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PREFACE

The shape optimization problems naturally appear in engineering and biology. They aim to
answer questions as:

What a perfect wing may look like?

How to minimize the resistance of a moving object in a gas or a fluid?
How to build a rod of maximal rigidity?

What is the behaviour of a system of cells?

The shape optimization appears also in physics, mainly in electrodynamics and in the systems
presenting both classical and quantum mechanics behaviour. For explicit examples and further
account on the applications of the shape optimization we refer to the books [21] and [72].

Here we deal with the theoretical mathematical aspects of the shape optimization, concern-
ing existence of optimal sets and their regularity. In all the practical situations above, the shape
of the object in study is determined by a functional depending on the solution of a given partial
differential equation (shortly, PDE). We will sometimes refer to this function as a state function.
The simplest state functions are provided by solutions of the equations

—Aw =1 and — Au = \u,

which usually represent the torsional rigidity and the oscillation modes of a given object. Thus
our study will be concentrated mainly on the situations, in which these state functions appear,
i.e. when the optimality is intended with respect to energy and spectral functionals.

In Chapter 1 we provide some simple examples of shape optimization problems together with
some elementary techniques, which can be used to obtain existence results in some cases and
motivate the introduction of the quasi-open sets as natural objects of the shape optimization.
We also discuss some of the usual assumptions on the functionals, with respect to which the
optimization is performed. In conclusion, we give some justification for the expected regularity
of the state functions on the optimal sets.

In Chapter 2 we deal with the case when the family of shapes consists of the subsets of a
given ambient space, satisfying some compactness assumptions. A typical example of such a
space is a bounded open set in the Euclidean space R? or, following the original terminology of
Buttazzo and Dal Maso, a bozx. The first general result in this setting was obtained by Buttazzo
and Dal Maso in [33] and the proof was based on relaxation results by Dal Maso and Mosco
(see [52] and [53]). The complete proof was considerably simplified in [21] (see also [30] for
a brief introduction to this technique), where only some simple analytic tools were used. This
Chapter is based on the results from [37], where we followed the main steps from [21], using
only variational arguments. This approach allowed us to reproduce the general result from [33]
in non-linear and non-smooth settings as metric measure spaces, Finsler manifolds and Gaussian
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spaces. Some of the proofs in this chapter are considerably simplified with respect to the original
paper [37] and some new results were added.

Chapter 3 is dedicated to the study of the capacitary measures, i.e. the measures with
respect to which the Sobolev functions can be integrated. The aim of this chapter is to gather
some results and techniques, basic for the theory of shape optimization and general enough to
be used in the optimization of domains, potentials and measures. Our approach is based on
the study of the energy state functions instead of functionals associated to capacitary measures.
The main ideas and results in this chapter are based on the work of Bucur [19], Bucur-Buttazzo
[22] and Dal Maso-Garroni [51]. The exact framework, in which the modern shape optimization
techniques can be applied, is provided by the following space of capacitary measures

Mz;p(Rd) = {,u capacitary measure : w, € Ll(Rd)}l,

and was originally suggested by Dorin Bucur.

Chapter 4 is dedicated to the study of shape subsolutions, i.e. the sets which are optimal
for a given functional, with respect to internal perturbations. The notion of shape subsolution
was introduced by Bucur in [20] and had a basic role in the proof of the existence of optimal
set for general spectral functionals. A particular attention was given a special class of domains
known as energy subsolution, for which the cost functional depends on the torsion energy and
the Lebesgue measure of the domain. In [20] it was shown that the energy subsolutions are
necessarily bounded sets of finite perimeter and the proof was based on a technique introduced
by Alt and Caffarelli in [1]. Similar results were obtained in the [59] and [26]. In [29], we
investigated this notion obtaining a density estimate, which we used to prove a regularity result
for the optimal set for the second eigenvalue As in a box, and a three-phase monotonicity formula
of Cafarelli-Jerison-Kénig type, which allowed us to exclude the presence of triple points in some
optimal partition problems.

In Chapter 5, we consider domains which are shape supersolutions, i.e. optimal sets with
respect to external perturbations. This chapter contains the main regularity results concerning
the state functions of the optimal sets. Our analysis is based on a regularity theorem for
the quasi-minimizers of the Dirichlet integral, which is based on the technique developed by
Briangon, Hayouni and Pierre (see [17] and also [77]) for the Lipschitz continuity of the state
functions on the optimal sets for energy functionals. This result was then successfully applied,
in an appropriate form, in the case of spectral functionals, to obtain the Lipschitz regularity of
the corresponding eigenfunctions (see [28]).

The last section contains some of the main results from [59] and [58]. We investigate the
supersolutions of functionals involving the perimeter, proving some general properties of these
sets and also the Lipschitz continuity of their energy functions. This last result is the key step
in the proof of the C'™® regularity of the boundary of the optimal sets for spectral functionals
with perimeter constraint, which is proved at the end of the chapter.

In Chapter 6 we consider various shape optimization problems involving spectral functionals.
We present the recent results from [20]-[81], [25], [59] and [34]-[26], introducing the existence

1wM indicates the energy state function associated to the measure p.
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and regularity techniques involving the results from the previous chapters and simplifying some
of the original proofs.

The last Chapter 7 is dedicated to the study of optimizations problems concerning one
dimensional sets (graphs) in R?. The framework in this chapter significantly differs from the
theory in the rest of the work. This is due to the fact that there is a lack of ambient functional
space which hosts the functional spaces on the various shapes. With this Chapter we aim to keep
the discussion open towards other problems which present similar difficulties as, for example,
the optimization of the spectrum of the Neumann Laplacian.

Bozhidar Velichkov,
Pisa, 21 June 2013.






Résumé of the main results

In this section we give a brief account on the main results in the present monograph.

The main result from Chapter 2 is the following existence Theorem, which is the non-linear
variant of the classical Buttazzo-Dal Maso Theorem and was proved in [37]. Below, we state it
in the framework of Cheeger’s Sobolev spaces on metric measure spaces, but the main result is
even more general and is discussed in Section 2.4.

THEOREM 1 (Non-linear Buttazzo-Dal Maso Theorem). Consider a separable metric space
(X,d) and a finite Borel measure m on X. Let H'(X,m) denote the Sobolev space on (X, d,m)
and let Du = g, be the minimal generalized upper gradient of u € H'(X,m). Under the
assumption that the inclusion H*(X,m) < L?(X,m) is compact, we have that the problem

min {}"(Q) : QC X, Q Borel, Q] < c},

has solution, for every constant ¢ > 0 and every functional F increasing and lower semi-
2

continuous with respect to the strong-v-convergence”.
This result was proved in [37] and naturally applies in many different frameworks as Finsler
manifolds, Gaussian spaces of infinite dimension and Carnot-Caratheodory spaces.

In Chapter 3, we use some classical techniques to review the theory of the capacitary mea-
sures in R? providing the reader with a self-contained exposition of the topic. One of our main
contributions in this chapter is the generalization for capacitary measures of the concentration-
compactness principle for quasi-open sets, a result from the paper of preparation [26].

THEOREM 2 (Concentration-compactness principle for capacitary measures). Suppose that
L is a sequence of capacitary measures in R? such that the corresponding sequence of energy
functions wy,, has uniformly bounded Ll(Rd) norms. Then, up to a subsequence, one of the
following situations occur:

(i1) (Compactness) The sequence i, y-converges to some pu € ML _(R?).

cap

(i2) (Compactness2) There is a sequence x, € R? such that |z,| — oo and p, (2, + ) 7-
converges.

27 typical example of such functionals is given by the eigenvalues of the Dirichlet Laplacian, variationally
defined as
[ |Dul* dm

Ae() = min max =—F—,
£ KcHi () uek [ u?dm

where the minimum is over all k-dimensional subspaces K.
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(ii) (Vanishing) The sequence i, does not y-converge to the measure co = Iy, but the sequence
of resolvents R,,, converges to zero in the strong operator topology of £(L?(R%)). More-
over, we have ||wy, |z — 0 and Ai(u,) — +00, as n — oo.

(iii) (Dichotomy) There are capacitary measures ) and p2 such that:
o dist({p) < oo}, {12 < co}) = 00, as n — oo;
o [y < pb A p2, for every n € N;
o dy(pny iy A pizy) = 0, as n — 00;
o HRMn - RM}IAM%HL(LQ) — 0, as n — oQ.

The results from Chapter 4, concerning the energy subsolutions, are from the recent paper
[29]. Our main technical results, which are essential in the study of the qualitative properties
of families of disjoint subsolutions (which naturally appear in the study of multiphase shape
optimization problems) are a density estimate and a three-phase monotonicity theorem in the
spirit of the two-phase formula by Caffarelli, Jerison and Kénig.

The following Theorem combines the results from Proposition 4.2.15 and Proposition 4.3.17,
which were proved in [29].

TuroreM 3 (Isolating an energy subsolution). Suppose that Q C R? is an energy subsolu-
tion. Then there exists a constant ¢ > 0, depending only on the dimension, such that for every
To € QM, we have

s 00> 0} 0 Bl
r—0 |Br|

As a consequence, if the quasi-open sets §2; and {25 are two disjoint energy subsolutions, then

there are open sets Dy, Do C R? such that Q; C Dy, Qs C Dy and Q1 N Dy = QN Dy =0, up

to sets of zero capacity.

(0.0.1)

As a consequence, we have the following (see Proposition 6.2.8):

THEOREM 4 (Openness of the optimal set for A2). Let D C R be a bounded open set and
Q a solution of the problem

min {AQ(Q) +m|Q: QC D, Q quasi—open}.
Then there is an open set w C 2, which is a solution of the same problem.

A fundamental tool in the analysis of the optimal partitions is the following three-phase
monotonicity lemma, which we proved in [29].

THEOREM 5 (Three-phase monotonicity formula). Let u; € H'(B1), i = 1,2,3, be three
non-negative Sobolev functions such that Awu; > —1, for each i = 1,2,3, and f]Rd uu;dr = 0,
for each i # j. Then there are dimensional constants &€ > 0 and Cy > 0 such that, for every

€ (0,1), we have
3 3
1 |V, |? |Vuz|2
H <r2+s /BT |72 dx > = Cq (1 +Z/ |27~ 3 d

=1
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We note that we do not assume that the functions u; are continuous! This assumption was
part of the two-phase monotonicity formula, proved in the original paper of Caffarelli, Jerison
and Kenig, where can be dropped, as well.

In Chapter 5 we discuss a technique, developed in [28], for proving the regularity of the
eigenfunctions associated to the optimal set for the k-th eigenvalue of the Dirichlet Laplacian.
Our main result is the following theorem from [28].

THEOREM 6 (Lipschitz continuity of the optimal eigenfunctions). Let 2 be a solution of the
problem

min {)\k(Q) . Q Cc RY, Q quasi-open, |Q| = 1}.

Then there is an eigenfunction u, € H{ (), corresponding to the eigenvalue A\;(f2), which is
Lipschitz continuous on R,

In the last section of Chapter 5 we study the properties of the measurable sets QO C R?
satisfying
P(Q2) < P(Q), for every measurable set 2 D .

The results in this section are contained in [59], where we used them to prove the following
Theorem, which can now be found in Chapter 6.

THEOREM 7 (Existence and regularity for \; with perimeter constraint). The shape opti-
mization problem

min{)\k(Q) : QCRY Qopen, P(Q) =1, |Q] < oo},

has a solution. Moreover, any optimal set € is bounded, connected and its boundary 92 is C1¢,
for every a € (0, 1), outside a closed set of Hausdorff dimension at most d — 8.

In Chapter 6 we prove existence results for the following spectral optimization
problems, for every k € N.

(1) Spectral optimization problems with internal constraint (see [25])
min {)\k(Q) . D' c Q c RY, Q quasi-open, |Q] =1, |Q| < oo};
(2) Spectral optimization problems with perimeter constraint (see [59])
min{)\k(Q) : QCRY Qopen, P(Q) =1, |Q] < oo};

(3) Optimization problems for Schrédinger operators (for £ = 1,2 the result was proved in
[34], while for generic k € N the existence is proved in [26])

min {/\k(—A +V): V:R? = [0, +00] measurable, /

VY2 de = 1};
Rd

(4) Optimization problems for capacitary measures with torsion-energy constraint (see
26])

min {)\k(u) : u capacitary measure in RY, E(u) = — },

1 1
E(u):min{f \Vul|? dx + = u? dp — udx : uELl(Rd)ﬂHl(Rd)ﬂLQ(u)}.
2 R4 2 R4 Rd
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In the last Chapter 7 we consider a spectral optimization problem, which was studied in
[35]. More precisely we prove that the following problem
min {E(C) . C c RY closed connected set, D C C, HY(C) < 1},

where & is the Dirichlet Energy of the one dimensional set C' and P C R is a finite set of points,
has solution for some configurations of Dirichlet points D and might not admit a solution in
some special cases (for example, when all the points in D are aligned).



CHAPTER 1

Introduction and examples

1.1. Shape optimization problems

A shape optimization problem is a variational problem, in which the family of competitors
consists of shapes, i.e. geometric objects that can be chosen to be metric spaces, manifolds or
just domains in the Fuclidean space. The shape optimization problems are usually written in
the form

mm{fun:s1eA}, (1.1.1)
where

e Fis a cost functional,
e A is an admissible family (set, class) of shapes.

If there is a set Q € A which realizes the minimum in (1.1.1), we call it an optimal shape,
optimal set or simply a solution of (1.1.1). The theory of shape optimization concerns, in par-
ticular, the existence of optimal domains and their properties. These questions are of particular
interest in the physics and engineering, where the cost functional F represents some energy we
would like to minimize and the admissible class is the variety of shapes we are able to produce.
We refer to the books [21], [71] and [72] for an extensive introduction to the shape optimization
problems and their applications.

We are mainly interested in the class of shape optimization problems, where the admissible
family of shapes consists of subsets of a given ambient space D. In this case we will sometimes
call the variables Q € A domains instead of shapes. The set D is called design region and can
be chosen to be a subset of R?, a differentiable manifold or a metric space. A typical example
of an admissible class is the following:

A:{Q: Q C D, Q open, ]Q|§c},

where D is a bounded open set in R?, |-| is the Lebesgue measure and c is a positive real number.

The cost functionals F we consider are defined on the admissible class of domains .A through
the solutions of some partial differential equation on each Q2 € A. The typical examples of cost
functionals are:

e energy functionals
FO) = [ gl ula), Vule) do.
Q
where ¢ is a given function and u € H&(Q) is the weak solution of the equation
—Au=f in Q, u € Hy(Q),

where f is a fixed function in L?(D) and H{ () is the Sobolev space of square integrable
functions with square integrable distributional gradient on §2.

11
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e spectral functionals

where F': R¥ — R is a given function and A\, () is the kth eigenvalue of the Dirichlet
Laplacian on €, i.e. the kth smallest number such that the equation

—Auy = \(Qug in Q, up € H} (Q),

has a non-trivial solution.

1.2. Why quasi-open sets?
In this section, we consider the shape optimization problem
min {E(Q) : QC D, Qopen, [Q = 1}, (1.2.1)

where D C R? is a bounded open set (a box) of Lebesgue measure |D| > 1 and F(Q) is the
Dirichlet Energy of €, i.e.

E(Q):min{;/QWu]zda:—/Qud:c: ueﬂg(m}. (1.2.2)

In the terms of the previous section, we consider the shape optimization problem (1.1.1)
with admissible set
A= {Q: Q C D, Qopen, Q= 1},

and cost functional

1
EQ) = —/ wq dz, (1.2.3)
2 Ja
where wq is the weak solution of the equation
—Awg=1 in Q, wq€ HI(Q). (1.2.4)

Indeed, wq is the unique minimizer in H}(2) of the functional

1
J(u)zz/QVu|2dx—/Qudx,

1
E(Q) = 2/Q|Vwazda;—/Qdex. (1.2.5)

On the other hand, using wq as a test function in (1.2.4), we have that

/]VwQ\de:/dem, (1.2.6)
Q Q

which, together with (1.2.5), gives (1.2.3).

and so

REMARK 1.2.1. The functional T'(Q2) = —E() is called torsion energy or just torsion. We
will call the function wq energy function or sometimes torsion function.
Before we proceed, we recall some well-known properties of the energy functions.
e (Weak maximum principle) If U C Q are open sets, then 0 < wy < wgq. In particular,

the Dirichlet Energy is decreasing with respect to inclusion

E(Q) < E(U) < 0.
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e (Strong maximum principle) wg > 0 on Q. Indeed, for any ball B = B,(z¢) C €,
by the weak maximum principle, we have wqg > wp. On the other hand, wp can be
written explicitly as

2 2

e — |z — x0]
w r=-———-—--——-——
B(z) 53 :

which is strictly positive on B, ().

e (A priori estimate) The energy function wgq is bounded in H{ () by the constant
depending only on the Lebesgue measure of Q. Indeed, by (1.2.6) and the Holder
inequality, we have

dt2 dt2
IVwal7z < wallz: <122 lwell | 2e, < Cal2 27 [Vuwgl| 2, (1.2.7)

where Cy is the constant in the Gagliardo-Nirenberg-Sobolev inequality in R<.

We now try to solve the shape optimization problem (1.2.11) by a direct method. Indeed,
let €, be a minimizing sequence for (1.2.11) and let, for simplicity, w, := wq, . By the estimate
(1.2.7), we have

|Vw,|| < Cq4, ¥n € N.
By the boundedness of D, the inclusion H{ (D) C L?(D) is compact and so, up to a subsequence,

we may suppose that wy, converges to w € HE (D) strongly in L?(D). Suppose that Q = {w > 0}
is an open set. Then, we have

e semicontinuity of the Dirichlet Energy

E(Q) < liminf E(Qy). (1.2.8)

n—oo

Indeed, since w € H{ (), we have that

1
E(Q) §/ ]Vw|2d$—/wdx
2 Ja Q

Sliﬁggf{;/ﬂlvvﬂnﬁdaﬂ—/ﬂwndvfc}

= liminf E(Q,).

n—oo

e semicontinuity of the Lebesgue measure
|| < liminf |Q,]. (1.2.9)
n—o0
This follows by the Fatou Lemma and the fact that

1o < liminf 1q,, (1.2.10)

n—o0

where 1 is the characteristics function of €. Indeed, by the strong maximum principle,
we have that

Q, = {w, > 0}.
On the other hand, we may suppose, again up to extracting a subsequence, that wy,

converges to w almost everywhere. Thus, if x € Q, then w(z) > 0 and so wy(z) > 0
definitively, i.e. = € Q,, definitively, which proves (1.2.10).
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Let Q2 C D be an open set of unit measure, containing 2. Then, we have that QcA and,
by the monotonicity of E and (1.2.8),

E(Q) < E(Q) <liminf E(Q,),

n—oo
i.e. Qisan optimal domain for (1.2.11). In conclusion, we obtained that, under the assumption
that {w > 0} is an open set, the shape optimization problem (1.2.11) has a solution. Unfor-
tunately, at the moment, since w is just a Sobolev function, there is no reason to believe that
{w > 0} is open. In fact the proof of this fact would require some regularity arguments which
can be quite involved even in the simple case when the cost functional is the Dirichlet Energy
E. Similar arguments applied to more general energy and spectral functionals can be compli-
cated enough (if even possible) to discourage any attempt of providing a general theory of shape
optimization.

An alternative approach is relaxing the problem to a wider class of admissible sets. The
above considerations suggest that the class of quasi-open sets, i.e. the level sets of Sobolev
functions, is a good candidate for a family, where optimal domains may exist. Indeed, it was
first proved in [33] that the shape optimization problem

min {E(Q) : Q C D, Q quasi-open, || = 1}, (1.2.11)

has a solution. After defining appropriately the Sobolev spaces and the PDEs on domains which
are not open sets, we will see that the same proof works even in the general framework of a
metric measure spaces and for a large class of cost functionals decreasing with respect to the set
inclusion. For example, one may prove that there is a solution of the problem

min {)\k(Q) . QC D, Q quasi-open, Q| = 1}, (1.2.12)

where A\ (£2) is variationally characterized as

Ae(2) = min max M,
KCHL(Q) veKuz0 [ u?dx
where the minimum is taken over all k-dimensional subspaces K of H}(f2). Indeed, if Q, is a
minimizing sequence, then we consider the vectors (uf,...,u}}) € (H&(Qn))]C of eigenfunctions,
orthonormal in L2. We may suppose that for each j = 1,...,k there is a function u; € H}(D)
such that uj — v’/ in L?. Arguing as in the case of the Dirichlet Energy, it is not hard to prove
that the (quasi-open) set

k
0 = J{u; # 0},

j=1
is a solution of (1.2.12).

1.3. Compactness and monotonicity assumptions in the shape optimization

In the previous section we sketched the proofs of the existence of an optimal domain for
the problems (1.2.11) and (1.2.12). The essential ingredients for these existence results were the
following assumptions:

e The compactness of the inclusion H}(D) C L?*(D) in the design region D;
e The monotonicity of the cost functional F.
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FiGure 1.1. The convex and smooth design region from Example 1.3.1 with a
minimizing sequence escaping at infinity.

In Chapter 2 we prove a general existence result under the above assumptions, even in the case
when D is just a metric space endowed with a finite measure. Nevertheless, non-trivial shape
optimization problems can be stated without imposing these conditions. For example, by a
standard symmetrization argument, the problems

min {E(Q) . Q c RY, Q quasi-open, |Q| = 1} , (1.3.1)

min {/\1(9) . Q c R Q quasi-open, |Q = 1} , (1.3.2)

have solution which, in both cases, is a ball of unit measure. It is also easy to construct some
artificial examples, in which the functional is not monotone and the domain is not compact, but
there is still an optimal set. For instance, one may take

min {)\1(9) +|EQ) - E(B)?: QC R, Q quasi-open, Q] = 1} : (1.3.3)

where B is a ball of measure 1.

In this section we investigate in which cases the compactness and monotonicity assumptions
can be removed from the theory. In the framework of Euclidean space R%, the compactness
assumption (more or less) corresponds to the assumption that D C R? has finite Lebesgue
measure (see [22] for the conditions under which the inclusion of the Sobolev Space in L?(D) is
compact). In general the existence does not hold in unbounded design regions D even for the
simplest cost functionals and ”nice” domains D (convex with smooth boundary).

EXAMPLE 1.3.1. Let the design region D C R? be defined as follows (see Figure 1.1)
D:{(:U,y)6(1,+oo)xR:%—1<y<1—£}.
Then the shape optimization problem
min {)\1(9) : QC D, Q quasi-open, | = 7r}, (1.3.4)
does not have a solution. Since the ball of radius 1 is the minimizer for A\; in R%, we have that
A1(B1) < inf {)\1(9) : QC D, Q quasi-open, Q] < 77}.

Moreover, the above inequality is, in fact, an equality since, by the rescaling property of Ay
(A1 (tQ) = t72X1(2)), we have that

M (Br, (zn)) = r2A\1(B1) = M (By), as n— oo,
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where B, (x,) C D is a sequence of balls such that r, — 1 and z,, — oo, as n — oco. On the
other hand, the ball of radius 1 is the unique minimizer for A\; in R? and there is no ball of
radius 1 contained in D.

In the case D = R?, the question of existence have positive answer in the case of monotone
spectral functionals depending on the spectrum of the Dirichlet Laplacian. The analysis in this
cases is more sophisticated and even for problems involving the simplest spectral functionals as

min{)\k(Q) . Q c RY, Q quasi-open, Q| = 1} , (1.3.5)

the proof was found only recently. The techniques involved are based on a variant of the
concentration-compactness principle and arguments for the boundedness of the optimal set and
can be applied essentially for functionals defined through the solutions of elliptic equations
involving the Dirichlet Laplacian. In fact, for general monotone cost functionals, the existence
in R? does not hold.

EXAMPLE 1.3.2. Let a : R? — (1,2] be a smooth function such that a(0) = 2 and a(x) — 1
as x — 00. Then, the shape optimization problem

min {f(Q) : Q c R Q quasi-open, |Q = 1}, (1.3.6)

does NOT have a solution, where the cost functional F is defined as

1
F(Q) = —/ udz,
2 Ja
where u € HE(Q) is the weak solution of
—div(a(z)Vu) =1 in Q, u € HLH Q).

Indeed, since a > 1 and since the ball of unit measure B is the solution of (1.2.11) in the case
D = R%, we have

E(B) < inf {f(Q) . 0 C RY, Q quasi-open, [ = 1}. (1.3.7)

On the other hand, taking a sequence of balls of measure 1, which go to infinity, we obtain that
there is an equality (1.3.7). Since, for every quasi-open set 2 of measure 1, we have

E(B) < E(Q) < F(),
we conclude that the problem (1.3.6) does not have a solution.

The monotonicity of the cost functional seems to be an assumption even more difficult to
drop. As the following example shows, even in the case of a bounded design region, the existence
might not occur:

ExaMPLE 1.3.3. Let ag, k € N be a sequence of real numbers converging to zero fast enough.

k
For example ap = 2-2"" Then the shape optimization problem
min {F(Q) . Q c RY, Q quasi-open, Q| = 1}, (1.3.8)

does NOT have a solution, where the cost functional F'is given by

+o0o
F() = ar[Aes1(Q) = Me(Q)].
k=1
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Indeed, taking a minimizing sequence 2,, such that each €,, consists of n different disjoint balls,
it is not hard to check that F(€2,) — 0. On the other hand, no set of positive measure can have
spectrum of the Dirichlet Laplacian which consists of only one value.

REMARK 1.3.4. We note that the choice of admissible set was crucial in the above example.
In fact, with the convention \;(0)) = +o0, Vk € N and oo — oo = 0, we have that the empty set
() is a solution of

min {.7-"((2) . Q c R Q quasi-open, Q| < 1}, (1.3.9)

where the cost functional F is as in (1.3.8).

1.4. Lipschitz regularity of the state functions

Once we obtain the existence of an optimal quasi-open set, a natural question concerns
the regularity of this set. In particular, we expect that the optimal sets are open and that
their boundaries are regular. In order to motivate these expectations we consider the following
problem:

min {)\1(9) 119/ Q open, QC D}, (1.4.1)
where D is a bounded open set with smooth boundary or D = R,

REMARK 1.4.1. One of the fundamental tools for understanding the behaviour of the optimal
sets for spectra optimization problems is the shape derivative (for an introduction to this topic
we refer to [72] and [71]). Let k¥ € N and let @ C D be an open set with smooth boundary
9QND. Consider a smooth vector field V : D — R¢ with compact support in D and the following
parametrized family of sets

Q= (Id+tV)(Q), teR.
If the Dirichlet eigenvalue A;(2) is simple (i.e. of multiplicity one), we can express the shape
derivative of A\; along V as

d — _ 2 d—1
@0 == [P mant, (1.42)

where uy, € H} () is the kth eigenfunction on (2, normalized in L? and n(x) denotes the unit
vector, normal to the surface 0Q in x € 9. The first variation of the Lebesgue measure |€2|
with respect to the field V' is given by

d
—| %= V-ndHl
dt’t:O| t‘ /GQ ndi

Suppose now that @ C D is an open solution of (1.4.1) with smooth free boundary D N o<.
Since the domain {2 is optimal, it is also connected and so the eigenvalue A1 () is simple. Thus,
we can apply the shape derivative from Remark 1.4.1 obtaining that

d
0= Gl @+ 10 = [ (1= VPV nant,
t=0 o0

for every smooth vector field V' with compact support in D. Since V is arbitrary we deduce the
following optimality condition
|[Vui>=1 on 9QND.

On the other hand, using the maximum principle and the regularity of D, we have that

IVur| < M (Q)||ur||pee|Vw| < C on 9QNOD,
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where w solves the equation
~Aw=1 in D, weH}D),
and C'is a constant depending on D and A;(2). Thus
|[Vui| < max{C,1} on 09,

and so, a standard P function argument shows that u; is Lipschitz continuous with constant de-
pending on D and A\ (£2). Of course, this is not a rigorous argument, since we supposed already
that 02 N D is smooth. Nevertheless, since the Lipschitz constant of u; does not depend on the
regularity of 0f2, it is natural to expect that there is a weaker form of the same argument that
gives the Lipschitz continuity of u; (and also the openness of Q).

The analogous argument in the case of higher eigenvalues is more complicated, since the
expression (1.4.2) of the shape derivative does not hold in the case of multiple eigenvalues. On
the other hand, it is expected (due to the numerical results in [85] and [7]) that the solutions of

min {)\k(Q) + Q] : Q quasi-open, Q C ]Rd}, (1.4.3)

are such that A\, (Q) = A\r_1(Q)*. For the sake of simplicity, we suppose that the optimal set *,
solution of (1.4.3), is such that

)\k_Q(Q*) < )\k_l(Q*) = )\k(Q*) < )\k+1(Q*).
Suppose that € is an open and regular set which solves the auxiliary problem?
min {(1 — M) + A1 () + 22| : Q quasi-open, QF € Q C Rd}. (1.4.4)
Suppose that A\;(€25) = Ap—1(2s). Then for any Q D Q* we have
Ae(Q5) +2|1Qs] = (1= 0)Ae(Qs) + IAk—1(Qs) + 2|Q]
< (1= M) + 01 (@) + 20 < M) + 212,
and so {25 solves the problem
min {)\k(Q) +2|Q| : Q quasi-open, Q* C Q C Rd}. (1.4.5)
Using the optimality of 25 and Q* we get
Mel925) = M) < 21927 — [9]) < 197] — [9] < A(©s) — A(7).
Thus, all the inequalities are equalities and so |Q;AQ*| =0, i.e. Q5 = Q*.

Let now 0* € [0,1] be the largest real number such that Ap(Qs<) = Ap_1(Qs)3. We now
consider the main case * € (0,1). Let 6, > ¢* be a sequence converging to 6*. Then the
sequence of )5, converges to Qs = Q* in L', ie. |Q5, AQ*| — 0. Up to a subsequence we may
suppose that

Aj(Qs,) = A (27), Vi=k—2k—1,kk+1.
Thus, we have

Ak—2(2s,) < Ap—1(25,) < A($2s,) < Ae1(Q5,),

IThere is an argument due to Dorin Bucur that proves that there exists a solution € of (1.4.3) such that
Ae(Q) = A1 (Q).

2The idea to consider the functional F5(Q) = (1 — 8)Ak(2) + 6Ar_1(Q) was inspired by the recent work [84],
where it was given a numerical evidence in the support of the conjecture that for small § the optimal sets for Ag
are also optimal for Fs.

3As we will see in Chapter 5, this condition is closed.
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for each n € N. For n large enough we can suppose that the eigenvalues \;(Qs,) and A\g—1(Qs,)
are both simple and so, we can apply the shape derivative (1.4.2) to an external vector field V,
i.e. such that V -n > 0. Thus, we have

é%L:ﬂ+[(1——5n)Ak«Id—+tv3(§%n))4—5nAk_1«Id—+tVU(§%n))+—2K1d—%tv3(95nﬂ}

= (Vo) (= (1= )V = 6, Ve, 2 + 2),
where u}! and u}_, are, respectively, the kth and (k — 1)th eigenfunctions on s, , normalized in
L%*(R%). Since V is arbitrary, we have that

(1= 6,)|VUR|? + 0, Vu > <2 on 09Qs,,

and so, both uj} and wj_, are Lipschitz continuous. Moreover, the Lipschitz constant of u} is
uniform in n (even if 6* = 0). On the other hand, the infinity norm of the eigenfunctions can
be estimated by a function depending only on A and so, we have also the uniform estimate
|lup||re < C, for every n. Thus u} converge uniformly, as n — 0o, to some bounded Lipschitz
function u : R — R.

It now remains to show that u is an eigenfunction on Q* relative to the eigenvalue A (€2*).
Since ||Vuk||2 = A(fs,), we have that v € H'(RY) and that u} converges to u weakly in
H'(RY). We first note that u = 0 outside Q*, by the L! convergence of Qs, to Q*. Thus, since
Q* is supposed to be regular, u € H&(Q*) Now it remains to check that w is a kth eigenfunction
on Q*. Indeed, since Q* C Qs,, we can use any v € H}(Q*) as a test function for uy, i.e. we
have

Vuy - Vode = )\k(an)/

upvdz,
R4

R4
and passing to the limit as n — oo, we obtain

Vu-Vvdr = )\k(an)/
Rd R

which concludes the proof that u is an eigenfunction on 2* with Lipschitz continuous extension
on R%.

uv dz,
d






CHAPTER 2

Shape optimization problems in a box

In this chapter we define two different variational convergences on the family of domains
contained in a given box. The term boz is widely used in the shape optimization and classically
refers to a bounded open set in R?. The theory of the weak-y and the strong-v-convergence! of
sets in a box was developed in the Euclidean space (see, for example, [21] and the references
therein). Nevertheless, as it was shown in [37], this is a theory that uses a purely variational
techniques and it can be adapted to a much more general (non-linear) settings as those of
measured metric spaces.

We start by introducing the Sobolev spaces and elliptic PDEs on a measured metric space
together with some basic instruments as the weak and strong maximum principles. Since the
analysis on metric spaces is a theme of intense research interest in the last years (see, for
example, [68], or the more recent [4] and the references therein), we prefer to impose some
minimal conditions on an abstractly defined Sobolev space instead of imposing more restrictive
conditions on the metric space, which may later turn to be non-necessary.

2.1. Sobolev spaces on metric measure spaces

From now on (X, d, m) will denote a separable metric space (X, d) endowed with a o-finite
regular Borel measure m.
Let L2(X,m) be the Hilbert space of the real m-measurable functions f : X — R, with

integrable square [ |f|*>dm < +o0. Consider a linear subspace H C L?(X,m) such that:
b's

(H1) H is a Riesz space (u,v € H = uVuv,uAveH),
Suppose that the application D : H — L?(X,m) is such that:

(D1) Du >0, for each v € H,

(D2) D(u+v) < Du+ Duw, for each u,v € H,
(D3) D(ou) = || Du, for each u € H and a € R,
(D4) D(uVv) = Du- Liysyy + Do Ty

REMARK 2.1.1. In the above hypotheses on H and D, we have that
D(uAv) = Dv-Lgysyy + Du- Liycy) and D(|u]) = Du.
Moreover, the quantity
2 2 1/2
luller = (a2 + 1Dul2a))

defined for u € H, is a norm on the vector space H, which makes the inclusion H «— L?(X,m)
continuous.

IThe strong--convergence is known in the literature as v or also 7, convergence. Our motivation for
introducing this new terminology is the fact that in the linear setting (Rd) the strong-v-convergence corresponds
to the strong convergence of the corresponding resolvent operators. We reserve the term v-convergence for an
even stronger convergence, corresponding to the norm convergence of these operators (see Chapter 3).

21
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REMARK 2.1.2. The main example we will keep in mind throughout this chapter is X c R%,
an open set of finite Lebesgue measure, and H = H& (X), the classical Sobolev space on X. The
operator D then is simply the modulus of the weak gradient, i.e. Du = |Vu].

We furthermore assume that:
(H1) (H,| - |la) is complete;
(H2) the norm of the gradient is lower semi-continuous with respect to the weak L?(X,m)
convergence, i.e. if for the sequence u,, € H we have that
® u, is bounded in H,
e u, converges weakly in L?(X,m) to a function u € L*(X,m),
then v € H and

/|Du2dm§hminf/ | Duy, |2 dm. (2.1.1)
X n— o0 X

REMARK 2.1.3. If the embedding H < L?(X,m) is compact, the condition (H2) is equiva-
lent to suppose that if u,, is a bounded sequence in H and strongly convergent in L?(X,m) to
a function u € L?(X, m), then we have that u € H and (2.1.1) holds.

From now on, with  we denote a linear subspace of L?(X,m) such that the
conditions H1, D1, D2, D3, D4, H1 and H2 are satisfied.

Let now p be a (not necessarily locally finite) Borel measure on X, absolutely contin-
uous with respect to m, i.e. for every E C X such that m(E) = 0, we have pu(E) = 0. We
will keep in mind two examples of such measures:

e 1 = fdm, for some measurable f;
o 1= Iq, where ) C X is a m-measurable set and

~ 0 if m(E\ Q) =0;
To(B) = 1% EmEAY) =0 (2.1.2)

+oo, it m(E\ Q) > 0.

For a Borel measure p as above, we define the space H,, as
HM:{uEH: uELQ(M)}. (2.1.3)

REMARK 2.1.4. Equipped with the norm

1/2

lullm, = (fully + ulagy) (2.1.4)

the space H, is Banach. Indeed, if u, € H, is Cauchy in H,, then w, converges in H to
u € H, then u, converges in L?(X,m) and so, we can suppose that u, converges to u m-almost
everywhere. Then u, converges to u u-almost everywhere and since u,, is Cauchy in L?(u), we
have the claim.

REMARK 2.1.5. We always have the inequality
ullg < |ulla,-
If there is a constant C' > 0 such that for every v € H,,, we have
lullm, < Cllullm,

then H, is a closed subspace of H.
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EXAMPLE 2.1.6. The space H, is not in general a closed subspace of H. In fact, suppose
that the interval X = (0,1) C R is equipped with the Euclidean distance and the Lebesgue
measure. Take H = H}((0,1)), Du = |[«/| and let p = gﬁ(fifx)& Then C°((0,1)) C H,, and
so H, is a dense subset of H. On the other hand the function u(z) = (1 — z) is such that
we H\ H,.

EXAMPLE 2.1.7. If yu = I, for some  C X, then we have that |ully = |ull 7, , for every

uw € H,,. In particular, the space H, is a closed subspace of H, which we denote by Hy(2) and
can be characterized as

_FI()(Q):{UEH: u=0 m—a.e. onX\Q}.

DEFINITION 2.1.8. Let u be a Borel measure on (X, d, m), absolutely continuous with respect
to m. We say that a function u € H is a solution of the elliptic boundary value problem

~D*ututpu=f in Hy,, ue H,, (2.1.5)

where f € L?(X,m), if u is a minimizer of the functional
=|Du|*+ zu” — fu ) dn+ < | |u|*dp, ifueH,
\2 2 2 Jx

400, otherwise.

Ty, p(u) =

REMARK 2.1.9. If p = fg, where 2 C X, then we say that u is a solution of
—D*u+u=f in Q, u e Hy(9).
LEMMA 2.1.10. Suppose that p is absolutely continuous with respect to m. Then for every

sequence u, € Hy, such that:

® Uy is bounded in H,,

e u, converges weakly in L*(X,m) to u € L*(X,m),
we have that w € H, and

lulls, <l inf [,

PRrROOF. Under the assumptions of the Lemma, we have that the sequence u,, is bounded in
L?(m + p). Thus it converges weakly in L?(m + u) to some v € L?(m + u). Since L?(m + u) C
L?(m), we have that v = u. Now using (2.1.1) and the semi-continuity of the L? norm with
respect to the weak L? convergence, we have the claim. O

ProproOSITION 2.1.11. Suppose that the Borel measure p is absolutely continuous with respect
to m. Then the problem (2.1.5) has a unique solution w, ; € H,. Moreover, we have

(i) wyp = twy s, for every t € R;

(ii) Nwppll3y, = /X fwp g dm;

(iii) if f >0, then w, ; > 0.
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PRrROOF. Suppose that u, is a minimizing sequence for J,, y in H,. Since J,, r(0) = 0, we can
assume that for each n > 0

1 1
3 [ (Dul ) ot [ addu< [ fundm < Flagnllunl o,
X X X

and thus, we obtain
lunll2gmy < llunllm, < 20 f[L2()-

Up to a subsequence we may suppose that u,, converges weakly to some u € L?(m). By Lemma
2.1.10, we obtain that

Jyp(u) < liminf J, ¢(up),

n—oo

and so, u € H}L is a solution of (2.1.5).
Suppose now that u,v € H, are two minimizers for J, ;. Then

T s (u + ”) < Jup(u) + Ju,f(v).
2 2

Moreover, by the strict convexity of the L? norm, we have v = tu. Since the function j(t) :=
Ju,f(tu) is a polynomial of second degree in ¢ € R with positive leading coefficient, it has unique
minimum in R and thus we have necessarily ¢t = 1.

To prove (i), we just note that for every u € H, we have J,, ¢ (tu) = t*J,, ;(u).

Point (ii) follows by minimizing the function ¢ — J,, s(tw,, r), for t € R.

For (iii), we note that, in the case when f > 0, we have the inequality J, r(|u|) < J, f(u),
for each u € H,, and so we conclude by the uniqueness of the minimizer of J,, r. O

REMARK 2.1.12. From the proof of Proposition 2.1.11 we obtain, for any f € L?(X,m) and
1 << m, the estimates

1 1
e, < I fllzegny  and [ Jup(wup)| = 2/Xfwu,f dm < S| flfzgny- (2:16)

For the solutions w,, y of (2.1.5), we have comparison principles, analogous to those in the
Euclidean space R?.

ProproSITION 2.1.13. Let p be an absolutely continuous measure with respect to m. Then
the solutions of (2.1.5) satisfy the following inequalities:
(i) If u < v and f € L*(m) is a positive function, then w, s < w, .
(ii) If f,g € L*(X,m) are such that f < g, then wy, f < wy, 4.

Proor. (i) We write, for simplicity, u = w, y and U = w,, y. Note that we have u > 0 and
U > 0. Consider the functions uV U € H, and u AU € H,. By the minimizing property
of uw and U, we have

J,/7f(u/\ U) > JVJ(U), Ju,f(U\/ U) > J,u,f(U)-
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We decompose the space as X = {u > U} U{u < U} to obtain

1 1 1
/ (]DU|2 +-U? — fU) dm + / U?dv >
{usU} \2 2 2 Jpusuy
1 1 1
> / (\Du|2 + —u? — fu) dm + / u® dv,
{us>U} \2 2 2 Jusuy
1 1 1
~|Dul® + Zu® — fu) dm + = u? dp >
2 2 2
{u>U}nw {u>U}

1 1 1
> / <\DU!2 + -U? - fU> dm + / U? dy.
{u>U} \2 2 2 Jiwsuy

(2.1.7)

Thus, we have

/ (u2 — U2) dp > / (u2 — U2) dv,
{u>U} {u>U}

and since u? — U2 > 0 on {u > U} and v > u, we have also the converse inequality and so

/ (u? = U?) dp = / (u* = U?) dv.
{u>U} {u>U}

Using again (2.1.7), we obtain that also

/ Lpop+tive— v dm:/ LpuP+2e2 — fu) dm,
{u>U} \2 2 {u>U} \2 2

and so
Jof(uANU) = J, ¢(u) and JufuvU)=J,U).

By the uniqueness of the minimizers, we conclude that © < U.
(ii) Let u = wy s and U = wy 4. As in the previous point, we consider the test functions
uVU,u AU € H,. Using the optimality of v and U, we have

Jug(uVU) = Jug(U), JufwAU) = Jy 5 (u).

We decompose the metric space X as {u > U} U {u < U} to obtain

1 1 1
/ <|Du\2+u2—ug> dm—l—/ u? dp
{u>v}y \2 2 2 Jfusuy

1 1 1
> / (]DU\Q +-U? - gU> dm + / U2 dp,
{u>U} \2 2 2 Jwsuy

> / <1|Du|2 + 1u2 - fu> dm + 1/ u? dp.
{u>U} \2 2 2 Jiwsty



26 2. SHAPE OPTIMIZATION PROBLEMS IN A BOX

Then, we have

0 > / <1]Du|2 + luz - fu) dm + 1/ w? dp
{u>U} \2 2 2 Jiusuy
1 2 1 2 2
- ZIDUP + =U dm+ U2 du
{u>U} \2 2 {u>U}

2/ g(u—U)dm—/ flu=U)dm = / (9—f)lu=U)dm > 0.
{u>U} {u>U} {u>U}

Thus, we obtain the equality

1
/ < |Du]2—|— —u? fu) dm—i—2/ u? dp
{u>U} {u>U}
1 2 1o 1 2
= —|DU|*+ =U* - fU ) dm + = U= du,
2 2 2
{u>U} {u>U}

J,wc(u) = J%f(u AU).

By the uniqueness of the minimizer of J, ¢, we conclude that U > u.

and thus we have

0

COROLLARY 2.1.14. Suppose that w C 2 and that f € L?>(X,m) is a positive function. Then
we have wo § > w,, r, where wq 5 and w,, ; are the solutions respectively of

—DQUJQ’JC +woyr=[f in £, wo, 5 € ﬁO(Q),

—D2ww,f +we,p=f in w, Wy, f € f[o(w).
PROOF. It is enough to note that I < I, and then use Proposition 2.1.13 (a). O
The following lemma is similar to [51, Proposition 3.1].

LEMMA 2.1.15. Let p be a measure on X, absolutely continuous with respect to m. For
u € H, and e > 0 let u. be the unique solution of the equation

— D%up 4+ ue + pue + e tue = e tu in H,, us € Hy,. (2.1.8)

Then we have

(a) ue converges to u in L*(X,m), as € — 0, and

| — el £2(m) < e2|ullm,; (2.1.9)
(b) lluellm, < |ullg,, for every e >0, and
el = M el ; (2.1.10)

(c) if u>0, then u. > 0;

(d) if u < f, then u. < 5_1Cwu7f.
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PROOF. We first note that u. is the minimizer of the functional J. : L?(X,m) — R defined

1
Js(v)—/X(\Dv2+v2) dm—i—/XUQd,u—l—g/X]v—u]Qdm.

Since J.(us) < J-(u), we have

as

1
7, + <l = wellZ2ny < llull,

and thus we obtain (a) and the inequality in (). Since u. — u in L?(X,m) and u. is bounded
in H,, we can apply Lemma 2.1.10 obtaining
< limi <li <
el . < lim inf fjuc, < hsni%gplluellm < [l
which completes the proof of (b). Point (¢) follows since J:(|uc|) < Jz(us), whenever v > 0. To
prove (d) we just apply the weak maximum principle (Proposition 2.1.13, (7)) to the functions
ety <e 0. a

REMARK 2.1.16. We note that if H,, endowed with the norm || ||z, is a Hilbert space, then
ue converges to u strongly in H, as ¢ — 0. More generally, if H, is uniformly convex, then u.
converges to u strongly in H, (see [16, Proposition III.30]).

We will refer to the following result as to the strong maximum principle for the solutions of
(2.1.5).

PROPOSITION 2.1.17. Let o be a measure on X, absolutely continuous with respect to m. Let
W € L2(X,m) be a strictly positive function on X such that for every u € H we have Y Au € H.
Then for every u € H,, we have that {u # 0} C {w,» > 0}, where wy, y is the solution of the
equation
_Dzwu,w T W+ pwy =P i Hy, Wy € Hye

PrOOF. Considering |u| instead of u, we can restrict our attention only to non-negative
functions. Moreover, by taking u A 1, we can suppose that 0 < u < . Consider the sequence
ue of functions from Lemma 2.1.15. We have that u, < 6*1wu,¢ and so

{ue > 0} C {wyy > 0}.
Passing to the limit as € — 0, we obtain
{u>0} C{w,y >0}
O

COROLLARY 2.1.18. Let 11 and s be two strictly positive functions satisfying the conditions
of Proposition 2.1.17. Then we have

{wﬂﬂbl > O} = {w,u‘)wZ > 0}'

DEFINITION 2.1.19. We say that H has the Stone property in L?(X,m), if there is a function
W € L2(X,m), strictly positive on X, such that for every u € H we have ) Au € H.

REMARK 2.1.20. If there is a function ¢ € H, strictly positive on X, then H has the Stone
property in L2(X,m).
REMARK 2.1.21. For a generic Riesz space R, we say that R has the Stone property, if for

every u € R, we have u A1 € R. If the constant 1 is in L?(X,m) and if H has the Stone
property, then H has the Stone property in L?(X,m), in the sense of definition 2.1.19.
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EXAMPLE 2.1.22. Let X = R? and m be the Lebesgue measure. Then the Sobolev space
HE(Q), for any (bounded or unbounded) set 2 C R%, has the Stone property in L?(R%). In fact
the Gaussian e~12*/2 is strictly positive Sobolev function on R%,

DEFINITION 2.1.23. Suppose that the space H has the Stone property in L?(X, m). For every
measure 1 on X, absolutely continuous with respect to m, we define the set Q, C X as

Q“ = {w,“/, > 0}.

REMARK 2.1.24. We note that, after Corollary 2.1.18, the definition of 2, is independent
on the choice of 1.

COROLLARY 2.1.25. Suppose that H has the Stone property in L? and let Q C X be a Borel
set. Then, setting p = Iq, we have

0, CcQ  and  Ho(Q) = Ho().

DEFINITION 2.1.26. Suppose that H satisfies the Stone property in L*(X,m). We say that

the Borel set 2 C X is an energy set, if = Quz, where u is the measure Iq.

REMARK 2.1.27. For each u € H the set Q = {u > 0} is an energy set. In fact, setting
p = Io, we have that {w,, > 0} C Q = {u > 0}, since w, € H,. On the other hand, using
Proposition 2.1.17, we have {u > 0} C {wj, 4 > 0}.

