Duδi −Du|p(·) = (µ2 + |Duδi |2 + |Du|2)
p(·)(p(·)−2)

4 |Duδi −Du|p(·)

× (µ2 + |Duδi |2 + |Du|2)
p(·)(2−p(·))

4

≤ c (µ2 + |Duδi |2 + |Du|2)
(p(·)−2)

2 |Duδi −Du|2

+ c (µ2 + |Duδi |2 + |Du|2)
p(·)
2

with a constant c = c(γ1, γ2), where we applied the Young's inequality with expo-
nents p(·)/2+(2−p(·))/2 = 1. Next, we estimate the second term on the right-hand
side as follows:

(µ2 + |Duδi |2 + |Du|2)
p(·)
2 = (µ2 + |Duδi |2 + |Du|2)

(p(·)−2)
2 (µ2 + |Duδi |2 + |Du|2)

≤ 2 (µ2 + |Duδi |2 + |Du|2)
(p(·)−2)

2 |Duδi −Du|2

+ 3 (µ+ |Du|)p(·),

where we utilized the fact that p(·) − 2 < 0. Combining the last two estimate,
integrating over ΩT and using the energy bound (4.14) yields the claim.
Step 2: Variational inequality for the limit map. Now, we are in a position

to prove the variational inequality (1.17) for the limit map, for every comparison

function v ∈ W p(·)
g (ΩT ) with v ≥ ψ a.e. on ΩT . The basic idea is to test the weak

formulation of the parabolic Cauchy-Dirichlet problem (4.3) for the approximating
functions uδi with the test functions v − u and then to pass to the limit. However,

some e�ort has to be made in order to deal with the correction term ζδ(ψ− uδ)Ψ̃+

appearing in the equation. For this aim, we �x a cut-o� function in space ηδ ∈
C∞0 (Ω), such that 0 ≤ ηδ ≤ 1, ηδ ≡ 1 on Ω\Ωδ and |Dηδ| ≤ c

δ , where Ωδ :=

{x ∈ Ω : dist(x, ∂Ω) < δ}. Now, we �x an arbitrary v ∈W p(·)
g (ΩT ) with v ≥ ψ a.e.

on ΩT and de�ne vδ := v + δηδ ∈W p(·)
g (ΩT ). Notice that the choice of ηδ implies∫

ΩT

|Dvδ −Dv|p(·) dz = T

∫
Ω\Ωδ

|δDηδ|p(·) dx ≤ cγ2T |Ω\Ωδ| → 0,

as δ ↓ 0, and consequently

vδ → v strongly in W p(·)(ΩT ), as δ ↓ 0. (4.21)

Next, we test the equation (4.3) for uδi with vδi − uδi ∈W
p(·)
0 (ΩT ), this yields

〈〈∂tuδi , vδi − uδi〉〉ΩT +

∫
ΩT

a(z,Duδi) ·D(vδi − uδi) dz

=

∫
ΩT

|F |p(·)−2F ·D(vδi − uδi) + f · (vδi − uδi) dz

+

∫
ΩT

ζδi(ψ − uδi)Ψ̃+(vδi − uδi) dz.

(4.22)

Our next aim is to show that the last integral appearing on the right-hand side is
non-negative in the limit. Here, we have to consider the two cases vδi ≤ uδi and
vδi > uδi . Keeping in mind that the function ζδi is monotonously non-decreasing,
we know that∫

ΩT

ζδi(ψ − uδi)Ψ̃+(vδi − uδi) dz ≥
∫

ΩT

ζδi(ψ − vδi)Ψ̃+(vδi − uδi) dz.

In the case vδi > uδi , we know that −vδi < −uδi and therefore, ζδi(ψ − uδi) ≥
ζδi(ψ− vδi). While in the case vδi ≤ uδi , we know that −vδi ≥ −uδi and therefore,
ζδi(ψ − uδi) ≤ ζδi(ψ − vδi). But we have also that (vδi − uδi) ≤ 0 and �nally,
ζδi(ψ−uδi)(vδi−uδi) ≥ ζδi(ψ−vδi)(vδi−uδi). By the choice of v and the de�nition
of vδi , there holds ψ − vδi ≤ −δiηδi = −δi on Ω\Ωδi × (0, T ), and therefore, the
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integrand of the last integral vanishes on the set Ω\Ωδi × (0, T ). This implies∫
ΩT

ζδi(ψ − uδi)Ψ̃+(vδi − uδi) dz =

∫
Ω
δi
T

ζδ(ψ − uδi)Ψ̃+(vδi − uδi) dz

≥ −

∣∣∣∣∣
∫

Ω
δi
T

Ψ̃+(vδi − uδi) dz

∣∣∣∣∣
≥ −‖Ψ̃+‖Lp′(·)(ΩδiT )

‖(|vδi |+ |uδi |)‖Lp(·)(ΩδiT )
→ 0

as i → ∞, where the convergence follows from |ΩδiT | → 0 and the uniform bounds
(4.14). Joining this with (4.22) of the last integral and using (4.20), (4.21) and
(4.15), we have

〈〈∂tu, v − u〉〉ΩT +

∫
ΩT

a(z,Du) ·D(v − u) dz = lim
i→∞

〈〈∂tuδi , vδi − uδi〉〉ΩT

+ lim
i→∞

∫
ΩT

a(z,Duδi) ·D(vδi − uδi) dz

≥ lim
i→∞

∫
ΩT

|F |p(·)−2F ·D(vδi − uδi) + f(vδi − uδi) dz

=

∫
ΩT

|F |p(·)−2F ·D(v − u) + f(v − u) dz.

This �nishes the proof of the lemma. �

5. Proof of Theorem 1.7: Existence and uniqueness of localizable

solutions

In this section, we want to consider a more general domain with irregular bound-
ary. To this aim, we need to assume an additional approximation assumption on
the obstacle function ψ, which are introduced in (1.22)-(1.24). More precisely, we
give the proof of the existence and uniqueness Theorem 1.7.

Proof of Theorem 1.7. The proof is divided into several steps. We begin with
Step 1: Regularization. We start by assuming that the obstacle function

ψ can be approximated by more general functions as in (1.22) with an additional
regularity property (1.23), which approximate ψ in the sense of (1.24). Next, we
de�ne boundary data g̃i := g̃ − ψ + ψi with g̃ := max {g, ψ}, which adapted to ψi
and respects the obstacle constraint g̃i ≥ ψi a.e. on ΩT . In addition, g̃i satis�es
g̃i ∈ C0([0, T ];L2(Ω)) ∩W p(·)(ΩT ) with ∂tg̃i ∈ Lγ

′
1(ΩT ) and the convergence{

g̃i → g̃ strongly in W p(·)(ΩT ) and L∞(0, T ;L2(Ω)),

∂tg̃i → ∂tg̃ strongly in Lγ
′
1(ΩT ),

(5.1)

as i→∞, which follows directly from (1.24). Here, we should also mentioned that
by the compatibility condition (1.16), we have g̃i = g − ψ + ψi on ∂Ω× (0, T ) and
g̃i(·, 0) = g(·, 0) − ψ(·, 0) + ψi(·, 0) on Ω. Therefore by (5.1) resp. (1.24), we have
g̃i → g on ∂Ω × (0, T ) and g̃i(·, 0) → g(·, 0) on Ω as i → ∞. Next, we need a
molli�er to regularize the inhomogeneity. Therefore, we choose a standard, radially
symmetric molli�er, e.g. a Friedrich's molli�er, φ ∈ C∞0 (B1), φ ≥ 0 with

∫
B1
φ dx =

1 and let φδi(x) := δ−ni φ (x/δi) for some sequence δi ∈ (0, 1), which tends to zero
as i → ∞. Now, we extend F by zero outside of ΩT over the whole Rn+1, then
we let Fi(·, t) := F (·, t) ∗ φδi for almost every t ∈ (0, T ) and fi(·, t) := f(·, t) −
div
(

(δ2
i + |Fi|2)

p(·)−2
2 Fi

)
. These functions satisfy fi ∈ Lγ

′
1(ΩT ) and converge in

the sense

fi → f − div(|F |p(·)−2F ) strongly in W p(·)(ΩT )′, (5.2)

as i→∞. Moreover, by standard results on molli�cations, we have the convergence

Fi(·, t)→ F strongly in Lp(·)(ΩT ,Rn), (5.3)
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since δi ↓ 0, as i → ∞ and therefore, (δ2
i + |Fi|2)

p(·)−2
2 Fi → |F |p(·)−2F strongly in

Lp
′(·)(ΩT ,Rn). Moreover, we can infer

|div a(z,Dψi)| ≤ |divx a(z,Dψi)|+ |D2ψi| · |Dwa(z,Dψi)|

≤ L(1 + |Dψi|)p(·)(1 + |D2ψi|) ∈ Lγ
′
1(ΩT ).

(5.4)

This holds true by the property (1.23) of ψi and (1.27). Finally, we de�ne ui ∈
K′ψi,g̃i(ΩT ) as the solution to the regularized problem

〈〈∂tui, v − ui〉〉ΩT +

∫
ΩT

a(z,Dui) ·D(v − ui) dz ≥
∫

ΩT

fi · (v − ui) dz (5.5)

for every v ∈ W p(·)
g̃i

(ΩT ) with v ≥ ψi a.e. on ΩT , where we impose the initial and
boundary values

ui(·, 0) = g̃i(·, 0) on Ω× {0} and ui = g̃i on ∂Ω× (0, T ). (5.6)

By Lemma 4.2 we know, that this solution exists, since fi and ψi satisfy (4.1). This
is ful�lled by (1.23) and (5.4).
Step 2: Energy bounds and weak convergence. Next, we will deduce

an energy estimate to get the energy bounds and �nally, to conclude the weak
convergence. For this aim, we de�ne abbreviate Ωt := Ω × (0, t) with arbitrary

�xed time t ∈ (0, T ) and v := ui + (g̃i − ui)1(0,t)(τ) ∈ W p(·)
ui (ΩT ) as comparison

function in the variational inequality (5.5). The map v is admissible as comparison
function, since v ≥ ψi a.e. on Ωt and K′ψi,g̃i(ΩT ) is dense in Kψi,g̃i(ΩT ). Hence,

we derive from (5.5) that

〈〈∂tui, g̃i − ui〉〉Ωt +

∫
Ωt

a(z,Dui) ·D(g̃i − ui) dz ≥
∫

Ωt

fi · (g̃i − ui) dz.

