Brunn-Minkowski inequality for the 1-Riesz capacity
and level set convexity for the 1/2-Laplacian
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Abstract
We prove that that the 1-Riesz capacity satisfies a Brunn-Minkowski inequality, and
that the capacitary function of the 1/2-Laplacian is level set convex.
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1 Introduction

In this paper we consider the following problem
(—=A)°u=0 on RV\ F
u=1 on E (1)
lim| g5 400 u(z) = 0

where N > 2, s € (0,N/2), and (—A)® stands for the s-fractional Laplacian, defined

as the unique pseudo-differential operator (—A)* : S + L?(RY), being S the Schwartz
space of functions with fast decay to 0 at infinity, such that

F(=AYf)©) =P F(NHE)  ¢eRY,

where F denotes the Fourier transform. We refer to the guide [12, Section 3] for more
details on the subject. A quantity strictly related to Problem (1) is the so-called Riesz
potential energy of a set E/, defined as

I(E) = inf /

WE)=1 JRNxgN T —

dp(z) du(y)
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It is possible to prove (see [19]) that if E' is a compact set, then the infimum in the
definition of I, (F) is achieved by a unique Radon measure p supported on the boundary
of F if « < N — 2, and with support equal to the whole E if & € (N — 2, N). If p is the
optimal measure for the set F, we define the Riesz potential of E as

uw) = [ ©

N |z —yN-e’

so that

I,(E) = /]RN u(z)du(x).

It is not difficult to check (see [19, 16]) that the potential u satisfies, in distributional
sense, the equation
(_A)Eu = C(Oé, N) M,

where c¢(a, N) is a positive constant, and that u = I,(E) on E. In particular, if s = /2,
then up = u/I2s(F) is the unique solution of Problem (1).
Following [19], we define the a-Riesz capacity of a set E as

Cava(B) = 7157 (4)

We point out that this is not the only concept of capacity present in literature. Indeed,
another one is given by the p-capacity of a set E, which for N > 3 and p > 1 is defined
as

&) =minf [ 196 e CHRY0.1), o2 e )

where x g is the characteristic function of the set E. It is possible to prove that, if F is
a compact set, then the minimum in (5) is achieved by a function u satisfying

—div(|Vu[P=2Vu) = 0 on RV\ F
u=1 on E (6)

Such a function wu is usually called capacitary function of the set E. It is worth noticing
that 2-Riesz capacity and the 2-capacity coincide on compact sets. We refer to [20,
Section 11.15] for a discussion on this topic.

In a series of works (see for instance [7, 11, 18] and the monograph [17]) it has been
proved that the solutions of (6) are level set convex provided E is a convex body, that
is, a compact convex set with non-empty interior. Moreover, in [2] (and in [10] in a
more general setting) it has been proved that the 2-capacity satisfies a suitable version



of the Brunn-Minkowski inequality: given two convex bodies Ky and K; in RY, for any
A € [0,1] it holds

Co(AKL + (1 — N Ko) M2 > ACo(K1) N2 + (1 — A) Ca(Kp) V2.

We refer to [21, 15] for comprehensive surveys on the Brunn-Minkowski inequality.

The main purpose of this paper is to show analogous results in the fractional setting
a = 1, that is, s = 1/2 in Problem (1). More precisely, we shall prove the following
result.

Theorem 1.1. Let K C RN be a conver body and let u be the solution of Problem (1)
with s =1/2 and E = K. Then

(1) w is continuous and level set convez, that is, for every ¢ € R the level set {u > c}
1S conver;

(7i) the 1-Riesz capacity Cap,(K) satisfies the following Brunn-Minkowski inequality:
for any couple of convex bodies Ky and Ki and for any A € [0,1] we have

_1

Cap; (K1 + (1 — \)Ko)¥1 > ACapy (K1) ¥ + (1 — A)Capy (Ko)¥1. (7

The strategy of the proof of Theorem 1.1 is the following. First, for a continuous and
bounded function u : RY — R, we consider the (unique) bounded solution (see [14]) of
the problem
{ —AppyU =0 in RY x (0, 00) (8)
U(-,0) =u(-) in RV,

It holds true the following classical result (see for instance [9]).