2.2. The strong-v and weak-vy convergence of energy domains

Throughout this section we will assume that H satisfies the properties H1, D1, D2, D3, D4,
H1 and H2 and that H has the Stone property in L?>(X, m). Moreover, we will need the further
assumption that the inclusion H — L2(X,m) is locally compact, i.e. every sequence u, € H
bounded in H admits subsequence for which there is a function u € H such that u, converges to
uin L2(Bg(x), m), for every ball Bg(z) C X. Under these assumptions, we introduce a suitable
topology on the class of energy sets {2, which involves the spaces ﬁo(Q) and the functionals
defined on them as the first eigenvalue of the Dirichlet Laplacian, the Dirichlet Energy, etc.

2.2.1. The weak-y-convergence of energy sets. From now on, for a given Borel set
Q C X and a function f € L?(X,m) we will denote by wq, s the solution of the problem

—D*’u+u=f in Q  wue Hy),
i.e. the minimizer of the functional Jg  := JTQ / in H.

DEFINITION 2.2.1. Suppose that v is a Stone function in L*(X,m) for H. We say that a
sequence of energy sets Q,, weak-y-converges to Q if the sequence (wq,, ), ~, converges strongly
in L?(X,m) to some w € L*(X,m) and Q = {w > 0}.

REMARK 2.2.2. We will prove later in Corollary 2.2.8 that the notion of the weak-v-
convergence is independent on the choice of .

REMARK 2.2.3. We first note that w € H and the set ) from Definition 2.2.9 is an energy
set. Indeed, since wy, := wq,, , satisfies

—D*wp +wp, =1 in Q, wy, € Ho(Qy).

2The equality is intended up to a set of zero m-measure, i.e. m(QAQ,) = 0.



2.2. THE STRONG-v AND WEAK-v CONVERGENCE OF ENERGY DOMAINS 29

By the first estimate from (2.1.6) we have
[wnllz < 19l L2m), ¥ neN.

Thus, since w, — w, we have that w € H and
lwl|g < lminf [jwn||g < [[¢]L20m)-
n—oo
Now, by Remark 2.1.27, Q = {w > 0} is an energy set.

REMARK 2.2.4. We note that the equation w = w, , where p = fg, does not necessarily
hold. In the case X = R? and H = H(R?), we will see that w is of the form wj, s, for some
measure pu > Iq.

REMARK 2.2.5. If the inclusion H < L?(X,m) is locally compact, then the family of energy
sets is sequentially compact with respect to the weak-vy-convergence. Indeed, as we showed in
Remark 2.2.3, the sequence wgq,, . is bounded in H, for any choice of €2,,. Moreover, wq, 4 < w,
where w is the solution of

~D*w+w=1v in X, w € H.

Thus, by the following Lemma 2.2.6, we have that wq,  has a subsequence convergent in
L3(X,m).

LEMMA 2.2.6. Suppose that the inclusion H — L*(X,m) is locally compact. Let w, €
L?(X,m) be a sequence strongly converging in L*(X,m) to w € L*(X,m) and let u, € H be
a bounded sequence in H such that |u,| < wy, for every n € N. Then up to a subsequence u,
converges strongly in L?(X, m) to some function u € H.

PROOF. By assumption (#2), we have that u,, converges weakly in L?(X,m) to some u € H.
Thus, it is sufficient to check that the convergence is strong, i.e. that the sequence u,, is Cauchy
in L?(X,m). Let Bg(z) C X be a ball such that fX\BR(x) w? dm < €. Then for n large enough

we have
/ uidmﬁ/ w? dm < 2.
X\Br() X\Bg(z)

By hypothesis we have that up to a subsequence u,, converges to u in L?(Bg(z), m). Thus for
n,m € N large enough we get

/ |un—um|2dm§85+/ Uy, — U |* dm < 9e.
X X\Bgr(z)
0

PROPOSITION 2.2.7. Suppose that the space H has the Stone property in L*>(X, m) and that
the inclusion H < L?(X,m) is locally compact. Suppose that a sequence of energy sets €,
weak-y-converges to ) and suppose that (up)n>0 C H is a sequence bounded in H and strongly
convergent in L*>(X,m) to a function u € H. If u, € ﬁIO(Qn) for every n, then u € I;TO(Q).

Proor. For sake of simplicity, we set wy, := wgq,, , and w to be the strong limit in L?(X,m)
of wy,. Since |u,| also converges to |u| in L?(X,m), we can suppose u, > 0 for every n > 1.
Moreover, since u, A 1) converges to u A ¢ in L?>(X,m) and {u > 0} = {u A > 0}, we can
suppose u, < 1, for every n < 1. For each n > 1 and every € > 0 we define u, . to be the
solution of

—D2un75 +(1+ 5_1)un,8 =elu, in Q, Upe € ﬁfo(Qn).
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For every € > 0, we have that u, . is bounded in H and u, . < e lw,. Since w, converges to
w in L*(X,m), we apply Lemma 2.2.6 to obtain that there is a function u. € H such that u,, .
converges strongly in L2(X,m) to u.. Moreover, we have u. < e !w and so, u. € I;TO(Q). On
the other hand, for every n and e, we have

[[un — Un,EHLQ(m) < Vel|unlla < VeC,
and so passing to the limit in L2, we have
llu = el L2my < VEC,
which implies that u. — u, strongly in L2(X,m) as € — 0, and so u € Hy(Q). O

COROLLARY 2.2.8. Suppose that H has the Stone property in L*(X,m) and that the inclusion
H < L?(X,m) is locally compact. Let ¢ and v be two Stone functions and let 0, be a sequence
of energy sets such that wq, , converges in L?(X,m) to some w, € H and wq,, 4 converges in
L*(X,m) to some wy, € H. Then {wy > 0} = {w, > 0}.

PRroOOF. Consider the function £ = ¢ A . We note that £ is a Stone function for H in
L%*(X,m). The sequence wgq, ¢ is bounded in H and is such that wq, ¢ < wq, ,. By Lemma
2.2.6, we can suppose that wq, ¢ converges in L?(X,m) to some we. Since wg < w,,, we have
that {wg > 0} C {w, > 0}. On the other hand, by Proposition 2.2.7, we have the converse
inclusion, i.e. {wg¢ > 0} = {w, > 0}. Reasoning analogously, we have {w¢ > 0} = {w, > 0}
and so, we have the claim. O

2.2.2. The strong-vy-convergence of energy sets.

DEFINITION 2.2.9. Suppose that v is a Stone function in L*(X,m) for H. We say that a
sequence of energy sets Sy, strong-y-converges ) if the sequence (wq,, 1)
in L*(X,m) to the solution wq., € L*(X,m).

n>1 COnverges strongly

In what follows we will show that the definition of the strong-vy-convergence is independent
on the choice of the function v (see Corollary 2.2.13). We start with two technical lemmas.

LEMMA 2.2.10. Suppose that H and D satisfy the assumptions (H1), (D1), (D2), (D3),
(D4), (H1) and (H2). Suppose that u, € H and v, € H are two sequences converging strongly
in L?(X,m) tou € H and v € H, respectively. If we have

/|Du|2 m = hm / | Duy, |2 dm and /\DUPdm: le/|Dvn|2dm,
X nmeeJXx

then also

/ |D(uV v)|? dm = hm / |D(uy, V vp)|? dm,
X
/ |ID(uAv)[*dm = lim / |D(ty Avy)|? dm.
X n—oo X
PROOF. Since we have that u, A v, — u Av and u, V v, — u Vv in L?(X,m), we have

/|D(u\/v)|2dm gliminf/ |D(up, V v,)|? dm,
X X

n—oo

(2.2.1)
/ |D(u A v)|>dm <hm1nf/ |D(un Avy)|? dm.
X
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On the other hand we have

1D A )y + 1DV 0) a0y = 1Dl ) + D0
=l (1DunllF ) + 1000l ) (22

= lim_ (1D (un A V)3 + 1D(n v 0a) 20, ) -

n—o0

Now the claim follows since by (2.2.2) both inequalities in (2.2.1) must be equalities. O

LEMMA 2.2.11. Suppose that the function » € L*>(X,m) is a Stone function for H and that
the inclusion H < L*(X,m) is locally compact. Suppose that the sequence wQ, . CONVErges
strongly in L*(X,m) to wg.y. Then, for every v € Ho(Q), there is a sequence vy, € Ho(Qy)
strongly converging to v in L*(X,m) and such that

/ |Dv|? dm = lim / | D, |* dm. (2.2.3)
X n—oo X
PROOF. We set for simplicity

Wy, 1= WQ,, o and W =1 WO )

We take for simplicity v > 0. The proof in the case when v changes sign is analogous. We
first show that for v € Hy(Q2) the sequence v, = v A (tw) € Hy(2) converges to v, strongly in
L?(X,m) as t — +00 and moreover the norm of the gradients converge

/|Dv|2dm: lim/ | Du|? dm.

Indeed, since v; — v in L%(X,m), we have the semi-continuity

/ ]Dv|2dm<liminf/ |Dvy|* dm.

For the other inequality, we note that Jo (w) < Joy(w V v), and thus

¢ 2 1 1
/ <\Dw[2 + —w? — twaﬁ) dm < / <Dv[2 + 0% — vw) dm, (2.2.4)
{tw<v} 2 2 {tw<v} 2 2

which gives

t2/ |Dw|?dm < / |Dv|? dm —i—/ (v? — t2w?) dm
{tw<v} {tw<wv} {tw<wv}

(2.2.5)
= [ v (Pl ~ o)
w<v
Now since |Dui| = |Dv|1gy<pw) + t{Dw|1 <0y, We have
/X |Dvy|? dm < /X | Dv|? dm + <”UH%2(m) - HUtH%Q(m)) , (2.2.6)

which gives

/ |Dv|? dm Zlimsup/ | Duy|? dm.
X t—o0 X
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Thus, by using a diagonal sequence argument, we can restrict our attention to functions
v E I:TO(Q) such that v < tw, for some t > 0. Up to substituting ¢ by ¢y, we can assume ¢t = 1.
We now suppose v < w and define v,, = v A w,, € ﬁo(Qn).

Since w, — w in L2(X7 m) and since w and w, minimize Jo, and Jo, 4, we get

/ | Dwy, |2 dm = / (W) — w?) dm —— (ww—w2)dm:/ | Dwl|? dm.
X X X

n—oo X

Now the claim follows by Lemma 2.2.10. d

PROPOSITION 2.2.12. Suppose that the function ¢ € L?*(X,m) is a Stone function for H
and that the inclusion H — L%*(X,m) is locally compact. Suppose that the sequence wQ,, 4
converges strongly in L*(X,m) to wq.. Then, for every function f € L*(X,m), we have that
wa,, r converges strongly in L*(X,m) to wq ;.

Proor. We first note that, up to a subsequence, wgq,, r converges to some w € H. Moreover,
since ,, weak-y-converges to ), we have that w € Hp(£2). We now prove that w minimizes the
functional Jo s. Let v € Ho(2) and let v, € Ho(€2,) be a sequence converging to v in L?(X,m)

and such that
/ |Dv|?> dm = lim / | Dv, |* dm.
X n—o0 X

We note that such a sequence exists by Lemma 2.2.11. Thus we have

Jo,f(v) = lim,e Ja, f(vp) > liminf, o Ja, r(wa, r) > Jo,r(w),
which proves that w is the minimizer of Jo f. U
COROLLARY 2.2.13. Suppose that the functions p,v € L?>(X,m) are Stone function for H
and that the inclusion H — L*(X,m) is locally compact. Then the sequence wq,, , converges

strongly in L*(X,m) to wq,,, if and only if, the sequence waq,,  converges strongly in L*(X,m)
to we -

Before we continue with our next proposition we define, for every Borel set  C R%, the
operator || - Hﬁo(Q) : L2(X,m) — [0, +00] as

fully g = 4 Il i € Ho(®),
Ho () +00, otherwise.

We also recall the definition of I'-convergence of functionals:
DEFINITION 2.2.14. Given a metric space (X,d) and sequence of functionals F,, : X —

R U {400}, we say that F,, T'-converges to the functional F': X — R U {400}, if the following
two conditions are satisfied:

(a) (the I'-liminf inequality) for every sequence x,, converging to x € X, we have
F(x) <liminf F,(x,);
n—ro0

(b) (the T'-limsup inequality) for every x € X, there exists a sequence xz, converging to x,
such that

F(z) = lim F,(z,).?

n—oo

3Due to the I-liminf inequality this property is equivalent to F'(z) > limsup,,_, ., Fn(xn).
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PROPOSITION 2.2.15. Suppose that H has the stone property in L?(X,m) and that the
inclusion H — L*(X,m) is locally compact. Then a sequence of energy sets 0, C X strong-y-
converges to the energy set S, if and only if, the sequence of operators || - ”ﬁo(ﬂn) I'-converges in

LQ(Xa m) to || - ||f{r0(g)‘

PROOF. Suppose first that 2, strong-y-converges to Q. Let u, € L?(X,m) be a sequence
strongly converging to u € L*(X,m). Let u, be such that lim, ||un||f{,0(Q ) < t+oo. Then

un € Ho(Qy), for every n € N and ||jup ||z < C. Then u € Hy(Q) and by the semi-continuity of
the norm H, we have

HuHﬁO(Q) < hnn_l)io%f Huan]O(Qn)-

Let now u € Hy(€2). Then, by Lemma 2.2.11, there is a sequence u, € Hy(f,) such that

HUHﬁO(Q) = nlggo HunHﬁO(Qn)v

which proves that || - [-converges in L?(X,m) to || - Hﬁo(ﬂ)'

HE’o(Q )
Suppose now that the I'-convergence holds and let ¢ € L?(X, m) be a Stone function for H.
Since the functional ¥(u) := [} wi) dm is continuous in L?(X,m), we have that the sequence of

functionals 1
— 2 _
Jons(w) = Sl ) — (),
I-converges in L*(X,m) to Jo. Thus the sequence of minima wq, , converges in L?(X,m) to
some w € H, which is necessarily the minimizer of Jq . 0

2.2.3. From the weak-vy to the strong-y-convergence. Let ¢ € L?(X,m) be a Stone
function for H and let €1, be a sequence of energy sets such that wq, 4 converges in L*(X,m)
to w. In this subsection we investigate the relation between the functions w and wq , where
Q= {w > 0}. We will mainly consider the case when m is a finite measure and v is a positive
constant. Fixing ¢ = 1, we will say that the sequence §2,, strong-y-converges to €, if w = wq 1.
We will prove in Proposition 2.2.18 that in general the inequality w < wgq 1 always holds. The
equality does not always hold as some classical examples show (see [46] or [21]).

LEMMA 2.2.16. Suppose that the inclusion H < L*(X,m) is locally compact and that v
is a Stone function in L*(X,m). Consider a sequence S, of energy sets, weak-y-converging to
the energy set €, and the sequence of functions wq,,  converging in L*(X,m) to w such that
{w >0} = Q. Suppose that for each n > 1 we have that Q C Q,. Then w = wq .

Proor. For the sake of simplicity we set w, = wq,, . For any set ¥ C X, we consider the
functional Jg : L2(X,m) — R defined as

1 1 ~
Jg(u) = / <2|Du|2 + §u2 — 1/JU> dm +/ u?dlp.
X X

Since €, is the unique minimizer of Jq, , by the semi-continuity of the norm | D(:)|[2(m), We
have
Jo(w) <liminf Jo, (w,) < liminf Jo, (woy) = Jo(wo,y),

where we used wq 4 as a test function in ﬁo(Qn). Since wgq y is the unique minimizer of Jgo, we
obtain w = wgq . O

LEMMA 2.2.17. Let H and D satisfy the conditions H1, D1, D2, D3, D4, H1 and H2 and
suppose that
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(H2) H has the Stone property, i.e. ifu € H, then u N1 € H;
(D5) for every u € H and ¢ € R, Du = 0 m-almost everywhere on the set {u = c}.

Then we have:
(i) Ifu € H and € > 0, then (u—¢e)* € H;
(i) If u € H and e > 0, then D((u —e)%) = Lyysey Du;
(iii) If Q C X and f € L?>(X,m), then we have
(wa,; — )" = wq, (7o) < wa.f,

where Q. = {wq 5 > €}.

PROOF. Claim (i) follows by the equality (u — &)™ = v —u A e. For (ii) we note that, by
(D5) D((u — &)™) vanishes on X \ {u > £}. On the other hand, we have

D(u—uAne)<Du+ D(uAe) and D(u) < D(u—uANe)+ D(uNne),
and since D(u Ae) = 0 on {u > €}, we obtain (ii). To prove (iii), we set w = wq,; and note
that w, := (wq s —€)" is the unique minimizer of
1 1 ~
J(u) = / <2|Du|2 + i(u +wAe) = flud+wA e)) dm, u € Hop(£,).
X
Thus, w, satisfies the equation
—D*w.4w.=f—¢ in we € ﬁIO(QE).
U

In the next Proposition we will suppose that H satisfies also conditions (H2) and (D5) from
Lemma 2.2.17. Under these assumptions we will prove a result resembling the weak maximum
principle for weak-y-limits. We note that in R¢ this result is immediate due to the characteri-
zation of the limit w = lim,, o wq.

PROPOSITION 2.2.18. Let ) € L*(X,m) be a Stone function for H. Suppose that the inclu-
sion H — L*(X,m) is locally compact and that H satisfies (H1), (H2), (D1), (D2), (D3), (D4),
(D5), (H1) and (H2). Suppose that the sequence 2, of energy sets is such that wq,, 4 converges
strongly in L*(X,m) to w € H. Then, setting Q = {w > 0}, we have w < wq 4.

Proor. Consider, for € > 0, the energy set €, = {wq, > €}. By Lemma 2.2.17, we have
(we,, y» — g)t < WQe o < WO U1 (2.2.7)

Up to a subsequence, we may suppose that WQe UQ,yp Converges strongly in L2(X ,m) to some
w® € H. On the other hand, we note that (wgq, , > €)™
so, v5 — v strongly in L?(X,m), where

converges in L?(X,m) to (w—e)* and

1 1
v;izl—g(wgmw/\e) and vazl—g(w/\s).
Thus we obtain that v, A was g,y converges in L2(X, m) to v¢ A w®. We now have
vy, =0 on and wosuny =0 on X\ (2, UQ),

and thus we obtain that

vy, ANwasuny =0 on X\ Q.
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Passing to the limit for n — oo, we have v° Aw® € Hy(Q) and since v° = 1 on X \ ©, we deduce
that w® € Hp(f2). By Lemma 2.2.16, we have

w® < Wiwe>0t,p < WQp- (2.2.8)

On the other hand we have wq 4 < wazUq,yp, for every n € N. Passing to the limit as n — oo
we get w® > wq 4, which together with (2.2.8) gives wq = w®. We now recall that after passing
to the limit as n — oo in (2.2.7), we have

(w—e)t < we. = wqy.
Since € > 0 is arbitrary, we obtain w < wq . O
Now we can prove the following result, which is analogous to [30, Lemma 4.10].

PROPOSITION 2.2.19. Suppose that H has the Stone property in L?(X,m), that the inclusion
H < L*(X,m) is locally compact and that H satisfies (H1), (H2), (D1), (D2), (D3), (D4), (D5),
(H1) and (H2). Suppose that (n)n>1 is a sequence of energy sets which weak-y-converges to
the energy set Q). Then, there exists a sequence of energy sets (Q;)nzl strong-vy-converging to )
such that for each n > 1 we have the inclusion Q, C Q.

PROOF. Let ¢ € L?(X,m) be a Stone function for H. Consider, for each ¢ > 0, the sequence
of minimizers wq,,uos , where Q. = {wq 4 > €}. We can suppose that for each (rational) e > 0
the sequence is convergent in L?(X,m) to a positive function w. € H.

Consider the function v, = 1— %(’LUQ#, Ae), which is equal to 0 on 2. and to 1 on X \ Q. Then
we have that the sequence wq, gy A Ve € Ho(S),) converges to w. A v, strongly in L2(X, m)
and is bounded in H. Then, since (), weak-y-converges to €}, by Proposition 2.2.7, we have
We AN Ve € ﬁo(Q). Since ve = 1 on X \ Q, we have that also w. € ﬁO(Q) and so, by Proposition
2.2.18, we have w. < wg . On the other hand, by the weak maximum principle and Lemma
2.2.17, we have

(way — )" < wa.p < wa, 0.y
and thus, passing to the limit as n — oo, we obtain
(woy —e)T < we < wg,
from where we can conclude by a diagonal sequence argument. O

REMARK 2.2.20. This last result is useful in the study of functionals defined on the family
of energy sets £(X). More precisely, in the assumptions of Proposition 2.2.19, suppose that

F:E(X) — [0, +00],

is a functional on the family of energy sets such that:

(J1) F is lower semi-continuous (shortly, l.s.c.) with respect to the strong-v-convergence, that
is

F(Q) < liminf F(Q,) whenever €, strong=, o

n—o0 n—oo

(J2) F is monotone decreasing with respect to the inclusion, that is

F(Q1) > F(Q2) whenever p C Qo.
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Then F is lower semi-continuous with respect to the (weaker!) weak-vy-convergence. Indeed,
suppose that (), weak-v-converges to ). By Proposition 2.2.19, there exists a sequence of
energy sets (€2,),>1 strong-y-converging to € and such that 2, C €. Thus we have

. . ’ . .
F(Q) < hnrgloréff(ﬂn) < hnrggéf}"(ﬁn).

2.2.4. Functionals on the class of energy sets. In this subsection we analyse some of
the functionals defined on the family £(X) of energy sets in X.

For a given positive m-measurable function h : X — [0, +oc|, we consider the mass of 2
with respect to h

M () = / hdm.
Q
If, for instance, h is constantly equal to 1, then M (Q2) = m(Q).

LEMMA 2.2.21. For every positive m-measurable function h : X — [0,400], the functional
My, - E(X) — [0, +00] is lower semi-continuous with respect to the weak-vy-convergence.

. . k— .
PRroOF. Consider a weak-v-converging sequence (1, L, Q and the function w € H
n—oo

such that {w > 0} = Q and wq, — w in L?(X,m). Up to a subsequence, we can assume that
wgq,, () — w(x) for m-almost every z € X. Then 1 < liminf,_, 1o, and so, by Fatou lemma

M, () = /X Iohdm < liminf/X 1o, hdm = hnlgio%f M ().

n—oo

O

DEFINITION 2.2.22. For each Borel set Q € B(X) the “first eigenvalue of the Dirichlet
Laplacian” on § is defined as

Q) :inf{/ |Dul2dm : u € Ho(Q), /u2dm:1}. (2.2.9)
Q Q
More generally, we can define Xk(Q), for each k > 0, as
Me(Q) = inf Sup{/ |Duf*dm : u € K, /u2dm = 1}, (2.2.10)
KCHp(£) Q Q

where the infimum is over all k-dimensional linear subspaces K of Hy(2).

DEFINITION 2.2.23. For each f € L?*(X,m) and Q C X the Dirichlet Energy of Q with
respect to f is defined as

Ef(ﬂ):inf{;/Q]Dude-i-;/QUde—/Qufdm: ueﬁo(m}. (2.2.11)

PROPOSITION 2.2.24. Suppose that 2 C X is an enerqgy set of positive measure such that the
inclusion ﬁo(Q) < L?(X,m) is compact. Then there is a function ugq € ﬁo(Q) with ||ugl|z2 =
1 and such that [o|Dul*dm = M(Q). More generally, for each k > 0, there are functions
Up, ..., U € ﬁo(ﬂ) such that:

(a) llujllp2(x,my = 1, for each j =1,... k,
(b) [y uiujdm =0, for each 1 <i<j <k,
(¢) [x |Dul*dm < Xk(Q), for each u = cyuy + -+ - + aguy, where a3 + -+ +ai = 1.
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PROOF. Suppose that (up)n>1 C Hy(Q) is a minimizing sequence for A;(Q) such that
unllp2(x;my = 1. Then (up)n>1 is bounded with respect to the norm of H and so, there is
a subsequence, still denoted in the same way, which strongly converges in L?(X,m) to some
function u € H:

L2(X,m)
u, —— u € H.

n—oo

We have that ||ul/;2 = 1 and
/ |Du|? dm < liminf/ | Duy|? dm = X\ ().
QO n—oo O
Thus, u is the desired function. The proof in the case k > 1 is analogous. O

PROPOSITION 2.2.25. Suppose that H has the stone property in L?(X,m) and that the
inclusion H < L2(X,m) is compact. Then the functional Ay, : £(X) — R defined by (6.4.4) is
decreasing with respect to the set inclusion and lower semicontinuous with respect to the weak-
~y-convergence.

PROOF. The monotonicity of Xk with respect to the set inclusion holds since w C €2 implies
Ho(w) C Ho().

. N g k— .
We now prove the lower semi-continuity of A\z. Let €, —— ' €, that is for some Stone

n—o0
2
function ¢ € L*(X,m) we have wq, 4 DX, with w € H and Q2 = {w > 0}. We can
n—oo

suppose that the sequence Xk(Qn) is bounded by some positive constant C. Let for each n > 0
the functions uf,...,u} € Ho(Q,) satisfy the conditions (a),(b) and (c) of Proposition 2.2.24.
Then, we have that up to a subsequence we can suppose that v} converges in L?(X,m) to some

function u; € H. By Proposition 2.2.7, we have that u; € ﬁo(ﬂ), Vj=1,...,k. Consider the
linear subspace K C Hy(f2) generated by wui,...,ux. Since uy,...,u; are mutually orthogonal
in L?(X,m), we have that dim K = k and so

Xk(Q)<sup{/Q|Du\2dm: ue K, /Qu2dm:1}.

It remains to prove that for each u € K such that ||ul|z2(x n) = 1, we have
/ |Du)? dm < lim inf A\ (2,).
X n—oo

In fact, we can suppose that u = ayuj +- - -+ aguy, where a3 +- - -—l—a% = 1. Thus u is the strong
limit in L?*(X, m) of the sequence u™ = ajuf +- -+ aguf € Ho($,) and, by the semi-continuity
of the norm of the gradient, we obtain

/ |Dul? dm < liminf/ |Du™|? dm < liminf A, (),
X n—oo X n—oo
as required. N

REMARK 2.2.26. If we drop the compactness assumption for inclusion H — L%(X,m),
then the semi-continuity of Xk with respect to the weak-vy-convergence does not hold in general.
For example consider X = RY and H = H'(RY). Taking as a Stone function the Gaussian
Y(x) = e*|x‘2/2, we have that the sequence of solutions* of

—Aw, +w, =1 in Bi(zy), wy, € H&(Bl(xn)),

“In the Euclidean space R? we have H{(B) = HA(B), for every ball B.
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converges strongly to zero in L?(R%), as x,, — 0o, since we have |lwl| 2 < 1] 2B, (2))- Thus
the sequence of unit balls Bj(x,) strong-y-converges to the empty set, as |z,| — oo and so the
semi-continuity does not hold:

M(B1) = liminf Ay (B () < A (B) = +oc.

PROPOSITION 2.2.27. Suppose that H has the Stone property in L*(X,m) and that the
inclusion H — L*(X,m) is locally compact. Then, for every f € L?>(X,m), the functional
E'f : E(X) = R from Definition 2.2.23, is decreasing with respect to the set inclusion and lower
semi-continuous with respect to the weak-vy-convergence.

PROOF. The fact that Ef is decreasing follows by the same argument as in Proposition
2.2.25. In order to prove the semi-continuity of £;, we consider a sequence €2, weak-v-converging
to 2. Let now wu, be the solution of

—D?up4up=f in Qn,  un € Ho().

Then we have that u,, is bounded in H. Moreover u,, is bounded from above and below by the
solutions v/, u” € H of the equations

—D*/ +u' =|f| in X, u' € H,
~D*/" 44" = —|f] in X, u' € H.

Thus, u, converges in L?(X,m) to some v € H. By the weak-vy-convergence of €2, to €, we
have that u € Hy(f2) and by the semi-continuity of the L?(m)-norm of Du, we have

~ 1 1
Ef(Q) < / <|Du|2 + Zu? — fu> dm
0 \2 2

n—oo n—o0

1 1 ~
< liminf/ <2!Dun]2 + iui - fun> dm = liminf Ef(Q,).
Qn
O

One can easily extend the above result to a much wider class functionals, depending on
waq, f-

PROPOSITION 2.2.28. Suppose that H satisfies has the Stone property in L?(X,m), that the
inclusion H — L*(X,m) is locally compact and that satisfies the conditions (H1), (H2), (D1),
(D2), (D3), (D4), (D5), (H1) and (H2). Let j : X xR — R be a measurable function such that:

(a) j(x,-) is lower semi-continuous and decreasing for m-almost every x € X ;
(b) j(x,8) > —a(x)s — Bs?, where B > 0 is a constant and o € L*(X,m) is a given function.

Then for a given non-negative f € L?(X,m), we have that the functional

1s decreasing with respect to the set inclusion and is lower semi-continuous with respect to the
weak-y-convergence.

PRrOOF. Let w C €. By the weak maximum principle, we get w,, ; < wq ¢. Then

J@,we () > j(x,wa r(x)), forevery =€ X,
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which proves the monotonicity part. For the lower semi-continuity we first notice that by Remark
2.2.20, it is sufficient to prove that F} is lower semi-continuous with respect to the strong-v-
convergence. Consider a sequence {2, strong-v-converging to (2. By Proposition 2.2.12, we have
that wq, ¢ converges in L(X,m) to wg, s and so, we have

. < Taninf 4
j(@,wa,p(x)) < liminf j(z, wa, ().
Since, for every £ C X, we have
j(xwp () 2 j(@,wx f(2) 2 —a(@)wx f(¢) — fwx,g(2)? € LY(X,m),

we can apply the Dominated Convergence Theorem, for the negative part of the function
Jj(z,wq, ¢(x)), and the Fatou Lemma, for the positive part, obtaining the semi-continuity of
T -

2.3. Capacity, quasi-open sets and quasi-continuous functions

Our main example of a couple H C L?>(X,m), D : H — L?(X,m) is the Sobolev space
H = HYR?) and the modulus of the gradient Du = |Vu|. In this classical framework, we
consider an open set Q C R? and the Sobolev space H} (€2) on 2. Denoting with H () := Hy(Q),
we have that, in general, the spaces ﬁé(ﬂ) and H{(Q) might be different. Thus also the
functionals on the subsets Q of RY, defined by minimizing a functional on H}(f2) or ﬁ&(Q),
might be different. In order to have a true extension of these functionals, classically defined for
open sets (2 and the Sobolev spaces Hg (), we need a new notion of a Sobolev space on a generic
measurable set Q C R%. Classically, this definition is given through the notion of capacity and,
as we will see below, can be extended to a very general setting.

In this section we give the notion of capacity in a very general setting, which is a natural
continuation of the discussion in the previous sections; we then introduce the Sobolev spaces
Hy(Q2) for a generic set Q and show that the natural domains for these spaces are again the
energy sets, introduced above. At the end of the section we discuss the questions concerning
the shape optimization problems in the different frameworks of Ho(€2) and Ho(f).

Let H C L?>(X,m) and D : H — L*(X,m) satisfy the properties (H1), (H2), (D1), (D2),
(D3), (D4), (D5), (H1) and (H2). We assume, furthermore, that

(H3) the linear subspace H NC(X), where C(X) denotes the set of real continuous functions
on X, is dense in H with respect to the norm || - || z;
(H4) for every open set 2 C X, there is a function uw € H N C(X) such that {u > 0} = Q.

REMARK 2.3.1. We note that (H4) is equivalent to assume that for every ball B,(z) C X
there is a function v € H N C'(X) such that {u > 0} = B,(z).

DEFINITION 2.3.2. We define the capacity (that depends on H and D) of an arbitrary set
QC X as

cap(2) = inf {Hu”%{ :uwe€ H, u>1in a neighbourhood of Q} (2.3.1)

We say that a property P holds quasi-everywhere (shortly gq.e.), if the set on which it does not
hold has zero capacity.

REMARK 2.3.3. If u € H is such that « > 0 on X and v > 1 on 2 C X, then [jul|% > m(Q).
Thus, we have that cap(€2) > m(Q2) and, in particular, if the property P holds q.e., then it also
holds m-a.e.
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It is straightforward to check that the capacity is an outer measure. More precisely, we have
the following result.

PROPOSITION 2.3.4. (1) If w C Q, then cap(w) < cap(92).
(2) If () e s a family of disjoint sets, then

cap (U n) <3 cap().
n=1 n=1

(8) For every Q1,Q9 C X, we have that
cap(£21 U Q) + cap(f1 N Q2) < cap() + cap(2).
(4) If Q1 C Qo C -+~ CQy, C ..., then we have

cap (U Qn> = li_>m cap(€2y,).
n=1

PRrROOF. Point (1) is a direct consequence of the definition; for a proof of point (2) see [62,
Theorem 1, Section 4.7], while for the point (3) and (4) we refer to [62, Theorem 2, Section
4.7). 0

REMARK 2.3.5. We note that the family of sets of zero capacity is closed with respect to
the intersection and union of two sets, as well as, with respect to the denumerable unions.

REMARK 2.3.6. Definition 2.3.3 coincides with the classical definition of capacity when
X =R?% and H = H'(R?). For an introduction to the capacity in R? we refer to [62] and [72].

REMARK 2.3.7. We note that if 1 € H, then we simply have cap(Q2) = m(2). For example,
this is the case when X is a compact differentiable manifold and H is the Sobolev space on X.
Thus our definition is not satisfactory in all cases. For manifolds, for example it is natural to
define the sets of capacity zero using the local charts and the definition in the Euclidean space,
i.e. we say that E C X is of zero capacity (cap(E) = 0), if for every r > 0 and every x € X we
have cap(2 N By(x); Bay(x)) = 0, where

cap (QNB,(z); Bor(2)) := inf {HUH%{ . u € Hy(By()), u> 1 in a neighbourhood of QﬂBT(:L')}.
Thus, one may define the capacity cap as
cap(FE) = sup { cap (2N By (2); Bar()) : 7 € (0,+00], x € X}.

In order to obtain the same results as below, one would need a further assumption on the space
H. Namely that the existence of functions ¢, , € E[o(BQr({L')) such that ¢,, = 1, for every
z € X and r > 0. Below we prefer to avoid this further technical complication and work with
the capacity from Definition 2.3.2.

DEFINITION 2.3.8. A function u : X — R is said to be quasi-continuous if there exists a
decreasing sequence of open sets (wn)n>1 such that:

e cap(w,) —— 0,
n—oo

o On the complementary wt of wy the function u is continuous.

DEFINITION 2.3.9. We say that a set Q) C X is quasi-open if there exists a sequence of open
sets (wn)n>1 such that

o O Uw, is open for eachmn > 1,
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o cap(w,) — 0.
n—oo

REMARK 2.3.10. The sequence of open sets wy, in both Definition 2.3.8 and Definition 2.3.9
can be taken to be decreasing.

The following two Propositions contain some of the fundamental properties of the quasi-
continuous functions and the quasi-open sets.

ProprosSITION 2.3.11. Suppose that a function u : X — R is quasi-continuous. Then

(a) the level set {u > 0} is quasi-open;
(b) if u>0 m-a.e., thenu >0 g.e. on X.

PROOF. See [72, Proposition 3.3.41] for a proof of (a) and [72, Proposition 3.3.30] for a
proof of (b). O

PROPOSITION 2.3.12. (a) For every function uw € H, there is a quasi-continuous function @
such that u = 4 m-a.e.. We say that 4 is a quasi-continuous representative of u € H. If u
and @' are two quasi-continuous representatives of w € H, then u = u' q.e.

(b) If up, %) u, then there is a subsequence (up, )k>1 C H such that, for the quasi-continuous

representatives of u,, and u, we have

for ge. x € X.

PROOF. See [72, Theorem 3.3.29] for a proof of (a), and [72, Proposition 3.3.33] for a proof
of (b). O

REMARK 2.3.13. We consider the following relations of equivalence on the Borel measurable
functions

cp . m .
u~wv, ifu=vqe, u~wv, ifu=vm-ae.

We define the space

H? :={u:X =R : uquasi-cont., u € H}/ <, (2.3.2)

and recall that
H={u:X—->R:ucH}/Z. (2.3.3)
Then the Banach spaces H and H, both endowed with the norm || - ||z, are isomorphic. In

fact, in view of Proposition 2.3.11 and Proposition 2.3.12, it is straightforward to check that
the map [u]ep — [u]p, is a bijection, where [u], and [u],, denote the classes of equivalence of u
related to & and 7, respectively. In the sequel we will not make a distinction between H and
H and every function v € H will be identified with its quasi-continuous representative.

PROPOSITION 2.3.14. Let Q C X be a quasi-open set. Then there is a (quasi-continuous)
function uw € H such that Q = {u > 0} up to a set of zero capacity.

PROOF. Let w;, be the sequence of open sets from Definition 2.3.8 and let v, € H be such
that w,, C {v, = 1} and ||v,||% < 2cap(wy). Let u, € H be such that {u, > 0} = QUw,. Then
wp, = up A (1 —vy,) € H is such that {w, >0} C 2 and

cap(\ {w, > 0}) < [[on]l3 < 2cap(wn).
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After multiplying to an appropriate constant, we may suppose that ||wy| g < 27". Thus the
limit w =Y 7, wy exists and {w > 0} C  g.e.. On the other hand

cap(Q2\ {w > 0}) < cap(2\ {wy, > 0}) < 2cap(wn),
and thus, passing to the limit as n — oo, we have the claim. O
DEFINITION 2.3.15. For each Q C X we define the space
Hy(Q) := {u €H : cap({u#0}\Q) = 0}, (2.3.4)
which, by Proposition 2.3.12 (b), is a closed linear subspace of H.

We define the function I on the m-measurable sets as

IME):{QimeE\Qy—Q

(2.3.5)
+o0, if cap(E\ ©2) > 0.

Then I is a Borel measure on X. Moreover, if © and v are two nonnegative functions on X
and u = v quasi-everywhere on X, then we have that [ yudlp = | y vdlg. As a consequence

U »—>/ u?dlq,
X

is well defined on H and so, we have the characterization

the map

Hy(Q2) = {u €eH: ue LQ(IQ)} = {u €eH: / u?dlg < —i—oo}.
X
Thus, substituting I in place of the measure u in Proposition 2.2.7, we have

PROPOSITION 2.3.16. Suppose that H has the Stone property in L>(X,m). Then for every
u € Hy(Q), we have that cap({w > 0} \ {u # 0}) = 0, where w is the minimizer in Hy(S2) of the
functional

1 1
Ja,p(u) ::2/ |Du|2dm+2/u2dm/u1/)dm.
Q Q Q

REMARK 2.3.17. Proposition 2.3.16 suggests that the natural domains for the spaces Hy(€2)
are the quasi-open sets. Indeed, for every measurable set 2 C X, there is a quasi-open set w C 2
such that Hy(w) = Hp(Q2).

REMARK 2.3.18. We note that the inclusion Ho(Q) C Ho(€Q) holds for each subset  C X
and, in general, may be strict. For example, if Q C R? is a square minus a horizontal line, i.e.

X=R?) H=H®R?) and Q= (-1,1)x{(-1,00U(0,1)} C R?
then we have Ho(Q) # Ho(€).

PROPOSITION 2.3.19. Suppose that H is uniformly convexr and has the Stone property in
L*(X,m). Let Q C X be a given set. Then there is a quasi-open set w such that w C 2 m-a.e.
and

Ho(w) = Hy(w) = Ho(9). (2.3.6)

Moreover, w is unique up to a set of zero capacity.
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PROOF. Let w be (the quasi-continuous representative of) the solution of
~D*w4+w=1v¢ in Q, w e Hy(9),

where ¢ € L2(X,m) is the Stone function for H. Let u € Hy(f2) be nonnegative and such that
u < 1) and let ue € ﬁo(Q) be the sequence from Proposition 2.1.15 relative to the measure Io.
Since u. < Ce™lw, we have that cap({ue. > 0} \ {w > 0}) = 0. Moreover, by Remark 2.1.16, we
have that u. converges strongly in H to u and so, cap({u > 0} \ {w > 0}) = 0, which proves
that Ho(Q) C Ho({w > 0}). Thus, we obtain the existence part by choosing w = {w > 0}.
Suppose that w = {u > 0} and w’ = {«’ > 0} are two quasi-open sets satisfying (2.3.6).
Then, v € Hy(Q) = Ho(w) and so, ' = {u/ > 0} C w q.e. and analogously, w C w’ quasi-
everywhere. ]

REMARK 2.3.20. One can substitute the uniform convexity assumption in Proposition 2.3.19
with the assumption that the space H is separable. If this is the case, consider a countable dense
subset (ug)32; = A C Ho(£2). Then the desired quasi-open set is

w::U{u¢0}:{w>0}, where w:Z [us

bl
2 Bl

In fact, let u € ﬁo(ﬂ). Then, there is a sequence (u,)n>1 C A such that u, _}L> u and, by
- n o

Proposition 2.3.12 (b), u =0 q.e. on X \ w and so, we have the existence of w. The uniqueness
follows as in Proposition 2.3.19.

PRrROPOSITION 2.3.21. FEvery quasi-open set is an energy set and every energy set is a quasi-
open set, up to a set of measure zero.

PROOF. The first part of the claim follows since, by Proposition 2.3.14, every quasi-open
set is of the form u > 0 for some u € H. On the other hand, by Remark 2.1.27, the sets of the
form {u > 0} are energy sets. For the second part of the claim, we note that by the Definition
of the energy set, we have that there is w € H such that m(QA{w > 0}) = 0. O

2.3.1. Quasi-open sets and energy sets from a shape optimization point of view.
In this subsection we show that for a large class of shape optimization problems, working with
energy sets or quasi-open sets makes no difference. This is the case when we consider spectral
or energy optimization problems. The main reason for this fact is that the shape functionals are
in fact not functionals on the sets €2, but functionals on the Sobolev spaces Ho(€2) or Ho(9).

Suppose that F' is a decreasing functional on the family of closed linear subspaces of H.
Then we can define the functional F on the family of Borel sets, by F(€) = F(Hy(€2)), and
the functional F on the class of quasi-open sets, by F(2) = F(Hy(2)). The following result
shows that the shape optimization problems with measure constraint, related to F and F , are
equivalent.

THEOREM 2.3.22. Suppose that H has the Stone property in L*(X,m) and that is separable
or uniformly conver. Let F' be a functional on the family of closed linear spaces of H, which is
decreasing with respect to the inclusion. Then, we have that

inf {F(ﬁo(ﬂ)) : Q Borel, m(Q2) < c} (2.3.7)
= inf {F(HO(Q)) : Q quasi-open, m(2) < c}.

Moreover, if one of the infima is achieved, then the other one is also achieved.
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PrROOF. We first note that by Corollary 2.1.25 and Proposition 2.3.21, the infimum in the
Lh.s. of (2.3.7) can be considered on the family of quasi-open sets. Since F' is a decreasing
functional, we have that for each quasi-open 2 C X

F(Hy(9)) < F(Ho(2)).
On the other hand, by Proposition 2.3.21, there exists a quasi-open set w such that m(w) < m(£2)
and F(Hy(Q2)) = F(Hp(w)) and so, we have that the two infima are equal.
Suppose now that €}, is a solution of the problem
min {F(HO(Q)) : Q quasi-open, m(2) < c}.
Then we have that
F(Ho(Qep)) < F(Ho(Qp)) = int {F(ﬁo(m) . Q Borel, m(Q) < c} ,

and so the infimum on the Lh.s. in (2.3.7) is achieved, too.
Let ©,, be a solution of the problem

min {F(ﬁo(Q)) : Q Borel, m(§2) < c},

and let Q,, C Oy, ae. such that Ho(Qp) = Ho(y). Then the infimum in the r.h.s. in (2.3.7)
is achieved in €,,. In fact, we have

F(Ho(Qn)) = F(Ho(S)) = inf {F(HO(Q)) . Q quasi-open, m(Q) < c},
which concludes the proof. O

ExamMpPLE 2.3.23. Typical examples of functionals satisfying the hypotheses of Theorem
2.3.22 are the eigenvalues A\ defined variationally. Indeed, for any subspace L C H, we define

Dul*d
Ag(L) = min max M
SkCLues\{0} [y u?dm

9

where the minimum is over the k-dimensional subspaces Sy, of L. Thus, we have
AR(Ho(Q) = A(Q)  and  Ap(Ho()) = (),
where for each Q) C X, we define

Dul?d
Ae(2) = min  max M, (2.3.8)
S CHo(Q) u€S,\{0} fQ u2dm

where the minimum is over the k-dimensional subspaces Sy of Hy(Q2).

2.4. Existence of optimal sets in a box

In this section we apply the theory developed in Sections 2.1, 2.2 and 2.3. We state here a
general Theorem in the abstract setting from these sections and then we will apply it to different
situations.

THEOREM 2.4.1. Let (X,d) be a metric space and let m be a o-finite Borel measure on
X. Suppose that H C L?*(X,m) has the Stone property in L*(X,m), that the inclusion H <
L?(X,m) is locally compact and that H satisfies the conditions (H1), (H2), (D1), (D2), (D3),
(D4), (D5), (H1) and (H2). Let F : £(X) — R be a functional on the family of energy sets
E(X) and such that:

o F is decreasing with respect to the set inclusion;
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o F is l.s.c. with respect to the strong-y-convergence.

Then, for every couple A C B C X of energy sets, the shape optimization problem
min{]—'(Q): Qe&(X), AcQc B, /hdmg1}, (2.4.1)
Q
has a solution for every m-measurable function h : X — [0, +0o0].

PROOF. Let €, be a minimizing sequence for (2.4.2). Then there is a set 2 C X such that
Q,, weak-y-converges to 2. We note that by the maximum principle we have A C Q C B.
Moreover, in view of Lemma 2.2.21 and Remark 2.2.20, we have

/ hdm < lim inf/ hdm and F(Q) < liminf F(Q,),
Q Qn

n—o0 n—oo

which proves that 2 minimizes (2.4.2). O
REMARK 2.4.2. We note that in the above Theorem one can take A = ) and also B = X.

COROLLARY 2.4.3. Suppose that H C L?>(X,m) satisfies the hypotheses of Theorem 2.4.1
and also conditions (H3) and (H4). Suppose, moreover, that H is separable or uniformly convez.
Let F be a functional on the subspaces of H, decreasing with respect to the inclusion and such
that the functional  — f(ﬁo(Q)) is l.s.c. with respect to the strong-y-convergence.

Then, for every couple A C B C X of quasi-open sets, the shape optimization problem

min {f(Ho(Q)) : Q quasi-open, A C Q) C B, /

hdm < 1}, (2.4.2)
Q

has a solution for every m-measurable function h : X — [0, +0o0].

2.4.1. The Buttazzo-Dal Maso Theorem. The first general result in the shape opti-
mization was stated in the Eucldean setting. Indeed, taking H = H'(RY) and Du = |Vu|, we
can define the weak-y and the strong-+-convergence as in Section 2.2. The following Theorem
was proved in [33] and is now a consequence of Theorem 2.4.1.

THEOREM 2.4.4. Consider D C R? a bounded open set suppose that F is a functional on
the quasi-open sets of R, decreasing with respect to the set inclusion and lower semi-continuous
with respect to the strong-y-convergence. Then the shape optimization problem

min {F(Q) : Q quasi-open, Q C D, |Q] < c}, (2.4.3)
has a solution.

REMARK 2.4.5. In particular, the Buttazzo-Dal Maso theorem applies for functions depend-
ing on the spectrum of the Dirichlet Laplacian A;(Q2) < Ao(2) < ... on Q, which we recall are
variationally characterized as

Vul?d
Ae(©) =  min max fﬂ‘iw, (2.4.4)
SLCHY(Q) ueSi\{0}  [q u? dx
where the minimum is over the k-dimensional subspaces S of the Sobolev space H&(Q) Suppose
that the function F : RN — [0, +-00] satisfies the following conditions:
(F1) If z € [0, +oo]N and (2p,)n>1 C [0, +o0]" is a sequence such that for each j € N

20 ),
n—oo
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where 27(13' ) indicates the 4" component of z,, then

F(z) < hnrgng(zn).

(F2) If zgj) < zéj), for each j € N, then F(z1) < F(z2).

Then the optimization problem
min {F()\l(Q),)\g(Q), ...) + QC D, Q quasi-open, [Q] < c},
has a solution.

2.4.2. Optimal partition problems. In this subsection we recall a generalization of the
Buttazzo-Dal Maso Theorem related to the partition problems. The existence of optimal parti-
tions of quasi-open sets is a well-known result. We state it here for a class of functionals which
may involve also the measures of the different regions. Following the terminology of [29], we
call the optimization problems for this type of cost functionals multiphase shape optimization
problems.