Moreover, we add −〈〈∂tg̃i, g̃i − ui〉〉Ωt on both sides and multiply the inequality by
−1, thus it follows

〈〈∂tui − ∂tg̃i, ui − g̃i〉〉Ωt +

∫
Ωt

a(z,Dui) ·D(ui − g̃i) dz

≤
∫

Ωt

fi · (ui − g̃i) dz + 〈〈∂tg̃i, g̃i − ui〉〉Ωt

=

∫
Ωt

fi · (ui − g̃i) dz +

∫
Ωt

∂tg̃i · (g̃i − ui) dz.

(5.7)

Here, we should mention that we are allowed to identify the duality product by the

inner product between L2(ΩT ) and Lγ1(0, T ;W 1,γ1
0 (Ω)), since g̃i− ui ∈W p(·)

0 (ΩT ),

W
p(·)
0 (ΩT ) ⊆ Lγ1(0, T ;W 1,γ1

0 (Ω)) ⊂ Lγ′1(ΩT ) and ∂tg̃i ∈ Lγ
′
1(ΩT ) ⊂W γ1(ΩT )′), cf.

(4.7). Furthermore, we can conclude by means of Lemma 2.1

〈〈∂tui − ∂tg̃i, ui − g̃i〉〉Ωt =
1

2

∫
Ω×{t}

|ui − g̃i|2 dx,

where we used the fact ui(·, 0) = g̃i(·, 0) that holds by (5.6). Next, we will estimate
the second term on the left-hand side of (5.7) from below. Furthermore, we use �rst
the coercivity property (1.7), then the growth condition (1.2) and �nally Young's
inequality. Hence, we can conclude∫

Ωt

a(z,Dui)D(ui − g̃i) dz ≥ ν

2c(n, γ1, γ2)

∫
Ωt

|Dui|p(·) dz − c
∫

Ωt

(1 + |Dg̃i|p(·)) dz.
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Now, we combine the last three equations and use Young's inequality several times,
then it follows for any ε > 0 that

1

2

∫
Ω×{t}

|ui − g̃i|2 dx +
ν

2c

∫
Ωt

|Dui|p(·) dz

≤
∫

Ωt

fi · (ui − g̃i) dz +

∫
Ωt

∂tg̃i · (g̃i − ui) dz + c

∫
Ωt

(1 + |Dg̃i|p(·)) dz

≤cε
(
‖f‖γ

′
1

L
γ′
1 (Ωt)

+ ‖∂tg̃i‖
γ′1

L
γ′
1 (Ωt)

+

∫
Ωt

|(δ2
i + |Fi|2)

p(·)−2
2 Fi|p

′(·) dz

)
+ εc

(
‖(ui − g̃i)‖γ1Lγ1 (Ωt)

+

∫
Ωt

|D(ui − g̃i)|p(·) dz

)
+ c

∫
Ωt

(1 + |Dg̃i|p(·)) dz,

with a constant cε = c(ε, n, γ1, γ2, ν, L). Moreover, we apply the standard Poincaré
inequality slicewise to the right-hand side and choose ε, such that ( ν2c − 2εc) ≤ 1

2 ,
where c = c(n, γ1, γ2, ν, L, diam(Ω)). Thus we have∫

Ω×{t}
|ui − g̃i|2 dx+

∫
Ωt

|Dui|p(·) dz ≤ c‖f‖γ
′
1

L
γ′
1 (Ωt)

+ c‖∂tg̃i‖
γ′1

L
γ′
1 (ΩT )

+ c

∫
Ωt

|Dg̃i|p(·) + |(δ2
i + |Fi|2)

p(·)−2
2 Fi|p

′(·) + 1 dz

with a constant c = c(n, γ1, γ2, ν, L, diam(Ω)). Combining this with the de�nition
of g̃i and the convergences in (5.1) and (5.3), we can conclude the following energy
estimate

sup
t∈(0,T )

∫
Ω

|ui(·, t)|2 dx +

∫
ΩT

|Dui|p(·) dz ≤ cM (5.8)

for all su�ciently large i ∈ N with a constant c = c(n, γ1, γ2, ν, L,diam(Ω)). Fur-
thermore, we use the Poincaré type inequality (2.5) to infer an uniform Lp(·)-bound.
This yields

‖ui‖γ1Lp(·)(ΩT )
≤ cM

2γ2
n+2

∫
ΩT

|Dui|p(·) + |Dg̃i|p(·) + |g̃i|p(·) + 1 dz ≤ cM
2γ2
n+2 +1

(5.9)

with a constant c = c(n, γ1, γ2, ν, L, diam(Ω), ω(·)). From the last two estimates,
we can conclude that the functions ui are uniformly bounded in L∞(0, T ;L2(Ω))
and in W p(·)(ΩT ). Therefore and by the convergence property of the function g̃i in

(5.1), we may �nd a function u ∈ L∞(0, T ;L2(Ω))∩W p(·)
g̃ (ΩT ), such that - possibly

after passing to a subsequence - there holds
ui ⇀ u weakly in Lp(·)(ΩT ),

Dui ⇀ Du weakly in Lp(·)(ΩT ,Rn),

ui ⇀
∗ u weakly∗ in L∞(0, T ;L2(Ω)),

(5.10)

as i→∞. Finally, we can infer - with respect to the weak convergence - from (5.8)
and (5.9) that the energy estimate (1.28) holds true. Furthermore, the growth as-
sumption (1.2) of a(·) and (5.8) imply that the sequence {a(z,Dui)}i∈N is bounded

in Lp
′(·)(ΩT ,Rn). Consequently, after passing to a subsequence once more, we can

�nd a limit map A0 ∈ Lp
′(·)(ΩT ,Rn) with

a(z,Dui) ⇀ A0 weakly in Lp
′(·)(ΩT ,Rn) as i→∞. (5.11)

Step 3: Strong convergence. The next aim is to show the strong convergence.
Therefore, we choose the comparison function v := uk − ψk + ψi ∈ W p(·)(ΩT ), for
arbitrary i, k ∈ N, in the variational inequality (5.5). This function is admissible
as comparison function for ui, since uk = g̃k = g̃ − ψ + ψk holds on ∂PΩT , which
implies v = g̃ − ψ + ψi = g̃i on ∂PΩT , and further, the obstacle constraint v ≥ ψi
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a.e. on ΩT is valid. Therefore, we can conclude from (5.5) that

〈〈∂tui, ui − ψi − uk + ψk〉〉ΩT +

∫
ΩT

a(z,Dui) ·D(ui − ψi − uk + ψk) dz

≤
∫

ΩT

fi · (ui − ψi − uk + ψk) dz.

(5.12)

Next, we de�ne functions ûi := ui − ψi for all i ∈ N and similarly, û := u − ψ.
Notice that ûi = û holds on ∂PΩT for all i ∈ N, since ûi = g̃i − ψi = g − ψ on
∂PΩT . By the convergence of ψi and ui in (1.24) and (5.10), we have

ûi ⇀ û weakly in W p(·)(ΩT ) (5.13)

as i → ∞. Now, we can conclude from the preceding inequality the following
estimate

〈〈∂tûi, ûi − ûk〉〉ΩT +

∫
ΩT

a(z,Dui) ·D(ui − u) dz

≤
∫

ΩT

a(z,Dui) ·D(ûk − u+ ψi) dz

+

∫
ΩT

fi · (ûi − ûk) dz + 〈〈∂tψi, ûi − ûk〉〉ΩT .

(5.14)

Since the indices i, k ∈ N are arbitrary, we can exchange i and k in (5.12) and add
the term 〈〈∂tψk, ûk − ûi〉〉ΩT on both sides of (5.12). Then, we add the resulting

estimate with (5.14) and get

1

2

∫
Ω×{T}

|ûi − ûk|2 dx+

∫
ΩT

a(z,Dui) ·D(ui − u) + a(z,Duk) ·D(uk − u) dz

≤
∫

ΩT

(fi − fk) · (ûi − ûk) dz + 〈〈∂tψi − ∂tψk, ûi − ûk〉〉ΩT

+

∫
ΩT

(a(z,Dui)− a(z,Duk)) ·D(ψi − ψk) dz

+

∫
ΩT

a(z,Dui) ·D(uk − u) + a(z,Duk) ·D(ui − u) dz,

where we used Lemma 2.1. Next, we utilize the strong convergence of ψk → ψ and
fk → f − div(|F |p(·)−2F ) as k →∞ according to (1.24) and (5.2). In addition, we
apply the weak convergence of Dui stated in (5.10), (5.11) and (5.13). Thus, we
can deduce the following estimate∫

ΩT

a(z,Dui) ·D(ui − u) dz + lim sup
k→∞

∫
ΩT

a(z,Duk) ·D(uk − u) dz

≤
∫

ΩT

(fi − f + div(|F |p(·)−2F )) · (ûi − û) dz + 〈〈∂tψi − ∂tψ, ûi − û〉〉ΩT

+

∫
ΩT

(a(z,Dui)−A0) ·D(ψi − ψ) + A0 ·D(ui − u) dz.