Lemma 1.2. Let u: RN — R be smooth and bounded, and let U : RN x [0, +00) be the
solution of Problem (8). There holds

lim O,U(z,t) = (—A)%u(:c) for any x € RN, 9)
t—0t
Thanks to Lemma 1.2 we are able to show that the (unique) solution of Problem (1)
with s = 1/2 is the trace of the capacitary function U in RVt of K ¢ RV*!. This
allows us to exploit results which hold for capacitary functions of a convex set contained
in [10, 11]. Eventually we show that the results obtained in the (N + 1)-dimensional
setting for U hold true as well for u.
We point out that our results do not extend straightfowardly to solutions of (1) with a
general s. Indeed, for s # 1/2 the extension function U in Lemma 1.2 satisfies a more
complicated equation (see [9]), to which the results in [10, 11] do not directly apply.
Eventually, in Section 3 we provide an application of Theorem 1.1 and we state some
open problems.



2 Proof of the main result

This section is devoted to the proof of Theorem 1.1. We start by an approximation
result, which extends most of the results in [11, 10], originally aimed to convex bodies,
to general convex sets with positive capacity.

Lemma 2.1. Let K be a compact convex set with positive 2-capacity and let, for e > 0,
K. = {z € RN : dist(x, K) < €}. Letting u. and u be the capacitary functions of K.
and K respectively, we have that u. converges uniformly to u as € — 0. Moreover we
have that the level sets {u. > s} converge to {u > s} for any 1 > s > 0, with respect to
the Hausdorff distance.

Proof. Let us prove that u. — w uniformly as € — 0. Since u; —u is a harmonic function
on RV \ K., we have that

sup |ue —u| < sup |ue —u| <1 —minu. (10)
RN\ K, 0K, OK.

Since 0K, Hausdorff converge to 0K, we get that the right-hand side of (10) converges to
0 as € — 0. To prove that the level sets {u. > s} converge to {u > s} for any 1 > s > 0,
with respect to the Hausdorff distance, we begin by showing that the following equality

{v>s}={v>s} (11)

holds true for v = u or v = ug, € > 0. Indeed, let x € {v > s}, with v = u or v = w,.
Then there exists x — x such that v(xg) > s. Thus
v(z) = lim v(zg) > s,
k—o00

and so z € {v > s}.
Suppose now that v(z) > s but = ¢ {v > s}. Notice that in this case v(z) = s. Suppose
moreover that there exists an open neighborhood A of z such that AN {v > s} =0, so
that v < s on A. In this case we get that x is a local maximum in A, and v is harmonic
in a neighborhood of A. This leads to a contradiction thanks to the maximum principle
for hamonic functions. To conclude the proof of (11), we just notice that if such an A
does not exist, then x is an adjacency point for {v > s} so that it belongs to {v > s}.

Suppose by contradiction that there exist ¢ > 0 and a sequence z. € {u. > s} such
that dist(x,,{u > s}) > ¢ > 0. Recalling that K., C K., if ¢ < €1, and applying
again the maximum principle, it is easy to show that {u. > s} is a family of uniformly
bounded compact sets. Thus, there exists an € RY such that z. converges to =, up
to extracting a (not relabeled) subsequence. By uniform convergence we have that

Jue(we) — u(@)] < |ue(ze) — u(we)| + [u(ze) — u(z)| = 0



as € — 0. Thus, for any § > 0 there exists € such that
u(x) > us(ze) — 6 > s — 6,
whence u(x) > s. But thanks to (11) we have that
0 < ¢ < dist(z, {u > s}) = dist(z, {u > s}) = dist(x, {u > s}) = 0.

This is a contradiction and thus the proof is concluded.
O

Remark 2.2. Notice that a compact convex set has positive 2-capacity if and only if
its HV~1-measure is non-zero (see for instance [13]). In particular if K is a convex body

of RY, then, although its (N + 1)-Lebesgue measure is 0, K has positive capacity in
RNJrl.

To prove Theorem 1.1, we wish to apply Lemma 1.2 to the function v = ug. Since
ug is not a smooth function (being non-regular on the boundary of K) for our purposes
we need a weaker version of Lemma 1.2.

Lemma 2.3. Let u : RN — [0,4+00) be a continuous, bounded function and let U be
the extension of u in the sense of Lemma 1.2. Suppose that u is of class C' in a
neighbourhood of x € RN . Then the partial derivative 0,U of U with respect to the last
coordinate is well defined at the point (x,0), and it holds

U (z,0) = (—A)u(z).