We consider a quasi-open set D C R of finite Lebesgue measure and a functional F on the
h-tuples of quasi-open subsets of D with the following properties:

(F1) F is decreasing with respect to the inclusion, i.e. if Q; C Q;, foralli=1,...,h, then
F(Qu, ., Q) < F(Qu,. .., ),

(F2) F is lower semi-continuous with respect to the strong-vy-convergence, i.e. if Q" strong-v-
converges to €);, for every i = 1,..., h, then

]:(Ql,. . -th) < hmlnf}"(Q?, .. .,QZ),
n—00

where the term strong-y-convergence refers to the classical strong-y-convergence in R¢,
i.e. the one defined through the space H = H'(R%).

Then we have the following result:

THEOREM 2.4.6. Let D C R? be a quasi-open set of finite Lebesque measure let F be a
decreasing and l.s.c. with respect to the strong-vy-convergence functional on the h-uples of quasi-
open sets in D. Then the multiphase shape optimization problem

min {.7-"(91, Q) 0 Q; C D quasi-open, Yi; Q;NQ; =0, Vi# j}, (2.4.5)
has a solution.

ProoF. Let (QF,...,€}) be a minimizing sequence of disjoint quasi-open sets in D. Then
up to a subsequence, we may suppose that there are quasi-open sets €21, ...,8; C D such that
Q27 weak-y-converges to {);, for each j =1,...,h. Let wg denote the solution of

—Awg=1 in EFE, wg € Hy(E).
Then wqn converges in L*(D) to w; € HE(Q;) such that {w; > 0} = Q;. Thus, since wonwon
converges in L' to w;w;, we have that [{w;w; > 0} = 0 and so cap(Q; N Q;) = cap({w;w; >
0}) = 0, which proves that §; and §2; are disjoint when i # j. Thus the h-uple (Q1,...,8) is an

admissible competitor in (2.4.5) and so, by the semi-continuity of F, we obtain the conclusion.
O

REMARK 2.4.7. We note that if F and G are two functionals on the h-uples of quasi-open
sets in D satisfying (F1) and (F2), then the sum F + G also satisfies (F1) and (F2).
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We conclude this section noting that the following functionals satisfy (F1) and (F2):
(i) F(Q,...,9) = 2?21 Ak, (5), where ki, ..., ky € N are given natural numbers;

" 1/p
(i) F(, o) = ()i, (2)]7) 7 where p € N
(i) F(Q,..., Q) = 2?21 Ey,(Q;), where fi,..., f € L*(D) are given functions;

(iv) F(Qu,-., ) = 30, 19].

2.4.3. Spectral drop in an isolated box. In the setting of the classical Buttazzo-Dal
Maso Theorem the functionals we consider depend on the Dirichlet Laplacian. The kth Dirichlet
eigenvalue and eigenfunction, for example, are a non trivial solution of the equation

—Aug = A\(Qug in Q, ur =0 on Of.
Thus in the shape optimization problem
min {)\k(Q) L QCD, Q< c},

we are in a situation where the box D has a boundary set to zero, i.e. 9D is connected to the
ground. In this case the box D has the role of a mechanical obstacle for the set 2. A different
situation occurs if we consider the set D to be isolated, i.e. the states of the system are described
through the solutions of the problem

—Aug = A\ (Q;D)uy, in Q,
up =0 on dQ2ND,
Qi =0 on 9D NON.

In this case the boundary 9D is not only a mechanical obstacle, but also attracts the set €.
This situation is similar to the classical liquid drop problem, where the functional on the set Q
is given through the relative perimeter P(2; D) = H (002N D).

Given a smooth bounded set D C R? and a (quasi-open) set  C D, we note that the
relative eigenvalues A\ (£2; D) are variationally characterized as

Vu|?d
Ae(§3;D) = min max Jo [Vul d Z‘ v
SRCHE(Q;D) ueS,\{0} fQu dr

where the minimum is over the k-dimensional subspaces Sy of H{(£; D) and the Sobolev space
H(Q; D) is defined as

Hi (Q;D) = {u c HY(D): u=0 qe. onD\Q},

where we used the term quasi-everywhere in sense of the H'(R%)-capacity. We have the following
existence result.

THEOREM 2.4.8. Let D C R? be a smooth bounded open set in R® and let F be an increasing
and lower semi-continuous function on RN. Then the shape optimization problem

min {F()\l (D), \2(2;D),...) : QC D, Q quasi-open, |2 < c}, (2.4.6)

has a solution.
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PROOF. We start by noting that the inclusion H'(D) C L?(D) is compact. Thus, by Propo-
sition 2.2.24, we have that the functional Q +— Ag(2;D) is l.s.c. with respect to the strong-v-
converges defined through the space H = H'(D). Thus, we have a solution of the problem 2.4.6
in the class of quasi-open sets with respect to the space H'(D). Now it is sufficient to note
that these sets coincide with the quasi-open sets in R¢, defined starting from the space H'! (Rd).
Indeed, let Q = {u > 0} for some u € H'(D). Since D is regular, u admits an extension
@ € H'(R?) and thus Q = DN {u > 0}, which is a quasi-open set in the classical sense. O

2.4.4. Optimal periodic sets in the Euclidean space. In this subsection we consider
an optimization problem for periodic sets in R%. We say that Q C R? is t-periodic, if Q = tv+Q,
for every vector with entire coordinates v € Z%. Equivalently, we say that € is a set on the torus
Ty = (S')%. For every Q C T4, we define

Vul|?d
Me(€;Tg) =  min max Miw
SKCHE(T) ueSi\ {0} [ u? dx
where the minimum is over the k-dimensional subspaces Sy of H}(£2;Ty), defined as

HH(Q:Ty) = {u € HY(Ty): uw=0qe. on (0,1)%\ Q}

where we used the term quasi-everywhere in sense of the space H'(R?) and H'(T,) is defined
as

H\(T,) = {u e HY((0,1)%) : u(@r,....0,. .. 20) = u(wr,....1,...,20), Vj = 1,...,d}.
Then, repeating the argument for Theorem 2.4.8, we have the following

THEOREM 2.4.9. Let F be an increasing and lower semi-continuous function on RY. Then
the shape optimization problem

min {F()\l(Q; Tq), A2(2;Tq),...) : QC Tq, Q quasi-open, [N (0, 14 < c},

has a solution, where the term quasi-open is used in the classical sense given through the space

H'(RY).

2.4.5. Shape optimization problems on compact manifolds. Consider a differen-
tiable manifold M of dimension d endowed with a Finsler structure, i.e. with a map g : TM —
[0, +00) which has the following properties:

(1) g is smooth on T'M \ {0};
(2) g is 1-homogeneous, i.e. g(z,AX) = |A|g(x, X), VA € R;
(3) g is strictly convex, i.e. the Hessian matrix with elements
1 02
95(7) = 5 xax
is positive definite for each (z, X) € T M.

[9°)(z, X),

With these properties, the function g(z,-) : T, M — [0,+00) is a norm on the tangent space
T, M, for each = € M. We define the gradient of a function f € C*°(M) as D f(z) := ¢*(z,df),
where df, stays for the differential of f at the point x € M and ¢g*(x,-) : ToM — R is the
co-Finsler metric, defined for every £ € Ty M as

. _ (y)
g (r,8) = yesfll“lfM Flo.y)’
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The Finsler manifold (M, g) is a metric space with the distance:

1
o) = inf { [ a6 5@)dt = 750,15 M. 2(0) =2 5(1) =},

For any finite Borel measure m on M, we define H := H{(M, g, m) as the closure of the set of
differentiable functions with compact support C2°(M), with respect to the norm

lall = /1l + 1Dl

The functional Ay is defined as in (2.4.4), on the class of quasi-open sets, related to the
H'(M, g, m)-capacity. Various choices for the measure m are available, according to the na-
ture of the Finsler manifold M. For example, if M is an open subset of R?, it is natural to

consider the Lebesgue measure m = £%. In this case, the non-linear operator associated to the
functional [ g*(z,du,)? dx is called Finsler Laplacian. On the other hand, for a generic man-
ifold M of dimension d, a canonical choice for m is the Busemann-Hausdorff measure my, i.e.
the d-dimensional Hausdorff measure with respect to the distance dy. The non-linear operator
associated to the functional [ g*(z,du,)? dmgy(z) is the generalization of the Laplace-Beltrami
operator and its eigenvalues on the A;(€2) on the set Q are defined as in (2.4.4). In view of
Theorem 2.4.1 and Corollary 2.4.3, we have the following existence results.

THEOREM 2.4.10. Given a compact Finsler manifold (M, g) with Busemann-Hausdorff mea-
sure mg and an increasing and lower semi-continuous function I on RN, we have that the
problem

min {F()\l(Q), A2(€),...) 1 mg(Q) < ¢, Q quasi-open, 2 C M},
has a solution for every 0 < ¢ < mgy(M).

THEOREM 2.4.11. Consider an open set M C R¢ endowed with a Finsler structure g and
the Lebesgue measure L. Let F be an increasing and lower semi-continuous function on RN, If
the diameter of M with respect to the Finsler metric dy is finite, then the following problem has
a solution:

min{F()\l(Q),)\g(Q),...) Q| < e, Q quasi-open, Q C M},
where |Q| is the Lebesgue measure of Q@ and 0 < ¢ < |M].

REMARK 2.4.12. In [65] it was shown that if the Finsler metrics g(z,-) on R? does not
depend on z € R?, then the solution of the optimization problem

min {)\1(9) 2 Q] <e¢, Q quasi-open, Q C Rd},

is a ball (with respect to the Finsler distance dg) of measure c. It is clear that it is also the
case when in the hypotheses of Theorem 2.4.11 one considers ¢ > 0 such that there is a ball of
measure c contained in M. On the other hand , if ¢ is big enough the solution is not, in general,
the geodesic ball in M (see [71, Theorem 3.4.1]). If the Finsler metric is not constant in x, the
solution will not be a ball even for small ¢. In this case it is natural to ask whether the optimal
set gets close to the geodesic ball as ¢ — 0. In [86] this problem was discussed in the case when
M is a Riemannian manifold. The same question for a generic Finsler manifold is still open.
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2.4.6. Shape optimization problems in Gaussian spaces. Consider a separable Hilbert
space (#, (-,-)#) with an orthonormal basis (e)ren. Suppose that p = Ng is a Gaussian mea-
sure on ‘H with mean 0 and covariance operator ) (positive, of trace class) such that

Qe = vi(Q)ex,

where 0 < -+ <1, (Q) < -+ < 11n(Q) < 11(Q) is the spectrum of Q.

Denote with £(H) the space of all linear combinations of the functions on H which have the
form Ej(x) = e for some h € H, where for sake of simplicity we set (-,-) = (-,-)3. Then,
the linear operator

V:EH) C L*(H,p) — L*(H, 3 H), VE), = ihE},

is closable. We define the Sobolev space W12(#H) as the domain of the closure of V. Thus, for
any function u € W2(H), we can define the gradient Vu € L?(H, u;H) and we denote with
Viu € L*(H, 1) the components of Vu in WH2(H), i.e.

Viu = (Vu,eg).

We have the following integration by parts formula:

/Vkuvd,u,—i—/ uVivdu = L /xkuvd,u.
H H ve(Q) Ju

If Viu € WH2(H), then we can test the above equation with v = Vju to obtain

1
—/ Vk(Vku)vdu—}—/ xkvkuvdp:/ ViuViv du.
H vi(Q) Ju H

Summing over k € N, we get

/ (=Tr[V*u] +(Q ‘2, Vu)) vdu = / (Vu, Vv) du,
H H

where we used the notation

(Q 'z, Vu) := Z l/k(lQ)kaku.

k

DEFINITION 2.4.13. Given a Borel set @ C H and A € R, we say that u is a weak solution
of the equation

—Tr[Vu] + (Q e, Vu) = Xu in Q,  ue W),
if ue Wy(Q) and

/H<Vu, Vo) dp = )\/H wvdp,  for every wv € Wol’Q(Q)

By a well-known theorem from the functional analysis (see for example [57]), there is a
self-adjoint operator A on L%(Q, i) such that for each u,v € Dom(A) C Wol’Q(Q),

/Au vdp = /(Vu,Vv} dpu.

Then, by the compactness of the embedding WO’ () — L?(u), A is a positive operator with
compact resolvent. Keeping in mind the construction of A, we will write

A= -Tr[V}]+(Q 'z, V).
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The spectrum of —Tr[V?]+(Q 1z, V) is discrete and consists of positive eigenvalues 0 < A1 (£2) <
A2(Q) < ... for which the usual min-max variational formulation holds.

THEOREM 2.4.14. Suppose that H is a separable Hilbert space with non-degenerate Gaussian
measure . Then, for any 0 < ¢ < 1, the following optimization problem has a solution:

min {F(Al(ﬂ), A(Q),...) + QCH, Q quasi-open, p() = c},

where F is a decreasing and Ls.c. function on RY.

PROOF. Take H := W2(H) and Du = ||Vul|%. The pair (H, D) satisfies the hypothesis
H1,...,13 and H4. In fact, the norm |lul|* = |lul|%, + || Dul|, is the usual norm in W1%(H)
and with this norm W12(H) is a separable Hilbert space and the inclusion H — L?(H, ) is
compact (see [55, Theorem 9.2.12]). Moreover, the continuous functions are dense in W12(H),
by construction. Applying Proposition 2.2.25, Theorem 2.4.1 and Corollary 2.4.3 we obtain the
conclusion. O

2.4.7. Shape optimization in Carnot-Caratheodory space. Consider a bounded open
and connected set D C R? and C* vector fields Y;,...,Y, defined on a neighbourhood U of
D. We say that the vector fields satisfy the Hérmander’s condition on U, if the Lie algebra
generated by Yi,...,Y, has dimension d in each point z € U.

We define the Sobolev space WO1 ’2(17; Y) on D, with respect to the family of vector fields
Y = (Y1,...,Y,), as the closure of C2°(D) with respect to the norm

1/2

n
lully = { llulZe + > 1¥ullZz2 |
j=1

where the derivation Yju is intended in sense of distributions. For u € VVO1 2(D;Y), we define
Yu=(Viu,...,You) and [V = ([Viu2 + -+ |V,ul?)* € LX(D).
Setting Du := [Yu| and H := Wy*(D;Y), we define, for any Q C D, the kth eigenvalue A\ (Q)
of the operator Y2 + -+ + Y2 as in (2.4.4).
ExAMPLE 2.4.15. Consider the vector fields
X =0, and Y = z0y.

We note that, since the commutator of X and Y is [X,Y] = [0,, x0,] = 0, the vector fields X
and Y satisfy the Hormander condition in R?. Then operator X2 + Y? is given by

X2+Y? =02+ 40,
and for every bounded Q C RY, )\,(Q) is defined as the kth biggest number such that the
equation
— (P + 222wy = (Quy in Q wp € W {X,Y)),
has a non-trivial weak solution.
THEOREM 2.4.16. Consider a bounded open set D C R? and a family Y = (Y1,...,Y,)
of C* wector fields defined on an open neighbourhood U of the closure D of D an suppose,

moreover, that Y1, ...,Y, satisfy the Hormander condition on U. Then for every increasing and
Ls.c. function F on RY, the following shape optimization problems has a solution:

min {F()\l(Q),)\Q(Q), ...): QC D, Q quasi-open, Q| < c}. (2.4.7)
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PrROOF. It is straightforward to check that the space H := VVO1 2 (D;Y) and the application
Du := |Yul satisfy the assumptions of Theorem 2.4.1 and Corollary 2.4.3. Thus we only have
to check the lower semi-continuity of Ay with respect to the strong-v-convergence. This follows
by Proposition 2.2.25 since the inclusion H C L?(D) is compact. This last claim holds since
Y1,...,Y, satisfy the Hormander condition on U. In fact, by the Hormander Theorem (see [73]),
there is some € > 0 and some constant C' > 0 such that for any ¢ € C°(D)

k
lpllze < C | llellrz + D IV5ellze |
j=1

where we set
1/2
ol = ( [ 1era+ m%%) ,
Rd

being @ the Fourier transform of ¢. Let H§(D) be the closure of C2°(D) with respect to the
norm || - ||g=. Since the inclusion L?(D) C H§(D) is compact, we have the conclusion. O

2.4.8. Shape optimization in measure metric spaces. In this section we consider the
framework, which inspired the general setting we introduced in the previous sections. We briefly
recall the main definitions and results from [44] before we state our main existence result.

DEFINITION 2.4.17. Let u : X — R be a measurable function. An upper gradient g for u is a
Borel function g : X — [0, 4+00], such that for all points x1,29 € X and all continuous rectifiable
curves, c: [0,l] = X parametrized by arc-length, with ¢(0) = x1, ¢(l) = x2, we have

o)~ ute)| < [ ote(o)as,
where the left hand side is intended as +oo if |u(z1)| or |u(z2)| is +oo.
Following the original notation in [44], for u € L*(X,m) we define the norms
uliz = inf {liminf gjl 2} and  flulz = flulze + fule

where the infimum above is taken over all sequences (g;), for which there exists a sequence
u; — u in L? such that, for each 7, g; is an upper gradient for u;. We define the Sobolev space
H = HY(X,m) as the class of functions u € L?(X,m) such that the norm ||ul|; 2 is finite. In
[44, Theorem 2.7] it was proved that the space H'(X,m), endowed with the norm || - |12, is a
Banach space. Moreover, in the same work, the following notion of a gradient was introduced .

DEFINITION 2.4.18. The function g € L*(X,m) is a generalized upper gradient of u €
L%(X,m), if there exist sequences (g;)j>1 C L*(X,m) and (u;);>1 C L*(X,m) such that

wj — u in L*(X,m), g; — g in L*(X,m),
and gj is an upper gradient for u;, for every j > 1.

For each u € H'(X,m) there exists a unique generalized upper gradient g, € L*(X,m),
such that the following equality is satisfied:

ulli2 = llull 2 + [lgull 22-

Moreover g, is minimal in the sense that for every generalized upper gradient g of u, we have
Ju < g. The function g, is called minimal generalized upper gradient of u and is the metric
space analogue of the modulus of the weak gradient |Vu| in R,
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Under some mild conditions on the metric space X and the measure m, the minimal gen-
eralized upper gradient has a pointwise expression (see [44]). In fact, for any Borel function u,
one can define

u(r) —u
Lipu(z) = liminf sup 142 = 2WI
r—0 d(z,y):r T
with the convention Lipu(x) = 0, whenever z is an isolated point. If the measure metric

space (X, d, m) satisfies some standard assumptions (doubling and supporting a weak Poincaré
inequality), then the function Lip u is the minimal generalized upper gradient (see [44, Theorem
6.1] and also [4] for further analysis of g,). Using the minimal generalized upper gradient one
can consider elliptic boundary value problems on a metric space and thus define spectral and
energy functionals on the subsets Q C X as the Dirichlet Energy E(2) and the eigenvalue of
the Dirichlet Laplacian \;(€2) as in (2.4.4).

THEOREM 2.4.19. Consider a separable metric space (X,d) and a finite Borel measure m
on X. Let H'(X,m) denote the Sobolev space on (X,d,m) and let Du = g, be the mini-
mal generalized upper gradient of w € H'(X,m). Under the assumption that the inclusion
HY(X,m) < L?(X,m) is compact, the shape optimization problem

min {F(Al(Q),/\Q(Q),...) . QC X, Q Borel, |0 < c},

has solution, for every constant ¢ > 0 and every increasing and lower semi-continuous function
F:RN SR,

REMARK 2.4.20. There are various assumptions that can be made on the measure metric
space (X, d, m) in order to have that the inclusion H'(X,m) < L?(X,m) is compact. A detailed

discussion on this topic can be found in [68, Section 8|. For the sake of completeness, we state
here a result from [68]:

Consider a separable metric space (X,d) of finite diameter equipped with a finite Borel
measure m such that:

(a) there exist constants Cy, > 0 and s > 0 such that for each ball By, (z9) C X, each x € By, (o)
and 0 < r < rg, we have that

mBy(x) _ 1
m(Byy(z0)) — "1
(b) (X,d,m) supports a weak Poincaré inequality, i.e. there exist Cp > 0 and o > 1 such that
for each u € H*(X,m) and each ball B,(x) C X we have

1/2
][ u(y) —][ udm’dm(y) < Cpr <][ g> dm> .
By (x) B (x) Bor(x)

Then, the inclusion H' (X, m) < L?(X,m) is compact.







CHAPTER 3

Capacitary measures

In this chapter we discuss one of the fundamental tools in the shape optimization. The
capacitary measures generalize various situations involving PDEs in the Euclidean space RY,
allowing us to threat at once problems concerning elliptic problems on domains, Schrodinger
operators and operators involving traces of Sobolev functions on (d — 1)-dimensional sets. In
this setting we will use the following notations:

e d is the dimension of the space R?, which is endows with the norm

|| = [(21,...,2q)| = \/m’

e B.(z) ;= {y € R*: |z —y| < r} will denote the ball of center  and radius r in R%;
when z = 0, we will use the notation B, := B, (x);

e for a real number s > 0 with H*(E) we denote the s-Hausdorff measure on the set
E C R? (see [62]);

e LYE)=HYE) = |E| is the Lebesgue measure of a measurable set F C R%

e by wy we will denote the Lebesgue measure of the ball of radius 1 in R%. Thus we have
|B,| = war? and HL(OB,) = dwgrd™;

e we say that a property P holds almost everywhere (shortly a.e.), if the Lebesgue mea-
sure of the set where P does not hold is zero;

e the integral of a function f with respect to the Lebesgue measure on a measurable set
QcReis [, fdr;

o for a set () endowed with a finite measure p we will use the notation

]éfdu rzu(lg)/gfd/u

to indicate the mean value of the function f: Q — R.
e for p € [1,+00), with LP(Q2) we denote the space of Lebesgue measurable functions

f: Q — R such that / |f|P dx < +o0, which is a Banach space endowed with the
Q

norm
1/p
1 Fllmey = ( / f\pd:v) ;

in the case when Q = R% we will simply use the notations
LP=IPRY)  and |-l = e

e with L>°(Q)) we denote the space of Lebesgue measurable functions f : Q@ — R such
that

I fll oo () := inf {C’ >0: |f(z)] <C almost everywhere on Q} < ~o00;

55
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in the case when Q = R% we will simply use the notations
L :=L%RY) and [z =" [z = ||+ llzoo(ray;
e for a measurable set Q C R? we will denote with P(f) its perimeter, given by
P() = [V1a|(R?),
where Vg is the distributional gradient of the function 1o : R — R and |V1g|(R%)
is its total variation (see for example [67]).
3.1. Sobolev spaces in R?

We denote with C2°(R?) the infinitely differentiable functions with compact support in RY.
The spaces H'(R?) and H'(R?) are the closures of C2°(R?) with respect to the norms

1/2 1/2
lull g = (/ Vul? + o2 dx) and  [ull ;, = |Vl e = (/ |Vu\2d:v> |
R4 R4

We recall that if d > 3, the Gagliardo-Nirenberg-Sobolev inequality

lull oaria—s) < CallVull 2, V€ H' (R, (3.1.1)
holds, while in the cases d < 2, we have respectively
— 2/(r+2) . .
Jullzee < ( 2 ) lal 22N, v 2 1, Ve e B (R); (3.1.2)
9\ 2/(r+2) .
s < (52) WOV vz L vee R ()

Thus, in any dimension we have
[l g < Cd(|yvu”L2 + ||uHL1> and  H'(RY)NL'RY) = H'(RY) 0 LY (RY).

3.1.1. Concentration-compactness principle. In this section we recall a classical result
due to P.L.Lions (see [79]). Our formulation is slightly different from the original one and is
adapted to the use we will make of the concentration-compactness principle.

DEFINITION 3.1.1. For every Borel measure ju on R? we define the concentration function
Qu : [0,400) = [0, +00] as
Qu(r) = sup u(B(x)).

zeX

REMARK 3.1.2. We note that (), is nondecreasing, nonnegative and

lim Qu(r) = [|Qullz = u(RY).

r—-+00
The following lemma is elementary, but provides the compactness necessary for the concentration-

compactness Theorem 3.1.4 below.

LEMMA 3.1.3. For every sequence of non-decreasing functions Qy, : [0,+00) — [0, 1], there
is a subsequence converging pointwise to a non-decreasing function @ : [0, 4+00) — [0, 1].

THEOREM 3.1.4. Consider a sequence f, € L'(RY) of positive functions uniformly bounded
in LY(RY). Then, up to a subsequence, one of the following properties holds:
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(1) There exists a sequence (Tp)n>1 C R? with the property that for all € > 0 there is some
R > 0 such that for all n € N we have

/ frndx <e.
RI\Bgr(zn)

(2) For every R > 0 we have

lim sup/ fndz | =0.
n=00 \ yeRd Br(z)

(8) For every o > 1, there is a sequence x,, € R? and an increasing sequence R, — 400
such that
lim fndz =0,

n—o0 Bar, (xn)\BRn (xn)

lim inf/ fndz >0 and lim inf/ fndx > 0.
BRn (:En) Rd\BaRn (xn)

n—o0 n—oo

PROOF. We first note that, up to rescaling, we can suppose || fn| 1 = 1, for every n € N.
Consider the concentration functions @, associated to the (probability) measure f, dx. By
Lemma 3.1.3, up to a subsequence, ),, converges pointwise to some nondecreasing @ : [0, +00) —
[0,1]. We first note that if lim;_,o Q(t) = 0, then @ = 0 and so, (2) holds.

Suppose that lim;—,~ Q(f) = 1. By the pointwise convergence of @Q,, to @, we have that for
every € > 0, there are R. > 0 and n. € N such that Q,(R.) > (1 — ¢), for every n > n.. In
particular, there is a sequence y5, € R? such that

/ fondx >1—c¢.
Br. (v5)
1/2

We note that the condition [ f, dz = 1 implies ]y}/z —Yn| < Ryj2+ Re. Thus setting z,, := yn
and R = Ry/; + Re, we have

/ fndxz/ fondx >1—c¢.
Br(zn) Br. (y7)

Suppose that lim;_,o Q(t) =: 1 € (0,1) and fix e > 0. Let R. > 0 be such that [ —e < Q(R:).
In particular, we have | — e < Q(R:) < Q(aR.) < l. Then, there exists N = N(g,«) € N such
that for each n > N, we have

l—e<Qn(R:) <Qn(aR:) <l+e (3.1.4)

Thus, we can find a sequence yj such that for each n > N,
l—e</ fnd:c</ frndr < Qun(aR:) <l+e.
Br. (v}) Bare (y3)

The conclusion follows by a diagonal sequence argument. O

If the sequence f,, € L'(R?) satisfies point (1) of the above Theorem, then it is concentrated
in the dense of the following Definition.

DEFINITION 3.1.5. We say that a sequence f, € L*(R?) has the concentration property if
for every e > 0 there is some R. > 0 such that

/ |fnldx < e, ¥Yn e N.
R4\ Bp,
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REMARK 3.1.6. If a sequence f,, € L'(R?) has the concentration property and g, € L'(R%)
is such that |g,| < C|fn| + |f], for some C > 0 and some f € L!'(RY), then g, also has the
concentration property.

REMARK 3.1.7. Since the inclusion H*(R?) C L} _(R?) is compact, we have that if a sequence
u, € LY(RY) N HY(R?) is bounded in L'(R?) N H'(R?) and has the concentration property, then
there is a subsequence converging strongly in L!.

3.1.2. Capacity, quasi-open sets and quasi-continuous functions. We define the
capacity cap(E) of a measurable set E C R?, with respect to the Sobolev space H'(R?), as in
Definition 2.3.2 (taking H = H!(R%)), i.e.

cap(F) = inf { / \Vul? + u?dr: v e HY(RY), u>1 in a neighbourhood of E} (3.1.5)
R4

REMARK 3.1.8. In dimension d > 3 one may define the capacity in an alternative way (see,
for example, [62, Chapter 4.7]).

cap(E) = inf { /d |Vu|?dz : u € H' (R?), v >1 in a neighbourhood of E} (3.1.6)
R

For d > 3 the two quantities cap(E) and cap(F) are related by the inequality (3.1.7) below.
Indeed, by definition we have cap(E) < cap(F), for every measurable £ C R?. On the other
hand, suppose that u, € H*(R?) is a sequence such that ||Vuy|/2, converges to cap(E). Since
IV(OV up A1)| 12 < ||Vupl 2, we may suppose that 0 < u,, < 1. Thus, we have

d
2d_ i3
/ IVun|? +ul de < / (Vg |? + uil? da < / \Vu,|? dz + Cy (/ ]Vun]2d$> :
Rd R R Rd

which after passing to the limit as n — oo gives

_d_
d—2

cap(E) < cap(E) < @p(E) + Ca(cap(E) ) (3.1.7)

In particular the sets of zero capacity defined through (3.1.5) and (3.1.6) are the same.

REMARK 3.1.9. In dimension two, the above considerations are no more valid since the
quantity defined in (3.1.6) is constantly zero. Indeed, for every function u € H'(R?) and every
scaling u;(x) := u(tx), defined for ¢t > 0, we have

/ |Vut\2da::t2/ |Vul|*(tx) da;:/ |Vul|® dz,
R2 R2 R2

which in view of definition (3.1.6) gives that cap(E) = cap(tE), for any ¢t > 0. In particular

cap(B,) = cap(By), for any ball B, C R?. On the other hand, for 0 < r < 1, we can use the
log(R)

log(r)

1 -1
cap(B,) g/ |vu\2dx—27r/ [RlogQ(r)] dR =
R2 r

_l’_
radial test function u(R) = [ } to obtain the bound

27
B BN
|log(r)| r—o0
which gives that cap(B,) = 0, for every r > 0. Then, using the monotonicity of cap and a

standard approximation argument, we get that the value of cap is constantly zero on the
subsets of R2.
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REMARK 3.1.10. Given an open set D C R? and a measurable set E C R%, one may define
the capacity of E with respect to D in one of the following ways

capp(F) = inf { /Rd |Vu|> +u?dz: w € H' (D), v >1 in a neighbourhood of E}, (3.1.8)

G@pp(E) = inf { /d \Vul?dz: ue HY(D), u>1 in a neighbourhood of E} (3.1.9)
Since the measure of DRis finite, in any dimension d > 1, there is a constant C'p > 0 such that
capp(E) < capp(E) < Cp capp(E).

In is immediate to check! that in any dimension
(cap(E) - o) = (CapD(E) - o) = (E@D(E) - o). (3.1.10)

In particular, (3.1.10) shows that being of zero capacity is a local property. In fact an alternative
way to define a set of zero capacity in R? is the following:

(cap(E) = O) =3 (capBZT(w) (ENBy(z)) =0, for every ball B,(z) C Rd). (3.1.11)

The advantage of this definition is that it can be easily extended to manifolds ot other settings,
where the global definitions as (3.1.5) fail to provide a meaningful notion of zero capacity sets?.

In the following Proposition we list the main properties of the capacity in R%.

PROPOSITION 3.1.11. The following properties hold for the capacity in R®:
(1) If w C Q, then cap(w) < cap(f2).
(2) If () e @5 a family of disjoint sets, then

cap (U Qn> < anp(ﬂn).
n=1 n=1
(8) For every Q1,Qs C X, we have that
cap(21 U Q) + cap(21 N Q) < cap(1) + cap(Qo).
(4) If @y C Qo C--- C Qy C ..., then we have

cap (gl Qn> = nlLHgO cap(£2y).
(5) If K C RY is a compact set, then we have
cap(K) = inf { [+ ¢ € CERY, o =1 on K }.
(6) If A C R? is an open set, then we have
cap(A) = sup { cap(K) : K compact, K C A}.
(7) If @ C R? is measurable, then

cap(2) = inf { cap(A): A open, Q C A}.

Lirst for sets E, which are compactly included in D, and then reasoning by approximation. The detailed
proof can be found in [72, Proposition 3.3.17].
20n compact manifolds, for example, definition (3.1.5) gives precisely the measure of the sets E.
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(8) If K1 D Ko D---D K, D... are compact sets, then we have

[e.9]
cap (ﬂ Kn> = nh_)rrgo cap(Ky,).
n=1

ProOOF. The points (1), (2), (3) and (4) are the same as in Proposition 2.3.4. For the points
(5), (6), (7) and (8), we refer to [72] and [62]. O

Analogously, we define the quasi-open sets and the quasi-continuous functions. We summa-
rize the results from Section 2.3 in the following

REMARK 3.1.12. (1) For every Sobolev function u € H'(R?), there is a unique, up to
a set of zero capacity, quasi-continuous representative .

(2) If ¢ : R? — R is a quasi-continuous function, then the level set {¢ > 0} is a quasi-open
set.

(3) For every quasi-open set € there is a quasi-continuous function v € H'(R?) such that
Q= {u>0}.

(4) fu, € H'(RY) converges strongly in H'(R?) tou € H'(R?), then there is a subsequence
of quasi-continuous representatives u,, which converges quasi-everywhere to the quasi-
continuous representative .

(5) If u : R* = R is quasi-continuous, then |[{u > 0}| = 0, if and only if, cap({u > 0}) = 0.

REMARK 3.1.13. From now on, we identify the Sobolev function v € H'(R?) with its quasi-
continuous representative .

All these results were already known in the general setting of Section 2.3. In R? we can
identify the precise representative @ through the mean values of u (see [62, Section 4.8])

THEOREM 3.1.14. Let uw € HY(R?). Then, for quasi-every xo € R, we have

u(xo) = lim udx. (3.1.12)
r—0 B, (z0)

3.2. Capacitary measures and the spaces H }L

DEFINITION 3.2.1. A Borel measure i on R? is called capacitary, if for every set E C R¢
such that cap(E) = 0 we have p(E) = 0.

REMARK 3.2.2. If u; and uy are two positive Borel functions on R? such that cap({u; #
ug}) = 0, then we have that fRd uydp = fRd ug du. In particular, a Sobolev function u €
H'(R?) is square integrable with respect to p, i.e. uw € L?(y), if and only if its quasi-continuous
representative w, which is unique up to sets of zero capacity, is square integrable with respect
to p.

Let u be a capacitary measure in R?. For a function v € H'(R?), we define

fuly, = [ IVuPdo+ [ o?an (3.2.1)
iz Rd Rd

(el ;:/ \WIZd:er/ qug;+/ utdp = [l (3.2.2)
R4 R R ptl
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DEFINITION 3.2.3. For every capacitary measure p in R?, we define the space H}L(Rd) (or
Just Hﬁ) as

H)(RY) := {u e H'RY) : lullg < +oo} - {u e H'RY) : lull 2 < +oo}. (3.2.3)

PROPOSITION 3.2.4. For every capacitary measure i the space Hﬁ endowed with the norm
IE HH; is a Hilbert space. Moreover, H}L is a Riesz space, has the Stone property and the functions

mn H}L that have compact support are dense in H}L

PrOOF. We first prove that H }L is a Hilbert space (see also [33]). Indeed, let wu, be a
Cauchy sequence with respect to || - || mi- Then u, converges to some u € H L(R?) strongly in
H' and thus quasi-everywhere. Since y is absolutely continuous with respect to the capacity,
we have that u,, converges to v p-almost everywhere. On the other hand, w, converges to some
v € L?(p) in L?(p) and so, up to a subsequence p-almost everywhere. Thus u = v in L?(u1) and
SO U € Hﬁ(Rd) = HY(R%) N L?(u) is the limit of wu, in Hﬁ

For the Riesz and the Stone properties of Hli, we note that if u,v € Hli, then also uAv € H}L
anduANle H i

We now prove that the functions of compact support

H, = {u e HL(RY) : 3R> 0 such that |{u # 0} \ Bg| = 0},
are dense in H, ; We report the calculation here, since we will use this argument several times
below. Consider the function ng(x) := n(x/R), where

neCPMRY), 0<n<1l, n=1onB;, n=0onR\ By,
and let u € H; Calculating the norm of u — nru = (1 — nr)u, we have

I = nyully = [ V(O =m0 da+ [ 10 =y dat [ 10 = na)al d

R4
The last two terms converge to zero as R — oo by the dominated convergence Theorem, while for
the first one we note that || VgL~ = R7!||Vn|/z~ and apply the Cauchy-Schwartz inequality
obtaining

[V =P de = [ [0 nrPIVal? + Vsl + 2une¥ne - Vur] do
R R

< / (1 - n)2IVul?de + (2R~ + R2) [[ull 1,
Rd
which proves the claim. O

DEFINITION 3.2.5. We define the space ﬁ;(Rd) as the closure of the functions of compact
support H), . C Hy, with respect to the norm || - 51 -
m

The following result is a consequence of the density of H }w in both H /1 and H ;

COROLLARY 3.2.6. Let pu be a capacitary measure in R. Then the following are equivalent:
(a) H) C LY(RY) and the injection H, — LY(R%) is continuous;
(b) H/i C LY(R?) and the injection H/ﬂ — LY(R?) is continuous;
(c) H}hc C LY(R?%) and the injection H}w — LY(R?) is continuous.
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Moreover, if one of (a), (b) and (c) holds, then we have that
d g d d g
H, = H\(R)nL'(RY) = H,(R") N L' (RY) = H,
and the corresponding norms are equivalent.
DEFINITION 3.2.7. We say that two capacitary measures u and v are equivalent, if
w(Q) = v(Q), VQ c R4, Q quasi-open®.

PROPOSITION 3.2.8. Let 4 and v be capacitary measures. Then the following are equivalent:

(a) p and v are equivalent;
(b) for every non-negative quasi-continuous function ¢ : R4 — RT, we have

/soduz/ pdv;
Rd Rd
/u2du:/ u? dv.
R R

PrOOF. We first note that (a) = (b) follows by the formula

[odu= [ utto> iy

Then (b) = (c) holds since every u € H'(R?) is quasi-continuous up to a set of zero capacity.
Thus, we only have to prove that (¢) = (a). Let Q C R? be a quasi-open set. By Proposition
2.3.14, there is a function u € H'(RY) such that {u > 0} = Q. Taking the positive part of u
and then u A 1, we can assume 0 < u < 1 on R%. We now note that u. = 1 A (e71u) € H(R?)
is decreasing in ¢ and converges pointwise to 1,0} as € = 0. Thus, we have

(c) for every u € HY(R?), we have

p(2) = lim u? dp = lim uldv = v(Q).

E—00 Rd E— 00 R4

0

REMARK 3.2.9. From now on we will identify the capacitary measure p with its class of
equivalence from Definition 3.2.7, which we will denote with ./\/lcap(Rd).

REMARK 3.2.10. If u, v are two capacitary measures such that y = v, then H}L =H]

DEFINITION 3.2.11. Let ju and v be capacitary measures in RE. We will say that u > v, if
w(Q) > v(Q), VO C RY Q quasi-open.

By the same argument as in the proof of Proposition 3.2.8, we have the following result.

PROPOSITION 3.2.12. Let i and v be capacitary measures. Then the following are equivalent:

(a) p=v;
(b) for every non-negative quasi-continuous function ¢ : R — R, we have

/wduZ/ pdv;
R4 R4

3Recall that a quasi-open set  C R? is a set such that for every € > 0 there is an open set w. C R? such
that QU w, is open and cap(w:) < €
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/ uzduZ/ u? dv.
Rd Rd

REMARK 3.2.13. If u, v are two capacitary measures such that p > v, then Hﬁ C HL

(c) for every u € HY(R?), we have

DEFINITION 3.2.14. Let pu and v be capacitary measures in RY. We define the capacitary
measure N v € Meap(RY) as

(uVv)(E) :=max {M(A) +v(E\A): VY Borel set A C E},
for every Borel set E C RY.

REMARK 3.2.15. It is straightforward to check that

p<uvv<u+v and Hiv,j

_ gl 1
=H!NHL.

As we saw above, every capacitary measure g € Mcap(R?) generates a closed subspace of
H ; The classical Sobolev spaces H& (Q) can also be characterized through a specific capacitary
measure. We give a precise definition of this concept below.

DEFINITION 3.2.16. Given a Borel set Q C R%, we define the capacitary measures Io and
Iq as

IQ(E):{ 0. i epE\Q)=0, TQ(E):{ 0. i IE\GQ|=0,
+o00, if cap(E\ Q) >0, +o0, if |E\Q|>0.

REMARK 3.2.17. For every Q C R, we have I > Io.

REMARK 3.2.18. We note that for a function v € H'(R?), we have
(u € H}Q(]Rd)) = (/Rd w?dlg < +oo> o (u e H&(Q)),
where for a generic set  C R?, we define
HY(Q) := {u e HY(RY) : cap ({u#0}1\Q) = 0}. (3.2.4)
Analogously,
(u € H%Q(Rd)) & (/]Rd u?dlg < +oo> & (u € ﬁol(Q)),

where
HL Q) = {u € H'(RY : [{u#0}\0| = o}.

REMARK 3.2.19. If Q ¢ R? is an open set, then the smooth functions with compact support
in Q, C() are dense in H{(Q), defined as in (3.2.4), with respect to the norm || - ||z (see

[72, Theorem 3.3.42]). The analogous result for H}(Q) is true under the additional assumption?
that the boundary 0 locally is a graph of a Lipschitz function.

An Proposition 5.6.7 we will provide another more general condition.
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3.3. Torsional rigidity and torsion function
Given a capacitary measure p € Mcap(R?), we consider the functional

J,: HYRYH N LYRY) — RU {+00},
1 1
Jyu(u) = 2/}1@ |Vu\2dx+2/Rdu2d,u—/Rd udz.

DEFINITION 3.3.1. For a capacitary measure jt € Mcap(R?), we define

e the torsional rigidity (or the torsion) T'(u) € [0, +oc]® of p
T(u):= max{ — Ju(uw): we HY(RY N Ll(Rd)}
= max{ —Ju(u): ue H;(]Rd) N Ll(Rd)};
e the Dirichlet Energy F(u) € [—00,0] of u
E(y) := —T(1) = min {Ju(u) we HY(RY N Ll(Rd)}.
DEFINITION 3.3.2. We say that the capacitary measure u is of finite torsion if T'(u) < +o0.

REMARK 3.3.3. Let u and v be capacitary measure such that g > v. Then we have J, > J,
and T'(¢) < T'(v). In particular, if T'(v) < +o00 , then also T'(u) < +o0.

REMARK 3.3.4. Every capacitary measure in a bounded open set is of finite torsion. Indeed,
consider a bounded open set with smooth boundary 2 C R%. Note that for every u € HE (),
we have (for the second inequality below, see [61, Theorem 1, Section 5.6])

d—1

a1 1/2
/yu\da:gymi </ 7 d:v) gymé/ V| de < |05 </ Vu|2dx> . (33.)
Q R4 R4 Q

In particular, for every capacitary measure i € Meap(R?) and every u € HE(€2), we have

1 1 24d
Tipunlw) > 5IVullta+ 5 [ o2 du= 1905 |Vl (332)

Since Jr,vu(0) = 0, we can suppose that a minimizing sequence u, for Jy,y, is such that
J1gvu(tn) < 0. By (3.3.2), we have ||Vuy,||f2 < 2|Q|?T9/24. Thus, the sequence u,, is bounded
in H}(Q) and also in H}QW. By the compact inclusion Hg(Q) € L'(€), we can suppose that
Uy, converges to some u € H}L N L'(2) both weakly in H}L and strongly in L?(Q). Thus, u is a
minimizer of Jy,y, in H(R?) N L'(R?). Moreover, by the strict convexity of the functional, u
is the unique minimizer of Jr,y,. Let v € Hy N H(Q) N L (RY). Using that for every ¢ € R,
J1gvu(u) < Jrgvu(u + ev) and taking the derivative for e = 0, we obtain the Euler-Lagrange
equation

Vu - Vvdx—i—/ wv dp :/ vdx. (3.3.3)
Rd Rd Rd

In particular, taking v = w in (3.3.3), we get

/\Vu|2d:v+/ uzd,u:/ udz. (3.3.4)
Rd Rd Rd

5In the literature the torsion of 1 is sometimes denoted by P(u). In this monograph the we prefer the notation
T'(p) since P is reserved for the perimeter.
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and thus, the Dirichlet Energy is given by
1
E(IoV p) = Jrgvu(u) = —3 /d udz. (3.3.5)
R

Let now p € Mecap (RY) be a capacitary measure. For every R > 0, we consider the unique
minimizer wg € H'(R?) N L'(R?) of the functional J1p, vu, which exists due to Remark 3.3.4.
Reasoning as in Proposition 2.1.13, we have that the weak maximum principle holds, i.e. for
every R > r > 0, we have wp > w,. Thus, the family of functions {wR} R0 18 increasing in
LY(R?) and so it has a limit for almost every point in R? as R — 4o0.

DEFINITION 3.3.5. Let pu € Meap(R?) be a capacitary measure. The torsion function® w),
of 1 is the Lebesque measurable function defined as

wy, = lim wgr = sup wg,
R—o0 R>0

where wr is the unique minimizer of the functional Jry v, : H'(RY) N LY(RY) — RU {4+o0}.

EXAMPLE 3.3.6. If Q C R is a bounded set and p = I, then w,, is the weak solution of
the boundary value problem

~Aw=1 in Q  we H}(Q).

In particular, if €2 is the ball Bg(xq), then

EXAMPLE 3.3.7. If p = 0, then w, = +o0.

EXAMPLE 3.3.8. If i = Ig, where S C R? is the strip S = {(m,y) s reR, ye (-1, 1)},
then
1-y*)*

5 .
This example shows that there are capacitary measures p of infinite torsion whose torsion func-
tion w, is finite almost everywhere and even bounded (but not integrable).

wu(:r,y) =

The following result relates the integrability of w,, to the finiteness of the torsion 7'(x) and
to the compact embedding of H; into L'(R%).

THEOREM 3.3.9. Let u € Mcap(Rd) and let w,, be its torsion function. Then the following
conditions are equivalent:

(1) The inclusion H}L C LY(RY) is continuous and there is a constant C,, > 0 such that

1/2
[ullzr < Cu(IVull7: + HUH%Q(M)) / , for every u € H; (3.3.6)

(2) The inclusion H}L C L' is compact and (3.3.6) holds.
(3) The torsion function w, is in L'(RY).
(4) The torsion T'(u) is finite.

6In the literature it is also known as energy function.
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Moreover, if the above conditions hold, then w, € H}L N LY(R?) is the unique minimizer of Ju n
Hﬁ and the constant from (3.3.6) can be estimated by

C? < dx = 2T (1).
i< [ wde =270

PROOF. We first prove that (3) and (4) are equivalent.
(8) = (4). Since the functions in Hﬁ N L' with compact support are dense in Hﬁ NL', we
have

inf {Ju(u) cue HL(RY N Ll(Rd)} = inf {inf {Ju(u) ‘u€ Hlyry (RN Ll(Rd)}}

R>0
1
— inf — inf {—- 3.
JI%I;OJ”(wR) II%I;O{ 2/Rd wRda:} (8:3.7)

1
——/ wy, dr > —00,
2 R4

where the last equality is due to the fact that wp is increasing in R and converges pointwise
to wy,. Moreover, we have that w, € Hﬁ N LY(R?) and w,, minimizes J,. Indeed, since wg
converges to w,, in L'(R%) and wg is uniformly bounded in H }L by the inequality

/|VwR|2dx+/ w%{du:/ wRde/ wy, dz,
R R Rd Rd

we have that w, € Hﬁ and J,(w,) <liminfp o Jyu(wR).
(4) = (3). By (3.3.7), we have that for every R > 0,

/ wrdr < —2inf {Ju(u) Tu € Hﬁ(Rd) N Ll(Rd)} < H00.
Rd
Taking the limit as R — oo, and taking in consideration again (3.3.7), we obtain
/ w,, dz = —2inf {J#(u) cu e HL(RY) N Ll(Rd)} < +oo. (3.3.8)
R4

Since the implication (2) = (1) is clear, it is sufficient to prove that (1) = (4) and (4) =

(2).
(1) = (4). Let u, € H}L be a minimizing sequence for J,, such that u, > 0 and J,(u,) <0,
for every n € N. Then we have

1 1 1/2
/ |Vun|2dx+/ uidug/ Uy, dr < C |Vun|2dx+/ u%du ,
2 Rd 2 Rd ]Rd Rd Rd

and so u, is bounded in H i (R%) N L*(R%). Suppose that u is the weak limit of u,, in H i Then

< limi = [
||U”H; < I%Hilongun”H}L and /Rdudx nIL%O y up dz,

where the last equality is due to the fact that the functional {u = [ da:} is continuous in H }L

Thus, u € Hﬁ N LY(RY) is the (unique, due to the strict convexity of .J,,) minimizer of .J,, and so
E(p) = inf J, > —o0.

We now prove (3) = (1). Since, w, € H; N L'(R?) is the minimizer of J, in Hﬁ N LY(RY),
we have that the following Euler-Lagrange equation holds:

YV, - Vudx—l—/ w,udp _/ wdr,  Vu€ H,(R")NL'(RY). (3.3.9)
R4

R4 R4
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Thus, for every u € H}L(Rd) N LY(R?), we obtain

1/2 1/2
lullz < (IVwals + leal3eg)  (IVulfa + Jullfag,)
1/2
=l (Va3 + 3 )
Since H}L(Rd) N LY(R?) is dense in H/}L(Rd), we obtain (1).