Finally, we let i→∞. Therefore, we arrive at

lim sup
i→∞

∫
ΩT

a(z,Dui) ·D(ui − u) dz ≤ 0, (5.15)

where we exploited (1.24), (5.2), (5.10) and (5.13). Then, by the weak convergence
of Dui ⇀ Du in Lp(·)(ΩT ,Rn) as i→∞, there holds

lim sup
i→∞

∫
ΩT

a(z,Du) ·D(ui − u) dz = 0. (5.16)

Combining (5.15) and (5.16) we conclude that

lim sup
i→∞

∫
ΩT

(a(z,Dui)− a(z,Du)) ·D(ui − u) dz ≤ 0.
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Finally, we know by the monotonicity condition (1.3) that the left-hand side of the
preceding inequality is non-negativ, such that

lim sup
i→∞

∫
ΩT

(µ̃2 + |Dui|2 + |Du|2)
p(·)−2

2 |Dui −Du|2 dz = 0,

which yields the desired strong convergence

ui → u strongly in W p(·)(ΩT ) (5.17)

as i→∞. This is obvious because we can conclude

lim sup
i→∞

∫
ΩT

(µ̃2 + |Dui|2 + |Du|2)
p(·)−2

2 |Dui −Du|2 dz

≥ lim sup
i→∞

∫
ΩT

|Dui −Du|p(·) dz = 0.

This last implication is straightforward in the case p(·) ≥ 2, while for exponents
p(·) < 2, it follows from the same calculus as in the proof of Lemma 4.2, see page
20. Possibly after extracting another subsequence, we also have Dui → Du a.e. on
ΩT and we can conclude that

a(·, Dui)→ a(·, Du) for almost every z ∈ ΩT , as i→∞. (5.18)

Step 4: Continuity in time and initial values. Now, we have to show the
continuity in time and initial values. For this aim, we choose a comparison function

v := ui + (ûk − ûi)1(0,τ)(t) ∈W
p(·)
ui (ΩT ) for an arbitrary time τ ∈ (0, T ) and where

ûi := ui − ψi for all i ∈ N. This function we use to test the variational inequality
(5.5) for ui. Moreover, that we use ∂tψi, fi ∈ Lp

′(·)(ΩT ), since ∂tψi, fi ∈ Lγ
′
1(ΩT ).

Thus, it follows by the generalized Hölder's inequality (1.8) that

〈〈∂tûi, ûi − ûk〉〉Ωτ ≤
∫

Ωτ

a(z,Dui) ·D(ûk − ûi) dz −
∫

Ωτ

(fi + ∂tψi) · (ûk − ûi) dz

≤ 2‖fi‖Lp′(·)(Ωτ )‖ûk − ûi‖Lp(·)(Ωτ ) + c(γ1, γ2)‖∂tψi‖Lp′(·)(Ωτ )‖ûk − ûi‖Lp(·)(Ωτ )

+ c(γ2, L)‖(1 + |Dui|)p(·)−1‖Lp′(·)(Ωτ )‖D(ûk − ûi)‖Lp(·)(Ωτ ),

where we also used the growth assumption (1.2). Now, we can estimate the right-
hand side of the preceding inequality from above, by exchanging Ωτ by the ΩT .
Then, notice that the right-hand side is independent from τ ∈ (0, T ). Moreover, we
note that the right-hand side vanishes as i, k → ∞, since the strong convergence
(5.17) of ui in W p(·)(ΩT ) implies, in combination with the convergence of ψi in
(1.24), that {Dûi}i∈N is a Cauchy sequence in Lp(·)(ΩT ,Rn). Therefore, it yields
lim supi,k→∞ 〈〈∂tûi, ûi − ûk〉〉Ωτ ≤ 0. Applying furthermore Lemma 2.1 and keeping
in mind, that ûi = ûk on ∂PΩT , we conclude

lim sup
i,k→∞

sup
τ∈(0,τ)

∫
Ω

|(ûi − ûk)(·, τ)|2 dx = 2 lim sup
i,k→∞

sup
τ∈(0,τ)

〈〈∂tûi − ∂tûk, ûi − ûk〉〉 = 0.

Thus, we have established that {ûi}i∈N is a Cauchy sequence in C0([0, T ];L2(Ω)),

which implies in view of the strong convergence ψi → ψ in C0([0, T ];L2(Ω)) ac-
cording to (1.24), that

ui → u strongly in C0([0, T ];L2(Ω)), (5.19)

as i → ∞ and in particular u ∈ C0([0, T ];L2(Ω)). Because of ui(·, 0) = g̃i(·, 0) →
g̃(·, 0) = g(·, 0) as i → ∞, the convergence (5.19) implies, that u attains the pre-
scribed initial values u(·, 0) = g(·, 0).
Step 5: Proof of the extension property. For our next aim, we �x a domain

O := Õ ∩Ω, where Õ ⊂ Rn is any Lipschitz regular domain which is contained in a
ball with radius ρ0 = ρ0(θ, ω(·)) ∈ (0, 1] with θ ≤ θ0 = θ0(n, γ1) ∈ (0, 1) is given by
Lemma 2.5. Moreover, we choose a time interval I := (t1, t2) ⊂ (0, T ) and de�ne
OI := O× I. Then, we consider the parabolic boundary value problems{

∂twi − div a(z,Dwi) = ∂tψi − div a(z,Dψi) in OI ,

wi = ui on ∂POI ,
(5.20)
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where we de�ned wi as the solutions to (5.20). By Corollary 3.4 we know that, there
exists a solution wi ∈W (OI). In addition, the comparison principle in Lemma 2.7
yields the obstacle constraint wi ≥ ψi a.e. on OI . Furthermore, we have the energy
bound (2.12) from the comparison Lemma 2.8. This yields∫

OI

|Dwi|p(·)dz ≤c
∫
OI

(µ+ |Dui|)p(·)dz + c

[∫
OI

|∂tψi|γ
′
1 + |f |γ

′
1 dz

+

∫
OI

|Dψi|p(·) + |(δ2
i + |Fi|2)

p(·)−2
2 Fi|p

′(·) + 1 dz

]
,

where c = c(n, γ1, γ2, ν, L), for every i ∈ N. Here, we have to mention that we

replaced |F |p(·) by |(δ2
i + |Fi|2)

p(·)−2
2 Fi|

p(·)
p(·)−1 . This is possible, since we consider

(δ2
i + |Fi|2)

p(·)−2
2 Fi instead of |F |p(·)−2F . Later, by passing to the limit, we will

see that we gain accurately (2.12). Combining this with the bound (5.8), the
convergences of ψi in (1.24) and of Fi in (5.3), we infer

lim sup
i→∞

∫
OI

|Dwi|p(·) dz ≤ cM (5.21)

with a constant c = c(n, γ1, γ2, ν, L). Next, we utilize the Poincaré type inequality
(2.7), as follows

‖wi‖Lp(·)(OI) ≤ c
∫
OI

|Dwi|p(·) + |Dui|p(·) + |ui|p(·) + 1 dz + c

for every i ∈ N, where c = c(n, γ1, γ2, L, L1,M). This Lp(·)-bound for wi together
with (1.9), (5.8), (5.9) and (5.10) imply that

lim sup
i→∞

‖wi‖Lp(·)(OI) ≤ c lim sup
i→∞

∫
OI

|Dwi|p(·) + |Dui|p(·) + |ui|p(·) + 1 dz

≤ cM (
2γ2
n+2 +1)

γ2
γ1 ,

(5.22)

where the constant c depends on n, γ1, γ2, ν, L, L1, θ,M . Finally, the equation (5.20)
gives [cf. e.g. proof of (4.10)] the following

lim sup
i→∞

‖∂twi‖Wp(·)(OI)′ ≤ c lim sup
i→∞

∫
OI

1 + |Dwi|p(·) + |Dψi|p(·) dz

+c lim sup
i→∞

‖∂tψi‖Lp′(·)(OI) ≤ c
(5.23)

with a constant c = c(n, γ1, γ2, ν, L, L1,M, ‖∂tψ‖Lp′(·)), where we used the fact

∂tψi ∈ Lγ
′
1(OI) implies ∂tψi ∈ Lp

′(·)(OI). Notice also, that we gain from the energy
bound (3.7) that wi is bounded in L∞(I;L2(O)), i.e.

sup
t∈I

∫
O

|wi(·, t)|2L2(O) +

∫
OI

|Dwi|p(·) dz ≤ cM (5.24)

for every i ∈ N. Due to the bounds (5.21), (5.22), (5.23) and (5.24) and the

compactness argument from Theorem 2.2, we can �nd a limit map w ∈ W p(·)
u (OI)

with ∂tw ∈W p(·)(OI)
′, such that
wi → w strongly in Lp̂(·)(OI ,R),

Dwi → Dw weakly in Lp(·)(OI ,Rn),

∂twi → ∂tw weakly in W p(·)(OI)
′,

wi ⇀
∗ w weakly∗ in L∞(I;L2(O)),

(5.25)

as i→∞, possibly after extraction of a suitable subsequence. In addition, we may
assume wi → w and ψi → ψ a.e. on OI as i→∞. Therefore, we can conclude that
w satis�es the obstacle constraint w ≥ ψ a.e. on OI .