Proof. For € > 0 let u. = u * p. where p. is a mollifying smooth kernel and U, is the
extension of u, in the sense of Lemma 1.2. Then, since u. is a regular bounded function,
by Lemma 1.2 we have 8,U.(x,0) = (—A)Y/?u.(z) for every z € RV, If u is C'-regular in
a neighbourhood A of z, then so is U on A x [0, 00) and it holds 0,U.(z,0) — 9;U(x,0)
as ¢ — 0. Hence, in order to conclude, we only need to check that (—A)Y?u.(x)
converges to (—A)/2u(zx) as ¢ — 0. To do this, it is sufficient to show that it holds
(=A)Y2(ux p)(z) = ((—=A)/2u) * pe(x). This latter fact is true since, recalling that u
is bounded, we have

FHF(=0) @ po)) ) (2) = F L (|61 2F @) F(pe) ) (2) = (~A) s pea).
O

We recall the well known fact that the capacitary function of a compact set K ¢ RV
of positive capacity is continuous on RY. We offer a simple proof of this fact for the
reader’s convenience.



Lemma 2.4. Let K C RN be a compact set of strictly positive capacity and let u be its
capacitary function. Then u is continuous on R,

Proof. Since u is harmonic on RY \ K and it is constantly equal to 1 on K, we only
have to show that if x € 0K then u(y) — 1 as y — x. To do this, we recall that u is
a lower semicontinuous function, which follows, for instance, from the fact that u is the
convolution of a positive kernel and a non-negative Radon measure (see for instance [19,
pag. 59]). Hence, since K is closed, we get

1 =wu(z) <liminfu(y) < limsupu(y) <1,
y— y—=x

where the last inequality is due to the fact that, thanks to the maximum principle,
0<u<l. O

Proof of Theorem 1.1. Let us prove claim (7). We begin by showing that u is a contin-
uous function. Indeed, let U be the capacitary function of K in RV*! (in this setting,
K is contained in the hyperspace {zny4+1 = 0}), that is, let U be the solution of

—AppyU =0 in RNH
U(z,0) =1 rekK (12)
lim (4 4y 400 U(z,t) = 0.

Then, since K is symmetric with respect to the hyperplane {xy41 = 0} = RY, also
U is symmetric with respect to the same hyperplane, as can be shown by applying a
suitable version of the Pdlya-Szego6 inequality for the Steiner symmetrization (see for
instance [3, 5]). Let v(z) = U(x,0). Notice that v is a continuous function, since U
is continuous, being the capacitary function of a compact set of positive capacity (and
thanks to Lemma 2.4).

Let us prove that v is the solution of (1). It is clear that lim, . v(z) = 0 and
that v(z) = 1 if x € K. Moreover we have that v is bounded and regular on RY \ K
(being so U) thus we can apply Lemma 2.3 to get that for every z € RY \ K we have
(—=A)*/%v(x) = 0,U(z,0) = 0, and thus v solves (1). By uniqueness it then follows that
u = v is a continuous function.

We now prove that u is level set convex. Notice first that, for any ¢ € R we have

{u>c}={(z,t): U(z,t) > c}n{t =0}.

In particular, the claim is proved if we show that U is level set convex.

We recall from [10] that the capacitary function of a convex body is always level set
convex. Let now K. = {x : dist(x, K) < e} and let u. be the capacitary function of K.
From Lemma 2.1 we know that, for any s € (0,1) the level set {U > s} is the Hausdorff



limit of the level sets {u. > s}, which are convex by the result in [10]. It follows that U
is level set convex, and this concludes the proof of (7).

To prove (ii) we start by noticing that the 1-Riesz capacity is a (1 — N)-homogeneous
functional, hence inequality (7) can be equivalently stated (see for instance [2]) by
requiring that, for any couple of convex sets Ky and K; and for any A € [0,1], the
inequality

Cap; (AK1 + (1 — A)Ko) = min{Cap, (Ko), Cap, (K1)} (13)
holds true.

We divide the proof of (13) into two steps.

Step 1.
We characterize the 1-Riesz capacity of a convex set K as the behaviour at infinity of
the solution of the following PDE

(=) 2up =0 in RV \ K
ug =1 in K
hm|a:\—>oo |x|N71UK(ZL‘) = Cap,(K).

We recall that, if ux is the optimal measure for the minimum problem in (2), then the

function e (v)
MK Y

u(z) = —_—

0= [

is harmonic on R \ K and is constantly equal to I;(K) on K (see for instance [16]).
Moreover the optimal measure jux is supported on K, so that |z|N " tu(z) — pr(K) =1
as |z| — o0o. The claim follows by letting ux = u/I; (K).

Step 2.
Let Ky = MK + (1 — A\)Kp and uy = ug,. We want to prove that

ux(x) > min{ug(x), ui(x)}
for any x € RY. To this aim we define the auxiliary function (first introduced in [2] )
() = sup { min{ug(vo),u1 (1)} : 20,21 € RY, 2= Az1 + (1 — N},

and we notice that the claim follows if we show that u) > u). An equivalent formulation
of this statement is to require that for any s > 0 we have

{uy > s} C {uy > s}. (14)



A direct consequence of the definition of u) is that
{uy > s} = Mur > s} + (1 — N){uo > s}.