(8) = (2). Following [22, Theorem 3.2|, consider a sequence u, € H }L weakly converging to
Zero in Hi and suppose that u, > 0, for every n € N. Since the injection H'(RY) — L}OC(Rd)
is locally compact, we only have to prove that for every € > 0 there is some R > 0 such that
fBg un dx < . Consider the function ngr(z) := n(x/R) where

(3.3.10)

neCPM®Y), 0<n<1, n=1lonB;, n=0onR\B,.
Testing (3.3.9) with (1 — ng)u,, we have

[ [V V= a0+ (= )V, V) dot [ 0,0 nundi= | (0
R4 R4 R4

and using the identity || Vng||ze = R™||V7|/z~ and the Cauchy-Schwartz inequality, we have

J

which for R large enough gives the desired ¢. U

1/2
un de < R g g2 Vwpll 2 + Va2 Vwnll 22ss) + llunll 2 ) (/B wy du) ;
R

c
2R

REMARK 3.3.10. In particular, by Theorem 3.3.9 the continuity of the inclusion H ;i c LY(RY)
is equivalent to the continuity of the inclusion H /i C L'(R%). The norm of the injection operator
Ju H}L < L'(R?) can be calculated in terms of the torsion 7'(1) and the torsion function wy,.
Indeed, by (3.3.10), we have that

1/2

lullzr < ol il gy

_ (2T(u))1/2uuum, Vu € HY. (3.3.11)

On the other hand, for v = w,, we have an equality in (3.3.11), which gives that the norm of j,

is precisely (2T(,u))1/2.

EXAMPLE 3.3.11. Suppose that © C R is a set of finite Lebesgue measure and p = Iq or
p = Io. Then the torsion function wy, is in L*(RY) and so the inclusion H}(Q) < L'(RY) is
compact.

EXAMPLE 3.3.12. Suppose that p is a capacitary measure and V : R¢ — [0,+00] is a
measurable function such that
Vldz < 00 and p="V(x)dx.
Rd
Then the embedding H{. C L'(R?) is compact and the function w, is in L}(R%). Indeed, let wy,
be a minimizing sequence for Jy in H{, N LY(R%). Since we can suppose Jy (wy,) < 0, we have

1 , , , 1/2 » 1/2
— |Vwy|* 4+ w;V de < wy, dz < w;,V dx V7= dzx ,
2 R4 R4 Rd Rd

which proves that inf,, J,(w,) > —oo and so, we can apply Theorem 3.3.9.

REMARK 3.3.13. From now on we will denote the space of capacitary measures of finite
torsion with MZ _(R?).

cap
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3.4. PDEs involving capacitary measures

Let Q C R? be a bounded open set with smooth boundary and let f € L?(Q). We recall
that a function u € H}(£2) is a weak solution of the equation

—Au=f in Q,  u€ H}Q), (3.4.1)
if it satisfies

o Vu-Vudr = o fodz, for every wve HY(RQ).

Equivalently, u € Hg () solves (3.4.1) if it is the minimizer in Hg () of the functional

1
T5(v) = /Q SV — fuds.

We generalize this concept for the class of capacitary measures (not necessarily of finite torsion).

DEFINITION 3.4.1. Suppose that u is a capacitary measure in R, 1 € Mcap(Rd). Let

f € LP(RY) for some p € (1,4+00]. We will say that the function u € H, is a (weak) solution of
the equation

—Autpu=f in Hﬁ, uEHﬁ, (3.4.2)

if u is the minimizer for the variational problem
min {Ju,f(u) . we HL (RN LY (Rd)},

where the functional J, ; : H'(RY) N LY (RY) — R U {+o0} is defined as

1 1
Jy,p(u) == / |Vu|? d + / u? dp —/ uf dx. (3.4.3)
’ 2 R4 2 R4 R4
REMARK 3.4.2. If u € Hi N L¥ (RY) is a solution of (3.4.2), then we have

Vu-Vvd:c—l—/

uvdu:/ fvdz, VUEH;QLPI(RCZ).
R4 R4

Rd
PROPOSITION 3.4.3 (Existence of weak solutions). Let u be a capacitary measure of finite
torsion: p € Mg;p(Rd). Let f € LP(RY), where
o p e[, +ool, if d >3
e pe (1,4o00], ifd=2;
e pell,+od], fd=1.

Then there is a unique solution of the equation (3.4.2).

PRrROOF. The existence follows by the compact injection H ﬁ — LY(R?) and the Sobolev

inequalities (3.1.1), (3.1.2) and (3.1.3). The uniqueness is a consequence of the strict convexity
of J, wf+ g

If 4 and f satisfy the hypotheses of Proposition 3.4.3, then we denote with w, ¢ the unique
minimizer of J, ; in H} and we will refer to it as to the solution of the equation (3.4.2). As
in the metric case, we can compare the different solutions of (3.4.2) using the weak maximum
principle.

PROPOSITION 3.4.4 (Weak maximum principle). Let u € MCTap(Rd) be a capacitary measure
in R of finite torsion and let the exponent p be as in Proposition 3.4.3. Then the solutions of

(3.4.2) satisfy the following inequalities:
(i) If u < v and f € LP(RY) is a positive function, then Wy, < Wy
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(ii) If f,g € LP(RY) are such that f < g, then Wy f < Wyg-

ProoF. We note that since p < v, T(v) < T(p) < 400 and so the solution w, s exists. The
rest of the proof follows by the same argument of Proposition 2.1.13. 0

Some of the classical estimates for solution of PDEs on a bounded open set can be repeated
in the framework of capacitary measures of finite torsion. In what follows, we obtain the classical
estimate ||ul/fee < C||f|lLr, for p > d/2.

LEMMA 3.4.5. Let p € ML _(R?) be a capacitary measure of finite torsion. Let f be a

cap

non-negative function such that f € LP(R?), for p € (d/2,+0c], and let u € H; be the solution
of
—Au+pu=f in Hﬁ, uEH}r

Then, there is a dimensional constant Cgq > 0 such that, for every t > 0, we have

C _
= 8% llom < 5=l u > 8}

More precisely, Cyq = (dwcl/d) 72, where wq is the volume of the unit ball in RY.

PROOF. We start noticing that by the weak maximum principle, © > 0 on R%. For every
t €0, ||u||z) and € > 0, we consider the function

ue =u At 4 (u—t—e)t € HY(RY).

Since us . < u, we have that u; . € H i and so, we can use it as a test function for the functional
Jyu,r- Indeed the inequalities J, f(u) < J,, (ute) and u . < u give

1 1
2/ |Vu)? dx—/ fudzr < 2/ ]Vut,€|2dac—/ fugedx.
Rd R4 R4 R4

In particular, we get

1
2/ |Vu|2da:§/ flu—ue) dazgg/ fdx.
{t<u<t+e} R4 {u>t}

By the co-area formula (see [67, Chapter 1]) we have

/ Vul dH'™ 52/ fda < 2| fllool{u > t}[M7.
{u=t} {u>t}

Setting ¢ : (0, 4+00) — (0,+00) to be the monotone decreasing function p(t) := [{u > t}|, we
have that

-1
1
Ot = _/{ . Wd%‘i_l < - (/{ i V| d?—[d_1> P({u > t})?

2(d—1)
d

Lo— 1/d\2 %241
= I (deo) ) T,

/d

Loa— _
< =3I Ize® 7 (dwy ) o t)

where P is the De Giorgi perimeter (see [67] or [5]) and dwcll is the sharp constant from

the isoperimetric inequality P(Q2) > dw;/d|9|% in RY. Setting a = d%ﬁ + % < land C =

%(dw;/d)2||f||zl}, we consider the ODE

y'=-Cy*,  ylto) = vo. (3.4.4)
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1
The solution of (3.4.4) is given by y(t) = (y5 “ — (1 —@)C(t —t9)) ==. Since $(t) > 0, for every
t > 0 and y(t) > ¢(t), we have that there is some tmax such that ¢(t) = 0, for every ¢ > tmax.
Thus, taking yo = ¢(to) = [{u > to}|, we have the estimate

1/d
W
[[(u—t0) Tl < tmax —to < 2§/d i/ £l o|{u > to} /4717,
]

COROLLARY 3.4.6. Let y € M
be the corresponding torsion function. If i > Iq, for some set Q C R% of finite Lebesque measure

Cap(Rd) be a capacitary measure of finite torsion and let w,

then we have the estimate
1 |Q|2/d

< JB, P (3.4.5)

[Jwpll Lo
where By is the unit ball in RY.

REMARK 3.4.7. We note that the estimate (3.4.5) is not sharp since, taking 2 = B; and

1
p = Ip,, the torsion function is precisely wp, (z) = ﬁ(l - \:1:|2)Jr and so, ||wp, ||re = 20" A
classical result due to Talenti (see [89]) shows that the (sharp) estimate
|Q|2/d

holds for every set €2 of finite measure and every pu > IQ.

PROPOSITION 3.4.8 (Infinity estimate). Let p € ML (RY), d > 2, p € (d/2,+00] and
f € LP(RY). Then there is a unique minimizer u € H}L of the functional J, s : H}L — R.
Moreover, u satisfies the inequality

[ul[ee < CT ()| e, (3.4.7)
for some constants C and a, depending only on the dimension d and the exponent p.

PROOF. We first note that for any v € H; such that J, r(v) <0, we have

/rvm%m+/‘wdxsz/ foda < 20|11l -
Rd R4 R4

On the other hand p > d/2 implies p' < d%dz and so p' € [1, d2—_‘12]. Thus, using (3.3.6) with

C= T(u)l/ 2 and an interpolation, we obtain

/]Rd \Vo|? da + /Rd v? dx < CqT ()| f1|20, (3.4.8)

which in turn implies the existence of a minimizer u of .J, r, satisfying the same estimate.

In order to prove (3.4.7) it is sufficient to consider the case f > 0. In this case the solution
is nonnegative v > 0 (since the minimizer is unique and J, ¢(|u|) < J, r(u)) and, by Lemma
3.4.5, we have that u € L>. We set M := ||ul|z~ < 400 and apply again Lemma 3.4.5 to obtain

M2 M L
F= [ na <ot [ s 0P @< ool

where we set § =2/d —1/p < 1. Thus we obtain
MY < O fllwellull 71, (3.4.9)
and using (3.4.8) with v = u, we get (3.4.7). O
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COROLLARY 3.4.9. Let p € ML _(R?) be a capacitary measure of finite torsion and let wy

cap
be the corresponding torsion function. Then w, € L>®(R?) and

s

+2

ol < Ca [ wptr) ™ (3.4.10)
for a dimensional constant Cyq > 0.

3.4.1. Almost subharmonic functions. In this subsection we consider functions u €
H'(RY), which are subharmonic ub R% up to some perturbation term f € LP(R?):

Au+f>0 in  [CPRY], (3.4.11)

where the above inequality is intended in sense of distributions, i.e.
/ —Vu-Vo+ fodr >0, forevery ¢e CP(R?Y) such that ¢ > 0.
Rd

We will show that under some reasonable hypotheses on f the function u is pointwise defined
everywhere on R?, i.e. every point of R? is a Lebesgue point for w. This result applies to the
functions u that solve equations of the form

—Au+pu=f in H)  ueH|RY. (3.4.12)

In fact, we will show that if u is a positive solution of (3.4.12), then it satisfies the inequality
(3.4.11).

We start our discussion recalling some general measure theoretic notions and results.

DEFINITION 3.4.10. Consider a set E and a vector space R of real functions defined on E

(1) We say that R is a Riesz space, if for each u,v € R, u Av € R.
(2) We denote with Ry the class of functions w: E — R U {400} of the form u = sup,, u,
for a sequence of functions u, € R.
(3) We say that a linear functional L : R — R is Daniell, if:
e L(u) >0, whenever u > 0;
o for each increasing sequence of functions u, € R such that u := sup,, u, € R, we
have L(u) = sup,, L(uy,).

REMARK 3.4.11. We note that a positive linear functional L : R — R is Daniell if and only
if, every decreasing sequence of functions u, € R such that inf,, u, = 0, we have inf,, L(u,) = 0.

THEOREM 3.4.12 (Representation of Daniell functionals). Let R be a Riesz space of real
functions defined on the set E such that 1 € R, and let L be a Daniell functional on R. Then,
there is a unique measure [ defined on the sigma-algebra of sets £, generated by R, such that

R C LYp) and L(u) = / udp, for every u€R. (3.4.13)
E

PROPOSITION 3.4.13. Let p € [1,+0oc], f € LP(RY) and u € H'(RY) be such that
Autf>0 in  [H'®RY)NLF(RY).
Then, there is a Radon capacitary measure v on R satisfying

- Vu-Vodz + | fodr = / vdv, for every ve H'(RY) NC.(RY). (3.4.14)
R4 R4 R4
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PROOF. Let L be the restriction of the operator Au + f : HY(R%) N LV (R?) — R to the
Riesz space R = C.(R%) N H'(R?). Then L is a positive functional. We will prove that L is also
Daniell. Consider a decreasing sequence of functions v, € R such that inf, v, = 0 and a function
g € R such that g > 1y, 50y. Thus, we have that 0 < L(v,) < L(|lvnllzeg) = [Jvnlln=L(g).
Thus it is sufficient to prove that ||v,||= — 0. Indeed, for every € > 0, the sequence of sets
K, := {v, > €} is a decreasing sequence of compact sets with empty intersection and so, it is
definitively constituted of empty sets.

Applying Daniell’s Theorem 3.4.12, we have that there is a measure v, on the o-algebra
generated by R, such that (3.4.14) holds for any v € R. Since for every open set A C R?, there
is a function v € R such that A = {v > 0}, we have that v is a Borel measure. Moreover, for
every compact set K C R? there is a function ¢ € H'(R?) N C.(R?%) such that ¢ = 1 on K.
Thus, we have

V(K)S/Rdgpdyz—/Rqu-Vgodx—l—/Rdgofdx<—l—oo,

which proves that v is a Radon measure.

In order to prove that the measure v is capacitary, it is sufficient to check that for every
compact set K C R such that cap(K) = 0, we have also v(K) = 0. Indeed, if cap(K) = 0, then
there is a sequence of functions v, € C.(R%) N H'(R%) such that v, > 1 on K and |jv,| gz — 0

as n — oo. Thus, we have that

,u(E)g/ vnd,u:—/Vu-and:L‘+/vnfdx—>0.
R4 Q Q

n—-+oo

THEOREM 3.4.14. Assume that

(a) u € H' (RY) N L>®(RY);
(b) f € LP(RY), for some p € (d/2,+0o0];
(c) Au+ f >0 on R in sense of distributions.

Then

(i) the function M, : (0,1) = R, defined as

M(r) = ][ wdHT,
OBy (z0)

is of bounded variation.
(i) Au is a signed Radon measure on R? and the weak derivative of M is characterized by

_ u(B)

M’ = —".
(r) dwgrd—1

Proor. We will prove the above Theorem in three steps.
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Step 1. We first prove (i) and (ii) under the additional hypothesis u € C?(R%). Indeed, for
each 0 <r < R <1, we have

2 [fror] -4 [f, oo

= Vu(re) -z dH¥(z) = Vu(zx) - L dH (2) (3.4.15)
9B 9B "

1 Au(B,)
dwgrd—1 /Br u(z) dz dwgrd—1

Moreover, M' € L' ((0,1)), since

Step 2. Proof of (i). We consider a function
neC®MY, 0<y<1l, n=1onB;, n=0onR\ B,

and, for every r > 0, we use the notation 7,(z) := n(z/r) and ¢.(z) = r~9n(x/r). Let
Ue := U * ¢ and

M.(r) := ]gB ue A, Vr e (0,1).

1(pd
Then we have u. € C®(RY), ||uc|lpe < ||Jullpoe, ue Lﬂi)> w and M. — M in L'((0,1)) and
e—

pointwise a.e. in (0,1). Moreover, M, € BV((O, 1)) and Au, + f > 0. We now prove that the
sequence M. is uniformly bounded in BV ((0,1)). Indeed, for any & € (0,1/2) we have

/1 M) dr = /WAUE(BMM / (Aue + N(B) + Jy, [fl@)de
é F) 0

dwgrd—1 dwgrd—1

! Aue(By) ! 1
< ——2dr+2 de | d
_/5 dwqrd=1 T /5 dwqrd=1 </Br i m) '

: ][ ue dH! _][ ue dH* + 2/1 /e P dr
~ Jan, 0B; 5 dw)/”

< 2|lullze + Capllfl e,

(3.4.16)

where Cy ), is a constant depending only on d and p. Passing to the limit as 6 — 0 gives the
uniform boundedness of M. in BV ((0,1)) and so, the claim.

Step 3. Proof of (ii). By Proposition 3.4.13 we have that v := Au+ f is a Radon capacitary
measure on R?. As a consequence, Au=v — f is a (signed) Radon capacitary measure on R4,
Let u. be as in Step 2. Then we have that Au(B,) — Au(B,) for £!- almost every r € (0, 1).
In fact, since

|Au|(Bgr) < v(Bgr) —|—/ |f|dx < o0, VR € (0,1),

Br
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we have that for £'- almost every r € (0, R) the boundary 0B, is |Au|-negligible. For those r,
we have

Aue(B,) = / 1p, * ¢ d(Au) — / 1p, d(Au),
Rd e—0 Rd

where the passage to the limit is due to the dominated convergence theorem applied to the
sequence [ |1p, * ¢ — 1p, | d|Au|. In fact, for small enough e, the integrand is bounded by 21p,,
and 1p, * ¢.(x) — 1p, (), for every x ¢ 0B, and so, for |Aul-almost every x € R%. Moreover,
it is immediate to check that

|Auc|(B,) < (Au6+f)(Br)+/B \f| dz < (Au)<31+€)+2/3 \f| dz < +oo,

1+e¢

which shows that M.(r) — (dwdrdfl)flAu(Br) in L((6,1)), for every 6 > 0, which concludes
the proof. O

REMARK 3.4.15. If u satisfies the hypotheses (a), (b) and (c¢) of Theorem 3.4.14, then the
function M’ € L1((0,1)) and we have the estimate

1
/ M (7)) dr < 2ljull o + Capllfllze-
0

where Cy, is the constant, depending only on d and p, obtained in (3.4.16).

REMARK 3.4.16. The conclusions of Theorem 3.4.14 hold also if we replace the condition
(a) with the alternative assumption

(a') ue HY(RY) and u > 0.
Indeed, the only difference in the proof is in the last estimate of (3.4.16), where the term 2||u||z

should be replaced with 1 + ][ wdH?1. In this case the L' norm of M’ is estimated by
dB1

1
/ M (r)| dr < 1 +][ wdH" + Capl| f o,
0 0B1
where Cy,, is the constant from (3.4.16).

REMARK 3.4.17. Tt is not hard to check that for a generic Sobolev function u € H'(RY)

the mean M (r) := ][ udH! is continuous for r € (0, 4+00). Indeed, if u € C1(R?), then for
0B
every x € 0B7, we have

|u(Rx) — u(rz)| =

/TRx.VU(SZL') ds| < (R —r)'/? (/TR\VUP(SJ:) d8>1/2'

Integrating for x € 0B, we have

R 1/2
(R— )2 </ Vul(sz) ds> e
0B1 r

R 1/2
< |R—r|'/? <][ / |Vu|?(sz) ds d’}-[d_1>
0B1 Jr
|R — r\l/Z

= (dwgrd=—1)1/2
which, by approximation, continues to hold for every u € H'(R?). In particular, we notice that
the radially symmetric Sobolev functions are continuous.

M(R) - M(r)| < ][

IVl 2,
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COROLLARY 3.4.18. In the hypotheses of Theorem 3.4.14 or Remark 3.4.16, we have that
for every point xg € R?, the limit

U(xo) == lim udH! (3.4.17)
r—0 OBy (z0)

exists and @ = u almost everywhere on R%. Moreover, for every R > 0, we have that

R Au(B,
][ wdHL — U(zo) = / Lﬁ?))d& (3.4.18)
8Br(z0) o  dwgs

ProoF. We note that

R R
][ wdHi! —][ wdH! :/ M'(s) ds g/ M (s)] da, (3.4.19)
OBR(z0) OBy (x0) r r

where M'(s) is as in Theorem 3.4.14. Thus, by Remark 3.4.15 the limit (3.4.17) exists. Suppose
now that zg € R? is a Lebesgue point for u. Then we have

1 T
u(zg) = lim udx = lim dwgs?™? wdH¥ | ds
r—0 By (z0) r—0 wde 0 OB (z0)

] T dgd—1 de1 _
= lim y udH ds = u(xo),
r—0 0 r 8Bs(z0)

and so u(wg) = u(xg) for a.e. 29 € R% The identity (3.4.18) follows after passing to the limit
as r — 0 in (3.4.19). O

The first part of Corollary 3.4.18 can be proved in an alternative way. For the sake of
simplicity, we consider the case f € L>(R?), which will be sufficient for our purposes.

PROPOSITION 3.4.19. Let u € HY(R?) and f € L>®(R%). Suppose that Au + f > 0 in sense
of distributions on RY. Then every point xqg € R is a Lebesque point for u and moreover, we
have

lim u — u(xo dH = lim u — u(xg)| dz = 0. 3.4.20
r—0 aBr(xo)‘ ( )‘ r—0 BT(IO)‘ ( )‘ ( )

PROOF. Since we have
Au+ || fllpe > Au+ f >0,

2
x
we can restrict our attention to the case f = 1. We now consider the function v(z) := u(z)+ u

2d
We note that Av > 0 and so, the function
T vdHI,
OB (x0)
is increasing in . Thus, we may choose a representative of v such that for every point zy € R¢
the limit

v(zp) = lim vdHI,
r—00 3BT(I0)

exists. Thus, we may suppose that for every point zo € R? we have

u(zg) = lim wdH L.
r—00 8Br(:130)
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In order to prove (3.4.20) we write

lim |u — U(IL‘())‘ dH! < lim ‘v — v(mo)‘ dH! + lim ‘|1‘|2 - |:170|2{ dHet
r—0 837"(330) r—0 aBr($0) r—0 8Br($0)
< lim vdHIL — v(xg) + lim Hx\Q - \xoﬂ dH L,
r—0 9B, (z0) r—0 9B (z0)

and we note that by the definition of v(z() the right-hand side converges to zero. The proof of
the second equality in (3.4.20) is analogous. O

3.4.2. Pointwise definition, semi-continuity and vanishing at infinity for solutions
of elliptic PDEs. In this section we investigate some of the fine properties of the solutions of
the equation

—Au+pu=f in H;, uEH}L,

where p is a capacitary measure of finite torsion. Our results will depend strongly on the theory
recalled in the previous section.

LEMMA 3.4.20. Let p € ML _(RY) be a capacitary measure of finite torsion. Suppose that

cap

p € [1,400] is as in Proposition 8.4.83 and f € LP(R?) is such that the solution u of the equation
—Au+tpu=f in Hj, u€e Hp, (3.4.21)
is non-negative on R%. Then the following inequality holds:
Au+ flisep >0 in [CR(RY)] (3.4.22)

PROOF. Let v be a non-negative function in C°(£2) or, more generally, in H'(R?)N L' (R%)N
L>®(R%). For each n > 1, consider the function p, : R — R defined by

0, ift<0,
pa(t) = S mt, if t € [0, 1], (3.4.23)
1, ift>1.

Since p, is Lipschitz, we have that p,(u) € H'(R?), Vp,(u) = p,,(u)Vu and vp,(u) € H'(RY).
Moreover, since |p,(u)| < n|u| and v € L®(RY), we have that vp,(u) € Hﬁ and so we can use it
to test the equation for w.

/ fopp(u)de = Vu -V (vpn(u)) do +/ uvpy (u) du
R4 R4 Rd
E/Up;(u)]Vu\Q dx+/pn(u)Vu~Vvd:c (3.4.24)
Q Q

> / pn(uw)Vu - Vudz.
Q
Since pn(u) T Liyso0y, a8 n — o0, we obtain (3.4.22). O

REMARK 3.4.21. It is sometimes convenient for the sign-changing solutions u of (3.4.21) to

consider separately the positive and negative parts vy and u_. Indeed, let p € Mgap (RY) be a
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capacitary measure of finite torsion in R? and let f € LP(R?), where p is as in Proposition 3.4.3.
Consider the solution u of the equation (3.4.21) and the capacitary measures

pp = pV Iy and gy =pV g

We have that the positive and negative parts, uy € H ;11 L, and u_ € H /L of w are solutions
respectively of

—Auy + pyuy = f in H/L and —Au_+p_u_=—f in H}L.
Then, by Lemma 3.4.20 we have that
Auy + flgys0p =20 and Au_ — flg,cop 20,

in sense of distributions on R%. Thus, there are Radon capacitary measures vy and v_ on R?
such that

vi = Aug + fliso) and v = Au- — flguco)-

THEOREM 3.4.22. Suppose that u € ML _(RY) is a capacitary measure of finite torsion and

cap

that f € LP(RY), for some p € (d/2,+00]. Let u € H/i be the solution of the equation
_ , 1 1
—Au+tpu=f in H, ueH,
Then Au is a Radon measure on RY, every point xo € R? is a Lebesque point for u and we have

u(xg) = lim wdH4! = lim udx.
r—0 BBT(JKo) r—0 BT(Z‘O)

Moreover, we have

d Au(By
e ][ wdntt| = AulBrlzo)
dr | JaB, (z0) dwgr
in sense of distributions on (0,1), and
Y Au|(B,(20))
1=PRPr0)) g
/(; dwde—l r < 400,

where with |Au|, we denote the total variation of the measure Au.

PRrOOF. It is sufficient to decompose v as in Remark 3.4.21 and then to apply Theorem
3.4.14 for u;4 and u_. The integrability of the total variation of Au follows by Remark 3.4.15
and the inequality

A < [Aug] + | Au| < (4 + 1F]) + (v + | f]) < Dy + Au_ +4f].
O

LEMMA 3.4.23. Let i € ML _(RY) be a capacitary measure of finite torsion. Suppose that

cap

p € (d/2,+0c0] and f € LP(RY). Then, there is a dimensional constant Cy4 > 0 such that the
solution u of the equation

—Au+pu=f in HLIL, uGH}L,
satisfies the inequality

Call fllee 2-¢ |
u(zg) < ———— 717" p + u| dx, 3.4.25
(o) 2/d—1/p By (x0) 4 ( )

for every xo € R?,
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PrROOF. We first note that by Remark 3.4.21, it is sufficient to prove the claim in the case
when u is non-negative. Let r > 0 and let w be the solution of the problem
—Aw =|f] in By(zo), w € HY (B, (x0)).
By Lemma 3.4.20, v — w is subharmonic in B, (xy), i.e
Alw—w)>0 in  [CZ(B(0))]"

Thus, by the mean value property of the subharmonic functions and the infinity estimate from
Lemma 3.4.5 we have

u(zo) < wlzo) + ][

Br(iUO)

< CdHfHLp ]Bng/d_l/p‘F][ udx,
2/d / By (o)

which proves the claim. O

(u—w)dmgw(mo)+][ udz
Br($0)

PROPOSITION 3.4.24. Let i € /\/lcap(Rd) be a capacitary measure of finite torsion. Suppose
that p € (d/2,+00] and f € LP(R?). Then the solution u of the equation

—Au+pu=f in Hﬁ, uEHﬁ,
vanishes at infinity.

PROOF. Suppose, that z, € R? is a sequence such that |x,| — co and u(z,) > J for some
6 > 0. For r > 0, by Lemma 3.4.23 we have

Callfller | 12/d-1/ ][
u(xzy,) < B, Py udz.
(2n) 3d—1/p 1B o)

Passing to the limit as n — oo, we obtain

Cq 2/d-1/p
6 < 3d—1/p | £l e || Br]

and since r > 0 is arbitrary, we conclude that 6 = 0. U
In a similar way we have the following semi-continuity result.

PROPOSITION 3.4.25. Let j1 € Mcap(Rd) be a capacitary measure of finite torsion. Suppose
that p € (d/2,+oo] and f € LP(R?) is such that the solution u of the equation

—Au+pu=f in Hﬁ, uGHﬁ,
18 mon-negative on R?. Then u is upper semi-continuous, i.e.
: d
u(zo) = ll_r}(l) lull oo (B, (x0))s  for every xo € R™.

PROOF. Suppose that @, — o is such that u(zyn) > (1 —€)l[ullL=(B, ,(2))- For r >0, by
Lemma 3.4.23, we have

Callfller 2/d—1 ][
1_ ) < n < BT / /p '
(1 = lullieyoan < vlow) < G IR 4+ £ uda

Passing to the limit as n — oo, we get

Calfllze  r v2ja1) ][
L ol < B, Py udx.
(= )lullzes, oo < 57 =175 1B Bu(e0)
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Now, we pass to the limit for » — 0 to obtain

(1= &)llull Lo (B, ), (x0)) < ulzo),
which concludes the proof, since ¢ > 0 is arbitrary. O
3.4.3. The set of finiteness (), of a capacitary measure. In this subsection we intro-

duce the notion of set of finiteness of a capacitary measure. Roughly speaking, we expect that

whenever u € Hli, u = 0 where y = +o00 and so, it is supported on the set {u < +oo}. The

precise definition of this set will be given below through the torsion function w,,.

PROPOSITION 3.4.26. Let i1 be a capacitary measure in R® and let wy, be the torsion energy
function for u. For every u € Hﬁ, we have that cap ({wu >0} \ {u # 0}) =0.

PROOF. As in Proposition 2.1.17, we can suppose that 0 < u < 1. Since {w, > 0} =
Ugso{wr > 0}, where wp are as in Definition 3.3.5, we have only to prove that cap ({u >
0} \ {wr > 0}) = 0, for every R > 0. We first note that by the weak maximum principle
{wr > 0} C Bg and so, we only have to prove that cap ({ung > 0} \ {wg > 0}) = 0, where

nr(z) = n(xr/R) and
UGCSO(Rd)v 0<n<1, {n>0}=08By, n=1on By,.

Setting ur = pV Ip,, we have that wg € H;R and nru € H;R. Reasoning as in Proposition
2.1.17 we consider the solution u. € H, }LR of

-1 -1 . 1
—Aug + ppus + € U =€ nru in H,,.

By the weak maximum principle we have that u. < e 'wg. Moreover, by Lemma 2.1.15 and
Remark 2.1.16, u. and converges to nru strongly in H}L as € — 0. Thus, cap ({unR > 0} \{wgr >
0}) = 0 and so, we have the claim. O

DEFINITION 3.4.27. We define the set of finiteness €, of the capacitary measure . as
Q= {w, > 0}.
PROPOSITION 3.4.28. For every capacitary measure p, we have p > Iq, .

PRrROOF. It is sufficient to check that for every u € H'(R?), we have

/ U2dIQH§/ u2du.
Rd Rd

Indeed, let u € Hﬁ Then cap({u # 0} \ ,) = 0 and thus [z, u?dlg, = 0, which proves the
claim. 0

EXAMPLE 3.4.29. If Q is a quasi-open set and p = I, then , = (.

EXAMPLE 3.4.30. If y = Iq for some © C RY then Q, is such that [, \ Q| = 0 and
Hy(Q) = Hy(Q).
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3.4.4. The resolvent associated to a capacitary measure u. Let u € Mg;p(Rd) be a
capacitary measure of finite torsion and let f € L?(R?). By Proposition 3.4.3 there is a unique
solution of the equation

—Au+pu=f in H}u uEHﬁ. (3.4.26)

Moreover, by the Gagliardo-Nirenberg-Sobolev inequalities and the continuity of the inclusion
H ;11 — LY(RY), there is a constant C},, depending on the dimension d and the torsion T'(1), such
that

/Rd uw?dr < C, </Rd \Vul|* dz + /Rd u? du) , forevery we H}L(]Rd). (3.4.27)

Thus, if u is a solution of (3.4.26), then using (3.4.27) and testing (3.4.26) with u itself, we
obtain

ol < G ([ 1wl [ a2an) =6, [ upds < Culfluslulie

which finally gives the estimates
e < Cullfle o [ [Veldo+ [ oldu < Gl (3.4.28)

DEFINITION 3.4.31. We define the resolvent associated to the capacitary measure p € Mg;p(]Rd)
as the (linear) operator R, : L*(R?) — L%(RY) that associates to each function f € L*(RY) the
solution u = R, (f) of the equation (3.4.26).

In the rest of this subsection we will recall in a series of remarks the basic properties of the
resolvent operator R,.

T

Cap(]Rd), the resolvent operator R, :

REMARK 3.4.32. Given a capacitary measure p € M
L*(R%) — L%(R?) has the following properties:

e By the first estimate in (3.4.28), the operator R, is continuous and its norm is estimated

by
IRull £(z2 ey, r2(re)) < Cp

e R, is a compact operator. Indeed, if f, is a bounded sequence in L?*(R%), then by
the second estimate in (3.4.28) the sequence R, (fy) is bounded in H;(Rd) and by the
compact inclusion H }L(]Rd) < L2(R?) it has a subsequence that converges in L?(R%).

e R, is a self-adjoint operator on L?(R?). Indeed, if f, g € L*(R%), then we have

fRu(g)dz = | VR.(f)-VR.(g) dx+/

Ry (f)Ru(g) du:/ gR,(f) dz.
Rd Rd Rd R4

e R, is a positive operator. Indeed, for every f € L*(R?), we have

[iruyae = [ VR [ R0
R4 Rd Rd

Since for p € Mg;p(Rd) the resolvent R, : L*(R?) — L%(R?Y) is a compact positive self-
adjoint operator its spectrum is real, positive and discrete, and its elements Ag(u), k € N, can

be ordered in a decreasing sequence as follows (see [57, Chapter 4]):

0<-or < App) S Apa(p) < < Mp) = (Rl 22 ey 2 may)-
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For every k € N we define

Mla) = Akl(u)

Thus Ag(p) can be ordered in an increasing sequence as follows:

. (3.4.29)

0 < Ai(p) < Aa(p) <o < Agp) <-een

REMARK 3.4.33. For u € MZL_(R?) the resolvent R, is a compact and self-adjoint operator

cap
and so there is a complete orthonormal system of eigenfunctions {ug}ren C L%(R?), i.e.

o for every k € N, up, € H é satisfies the equation

—Aug + pug = )\k(u)uk in Hﬁ, U € H;;

° / u;uj dr = 05, for every i,j € N;
R4
e the linear combinations of u, k € N, are dense in L?(R?).

REMARK 3.4.34. Let i be a capacitary measure of finite torsion in R?. Then, by Proposition
3.4.8 the following equality holds for p > d/2:

IR.(f)llz < Cllflle, forevery fe L*(R?) N LP(RY).

Thus R, can be extended to a continuous operator from R, : LP(R?) — L°°(R?) with norm
depending only on the dimension d and the torsion T'(u).

REMARK 3.4.35. Let 41 be a capacitary measure of finite torsion in R,
e If d <3, then d/2 < d and so, by Remark 3.4.34 R, extends to a continuous operator

R, : L*(RY) — L®(R?Y), for d=1,2,3.

e If d > 3, then by the Gagliardo-Nirenberg-Sobolev inequality and the second inequality
in (3.4.28) we have that R, is a continuous operator

R, : L*(RY) —» L (RY)  and  ||Rullpre(may.cor may) < Cas (3.4.30)

where 2% =

5 and Cg,, depends only on the dimension d and torsion T'(j).

e Suppose that the dimension d is 4 or 5. Then by (3.4.30) and Remark 3.4.34 we have
that the composition RZ = R,0R, : L*(R?) — L?(R%) can be extended to a continuous
operator

2 .12 d o) d
Ry, L*(R?) — L=(R%),
with norm bounded by a constant depending on d and T'(u).

e In dimension d > 3 we can gain some integrability by interpolating between 2 and
d > d/2. Indeed, let p € (2,d/2]. Then since

R,:I*—~I* and R,:L%— L™,

by the Riesz-Torin theorem we have

-2
\Ru(f)lle < C|fllLr, where pe[2,d] and q:p<1—|—z_p>, (3.4.31)

where C' depends only on the dimension d, the exponent p and the torsion T'().
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e Suppose that d > 6 in which case we have 2* = % € (2,d/2]. Since the function

-2
D> pZ is increasing in p, by (3.4.31) and interpolation, we have that
% 8
HR“(f)HLPJra S CHfHLP, fOI' every p S [2 ,d] and o = m (3432)

Let k£ be the smallest natural number such that
8k d 2d

SECERTEE RIS

Then we have

IREF2(f) | oo < Crpa|REV ()| v 0 < -+ < CLIRL() 2 < CIIf 22

where the constants Cgya,...,C1,C depend only on the dimension d and the torsion
T(p)-

We summarize the results from Remark 3.4.35 in the following proposition.

PRrROPOSITION 3.4.36. Let u € Mg;p(Rd) be a capacitary measure of finite torsion. Then,
there are constants n € N and C € R, depending only on the dimension d and the torsion T(u),

such that the power of the resolvent [R,|"
[R]": L*(RY) — L¥(RY)  and  [|[Ru]™|| £ (12 ray poo (rey) < C-

18 a continuous operator

PROPOSITION 3.4.37. Let i € ML _(R?) be a capacitary measure of finite torsion. Then the

cap
normalized eigenfunctions uy, of the resolvent operator R, are bounded and

g ()| < Care(p)*, (3.4.33)
where Cy is a dimensional constant.

PrROOF. We first prove that uy is bounded. Let n and C' be the constants from Proposition
3.4.36. Applying a power of the resolvent R, to the normalized eigenfunction u; € H L) we
have

[Ru]" (ur) = Me(p) " v,
and by Proposition 3.4.36 we obtain

Jurllee < CXe(p)" [lurll L2 = CAe(w)™,

where C is a constant depending on the capacitary measure p.
We now note that for the positive and negative parts ug and u, of u, we have

Auyt + M () |upll e > Auj + Mg ()uf >0,

Aug + Me)llugllze = Aug + M) 20,
Setting for simplicity u = u) and M = A (u)||ug|| o, we get that for every zy € R the function

—_ 2 . . . .
= u(x)+ M ‘3627“20' is subharmonic and so, by the mean value inequality we have

1/2
( )<][ d+MR2< ][ 2d /+MR2< = +MR2
ul(xo) = uaxr S u- axr ~ .
BR(ZO) 2d BR(SUO) 2d (wde)1/2 2d

Taking the minimum in R € (0, +00), we get

_d
(o) < CaM T = Cahy (1) 75 |jug | 2.
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Repeating the same argument for u; and by the fact that zq is arbitrary, we get

d
Juellzoe < Cabd o5 = Cda(m) 7 g £
which gives (3.4.33). -

In the next subsection we will prove another estimate on the infinity norm of u; which is due
to Davies [56]. In particular, we will show that the constant Cy can be chosen to be independent
even of the dimension d.

3.4.5. Eigenvalues and eigenfunctions of the operator —A + u. Until now we studied
the differential operator —A 4 only implicitly, mainly through its resolvent R,,. In this subsec-
tion we will give a precise definition to —A+ p and its spectrum. In fact this will be an easy task
since we already have the instruments necessary to identify it since we know its resolvent and
also the quadratic form associated to it. Thus, we will simply define —A + p as the inverse of
R,,. Our main goal is the construction of the heat semigroup associated to this operator, which
is a useful tool in the study of the properties of the eigenfunctions and eigenvalues associated
to the capacitary measure pu.

We start our analysis with the following lemma.

LEMMA 3.4.38. Let u € ML_(RY) be a capacitary measure of finite torsion and let Q, be

cap
its set of finiteness. Then the closure of the space Hﬁ with respect to the norm ||-|| 12 is precisely

L*(Q,) = {f e L*(RY: f=0 ae on Rd\Q#}.

PROOF. Denote with Hilll the closure of H}L with respect to || - ||z2. Since H}L C L3(Q,),
we obtain the inclusion Hiﬁlb C LQ(Q#). For the opposite one, consider an open set of finite
measure A C R? and a non-negative function v € H'(R?) such that A = {u > 0}. Since
Q, = {wy > 0} by definition, we have that {w, Au >0} =Q, N A and w, Au € Hy. Now let
ue = 1 A (e (w, Au)). Then u. is an increasing sequence in ¢ converging pointwise to 1 ANQ,, -
By the Fatou Lemma and the fact that A is arbitrary, we have that the characteristic functions
of the Borel sets are in the closure of H ﬁ By linearity and the density of the linear combinations
of characteristic functions in L?($,), we have the claim. O

COROLLARY 3.4.39. Let i € ML _(R?) be a capacitary measure of finite torsion and let Q,

cap
be its set of completeness. Then the resolvent operator Ry, : L*(,) — L*(S,) is injective.

PROOF. Suppose that u,v € L?(€,,) such that R, (u) = R, (v). Then for every test function
p e H; we have

/ ugodx:/ VRM(U)-chdx—i—/ R, (u)pdp
Rd R4 Rd

= VR,(v) - Vepdx + / R,(v)pdu = / v dz.
Rd Rd R4
By the density of H; in L?(Q,), we get that u = v. O

DEFINITION 3.4.40. For a capacitary measure i of finite torsion we define:
e the domain Dom(—A + p) C L*(2,) as the image Dom(—A + p) = R,(L*(Q));
e the unbounded operator —A + pi : Dom(—A + p) — L*(Q,) as the inverse of the map
Ry, : L*(Q2,) = Dom(—A + p).
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LEMMA 3.4.41. Let p € ML _(RY) be a capacitary measure of finite torsion and let Q,, be

cap

its set of completeness. Then the operator —A + p with domain Dom(—A + ) is self-adjoint
on the Hilbert space L*(Q,,).

PROOF. Let (—A + u)* be the adjoint operator of —A + p and let Dom((—A + u)*) be its
domain. By the definition of an adjoint operator we have:

Dom((—A + p)*) = {u € L*(Q,): Jv e L*(Q,) such that

/ u(—A+ p)pde = / vpdr, Yo € Dom(—A+ ,u)}
R4 R4

(3.4.34)
Taking ¢ € L?(£2,) such that R, (v) = ¢, we get

/uzpda;:/ vRM(w)dx:/ YR, (v)dz, Y € L*(Q,).
Rd R4 R4

Thus v = R,(v) and so, we obtain Dom((—A + p)*) = Dom(—A + p). Since by definition of
the adjoint operator (—A + u)* we have (—A + p)*u = v, where u € Dom((—A + p)*) and
v € L?(Q,) is as in (3.4.34), we get that (—A + u)* = —A + 4. O

REMARK 3.4.42. Let pu € ML, (R?). We note that by construction we have that R,, is the

resolvent (in zero) of the unbounded self-adjoint operator —A + x on the Hilbert space L?(£2,)
and that the spectrum of —A + p is discrete and its elements are precisely

0 < Ar(p) <Ap(p) < < Ap(p) <.

where A\ (u) was defined in (3.4.29). Moreover, the following variational characterization holds

for A\p(p):
Vul?d 2d
Ae(p) = r%in max Jpa [Vl yjj Jpa lﬁ’
k uES,\{0} Jpa u? dzx

where the minimum is taken over all k-dimensional subspaces Sy of H ;

Since the operator —A + p is positive and self-adjoint, the Hille-Yoshida Theorem (see for
example [60]) states that the operator (A — 1) generates a strongly continuous semigroup 7},
on L?(,), i.e. a family of operators T),(t) : L*(Q,) — L*(Q,), for t € [0, +00), such that
T,(t) : L*(Q,) — L?(£2,) is continuous, for every t € [0, 4+00);

7,(0) = Id;

T,(t) o Ty(s) = Ty(t + s), for every t,s € [0, 4+00);

the map ¢ — T),(t)u is continuous as a map from [0, +00) to L%(2,) equipped with the
strong topology, for every u € L?*(Q,).

EXAMPLE 3.4.43. If 4 = 0 on R?, then the corresponding semigroup Tp(t) can be defined
through the heat kernel on R? (see for example [61, Section 2.3]), i.e. for every f € L?(R?) and
every t > 0, we have

1 _le—y?
To(011(0) = s [, S0

REMARK 3.4.44. Let 1 € R? be a generic capacitary measure. A classical result from the
Theory of Semigroups (see for example [60]) states that a function u € Dom(—A + u) if and
only if the strong limit lim e N (Ty(e)u — u) exists in L?(£2,). If this is the case we have

e—0

(A —p)u= lim e (T,(e)u — u).

e—0t
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Using this result and the semigroup property T),(t) o Tj,(s) = T,,(t + s), it is straightforward to
check that if v € Dom(—A + ), then the application ¢ — T),(t)u is Frechet differentiable as a
map from [0, +00) to L?(m) and its derivative is given by

ﬁTM(t)u =Tu(t) o (A —p)u=(A—p)oT,(t)u. (3.4.35)

REMARK 3.4.45. Suppose now that yu is a capacitary measure such that the inclusion H }L -

L%(RY) is compact. Let uj be an eigenfunction for the operator R, i.e. R, (ug) = Ag(p)ug.
Then uy € Dom(—A + p) and (—A + p)ur = A\g(p)ug. In particular, by (3.4.35), we have

d

g Lu(Our = Tu(t) o (A = plur = —A(p) Tu(t)ur,
and so, since T),(0)uy, = u, we have

T (tyuy, = e Wy Yt € [0, +00). (3.4.36)

We now recall a classical result known as the Chernoff Product Formula (see [60, Theorem
5.2] and [60, Corollary 5.5]).

THEOREM 3.4.46. Let u be a capacitary measure in R% and let f € LQ(Q#). Then we have
. n n
T,t)f = nlg]go [;R(%Jru)] (f), for every te (0,400), (3.4.37)
where the limit on the right hand-side is strong in L*(Q,,).

A consequence of this formula is the following:

COROLLARY 3.4.47 (Weak maximum principle for semigroups). Let u be a capacitary mea-
sure in R? and let f € L?(Q,). If f > 0, the for every t € [0,+00) we have T, (t)f > 0. In
particular, for every f € L*(,) and every t € [0, +00), we have |T,,(t)f| < T, (t)(|f])-

PROOF. It is sufficient to note that if f > 0, then the right hand-side of (3.4.37) is positive.
O

In what follows we will need to compare the semigroups 7}, generated by different capacitary
measures 4. In order to do that we extend the semigroup 7}, to the space L?*(R%). Indeed, for
the capacitary measure p, we define the projection

P, : L*(RY) — L*(Q,),  Pu(u) = 1g,u.
The one-parameter family of operators 7, W(t) ==T,(t) o P, : L*(RY) — L2(R?) satisfies
Tu(t) : L2(RY) — L2(Q,) C L*(R?) is continuous, for every t € [0, +00);
Tvu(o) :NP s _
T,(t) o Ty(s) = Ty(t + s), for every t, s € [0, 4+00);
the map t — 7),(t)u is continuous as a map from [0, +00) to L?(R?) equipped with the
strong topology, for every u € L?(R%).

PROPOSITION 3.4.48. Let now p and v be capacitary measures in R¢ such that p > v. Then
for every nonnegative f € L3(RY) and every t € [0, +00), we have T, (t)f < T,(t)f.

Proor. We first note that u > v implies €2, C €2, and so, by Corollary 3.4.47, we have
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Now using the approximation from Theorem 3.4.46, and the maximum principle for capacitary
measures, we have that

Tl/(flﬂu) > Tu(f]lQ,)a
which proves the claim. O
COROLLARY 3.4.49. Suppose that i is a capacitary measure such that the inclusion Hﬁ C

L?(R%) is compact. Let uy € LQ(QH) be an eigenfunction for the operator R,,. Then we have the
estimate

1
gl zoe < €57 M) ¥ g 2- (3.4.38)
ProoOF. By Remark 3.4.45, Corollary 3.4.47 and Proposition 3.4.48, we have
My = | T, (tur| < Tu()lur| < To(lug))-

On the other hand, by Example 3.4.43, we have

e”\k(#) |z—y|2 et)‘k(l‘) d
< — - L /4 .
ol < e [ e o)l dy < 2mt)
Now, choosing ¢ appropriately, we have the claim. O

3.4.6. Uniform approximation with solutions of boundary value problems. Let
n e Mz;p(Rd) be a capacitary measure of finite torsion. For a positive real number ¢ > 0 and

a function f € L?(RY) we consider the variational problem

1
min{/ |Vv\2dx+/ v2d,u+/ lv— fl?dz: v e H}L(Rd)}. (3.4.39)
Rd Rd g Jrd

By the compactness of the inclusion H ; < L*(R%) and the strict convexity (in the variable
v € H;) of the functional in (3.4.39), we have that there is a unique solution u. € H}L of the
problem (3.4.39). Moreover, by the Euler-Lagrange for (3.4.39), the minimum u,. is a solution
of the equation

1 1
— Aue + pue + —ue =—=f in Hp, u. € Hy,. (3.4.40)
g g

We denote with Y, . : L2(R?) — L?(R%) the map that associates to every function f € L*(R%) the
solution u. of (3.4.40). Thus, Y, . is linear and continuous application, which can be expressed
in terms of the resolvent operator as:

1
Yie:=—-R, 1: L*(R?) - L*RY). (3.4.41)
£ £

In fact, due to the fact that p has finite torsion, the domains of the operators —A + p and
—A + 1+ L coincide, thus we have that Y, .(L?(R%)) C Dom(—A + p), i.e. the application of
the map Y, . has a regularizing effect on f. Moreover, if we consider a function v € H i, then
the regularized sequence Y}, .(u) converges to u. More precisely, we have the following

LEMMA 3.4.50. Suppose that pu € MCTap(Rd) is a capacitary measure of finite torsion. For
every function u € H}L(Rd) we have:

(@) Waew)lzy < Nl gy, for every & > 077

(b) | Vie(u) —ull 2 < 51/2||u||];]’£, for every e > 0;

1/2
"We recall the notation llull 51 = (/ |Vu|? da —|—/ u? d,u) .
M RrRd RrRd
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(¢) Yuc(u) converges strongly in H}L tou ase — 0.