Now, we want to remove the smallness condition on O, i.e. we want to consider
also domains O, which are not contained in a ball of radius ρ0 = ρ0(θ, ω(·)) ∈ (0, 1].
Therefore, we have to cover the domain O by smaller subdomains which allow
the application of Corollary 3.4. Thus, we choose a family of disjoint open cubes
{Cρ(xj)}∞j=1 with ρ ≤ ρ0 and xj ∈ Rn, such that

⋃∞
j=1 Cρ(xj) = Rn\N , where
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Ln(N) = 0. Then, we consider Oj = O ∩ Cρ(xj) ⊂ ΩT , = 1, ..., N , such that

O =
⋃N
j=1 Oj\N . Then, we consider the parabolic boundary value problems{

∂tw
j
i − div a(z,Dwji ) = ∂tψi − div a(z,Dψi) in Oj × I,

wji = ui on ∂POj × I,
(5.26)

where we de�ned wji as the solutions to (5.26). By Corollary 3.4 we know that,

there exists a solution wji ∈ W (Oj × I). In addition, the comparison principle in

Lemma 2.7 yields the obstacle constraint wji ≥ ψi a.e. on Oj × I. At this stage,
we have to mention that the conclusions from above are available. The next step is
to compose the functions wji . This is possible, since the boundary values of wji are

equal to the boundary data of its "`neighbors"'. Thus, we have w̆i =
∑N
j 1Ojw

j
i ,

where 1Oj is the characteristic function of the set Oj . This allows us to infer from
(5.21) that

lim sup
i→∞

∫
OI

|Dw̆i|p(·) dz ≤ lim sup
i→∞

N∑
j

∫
Oj×I
|Dwji |

p(·) dz ≤ c
N∑
j

∫
Oj×I

(µ+ |Du|)p(·) dz

+c

 N∑
j

∫
Oj×I

|∂tψ|γ
′
1 + |f |γ

′
1 dz +

N∑
j

∫
Oj×I

|Dψ|p(·) + |F |p(·) + 1 dz

 ≤ cM
with a constant c = c(n, γ1, γ2, ν, L). Similar to (5.22), (5.23) and (5.24), we get

the same convergences as in (5.25), i.e. we can �nd a limit map w̆ ∈ W
p(·)
u (OI)

with ∂tw̆ ∈W p(·)(OI)
′, such that
w̆i → w̆ strongly in Lp̂(·)(OI ,R),

Dw̆i → Dw̆ weakly in Lp(·)(OI ,Rn),

∂tw̆i → ∂tw̆ weakly in W p(·)(OI)
′,

w̆i ⇀
∗ w̆ weakly∗ in L∞(I;L2(O)),

as i→∞, possibly after extraction of a suitable subsequence. In addition, we may
assume w̆i → w̆ and ψi → ψ a.e. on OI as i→∞. Therefore, we can conclude that
w̆ satis�es the obstacle constraint w̆ ≥ ψ a.e. on OI .

From now on, we will use the preceding results [(5.21)-(5.25)] for any �x domain

O := Õ ∩ Ω, where Õ is any Lipschitz regular domain. Here, we should accentu-
ate that the function w̆ is not the solution of (5.20) with the smallness condition
on the domain O. The function w̆ is only on OI (without smallness condition),
which satis�es the obstacle constraint, the boundary data and the needed regular-
ity properties. This is important for the construction of the extension map. Next,
we relabel w̆ by w and use the conclusions (5.21)-(5.25) for the function w̆i from
above on a domain O without the smallness assumption, where we also relabel w̆i
by wi. But we keep in mind that the function w don't solve (5.20) on OI . Our
next desired aim is to show that w ∈ K′ψ,u(OI). Therefore, we have only to show

that w ∈ C0([t1, t2];L2(O)). Unfortunately, this property we can not conclude from
Lemma 2.1, since w does not vanish on ∂O × (t1, t2). Thus, we apply Lemma 2.1

to the function (1− ζ(x))w(x, t), where ζ ∈ C∞(Õ), 0 ≤ ζ ≤ 1 is a suitable cut-o�

function with ζ ≡ 1 on ∂Õ. Hence, (1− ζ)w vanish on ∂Õ×(t1, t2) and we can infer
from Lemma 2.1 that (1− ζ)w ∈ C0([t1, t2];L2(O)). Here we should also mention,
that in the case ∂Ω ∩ ∂O 6= ∅, we apply Lemma 2.1 to (1− ζ(x))(w(x, t)− g(x, t)),
which vanishes on ∂Ω ∩ ∂O, and use the regularity assumptions on g. Next, we
choose ζε ∈ C∞(Õ), 0 ≤ ζε ≤ 1 with

ζε ≡

{
0 on O\Uε,
1 on ∂O,

and |Dζε| ≤
c

ε
, (5.27)

where we de�ned Uε :=
{
x ∈ O : dist(x, ∂Õ) < ε

}
for any ε > 0. Furthermore, we

write UεI := Uε × (t1, t2) ⊂ OI . Now, we will apply a version of the Poincaré type
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inequality (2.5) to wi − ui ∈ C0([t1, t2];L2(O)) ∩W p(·)
0 (OI). This is possible since

we assumed that O = Õ ∩ Ω with a Lipschitz regular domain Õ ⊂ Rn and yields

‖wi − ui‖Lp(·)(UεI ) ≤ c · ε

[
M

2γ2
n+2

(∫
UεI

|Dwi −Dui|p(·) + 1 dz

)] 1
γ1

, (5.28)

where c = c(n, γ1, γ2, ν, L, L1). Note that it is crucial that Õ is a Lipschitz regular
domain in order to gain a factor ε in (5.28). Consequently, we can conclude from
(5.27), (5.28) and (1.13) that, there holds

‖D(ζ2
ε (wi − ui))‖Lp(·)(UεI ) ≤2‖ζεDζε · (wi − ui)‖Lp(·)(UεI )

+‖ζ2
ε ·D(wi − ui)‖Lp(·)(UεI ) ≤ cM (

2γ2
n+2 +1) 1

γ1

(5.29)

for su�ciently large i ∈ N, where we used (5.8), (5.21) and Young's inequality for the
last step. Next, we choose a comparison function v := ui+(wi−ui)ζ2

ε (x)1(t1,τ)(t) ∈
W

p(·)
ui (ΩT ) for an arbitrary time τ ∈ (t1, t2). Note that, v holds the obstacle con-

straint v ≥ ψi a.e. on OI , since wi ≥ ψi and ui ≥ ψi a.e. on OI . Now, we test (5.5)
with v and infer

−
〈〈
∂tui, ζ

2
ε (wi − ui)

〉〉
OI
−
∫
OI

a(z,Dui) ·D(ζ2
ε (wi − ui)) dz

≤ cM (
2γ2
n+2 +1) 1

γ1

(
‖f‖Lp′(·)(UεI ) + ‖(δ2

i + |Fi|2)
p(·)−2

2 Fi‖Lp′(·)(UεI )

)
with a constant c = c(n, γ1, γ2, ν, L, L1). Here, we used the generalized Hölder's
inequality (1.8) and �nally, (5.8), (5.21), ζ2

ε ≤ 1, (5.28) and (5.29). In addition, we
test the weak formulation of (5.20) with the test-function (wi−ui)ζ2

ε (x)1(t1,τ)(t) ∈
W

p(·)
0 (UεI ), which yields

〈〈
∂twi, ζ

2
ε (wi − ui)

〉〉
OI

+

∫
OI

a(z,Dwi)D(ζ2
ε (wi − ui)) dz =

〈〈
∂tψi, (ζ

2
ε (wi − ui))

〉〉
OI

+

∫
OI

a(z,Dψi) ·D(ζ2
ε (wi − ui)) dz

≤ cM (
2γ2
n+2 +1) 1

γ1

(
‖a(z,Dψi)‖Lp′(·)(UεI ) + ‖∂tψi‖Lp′(·)(UεI )

)
with a constant c = c(n, γ1, γ2, ν, L, L1). Here, we employed the generalized Hölder's
inequality (1.8), the Poincaré type inequality (2.5), (5.8), (5.21) and (5.29). Adding
the last two inequalities, using Proposition 1.2(iv), we arrive

〈〈∂t(ζε(wi − ui)), ζε(wi − ui)〉〉OI+
∫
OI

(a(z,Dwi)− a(z,Dui))D(ζ2
ε (wi − ui)) dz ≤ Ξ

for every i ∈ N, every τ ∈ (t1, t2) and ε > 0, where

Ξ := cM (
2γ2
n+2 +1) 1

γ1

(
‖a(z,Dψi)‖Lp′(·) + ‖∂tψi‖Lp′(·)(UεI ) + ‖f‖Lp′(·)(UεI )

+ ‖(δ2
i + |Fi|2)

p(·)−2
2 Fi‖Lp′(·)(UεI )

)
.