For all A € [0, 1], we let Uy be the harmonic extension of uy on RY x [0, c0), which solves
_A(;p,t)UA =0 in RN x (0, OO)
Ux(x,0) = uy(z) in RV x {0} (15)
lim) (g, 4)| 00 Un (25 ) = 0.

Notice that Uy is the capacitary function of Ky in RV+! restricted to RY x [0, +00).
Letting H = {(z,t) € RN x R: ¢t =0}, for any A € [0,1] and s € R we have

{Ux > s} N H = {uy > s}.
Letting also
Ux(z,t) = sup{min{Uy(zo, to), Ur(z1,t1)} : (x,t) = Az1, 1) + (1 — A) (w0, t0)},  (16)
as above we have that
{Uy > s} = MU > s} + (1 = M{Up > s}.

By applying again Lemma 2.1 to the sequences K§ = Ko + B(¢) and K5 = K; + B(¢),
we get that the corresponding capacitary functions, denoted respectively as U; and U7,
converge uniformly to Uy and U; in RY, and that U 5, defined as in (16), converges
uniformly to Uy on RN x [0, +00).

Since ﬁi(x,t) < Ui(z,t) for any (z,t) € RN x [0,+00), as shown in [10, pages
474 — 476), we have that Uy(z,t) < Uy(x,t). As a consequence, we get

{UA>S}:{UA>S}OHg{ﬁ)\>S}ﬁH: [)\{U1>S}+(1—)\){U0>S} NH
DMUL >s}NHA+ (1=XM{Up>s}NH = XMus >s}+ (1 —A){up > s}

for any s > 0, which is the claim of Step 2.
We conclude by observing that inequality (13) follows immediately, by putting to-
gether Step 1 and Step 2. This concludes the proof of (i), and of the theorem. O

Remark 2.5. The fact that the solution of (1) is a continuous function can be proved
without using the extension problem thanks to the formulation (3) which entails that w
is a superharmonic function and the Evans Theorem (see for instance [6, Theorem 1]).
We used a less direct approach to show at once the fact that u can be seen as the trace
of the capacitary function U of K in RN*1,

Remark 2.6. The equality case in the Brunn-Minkowski inequality (7) is not easy to
address by means of our techniques. The problem is not immediate even in the case of
the 2-capacity. In that case it has been studied in [8, 10].



3 Applications and open problems

In this section we state a corollary of Theorem 1.1. To do this we introduce some
tools which arise in the study of convex bodies. The support function of a convex body
K c RY is defined on the unit sphere centred at the origin 9B(1) as
hK(V) = Ssup <SC, V>‘
z€0K
The mean width of a convex body K is
2 / N-1
= hi(v)dH (v).
HN=1(OB(1)) Jann)

We refer to [21] for a complete reference on the subject. We observe that, if N = 2,
then M (K) coincides up to a constant with the perimeter P(K) of K (see [4]).
We denote by KCn the set of convex bodies of RV and we set

,CN,C = {K S ,CN, M(K) = C}.
The following result has been proved in [4, 1].

M(K)

Theorem 3.1. Let F': Ky — [0,00) be a g-homogeneous functional which satisfies the
Brunn-Minkowski inequality, that is, such that F(K + L)Y/4 > F(K)Y + F(L)/4 for
any K, L € Kn. Then the ball is the unique solution of the problem
M(K)

min ———.

KeKy F1/4(K)
An immediate consequence of Theorem 3.1, Theorem 1.1 and Definition (4) is the fol-
lowing result.

(17)

Corollary 3.2. The minimum of Iy on the set Ky . is achieved by the ball of mean width
c. In particular, if N = 2, the ball of radius r solves the isoperimetric type problem
i L(K). 18
Keir iRy —amr 1) (18)
Motivated by Theorem 1.1 and Corollary 3.2 we conclude the paper with the follow-
ing conjecture:

Conjecture 3.3. For any N > 2 and o € (0, N), the a-Riesz capacity Cap, (K) satisfies

the following Brunn-Minkowski inequality:
for any couple of convex bodies Ko and K1 and for any X\ € [0,1] we have

Cap,(AK1 + (1 — \)Ko) ¥ > ACap, (K1) ™= + (1 — \)Cap,(Ko)¥=.  (19)

In particular, for any a € (0,2) the ball of radius r is the unique solution of the isoperi-
metric type problem

i I, (K). 20
P N LY (20)
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