Proor. For sake of simplicity we ill use the notation u. := Y, .(u). We first test the
optimality of u. in (3.4.39) against u, obtaining
1
/ |Vu5|2dx—|—/ ugd,u—l—/ |u5—u|2da3§/ |Vu\2daj+/ u® dy, (3.4.42)
Rd Rd € Jrd Rd Rd

which immediately gives both (a) and (b). For the proof (¢) we first note that due to the uniform
(in €) bound ||ucl| g, < ||ull 7, and the L?(R%)-convergence of u. to u, we have that u. converges
i I

to u weakly in H i In order to show that the convergence is strong we estimate [[u — uc||z, as
"

follows:

/ |V(u5—u)|2da:+/ lue — ul? dp :2</ Vu-V(ue—u)d:U—l—/ u(u—us)du>
R4 R4 R4 Rd

9 |Vue|? dz + /Rd u? dp

—(/ \Vu]2dx+/ qu,u>
Ré Rd

<2 Vu~V(u€—u)dx+2/ u(u — ug) dp.

R R
(3.4.43)
Now by the weak convergence u. — u in Hﬁ, we obtain (c¢). O
In dimension d < 5, using the Gagliardo-Nirenberg-Sobolev inequality we have that u €
HY(RY) implies u € LP(R?), for some p > d/2. Thus we immediately obtain Y}, .(u) € L>(R?),
for d < 5. In higher dimension (d > 5) one can reason as in Remark 3.4.35, applying numerous

times Y, . each time gaining some integrability, to obtain a function which is close to u in norm
but bounded in L*°.

LEMMA 3.4.51. There is a constant M € N, depending only on the dimension d, such that

for every capacitary measure of finite torsion p € ML _(R?) and every function u € H}L(Rd) we

cap
have:

(1) HY%(U)H@ < |lull gy, for every e > 0;
(i1) ”Y;%(U) —ullrz < M81/2||u||}-11, for every e > 0;
m

(i) HYM%(U)HLM < Ce™M||u|| 12, where the constant C depends on the dimension d and the
torsion T'(u);

(iv) |YM]§£+1(U)| < Ce MY |u|| 2wy, where C is the constant from point (iii).
ProOF. Claim (7) is a direct consequence of Lemma 3.4.50 (a):
M M—
Ve @l < IVe @l < - < W@l gy < ull gy

For (i) we apply numerous times the estimates from Lemma 3.4.50 (b):

1,28 () =l < Z 1¥je (u) = Vi (u) 2 < 51/22 1Yo @)l gy < M2 full g,

In order to prove (iii) we will show by induction that Y. converges to u strongly in H }L as
¢ — 0. The base step n = 1 was proved in Lemma 3.4.50 (¢). Let now v, := Yﬁ;l converges
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to u strongly in H}L It is sufficient to prove that [|Y),(ve) — vell s g 0. Since the difference
poe—

Y, ¢(ve) — v. is bounded in H ﬁ and converges to zero in L2(R%), it also converges to zero weakly
in H}L Now using the estimate (3.4.43) for v = v. we get

lim ||V, (ve) — ”8“21 < 2limsup Ve - V(Y e(ve) — ve) da +/ Ve(YVie(ve) —ve) dp
e—0 m R4 Rd

e—0

=2limsup [ Vu-V(Y,:(v:) —ve)dr + / w(Yye(ve) —ve) dp = 0.
e—0 R4 R4

For (iv) we first note that by the linearity of Y}, . it is sufficient to prove the claim in the
case u > 0. Now due to the representation (3.4.41), we have that Y;’.(u) > 0, for every n € N.
On the other hand for a generic nonnegative function f € L?(R%) we have

1 1
Yue(f) = ER/,LJ,-é(f) < gRu(f)a
and applying the above estimate to f = u, ... ,Rfyfl(u), we get

M —M pM
YM’S(u) <e VR, (u).

Now the claim follows by Proposition 3.4.36.
The last claim (v) follows by (iv) and the maximum principle. O

3.5. The y-convergence of capacitary measures

The ~-convergence on the family of capacitary measures is a variational convergence which
naturally appeared in the study of elliptic boundary value problems on variable domains. A
great amount of literature was dedicated to the subject, starting from the pioneering works of
De Giorgi, Dal Maso-Mosco, Chipot-Dal Maso and Cioranescu-Murat. Numerous applications
were found to this theory, especially in the field of shape optimization, where a technique for
proving existence of optimal domains was first introduced by Buttazzo and Dal Maso in [33].
In this section we give a self-contained introduction to the topic, following the ideas from [33],
[51] and [19].

DEFINITION 3.5.1. Let pu, be a sequence of capacitary measures in R We say that p,
v-converges to the capacitary measure i, if the sequence of energy functions w,, converges to
w,, in L' (RY).

When the measures we consider correspond to domains in R?, we will sometimes use the
following alternative terminology:

We say that the sequence of quasi-open sets 0, C R% ~-converges to the quasi-open set ,
if the sequence of capacitary measures Iq, y-converges to I in sense of Definition 3.5.1.

REMARK 3.5.2. The family MCTap(]Rd) of capacitary measures of finite torsion is a metric
space with the metric dy(pi1, o) = ||wy, — Wy, |[r1. On the ball {p € Meap(R?) : [Jwy|[1 < 1},
this metric is equivalent to the distance |w,, — wy,|/rr, for every p € (1,+00).

REMARK 3.5.3. Classically, the term ~-convergence was used to indicate what we will call
Yioe-convergence, defined as follows: The sequence of capacitary measures i, locally ~v-converges
(or Yioc-converges) to the capacitary measure i, if the sequence of energy functions wy, v
converges to wyyi, in L' (R%), for every bounded open set Q@ C RY. The family of capacitary
measures on R? endowed with the 7, convergence, is metrizable (one can easily construct
a metric using a sequence of balls B,,, for n — oo, and the distance d, from Remark 3.5.2).
Moreover, it is a compact metric space.
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3.5.1. Completeness of the ~-distance. In this subsection we prove that the metric
space (./\/lCTap(Rd), d,) is complete. Essentially, there are two ways to approach this problem:

e The first one uses the classical result of the compactness with respect to the ;.. con-
vergence. In this case one has to prove that if w,, — w in L' and p,, — p in viee, then
w = wy,. This approach was used in [19], in the case u, = I4,, and basically the same
proof works in the general case. The further results on the y-convergence rely on the
analogous results for the ~;,. convergence.

e The second approach consists in constructing, given the limit function w := limw,,, in
Lt (Rd), a capacitary measure p such that w = w,. This technique was introduced in
[45] and was adopted in [51] (see also [72]). The results in [51] refer to the case of
measures in a bounded open set Q C R%, but hold also in our case essentially with the
same proofs.

We will prove the completeness of the y-distance using the second approach.

Consider the set
K= {w e H'®YNL'RY : Aw+1>0in [H'(RY) N Ll(Rd)]’}.

REMARK 3.5.4. We note that K is a closed convex set in H'(R?) N L'(RY). Moreover, if
p € ML (RY), then by Lemma 3.4.20 we have

cap
Awy, + 1yy,>0p = 0, as operator on HY(RY) N LY(RY),
and so w, € K.

THEOREM 3.5.5. The space Mz;p(Rd) endowed with the metric d, is a complete metric

space.

PROOF. Let u, be a sequence of capacitary measures, which is Cauchy with respect to the
distance d,. Then the sequence w, := w,, converges in L' to some w € L'(RY). Since, for
every n € N, we have the identity

/ ]an|2d:z+/ w%dun:/ wy, dz,
R4 R Ré

the sequence w;, is bounded in H'(RY). In particular, w € H'(R%) N L'(R?) and the converges
wy, — w holds also weakly in H'(R?). By Remark 3.5.4, w,, € K and passing to the limit w € K.
Now, using the positivity of Aw + 1, by Proposition 3.4.13 we have there is a Radon capacitary
measure v on R? such that Aw + 1 = v.

Following [51, Proposition 3.4], we define the measure p as

/ lalu, if cap (E\ {w >0}) =0,
E W
+00, if cap (E'\ {w > 0}) > 0.

W(E) = (3.5.1)

It is straightforward to check that the function u, defined on the Borel sets in R?, is a measure.
Moreover, since v is capacitary, p is also a capacitary measure. By construction we have

/wzdu—/ wdl/—/ —|Vw]? + wdx < +00
Rd Rd Rd



90 3. CAPACITARY MEASURES

and for every u € H'(R?) N L2(u) N L' (RY) we have

/ wud,u:/ uduz/ udy = — Vu‘dea:—F/ udx.
Rd {w>0} Rd R Rd

Thus, w satisfies
—Aw+wp=1 in H}LﬂLl, wGH;ﬂLl

and so w minimizes the convex functional .J,, in L'NH /i Finally, we obtain w = w,, € LY(RY). O

3.5.2. The ~-convergence of measures and the convergence of the resolvents R,,.
In this section we relate the y-convergence of a sequence of capacitary measures p, € Mgap(Rd)
to the convergence of the resolvent operators Ry, : L?(R%) — L?(R?). We recall that a sequence
R, € L(L*(R%); L2(R?)) converges
e in (operator) norm to R, € L(L*(RY); L%(RY)), if

lim [|Ry, = Ryl o2 ayzray) = 0;
e strongly (in L?(R?)) to R, € L(L*(RY); L*(RY)), if
Tim ||Ry, (f) = Ru(f)ll2(ga) = 0, for every  f € L*(RY).

REMARK 3.5.6. By definition we have that if the sequence of resolvent operators R,,, con-
verges in norm to I, then it also converges strongly in L*(R%) to R,,. The converse implication
does not hold in general. Indeed consider the sequence of capacitary measures associated to a
ball escaping at infinity, i.e.

pn =1y, 4B, € Mgap(Rd), where |z,| — +o0.
Then the sequence of resolvents R, converges strongly to zero, while the norm remains constant
HRunHL(L2(Rd);L2(Rd)) = | Ry, HL(LQ(Rd);L2(Rd))a for every n €N

In what follows we will prove that for a sequence of capacitary measures p, € MZ (R
the following implications hold:

the y-convergence p, — p implies the norm convergence R, — R,
the norm convergence R, — R, implies the strong convergence R, 6 — R,
the strong convergence R, — R, implies the I'-convergence | -|g1 — |- [lm1-

REMARK 3.5.7. Suppose that Q,, C R is a sequence of measurable sets of uniformly bounded
measure. Then, for a given measurable set Q C R? the strong convergence of the resolvent
operators Rq, — Rq corresponds, in the terminology of Chapter 2, to the strong-y-convergence
of the domains 2, to 2. Thus we will show that the v-convergence of €2, implies the strong-
~v-convergence. Precisely, we will show in Proposition 3.5.13 that for sequences of domains of
uniformly bounded measure the -convergence is equivalent to the norm convergence of the
resolvent operators.

We start by the following key lemma.

LEMMA 3.5.8. Suppose that the sequence p, € Mg;p(]Rd) ~v-converges to the capacitary
measure pi. Let f, € L2(R?) be a sequence converging weakly in L? to f € L*(R?). Then the
sequence Ry, (f,) converges strongly in L*(RY) to R,(f).
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PROOF. We set for simplicity
Wy =Wy, w=w, and u, = Ry, (fn).
We note that since
limsup || fn||2 < +00 and HuanLI1 :/ frun dz,
n—o00 Hn R4

we have that ||uy|| gy < C, some constant C' not depending on n € N. In particular, uy, is
uniformly bounded in H'(R%) N L'(RY).
Consider now the operators Y, ., for some € > 0, and the dimensional constant M from

Lemma 3.4.51. We have that the sequence u, ¢ := Yuj\rﬁrl(un) is uniformly bounded in H*(R%) N

L'(R%) and since Up,e < Cowy, for some constant C., we have that u,. converges in L?(RY).
Since ||ty — tnellp2 < (M +1)e'/2C, for every n € N, we have that u, is Cauchy sequence in
L?(R%) and so, it converges strongly in L? to some v € H'(R%) N L}(R?).

We now prove that u = R, (f). Indeed, for every ¢ € C2°(R?), we have

/ uppdr = Vwy, - V(unp) dx—I—/ Wi Up @ diby
Rd Rd R4

= / (unVwy - Vo — w, Vuy, - V) dz + / V(wnp) - Vuy, dz + / Wy Un @ dity,
Rd Rd Rd

= / (unVwy, - Voo — w, Vuy, - V) dz + / W fr de.
Rd R4
Passing to the limit as n — co, we obtain that u satisfies the identity
/ updr = / (uVw - Ve —wVu- V) dz + / wef dx. (3.5.2)
Rd R4 R4
On the other hand, R, (f) also satisfies (3.5.2) and so, taking v = u — R,(f), we have
/Rdvcpdx:/Rd (vVw - Vo —wVv - Vo) dz, Vo € C(RY),
or, equivalently,
/ v dr + / wVv - Vedr = / vVw - Vedz, Vo € C2(RY). (3.5.3)
R4 R4 R4

Since v € L (R?) N L?(RY) and w|Vv| € L?(R%), we can estimate the left-hand side of (3.5.3)
by [[V¢| 2 and thus we obtain

/ WV - Vipds < OV, Ve € C2(RY, (3.5.4)
Rd

and so the operator

©— vVw - Vpdz,
Rd

can be extended to a continuous operator on H' (Rd). We are not allowed to use v; := —t Vv At,
as a test function in (3.5.2), obtaining

1
/ vide < —Vw - V() — w|Vu? da
Rd Rd 2

1
S/ v?d:c—/ w|Vy|? dz,
2 Rd R4



92 3. CAPACITARY MEASURES

where we used the inequality Aw 41 > 0 in H'(R?). In conclusion, we have

1
/ vfd:z—k/ w|Vu? dx <0,
2 Jpa Rd

which gives vy = 0. Since ¢t > 0 is arbitrary, we obtain v = R,,(f), which concludes the proof. [

REMARK 3.5.9. A careful inspection of the proof of Lemma 3.5.8 shows that if u, €
Meap(RY) y-converges to 1 € Meap(RY) and if f, € L?(RY) converges weakly in L? to f €
L2(R%), then Ry, +¢(fn) converges strongly in L?(R?) to R,4+(f), for every ¢ > 0.

PROPOSITION 3.5.10 (v implies convergence in norm). Let j, € Mgap(Rd) be a sequence

of capacitary measures y-converging to | € Mgp(Rd). Then the sequence of operators Ry, €

L(L*(R?)) converges to R, € L(L*(RY)) in norm.
PROOF. By definition of the convergence in norm, we have to show that

tim {sup {|| R, (/) = Rz [ € LR, If|2 =1} } =0,

n—oo

or, equivalently, that for every sequence f, € L>(R?) with || f,|/z2 = 1, we have
T (R, (fu) — Ry(f)lzz = 0.
Let f € L2(R?) be the weak limit of f, in L?(R?%). Then we have,

Jim 1By, () = BBl < msup | By, (£) = Byl + imsup [ By £u) = Rl 2

The first term on the right-hand side is zero due to Lemma 3.5.8. The second term is zero due
to the compactness of the inclusion H }L — L2(R%). O

Since the convergence in norm implies the convergence of the spectrum, we obtain the
following result.

COROLLARY 3.5.11. The functional A, : ME (RY) — [0, +00], which associates to each
capacitary measure (1 the kth eigenvalue A\, (1) of the operator —A + p in L*(RY), is continuous
with respect to the ~y-convergence.

The convergence of the resolvents R, does not, in general, imply the v-convergence of the
measures [i,. Indeed, we have the following example.

EXAMPLE 3.5.12. Consider a sequence of sets €2, C R? with the following properties:

e cach of the sets €, is a disjoint union of n¢+?2

e the radius of each ball in €, is precisely 1/n.

balls of equal radius;

Then we have:
e the sequence of resolvent operators Rq, converges to zero in norm:

IR, | o T .
S lEEEDLEED) TN @) T M(Bym)  n2M(B1) noe

e the torsion 7'(€2,) remains constant:

T(Q.) = nd+2T(B g2 Wd o qgydt2 o wd
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We note that in the previous example the measure of €2, diverges. Precisely, we have
Q| = ndHIBl/n\ = nwg —— +o0.
n——+00

Thus the non equivalence seem to appear when the sequence of energy functions w,,, tends
to distribute its mass uniformly on R%. In fact, the equivalence between the y-convergence of
fn and the norm convergence of R, holds, under the additional non-dissipation assumption

PROPOSITION 3.5.13 (Convergence in norm and the non-dissipation of mass imply v). Let
Hn € Mgp(Rd) be a sequence of capacitary measures and let €),,, be the corresponding sequence
of sets of finiteness. If the measure of S, is uniformly bounded (|1, | < C, for every n € N),
then the sequence i, 7y-converges to p, if and only if, the sequence of resolvent operators R, €
L(L*(R?)) converges to R, € L(L*(RY)) in norm.

PROOF. Suppose that R, — R, in the operator norm || - [|z(z2(ray,z2(re)). We first show

that [Q,] < C. Indeed, setting ¢(x) := e~171* | the strong convergence R, (¢) = R,(¢) gives
that up to a subsequence R, (¢) — R,(¢) pointwise almost everywhere and so

LR, (¢)>0p S lminf g, (g)>0p < liminflg, ,
which in turn implies
[{Ru(6) > 0}] < liminf |{R,, (8) > 0}] < C.

Thus it is sufficient to show that {R,(¢) > 0} = Q, (= {w, > 0} = {w, A ¢ > 0}), where the
equalities in the parenthesis are due to the definition of €2, and the strict positivity of f. Since
R.(¢) € Hﬁ C H(Q,), we have the inclusion {R,(¢) > 0} C Q,. For the opposite inclusion
we consider the sequence u. := Y, .(w, A ¢), where Y, . is the operator from (3.4.41). By the
maximum principle we have

1 1 1
Ue < ERM_A'_%(/LU}L A ¢) < gRy(w,u A ¢) < ER#(¢>>

and so {uc > 0} C {Ry(¢) > 0}. On the other hand u. — w, A ¢ strongly in H}, (by Lemma
3.4.50) and so Q, = {w, A ¢ > 0} C {R,(¢) > 0}, which proves the equality Q, = {R,(¢) > 0}
and the estimate [Q,| < c.

We now consider the sequence of characteristic functions f, = 1q o UL, - Since f,, is bounded
in L2(RY), there is a function f € L?(R?) such that f, — f weakly in L?(R?). Since f, = 1 on
1, for every n, we have f = 1 on €,. On the other hand, the norm convergence R,, — R,
implies the strong convergence in L2(R?) of Ry, (f,) to R,(f). It is now sufficient to notice that
R, (fn) = wu, and R,(f) = wy. O

In view of Proposition 3.5.10 and by the definition of the strong convergence of operators,
we have that every sequence p, € ME (R?), y-converging to u € ME (R?), is such that the
sequence of reslovents R, converges strongly as operators in L? (Rd) to R,. In what follows we
study the relation between the strong convergence of the resolvent operators and the variational
I'-convergence (Definition 2.2.14) of the norms || - || 1, which was originally used to define the
a convergence on the class of capacitary measures. Before we continue we recall that given a

capacitary measure u € MZ, (R%) we can extend the associated norm ||- || myon H }L to the entire
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space L%(R?) as follows:

) / |Vu]2da:—|—/ u2d,u—|—/ wde , if ueHﬁ,
”uHH/’lL = Rd Rd Rd

400, otherwise.

The following result is classical and can be proved by a technique from the I'-convergence
Theory (see [53, Proposition 4.3] and [9, Corollary 3.13]). For sake of completeness, we give
here a direct proof.

PROPOSITION 3.5.14 (The strong convergence of R,,, implies the I'-convergence of || - HH}L)
Let o € ML _(RY) and p, € Mgp(Rd), for n € N be capacitary measures of finite torsion

cap
such that the sequence of resolvent operators Ry, converges strongly in L*(R%) to R,,. Then the

sequence || - HHﬂm I'-converges in L*(R?) to | - ”H,E

ProOF. We first prove the ”"I' — lim inf” inequality. Let u, € H /in be a sequence converging
to u € L?(RY) strongly in L?(R?) and sequence of norms is bounded: ||uy|| m, < C, fora
constant C' > 0. For every € > 0, consider the functions

uy, =Y, (un) and ut =Y, (u),
1 1 1 _
where V), . = ER’““"% = [1+ ER“] 1Ru is the operator from (3.4.41). Since the norms of Y, .
are bounded uniformly in n

1Y el o2 mayzomay < Cey  for every n €N,

and since Y, . — Y, - strongly as operators in L?(R%), we have that u$, — u® strongly in L?(R?).
Using us, € H }Ln as a test function in the equation

1 1
€ e _ € 1 € 1
—Au;, + ppu;, = JUn = JUp 0 H,, u, € H, ,
we obtain the convergence of the || - || ;, norms:
Hn

IS _ € & __ €
iy, = [ =t gy [ ) g ey,
Hun Rd 13 n—r00 Rd e HM

Using Lemma 3.4.50 (a), we get

c o eyl . o )
sl gy = Jm flun gy < liminf fun] g, -
On the other hand, by Lemma 3.4.50 (b), ||u, — u5||2 < Cy/e and so passing to the limit,
|lu —uf|| 2 < Cy/e. Thus, uf converges in L?(R) to u and is bounded in Hi As a consequence
u € H; and
o c o
IIUHI;,; < lim inf [|u Hg; < liminf IIuanﬁn,
which concludes the I' — liminf inequality since || - ||, = || - Hifﬁ + - 113,
We now prove the ”I" — lim sup” inequality. by definition of the I'-convergence, for every

u € H}L, we have to find a sequence u,, € H}m converging in L?(R%) to u and such that Jull go =
I
limy o0 [[unll g, - We first note that if u = Ry,44(f), for some f € L*(R?) and t > 0, then we
i

may choose uy, - Ry, ++(f). Indeed, the strong convergence of R, — R, implies the strong
convergence of u, = Ry, 1+(f) = Ru++(f) = v and testing with u,, the equation

=AUy + pptiy = f —tu, in Hin, uneﬂin,
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we obtain
funlly, = [ unF = tun)de s [ ulf = ) do =l
R4 w

n n—oo Rd
which completes the proof in the case v = R,4+(f). In the general case, it is sufficient to
approximate in H ;, the function v € H }L with functions of the form R,4(f). Taking u. =

Y, c(u), by Lemma 3.4.50, we have the strong convergence u. — w in H}L(]Rd). Now the claim
follows by a diagonal sequence argument. O

With the following example we show that the converse implication does not hold in general.

EXAMPLE 3.5.15. We perform the following construction in R?, for d > 3.

d d+2
o Let f(z) = (1 + |z[)~%, where 5 <a< % In particular we have that f € L?(R%):

+o00 d—1 +o00

2 _ —1—(2a—d)

de =d ———dr <d 1+ dr < +o0.
y f(z)dz wd/o LD r < wd/o (1+7r) r 00

e Let 2, = (n,0,...,0) € R? and let Q,, be the half-ball centered in z,:
Q== Bp(zn) N {(a:l, ot eRY: 2y > n}
In particular, we can obtain €),, by rescaling and translating ;:
Qp =xpn +n(—x1 + Q). (3.5.5)

The sequence of capacitary measures p,, = In, has the following properties:

e The sequence of norms | - |71~ I'-converges in L*(RY) to || - HHiw, where
n

0, ifu=0,
lullg = .
L +00, otherwise.

o |- ||H£oo is the norm associated to the capacitary measure p = Iy, defined by

0, if cap(E)=0,

400, otherwise.

w(E) = Iy(B) = {

The Sobolev space H ﬁ contains only the constant zero (H 5 = {0}) and the resolvent
operator R, =0, i.e. R,(p) =0, for every ¢ € L?(R?).
e The sequence R, (f) does not converge to R,(f) = 0. Indeed, by the maximum

principle and the fact that f > m on €2, we get
1 n%
= — - @ - ,

IR | o (15 35)

where we used the rescaling (3.5.5) to calculate the L? norm of the torsion function
wa

n*

The equivalence of the strong convergence of the resolvent operators R, and the I'-convergence
of the norms || - || w3, does hold if an additional condition is imposed on the sequence /iy

PROPOSITION 3.5.16. Suppose that p, € Mgp(Rd) is a sequence of capacitary measures of
finite torsion such that the norms of the corresponding resolvent operators are uniformly bounded:

1Ry | 2L2(ay; L2y < €, for every n €N,
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and let p € ML (R?). Then the sequence of resolvents Ry, converges strongly in L*(R?) to R,,,

cap
if and only if, the sequence || - ”H,i I'-converges in L*(R?) to | - HH}L'

PROOF. Let f € L?(R?). We first prove that the sequence u,, = R,,, (f) converges in L?(R%).
Indeed, by the bound on the resolvent we get

lunllrz < 1Ry ll2p2@ey2@ayll fllz < Cllfll L2,
and by testing with u,, the equation

— Auy + ppuy = f in Hlin, unEHﬁn,

(3.5.6)

we obtain
lunll 7 < IIUanq;n = lunll, + llunll7z < (C+C?)|f]7:-
Hn

Thus, up to a subsequence u,, converges weakly in L?(R?) and strongly in L? (R?) to a function
u € L*(R%). We now test the equation (3.5.6) with (1 — ng)?u,, where ng(x) := n(z/R) and

neC®®Y, 0<p<l, np=1lonB;, n=0onR"\B,.
We obtain

/ (1= nr)*unf dz = / V((1 = 18)*un) - Vun dz + / (1 = nr)*ul; dun
R4 Rd Rd

> [ V(=) o= [ V0= mnPdde+ [ (= nmyun)’ de

1 2 22
>G5 [ (= mmu) do = [ 190 =)l do.

which gives the estimate

1 2 2 ”VTIH%oo/ 2
— dxr < 1— nfd —_— d
C? /]Rd\BQRun x_/Rd( )"t f R? Rdun !
2
< 2/ (1 _nR)zufdx"‘7”V77|2‘L0002Hf“%27
]Rd R

for n large enough. Thus u,, converges to u strongly in L?(R%). Now the I'-convergence of the
norm gives

1 1
Tugtu) = gl = [ (s = Gu) da

o 1 2 1 o
< tymant {5ty = [ (7 = gun) do} = Tmint sy o)

n—oo

On the other hand, for every v € H }“ there is a sequence v, € H }Ln such that
Tus@) = 3llolfy = [ (s = gv) do

: 1 2 1 .
= nlingo{i"vn”H}Ln - /Rd vn<f — §vn> dx} > limsup J,,, f(un),

n—o0

where the last inequality is due to the fact that u,, minimizes J,, y. Thus J, ;(u) < J,, r(v), for
every v € Hi, and so u minimizes J,, f, i.e. u= R,(f). O

REMARK 3.5.17. The hypothesis of Proposition 3.5.16 on the sequence R,,, is fulfilled in
each of the following situations:
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e The sequence of capacitary measures ji, € Mz;p(]Rd) is of uniformly bounded torsion:
T(un) < C, for every n € N.

e The sets of finiteness ,, C R are of uniformly bounded measure: Q| < C, for
every n € N.

In the case when the sequence p, has sets of finiteness of uniformly bounded measure, we
can summarize the results from Propositions 3.5.10, 3.5.13, 3.5.14 and 3.5.16 in the following
theorem.

THEOREM 3.5.18. Suppose that p, € ./\/lg;p(Rd) is a sequence of capacitary measure of finite
torsion and p € ML (R?). Then (i) = (ii) = (iii) = (iv), where
(i) The sequence i, y-converges to p.

(ii) The sequence of resolvent operators Ry, converges in the operator norm of L(L?(R%); L?(R?))

to R,,.
(iii) The sequence of resolvent operators Ry, converges strongly in L*(R?) to R,,.
(iv) The sequence of norms || - HH}L I'-converges in L*(R?) to | - HH}L

If, moreover, the sequence of torsion functions wy, is bounded from above by a function w €
LY (R%), then the claims above are equivalent: (i) < (ii) < (iii) < (iv).

PRrOOF. The implications (i) = (i) = (iii) = (iv) were proved respectively in the Propo-
sitions 3.5.10, 3.5.13, 3.5.14 and 3.5.16. In order to prove the equivalence under the additional
hypothesis w,, <w € L'(R%), it is enough to prove that (iv) = (i). Indeed, since

/ |V, |* dz S/ Wy, dx S/ wdz,

Rd Rd R4

we have that w),, converges (up to a subsequence) in L}, (R?). Due to the bound w,, < w
it is concentrated and so, it converges strongly in L'(R?). By the completeness of the -
distance we have that the L'(R%) limit of Wy, is the torsion function w,, of a capacitary measure
p € MEL(RY). Thus p, y-converges to p and so the sequence of norms || - || my  T-converges in

L?(RY) to || - [ g1, which together with (iv) gives
w
1wl g, = HuHHﬁ’ for every u € L*(RY).
yn

Thus u = ¢ and so p, y-converges to u. ]
REMARK 3.5.19. We note that if the capacitary measure v € ML _(R%) is such that v < p,,,

cap
for every capacitary measure p, € MCTap(Rd), then by the maximum principle w,, < w, and so

the four conditions from Theorem 3.5.18 are equivalent.

3.6. The y-convergence in a box of finite measure

In this section we consider the case when the sequence of capacitary measures p,, is uniformly
bounded, i.e. when there is a capacitary measure v in R? such that w, € Ll(Rd) and p, > v,
for every n € N. For a generic capacitary measure v € Mcap(R?) we will denote by MZ;; the
family of measures bounded from below by v, i.e.

MEpRY) = {p e ML R : p2 v}, (3.6.1)

In the spacial case when v is of the form v = Iq for a measurable set Q C R? we will use the
notation
ME(9) = MTZ(RY) = {u e ML (RY): > JQ}. (3.6.2)



98 3. CAPACITARY MEASURES

THEOREM 3.6.1. Let v € Mg;p(Rd) be a capacitary measure of finite torsion. Then the
family of capacitary measures Mgg(Rd) equipped with the distance d., is a compact metric space.

Proor. Let pu, € Mg;{;(]Rd) be a given sequence of capacitary measures. Then by the

maximum principle we get

Wy, < wy, forevery neN.
Now, reasoning as in Theorem 3.5.18, we get that up to a subsequence p, y-converges to some
e Mgap(Rd) such that w, < w, ® Thus, it is sufficient to check that u > v, i.e. that for every
non-negative u € H ;, we have

Hu||§{}b = /Rd \Vu|® dz + /Rd u?dp > /Rd |Vu|2dx—|—/Rd u?dy = Hu||§{3 (3.6.3)

Indeed, by Theorem 3.5.18, the sequence of functionals || - || my, T-converges in L2RY) to || - || H}

and so, there is a sequence u,, € H ;n such that u, converges to u in L?(R?) and
lullig = tim funlagy, > tim funlla > [l

where the last inequality is due to the semi-continuity od the norm || - || z1 with respect to the
strong L?(R%)-convergence. O

In what follows we investigate the connection of the y-convergence and the weak convergence
of measures. In the particular case when the measures u,, are absolutely continuous with respect
to the Lebesgue measure, we have the following result.

LEMMA 3.6.2. Consider a measurable set Q C R and a fized p € [1,+00) be fized. Let
Vi, € LY(Q) be a sequence weakly converging in L' () to a function V. Setting pin, = Vpdx + Iq
and p = Vdx + I, the sequence of functionals || - HH}L I'-converges in L*(R%) to the functional

Il

PROOF. We first prove the I' — lim inf inequality (Definition 2.2.14 (a)). Let u,, € Hﬁn be a
sequence converging in L?(R%) to some u € L?(RY). By the lower semi-continuity of the H'(Q)
norm we have u € h$(Q) and

/|Vu]2d:v§liminf/ |V, |? dz.
QO n—oo 0

We now claim that the following inequality holds:
/ V(x)u? dr <liminf [ Vi, (2)u da. (3.6.4)
Q

n—oo Q

We will prove (3.6.4) in the case p > 1. For the limit case p = 1 we refer to [31]. Indeed,

for any ¢t > 0 we consider the functions u!, := (—t) V u, At and u' := (—t) Vu A t. Since u,

n
converges strongly in L?(2) to u, we have that |ul|* converges strongly to |uf|* in any L%(Q)
and, in particular, for ¢ = p’. Thus, we have
/V(az)]ut|2d1: = lim /Vn(x)uflpda: < liminf/ Vio(x)u? da.

n—o0

Now passing to the limit as ¢ — 400, we obtain (3.6.4), which concludes the proof of the
I' — liminf inequality
2 o 2
o3y < Timinf e,

8We note that the inequality w, < w, does not imply in general that p > v.



3.6. THE ~v-CONVERGENCE IN A BOX OF FINITE MEASURE 99

In order to prove the I' — lim sup inequality (Definition 2.2.14 (b)) we construct, for every
u € HE(Q), a sequence u,, € H‘l/n converging to u strongly in L?(2) and such that

lim sup {/ |V, |? d +/ Vi) u2 dx} < / |Vu|2dx+/ V(z)u? dz. (3.6.5)
n—00 Q Q Q Q
For every t > 0 let u! = (uAt)V (—t); then, by the weak convergence of V,,, for ¢ fixed we have
lim [ Vi(z)u')?dz = / V(z)|ut|? d,
Q Q

n—oo
and
lim V(:U)|ut]2dx:/V(x)|u|2d:c.
Q

Then, by a diagonal argument, we can find a sequence ¢, — +0co such that

lim Vn(:v)|ut"]2d:v:/V(x)|u|2d3:.
Q

n—oo Q

Taking now u, = u'*, and noticing that for every t > 0

/\Vthd:US/\VuIQd:J:,
Q Q

we obtain (3.6.5)thus completing the proof. O

THEOREM 3.6.3. Let Q C R? be a set of finite measure. Then, for every p € (1,400) the
set
M (Q) = {u € Mgp(Rd) s u=Vdx+1Ig, V >0, /
Q
is compact with respect to the y-distance. Moreover, a sequence p, = Vydx + Ig € M ()
~v-converges to = Vdx + Ig € Mrr(Q), if and only if the corresponding sequence V;, converges
to V weakly in LP.

VP de < 1},

PRroOOF. Consider a sequence u, = V,dr + Ig. Then, up to a subsequence, V,, converges
weakly in LP(Q) to a non-negative function V' € LP(Q) with [, V?dx < 1. By Lemma 3.6.2,
the sequence of functionals || - || my T-converges in L?*(R%) to the functional || - || L associated to
the capacitary measure p = Vdx + Ig. On the other hand, by the maximum principle we have
wy,, < wo and so, Theorem 3.5.18 gives that p, y-converges to p. O

In the case of weak™ convergence of measures the statement of Theorem 3.6.3 is no longer
true, as the following proposition shows.

PROPOSITION 3.6.4. Let Q C R? (d > 2) be a bounded open set and let V,W € L'() be
two non-negative functions such that V- > W > 0. Then, there is a sequence of mon-negative
functions V,, € LY(Q), bounded in L'(Q), such that the sequence of measures V,, dx converges
weakly® in  to V dx and the sequence Vydx + Iq ~y-converges to Wdx + Iq.

PRrooF. For sake of simplicity, we will write w,, instead of w,,y,. Without loss of generality
we can suppose fQ(V — W)dx = 1. Let puy, be a sequence of probability measures on € weakly*
converging to (V — W) dx and such that each iy, is a finite sum of Dirac masses. For each n € N
consider a sequence of positive functions Vj,,, € L'(Q) such that Jo Vaym dzz = 1 and such that
the sequence of measures V,, ,,da converges weakly™* to 1, as m — oco. Moreover, we note that
we can choose V, ,,, to be a convex combination of functions of the form |B; /m|_1]l By ()"
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We now prove that for fixed n € N, the sequence of capacitary measures (Vj, ,, + W) dx -
converges, as m — o0, to W dx or, equivalently, that the sequence of torsion functions ww v, ,,
converges in L? to wyy, as m — oo. Indeed, by the weak maximum principle, we have

WW I, , < WWAV,, < WW,
where Qp, ,, = Q\ (U Bl/m(:rj)) and so, we can estimate the distance between W +V,, ,, and
J

W as follows:
dy(W, W + Vyn) < dy (W, W + I, ,.) (3.6.6)

_ /Q (ww — wwin,, ) de = 2(E(W + In,,.,) — By (W) (3.6.7)
< / (|Vwm\2 + Ww?, — 2wm> dx — / (]V’ww|2 + Wuwd, — 2ww> dz,
Q Q

for a generic test function w,, € H}(Qm.n). Since the single points have zero capacity in R?
(d > 2) there exists a sequence ¢, € H'(R?) such that
¢m =1 on Bl/m(o)a ¢m =0 on R? \ Bl/sqrtm and li o “¢m“H1 =0.

m—r

Thus we may choose the test function w,, as the product

W (x) = wy (x) H (1= ¢m(z — z5)).
J
Now since ¢, — 0 strongly in H'(R?), it is easy to see that w,, — wy strongly in H'(Q) and
so, by (3.6.7), d, (VV,W + Vn,m) — 0, as m — oo. Since the weak convergence of probability
measures and the ~y-convergence are both induced by metrics, we can conclude by a diagonal
sequence argument. O

REMARK 3.6.5. When d = 1, a result analogous to Lemma 3.6.2 is that any sequence ()
weakly® converging to p is also vy-converging to p. This is an easy consequence of the compact
embedding of H}(2) into the space of continuous functions on Q.

We note that the hypothesis V' > W in Proposition 3.6.4 is necessary. Indeed, we have the
following proposition, whose proof is contained in [36, Theorem 3.1] and we report it here for
the sake of completeness.

PROPOSITION 3.6.6 (Weak* limits are larger than the y-limits). Let pu, € MZ (RY) be a
sequence of capacitary measures weakly® converging to a Borel measure v and ~y-converging to
the capacitary measure jp € ML _(R?). Then p < v in RZ.

cap

PROOF. We note that it is enough to show that p(K) < v(K), whenever K C R? is a
compact set. Let u be a nonnegative smooth function with compact support in R? such that
u<1inR% and u =1 on K; we have

n—oo

uw(K) < / u?dp < liminf/ u? dpiy, :/ u?dy < v({u>0}).
Rd R4 Rd

Since w is arbitrary, we have the conclusion by the Borel regularity of v. ]
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3.7. Concentration-compactness principle for capacitary measures

In this section we introduce one of the main tools for the study of shape optimization
problems in R?. Since when we work in the whole Euclidean space, we don’t have an a priori
bound on the minimizing sequences of capacitary measures, as happens for example in a box.
Thus, finding a convergent minimizing sequence becomes the main task in the of the existence of
optimal solution. Since the y-convergence of a sequence p,, of capacitary measures is determined
through the convergence of the corresponding energy functions w,,,, we can use the classical
concentration-compactness principle of P.L.Lions to determine the behaviour of w,,,. At this
point, we need to deduce the behaviour of the sequence u, from the behaviour of the sequence
of energy functions. In order to do this we will need some preliminary technical results.

3.7.1. The y-distance between comparable measures. The functional character of the
distance d-, makes quite technical the estimate on the distance between two capacitary measures.
In this section, we collect various estimates on the distance between capacitary measures p and
v which are comparable with respect to the order ”<”, i.e. when we have v < p or p < v.
In particular, we consider the most important cases, when the two measures differ outside a
large ball (or a half-plane) or inside a small set. At the end we also give some estimates on the
variation of eigenvalues and the resolvent operators with respect to the y-distance.

LEMMA 3.7.1. Suppose that j is a capacitary measure such that w, € L'(RY). Then, for
every R > 1 and every Ry > Ry > 1 we have

dy(p, 0V Ipy) < / w, dr + CR ™2, (3.7.1)
RI\Bp/s
dy (p, 1V Ipe) < / w,, dx + CR ™2, (3.7.2)
Bar
do (1t 11V (I, A lgs, ) < / wy, dz + C(Ry% + Ry?), (3.7.3)
? BQRQ\BRl/Z

where the constant C' depends only on ||w,||f1 and the dimension d.

PROOF. We set for simplicity wr = wpvig, and nr(z) = n(z/R), where

neCPRY, 0<n<1, n=1lonB;, n=0onR\B,.
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Then we have

dw(ﬂvﬂ\/IBQR) = Ad(wM_MZR) dx

= Q(JM(U)ZR) - Ju(“’u)) < 2(JM(77Rw“) N J“(w“))

:/ \V(anﬂ)2d$+/ n?{wid,u—Q/ anudx—l—/ wy, dx
Rd R4 R R

= / (wi|VnR|2 + Vw,, - V(m%wu)) dr + / n%wi dp — 2/ NRWy dx + / wy, dx
Rd Rd Rd Rd

:/ wi\VnR\de—i—/ n%wudx—Q/ anudx—&—/ wy, dx
Rd Rd R4 R4
= /Rdwilvm«zl2dw+/Rd(1 —1R)*wy, de

V0|7
< —F||lwull 2 + w, dx,
R2 H Rd\BR K

which proves (3.7.1). The estimates (3.7.2) and (3.7.3) are analogous. O

By a similar argument we have the following result, which is implicitly contained in [59,
Lemma 3.7] in the case when p = Iq.

LEMMA 3.7.2 (Restriction to a half-space). Suppose that u is a capacitary measure in R?
such that w, € L*(RY). For the half-space H = {x € RY: ¢+ z-& > 0}, where the constant
c € R and the unit vector £ € R? are given, we have

/ d—1 2 2
dy(py oV 1) < 4 /8l|wy|| oo /8H wy, dH — /Rd\H |Vw,| dx—/Rd\kudu+2/Rd\H wy, dx.
(3.7.4)

ProOOF. For sake of simplicity, set w = w,, M = ||w|/f~, ¢ = 0 and £ = (0,...,0,—-1).
Consider the function

M , L1 S —V M,
oz, ... ) = %(QM ~ (21 + \/QM)Q) ,—V2M < a1 <0, (3.7.5)
0 , 0< 1
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Consider the function wy = wAv € Hg(H) N H}.

dy(ps pV In) = /Rd(w — Wuviy) d
=2(Ju(wpviy) — Ju(w)) < 2(Ju(wh) — Ju(w))

§/ 'V (wp)|* - ]Vw]zda;—/ w2d,u+2/ (w —wpg)dz
Ré R\ H R

g/ \V(wH)P—Wwy?dx—/ Vul? d
{—V2M<z1<0} RI\ H
—/ w2d,u+2/(w—wg)daj
R\ H Rd
§2/ VwH~V(wH—w)d$+2/ (w —wpg)dz
{—V2M<z1<0} {—V2M<z1<0}

—/ \Vw]2dw—/ w2du+2/ wdz
RI\H RI\H RI\H

VU'V(wH—w)dx+2/ (w—wp) de

_9 /
{—v2M<az1<0} {—V2M<z1<0}

—/ |Vw|2d:v—/ w2du+2/ wdz
R\ H RA\H RA\H

= V8M wd?—[dl—/ |Vw|2dx—/ deﬂ+2/ wdz.
oH RI\H RA\H RA\H

(3.7.6)
O

An analogous estimate allows us to prove the following

LEMMA 3.7.3. Suppose that p is a capacitary measure such that w, € LY(RY). Then for
every Q0 C R?, we have

do(py 0V Ie) < J|wp]|700 cap(€2).

PROOF. Suppose that cap(Q) > 0 and let p € H'(R?) be a function such that

0<e<1 and  cap(Q) < [lF < (1+¢)cap(Q).
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Then we have

dv(ﬂa pVIge) = /Rd (wu - wuvlnc) dr = Q(Ju(wuvlgc) - Ju(wu))

< /Rd!V((l—so)wn)|2d:c+/Rd(1—s0)2w,3du—2/

Rd

— /Rd V(11— g0)|2wi dx + /Rd Vw, - V(wu(l - @)2) dx +/ (1-— go)Qwi dp

R4
—2/ (1—<p)wudx+/ wy dx
R4 Rd

- /Rd (\V(p\Q + @2)wi dr < (1+¢) cap(Q)Hw“H%w,

(1—-p)w,dx+ / wy dx
R4

which, after letting € — 0, proves the claim. ]

The following lemma is an estimate which appeared in [1] and [20] in the case u = Iq.

LEMMA 3.7.4 (Cutting off a ball). Suppose that u € ML (RY) is a capacitary measure of
finite torsion. Then there is a dimensional constant Cyq such that, for every B.(xz¢) C RY, we

have

dq,(u,,u,\/IBT(xO)c) §—/ ]unlzdx—/ wid,u,—i—2/ wy, d
Br B r

r 9B,

ProOF. Without loss of generality, we can suppose that zop = 0. We denote with A, the
annulus Bo, \ B,.
Let 1 : A7 — R be the solution of the equation
Ay =0 on Aj, =0 on 0B, =1 on JBs.
With ¢ : A1 — RT we denote the solution of the equation
—Agf):l on Al, qb:O on aBl, qb:O on 832
For an arbitrary » > 0, @« > 0 and k > 0, we have that the solution v of the equation

—Av=1 on A,, v=0 on 0B, v=a on 0By,

is given by
v(z) = r?o(z/r) + av(z/r), (3.7.7)

and its gradient is of the form

Vo(a) = (Vo) (@/r) + = (V) (w/r). (3.7.8)
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Let v be as in (3.7.7) with a > |[wy[L(B,,). Consider the function w = w, 1pg + (wy A
v) 1, and note that, by the choice of o, we have that w € H'(R%).

dy(p, pV Ipe) = /

) (wu — w#\/[B;:,) dx
R

=2 (Julwuvipg) = Tulw) < 2Tu(wr) = Ju(wy)
:—/ \Vw#IQdac—/ wid,u—i—2/ wudx+/ Vol — |Vw,|? dz
B, B B Arn{w,>v}
+/ (U2wi)du2/ (v—wy)dx
Arﬂ{wu>v} Arn{wp‘>v}
g—/ \Vw#Ide—/ wid,u—l—Z/ w#d:n—/ V(v —w,)|* de
B, B, B Arn{w,>v}

—|—2/ VU'V(v—wM)dx—2/ (v—w,)dx
Arn{w, >v} Arn{w,>v}

<—/ \Vw“|2dx—/ wid,u—l—Q/ wﬂdzv+2/ w,|Vo| dH,
B, B, B, 0By

(3.7.9)
which, taking in consideration (3.7.8) and the choice of « , proves the claim. O

Our next result is the capacitary measure version of [19, Lemma 3.6].

LEMMA 3.7.5. Suppose that ju, i’ € ML (Rd) are capacitary measures of finite torsion such

cap

that ¢/ > . Then, we have
d—1)/d?
IRy = Ryllecey < € [dy ()]0
where C is a constant depending only on the dimension d and the torsion T (u) (but not on p').