(5.30)

From this estimate, we can conclude the following inequality

〈〈∂t(ζε(wi − ui)), ζε(wi − ui)〉〉OI +

∫
OI

(a(z,Dwi)− a(z,Dui)) · ζ2
εD(wi − ui) dz

≤ Ξ−
∫
OI

(a(z,Dwi)− a(z,Dui)) · 2ζεDζε(wi − ui) dz

≤ Ξ +
c

ε

(
‖a(z,Dwi)‖Lp′(·)(UεI ) + ‖a(z,Dui)‖Lp′(·)(UεI )

)
‖wi − ui‖Lp(·)(UεI )
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with a constant c = c(n, γ1, γ2, ν, L). Finally, we utilize Lemma 2.1 and the mono-
tonicity condition (1.3) to the left-hand side and the Young's inequality with expo-
nents γ1 and γ′1 and (1.9) to the right-hand side, then we have

sup
τ∈(t1,t2)

∫
O×{τ}

|ζε(wi − ui)|2 dx ≤
c

εγ1
‖wi − ui‖γ1Lp(·)(UεI )

+ Ξ

+ c
(
‖a(z,Dwi)‖Lp′(·)(UεI ) + ‖a(z,Dui)‖Lp′(·)(UεI )

)γ′1
for i ∈ N, where Ξ is de�ned in (5.30). Now, we use the growth condition (1.2) and
pass to the limit i → ∞, apply Fatou's Lemma to the left-hand side and employ
(5.28) and the convergences (1.24), (5.2), (5.17) and (5.25) on the right-hand side.
Then, we can conclude

sup
τ∈(t1,t2)

∫
O×{τ}

|ζε(w − u)|2 dx ≤ cM
2γ2
n+2

∫
UεI

|Dw −Du|p(·) + 1 dz

+ cM
(
‖(1 + |Dψ|p(·)−1)‖Lp′(·)(UεI ) + ‖∂tψ‖Lp′(·)(UεI ) + ‖f‖Lp′(·)(UεI ) + ‖F‖Lp(·)(UεI )

)
+ c

(
‖(1 + |Dw|p(·)−1)‖Lp′(·)(UεI ) + ‖(1 + |Du|p(·)−1)‖Lp′(·)(UεI )

)γ′1
=: Iε + IIε + IIIε

(5.31)

with a constant c = c(n, γ1, γ2, ν, L). Finally, we want to shows that the right-hand
side can be made arbitrarily small by choosing ε > 0 small enough. This allows us
to conclude that by the absolute continuity of the integral the expressions Iε, IIε
and IIIε tend to zero as ε ↓ 0. Therefore, we get from (5.31) the following

sup
τ∈(t1,t2)

∫
O×{τ}

|ζε(w − u)|2 dx→ 0 as ε ↓ 0

and since, we already know that u ∈ C0([0, T ], L2(Ω)), we are able to deduce that

sup
τ∈(t1,t2)

∫
O×{τ}

|ζεw|2 dx→ 0 as ε ↓ 0.

Moreover, as mentioned above, there holds (1− ζε)w ∈ C0([0, T ];L2(Ω)) as a con-
sequence of the Interpolation Lemma 2.1. In view of the above convergence we
deduce w ∈ C0([t1, t2];L2(O)) and thus conclude the proof of the claimed property
w ∈ K′ψ,u(OI) of the extension map.
Step 6: Variational inequality for the limit map. First, we �x a Lipschitz

regular domain Õ ⊂ Rn contained in a ball of radius ρ0 = ρ0(θ, ω(·)) with θ ≤
θ0(n, γ1) ∈ (0, 1) from Lemma 2.5 and a time interval I = (t1, t2) ⊂ (0, T ) and

abbreviate O := Õ ∩ Ω. As always, OI denotes the space-time cylinder O × I.
Next, we choose an arbitrary comparison map v ∈ K′ψ,u(OI), which exists by Step

5. Furthermore, we choose a cut-o� function ζ ∈ C∞0 (Õ), 0 ≤ ζ ≤ 1, which will
be speci�ed later and de�ne an admissible comparison function in the variational

inequality (5.5) for ui. In addition, we let vi := ζ2(v−ψ+ψi)+(1−ζ2)ui ∈W p(·)
ui (OI)

for i ∈ N, and we extend the function by ui on ΩT \OI . This function satis�es the
obstacle condition vi ≥ ψi, since it is a convex combination of the functions v−ψ+ψi
and ui, where both satisfy the same obstacle constraint. Thus, vi is the desired
function. For this reason, we have the following variational inequality

〈〈∂tui, vi − ui〉〉OI +

∫
OI

a(z,Dui) ·D(vi − ui) dz ≥
∫
OI

fi · (vi − ui) dz (5.32)

for i ∈ N. Utilizing the de�nition of vi, the �rst integral can be rewritten by
Proposition 1.2 as follows:

〈〈∂tui, vi − ui〉〉OI = 〈〈∂t(v − ψ + ψi), vi − ui〉〉OI
−〈〈∂t(ζ(v − ψ + ψi − ui)), ζ(v − ψ + ψi − ui)〉〉OI
= : Ii − IIi.

(5.33)
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In order to calculate the limit of the �rst term, we observe

vi − ui = ζ2(v − ψ + ψi − ui)
i→∞−→ ζ2(v − u) in W

p(·)
0 (OI) (5.34)

because of (1.24) and (5.17). Combining this with the strong convergence ∂tψi →
∂tψ in Lγ

′
1(OI) according to (1.24) and (5.19), we can conclude

lim
i→∞

Ii =
〈〈
∂tv, ζ

2(v − u)
〉〉

OI
(5.35)

Next, we use Lemma 2.1 and then the convergence ψi → ψ and ui → u in
L∞(0, T ;L2(Ω)) according to (1.24) and (5.19), with the result

−IIi =
1

2
‖ζ(v − ψ + ψi − ui)(·, t1)‖2L2(O) −

1

2
‖ζ(v − ψ + ψi − ui)(·, t2)‖2L2(O)

≤1

2
‖ζ(v − ψ + ψi − ui)(·, t1)‖2L2(O) −→

1

2
‖ζ(v − u)(·, t1)‖2L2(O)

(5.36)

as i → ∞. Now, we use (5.35) and (5.36) while passing to the limits in (5.33), so
we have

lim sup
i→∞

〈〈∂tui, vi − ui〉〉OI ≤
〈〈
∂tv, ζ

2(v − u)
〉〉

OI
+

1

2
‖ζ(v − u)(·, t1)‖2L2(O).

Combining this with the variational inequality (5.32) and applying the convergences
a(·, Dui) → a(·, Du) for a.e. z ∈ ΩT by (5.18), fi → f − div(|F |p(·)−2F ) by (5.2)
and the convergence (5.34) of vi − ui. Hence, we can conclude that〈〈

∂tv, ζ
2(v − u)

〉〉
OI

+

∫
OI

a(z,Du) ·D(ζ2(v − u)) dz +
1

2
‖ζ(v − u)(·, t1)‖2L2(O)

≥
∫
OI

fζ2(v − u) + |F |p(·)−2F ·D(ζ2(v − u)) dz.

(5.37)

Finally, we choose cut-o� functions ζε ∈ C∞0 (Õ), 0 ≤ ζε ≤ 1 with ζε ≡ 1 on the

set Õε :=
{
x ∈ Õ : dist(x, ∂Õ) > ε

}
for every ε > 0. This can be done in such

a way that |Dζε| ≤ 2
ε holds for every ε > 0. Since we have assumed, that Õ

is a Lipschitz regular domain, get in the same fashion of (5.28) that every ϕ ∈
C0([t1, t2];L2(O)) ∩W p(·)

0 (OI) satis�es the following version of the Poincaré type
inequality (2.4):∫

(O\Õε)×I
|ϕ|p(·) dz ≤ cεγ1

(
sup

t1≤t≤t2
‖ϕ(·, t)‖

4γ2
n+2

L2(O\Õε) + 1

)∫
(O\Õε)×I

|Dϕ|p(·) + 1 dz

for any ε ∈ (0, 1], where c = c(n, γ1, γ2, ν, L, L1). This implies in particular, since

v ∈W p(·)
u (OI), that there holds

‖D
[(

1− ζ2
ε

)
(v − u)

]
‖Lp(·)(O\Õε)×I) ≤cε

γ1

(
sup

t1≤t≤t2
‖(v − u)(·, t)‖

2γ2
n+2

L2(O\Õε) + 1

)
×
∫

(O\Õε)×I
|D(v − u)|p(·) + 1 dz → 0

as ε ↓ 0 and consequently, ζ2
ε (v − u) → v − u in W

p(·)
0 (OI). Choosing ζ = ζε in

(5.37) and letting ε ↓ 0, we can conclude

〈〈∂tv, v − u〉〉OI +

∫
OI

a(z,Du) ·D(v − u) dz +
1

2
‖(v − u)(·, t1)‖2L2(O)

≥
∫
OI

f(v − u) + |F |p(·)−2F ·D(v − u) dz,

which is the desired local version of the variational inequality.
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Step 7: Uniqueness. For the proof of uniqueness, we consider an arbitrary
solution u∗ ∈ Kψ,g(ΩT ) with u∗(·, 0) = g(·, 0) of the variational inequality

〈〈∂tv, v − u∗〉〉ΩT +

∫
ΩT

a(z,Du∗) ·D(v − u∗) dz +
1

2
‖v(·, 0)− g(·, 0)‖2L2(Ω)

≥
∫

ΩT

f(v − u∗) + |F |p(·)−2F ·D(v − u∗) dz

for all comparison maps v ∈ K′ψ,g(ΩT ), and wish to show that u∗ agrees with
the solution u from above. Next, we use the abbreviations ǔi := ui − ψi and
introduce the analogous notation ǔ∗ := u∗ − ψ. These functions satisfy the initial
and boundary conditions ǔi = g̃ − ψ = ǔ∗ on ∂PΩT . Now, we may choose v :=
ui−ψi+ψ = ǔi−ǔ∗+u∗ as comparison function in the above variational inequality,
which gives

〈〈∂tui − ∂tψi + ∂tψ, ǔi − ǔ∗〉〉ΩT +

∫
ΩT

a(z,Du∗) ·D(ǔi − ǔ∗) dz

≥
∫

ΩT

f(ǔi − ǔ∗) + |F |p(·)−2F ·D(ǔi − ǔ∗) dz.

Obversely, we plug vi := u∗ − ψ − ψi = ǔ∗ − ǔi + ui into the variational inequality
(5.5) for ui, with the result

〈〈∂tui, ǔ∗ − ǔi〉〉ΩT +

∫
ΩT

a(z,Dui) ·D(ǔ∗ − ǔi) dz ≥
∫

ΩT

fi · (ǔ∗ − ǔi) dz.

We point out, that for the last step, it is crucial that (5.5) holds for every comparison

map v ∈ W p(·)
ui (ΩT ) with v ≥ ψi. Subtracting the two preceding inequalities, we

have ∫
ΩT

(a(z,Du∗)− a(z,Dui)) ·D(ǔ∗ − ǔi) dz ≤ 〈〈∂tψ − ∂tψi, ǔi − ǔ∗〉〉ΩT

+

∫
ΩT

|F |p(·)−2F ·D(ǔ∗ − ǔi) + (f − fi)(ǔ∗ − ǔi) dz.

Because of the strong convergence fi → f − div(|F |p(·)−2F ) in Lγ
′
1(ΩT ) according

to (5.2) and since the sequence {ǔi}i∈N is bounded in W p(·)(ΩT ), the last integral
vanishes in the limit i→∞. Analogously, the �rst integral on the right-hand side
vanishes, since ∂tψi → ∂tψ strongly in Lγ

′
1(ΩT ), as i → ∞. Consequently, the

preceding inequality implies

lim sup
i→∞

∫
ΩT

(a(z,Du∗)− a(z,Dui)) ·D(ǔ∗ − ǔi) dz ≤ 0,

and recalling the de�nition of ǔ∗ and ǔi, the strong convergences (5.17) and (5.18)
and the strong convergence Dψi → Dψ in Lp(·)(ΩT ,Rn), this implies∫

ΩT

(a(z,Du∗)− a(z,Du)) ·D(u∗ − u) dz ≤ 0.

But in the view of the monotonicity (1.3) of a(·), this can only hold if Du∗ = Du,
and since u∗ agrees with u on the lateral boundary of ΩT , we have the desired
identity u∗ = u. This completes the proof of the theorem. �

6. Proof of Theorem 1.8: Existence result to degenerate parabolic

obstacle problems on irregular domains

Finally, we consider general bounded domains and general obstacle functions ψ.
Since in this general situation, we can approximate ψ only locally by functions with
better regularity and integrability properties, we can show strong convergence to a
solution only on every compactly contained subdomain Ω′ b Ω. More precisely, we
give the
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Proof of Theorem 1.8. First, we may replace the boundary data g by a function

ĝ ∈ C0([0, T ];L2(Ω)) ∩W p(·)
g (ΩT ) with ∂tĝ ∈ Lγ

′
1(ΩT ), which satis�es the obstacle

constraint ĝ ≥ ψ a.e. on ΩT and attains the initial values assumption. Therefore,
we de�ne ĝ := max {g, ψ}.
Step 1: Regularization. In the general case, that is without any regularity

condition on the boundary of the domain Ω, we can only approximate the obsta-
cle function locally by more regular functions. For this regularization, we follow
classical ideas by Meyers and Serrin [40], see also [43, 44]. Therefore, we de�ne a

countable open cover of Ω by letting U` :=
{
x ∈ Ω : dist(x, ∂Ω) ∈

(
1
`+1 ,

1
`−1

)}
for

every ` ∈ N and choose a partition of unity {ζ`}`∈N ⊂ C∞0 (U`), where 0 ≤ ζ` ≤ 1,
subordinate to the cover {U`}`∈N. By φ ∈ C∞0 (B1), we denote a standard, radially

symmetric smoothing kernel with
∫
Rn φ dx = 1 and we write φρ(x) := ρ−nφ (x/ρ)

for the rescaled versions. Then, we de�ne ψ
(`)
k (·, t) := [ζ`ψ(·, t)] ∗ φρk,` for all

t ∈ (0, T ) and k, ` ∈ N, where the radii ρk,` ∈
(

0, 1
`+1

)
are chosen so small, such

that

‖ψ(`)
k − ζ`ψ‖Wp(·)(ΩT ) + ‖ψ(`)

k − ζ`ψ‖L∞(0,T ;L2(Ω))

+ ‖∂tψ(`)
k − ∂tζ`ψ‖Lγ′1 (ΩT )

≤ 1

k2`
.

(6.1)

Then, let ψk :=
∑̀
∈N
ψ

(`)
k . By the choice of the smoothing radii in (6.1) and since

{ζ`}`∈N is a partition of unity, we have

‖ψk − ψ‖Wp(·)(ΩT ) ≤
∑
`∈N
‖ψ(`)

k − ζ`ψ‖Wp(·)(ΩT ) ≤
1

k

and similarly, ‖ψk − ψ‖L∞(0,T ;L2(Ω)) ≤ 1
k and ‖∂tψk − ∂tψ‖Lγ′1 (ΩT )

≤ 1
k . We have

thereby shown{
ψk → ψ in W p(·)(ΩT ) and in L∞(0, T ;L2(Ω)),

∂tψk → ∂tψ in Lγ
′
1(ΩT ),

(6.2)

as k → ∞. Moreover, the regularized obstacle functions ∂tψk ∈ Lγ
′
1(ΩT ) satisfy

obviously ∂tψk ∈ Lγ
′
1(Ω′T ) for every subdomain Ω′ b Ω and

sup
Ω′T

(|D2ψk|+ |Dψk|) ≤ c(n,Ω,Ω′, `, k, ψ) <∞, (6.3)

since ψ ∈ C0([0, T ];L2(Ω)). Next, we de�ne boundary data adapted to the regu-
larized obstacle functions by letting ĝk := ĝ − ψ + ψk for all k ∈ N. This de�nes
functions that satisfy the obstacle constraint ĝk ≥ ψk a.e. on ΩT , since ĝ ≥ ψ a.e.
on ΩT , and they converge to ĝ in the sense{

ĝk → ĝ in W p(·)(ΩT ) and in L∞(0, T ;L2(Ω)),

∂tĝk → ∂tĝ in Lγ
′
1(ΩT ),

(6.4)

as k → ∞. Moreover, we extended f and F by zero outside of ΩT and de�ne
molli�cations Fk(·, t) := F (·, t)∗φδk for every t ∈ (0, T ), with an arbitrary sequence

δk ↓ 0, and let fk(·, t) := f(·, t) − div
(

(δ2
k + |Fk(·, t)|2)

p(·)−2
2 Fk(·, t)

)
. Thus fk ∈

Lγ
′
(ΩT ) and these functions converge in the sense

fk → f − div(|F |p(·)−2F ) strongly in W p(·)(ΩT )′, (6.5)

as k →∞. Moreover, by standard results on molli�cations, we have the convergence

Fk(·, t)→ F strongly in Lp(·)(ΩT ,Rn), (6.6)

since δi ↓ 0, as i → ∞ and therefore, (δ2
i + |Fk|2)

p(·)−2
2 Fk → |F |p(·)−2F strongly

in Lp
′(·)(ΩT ,Rn). Moreover, since |Dψk|, |D2ψk| ∈ L∞(0, T ;L∞(Ω′)) for every

Ω′ b Ω according to (6.3), we can conclude that

|div a(·, Dψk)| ∈ L∞(0, T ;L∞(Ω′)) for every Ω′ b Ω, (6.7)
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cf. the approach of (5.4).
Step 2: Construction of the solution. Next, we will construct the solution

as the limit of a regularized variational inequality. Therefore, notice that the prop-
erties ∂tψk ∈ Lγ

′
1(Ω′T ) and (6.7) permit us to conclude the strong existence Lemma

4.1 on the subsets ΩkT := Ωk × (0, T ), where Ωk := {x ∈ Ω : dist(x, ∂Ω) > δk}.
More precisely, we will construct the solution as the limit of solution as the limit
of solutions to the regularized variational inequalities

〈〈∂tuk, v − uk〉〉ΩkT +

∫
ΩkT

a(z,Duk) ·D(v − uk) dz ≥
∫

ΩkT

fk(v − uk) dz (6.8)

for every v ∈ W
p(·)
ĝk

(ΩT ) with v ≥ ψk a.e. on ΩkT , since K′ψk,ĝk(ΩkT ) is dense in

Kψk,ĝk(ΩkT ) and where we prescribe the initial and boundary values

uk = ĝk on ∂PΩkT . (6.9)

Due to fk, ∂tψk ∈ Lγ
′
1(ΩkT ) and (6.7), we can utilize Lemma 4.1 in order to �nd

solutions uk ∈ C0([0, T ];L2(Ωk)) ∩W p(·)(ΩkT ) with ∂tuk ∈ W p(·)(ΩkT ), satisfying
uk ≥ ψk a.e. on ΩkT , (6.8) and (6.9) for every k ∈ N. Notice that by Lemma 4.2,
the solution also satis�es the weak formulation of the variational inequality, that is

〈〈∂tv, v − uk〉〉ΩkT +

∫
ΩkT

a(z,Duk) ·D(v − uk) dz +
1

2
‖v(·, 0)− g(·, 0)‖2L2(Ωk)

≥
∫

ΩkT

fk(v − uk) dz

(6.10)

for all comparison functions v ∈ K′ψk,ĝk(ΩkT ). Similar to Step 2 of Theorem 1.7, we
get the following energy estimate

sup
t∈(0,T )

∫
Ωk
|uk(·, t)|2 dx +

∫
ΩkT

|Duk|p(·) dz ≤ cM, (6.11)

for all su�ciently large k ∈ N with a constant c = c(n, γ1, γ2, ν, L, diam(Ω)) and an
uniform Lp(·)-bound ‖uk‖Lp(·)(ΩkT ) ≤ c = c(n, γ1, γ2, ν, L, diam(Ω),M). Recalling

(6.4), we deduce from the above estimates that the extended functions

ũk :=

{
uk on ΩkT
ĝk on Ω\ΩkT

are uniformly bounded in L∞(0, T ;L2(Ω)) and in W p(·)(ΩT ). Therefore, we may

�nd a function u ∈ L∞(0, T ;L2(Ω))∩W p(·)
ĝ (ΩT ), such that - possibly after passing

to a subsequence - there holds
ũk ⇀ u weakly in Lp(·)(ΩT ),

Dũk ⇀ Du weakly in Lp(·)(ΩT ,Rn),

ũk ⇀
∗ u weakly in L∞(0, T ;L2(Ω)),

(6.12)

as k →∞. Finally, we can infer - with respect to the weak convergence - that

sup
t∈(0,T )