PROOF. The proof follows the same argument as in [19, Lemma 3.6] and we report it here
for the sake of completeness. Let f € LP, f > 0, for some p > d > 2. Then

L IRl0) = RO e < IR = B DI [ (Buld) = R(1) d

R4
< Cp_l”f”ipl/ f(wu - wu/) dr (3710)
Rd

-1
< CP Aol — wprl
and so, R, — R, is a linear operator from L? to LP such that

- 1
1Ry = Rurlleqwoiany < €'l — w1,

where, by Proposition 3.4.8, the constant C' depends on the dimension d and the torsion T'(u) =
|wpllzi. Since R, — R, is a self-adjoint operator in L?, we can extend it to an operator on LY,
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Indeed, let f € L2N LY, where p/ = p/(p—1). Since L? is the dual of L? and L? N L? and and
L2N L¥ are dense respectively in L? and LP , we have

1RuF) = Rt Dl =50 { [ (Rulf) = Rs()gda: g € 12017, fgllr =1},

On the other hand, by the self-adjointness of R, — R,/ in L?, for f and g as above, we have

L (Bl = BuP)gde = [ (Rulo) = Boolo)) fda
R4 Rd

_ 1
< |Ru(9) = Ry (@)l ol fll o < C 7P ey — w12 gl 2ol 1]
which gives that for every f € L2 N LV
_ 1
|1Ru(£) = Ry (Al oy < C 7P ey — wpo | /2N £l o
and so R, — R,/ can be extended to a linear operator on L? such that
1-1 1
[ Ru’”[;(Lp’;Lp’) <cC /pru - wu/HL/pI/?-

By the classical Riesz-Thorin interpolation theorem we get

_ 1

Ry — Ryl gy < O VP llwy, — w7
_ 2 —1 2
< OV |3 e — w7

Now using the L estimate on w,,, and taking p = d, we have the claim. O

The following two results appeared respectively in [26] and [20]. We note that Lemma
3.7.6 is just a slight improvement of [20, Lemma 3], but is one of the crucial steps in the
proof of existence of optimal measures for spectral-torsion functionals. We recall the notation
Ag(p) :=1/Ap(pe) for the kth eigenvalue of the resolvent operator R, associated to a capacitary
measure fi.

LEMMA 3.7.6. Let u € ML _(R?) is a capacitary measure of finite torsion in RY. Then for

cap
every capacitary measure v > i and every k € N, we have

L dtd
Aylo) = 500 < RS [ (Ru(ww, - Buw,)w) da. (3.7.11)
R
ProOF. Consider the orthonormal in L?(R%) family of eigenfunctions w1, ...,ux € H i corre-

sponding to the compact self-adjoint operator R, : L?(R?) — L*(R?). Let Py, : L*(RY) — L?(R%)
be the projection
k

Pi(u) = Z (/ uu; d:r> uj.
j=1 MR
Consider the linear space V' = Im(F}), generated by ui, ..., u and the operators T, and T, on

V', defined by
T, = PyoRy,o Py and T,=P,oR, 0P
It is immediate to check that wuq,...,ur and Aq(p),...,A1(p) are the eigenvectors and the

corresponding eigenvalues of 7,,. On the other hand, for the eigenvalues Aq(T,), ..., Ax(T,) of
T,, we have the inequality

Aj(T,/) < Aj(V), \V/] = 1,...,]{7. (3712)
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Indeed, by the min-max Theorem we have

P.oR,oP
Aj(T,)) = min  max (P o Ry o 2k(U)’u>L2
V;CV ueVulV [Jull72

= min max 7<RV (u), u)r2

e wetuly, [l

R
B
V;CL? wel2ulV;  |[ul|7,

=A;(v),

where with V; we denotes a generic (j — 1)-dimensional subspaces of L?(R%). Thus, we have the
estimate

0< Aj() — A;(0) < A(T) = A(T) < 1T — T, (3.7.13)
and on the other hand
T, —T,))u,u)z2 R, — R,)u,u)re2
HTu - TVH[:(V) = sup <( 1% 2) >L = sup <( 1% 2) >L
ueV HUHLQ ueV HUHL2
(3.7.14)
L
=Ssup ——5— R,(u) — R,(u))udx.
U Ty s (Fon() — F)

Let u € V be the function for which the supremum in the r.h.s. of (3.7.14) is achieved. We can
suppose that ||u||z2 = 1, i.e. that there are real numbers a1, ..., o, such that

U= aiui + - - + agpug, where a%+---+az:1.

Thus, we have

T~ Tollew) < [ 1) = Rufw)] - fuldo

& k
g/Rd > (Rulus) = Buwg))| - (3 sl ) o

j=1 j=1

< [ (3t = o)) - (3 bl o e
j=1 Jj=1

</ (ﬁ (Rylg]) = Rulus))) ) - (i\w\) dz,
j=1 j=1

where the last inequality is due to the linearity and the positivity of R, — R,. We now recall
that by Corollary 3.4.49, we have ||u;|[r~ < esir)\k(u)d/‘l, for every j = 1,...,k. By the weak
maximum principle applied to u; and w,, we have

+4

luj| < esiwAk(,u)dTwu, for every 1< j<k. (3.7.16)

Using against the positivity of R, — R, and substituting (3.7.16) in (3.7.15) we obtain the
claim. 0

LEMMA 3.7.7. Let pu be a capacitary measure such that w, € LYR%Y). Then for every
capacitary measure v > | and every k € N, we have

Aj() — Aj(v) < Cay (g1, 0), (3.7.17)

for every 0 < j < k, where C is a constant depending only on A\i(u) and the dimension d.
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PROOF. Reasoning as in Lemma 3.7.6, by (3.7.13) and (3.7.15), for each j = 1,... k, we
have
k

A0 - 00 < | (i (Ru(luil) = Ro(ui) ) - (Dl ) da

d
R i j=i

< (;:nuinm)g [ =) da

where u; € H ; are the normalized eigenfunctions of —A + . Now the claim follows by the
estimate from Corollary 3.4.49. d

3.7.2. The concentration-compactness principle. In this subsection, we finally state
the version for capacitary measures of the concentration-compactness principle, which was
proved in [26] and is based on the ideas for the analogous result for domains, originally proved
in [19] for quasi-open sets. Our main tools for determining the behaviour of a sequence of
capacitary measures are the estimates from the previous subsection.

In the theorem below we will use the notion of infimum of two capacitary measures p and
v with disjoint sets of finiteness, i.e. cap(£2, N Q) = 0, namely

w(QuNE)+v(Q,NE), if cap (E\ (Q,UQ)) =0,

uhviE) = {—1—00, if cap (F\ (2,UQ,)) > 0.

THEOREM 3.7.8. Suppose that ji, is a sequence of capacitary measures in R® such that the
corresponding sequence of energy functions wy, has uniformly bounded LY (R%) norms. Then,
up to a subsequence, one of the following situations occurs:

(i1) (Compactness) The sequence i, vy-converges to some p € ML _(R%).

cap
(i2) (Compactness at infinity) There is a sequence x, € R? such that |x,| — 0o and pin(x, + )
y-converges to some p € ML _(R?).

cap
(ii) (Vanishing) The sequence p,, does not y-converge to the measure oo = Iy, but the sequence
of resolvents R,,,, converges to zero in the strong operator topology of L(L*(RY)). Moreover,

we have ||wy, ||re — 0 and A (p,) = +00, as n — oo.

(iii) (Dichotomy) There are capacitary measures i} and p2 such that:
° dist(Qu}l, Q#%) — 00, as N — 00;

o (i, < pk A p2, for every n € N;

° dw(,un,,u}l A /%21) — 0, as n — oo;

e |R,, — R#}l/\#%HL(LQ) — 0, as n — oo;

. 1inn_1>i£fT(u71L) >0 and liggi(ng(ui) > 0.

PRrOOF. Consider the sequence wy, := w,,,, which is bounded in H'(R%) N L}(RY). We now
apply the concentration compactness principle (Theorem 3.1.4) to the sequence wy,.
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If the concentration (Theorem 3.1.4 (1)) occurs, then by the compactness of the embedding

HY(RY) C L} (RY), up to a subsequence wy, (- + ) is concentrated in L' (R?) for some sequence

r, € R9. If x,, has a bounded subsequence, then w, converges (up to a subsequence) in L!(R%)
and so, we have (i1). If |z,| — oo, we directly obtain (i2).

Suppose now that the vanishing (Theorem 3.1.4 (2)) holds. We prove that (%) holds. Let
¢ € C*(R%) and let ¢ > 0. We choose R > g~ @/2(d-1) large enough and N € N such that for
every n > N, we have

/ Wy, dr < 5d2/(d*1).
Br

By Lemma 3.7.1 and Lemma 3.7.5, we have
1Ry, (¢) = Ryvis,, ()l < Celloll 2

for some constant C', and by the vanishing property,

[Ru,vis, ()llrz < Cell@] 2.
Thus,

1Ry ()22 < 1Ry (0) = Ryvis, (9)ll L2 + | Ruovis, (0)ll 2 < Cellol| 2,

and we obtain the strong convergence in (ii).
We now prove that ||wy| e — 0. Suppose by contradiction that there is § > 0 and a
sequence z,, € R? such that wy(z,) > . Since Aw, +1 >0 on R? (by Lemma 3.4.20), we have

that the function
r? — |z — xn|2

x = wp(z) — ¥ ,

is subharmonic. Thus, choosing r = v/dd, we have
2

r
Wy dx > wy () — — > 6/2,
/Br(:vn) 2d

which contradicts Theorem 3.1.4 (2).
Let u, € H bn be the first, normalized in L?(R?), eigenfunction for the operator —A + .
By Corollary 3.4.49, we have

—Aup + pptin = A (pn)un < A () |[un|lLe < 61/(87r)>‘1 (Nn)(d+4)/4-

Suppose that the sequence Aj(uy) is bounded. Then by the weak maximum principle (see
Proposition 3.4 of [32]) we have u,, < Cw,, for some constant C'. Thus, we have

- / 2 dz < 02/ w2 dz < C2|jwn|| oo [[wa]| 1 — O,
R R4

which is a contradiction.
Suppose that the dichotomy (Theorem 3.1.4 (3)) occurs. Choose o = 8 and let z,, € R?
and R, — oo be as in Theorem 3.1.4 (3). Setting

=t Vg, ) and k= pa Vg, (e
we have that pl and p2 have disjoint sets of finiteness and it is immediate to check that
fi, A iy = pin V Iy, (€n)UBS, (2n)-
Since R, — +00, by the estimate (3.7.3) from Lemma 3.7.1, we obtain
lim dy (pin, pig, A i) = 0.

n—o0
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By Lemma 3.7.5, we have
. B . 1 2\ (d—1)/d?* _
l%gf ||R,un R,u%/\,u% ||L(L2(Rd)) < Cnh_)Igo d’}’(:una oy N\ /’Ln) 0,

where C' is a constant depending on the dimension and on sup,, T'(,).
For last claim of (iii) we note that by Theorem 3.1.4 (i)

lim inf / wp dxr >0 and lim inf / wy, dzx,
=0 B2Rn (xn) n—reo BiRn (3371)

and, on the other hand, by Lemma 3.7.1 we have

OS/ wndx—/ w%dacg/ wndx—i-C'R;Z,
BaR,, (zn) R4 Bsr,, \Br,,

og/ wnd:p—/ wuﬁdmg/ wndx—i-CR;Q,
B¢, (zn) Rd Bsr,, \BR,,

for some constant C' > 0, which gives the claim since the right-hand side of both inequalities

c
ARn
converges to zero as n — +00. O

In the case when the measures p,, have the specific forms p, = Tgn or un = Iq, , we have the
following result, which appeared for the first time in [19] and later in [24], where the perimeter
was included as a variable. This result was also one of the fundamental tools in the proof of the
existence of optimal sets for spectral functionals with perimeter constraint in [59].

THEOREM 3.7.9. Suppose that §, is a sequence of measurable sets of uniformly bounded

measure. Then, up to a subsequence, one of the following situations occur:

(1a) The sequence 0, y-converges® to a capacitary measure ju € Mg;p(Rd) and the sequence

1o, € LY(RY) is concentrated.
(1b) There is a sequence x, € R such that |x,| — oo and x, + Q, y-converges and the
sequence lq, (- + x,) € L'(RY) is concentrated.
(2) A\ (Qn) = 400, as n — oo,
(3) There are measurable sets 2L and Q2 such that:
o dist(QL, Q%) — oo, as n — oo;

QLuQ2 cQ,, for everyn € N;

. d»y(IQn,IQ’}luﬂ%) — 0, as n — oo,

[Rq, — Raoruoz |22y — 0, as n — oo;

liminf QL] >0 and liminf Q2] > 0;
n—oo n—oo

if P(Q,) < 400, for every n € N, then
limsup (P(Q),) + P(Q2) — P(Q2,)) = 0.

n—oo

9We recall that when we deal with sets 2, which are only measurable, the term ~-convergence refers to
the sequence of capacitary measures In,. On the other hand, we say that a sequence of quasi-open sets 2,
y-converges, if the sequence of measures Io, 7y-converges.
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PROOF. Let w, := wq,. By Corollary 3.4.6, we have ||wy| 1 < C for some universal
constant C' and so the sequences ||wy||g1 and ||wy||r are also bounded. We now apply the
concentration compactness principle to the sequence of characteristic functions 1g, .

If the concentration (Theorem 3.1.4 (1)) occurs, then the sequence w,, < ||wy,||L~1q, is also
concentrated and so we have (1a) or (1b) as in Theorem 3.7.8.

If the vanishing (Theorem 3.1.4 (2)) occurs, then the vanishing holds also for the sequence
wy, € L'(RY). Thus, by Theorem 3.7.8 (ii) and the fact that IRz, lezmay = (D), we
obtain (2). !

If the dichotomy (Theorem 3.1.4 (8)) occurs, then it holds also for the sequence w,, € L'(R%).
Thus, applying Theorem 3.7.8, we obtain all the claims in (3) but the last one. For the latter it
is sufficient to note that one can take in Theorem 3.7.8 (i7i), the sequence

QL =Q,NBr,4e(x,) and Q2 =Q,\ Bsr,_c(zn),
for every € > 0 small enough. Thus, choosing £ > 0 such that
H(0*Q, N OBR, 1e(xn)) = HH(0*Q, N OBsg,—c(zn)) = 0,
we have the claim. O

REMARK 3.7.10. The same result holds if €2, is a sequence of quasi-open sets of uniformly
bounded measure. In this case we apply Theorem 3.7.8 to the sequence of measures p, = Iq,
and then proceed as in the proof of Theorem 3.7.9.






CHAPTER 4

Subsolutions of shape functionals

4.1. Introduction

In this chapter we consider domains (quasi-open or measurable sets) Q C R?, which are
optimal for a given functional F only with respect to internal perturbations, i.e.

F(Q) < F(w), for every w C €. (4.1.1)

We call the domains € satisfying (4.1.6) subsolutions for the functional F. The subsolutions are
a powerful tool in the study of many shape optimization problems. They naturally appear, for
example, in the following situations:

e Obstacle problems. If D C R? is a given set (a box) and Q C D is a solution of the
problem

min {}'(Q) L QcC D}, (4.1.2)

then 2 is a subsolution for F.
e Optimal partition problems. If the domain D C R? is a given set (a box) and the couple
(Q1,92) is a solution of the problem

min { F() + F() : 01,9 D, 2110 =0}, (4.1.3)

then each of the sets 21 and €2y is a subsolution for F.
e Change of the functional. If the set Q C R? is a solution of the problem

min {G(2) : @ C R}, (4.1.4)
and the functional F is such that
G(Q) —G(w) > F(N) — F(w), for every w C €,
then the sets (2 is a subsolution for F.

This last case is particularly useful when the functional G depends in a non trivial way on
the domain 2. One may take for example G to be any function of the spectrum of 2. In this
case extracting information on the domain 2, solution of (4.1.4), might be very difficult. Thus,
it is convenient to search for a functional F, which is easier to treat from the technical point of
view.

If F is a decreasing functional with respect to the set inclusion, then every set Q C R is
a subsolution for F. Of course, we are interested in functionals which will allow us to extract
some information on the subsolutions. Typical examples are the combinations of increasing and
decreasing functionals as, for example, F(Q2) = A1(Q) + 9.

In many cases, the subsolution property (4.1.6) holds only for small perturbations of the
domain 2. In these cases, we will say that € is a local subsolution.

DEFINITION 4.1.1 (Shape subsolutions in the class of Lebesgue measurable sets). Let F be
a functional on the family B(R?) of Borel sets in R we will say that the set Q € B(R?)

113
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e is a local subsolution with respect to the Lebesgue measure, if there is € > (
such that
F(Q) < Flw), YwCQ suchthat |Q\w|<e.

e is a local subsolution with respect to the distance d,, if there is ¢ > 0 such that
F(Q) < Flw), YwCQ such that dv(fw,ffg) <e.
e is a subsolution in D C R?, if we have

F(Q) < Flw), YwCQ suchthat Q\w C D.

In this chapter we consider subsolutions for spectral and energy functionals. Before we start
investigating the properties of these domains, we give an example of a well-studied functional,
which suggests what can we expect from the shape subsolutions.

EXAMPLE 4.1.2. Let F(2) := P(Q)|Q|}, for every measurable Q C R, where with P()
we denote the De Giorgi perimeter of Q. If 2 is a (local with respect to the Lebesgue measure)
shape subsolution for F, then a standard argument gives that

(1) Q is a bounded set;
(2) 2 has an internal density estimate.

Nevertheless, we cannot expect, in general, that €2 has any regularity property. Indeed, if €2 is
the solution of
min {}'(Q) . QcC D}, (4.1.5)

where D is a set with empty interior, then (2 is not even (equivalent to) an open set.

The notion of a shape subsolution with respect to a functional F depends on the domain
of definition of F. One can easily define shape subsolutions in the class of open sets, sets with
smooth boundary, quasi-open sets, etc.

DEFINITION 4.1.3 (Shape subsolutions in the class of quasi-open sets). Let F : Acap(R?) — R
be a functional on the family of quasi-open sets Acap(R?).

o We say that the quasi-open set ) is a shape subsolution for F : Acap(]Rd) — R, if
F(Q) < F(w), VYquasi-open w C . (4.1.6)

e We say that the quasi-open set () is a local shape subsolution for F : Ac,p(R?) — R,
if there is € > 0 such that

F(Q) < Flw), Vquasi-open w CQ such that d,(Q,w) <e. (4.1.7)

REMARK 4.1.4. Suppose that F is a functional on the class of Borel sets. If Q C R? is
a quasi-open set, which is a shape subsolution for F : B(Rd) — R, then § is also a shape
subsolution for the same functional restricted on the class of quasi-open set F : Acap(R?) — R.

REMARK 4.1.5. Suppose that the functional F : B(R%) — R is of the form
F(Q) = @(Hp(Q)) +G(),

where @ is a functional on the closed subspaces of H'(R?) and G : B(R?) — R is an increasing
functional with respect to the set inclusion (defined up to sets of zero capacity). Let 2 € B(RY)
be a shape subsolution for F. Then, there is a quasi-open set w C 2 a.e. such that F(w) = F(£2)
and w is a shape subsolution for F : Acap(R?) — R. Indeed, there is a quasi-open set w such
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that cap(w\ Q) = 0 and H}(Q2) = H}(w). Now the claim follows by the definition of subsolution.
An analogous result holds, if F is of the form
F(9) = ®(Hy(2)) +G(),

for @ is as above and G is an increasing functional with respect to the set inclusion (defined up
to sets of zero measure). Indeed, it is sufficient to note that there is a quasi-open set w such
that |w\ Q] = 0 and f[&(Q) = ﬁ&(w) = H}(w). Thus, w is a subsolution for the functional
F' i Acap (R%) — R defined as

F'(Q) = ®(Hy(Q)) +G().

REMARK 4.1.6 (Subsolutions in the space of capacitary measures). The notion of a subsolu-

tion can be extended in a natural way to the family of capacitary measures. Indeed, we say that

the capacitary measure € MZ, (R?) is a subsolution for the functional F : ME (R%) — RY,

if we have
F(u) < F(v), for every capacitary measure v > p. (4.1.8)

In this case the recovery of information on the set of finiteness 2, can be easily reduced to the
study of the shape subsolutions of the shape functional G : Acap(Rd) — R defined as

G(Q) :=F(pVIq).

Indeed, if the capacitary measure p is a subsolution for F, then the (quasi-open) set of finiteness
€1, is a shape subsolution for the functional G, since for every quasi-open w C 2,

G(Q) = F(u) < FluV L) = G(w).
4.2. Shape subsolutions for the Dirichlet Energy

We shall use throughout this section the notions of a measure theoretic closure 0" and a
measure theoretic boundary 0™ of a Lebesgue measurable set Q C R?, which are defined as:

QM:{xeRd; |B,(x) N Q| >0, for every T>0},

oMQ = {x eRY: |B(z)NQ| >0 and |B.(z)NQ° >0, forevery r> O} .

Moreover, for every 0 < o < 1, we define the set of points of density « as

_ d. o Br(@)nQ

Q(a)—{xGR 7ll_I)I(l) ‘Br‘ = .

We recall that, if {2 has finite perimeter in sense of De Giorgi, i.e. the distributional gradient
Vg is a measure of finite total variation |V1g|(R?) < 400, then the generalized perimeter of
Q) is given by

P(2) = [V1o|(R?) = H' (0" Q),
where 0*() is the reduced boundary of € (see for example [67]).

Let © C R? be a measurable set of finite Lebesgue measure || < +oo and let f € L?(Q)

be a given function. We recall that the Sobolev space over € is defined as

H}(Q) = {u e HY(RY) : u =0 q.e. on Qc}.
The function u € H}(f2) is a solution of the boundary value problem

—Au=f in Q,  u€ H}Q), (4.2.1)
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if u minimizes the functional J; : H}(Q2) — R, where for every v € H}(Q)
1
Jr(v) = / |Vu|® dx —/ uf dzx.
2 Jpa Rd

We note that, for every f € L?(Q), a solution u of (4.2.1) exists and is unique. Moreover, for
every v € Hi () we have

Vu-Vvdx:/ vfdzx,

Rd Rd
and, taking v = u, we get
1
in J =J =—= dr =: E¢+(Q). 4.2.2
min i) = Ity = [ ufde = 5y(@) (1.2

In the case when f = 1, we denote with wgq the solution of (4.2.1) and with E(2) the quantity
Eq(§2). We call E(Q) the Dirichlet energy and wgq the energy (or torsion) function of 2. In the
Remark below, we list a few properties of wq which were proved in Section 3.4.

REMARK 4.2.1. Suppose that Q C R is a set of finite measure and that wq € HJ(Q) is the
energy function of 2. Then we have

(a) wq is bounded and
’Q|2/d
w o < — 73
lwallze= < 2d| By |2/
where Bj is the unit ball in R<.
(b) Awg + Lyu,>0y = 0 in sense of distributions on RY,
(c) Every point of R? is a Lebesgue point for wiq.
(d) For every zg € R? and every r > 0, we have the inequalities
2

2
wq(xg) < T —&-][ wo dH! and wq(zg) < r —1—][ wq dzx. (4.2.3)
2d OBr(x0) 2d By(0)

(e) wq is upper semi-continuous on RY,
(f) H}(Q) = H} ({wa > 0}).

REMARK 4.2.2. Point (d) of Remark 4.2.1 in particular shows that the quasi-open sets are
the natural domains for the Sobolev spaces. Indeed, we recall that for any measurable set €2,
the set {wg > 0} C Q is quasi-open and such that H}(Q) = H} ({wq > 0}). On the other hand,
if (2 is quasi-open, then there is a function u € Hg () such that Q = {u > 0} up to a set of zero
capacity. Since u € Hg({wq > 0}), we have that cap({u > 0} \ {wq > 0}) = 0 and so the sets
Q and {wq > 0} coincide quasi-everywhere.

REMARK 4.2.3. From now on we identify wq with its representative defined through the
equality
wq(zg) = lim wq dx, Vzo € RY
r—0 Br(wo)
Thus, we identify every quasi-open set Q C R? with its representative {wq > 0}. With this
identification, we have the following simple observations:
e Let € be a quasi-open set, Then the measure theoretical and the topological closure of
Q coincide O = ™. Indeed, we have 0" c Q. On the other hand, if zy € R? \ﬁM,
then there is a ball B, (z¢) such that wg = 0 on B,(zg) and so, zg € R?\ Q. Thus we
have also R? \ﬁM C R9\ Q, which proves the claim.
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e Let Q1 and Qy be two quasi-open sets. If |21 N Qo] = 0, then Q3 N Qs = 0. Indeed, we
note that Q1 NNy = {m € R : wq, (r)wa,(x) > 0}. Since |21 N Q| = 0, we have that
fRd wiwo dr = 0. Note that every point of z € R? is a Lebesgue point for the product
wiws, we have that wiwe = 0 everywhere on RC.

e Let 1 and 9 be two disjoint quasi-open sets. Then the measure theoretical and the
topological common boundaries coincide

o NNy = ﬁl ﬂﬁz = lew ﬂﬁé\/l = 8M91 N 8MQQ.
Following the original terminology from [20], we give the following:

DEFINITION 4.2.4. We say that the quasi-open set Q € Acap(R?) is an energy subsolution
(with constant m) if Q is a local subsolution for the functional F(Q) := E(Q) + m|Q|, where
m > 0 is a given constant, i.e. if there is € > 0 such that

E(Q)+m|Q] < E(w) +mlw|, VYquasi-open w CQ  such that d(Q,w) <e. (4.2.4)

REMARK 4.2.5. For a pair of quasi-open sets ,w C R%, we use the notation
dy(Qw) == dy(lu, Io) = /d lwa — wy,| dx.
R

On the other hand, by the maximum principle we have wq > w,,, whenever w C €) are quasi-open
sets of finite measure. Thus, we have that

dy(w,Q) = /Rd(wg —wy) dz = 2(E(w) — E(Q)), VYw C €.

In particular, a set Q € Acap(RY) is an energy subsolution, if and only if,
2m|Q\ w| < dy(w,), V quasi-open w C Q such that dy(w,Q) <e. (4.2.5)

REMARK 4.2.6. If Q is an energy subsolution with constant m and m’ < m, then Q is also
an energy subsolution with constant m/.

REMARK 4.2.7. We recall that if O ¢ R? is a quasi-open set of finite measure and ¢t > 0 is
a given real number, then we have

wia(z) = t2wo(z/t) and E(tQ) =t E(Q).

Thus, if € is an energy subsolution with constants m and e, then £’ = ) is an energy subsolution
with constants m/ = 1 and ¢/ = et%*2, where t = m~ /2.

REMARK 4.2.8. If the energy subsolution Q C R? is smooth, then writing the optimality
condition for local perturbations of the domain Q with smooth vector fields (see, for example,
[72, Chapter 5]) we obtain

|Vwg|? >2m on 9.

LEMMA 4.2.9. Let Q C R?, for d > 2, be an energy subsolution with constant m and let
w = wq. Then there exist constants Cy, depending only on the dimension d, and rg, depending
on the constant € from Definition 4.2.4, such that for each ¢ € R% and each 0 < r < ro we have
the following inequality:

1
/ |Vw|2dx+m‘Br(;r0)ﬂ{w>0}‘
Br(xO)

2

(4.2.6)
< / wdr + Cy (r—i— HwHLOO(B%(xO))) / wd?—[d_l,
By (w0) 2r 9By (z0)
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Proor. Taking u = Ig in Lemma 3.7.3, we have that, for » > 0 small enough, the quasi-

open set w := O\ B,(zp) can be used to test (4.2.4). Now the conclusion follows by Lemma
3.74. 0

LEMMA 4.2.10. Let Q C R% be an energy subsolution with constant 1. Then there exist
constants Cq > 0 (depending only on the dimension) and ro > 0 (depending on the dimension

and on € from Definition 4.2.4) such that for every o € R and 0 < r < 1o the following
implication holds:

(||w9|yLoo(Br(xo)) < C’dr> - (wg —0on Bm(xo)). (4.2.7)

ProoOF. Without loss of generality, we can assume that zg = 0 and we set w := wq. By the
trace theorem for W' functions (see [5, Theorems 3.87 and 3.88]), we have that

2
/ wdH! <Oy (/ wdx—l—/ Vw|dm)
8Br/Q r BT/Q Br/2

2 1 1
< Cy / wdm+/ IVw|*dz + <|{w > 0} N B, 5|
r BT/2 2 BT/Q 2

2 1 1
<20y <THwHL°°(Br/2) + 2) (2/3 Vwl? dz + |{u > 0} N Br/?‘) ;
r/2

(4.2.8)
where the constant Cy > 0 depends only on the dimension d.
We define the energy of w on the ball B, as
1
E(w, B,) = 2/ \Vw|? dz + | By N {w > 0}]. (4.2.9)
By
Combining (4.2.8) with the estimate from Lemma 4.2.6, we have
2
E(w, B, ) < / wdzr + Cy <r+||w||Loo(Br)> / wdHT
Br/2 r Br/2
(4.2.10)

2 1 1
< <|w||L°°(Br/2) +Cy (r”wHLw(Bm) + 2) <7" + THwHLOO(Br))) E(w, B, 2),
where the constants Cy depend only on the dimension d. The claim follows by observing that if

|wllpoe(B,) < er,
for some small ¢ and r, then by (4.2.10) we obtain E(w, B, 3) = 0. O
LEMMA 4.2.11. Let p be a capacitary measure in R? such that wy € L' (RY). Suppose that

there are constants C > 0 and ro > 0 such that for every xo € R% and 0 < r < rq the following
implication holds:

(H'IUMHLOO(BT(IO)) < C’r) = (wu =0 on Br/z(:cg)). (4.2.11)

Then for every 0 < r < min{ry,Cd/8}, the set Q, = {w, > 0} can be covered with N =
Callwp | rr=471 balls of radius r, where Cy is a dimensional constant.
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PROOF. Suppose, by absurd that, for some 0 < r < Ry, this is not the case and choose

points z1,...,zy € R? such that 21 € {w, > 0} and
J
Tj+1 € {wy > 0F\ (U Br($z’)> :
i=1
For each x;, we have ||wy|[r (B, ,(z;)) > Cr/4. For each j =1,..., N, consider y; € B, 4(;)
such that

w(y;) = Cr/8.
By construction we have that the balls B, /4(y;) are disjoint for j = 1,..., N. Since the function
2 —|-—y;|?
2d

w — is subharmonic in B, (y;), we have the inequality

r? — |z -yl r?
w(z) ) dz > B, | (w<yj> _ ) ,
/B'r/4(yj) ( 2d 2d

and summing on j, we get

i (Cr r2> Cr
T / wdz > N|B,l (2~ 1) > N|B, 2.
j=1 Br/4(l/j) / 8 2d / 16

0

In other words, Lemma 4.2.10 says that in a point of oV (the measure theoretic closure
of the energy subsolution 2) the function wq has at least linear growth. In particular, the
maximum of wg on B, (x) and the average on 0B, () are comparable for r > 0 small enough.

COROLLARY 4.2.12. Suppose that Q@ C R? is an energy subsolution with m = 1 and let
w = wq. Then there exists rg > 0, depending on the dimension and the constant € from
Definition 4.2.4, such that for every xg € oV and every 0 < r < rg, we have

272 ||w| oo (B, (20)) < ][ wdH < |l oo (B (w0))- (4.2.12)
BQT(Z'O)
: : (2r)? — |=|?
PROOF. Suppose that g = 0 and consider the function 9, (x) := g By Remark

4.2.1 we have that A(w — 2,) > 0 on R? and 0 < s, < 2r2/d on By,. Comparing w — @a,
with the harmonic function on Bs, with boundary values w, we obtain that for every x € B,
we have

Ar? — |$|2/ w(y) d—1 d d—1
w(x) — o () < dH " (y) <2 ][ wdH* .
(@) = p2r (@) dwa2r  Jop,, |y — x| 2 9Ban

dC,
For 0 < r < min {ro, Td’ 1}, where rg and Cy are the constants from Lemma 4.2.10, we choose

z, € B, such that
1 rCy
w(zr) > gllwlipe(s) > =~

Then we have

W| 00
2 8327‘

2
wdHT + e < 24 ][ wdHT + 7”10”]: (Br),
d 9Bor 4

which proves the claim. O
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REMARK 4.2.13. In particular, there are constants ¢ and ry such that if xg € QM, then for

cr < ][ wo dHA.
OBr(x0)

.
Moreover, since / wq dr = / / wQ dH! ds, we also have cr < ][ waq dx.
B 0 JOBs By (z0)

every 0 < r < rg, we have that

As a consequence of Corollary 4.2.12; we can simplify (4.2.6). Precisely, we have the following
result.

COROLLARY 4.2.14. Suppose that Q C R% is an energy subsolution with m = 1. Then there
are constants Cyq > 0, depending only on the dimension d, and ro, depending on the dimension
d and € from Definition 4.2.4, such that for every xg € oV ando<r< ro, we have

1 R T _
/ IVwg|? dx + [{wg > 0} N By(x0)] gcd”w””L (Bor( 0))/ wo dHL. (4.2.13)
By (w0) 2r 8B (z0)

2

PROOF. We set for simplicity w := wq and x¢g = 0. By Lemma 4.2.10 and Corollary 4.2.12,
for r > 0 small enough, we have
1

1
;HwHLOO(Br) > Cy and - ]Z(;B wdH? > 27d72Cd. (4.2.14)

Thus, for r as above, we have

T Tor

d2—1-2¢, 1 3
/ wdz < 1B 2O ]| gy < Sl e /a want

T

and so, it remains to apply the above estimate to (4.2.6). O

Relying on inequality (4.2.13) and Lemma 4.2.10 we get the following inner density estimate,
which is much weaker than the density estimates from [1]. The main reason is that we work
only with subsolutions and not with minimizers of a free boundary problem.

PROPOSITION 4.2.15. Suppose that Q C R is an energy subsolution. Then there exists a
constant ¢ > 0, depending only on the dimension, such that for every xo € ﬁM, we have
) ‘{wg >0}nN BT(IE())‘
lim sup >
r—0 ’Br|
ProOF. Without loss of generality, we can suppose that zog = 0 and by rescaling we can
assume that m = 1. Let g and Cy be as in Lemma 4.2.10 and let 0 < r < rg. By the Trace
Theorem in W' (B,), we have

/ wdHL gcd(/ waydx+1/ wda;)
OB, B, " JB,

<Gy ((/ V)" [fw > 0} 1 5,2 4 ”“’”L:’(B)
B,

(4.2.15)

{w > 0} ﬁBTD

IN

1/2
Cy ("””LU-%)/ wdﬂd_l) [{w >0} B,
2r 9B,

w oo
“C, 1wl pe(B,)

{w>0}NB,

)

(4.2.16)
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where the last inequality is due to Corollary 4.2.14 and C; denotes a constant which depends
only on the dimension d. Let

1/2
X = </ wd’Hd1> ,
0B,

1/2
w|| 700
o = Cd<” HL (Bgr)> ‘{w>0}ﬂBT‘1/2,
2r
w|| 00
s = om0, 0yn )

Then, we can rewrite (4.2.16) as
X2 <aX+ 8.

But then, since «, 3 > 0, we have the estimate X < a + /3. Taking the square of both sides,
we obtain

/ wd,Hd_l < Cd‘{w > O} ﬂBT| (HwHLOO(Bzr) + ||w|L°°(Br)>
OB,

2r T
(4.2.17)
w| 1,00
< 3C4|{w > 0} mBT\””ZT(B?T’.
By Corollary 4.2.12, we have that

r/2 - | By | 2r ’

for some dimensional constant Cy > 0. We choose the constant ¢ from (4.2.15) as ¢ = (2Cy)~*
and we argue by contradiction. Suppose, by absurd, that we have

[{w >0} N B,| _1

li Cy——————F—— . 4.2.19
R AR 1)
Setting, for > 0 small enough,
[wl L (B,
flr) =
and using (4.2.18), we have that for each n € N the following inequality holds
C, >0} N Byy—n
Flra—( )y < alfw > 0} 0 Bypy-oan)| Flra™m), (4.2.20)
’BQWHHHJ ’
and so
uye; > 0} N By,y-
a0 < g [T M2 D0 P ] (4.2:21)

=0 | By |

By equation (4.2.19), we have that f(r4™") — 0, which is a contradiction with Lemma
4.2.10. O

THEOREM 4.2.16. Suppose that the quasi-open set Q C R? is an energy subsolution with
constant m > 0. Then, we have that:

(i) Q is a bounded set and its diameter can be estimated by a constant depending on d, 2, m
and rq;



122 4. SUBSOLUTIONS OF SHAPE FUNCTIONALS
(ii) Q is of finite perimeter and
VomHT L (9%Q) < |9 (4.2.22)

(iii) € is equivalent a.e. to a closed set. More precisely, Q) = o a.e., oV = Rd\Q(O) and Qo
is an open set. Moreover, if  is given through its canonical representative from Remark
4.2.3, then 0 = Q™.

PROOF. The first statements follows by Lemma 4.2.11. In order to prove (ii), we reason as
in [20, Theorem 2.2]|. Let w = wq and consider the set Q. = {w > €}. Since wg, = (w—¢e)*
have that for small €, the distance d,(2,€.) is small, we can use (). as a competitor in (4.2.4)

, We

obtaining

1
2/ |Vw|? dz —/ wdr +m|Q] < E(Q)+m|Q < E(Q:) +m|Q]
R4 Rd

1
< / IV(w —e)" > dax — / (w— &)™ dz + m|Q.|.
2 Jpa Rd
In particular, we have

|| 2/ wd:v—/ (w—¢e)t dx
R R4

1
2/{0 [Tl demio\ 0,
<1,U7€

v

1 . 2
> -[{0<w <&} (/ \Vw]dac) +m[{0 <w < e}
2 {0<w<e}

> \/Zm/ |[Vw| dz.
{

O<w<e}
By the co-area formula we have

1/6P({w S 1)) dt < V|9,
0

£

for each € > 0 small enough. Then, there is a sequence (g,,)n>1 converging to 0 and such that
P ({w > e, }) < v2m|Q)|. Passing to the limit as n — oo, we obtain (7).
For the third claim, it is sufficient to prove that () satisfies

Q) =R\ OV = {x e R%: exists > 0 such that |B,(z) N Q| = o} : (4.2.23)

where the second equality is just the definition of Y. We note that Qo C R? \QM trivially
holds for every measurable 2. On the other hand, if z € QM, then, by Proposition 4.2.15, there
is a sequence 1, — 0 such that

>
Jm B, | >c>0,

and so = ¢ (o), which proves the opposite inclusion and the equality in (4.2.23). O
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REMARK 4.2.17. The second statement of Theorem 4.2.16 implies, in particular, that the
energy subsolutions cannot be too small. Indeed, by the isoperimetric inequality, we have
caV2m|Q T < V2MHEL(97Q) < Q] < CuH Y (9 Q)] e,
and so
d d—
2<|Q  and  ¢gm'z < HETY9*Q),

for some dimensional constant cg .

cqm

4.3. Interaction between energy subsolutions

In this section we consider configurations of disjoint quasi-open sets 1, ...,Q, in R?, each
one being an energy subsolution. In particular, we will study the behaviour of the energy
functions wq,, ¢« = 1,...,n, around the points that belong to more than one of the measure
theoretical boundaries 9™ ;.

4.3.1. Monotonicity theorems. The Alt-Caffarelli-Friedman monotonicity formula is one
of the most powerful tools in the study of the regularity of multiphase optimization problems
as, for example, optimal partition problems for functionals involving some partial differential
equation, a prototype being the multiphase Alt-Caffarelli problem

min { Z/ IVl — fiug + Q2]1{u1_>0} dr @ (u1,...,Um) € A(Q)}, (4.3.1)
i=1 78

where Q C R? is a given (Lipschitz) bounded open set, @ : @ — R is a measurable function,
fisoooy fm € L(Q2) and the admissible set A(S2) is given by

A(Q) = {(ul,...,um) e [HY(Q)]™: u; >0, u; = con 99, wu; =0 a.e. on Q,Vi %j},
(4.3.2)

where ¢ > 0 is a given constant.

REMARK 4.3.1. e If Q = 0, then we have a classical optimal partition problem as
the ones studied in [42], [47],[48],[49] and [69].
elfc=1,m=1,fi=0and 0 < a < Q? <b< +oo, then (4.3.1) reduces to the problem
considered in [1].
elfm=1,Q=1, fi =f and fo = —f, then the solution of (4.3.1) is given by
uj = v} = sup{u*,0}, uy = u* = sup{—u*,0},

where u* € H}(2) is a solution of the following problem, considered in [17],

min{/Q\VuP—fud:r—l-]{u#O}\: ueH&(Q)}

o If, Q=1and fi =--- = f, = f, then (4.3.1) reduces to a problem considered in [29]
and [12].
One of the main tools in the study of the Lipschitz continuity of the solutions (uj,...,u}))

of the multiphase problem (4.3.1) is the monotonicity formula, which relates the behaviour of
the different phases u; in the points on the common boundary d{u; > 0} N d{u; > 0}, the
main purpose being to provide a bound for the gradients |Vu}| and \Vu;"] in these points. The
following estimate was proved in [41], as a generalization of the monotonicity formula from [2],
and was widely used (for example in [17] and also [28]) in the study of free-boundary problems.
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THEOREM 4.3.2 (Caffarelli-Jerison-Kenig). Let B; C R be the unit ball in R and let
U, Ug € Hl(Bl) be non-negative and continuous functions such that

Au; +1>0, for i=1,2, and uiug =0 on Bj.
Then there is a dimensional constant Cy such that for each r € (0,1) we have

9 2
|Vu,| |Vuz]
1131<"”2/ \x|d2d><c <1+Z/ a2 ) : (4.3.3)
The aim of this and the following subsections® 4.3.2, 4.3.3 and 4.3.4 is to show that the
continuity assumption in Theorem 4.3.2 can be dropped (Theorem 4.3.7) and to provide the
reader with a detailed proof of the multiphase version (Theorem 4.3.11 and Corollary 4.3.12) of
Theorem 4.3.2, which was proved in [29]. We note that the proof of Theorem 4.3.7 follows pre-
cisely the one of Theorem 4.3.2 given in [41]. We report the estimates, in which the continuity
assumption was used, in Section 4.3.2 and we adapt them, essentially by approximation, to the
non-continuous case.

A strong initial motivation was provided by the multiphase version of the Alt-Caffarelli-
Friedman monotonicity formula, proved in [47] in the special case of sub-harmonic? functions u;
in R2, which avoids the continuity assumption and applies also in the presence of more phases.
As a conclusion of the Introduction section, we give the proof of this result, which has the
advantage of avoiding the technicalities, emphasising the presence of a stronger decay in the
multiphase case and showing that the continuous assumption is unnecessary.

THEOREM 4.3.3 (Alt-Caffarelli-Friedman; Conti-Terracini-Verzini). Consider the unit ball
Bi C R? and let uy,...,u, € HY(By) be m non-negative subharmonic functions such that
Jg2 uiuj dz =0, for every choice of different indices i,j € {1,...,m}. Then the function

B(r) = ﬁ (;ﬂ /B |Vui|2dm> (4.3.4)

=1

is non-decreasing on [0,1]. In particular,

n 1 m
H< m/ V|2 da:> < </ |Vu1|2d:c+---+/ |Vum|2dm> . (4.3.5)
X r B, B1 B

i=1
PROOF. The function ® is of bounded variation and calculating its derivative we get
o’ |Vu;|? dH?
( ) e +Z faB v . ) (4.3.6)
D(r) Ig, [Vui|? dz

We now prove that the right-hand side is positive for every r € (0,1) such that u; € H'(0B,),

for every i = 1,...,m, and / Ui dH' = 0, for every i # j € {1,...,m}. We use the
OBy
sub-harmonicity of u; to calculate

ou; z z
|2 < it < 2 1)?2 / 2 12 3.
/T]Vuz\ da:_/aBruZan _(/aBruld’H) ( e an')’, (4.3.7)

IThe results in these sections are part of the note [93].

2The result in [47] is more general and applies to (non-linear) eigenfunctions.
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and decomposing the gradient Vu; in the tangent and normal parts V., u; and V,u;, we have

/ Va2 dH :/ |Vnui|2d7-l1+/ Vg ? dH
OBy OBy OBy

> 2(/83T‘VnuiPd'Hl>§</aBr‘VT’UJz“Qd}[l)é.

Putting together (4.3.7) and (4.3.8), we obtain

(4.3.8)

1
Vu; 2dH! Vi 2dH 2
Jom, IVuil > 9 (faBr | | > 24/ M (0B, N ), (4.3.9)

[, [Vuil?dz — Jos, u? dH?
where we use the notation €2; := {u; > 0} and for an H'-measurable set w C OB, we define

2
A1(w) := min { faB’“ Vo a1 T vE Hl(aBr)a H! ({v #0}\ W) = 0} :

/. 9B, v2 dH!
2
By a standard symmetrization argument, we have \; (w) > <’H1L()> and so, by (4.3.6)
w
and the mean arithmetic-mean harmonic inequality, we obtain the estimate
' (r) m? & 27
>0 E— )
o) = r +;Hl(aBin) =
which concludes the proof. O

4.3.2. The monotonicity factors. In this subsection we consider non-negative functions
u € H'(Bs) such that

Au+1>0  weaklyin  [H}(B)]

and we study the energy functional

. |Vul?
Au(T’) = /B de,

for r € (0,1), which is precisely the quantity that appears in (4.3.25) and (4.3.39). We start
with a lemma, which was first proved in [41, Remark 1.5].

LEMMA 4.3.4. Suppose that u € H'(Bs) is a non-negative Sobolev function such that Au +
1>0 on By C R%. Then, there is a dimensional constant Cyq such that

2
Nl <Cyl1+ wdzx | . (4.3.10)
B, |22 Bo\B:

PROOF. Let u. = ¢¢ * u, where ¢. € C°(B;) is a standard molifier. Then u. — wu strongly
in H'(By), ue € C*°(By) and Au. +1> 0 on By_.. We will prove (4.3.10) for u.. We note that
a brief computation gives the inequality

A(u?) = 2|Vu|? + 2u-Aue > 2[Vue > —2u.  in [Hi(Ba—o)]'. (4.3.11)
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We now choose a positive and radially decreasing function ¢ € C2°(Bs/s) such that ¢ = 1 on
Bj;. By (4.3.11) we get
()| Vue|? 2ue + A(u?

)
———dx < () ————>dx
22 e P a2

:/33/22 i () o

-/ 2Tgﬁ|d)2 B+ E90() - V(o do - Ca(0)
3/2

<2 ol d) > dx +Cd/ u? da. (4.3.12)
B3z ‘ | B>\B;

2
Bs /s

Thus, in order to obtain (4.3.10), it is sufficient to estimate the norm ||uc| o0 (p,) With the r.h.s.
of (4.3.10). To do that, we first note that since A(uc(z) + |z[>/2d) > 0, we have

rré%x{ () + || /Qd} < Cyq+Cy faBr ue dHE L, Vr € (3/2,2 —¢), (4.3.13)
and, after integration in r and the Cauchy-Schwartz inequality, we get
1/2
ltellzoe(s1) < Ca + C </ 2 d:r:) , (4.3.14)
B>\ B1
which, together with (4.3.12), gives (4.3.10). O

REMARK 4.3.5. For a non-negative function v € H'(B,), satisfying
Au+1>0 in  [H(B)], (4.3.15)

we denote with A, (r) the quantity

|[Vul?
Ay(r) = /B P dx < +o0. (4.3.16)

e The function r — A, (r) is bounded and increasing in 7.
e A, is differentiable almost everywhere and

d _ ,2—d 2 19,d—1
dTAu(r) =r /BT |Vu|*dH*".

e The condition (4.3.15) holds also for the rescaled function u,(z) := r~2u(rz) and we

1
/ Vo, |2 dHi™t = d+1/ |Vu|? dHI~1,
B, r OBy

2 1 2
/ V| de = — [Vl dx.
B

) ’1“d_2 rd B, ‘x’d—Q

have

(4.3.17)

The next result is implicitly contained in [41, Lemma 2.8] and it is the point in which the
continuity of u; was used. The inequality (4.3.18) is the analogue of the estimate (4.3.9), which
is the main ingredient of the proof of Theorem 4.3.3.
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LEMMA 4.3.6. Let u € H'(B) be a non-negative function such that Au+1 > 0 on Bs.
Then for Lebesgue almost every r € (0,1) we have the estimate

1 [Vul? r? ][ 9 pd-1\2 dwqr—? ][ 2 1q,d—1
— ——dr <Oy | 14+ ——— Vu|*dH + Vu|*dH" ",
rt g, |z|42 a ( \/)\(u,T)< aB,.| | ) 2a(u, ) 8Br‘ |
(4.3.18)
where
. faBr [Vol? dH! 1 d—1
Alu,7) = mm{ [op, 02 dHIT :ve HY(0B,), H '({v#0}N{u=0}) =0, (4.3.19)

and a(u,r) € RT is the characteristic constant of {u > 0} N OB, i.e. the non-negative solution
of the equation
d—2

r

a(u, r) (a(u,r) + > = Au, 7). (4.3.20)

PROOF. We start by determining the subset of the interval (0,1) for which we will prove
that (4.3.18) holds. Let u. := u * ¢, where ¢. is a standard molifier. Then we have that:

(i) for almost every r € (0,1) the restriction of u to dB, is Sobolev. i.e. ugp, € H' (0B,);
(ii) for almost every r € (0,1) the sequence of restrictions (Vue)pp, converges strongly in
L2(0B,;RY) to (Vu)pp, -

We now consider € (0, 1) such that both (i) and (i) hold. Using the scaling u,(x) := r~2u(rx),
we have that

1 2 . 2
][ IVl Mt = 2 ][ V|2 dHAT 1 ‘V’;L_IQ do — / |V, dz,
0B, B

B, g, |x T

a(uy, 1) = ra(u,r) and Mur, 1) = 72\ (u, 7).