∫
Ω

|u(·, t)|2 dx +

∫
ΩT

|Du|p(·) dz ≤ cM,

with a constant c = c(n, γ1, γ2, ν, L, diam(Ω)). This implies the claimed estimate
(1.28). Furthermore, the growth assumption (1.2) of a(z, ·) and (6.11) imply that

the sequence {a(z,Dũk)}k∈N is bounded in Lp
′(·)(ΩT ,Rn). Consequently, after

passing to a subsequence once more, we can �nd a limit map A0 ∈ Lp
′(·)(ΩT ,Rn)

with

a(z,Dũk) ⇀ A0 weakly in Lp
′(·)(ΩT ,Rn) as k →∞. (6.13)

Step 3: Construction of extensions and convergence of boundary val-
ues. Notice that this step is similar to the �rst part of Step 5 in the proof of
Theorem 1.7 - see page 26 - with the di�erence that at this stage, we are not yet
able to show the second part, even that the extensions satisfy w ∈ C0([0, T ];L2(O)).
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This will be proved in the last step of this proof. For this aim we observe a sub-
domains O b Ω, which are compactly contained in Ω and contained in a ball with
radius ρ0 = ρ0(θ, ω(·)) ∈ (0, 1] with θ ≤ θ0 = θ0(n, γ1) ∈ (0, 1) [cf. Lemma 2.5],
while the times t1 < t2 can be arbitrary with t1, t2 ∈ (0, T ). Moreover, we de�ne
OI := O× I. Then, we observe the boundary value problems

∂twk − div a(z,Dwk) = ∂tψk − div a(z,Dψk) in W p(·)(OI)
′

wk = uk on ∂O× I
wk(·, t1) = g(·, 0) on O× {t1},

(6.14)

where we de�ned wk as the solutions to (6.14). By Corollary 3.4 we know that,
there exists a solution wk ∈ C0(I;L2(O)) ∩ W p(·)(OI) with ∂twk ∈ W p(·)(OI)

′.
In addition, the comparison principle in Lemma 2.8 yields the obstacle constraint
wk ≥ ψk a.e. on OI . Furthermore, we have the energy estimate (2.11)∫
OI

|Dwk −Duk|p(·) dz ≤ δ
∫
OI

(µ+ |Duk|)p(·) dz + cδ(‖∂tψk‖Lγ′1 (OI)
+ ‖f‖

L
γ′
1 (OI)

)γ
′
1

+cδ

((∫
OI

|Dψk|p(·) + |(δ2
k + |Fk|2)|

p(·)−2
2 Fk|

p(·)
p(·)−1 dz

) 1
γ1

+ 1

)γ′1
,

(6.15)

where cδ = c(δ, n, γ1, γ2, ν, L, L1), for every k ∈ N. Next, we choose in particular
δ = 1. Then, combining this with the bounds (6.11), the convergences of ψk in
(6.2) and of Fk in (6.6), and the growth condition on a(z, ·) in (1.2) we infer

lim sup
k→∞

∫
OI

|Dwk|p(·) dz ≤ cM (6.16)

with a constant c = c(n, γ1, γ2, ν, L, L1). Next, we utilize (1.9), the local Poincaré
type inequality (2.6), (6.11) and (6.12) to infer that

lim sup
k→∞

‖wk‖Lp(·)(OI) ≤ cM
2γ2
n+2 +1, (6.17)

where c = c(n, γ1, γ2, ν, L, L1). Finally, the equation (6.14) gives similar to (5.23)
that

lim sup
k→∞

‖∂twk‖Wp(·)(OI)′ ≤ c (6.18)

with a constant c = c(n, γ1, γ2, ν, L, L1,M, ‖∂tψ‖Lp′(·)). Due to the bounds (6.16),
(6.17) and (6.18) and the compactness argument from Theorem 2.2, we can �nd a

limit map w ∈W p(·)
u (OI) with ∂tw ∈W p(·)(OI)

′, such that
wk → w strongly in Lp̂(·)(OI ,R),

Dwk → Dw weakly in Lp(·)(OI ,Rn),

∂twk → ∂tw weakly in W p(·)(OI)
′,

(6.19)

as k →∞, possibly after extraction of a suitable subsequence. In addition, we may
assume wk → w and ψk → ψ a.e. on OI as k → ∞. Therefore, we can conclude
that w holds the obstacle constraint w ≥ ψ a.e. on OI . Finally, we have to remove
again the smallness condition on O. Using the same argument as in the preceding
proof, cf. page 28 with j replaced by k, we get the conclusions from above on a
domain O without smallness condition.
Step 4: Locally strong convergence of the gradient. Our next aim, is to

prove the strong convergence of the gradient Duk → Du, locally in ΩT . In addition,
we consider a cut-o� function ζ ∈ C∞cpt(Ω), 0 ≤ ζ ≤ 1 that will be speci�ed later.

For i, k ∈ N that are large enough to guarantee Ωi ∩ Ωk ⊃ sptζ, we test the
variational inequality (6.8) for ui with the comparison map v := ζ2(uk−ψk +ψi) +

(1 − ζ2)ui ∈ W p(·)
ui (ΩiT ), since Ωi ⊃ sptζ. This comparison function respects the

obstacle constraint, v ≥ ψi because it is a convex combination of the functions
uk −ψk +ψi and ui, where both of which respect the same obstacle condition. For
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this reason, the function v is an admissible comparison map for the solution ui of
(6.8). Therefore, we have the following estimate〈〈

∂tui, ζ
2(ui − ψi + ψk − uk)

〉〉
ΩT

+

∫
ΩT

a(z,Dui) ·D(ζ2(ui − ψi + ψk − uk)) dz

≤
∫

ΩT

fi · ζ2(ui − ψi + ψk − uk) dz.

Next, we de�ne ǔi := ui − ψi, so we can rewrite the last estimate〈〈
∂tǔi, ζ

2(ǔi − ǔk)
〉〉

ΩT
+

∫
ΩT

a(z,Dui) ·D(ζ2(ui − u)) dz

≤
∫

ΩT

a(z,Dui)D(ζ2(uk − u+ ψi − ψk)) + fiζ
2(ǔi − ǔk) dz

+ 〈〈∂tψi, ǔi − ǔk〉〉ΩT .
Now, we exchange the roles of i and k and adding the resulting estimate to the
previous one, we get〈〈

∂tǔi − ∂tǔk, ζ2(ǔi − ǔk)
〉〉

ΩT
+

∫
ΩT

a(z,Dui) ·D(ζ2(ui − u)) dz

+

∫
ΩT

a(z,Duk) ·D(ζ2(uk − u)) dz

≤
∫

ΩT

a(z,Dui) ·D(ζ2(uk − u)) + a(z,Duk) ·D(ζ2(ui − u)) dz

+

∫
ΩT

[a(z,Dui)− a(z,Duk)] ·D(ζ2(ψi − ψk)) + (fi − fk)ζ2(ǔi − ǔk) dz

+
〈〈
∂tψi − ∂tψk, ζ2(ǔi − ǔk)

〉〉
ΩT

.

(6.20)

Here, the �rst integral on the left-hand side is non-negative because of Lemma 2.1,
since ǔi(·, 0) = ĝi(·, 0) − ψi(·, 0) on sptζ and consequently, the initial values of ǔi
are independent from the index i. Now, we plug the above estimate into (6.20) and
let k →∞. Moreover, we utilize the strong convergence (6.2) and (6.5) of the data
fk and ψk. Therefore and together with the weak convergence (6.12) and (6.13) of
Duk, we can conclude∫

ΩT

a(z,Dui) ·D(ζ2(ui − u)) dz + lim sup
k→∞

∫
ΩT

a(z,Duk) ·D(ζ2(uk − u)) dz

≤
∫

ΩT

A0 ·D(ζ2(ui − u)) + [a(z,Dui)−A0] ·D(ζ2(ψi − ψ)) dz

+

∫
ΩT

(fi − f)ζ2(ǔi − ǔ) dz − |F |p(·)−2F ·D(ζ2(ǔi − ǔ)) dz

+
〈〈
∂tψi − ∂tψ, ζ2(ǔi − ǔ)

〉〉
ΩT

,

where ǔ := u−ψ. In the next step, we let i→∞ and apply the same convergences
stated above in oder to check that the right-hand side of the preceding estimate
vanishes in the limit. Hence, we have shown that

lim sup
k→∞

∫
ΩT

a(z,Duk) ·D(ζ2(uk − u)) dz ≤ 0.

This together with the growth condition (1.2) of a(z, ·), the bound (6.11), the
generalized Hölder's inequality (1.8) and (1.9), we can conclude

lim sup
k→∞

∫
ΩT

ζ2a(z,Duk) ·D(uk − u) dz ≤ cM lim sup
k→∞

‖Dζ(uk − u)‖Lp(·)(ΩT ).

(6.21)

At this stage, we specify the cut-o� function ζ. For this aim, we �rst �x an arbitrary
ball BR(x0) b Ω and let ε ∈ (0, R/2) be arbitrary. We employ the notations Aε :=
BR(x0)\BR−ε(x0) for an annulus in BR(x0) of width ε and write AεT := Aε× (0, T )
for the corresponding space-time cylinder. Then, we choose ζε ∈ C∞0 (BR(x0)), 0 ≤
ζε ≤ 1, such that ζε ≡ 1 on BR−ε(x0), ζε ≡ 0 on ∂BR(x0) with ‖Dζε‖L∞(BR(x0)) ≤
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c
ε . Moreover, we consider the extension maps constructed in Step 3 for the domain

OI = AεT , i.e. wk ∈ W
p(·)
uk (AεT ), and denote by w their limit in the sense of (6.19).