Substituting in (4.3.18), we can suppose that r = 1 and set a := a(u, 1) and A := A(u, 1).

If T ({u =0} NOBy) =0, then A = 0. Now if Jos, |Vul?2 dH4™! > 0, then the inequality
(4.3.18) is trivial. If on the other hand, faBl |Vu|?2dH?! = 0, then u is a constant on dB; and
so, we may suppose that u = 0 on R?\ By, which again gives (4.3.18), by choosing Cy large
enough. Thus, it remains to prove the Lemma in the case H* ! ({u = 0} NdB;) > 0.

We first note that since %! ({u = 0} N dB;1) > 0, the constant A defined in (4.3.19) is
strictly positive. Using the restriction of u on 9B as a test function in (4.3.19) we get

)\/ quHd—lg/ |Vul? dHAT,
831 831

where V. is the tangential gradient on dB;. In particular, we have
)\/ uw? dHT! < / |V,ul> dHT! < / |Vul|? dH! =: B,(1). (4.3.21)
831 aBl 8Bl

For every € > 0, using the inequality

A(u?) = 2ucAug + 2|Vue|* > —2u. + 2| Vu|?,
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and the fact that A(u\E + |a:|2/2d> > 0, we have
2 2
2/ |Vue| ir < / 2us + A(ug) I
B By

. ‘:L,|d72 - |$|d72

1/2 2
< Ca+ Cy </ ugdH“) +/ A%g da.
0B, B, ||

We now estimate the last term on the right-hand side.

A(u?) 2-dy, 2 Ou?), og_ O2f~9) , d-1
e _ A
/31 Lt = [ gl )ugdx—l—/aBl e e

(4.3.22)

ou
g—dd—zwu§0+/ 2 ——
(d — 2)wquz (0) o, 2 on

g/ ou, 2% g1 (d—2)/ 2 dHA,
0B, On 0B,

where we used that —A(|z|>~?) = d(d — 2)wado (see for example [61, Section 2.2.1]). Since (ii)
holds, we may pass to the limit in (4.3.22) and (4.3.23), as ¢ — 0. Using (4.3.21) we obtain the

inequality
2 3
d?—[d‘1>

2 1/2 1
2/ W;{'Q dr < Cy+ Cy (/ u? de—1> +2 (/ u? de—1> ’ /
By || 8B, 8B, 8B,

+Hd—2) / 2 MO
0B,

dHL 4+ (d - 2) /83 u? dH (4.3.23)
1

[un

@
on

[B,(1) | 1 ? d—2 ?
< Cy+Cy ()+/ Ou de*1+7a+( )/ Ou” gyt
A @ JoB; on A OB1 or
B,(1) By,(1
=Cy+Cy 7() + ﬁ,
A o
where the last equality is due to the definition of a from (4.3.20). O

4.3.3. The two-phase monotonicity formula. In this subsection we prove the Caffarelli-
Jerison-Kenig monotonicity formula for Sobolev functions. We follow precisely the proof given
in [41], since the only estimates, where the continuity of u; was used are now isolated in Lemma
4.3.4 and Lemma 4.3.6.

THEOREM 4.3.7 (Two-phase monotonicity formula). Let By C R? be the unit ball in R? and
up, ug € H! (By) be two non-negative Sobolev functions such that

Au;+1>0, for i=1,2, and uius =0 a.e. in Bj. (4.3.24)
Then there is a dimensional constant Cyq such that for each r € (0,1) we have

ﬁ<:2 /B ||Z|Zi|§ dx > <0y <1+Z/ ||Z|Z’”2 )2. (4.3.25)

=1
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For the sake of simplicity of the notation, for i = 1,2 and u1, us as in Theorem 4.3.7, we set

U; 2
Ai(r) == Ay, (1) :/ [V

B, |7|4?

da. (4.3.26)

In the next Lemma we estimate the derivative (with respect to r) of the quantity that
appears in the left-hand side of (4.3.25) from Theorem 4.3.7.

LEMMA 4.3.8. Let w1 and ug be as in Theorem 4.3.7. Then there is a dimensional constant
Cyq > 0 such that the following implication holds: if A1(1/4) > Cq and As(1/4) > Cy, then

d [Ay(r)As(r) 1 1 Ai(r)Az(r)
dr {7«4] =~ (m i \/A2<r>> et

for Lebesgue almost every r € [1/4,1].
Proor. We set, for : = 1,2 and r > 0,
Bi(r) = / |V |* dHI
0B
Since A; and Ay are increasing functions, they are differentiable almost everywhere on (0, +00).
Moreover, Al (r) = r2=4B;(r), for i = 1,2, in sense of distributions and the function
e A (1) Ao (1),

is differentiable a.e. with derivative

d [Aq(r)As(r) B 4 r2_dBl(r) 7”2_ng(1“) Aj(r)Aa(r)
dr[ = %(V A " A2<r>> z

Thus, it is sufficient to prove, that for almost every r € [1/4, 1] we have
4 r274By(r) ¥ By(r) 1 1
- -+ + > —Cy + . (4.3.27)
o Al(r) As(r) VALY As(r)

Using the rescaling from (4.3.17), it is sufficient to prove (4.3.27) in the case r = 1. We consider
two cases:

(A) Suppose that Bi(1) > 4A;(1) or Ba(1) > 4A5(1). In both cases we have
Bi(1) | Ba(1)

—4

>0,

which gives (4.3.27).
(B) Suppose that Bi(1) < 4A;(1) and By(1) < 4A45(1). By Lemma 4.3.6 with the additional
notation «; := a(u;, 1) and A; := A(u;, 1) we have

Bi(1) | Bi(1)
A 200 T A 2001 '

Al(l) < Cy+Cy (4.3.28)

We now consider two sub-cases:
(B1) Suppose that a; > 4 or ay > 4. By (4.3.28), we get

Aq(1) . Bl(l)‘

A1(1) <20y " o
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Now since vV A; > aq > 4 we obtain

4A1(1) < 203/ A1(1) + Bi(1) = Ai(1) <\/% * ig) ’

which gives (4.3.27).
(B2) Suppose that ay < 4 and ay < 4. Then for both i = 1,2, we have Cy < \/A4;/\ and
so, by (4.3.28)
QOéiAi(l) < Cyv/ Az(l) + Bz(l)
Thus (4.3.27) reduces to a; + ag > 2, which was proved in [63] (see also [43]).
g

The following is the discretized version of Lemma 4.3.8 and also the main ingredient in the
proof of Theorem 4.3.7.

LEMMA 4.3.9. Let uy and uo be as in Theorem 4.3.7. Then there is a dimensional constant
Cy > 0 such that the following implication holds: if for some r € (0,1)

1 2 1 2
V| dx > Cy and [Vua|

dr > Cd7

rt Jp, |x|?2 rt Jp, |x|72

then we have the estimate

A4 Ay (r/4) Ag(r/4) < (14 012(r)) AL (r) Ax(r), (4.3.2)

L[ Va2 N2 Vw2 Y
d12(r) :==Cy <<7’4/B = dx + 744/3 P dx . (4.3.30)

PRrOOF. Using the rescaling u,(x) = r~2u(rz), we can suppose that » = 1. We consider two
cases:

(A) If Ay(1) > 4*A;(1/4) or Ay(1) > 4*A5(1/4), then

where

A (1)Ax(1) — 424, (1/4) A(1/4) > A1(1) (Ag(l) - 44,42(1/4)) >0,

and so, we have the claim.
(B) Suppose that A;(1) < 4*A;(1/4) or Ax(1) < 4%A5(1/4). Then A;(r) > Cy and As(r) > Cy,
for every r € (1/4,1) and so, we may apply Lemma 4.3.8

1
Ar(1)As(1) — 434, (1/4) Ap(1/4) > —Cd/1/4 (\/All(r) n %412(1")) Ax(r) As(r) dr
3 1 1
o <¢A1<1/4> : ¢A2<1/4>) A

> _C § 16 n 16
= T\ VA VA

where in the second inequality we used the monotonicity of A; and As.

) A(1)Az(1),
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The following lemma corresponds to [41, Lemma 2.9] and its proof implicitely contains [41,
Lemma 2.1] and [41, Lemma 2.3]. We state it here as a single separate result since it is only
used in the proof of the two-phase monotonicity formula (Theorem 4.3.7).

LEMMA 4.3.10. Let u; and ug be as in Theorem 4.5.7. Then there are dimensional constants
Cy > 0 and € > 0 such that the following implication holds: if A1(1) > Cy, A2(1) > Cyq and
41A1(1/4) > A1(1), then Ag(1/4) < (1 —e)Ag(1).

PROOF. The idea of the proof is roughly speaking to show that if A;(1/4) is not too small
with respect to A;(1), then there is a big portion of the set {u1 > 0} in the annulus By /5 \ By 4.
This of course implies that there is a small portion of {ug > 0} in By 5\ By /4 and so Az(1/4) is
much smaller than As(1). We will prove the Lemma in two steps.

Step 1. There are dimensional constants C > 0 and § > 0 such that if A1(1) > C and
44A1(1/4) > A1(1), then [{ur > 0} N Byjg \ Byjs| > 8|By s\ Byj4l.

By Lemma 4.3.4 we have that

A1(1/4) SCd+Cd/ ui de,
B1/2\B1/4

and by choosing C > 0 large enough we get

A1(1/4) S Cd/ u% dx.
B1/2\B1/4

Now if [{u1 > 0} N By \ Bia| > 1/2|Byj3 \ Byy4l, then there is nothing to prove. Otherwise,
there is a dimensional constant Cy such that the Sobolev inequality holds

a—2

2d_ d
</ ui™? dm) < C’d/ |Vup |2 de < CgAy(1).
B1/2\B1/4 B1/2\B1/4

By the Holder inequality, we get
2 2
A1(1/4) < Cal{ur > 0} N Byya \ Bl Ai(1) < Cal{ur > 0} N Byjp \ Byyal a4 A1 (1/4),

which gives the claim® of Step 1 since A1(1/4) > 0.

Step 2. Let § € (0,1). Then there are constants C > 0 and € > 0, depending on 6 and
the dimension, such that if A2(1) > C and [{ug > 0} N Byjg \ Byl < (1 —0)|Byj2 \ Bijal, then
Ay(1/4) < (1 —e)As(1).

Since [{ug = 0} N Bya \ Byl > 8|Byj2 \ Byjal, there is a constant Cs > 0 such that

/ ud dr < 05/ |Vug|? da.
B1/2\B1/4 B1/2\B1/4

We can suppose that

1
/ |Vug|* de > / |Vug|? da >
Bija 2 /p

3In dimension 2 the argument is analogous.
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since otherwise the claim holds with e = 1/2. Applying Lemma 4.3.4 we obtain

/ |Vug|? dz SC’d—i—Cd/ u3 dzx
By4 B1/5\By /4
< Cu+ CuCs / V| da — / Vus|? da (4.3.31)
1
< (Cd05 + ) / ‘VUQP dr — CdC'5/ ‘VUQP dx,
2 B By
where for the last inequality we chose C' > 0 large enough. O

The proof of Theorem 4.3.7 continues exactly as in [41]. In what follows, for i = 1,2, we
adopt the notation

Af = Ai(47k), bf = 44]6./42'(47]6) and O 1= (512(471’6),
where A; was defined in (4.3.26) and 012 in (4.3.30).

Proof of Theorem 4.3.7. Let M > 0 be a fixed constant, larger than the dimensional
constants in Lemma 4.3.8, Lemma 4.3.9 and Lemma 4.3.10.
Suppose that k& € N is such that

A AR AL > M(1+ AD + A9)%. (4.3.32)
Then we have
WP =4a%A¥ > M  and  bE =4%Ak > M. (4.3.33)
Thus, applying Lemma 4.3.9 we get that if k£ € N satisfies (4.3.32), then
AA AR AR < (1 4 5),) AR AL (4.3.34)

We now denote with S1(M) the set
Sy (M) = {k EN: 4% Ak Al < M(1+ A9+ Ag)2},
and with Ss the set
Sy = {k eN: 40AkFL AR < A’fA’;}.
Let L € N be such that L ¢ S1(M) and let [ € {0,1,...,L} be the largest index such that
l € S1(M). Note that if {{+1,...,L —1}\ Sy = 0, then we have

44LA%A£/ S 44(L_1)Af_1A§_1 S L. S 44(l+1)Al1+1Al2+1 S 4444l14l114l27

which gives that L € Sy (4*M).
Repeating the proof of [41, Theorem 1.3], we consider the decreasing sequence of indices

l+1<k, < - <ko<k <L,

constructed as follows:

o kj is the largest index in the set {{+ 1,..., L} such that k1 ¢ Sa;
o kjy1 is the largest integer in {l +1,...,k; — 1} \ Sz such that

b and  beT T < (144,

bt < (14 6, RV (4.3.35)

j+1)
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We now conclude the proof in four steps.

Step 1. 4*L AL Al < 440n+1) gl pbs
Indeed, since {k; +1,...,L} C So, we have
44LAfA§ < 44(L71)Af—1A§—1 <. < 44(k1+1)A11€1+1A12€1+1 < 4444k1A11€1A12€1.
Step 2. 4%m gkm gkm < 4401 (14 A9 + 49)°.
Let k € {{+1,...,ky, — 1} be the smallest integer such that k& ¢ Ss. If no such k exists,
then we have

44kmAl{:mA12€m << 44(l+1)All+1Al2+1 < 44484l AL < 44M(1 + A +A8)2.
Otherwise, since k,, is the last index in the sequence constructed above, we have that
P S (L4 o)t or BT > (14 66k,
Assuming, without loss of generality that the first inequality holds, we get
44(k+1) gR+1
W

where in the second inequality we used Lemma 4.3.9 and afterwards we used the fact that
{I+1,....k—1} C S,.

L Ik Ak 2
Atkm pkm pbm < AR <qthab Al <o <atgM Al AL < 4'M (14 AD + A9,

Step 3. 4" A AT < (1+ 6y, )4t AP A
We reason as in Step 2 choosing k € {kj;1+1,...,k; — 1} to be the smallest integer such
that k ¢ So. If no such k exists, then {kj 11 +1,...,k; —1} C Sy and so we have

44ijlf]'A§j S 44(’6]'71)14]]‘?]'_114];]'_1 S L S 44(kj+1+1)Alfj+1+1A§j+l+1
< (1 + 5kj+1)44kj+1AlfjHA12€j+lv
where the last inequality is due to Lemma 4.3.9. Suppose now that k exists. Since k; and Ejqq
are consecutive indices, we have that
- ks = k-
PiTL > (1+6.)b7  or  bETE > (1467)by.
As in Step 2, we assume that the first inequality holds. By Lemma 4.3.9 we have
4 (k+1)Ak+1

aipAl <2 1
1 2 = 1+5~

Ak+1 < 44kAkAk: < 44(k‘j+1+1)A]1€j+1+1A]2€j+1+1
< (14 8y, )4t AT+ AT
= ( + kj+1) 1 2

which concludes the proof of Step 3.

Step 4. Conclusion. Combining the results of Steps 1, 2 and 3, we get

AL AL <480 (1 + AY + A9) H 1+ 6k, (4.3.36)

We now prove that the sequences b]fj and b’;j can both be estimated from above by a geometric
progression. Indeed, since k; ¢ So, we have

ki (k;j ki+1 ,k;j+1 ki+1 k;
AV ALY < a* AT AST < 4t AT AL
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Thus A]fj < 44A]fj 1 and analogously A];j < 44A§j + Applying Lemma 4.3.10 we get

At <a-gAlb and AV <1 -e)Ab

Using again the fact that k; ¢ S, we obtain
A A < gt AT AR < gt A (1 o) A
and so

kj+1

B < (1—e)p™ and b < (1—ep¥T,  forevery j=1,...,m. (4.3.37)

By the construction of the sequence k;, we have that for i = 1,2
kj e\~ Lk,
b > > d > (1 — 7) AR
¢ _1+5k. _(1+6k]-+1)(1_5)_ 2 ¢

J+1

kjt1+1 plit1

where for the last inequality we choose M large enough such that k ¢ Sy (M) implies 6 < €/2,
where ¢ is the dimensional constant from Lemma 4.3.10. Setting o = (1 —£/2)/2, we have that

B > o2 > L > UM > p g2,

C A ,
which by the definition of d; gives dx; < Mdam_J < Cyo™™ 7 for M > 0 large enough, and
o 2
440 AL AL H (1+ Cyo?)43M (1 + A9 + AY)

< exp (Zlog (1 —l—C’dJJ))éLS (1 + AV +A3)2

j=1 (4.3.38)
< exp (CdZJj)élg (1 + A7 + AO)
j=1
<exp C_Yda)48M(1 + A9 4 A9)
which concludes the proof.
O

4.3.4. Multiphase monotonicity formula. This subsection is dedicated to the multi-
phase version of Theorem 4.3.7, proved in [29]. The proof follows the same idea as in [41]. The
major technical difference with respect to the two-phase case consists in the fact that we only
need Lemma 4.3.9 and its three-phase analogue Lemma 4.3.15, while the estimate from Lemma
4.3.10 is not necessary.

THEOREM 4.3.11 (Three-phase monotonicity formula). Let By C R? be the unit ball in R?
and let u; € H(By), i = 1,2, 3, be three non-negative Sobolev functions such that

Au; +1>0, Vi=1,2,3, and uuj =0 a.e. in By, Vi # j.
Then there are dimensional constants € > 0 and Cq > 0 such that for each r € (0,1) we have

3 3
1 |V | |Vu,\
H <r2+e /Br |42 dm) = Ca (1 T Z/ |4~ g da) . (4.3.39)

i=1

As a corollary, we obtain the following result.
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COROLLARY 4.3.12 (Multiphase monotonicity formula). Let m > 2 and B; C R? be the unit
ball in R, Let u; € HY(By), i = 1,...,m, be m non-negative Sobolev functions such that

Au; +1>0, Vi=1,....,m, and wuj =0 a.e in By, Vi #j.
Then there are dimensional constants € > 0 and Cq > 0 such that for each r € (0,1) we have

M L [Vuil? |Vuz]
H <r2+e /Br |z|d-2 dx > < Ca <1+Z/ 2| 5 d : (4.3.40)

=1

REMARK 4.3.13. We note that the additional decay r~¢ provided by the presence of a third
phase is not optimal. Indeed, at least in dimension two, we expect that ¢ = m — 2, where m
is the number of phases involved. In our proof the constant e cannot exceed 2/3 in any dimension.

We now proceed with the proof of the three-phase formula. Before we start with the proof
of Theorem 4.3.11 we will need some preliminary results, analogous to Lemma 4.3.8 and Lemma
4.3.9.

We recall that, for w1, us and ug as in Theorem 4.3.11, we use the notation

12
Ai('r):/ [Vl dz, for i=1,23. (4.3.41)

LEMMA 4.3.14. Let uy, uz and ug be as in Theorem 4.3.11. Then there are dimensional
constants Cq > 0 and & > 0 such that if A;(1/4) > Cy, for every i = 1,2,3, then

d [A1(r)As(r)As(r 1 1 1 Aq(r)As(r)As(r
ar 1(l§¥3(q2_%<vﬁmﬁ+¢@wf%1%m> R

for Lebesgue almost every r € [1/4,1].

Proor. We set, for : =1,2,3 and r > 0,

Bi(r) = / |V |* dHIL
0B,

Since A;, for i = 1,2, 3, are increasing functions they are differentiable almost everywhere on R
and A’(r) = r?>74B;(r) in sense of distributions. Thus, the function

r s (6439) 4, (r)Aa(r)As(r),

is differentiable a.e. and we have

d [Ai1(r)As(r)As(r 6+3 r2=4B (r 24 By (r r2=4Bs(r)\ Aj(r)As(r)As(r
s [sonss] ook, i Zintn, ) s

Thus, it is sufficient to prove that for almost every r € [1/4, 1] we have

_ 6+ 3¢ 7’27(1 B (’I”) By (T) Bg(T) _ 1 1 1
T (mm+@m+@m>zc%¢mm+¢@m+ @my
(4.3.42)

and, by rescaling, we may assume that » = 1. We consider two cases.
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(A) Suppose that there is some i = 1,2, 3, say ¢ = 1, such that (6 +3¢)A;1(1) < Bi(1). Then we

have Bi(1)  Bs(1) Bs(1) Bi(1)

A0 T A T Ay = 63+
which proves (4.3.42) and the lemma.

(B) Suppose that for each i = 1,2,3 we have (6 4+ 3¢)A;(1) > B;(1). Since, for every i = 1,2,3
we have A;(1) > Cy4, by Lemma 4.3.6 with the additional notation «; := «(u;,1) and
Ai = AMui, 1 ) and by choosing € > 0 small enough and then Cy > 0 large enough, we have

(2— 1) < Cyv/Bi(1)/Ni + Bi(1)/a; < Cgr/Ai(1)/Ai + Bi(1) /.

Moreover, ozz- < )\Z-, implies

(2 —e)a; Ai(1) < Ca/Ai(1) + By( (4.3.43)
Dividing both sides by A;(1) and summing for i = 1,2, 3, we obtain

—(643¢) +

>0,

(2—5)(a1+a2—|—a3 Cd

A

and so, in order to prove (4.3.42), it is sufﬁment to prove that
6 + 3¢

2—¢’

Let Q7,Q5,Q5 C 0B; be the optimal partition of the sphere 0B for the characteristic
constant «, i.e. the triple {QF, Q3,Q3} is a solution of the problem

min {a(Ql) +a(Q) +a(Qs) : Qi C OBy Vi; HEN QN Q) =0,V # j}. (4.3.45)

ap +oar+az >

(4.3.44)

We recall that for a set Q C 0By, the characteristic constant «(£2) is the unique positive
real number such that A\(Q) = a(Q)(a(Q) + d — 2), where

AV ZHd—l
A(£2) = min faBl Vol :
fa& UQfHd—l

We note that, by [63], a(Q) + a(Q}) > 2, for i # j and so summing on i and j, we have

ve HY(OBy), H ({u#0}\Q) = 0} .

3<a(]) +a(Q3) +a(Q3) < a; +az + as.

Moreover, the first inequality is strict. Indeed, if this is not the case, then a(Q})+a(Q3) = 2,
which in turn gives that QF and € are two opposite hemispheres (see for example [43]).

is smaller than the

6+3
Thus Q% = 0, which is impossible* Choosing ¢ to be such that 2+ ©

minimum in (4.3.45), the proof is concluded.
U

LEMMA 4.3.15. Let ui, uo and us be as in Theorem 4.3.11. Then, there are dimensional
constants Cq > 0 and & > 0 such that the following implication holds: if for some r >0

1 |Vui|2

rd B, ‘:L,|d72

dx > Cy, forall 1=1,2,3,
then we have the estimate
AT Ay (r/4) Ag (r/4) Az (r/4) < (1+ S123(r)) Ar(r) Aa(r) As(r), (4.3.46)

4For example, it is in contradiction with the equality a(Q]) + «(Q23) = 2, which is also implied by the
contradiction assumption.
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where
3 -1/2
1 |V, |? >
o123(r) :=C, E </ —dx . 4.3.47
123( ) d ra rh B, ’l’|d72 ( )

PROOF. We first note that the (4.3.46) is invariant under the rescaling u,(z) = r~2u(ar).
Thus, we may suppose that » = 1. We consider two cases:

(A) Suppose that for some i = 1,2, 3, say i = 1, we have 45%3¢4;(1/4) < A;(1). Then we have
46432 A1 (1/4)Az(1/4) A3(1/4) < A1(1)A2(1)Az(1).

(B) Suppose that for every i = 1,2,3, we have 453 4;(1/4) > A;(1). Then A;(1/4) > Cy for
some Cy large enough and so, we can apply Lemma 4.3.14, obtaining that

Ar(1D)Ag(1)Az(1) — 4572 A1(1/4)Ax(1/4)A3(1/4)

3
> ¢ d//4 ( ﬁ> As(r) As(r) dr

1)A2(1)As(1)

-0t (3 s )
> 30,42t 2° (zi:

) (1)A2(1)As3(1),
which gives the claim.
O

We now proceed with the proof of the three-phase monotonicity formula. We present two
different proofs: the first one repeats precisely the main steps of the proof of Caffarelli, Jerison
and Kenig, while the second one follows a more direct argument.

Proof I of Theorem 4.3.11. For i = 1,2, 3, we adopt the notation
Ab = A;47F),  bFi=a%4,47%) and 6 = 13(47F), (4.3.48)

where A; was defined in (4.3.26) and 0123 in (4.3.47).
Let M > 0 and let

Si(M) = {k eN: 463k gk gk Ak < Nf(1 4 A9 4 AD+ Ag)?’}

Sy = {k € N 4648 ghtl ghtl ght1 o A’fA’gA’g} .
We first note that if k ¢ S1, then we have

M(1+ A9+ A3+ AQ)® < 46+3)k 4k Ak Ak
< 4—(2—35)kblf44kA129Al§

< BECy(1 + A9 + AY + A9)%,
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where the last inequality is due to the two-phase monotonicity formula (Theorem 4.3.7). Choos-
ing M > 0 big enough, we have that
<k ¢ SI(M)> = (bf >0y, Vi= 1,2,3).

Fix L € N and suppose that L ¢ S;(M). Let [ € {0,..., L} be the largest index such that
l € S1(M). We now consider two cases for the interval [l + 1, L].
(Case 1) If {l+1,...,L} C S, then we have
& £ e 3
AOF3IL AL AL AL < < 4(643) D) ATFL ATEL ALY < 46432 pr (1 4 A9 4 AD + A9)”,

and so L € Sy (4973 M).
(Case 2) It {i+1,...,L}\ Sy # (), then we choose k1 to be the largest index in {I+1,..., L}\
S5. Then we define the sequence

I+1<kn< - <k <L,
by induction as

kg = max{k E{l4 1,k — 13\ o BT < (146, )b, Vi= 1,2,3}.

[

The proof now proceeds in four steps.

Step 1. 4(6+3€)LA%A§A§' < 4(6+3€)(k1+1)A]1€1A]2€1A§1.
Indeed, since {k; +1,... L} C So, we have

4(6+35)LA1LA§A§‘ <. < 4(6+35)(k1+1)A’1€1+1A12€1+1A13€1+1 < 46+354(6+35)k1A’f1A§1A§1.
Step 2. 4(0+3)km gl ghm pglm < 4632 Np(1 4 A9 4 A9 4 A9)°.

Let k€ {I+1,...,ky — 1} be the smallest index such that k ¢ Sy. If no such k exists, then
we have

4(6+38)kmA11€mA/§mA/§m <...< 4(6+3€)(l+1)All+1Al2+1Ag+1
< 46+384(6+36)lAl1Al2Aé < 46+36M(1+A(1)+A3+Ag)3

Otherwise, since k,, is the last index in the sequence constructed above, there exists i € {1,2,3}
such that )

DEFL > (14 6;)bFm. (4.3.49)
Assuming, without loss of generality that i = 1, we get

km Akm pkm Akm _ 4(— km pkm g4km pkm Akm
4(6+30km glom pkm pgkm — 4(=243)km phim g4k gkm g8

< 4(—2+3e)km(1 + 5%)—1bl;€+1 (1 +523(4—]€m+1))44(km—1)A§m—1A§m_1

(4.3.50)
< 42483k =1) (1 5,5)‘16’;“*1 440k =1) gkm=1 ghm—1 (4.3.51)
< 4(72+3€)(l~€+1)(1 + 5];)7151;%1 44(15+1)A§+1A§+1 (4.3.52)
= 463D (1 5o ) L AR AL 4R
< 4630 gF A < < 464D gLHL gL gLt (4.3.53)

< 46+324(639 4L AL AL < 4543201 (1 4 AD + A3 + A3)°, (4.3.54)
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where in order to obtain (4.3.50) we used (4.3.49) and the two-phase estimate from Lemma
4.3.9; for (4.3.51), we absorb the term that appears after applying Lemma 4.3.9, using that if
M is large enough and e < 2/3, then (1 + Jag(47#m11))472+3¢ < 1; repeating the same esti-
mate as above we obtain (4.3.52); for (4.3.53), we use the three-phase Lemma 4.3.15 and then
the fact that {I+1,..., /2:} C Sy; for the last inequality (4.3.54) we just observed that [ € Sy (M).

Stop 3. 404995 AL AY AL < (113, )OS A e

We reason as in Step 2 choosing k € {kj;1 +1,...,k; — 1} to be the smallest index such
that k& ¢ So. If no such k exists, then {kj11 +1,...,k; — 1} C Sp and so we have

(6+3E)JAJA AJ<

| /\

(643e)(kjy1+1) gkj+1+1 gkjpi+1 4 kjp1+1
4 ! A AQ A3

< (14 8y, ) AGH3Mkim 4041 AT A4

where the last inequality is due to Lemma 4.3.9. Suppose now that k exists. Since k; and kjqq
are consecutive indices, there exists some i € {1,2,3} such that

B > (14 6)b0. (4.3.55)
Without loss of generality we may assume that ¢ = 1.

4(6+30)k; Ailgj Agj Algj _ g(—2+43)k; bkj 44K; Agj Al;j
< 4( 2+3¢)k; ( —1—5 ) 1b11€+1 (1 _|_523(4_kj+1))44(’“1'_1)14]263‘7114?71 (4.3.56)

k;j—1

< 4231 (1 4 5 ) LpEHL 40— gRi 1 4R (4.3.57)

< 4(C2HEFFD) (1 4 gy~ TpHL AR g1 gRed (4.3.58)
— 4(6+35)(k+1)(1 + 5]})71A11€+1A/5’+1A§+1
< 4630k gF gE AE o gO13) ) ghin ] gRi bl Rt g 50,

< (1+ 8y, )AOFBIRst AT+t AT AT (4.3.60)

where for (4.3.56) we used (4.3.55) and Lemma 4.3.9; for (4.3.57) and (4.3.58), we use that for
M > 0 large enough and £ < 2/3 we have (1 4 dog(4~"mT1))472+3¢ < 1: for (4.3.59), we apply
Lemma 4.3.15 and then the fact that {{+1,...,k} C Sy; for the last inequality (4.3.60) we use
Lemma 4.3.15.

Step 4. Conclusion.
By the steps 1, 2 and 3 we have that

m
4O AL AL AL < 20653907 (14 AY + AS + A9)° T (1 + o) (4.3.61)
j=1
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we now prove that for each ¢ = 1,2, 3 the sequence bfj is majorized by a geometric progression
depending on M. Indeed, since k; ¢ Sz, we have

AIfjA];jA’;j < 46+35A’1€j+1A’2€j+1A§j+1
< 4—(2—35)44A’1€j+1(1 + 523(4—kj))A’2‘7jA§j

< o244 Al Ak Al
for some dimensional constant ¢ < 1, where the second inequality is due to Lemma 4.3.9 and
the last inequality is due to the choice of M large enough and € < 2/3. Thus we obtain

kj-i-l

b < g2 bt i=1,23 and Yj=1,...,m. (4.3.62)

for each i = 1,2,3 and each k; € S3. Now using the definition of the finite sequence k; and
(4.3.62), we deduce that for all i = 1,2,3 and j = 2,...,m we have

k; 2, kj+1 2 ki kj—
b? <o7b;? <ot (14 6,)b;” ' <ob
and so, repeating the above estimate, we get
b > o I > > gl > I

and, by the definition (4.3.65) (and (4.3.47))of dy;,

Cy m—i
O, < MdoTj, Vi=1,...,m. (4.3.63)
By (4.3.61) and (4.3.63) and reasoning as in (4.3.38) we deduce
4(6+38)LA%A5’A§ < exp (1_Ciﬁ> 42(6+3¢) o r (1 + A(l) + Ag + Ag)g7 (4.3.64)
which concludes the proof of Theorem 4.3.11. U

Proof II of Theorem 4.3.11. For ¢ = 1,2, 3, we adopt the notation
Ab = A;47F),  bF =4 A,47F) and 6 = 13(47h), (4.3.65)

where A; was defined in (4.3.26) and 0123 in (4.3.47).
Let M > 0 and let

S(M) = {k €N 4Ok AR Ak Ak < N(14+ A9+ AD + Ag)3}.

We will prove that if € > 0 is small enough, then there is M large enough such that for every
k ¢ S(M), we have
43k Ak AR AR < M (14 A + AY + A9)°,

where C' is a constant depending on d and e.
We first note that if k£ ¢ S(M), then we have

M(1+ A9+ A3+ AQ)® < 4G+3)k 4k Ak Ak
< 4—(2—35)kb11c44kAl2cAl§

< 47C39kpkCy (1 + A + A + AY),
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and so b’f > C’JlM 42=39)k \where Cy is the constant from Theorem 4.3.7. Thus, choosing
€ < 2/3 and M > 0 large enough, we can suppose that, for every i = 1,2,3, bf > Cy, where Cy
is the constant from Lemma 4.3.15.

Suppose now that L € N is such that L ¢ S(M) and let

l:max{keN: kES(M)ﬁ[O,L]} < I,

where we note that the set S(M) N[0, L] is non-empty for large M, since for k = 0,1, we can
apply Theorem 4.3.7. Applying Lemma 4.3.15, for k =1+ 1,..., L — 1 we obtain

AO+3LALAL AL < (Hé;zlﬂ(l + 5k)> 4(6+3) (1) gL 4L+ gl

< (TTESha (14 6)) 46H3904D 44 AL A (43.66)

< (ITECL (1 + 60)) 4570 (14 A9 + A+ 49)°,

where 6% is the variable from Lemma 4.3.15.

Now it is sufficient to notice that for k =1+ 1,..., L — 1, the sequence d; is bounded by a
geometric progression. Indeed, setting o = 47173¢/2 < 1, we have that, for k ¢ S(M), &, < Co*,
which gives

[TEo (o) <TIFDh (1 +Co)
L—1 k
= exXp <Zk=l+1 log(1+Co )) (4.3.67)

< exp (C Yt Uk) < exp (%) ’
which concludes the proof. O

4.3.5. The common boundary of two subsolutions. Application of the two-phase
monotonicity formula. We start our discussion with a result which is useful in multiphase
shape optimization problems, since it allows to separate by an open set each quasi-open cell
from the others.

LEMMA 4.3.16. Suppose that the disjoint quasi-open sets 21 and Qo are energy subsolutions.
Then the corresponding energy function w1 and wy vanish on the common boundary 021 N0y =
aMﬁl N 8M(22.

PROOF. Recall that, by Remark 4.2.3, we may suppose that ; = {w; > 0} and that, by
Remark 4.2.1, every point R is a Lebesgue point for both w; and ws.

Let 29 € OMQy NOMQy. Then, for each r > 0 we have |{w1 >0} N BT(xo)‘ > 0 and so, by
Proposition 4.2.15, there is a sequence r, — 0 such that

. ‘{wl > 0} N Brn(afo)‘

1 > . 4.3.
Jim. B >c>0 (4.3.68)
Since |{w; > 0} N {wz > 0}| = 0, we have that
>0} N B,
lmsup 192> G OBl (4.3.69)

n—00 ’Brn |



142 4. SUBSOLUTIONS OF SHAPE FUNCTIONALS
Since x( is a Lebesgue point for wsy, we have

wa (o) :nlirrolo o )wg dx
rn (L0

) ) ng >0}NB,, (9:0)|
< limsup [[wz|| g (B, (z0)) lim sup

n—00 n—00 ’Brn |

< (1= o) limsup |[wa|| Lo (5., 20)) < (1 = Jwz(wo),

where the last inequality is due to the upper semi-continuity of wy (see Remark 4.2.1). Thus,
we conclude that we(z¢) = 0 and, analogously wy(zg) = 0. O

PROPOSITION 4.3.17. Suppose that the disjoint quasi-open sets €y and Qo are energy sub-
solutions. Then there are open sets D1, Dy C RY such that Q; C D1, Qo C Dy and 21 N Dy =
QN Dy =0, up to sets of zero capacity.

PROOF. Define D; = R? \ﬁéw and Dy = R? \lew, which by the definition of a measure
theoretic closure are open sets. Asin Lemma 4.3.16, we recall that ©; = {w; > 0} and that every

point of €); is a Lebesgue point for the energy function w; € HOI(QZ) Since Q; C ﬁfw , we have to
show only that 1 C D1 and 29 C Ds or, equivalently, that €1 N ﬁéw =Q9N ﬁiw = (). Indeed,
if this is not the case there is a point xg € ﬁéw such that w(z9) > 0, which is a contradiction
with Lemma 4.3.16. ]

4.3.6. Absence of triple points for energy subsolutions. Application of the mul-
tiphase monotonicity formula. This subsection is dedicated to the proof of the fact that no
three energy subsolutions can meet in a single point. Our main tool will be the three-phase
monotonicity formula from Theorem 4.3.11. We note that the monotonicity formula involves
terms, which are basically of the form JEBT |Vw|? dx, while the condition that the subsolution
property provides concerns the mean of the function, i.e. fa B, wdH*! > ¢r. These two terms
express in different ways the non-degeneracy of w on the boundary, but the connection between
them raises some technical issues, which esentially concern the regularity of the free boundary.

REMARK 4.3.18 (Application of the monotonicity formula). Let ©;, Q2 and Q3 be three
disjoint quasi-open sets of finite measure in R?. Let w; € HE(Q;), for i = 1,2,3, be the
corresponding energy function and suppose that there is a constant ¢ > 0 such that

7[ Vwide >,  ¥re(0,1), Vao € RY, Vi=1,2,3. (4.3.70)
BT(:CO)
Then, by Theorem 4.3.7, we have that for every zo € 9MQ; N OMQ,, we have
2
j[ \Vw;|* de < Ca (1 +/ w? da +/ w3 dx) ., Vre(0,1) and i=1,2. (4.3.71)
By(xo) c R4 Rd
Moreover, by the three-phase monotonicity formula, the set of triple points 9 Q; NOMQ, N

oM Qs is empty. Indeed, if 2o € OMQ; NOMQy N OMQ3, by Theorem 4.3.11 and the assumption
(4.3.70), we would have

3 3 2
_ 1 /
3e .3 2 2
T cgll — Vw;|“dr | < Cy 1+E /widx ,
i1 (rd+€ Br(wo) v ) < i=1 /R? )

which is false for r > 0 small enough.
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REMARK 4.3.19 (The two dimensional case). In dimension two, the energy subsolutions
satisfy condition (4.3.70). Indeed, let 1,95 C R? be two disjoint energy subsolution with
m = 1 and let 29 € OMQ; N OMQy,. Setting 29 = 0, by Corollary 5.6.6, we get that for each
0 < r < rg the following estimates hold:

cr < ][ wy dH! and cr < ][ wy dH. (4.3.72)
OB, 0B

In particular, we get that 0B, N {w; = 0} # 0 and 9B, N {ws = 0} # (. We now notice that
for almost every r € (0,79) the restriction of wy and wy to OB, are Sobolev functions. Thus, we
have

2
2?3 < ! (/ w; d?—[1> < / w? dH! < 72/ \Vw;|* dH?,
|8Br| OBy o8B, ! 2 OB,
where A < +oc a constant. Dividing by 7? and integrating for » € [0, R], where R < 7o, we
obtain that (4.3.70) for some constant ¢ > 0.
In particular, we obtain that if Qy,Q9, Q3 C R? are three disjoint energy subsolutions then
there are no triple points, i.e. the set 9™ NOMQy N M Q3 is empty.

In higher dimension the inequality (4.3.70) on the common boundary points will be deduced
by the following Lemma, which is implicitly contained in the proof of [1, Lemma 3.2].

LEMMA 4.3.20. For every u € H*(B,) we have the following estimate:

1 2
772]{u =0}NB,| <]£B ud’Hd_1> < Cd/B \Vu|? dz, (4.3.73)

where Cy is a constant that depends only on the dimension d.

PROOF. We report here the proof for the sake of completeness, and refer the reader to [1,
Lemma 3.2 ]. We note that it is sufficient to prove the result in the case u > 0. Let v € H'(B,)
be the solution of the problem

min{/ \Vol*dx: u—v € H(B,), vzu}.

We note that v is superharmonic on B, and harmonic on the quasi-open set {v > u}.
For each |z| < %, we consider the functions u, and v, defined on B, as

uy(x) == u((r — |z|)z + ) and v (x) = v((r —|z|)z + 2).

Note that both u, and v, still belong to H!(B,) and that their gradients are controlled from
above and below by the gradients of u and v. We call S, the set of all |{| = 1 such that the set

{p: % < p <7, u.(pf) =0} is not empty. For £ € S. we define

r

nginf{Pi gSpPsT uz(pﬁ)zo}-

For almost all ¢ € S9! (and then for almost all £ € S,), the functions p — Vu,(p¢) and
p — Vg (p€) are square integrable. For those £, one can suppose that the equation

((s(p26) — v (02)) — (&) — va(p16)) = [ €~ (uz(p) — v2(pE)) dp,

P1
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holds for all p1, p2 € [0,7]. Moreover, we have the estimate

1/2
wlre) = [ € Vo w6 do < e < O uz><ps>12dp> .
¢ ¢
Since v is superharmonic we have that, by the Poisson’s integral formula,
v(z) > cq
Substituting « = (r — r¢)z + r¢, we have

i (re€) = v((r — r¢)z + ref) > C”_Tf][ ud%d—lzc”_rﬁ][ uy M,
2 T OB, 2 T OB,

r— Izl wdH4,

r OB,

Combining the two inequalities, we have

2 r
T—1T
- 3 <]é ude_1> < Cd/ IV (v — us)(p€) | dp.
By ¢

r

Integrating over £ € S, C S9!, we obtain the inequality

_ 2 r
</ T Tﬁ d§> <]£B ud’Hd_1> < cd/aBl /rE IV (v, — uz)(p€)|? dp dE,

and, by the estimate that g <re <r, we have

=0} 1 BAB, ()| <][ ud?—[d_1>2 < Cd/r IV (v, —u,)|? da

OB,
< Cd/ V(v —u)?dz.

Integrating over z, we obtain

1 2
T—Q‘{u =0} N B,| <]£B ud?—[d_1> < Cd/ IV (u —v)|? dz. (4.3.74)

Now the claim follows by the fact that v is harmonic on {v — u > 0} and the calculation

/ |V(u—v)|2daz:/ |Vu|?> — |Vo|? dz 4 2 Vv-V(v—u)d:L"g/ \Vul? dz.

B, r
g

THEOREM 4.3.21. Suppose that Q1,Qo, Q3 C RY are three mutually disjoint energy subsolu-
tions. Then the set 01 N O N IN3 = OMQ N MOy N OM Q3 is empty.

PROOF. Suppose for contradiction that there is a point zg € 0MQ;NOM QNOM Q3. Without
loss of generality g = 0. Using the inequality (4.2.18), we have

3

[will Lo (B, ) S Hwi > 0y N B\ (1 Ilwill s ()
[ =l =)

i=1 i=1

and reasoning as in Proposition 4.2.15, we obtain that there is a constant ¢ > 0 and a decreasing
sequence of positive real numbers r, — 0 such that

Vn € N,

3
‘{wi > 0} N Brn‘
< )
°= ZI_II B,.,|
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Since [{w; > 0} N By, | < |B,,|, for each i = 1,2,3, we have

}{wi > 0} N Brn‘

c , Vn € N,
N ’B'f'n|
and since {w; > 0}, {wz > 0} and {ws > 0} are disjoint, we get
, =0}NB
1-2< [{w |B} ’ ’""’, VneN, Vi=1,2,3.
Tn

Thus, we may apply Lemma 4.3.20 and then Lemma 4.2.10 and Corollary 4.2.12 |, to obtain that
there is a constant ¢ > 0 such that for every n € N

2
120 mBr 1 _
o< [{wi= 01N By, ][ wdH! gcd]l Vwi|? d,
’B7"n| Tn 8Brn B;

n

which proves that (4.3.70) holds for a sequence r, — 0. The conclusion follows as in Remark
4.3.18. O

REMARK 4.3.22. Let Q1,...,Q, C R? be a family of disjoint energy subsolutions. Then we
can classify the points in R? in three groups, as follows:

e One-phase points
le{mERd: 30 > 0 s.t. x ¢ OMQ, Vj;éi}.
e Internal double-phase points
Zi = {x ERY: Fi# st wedMOnoM; Ir>0st |Ba(x) N (U = o} .
e Boundary double-phase points

Zg:{xeRd: 3i # j s.t. x € MO N oM Qy;

Bo(z) N (2 UQ)| >0, vr > 0} .

4.4. Subsolutions for spectral functionals with measure penalization

In this section we investigate the properties of the local subsolutions for functionals of the
form

F(Q) = F(Al(Q), cee /\k(Q)) + ml|Q|,
i.e. we are interested in the quasi-opens sets Q C R? such that
F()\l(Q), cey )\k(Q)) + m|Q\ < F()\l(w), e, Ak(w)) + m|w[,
(4.4.1)
for every quasi-open w C Q such that d,(w, ) <e,

where m > 0 and € > 0 are constants and f : R¥ — R is a given function. Many of the properties
of the subsolutions {2 for the functionals descrived above are consequences of the results in the
previous sections. Indeed, we have the following:

THEOREM 4.4.1. Suppose that § is a local subsolution, in sense of (4.4.1), for the functional
F(Q) :=F(A(Q),..., \(Q)) +m|Q,

where m > 0 and F : RF — R is Lipschitz continuous in a neighbourhood of (A1(£2),..., \e(Q)) €
RE. Then Q is an energy subsolution.
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PrROOF. We first note that by Lemma 3.7.7, applied for p = I and v = I, we can find
constants € > 0 and C' > 0 (depending on d, |Q| and A\;(2)) such that

Aj(w) = X(Q) < Cdy (I, 1,) = 2C(E(w) — E(Q)), Vi=1,...,k. (4.4.2)

Thus, we can choose € > 0 small enough such that

.
F(M(w), - M) = F(AM(Q), . A(92) <L (A\i(w) — 2(Q)
=t (4.4.3)

< 2LCk(E(w) — E(Q)),

where L is a local Lipschitz constant for f and C is a constant from (4.4.2). Now since € is a
subsoluion for F', we have that it is also an energy subsolution with constant m/(2LCE). O

COROLLARY 4.4.2. Suppose that 2 is a local subsolution, in sense of (4.4.1), for the func-
tional
F(Q) = F(M(Q),..., \() + m|Q],
where m > 0 and F : R¥ — R is Lipschitz continuous in a neighbourhood of (A1(£2),..., \e(Q)) €
R*. Then Q is a bounded set of finite perimeter.

In the case F'(A1,...,Ax) = A1, we can repeat some of the arguments obtaining some more
precise results.

THEOREM 4.4.3. Suppose that the quasi-open set Q@ C R is a local (for the distance dy)
subsolution for the functional A\1(2) +m|SY|. Then,
(1) M(2) < X2(Q2) and if u is the first eigenfunction on 2, then |Q\ {u > 0}| = 0;
(ii) there are constants ro > 0 and m > 0 such that if x € QM, then for every 0 < r < rg we
have
cr < |ullzoo (B, (2)) (4.4.4)
where u € HY () is the first, normalized in L?, eigenfunction on €2;
(iii) Q has finite perimeter and we have the estimate

VmHTH(07Q) < M (Q)]QV (4.4.5)

(iv) Q is quasi-connected, i.e. if A;B C Q are two quasi-open sets such that AU B = Q and
cap(AN B) =0, then cap(A) =0 or cap(B) = 0.

PROOF. Let u € H(Q) be a first, normalized in L?((2), eigenfunction on Q. Then {u >
0} CcQ

M(fu > 0}) = A (Q) = /Q IVt 2 da,

and so, we must have |2\ {u > 0}| = 0. Now if @ is another eigenfunction corresponding to A1 (£2)
such that [, i dz = 0, then % must change sign on Q and so, taking u™ as first eigenfunction,
we have
A1(2) + m|Q] > A ({u > 0}) + m|{u > 0},
which is a contradiction. Thus, we have (7).
In order to prove (ii), we reason as in Lemma 4.2.9 and Lemma 4.2.11. Indeed suppose
zg =0, 7 > 0 and let v be the solution of

~Av=a in By \ B, v=0 on B, and v = |lulgeo(B,,) on Boy,
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where a is a constant to be defined. Then, taking u, = ulps + (u Av)lp,,, for ¥ > 0 small
enough we have

/Q]Vu|2d:z+m}{u>0}\{ur>0}‘ g/ [V, |* dz + ((/Quzdx>_l—1>/g|VuT|2d:c

/|Vur2dx+4)\1(9)/(u2—u2) dz,

/|Vur2da:+C/ u— uy)

where C' is a constant depending only on the dimension d and A;(£2) (we recall that |[ul/f~ <
Cah(Q)¥*, by Corollary 3.4.49). Now using the definition of u, and taking a = C, we have

/ \Vul? dz + m|B, N {u > 0} g/ (IVv]? = |Vul?) dz + C (u — ) du,
B {v<u} {v<u}
§/ Vv-V(v—u)de+C (u—v)dz,
{v<u} {v<u}

= / u| Vol dH < Oy (7’ + HZLHDW) / wdH?,
B, 2r B,

where C} is a constant depending only on the dimension d and A1(£2). Now, reasoning a in
Lemma 4.2.10 by the trace inequality and the boundedness of u, we obtain (7).