For su�ciently large values of k ∈ N, we estimate

‖Dζ(uk − u)‖Lp(·)(AεT ) ≤
c

ε

(
‖uk − wk‖Lp(·)(AεT ) + ‖wk − w‖Lp(·)(AεT )

+ ‖w − u‖Lp(·)(AεT )

)
.

(6.22)

Now, we apply a version of the Poincaré type inequality (2.5) to the functions

(wk−uk) ∈ C0([0, T ];L2(Aε))∩W p(·)
0 (AεT ). This yields similar to (5.28) the bound

c

ε
‖wk − uk‖Lp(·)(AεT ) ≤ c

[
M

2γ2
n+2

(∫
UεI

|Dwi −Dui|p(·) + 1 dz

)] 1
γ1

.

At this stage, it is crucial that we gain a factor ε in the Poincaré type inequality
(2.5), which is true since wk−uk vanishes on ∂Aε and the annulus Aε has width ε.
The right-hand side of the above estimate can be bounded further by the comparison
estimate (6.15) in the form∫
AεT

|Dwk −Duk|p(·) dz ≤δ ·M + cδ

(
‖(δ2

k + |Fk|2)|
p(·)−2

2 Fk‖
γ′1
Lp′(·)(AεT )

+ ‖(1 + |Dψk|)‖
γ′1
Lp(·)(AεT )

+ ‖∂tψk‖
γ′1

L
γ′
1 (AεT )

+ ‖f‖γ
′
1

L
γ′
1 (AεT )

)
for any δ ∈ (0, 1), where cδ = c(δ, n, γ1, γ2, ν, L, L1). Combining the last two esti-
mates, letting k →∞ and using the convergences (6.2) and (6.5), we can conclude
that

lim sup
k→∞

c

ε
‖wk − uk‖Lp(·)(AεT ) ≤ cM

1
γ1 (δM + cδΨε) , (6.23)

where we used (6.11), (3.7) for wi (modulus the covering argument from above)
and

Ψε := ‖(δ2
k + |Fk|2)|

p(·)−2
2 Fk‖

γ′1
Lp′(·)(AεT )

+ ‖(1 + |Dψk|)‖
γ′1
Lp(·)(AεT )

+‖f‖γ
′
1

L
γ′
1 (AεT )

+ ‖∂tψ‖
γ′1

L
γ′
1 (AεT )

.

Then, the absolute continuity of the integral implies that Ψε vanish in the limit,
so that Ψε → 0 as ε ↓ 0. Next, we use the lower semi continuity of the norm with
respect to the weak convergence. Therefore, we conclude from (6.23) that

c

ε
‖w − u‖Lp(·)(AεT ) ≤ cM

1
γ1 (δM + cδΨε) (6.24)

for every δ > 0 and ε ∈ (0, R/2). Finally, the convergence (6.19) implies

lim
k→∞

c

ε
‖wk − w‖Lp(·)(AεT ) = 0. (6.25)

Plugging (6.23), (6.24) and (6.25) into (6.22), we deduce lim supk→∞ ‖Dζε(uk −
u)‖Lp(·)(AεT ) ≤ cM

1
γ1 (δM + cδΨε). At this stage, we utilize the estimate (6.21),

where we use the cut-o� function ζ = ζε from above and combine it with the
preceding estimate. This yields

lim sup
k→∞

∫
ΩT

ζ2
εa(z,Duk) ·D(uk − u) dz ≤ cM

1
γ1 (δM + cδΨε) , (6.26)

where δ ∈ (0, 1) and ε ∈ (0, R/2) can be chosen arbitrarily. Therefore and together
with the weak convergence Duk ⇀ Du in Lp(·)(ΩT ,Rn) by (6.12), we can conclude
that

lim sup
k→∞

∫
ΩT

ζ2
εa(z,Duk) ·D(uk − u) dz = 0 (6.27)
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for every ε ∈ (0, R/2). Joining (6.26) with (6.27) and applying the monotonicity
condition (1.3) of a(z, ·), we arrive at

lim sup
k→∞

∫
ΩT

ζ2
ε (µ̃2 + |Duk|2 + |Du|2)

p(·)−2
2 |Duk −Du|2 dz ≤ cδM + cδΨε,

where δ ∈ (0, 1) and ε ∈ (0, R/2) can be chosen arbitrarily. By the choice of ζε,
this implies in particular

lim sup
k→∞

∫ T

0

∫
BR

2
(x0)

(µ̃2 + |Duk|2 + |Du|2)
p(·)−2

2 |Duk −Du|2 dz ≤ cM
1
γ1 (δM + cδΨε) .

Notice, the left-hand side does not depends on ε. Therefore, we can �rst choose
δ ∈ (0, 1) and then ε ∈ (0, R/2) so small that the right-hand side becomes arbitrarily
small. So, we can infer

lim sup
k→∞

∫ T

0

∫
BR

2
(x0)

(µ̃2 + |Duk|2 + |Du|2)
p(·)−2

2 |Duk −Du|2 dx dz = 0.

Since the ball BR(x0) b Ω is arbitrary, this implies in a standard way the desired
convergence

Duk → Du strongly in Lp(·)(Ω′ × (0, T ),Rn) (6.28)

for every subdomain Ω′ b Ω, as k →∞.
Step 5: Continuity in time and initial values. Our next aim is to show

that u ∈ C0([0, T ];L2(Ω)) for any subdomain O b Ω and that u attains the initial
values g(·, 0) at the time t = 0. We consider i, k ∈ N so large that O b Ωi ∩ Ωk

and �x a time τ ∈ (0, T ). Moreover, we choose a cut-o� function ζ ∈ C∞0 (Ω),
0 ≤ ζ ≤ 1, such that ζ ≡ 1 on O, ζ ≡ 0 on O\(Ωi ∩ Ωk) and continue to use the
notation ǔi := ui−ψi. Now, we test the variational inequality (6.8) for ui with the

comparison map v := ui + (ǔk − ǔi)ζ2(x)1(0,τ)(t) ∈W
p(·)
ui (ΩT ). This map respects

the obstacle constraint v ≥ ψi since it can be written as a convex combination of the
functions ui and uk−ψk+ψi, both of which satisfy the mentioned obstacle condition.
Therefore, the variational inequality (6.8), considering the growth property (1.2)
of a(z, ·) and using the generalized Hölder's inequality (1.8) and (1.9), yields the
bound〈〈
∂tǔi, ζ

2(ǔi − ǔk)
〉〉

ΩT
≤c
(∫

ΩT

|Dui|p(·) dz + ‖fi‖Lp′(·)(ΩT ) + ‖∂tψi‖Lp′(·)(ΩT ) + 1

)
×‖ζ2(ǔk − ǔi)‖Wp(·)(ΩT )

with a constant c = c(n, γ1, γ1, L,diam(Ω)). Taking into account the energy bound
(6.11), the convergences (6.2) and (6.5), and the locally strong convergence (6.28)
of Dui, we observe that the right-hand side of the above estimate tends to zero as
i, k →∞, uniformly in τ ∈ (0, T ). This yields

lim sup
i, k→∞

sup
τ∈(0,T )

〈〈
∂tǔi, ζ

2(ǔi − ǔk)
〉〉

ΩT
≤ 0.

Adding the same inequality with exchanged roles of i and k and then applying
Lemma 2.1, we deduce

1

2
lim sup
i, k→∞

sup
τ∈(0,T )

∫
Ω×{τ}

|ζ(ǔi − ǔk)|2 dx ≤ 0.

Moreover, since ζ ≡ 1 on O, we infer that {ǔi1OT }i∈N is a Cauchy sequence in

C0([0, T ];L2(Ω)). Since ψi → ψ strongly in C0([0, T ];L2(Ω)) according to (1.24),
we deduce

ui → u strongly in C0([0, T ];L2(O)), (6.29)

as i→∞. This yields on the one hand the claimed regularity u ∈ C0([0, T ];L2(O))
and on the other hand, we can calculate the initial values of u by

u(·, 0) |O = lim
i→∞

ui(·, 0) |O = lim
i→∞

ĝi(·, 0) |O = ĝ(·, 0) |O = g(·, 0)|O ,
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where we used the convergence (6.4) of ĝi and the limits have to be understood
with respect to the norm in L2(O). Since O b Ω was arbitrary, we infer the claimed
values u(·, 0) = g(·, 0).
Step 6: Proof of the extension property and the variational inequality.

Since at this stage, we have established the strong convergence ui → u in the
spacesW p(·)(Ω′T ) and C0([0, T ];L2(Ω′)) for every subdomain Ω′ b Ω, the remainder
of the proof is analogous to the Step 5 and Step 6 of the preceding proof - see
page 26 and page 30. The only di�erence is that since the mentioned convergence
holds only locally, we have to restrict ourselves to subdomains O b Ω that are
compactly contained in Ω. For such domains, extension maps w to u were already
constructed in Step 3. For the proof of w ∈ K′ψ,u(OI) it only remains to show

that w ∈ C0([0, T ];L2(O)). This follows by repeating the arguments after (5.25)
from the proof of Theorem 1.7, which completes the proof of the extension property
K′ψ,u(OI) 6= ∅ of the limit map u.

The derivation of the variational inequality (1.20) on the domain OI now follows
with the same arguments as developed in Step 6 of the proof of Theorem 1.7 - see
page 30 - using the strong convergence ui → u in W p(·)(OI) and C

0([t1, t2];L2(O))
that hold according (6.28) and (6.29). This concludes the proof of the Theorem. �
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