In order to prove the bound (4.4.5), we follow the idea from [20]. Let u be the first,
normalized in L?(f2), eigenfunction on €. Since A\;({u > 0}) = A1(2), we have that [{u >
0}AQ| = 0. Consider the set 2. = {u > €}. In order to use €. to test the (local) subminimality
of 2, we first note that ). vy-converges to 2. Indeed, the family of torsion functions w, of €2, is
decreasing in ¢ and converges in L? to the torsion function w of {u > 0}, as ¢ — 0, since

Al(Q)/gz(w—wg)udx:/QVw-Vud:E— VwE-V(u—s)er:L":/ (u—(u—e)")dz — 0.

Qe Q

Now, using (u — &)™ € H} () as a test function for \;(£), we have

V(u *12d
A1(Q) +m|Q| g/\l(QE)—i—m]QE]ng‘ —e)[de

[N[CEE

2_ |(u—e)*]?) da
_1g<u oY e+ 0 () T i
2e [udx
Zdoe + M\ (Q)—2 Q.
/|V T+ Ml )1—25fQudx+m’ |
2e01 ()|
< — o)y + SO 0.l
_/QW(U oot T gy IO
Thus, we obtain
2 1/2 -1
/ Vul? dz + m|{0 < u < e}| < 2eA, ()]0 (1—2s/udw> . (4.4.6)
{0<u<e} Q
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The mean quadratic-mean geometric and the Holder inequalities give

1/2
2m1/2/ Vuldz < 2m'/? </ IVUI2d$> {o<us<ey”
{0<u<e} {0<u<e}

(4.4.7)

-1

< 25)\1(Q)|Q\1/2<1 - 25/ udac) .

Q
Using the co-area formula, we obtain
1 /¢ .
6/ I (0% {u > 1)) dt < m_1/2A1(9)|Q|1/2<1 - 25/ udx) : (4.4.8)
0 Q

and so, passing to the limit as € — 0, we obtain (4.4.5).

Let us now prove (). Suppose, by absurd that cap(A) > 0 and cap(B) > 0 and, in
particular, |A] > 0 and |B| > 0. Since cap(ANB) = 0, we have that HJ(Q) = H}(A)®H}(B) and
50, A1(©2) = min{A1(A), A\ (B)}. Without loss of generality, we may suppose that A\ (2) = A1 (A).
Then, we have

M (A) +m|A] < A (A) +m(|A4] +|B]) = M () + m|Q],

which is a contradiction with the subminimality of 2. U

REMARK 4.4.4. The claim (iv) from Theorem 4.4.3 gives a slightly stronger claim than that
from the point (i) of the same Theorem. Indeed, we have that

cap(©2\ {u > 0}) =0,
where u is the first Dirichlet eigenfunction on 2. We prove this claim in the following Lemma.

LEMMA 4.4.5. Suppose that Q C R% is a quasi-open set of finite measure. If Q is quasi-
connected, then A\ () < A2(Q) and Q@ = {u1 > 0}, where uy is the first eigenvalue of the
Dirichlet Laplacian on Q.

PROOF. It is sufficient to prove that if u € H}(Q) is a first eigenfunction of the Dirichlet
Laplacian on Q, then Q = {u > 0}. Indeed, let w = {u > 0} and consider the torsion functions
w, and wq. We note that, by the weak maximum principle, we have w, < wq. Setting

A = A\1(2), we have
/)\uwwdx:/Vu-wadx:/ud:c,
Q Q Q

/)\uwgdx:/Vu‘Vde:c:/udx.
Q Q Q

/ u(wq — wy,) dx =0, (4.4.9)
Q

and so, wg = w, on w. Consider the sets A = QN {wq = w,} and B = QN {wqg > w,}. By
construction, we have that AU B = Q and AN B = (). Moreover, we observe that A = w # ().
Indeed, one inclusion w C A, follows by (4.4.9), while the other inclusion follows, since by strong

Subtracting, we have

maximum principle for w, and wg we have the equality
QN {wag =w,} = {wa >0} N{wq = w,} C{w, >0} =w.

By the quasi-connectedness of 2, we have that B = (). Thus wg = w,, and so, w = Q up to a
set of zero capacity. O
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REMARK 4.4.6. If Q is a local subsolution for the functional A\; + m| - |, then we have the
estimate

AL(Q) > cgmarz, (4.4.10)

where ¢4 is a dimensional constant. In fact, by (4.4.5) and the isoperimetric inequality, we have
M(Q)IQY? > VmP(Q) > cq/ml|Q) T,

and so
(@) = cav/mlQ
By the Faber-Krahn inequality A;(Q)|Q|%/¢ > A\ (B)|B|*/¢, we obtain

a—2 d—2

A (Q2) > cay'm (IQI§>T > cqv/m (/\1(9)‘1A1(B)|B|2/d>T > cgy/mA(Q) T

REMARK 4.4.7. Even if the subsolutions have some nice qualitative properties, their local
behaviour might be very irregular. In fact, one may construct subsolutions for the first Dirichlet
eigenvalue (and thus, energy subsolutions) with empty interior in sense of the Lebesgue measure,
Le. the set (1) of points of density 1 has empty interior. Consider a bounded quasi-open set D
with empty interior as, for example,

(0]
Dzmnxmﬂn(UBamOcRa
i=1
where {z;};ey = Q and r; is such that

_ 1
anp(Bm. (x;)) < +o0 and Zm‘? <3
1€EN ieN

Let € C D be the solution of the problem
min {)\1(9) +1Q:QCD, Q quasi—open}.

Since, () is a global minimizer among all sets in D, it is also a subsolution. On the other hand,
D has empty interior and so does ).

4.5. Subsolutions for functionals depending on potentials and weights

In this subsection, we consider functionals depending on the spectrum of the Schrédinger
operator —A + V for a fixed potential V. Indeed, let F be defined as

F(Q) == F(AV(Q),..., AL (Q)) +/ h(x) du, (4.5.1)
Q
where V : R? — [0,4+00] and h : R4 — [0, +00] are given Lebesgue measurable functions and
where we used the notation

M (Q) = \(Vdz + 1),

for the kth eigenvalue of the operator —A + (V + I~), associated to the capacitary measure
Vdx 4+ Ig. As in the previous sections, we say that €2 is a subsolution for F, if for every quasi-
open set w C Q, we have F(2) < F(w). We note that {2 might have infinite Lebesgue measure
and non-integrable torsion function wgq, even if the torsion function of Vdx + Iq is integrable.
Thus, the natural notion of local subsolution would concern the y-distance between the measures
Vdx + Ig and Vdz + 1,,.
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DEFINITION 4.5.1. Suppose that 2 is a quasi-open set such that fQ h(z)dr < 400 and such
that the capacitary measure p = Vdx + Iq has integrable torsion function. We say that € is
a local subsolution for the functional F, if for every quasi-open w C Q such that (d(Vdx +
1,,Vdx + Iq) < €, we have F(Q) < F(w).

For Q such that (Vdz + Io) € MZ, (R?), we use the notation
E(Q;V) = min {Jv(u) L we HH Q)N Ll(Q)}

1
= Jy(way) = —5 /d wq,v dz,
R

where
1 9, 1o
Jy(u) = —|Vul* + zuV —u | dx,
]Rd 2 2

and wgq,y is the minimizer of Jy in H}(2) N L(£2). As in the previous section, we can restrict
our attention from the general functional F to the Dirichlet Energy E(2; V) with a volume
term. Indeed, we have the following result.

THEOREM 4.5.2. Suppose that  is a local subsolution for the functional F given by (4.5.1),
where the function F : RF — R is locally Lipschitz continuous. Then there is m > 0 such that
Q is a local subsolution for the functional E(:; V) +m [, h(x) d.

PROOF. The claim follows by the same argument as in Theorem 4.4.1. O

We now prove that every local, in capacity, subsolution for the functional E(Q;V) +
m [, h(x)dz is a bounded set. In order to do that we need to use appropriate perturbations
of Q as for example those from Lemma 4.2.10. On the other hand, using sets obtained by
cutting off balls is rather complicated. In particular, we note that the estimate of the measure
{wao,v > 0} N B,| is a difficult or impossible task since we have no a priori argument that ex-
cludes the possibility that both V and h are strictly positive on the whole R?. Thus, instead of
using perturbations with small balls, we will just test the subsolution €2 against sets of the form
QN H;, where H; is a half-space. This approach gives weaker results than these from Section
4.2, but the boundedness still holds.

LEMMA 4.5.3. Suppose that ) is a local subsolution for the functional E(S; V)+m [ h(x) d,
where m > 0 and V : R? — [0, +00] and h : R? — [0, +00] are given measurable functions such
that the torsion function wqy of Vdx + Iq is integrable. If h > V™%, for some a € [0, 1), then
Q is a bounded set.

PrOOF. For each t € R, we set
H ={zeR?: z; =t} Hf ={z eRY: 1 >t} H ={zeR: z; <t}. (4.5.2)

We prove that there is some ¢ € R such that |HtJr N Q| = 0. For sake of simplicity, set w := wq
and M = ||w||p>~. By Lemma 3.7.2 and the subminimality of €2, we have

1 1
/ \va2da:+/ w2Vda:+/ hdr < V2M wd?-[dl—i—/ wdz, (4.5.3)
2 H;r 2 v H H,; H

t t t
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for every t € R. By aim to prove that the L.h.s. is grater than a power of fH+ wdz. Indeed, we
t

have

1/p 1/q 1 1
/ wP dx < / w?V da / VT %dr| < / w2Vd:r+/ V=dz, (4.5.4)
H HY HY P Jut 4 Jgt

where p > 1 and ¢ > 1 are such that

Lyl=1,
w/P = (w2v)1/p(vfa)l/q7

ie. L1
-—+-=1 and - = g,
p q p q
which gives
1 1 1 «
- = and - = )
q 14+« p l4+ao

and so,

e ].
/ wa2+1 dr < a / w2V dr + V™ %dzx.
Hf L+a /g L+a Jgr

On the other hand, by the Sobolev inequality, we have

d—2

2d_ ¢ 5
/ wi=2 dx < Cd/ |Vw|” dz.
Hf Hf

Thus, we search for § € (0,1), p>1 and ¢ > 1 such that 1/p+1/g =1 and

B 1 1d=2
20 g 24 @4
/ w dx < / weotl dx / wi-2 dx
Hf Hf Hf
Thus, we have the system
1 1
S =1,
P q
Lod-21
d - )
pga 1 +q§ 1
l+aps g8 7
which gives
I (I+a)(d+2) 1 d(1l-a) 5= d+ 2«
p  2(d+1+a)’ g 2(d+1+a) S d+1+a’

In conclusion, we get

B
/ wdr | <CV2M wdH + C/ wdz,
HY Hy HF

where C' is a constant depending on « and the dimension d. Setting

o) = | v

we have that

(4.5.5)

(4.5.6)
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and, by (4.5.6), we have
o(t) < ~CV2M§ (1) + Co(t),

which gives that ¢ vanishes in a finite time. Repeating this argument in any direction and using
that {w > 0} = Q, we obtain that € is bounded. O

4.6. Subsolutions for spectral functionals with perimeter penalization
In this section we consider subsolutions for functionals of the form
F(Q) = F(M(Q), ..., A\(Q) +mP(Q), (4.6.1)

where m > 0, Ap(Q) := M\, (Io) is the kth eigenvalue of the Laplacian on Q with zero boundary
conditions a.e. outside , F' : R¥ — R is a given function and P(Q) is the perimeter of the
measurable set () in sense of De Giorgi. Since the perimeter is not an increasing functional
with respect to the set inclusion, defining the subsolution using quasi-open or measurable sets
is not equivalent. In this section, we choose to work with measurable sets, since in the shape
optimization problems concerning the perimeter the existence results are easier to state in the
class of measurable sets than in the class of quasi-open sets. Thus, we have

DEFINITION 4.6.1. We say that the measurable set € is a local subsolution for the functional

F, if Q has finite measure and for each measurable w C Q such that d.(Iq,1,) < €, we have
F(Q) < F(w).

As in the previous sections, we have

THEOREM 4.6.2. Suppose that the measurable set € is a local subsolution for the functional
F from (4.6.1), where I : R* — R is locally Lipschitz continuous. Then § is a local subsolution
for the functional E(Q) + mP(Q).

PROOF. See the proof of Theorem 4.4.1. O

As one may expect, all the subsolutions for functionals of the form F, with locally Lipschitz
F', are bounded sets. Indeed, we have the following:

_ LEMMA 4.6.3. Suppose that the measurable set Q C R is a subsolution for the functional
E(Q)4+mP(Q). Then Q is a bounded set.

PROOF. We reason as in Lemma 4.5.3. For each t € R, we set
Ht:{IERd:l‘lzt}, Hj:{xERd:x1>t}, Ht_:{xERd::z1<t}. (4.6.2)
We prove that there is some ¢ € R such that ]Ht+ N | = 0. For sake of simplicity, set w := wq
and M = ||w|/p~. By Lemma 3.7.2 and the subminimality of {2, we have

1/+ \Vw|?dz +m(P(Q HY) — HTH(H N Q) < VoM

wd?-[dl—F/ wdzr, (4.6.3)
2 H; Hy

Hf
for every t € R. Using again the boundedness of w, we get

m(P(Q, HY) — P(H,", Q) < V2M**H1IY(H,n Q) + M|Q N Hf|. (4.6.4)
On the other hand, by the isoperimetric inequality, for almost every ¢ we have

QN HF T < CuP(QNHFY) = Cy (”Hd‘l(Ht nQ)+ P(Q, Hj)) (4.6.5)
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Putting together (4.6.4) and (4.6.5) we obtain
QN Hf T <0 (Hd—l(Hij) + yantﬂ), (4.6.6)

where C is some constant depending on the dimension d, the constant m and the norm M.
Setting ¢(t) = |2N H, |, we have that ¢(t) — 0 ast — +oo and ¢'(t) = —HI"1(H;N). Chosing
T = T(2) such that

d—1

Cio(t) < 00T V=T,

equation (4.6.6) gives
o) < —2016(0)' V! Vi T,

which implies that ¢(¢) vanishes for some ¢ € R. Repeating this argument in any direction, we
obtain that €2 is bounded. O

4.7. Subsolutions for spectral-energy functionals

In this section we consider subsolutions for the functional, defined on the family of quasi-
open sets in R?,

F(Q) = FOu(Q), ..., Mepn(Q)) — En(9), (4.7.1)

where F : RF — R is a given function, p is a capacitary measure such that wy, € L'(R%) and we
use the notation

/\k#(Q) = )‘k(u V IQ).
For f € LP(R?), where p € [2, 00], we set

1 1
Emf(Q):min{2/Rd\Vu|2dx+Q/Rduzd,u—/Rdufdx: ueH;mﬂg(Q)},

1
ie. B, () = —3 /Rd fwy, r.odr, where the function w,, rq is the solution of the equation

~Aw+pw=f in H,NH;Q), weH,NH;).

In order to simplify the notation, we set E, () := E, 1(£2).
Since the above functionals are defined with respect to the measure p, without any restriction
on the quasi-open sets €, the definition of local subsolution depends on the measure .

DEFINITION 4.7.1. We say that the quasi-open set Q C R% is a subsolution for the functional
F, locally with respect to the measure u € ML _(R?), if there is an & > 0 such that

cap

F(Q2) < F(w), for every quasi-open set w C §  such that dy(uV I, 1V Ig) < €.

THEOREM 4.7.2. Suppose that v is a capacitary measure such that w, € LY(RY) and let
Q C R? be a quasi-open set, local subsolution for F as in (4.7.1) with respect to . If F: R¥ — R
is locally Lipschitz, then Q is a local subsolution for the functional E, §(Q) — E, (), where
f = cwy, for some constant ¢ > 0 depending on pu and F'.

PRroOF. The claim follows from Lemma 3.7.6, by the argument as in Theorem 4.4.1. g

In the rest of this subsection we prove that the local subsolutions for the functionals of
the form (4.7.1) are bounded sets. We need the following comparison principle ”at infinity” for
solutions of PDEs involving capacitary measures.
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LEMMA 4.7.3. Consider a capacitary measure of finite torsion pu € Mg;p(Rd). Suppose that
u € H}L s a solution of

—Au+pu=f in H;, ueHi,
where f € LY(RY) N L>®(R?) and lim f(x) = 0. Then, there is some R > 0, large enough, such
T—00
that u < w, on R\ Bg.

PROOF. Set v = u — w,. We will prove that the set {v > 0} is bounded. Taking v instead
of v and pV Iy,~0y instead of u, we note that it is sufficient to restrict our attention to the case
v >0 on RY. We will prove the Lemma in four steps.

Step 1. There are constants Rg > 0, Cq > 0 and § > 0 such that

1
e
</Rd v2¢2(1+5)> < Cy /Rd |V|?v? dz, Yo € WOI’OO(BIC{O). (4.7.2)
For any ¢ € W1®(R%), we have that vp? € H}L and so we may use it as a test function in
_ - 1 1
—Av+pv=f-1 in Hp veH,,

obtaining the identity

/ IV (pv)|? dx —I—/ v dy = / |V|?v? da +/ vp?(f — 1) de, Vo € WHe(RY).
Rd R4 R4 Rd

(4.7.3)
Let Ry > 0 be large enough such that 1 — f > ﬁ. Then for any ¢ € Wol’oo(]Rd \ Bg,), we use
the Holder, Young and the Sobolev’s inequalities together with (4.7.3) to obtain

d+2 a=2 _4
2 2d+8 d+4 2d d+4 9 d+4
v atz dx < (pv)a-2 dz v dx
R4 R4 Rd

d—2
d 2d d 4
<2 4 S 24
—d+4(/Rd(‘p”) x) MY L

(4.7.4)

<Ci [ Vol da,
]Rd

where Cy is a dimensional constant.

Step 2. There is some Ry > 0 such that the function M(r) := ][ v2 dH is decreasing
0B
and convexr on the interval (Ry,+00). We first note that, for R > 0 large enough, Av >

(1 — f)Xgo>0} > 0 as an element of H~(B%). Since A(v?) = 20Av 4 2|Vv|?, we get that the

2

function U := v? is subharmonic on R? \ Br. Now, the formal derivation of the mean M gives

M'(r) = ][ v VU dH,
0B,



4.7. SUBSOLUTIONS FOR SPECTRAL-ENERGY FUNCTIONALS 155

where v, is the external normal to 0B,. Let Ry > 0 be such that 1 > f on R \ Bg,. Then for
any R} <r < R < 400 we have

dwd(Rd—lM’(R) — rd_lM’(T)) = /

0BRr

= / AUdz > 0.
BRQ\BRl

If we have that M'(r) > 0 for some r > Ry, then M'(R) > 0 for each R > r and so M is
increasing on [r,+00), which is a contradiction with the fact that v (and so, M) vanishes at
infinity. Thus, M'(r) <0, for all r € (R, +00) and so for every Ry < r < R < 400, we have

R©Y(M'(R) — M'(r)) > R*”'M'(R) — v ' M'(r) > 0,

I/R'VUde_l—/ v - VU dH?
OB,

which proves that M’(r) is also increasing.

Step 3. There are constants Ro >0, C' >0 and 0 < 0 < 1/(d — 1) such that the mean value
function M (r) satisfies the differential inequality

d—1 —
M(r) < C(r|M'(r)| + M(r)) 2 °|M(r)[=5°0, Vr € (Ry,+00). (4.7.5)
We first test the inequality (4.7.2) with radial functions of the form ¢(x) = ¢(|z|), where
-R

¢(r) =0, for r <R, o(r) = TE(R) , for R<r < R+¢e(R), o(r) =1, forr > R+e(R),

where R > 0 is large enough and £(R) > 0 is a given constant. As a consequence, we obtain
/ r M (r) dr < Cye(R)2 / r M (r) dr. (4.7.6)

R+e(R) R

By Step 2, we have that for R large enough:

e M is monotone, i.e. M(r) < M(R) for r > R;
e M is convex M(r) > M'(R)(r — R) + M(R) for r > R.

We now consider take e(R) = %%, i.e. 2¢(R) is exactly the distance between (R,0) and
)

the intersection point of the z-axis with the line tangent to the graph of M in (R, M(R)) (see
Figure 4.1). With this choice of ¢(R) we estimate both sides of (4.7.6), obtaining

d—1

(R+e(R)) ™ (1M(R)5(R)) e Ca(R+e(R)™"

e(R)2M(R), (4.7.7)

which, after substituting ¢(R) with %% gives (4.7.5).
Step 4. Fach non-negative (differentiable a.e.) function M (r), which vanishes at infinity
and satisfies the inequality (4.7.5) for some 6 > 0 small enough, has compact support.

Let r € (Rg,+00), where Ry is as in Step 3. We have two cases:
)/ (Gl L N )
(a) I r|M'(r)] > M(r), then M(r)<Cir =z |M'(r)| "2;

(B) I r[M(r)| < M(r), then M(r) < CylM'(r))**3(1-5%).

Choosing § small enough, we get that in both cases M satisfies the differential inequality
M(r)'=% < —Cro2 M (r), (4.7.8)
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y b

e(R)

MER) |

M(r)

—~

R R+¢(R) r

FIGURE 4.1. We estimate the integral ngFa(R) M(r)dr by the area of the rec-
tangle on the right, while for the integral |’ 1;::( R) M (r) dr is bounded from below
by the area of the triangle on the right.

for appropriate constants C' > 0 and 0 < d1,d2 < 1. After integration, we have
' — "l > M () (4.7.9)
for some constants C’, C” > 0, which concludes the proof. O

Below, we give an alternative and shorter proof of Lemma 4.7.3 which uses the notion of a
viscosity solution.

ALTERNATIVE PROOF OF LEMMA 4.7.3. Set v = u—wj,. We will prove that the set {v > 0}
is bounded. Taking v™ instead of v and u V It~y instead of p, we note that it is sufficient to
restrict our attention to the case v > 0 on R?. We now prove that if v € H'(R?) is a nonnegative
function such that

—Av+puv=f—1 in H}L, UGHi, (4.7.10)

where € ML (R?), f € L®(R?) and lim f(z) =0, then {v > 0} is bounded.

z|—00
We first prove that there is some RL > 0 large enough such that the function v satisfies
the inequality Av > 1/2 on R?\ Bpg, in viscosity sense, i.e. for each x € R?\ By, and each
@ € O®(RY), satisfying v < ¢ and ¢(x) = v(x), we have that Ap(z) > 1/2.
Suppose that ¢ € C*®(R%) is such that v < ¢, () = v(z) and Ap(z) < 1/2 —e. By
modifying ¢ and considering £/2 instead of &, we may suppose that, for 6 > 0 small enough,
{v+0 > ¢} C B, and Ap < 1/2 — ¢ on the set {v 4+ > ¢}. Now taking (v — ¢+ 0)* € H},
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as a test function in (4.7.10), we get that

/(f—l)(v—<p+6)+da;: VU'V(U—Q0+5)+CZ.%'+/ v(v—@+0)" du
R4

R4 R4

> [ Vo -V(—9¢+9)Tdx
Rd

— —/Rd(fu—gp—i—é)+A<pdx

> <_;+E>/Rd(v_90+5)+d$’

which gives a contradiction, once we choose Ry > 0 large enough such that f < 1/4 on R%\ B R -

For r € (Ry,+00), we consider the function M (r) = supyg v. Then M : (Rp,+00) — R
satisfies the inequality

" d—1 / 1 . . .
M"(r) + TM (r) > 2 in viscosity sense. (4.7.11)

Indeed, let r € (Rp, +00) and ¢ € C*°(R) be such that ¢(r) = M(r) and ¢ > M. Then, taking
a point xg € 0B, such that v(x) = M (r) (which exists due to the upper semi-continuity of v)
and the function ¢(z) := ¢(|x|), we have that ¢ € C®(R?), (o) = v(r) and ¢ > v, which
implies Ap > 1/2 and so (4.7.11) holds.

There is a constant 9 > 0, depending on Ry, the dimension d and ||v|/ze, such that the
function ¢ € C*°(R), which solves

d—1 1
S+ T =2 6(Re) = 0Ro+ 20) = 2l (4712
changes sign on the interval (Ry, Ro + 9). We set
to=sup{t: {M >¢+t}#0} >0.

Since M is upper semi-continuous, there is some r € (Ry, Ry + o) such that M (r) = ¢(r) + to
and M < ¢ + to, which is a contradiction with (4.7.11). O

In order to prove the boundedness of the local subsolutions for functionals of the form
E; — Ey, we will need the notion of (A — p)-harmonic function.

DEFINITION 4.7.4. Let u be a capacitary measure on R? such that w, € L*(R?) and let
Bgr C R? be a given ball. For every u € H}L we will denote with h,, the solution of the problem

min{/ |Vv|2dx+/B vdp: ve H., u—veﬂg(BR)}. (4.7.13)
T R

We will refer to hy, as the (A — p)-harmonic function on Br with boundary data u on OBR.

REMARK 4.7.5. Properties of the (A — p)-harmonic functions.
e (Uniqueness). By the strict convexity of the functional in (4.7.13), we have that the
problem (4.7.13) has a unique minimizer, i.e. h,, is uniquely determined;
o (First variation). Calculating the first variation of the functional from (4.7.13), we
have
Vhy - V) dz +/ hytpdp =0, Vi € H) N Hy(Bg), (4.7.14)
Rd R4
and conversely, if the function h, € H i satisfies (4.7.14), then it minimizes (4.7.13);
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e (Comparison principle). If u,w € H}L are two functions such that w > v on 0Bpg, then
hy < hy. Indeed, using h, V hy, € H ; and hy A hy € H ; to test the minimality of h,,
and h,, respectively, we get

/ !th|2dx—|—/ hidu:/ |Vhw|2dx+/ hZ dp,
{hu>hw} {hu>hw} {hu>hw} {hu>hw}

which implies that hy, A hy, is also minimizer of (4.7.13) and so, hy A hy = hy,.

LEMMA 4.7.6. Suppose that p is a capacitary measure such that w, € LY(R%) and let the
quasi-open set @ C R be a local subsolution for the functional E, () — E,(Q2), where f is
a bounded measurable function vanishing at infinity, i.e. Rlim HfHLoo(Blcz) = 0. Then Q is

—+00

bounded.

PRrooOF. Without loss of generality, we may suppose that u > Io. Let, for generic quasi-
open set w C R R, : L®(R?Y) — L'(RY) be the resolvent operator associating to a function
f € L*®(R%) the solution Wy, fw- The subminimality of €2 with respect to w C Q

Eur(Q) = Eu(Q) < By () = Eu(w),

can be stated in terms of Rq and R, as follows:

[ (o)~ fRa(P) ds < [ (Ru() = FR(1)) do (4.7.15)
R4 R4

Moreover, by considering f/2 instead of f, we can suppose that the above inequality is strict,
when w # (.

We now show that choosing w = 2 N Bp, for some R large enough, we can obtain equality
in (4.7.15). Indeed, we have

02 [ ((Ra) = Ru1) - £(Ralf) - Rul1)) o
> [ ((Ra) = Ru0) = (Ra 1= 1) = Rullf <)) o
= [ ((Ra(0) = Ra(0) = (Rollf1=) = Roll =) o

+/ (Ro(1) = Ro(|lfllz=f)) dz
-

R

> [ ((Ralv) = Rolv) = (Ra(lfll) = Ra(1 7= )) o

where the last inequality holds for R > 0 large enough and is due to Lemma 4.7.3. We now set
for simplicity w,u € H ﬁ to be respectively the solutions of the equations

—Aw+pw=1 1in Hi and — Au+ pu=|fllg=f in H,i
Thus, the functions
hw=Rqa(1) = R,(1) € H,  and  hy=Ra(|fllz=f) = Ru(|flrf),

are (A — p)-harmonic on the ball Br. By the comparison principle, since w > u on dBpg, we
have that hy, > hy in Bg. Thus, for R large enough and w = Q2 N Br, we have an equality in
(4.7.15) which gives that 2 = QN Bgr and so 2 is bounded. O
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COROLLARY 4.7.7. Suppose that j1 is a capacitary measure such that w, € LY (R and let
Q C R? be a quasi-open set, local subsolution for F as in (4.7.1) with respect to p. If F: R¥ - R
1s locally Lipschitz, then §2 is a bounded set.

PrOOF. In view of Theorem 4.7.2 and Lemma 4.7.6, we have only to note that w,(z) — 0
as |x| — +oo. This fact was proved in [22] (see also [15] for a more precise account on the decay
of w,) and we reproduce here the argument for the sake of completeness. Suppose, by absurd
that there is some 6 > 0 and a sequence z,, € R? such that |z,| — co and wy(x,) > 6. Up to
extracting a subsequence, we can suppose that |z, — x,,| > 24, for each pair of indices n # m.
62 — |z — zn)?

2d

52
— <
wy () 57 = %Bg(%) wy, de,

and so, considering ¢ < 1, we obtain

4]
§|Bg\ §/ wy dx, Vn € N,
Bs(zn)

Since the function w,(z) — is subharmonic, we have that

which is a contradiction with the integrability of w,,. O






CHAPTER 5

Shape supersolutions and quasi-minimizers

5.1. Introduction and motivation

In this chapter we consider measurable sets Q@ C R?, which are optimal for some given shape
functional F, with respect to external perturbations, i.e.

F(Q) < F(Q), for every measurable set Q' D Q. (5.1.1)

As in the previous chapter, we will try to recover some information on the set 2 starting
from (5.1.1).

We start by a few examples which will help us establish some intuition on what to expect
from the subsolutions of the energy and spectral functionals. To deal with these examples, we
consider the following classical Lemma due to Alt and Caffarelli.

LEMMA 5.1.1. Suppose that D C R% is a given open set and that u € H} (D) is a non-negative
function such that

/ Va2 dz +m|{u > 0}] < / Voldz+ml{v> 0}, VoeHVD), v>u, (51.2)
D D

for some m > 0. Then the set Q = {u > 0} is open. Moreover, if there is a function f € L>°(D)
such that
—Au=f in Q, u € Hy(Q),

then u s locally Lipschitz continuous in D.

PROOF. Let B,(xg) C D be a given ball. Without loss of generality we can suppose that
xo = 0. Let v € H'(B,) solve the problem

min{/ |Vo|*dx: v € HY(B,), v>wuin B,, v=uon 837}.
Rd
Setting & = 1p,v + 1peu € HJ(D) and using (5.1.2), we have
ml{u> 0} U B,| —m|{u > 0}| 2/ |Vu|2da:—/ Vil de
Rd Rd
) (5.1.3)
> 91 {u=0}n B, <][ ud?—[d_1> :
r 9B,

where ¢, is a dimensional constant and the last inequality is due to (4.3.74) from Lemma 4.3.20.
Thus, we have that |B, N {u = 0}| > 0 implies

][ uwdH < mCyr, (5.1.4)
0B

and so, after integration
][ udr < mCyr, (5.1.5)
B

161
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where Cy is a dimensional constant. We now recall that for quasi-every zg € R%, we have

u(zg) = lim udx. (5.1.6)

r—0t By (z0)

Setting u = 0 on the set, where (5.1.6) does not hold, we have that for each zy € {u > 0}
(5.1.6) holds. Now if u(xg) > 0, then for some r > 0 small enough (5.1.5) does not hold and so
|B(0) N {u = 0}| = 0. Now for v € H*(B,(x)) as above, we have

0 :/ |Vu|2 dac—/ |Vv|2d:E :/ \V(U—U)Pdiﬂa
B (o) B (x0) Br (o)

and so u = v on B, (zg). Since v is superharmonic, we obtain that u > 0 on B, (z¢) which gives
that €2 is open.

We now set Dg := {x € D : dist(z,0D) > R}. For fixed R > 0, we prove that |Vul| €
L*°(Dpg). Suppose that xop € Dr N Q. If dist(xo, 0) > R/4, then by the gradient estimate (see
Lemma 5.2.3), we have

Ca
Vu(zo)| < Ca(1 + R £l + /' wd.
Rd+1 BR(a:o)

If dist(xo,0f2) < R/4, then let r = dist(xp, ) = |xo — y|, for some y € J. Again by the

gradient estimate

Cq
Vo) < Calt + )l + gy [ wa
r (20

Cq
< Ca(1+ 72| fll e + / wdz
By ()

< Ca(1+72)| fllze + Cam,
which concludes the proof. O

REMARK 5.1.2. We note that if D = R?, then we have that w is Lipschitz continuous on the
whole RY.

We start with an example where this notion plays a fundamental role. For f € LP(R%), we

recall the notation )
= / |Vu]2d:n—/ ufdz, (5.1.7)

for the functional J; : H'(R?) N LY (RY) — R. If p € [2, +00] and |Q| < 400, we define the
energy Ey(2) as

E¢+ () :uellr}lll(lg Ji(u) = —/ fwyqdx, (5.1.8)

where wy o is the solution of
~Awpo=f in Q  wpg€ Hj(Q),
which, in the case f = 1, we denote with wgq.

PROPOSITION 5.1.3. Suppose that D C R? is a given open set and that the quasi-open set
Q c R? is a solution of the problem

mln{Ef( )+1Q: QcQcD, Q quasz'—open}, (5.1.9)

where f € L®(R%Y) N L2(RY) is a given nonnegative function. Then Q is an open set and the
function wyq is locally Lipschitz continuous on D.
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Proor. We set for simplicity that w := wy o and we will prove that w satisfies the conditions
of Lemma 5.1.1. Let v € H}(D) be such that v > w. Then, we have

1
2/ ]Vw|2dac—/wfdx+|{w>0}\—Ef(Q)+\Q]
D D

< Ef({v > 0}) + [{v > 0}

1
g/ ]Vv|2d:c—/vfda:+]{v>0}|
2Jp D

1
g/ |Vv|2dx—/wfdx+|{v>0}|,
2Jp D
which finally gives (5.1.2). O

PROPOSITION 5.1.4. Suppose that D C R¢ is a given open set and that the quasi-open set
Q c R? is a solution of the problem

min {)\1(?2) +1Q: QcQcD, quasz'—open}. (5.1.10)

Then § is an open set and the first eigenfunction u € H}(Q) is locally Lipschitz continuous on
D.

PRrOOF. We suppose that « is non-negative and normalized in L?. We note that we have
Q = {u>0}. Let v € H}(D) be such that v > u. Then, we have

/D Va2 de + |{u > 0} = M (Q) + Q] < M({v > 0}) + |{v > 0}]

Jp V| da
- [pvPde
which gives (5.1.2). O

o> 0}l < [ [VoPde+ (o> 0)],
D

REMARK 5.1.5. We note that in the propositions 5.1.3 and 5.1.4, we used only the optimality
of € with respect to perturbations of the form Q = QU B, (). Thus, the same result holds for
quasi-open sets €2, which are supersolutions for E¢(2) + |Q| and are such that {w;q > 0} = €.
We also note that this last equality, which is trivial if €2 is open, might need special attention if
() is only quasi-open. In fact on quasi-open sets the strong maximum principle is known to hold
only for functions f uniformly bounded from below by a positive constant on €.

REMARK 5.1.6. We note that in the proofs of Proposition 5.1.3 and Proposition 5.1.4 we
used the following two facts:

e The functionals Ey + |- | and A\; + | - | are energy functional, i.e. they can be written
as minima of functionals on H{ (D). For example, the optimal set () is given by Q =
{w # 0}, where w solves the variational problem

min{;/Rd\Vw\de—/Rdwfdx—i—\{waéO}\: we H'(RY). (5.1.11)

Thus, we can restrict our attention to the functional space H{ (D) instead to the family
of quasi-open sets. We note also that this is not a property that all functionals have. The
Dirichlet eigenvalues, for example, are defined through a min-max procedure, involving
a whole k-dimensional subspace of H'(RY). This fact considerably complicates the
analysis and will be one of the central arguments of this chapter.
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e The second fact that was fundamental for our argument was the positivity of the state
functions w and u. In fact, we were not able to reproduce Lemma 4.3.20 in the case
when u changes sign. This obstacle was overcome by Briancon, Hayouni and Pierre in
[17]. We will report their proof in Section 5.3 in the framework of quasi-minimizers.

In what follows we obtain the results from Propositions 5.1.3 and 5.1.4 for various functionals
of spectral or energy type with penalizations with measure or perimeter. Of main interest will
be the case when D = R?, in which we expect the state functions to be globally Lipschitz.

5.2. Preliminary results

In this section we threat some preliminary results, which are crucial in the study of the
regularity of the supersolutions. The results from Subsection 5.2.1 are mainly from [17], while
the gradient estimate is classical and we report it here for convenience of the reader.

5.2.1. Pointwise definition of the solutions of PDEs on quasi-open sets. Let f €
L*(R%) and let 2 be a quasi-open set of finite measure. Consider the solution u of the equation

—Au=f in Q,  u€c H}Q). (5.2.1)

Then the positive and the negative part uy = max{u,0} and u_ = max{—u,0} are solutions
respectively of the equations

—Auy =f in {u>0}, uy € Hy ({u > 0}),
(5.2.2)
—Au_=—f in {u<0}, u_ € Hj({u < 0}).

Thus, by Lemma 3.4.20 the operators
Auy+ f:H'@RY) R and  Au_ — f: H(RY) =R,
are positive and correspond to a Radon capacitary measures, which we denote with
u1 = Auy + f and po = Au_ — f.
Moreover, if f € LP(R?) for some p € (d/2,4+oc], then:

(1) By Lemma 3.4.5, u € L>°(R?) and

C _
d pufummr?/d p,

o < ——m ——

(2) By Theorem 3.4.22, every point € R? is a Lebesgue point for uy, u_ and u.

uy(x) = lim uy dH! and u_(x) = lim u_ dHL.
r—0 9B, (x) r—0 9B, (x)

5.2.2. Gradient estimate for Sobolev functions with L°° Laplacian.

LEMMA 5.2.1. Suppose that u is a bounded harmonic function on the ball B, C R%. Then,
its gradient in the ball B, /5 can be estimated as follows:

2d

IVullLe s, o) < —llull oo (s,)-
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ou
PROOF. Let us set u; := Ere Then u; is harmonic in B, and so the mean value property
Ti
holds for any = € B, :

24 g1 2d
ui(x) = ui(y) dy = i uy; dH < —Jul|Loo(B,)-
By a(@) Wdr'™ JoB, a(x) "

LEMMA 5.2.2. (see [75, Chapter 9]) Consider the function T': R? x R — R defined as

1 .
— gloglx—yl, if d =2,
Ty = 1 2—-d
—_— |z — d> 2.

If f € L*°(By), then the function u : B, — R, defined as

u(x) = / P(z,y)f () dy.

r

has the following properties:

(a) w € H*(B,) and Au = f almost everywhere in B,

(b) u € CH, for any a € (0,1),

(c) llullLee(s,) < Cor I flloe(s,),

(d) Vullreo(s,) < C1||fllLoo(B,), where Co and Cy are constants depending only on the dimen-
sion d.

LEMMA 5.2.3. Suppose that u € H'(B,) satisfies the equation!
—Au=f in B,

for some function f € L>°(B;). Then we can estimate the gradient in the ball B, 5 as follows:

2d
IVull (B, ) < Call fllLe(s,) + THUHLOO(BT)-

PROOF. Let uy be the Newton potential from Lemma 5.2.2 and let up, = u — uy. Then uy,
is harmonic in B, and we have

IVull oo, ) < [Vunllze(s,,,) + IVunllL=(s, )

2d
< Cillfllzee(s,) + 7HuhHLo<>(B,.)

2d 2d

< Cillfllpe(B,) + 7“UHL<>°(BT) + —lun|lp=(B,)

.
2d
< (C1 +2dCo) || fl| oo B,y + 7”“||L°°(Br)>
where Cy and C7 are the constants from Lemma 5.2.2. O

COROLLARY 5.2.4. Suppose that Q C R% is an open set and suppose that u € H(Q) is a
non-negative function satisfying

—Au=f in Q, u € Hi(Q),

INote that no boundary values are imposed.
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where f € L (RY). Suppose that there are constants C > 0 and ro > 0 such that

][ uwdr < Cr, Vrg € 00, VO < r <rg.
Br(xO)

Then w is Lipschitz continuous on R®. In particular, on the set
Q= {zeQ: dist(z,00)} <ro/4,

we have the estimate
IVl (o) < Ca((@+ )l +C).

Proor. We will prove that |Vu| € L>(Q). We first note that for every 2o € R? and every
r > 0, we have
r’ 1
[ull oo (B, (z0)) < 2dHfHL + 5 B,] udx. (5.2.3)

B2'r $0)
Indeed, since Au + || f||z~ > 0 on R¢, we have that the function
2 2
e — |z — a1
— — oo
v ule) — | o200

is sub-harmonic for every 1 € B, (xg), and so

1
HfHL + udz.
’B ’ Bay(z0)

( ) < r? 1
U\r1) s — >~
2d |B,| BTW 2d

Suppose now that xzo € Q. If dist(zg,dQ) > r¢/4, then by Lemma 5.2.3 we have
[Vul(zo) < Ca(llfllze + 75 el s, o)

<Ca(+ I+t [ wda)
BT0/4(IO)

< Ca 1+ Dl + 75~ ulza).
If r := dist(zg, 00) < 19/4, we set y € 9 to be such that |y — xg| = r and thus we have

IVul(z0) < Calllfllzee + 7 Hullpoo Br/4(:c0)))

(

( (Aol + 7t /BT/Q(xo)de)
Cd( L+ )| fllze +7~% /Br(y)de>

(«

< Ca((@+73) I fllz= + ).
g

5.2.3. Monotonicity formula. In this last preliminary subsection we restate the Caffarelli-
Jerison-Kénig monotonicity formula in the case —Au = f.

THEOREM 5.2.5. Let Q C R? be a quasi-open set of finite measure, f € L™(Q) and u €
H(By) be the solution in Q of the equation

—Au=f in Q u € H}(Q). (5.2.4)
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Setting u™ = sup{u,0} and u~ = sup{—u,0}, there is a dimensional constant Cy such that for
each 0 <r <1/2

ut(z))? u (z)]?
(5 ) Trla) (5 [ el a) <cu(ie+ [war) <on G29)

where Chy = Cl| 1|2 (1 + |Q\‘%‘4).
Proor. We apply Theorem 4.3.7 to

+

uy = ||| u and  uz = || fllzeu”,

and substituting in (4.3.25) we obtain the first inequality in (5.2.5). The second one follows,
using the equation (5.2.4):

lulf2 < CalP || Vull?. = CdIQIM/qu da < Cal Q2| f ool 2 (5.2.6)

g

5.3. Lipschitz continuity of energy quasi-minimizers

Consider a function

1 if d=2
feLP(RY, where pe {( 2,d+oo], l ’ (5.3.1)
(49, too], if d >3,
and the functional
/ 1
Ji H'RHYNLPRY) =R,  Jp(u):= 2/ \Vul|? d — / uf da, (5.3.2)
R4 R4

where p’ = p%l'

The classical elliptic regularity theory studies the properties of the minimizers of J; in the
Sobolev space H& (Q), where 2 is a given fixed open set, usually bounded and regular. In this
section we will study the regularity properties of the functions that minimize J; in the whole
space HY(RY) N L (R%), up to a volume term Cr?. In analogy with the situation arising in
the theory of functions of bounded variation and the Mumford-Shah functional (see for instance
[5] and [67]) we call these functions quasi-minimizers. Most of the theory in this section was
exposed in [92] and also in [28], where it was applied to the problem of the regularity of the

optimal sets for the kth Dirichlet Eigenvalues. Precisely we have the following definition.

DEFINITION 5.3.1. We say that u is a quasi-minimizer for the functional Jy if there are
positive constants rg > 0 and Cy > 0 such that

Jr(u) < Jp(u+ @) + Cor?,  for every 1€ (0,m9), =z € R?

and € HY(B(z0)). (5:33)

REMARK 5.3.2. We note that the restriction r < rg can be removed from the quasi-
minimality condition (5.3.3), up to changing the constant Cy with Co = Co + .J r(u)rg®. Nev-
ertheless, when we consider sequences of quasi-minimizers with possibly different constants rg
and Cj it is more convenient to work with the pair (rg, Cp), since it is possible that one of the
two constants (in our case ry) degenerates, while the other remains controllable.

We also introduce the following more general notion of an a-quasi-minimizer.
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DEFINITION 5.3.3. Let o € (d—1,d] be fized and f € LP(RY) and p be as in (5.3.1). We say
that u is an a-quasi-minimizer for the functional Jy, defined in (5.3.2), if there are positive
constants ry > 0 and Cy > 0 such that

Jr(u) < Jp(u+ @)+ Cor®, for every r e (0,79), xg€ R4

5.3.4
and ¢ € H} (B, (0)). ( )
REMARK 5.3.4. From now on the term quasi-minimizer will refer to the case a = d.

REMARK 5.3.5. We note that since 7o < 400 and ¢ € H}(By,(z0)), then ¢ € L¥' (RY) and
so the function v := u + ¢ is a possible test function for the quasi-optimality of « in the domain
of the functional Jy.

REMARK 5.3.6. The function u € H'(RY)NLY (R?) is an a-quasi-minimizer for the functional
Jy, if and only if,

1
[{Au+ f, )| < 2/}1@ Vo2 dz + Cor®, Vr € (0,7), Yo € R, Yo € HE (B (o)),
where with Au+ f : H'(RY) N LP (RY) — R we denote the functional
(Au+ f, @) = / (=Vu-Vo+ fo)ds, Vee H' (R n LY (RY).
Rd

In the following two elementary lemmas we give two more equivalent ways to state the
quasi-minimality of w.

LEMMA 5.3.7. Let a € (d —1,d] be given and f € LP(R?) and p be as in (5.3.1). Then, for
u e H'(RY) N LY (RY), the following conditions are equivalent:

(i) w is an a-quasi-minimizer, i.e. there are constants ro > 0 and Cy > 0 such that u satisfies

1
[{Au+ f, )| < 2/Rd |V<p\2d93+C’ora, for every ¥r € (0,79), x¢€R?
wnd o€ HY(B, (1))

(5.3.5)

(ii) There are constants r1 > 0, C; > 0 and 01 € (0,+00] such that u satisfies the condition

1
[{Au+ f, @) < 2/]Rd Vo2 de + Cir®,  for every r € (0,r1), x€R?

(5.3.6)
and ¢ € H}(Br(z)) s.t. ||Vl < 1

(iii) There are constants ro > 0 and Co > 0 such that u satisfies

[(Bu+ f )] < Cor™2|[ V|2, for every Vr e (0,r2), a € R (5.3.7)
and 1 € H}(B.()). e
Moreover,
(1) If u satisfies (ii) with 1, C1 and 01, then it satisfies (iii) with r9 = min {rl, (5%/&} and
1
CQ - 5 + Cl.

1
(2) If u satisfies (i) with o and Ca, then it satisfies (i) with 7o = r2 and Cy = 5022
(8) If u satisfies (i) with r1 and Cy, then it satisfies (i) with rg = min {7’1,5%/0‘} and

- bbver)’
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PRrROOF. We first prove the implication (%)= (i7i) and claim (7). Without loss of generality
we set £ = 0. We define

o 1
ro := min {7“1,5%/ } and Cy = 3 + 1.

For given r € (0,72) and ¢ € H}(B,) we consider the function ¢ = ro‘/2||V¢||221w.
By the choice of ¢ and 12, we have
¢ € HY(B,) and V|2 =r/? < 7“3/2 < d1.
Now testing (5.3.6) with ¢ we get
a/2
IVl 2
that is, we proved (5.4.15) and also claim (7).

We now prove the implication ()= (i) and claim (2). Indeed, for every v € H(B,(z)), it
is sufficient to use (%ii) and the mean geometric-mean quadratic inequality obtaining

1 - (0% «
(Bt £0)] < 5 IVelgE [ 190 do+ Ot = Core,

1 o2
(Au+ )] < Cor®?|| V|12 < 2/ Vol + 2ot
Rd
The last claim (3) is a consequence of (1) and (2). 0

In the particular case when f = 0, the functional Jy reduces simply to the Dirichlet integral
Jo: HY(RY) = R, Jo(u) = / |Vu|® d.
Rd

Under an integrability condition on a generic function f, the analysis of the quasi-minimizers of
Jt can be reduced to the study of the quasi-minimizers for the Dirichlet integral Jy, which may
significantly simplify the analysis. Indeed, we have the following result.

LEMMA 5.3.8. Suppose that f € LP(R?) for p € [d,+oc]. Then every quasi-minimizer

u € HY RN LY (RY) for the functional J¢, satisfying (5.4.15) with constants Cy > 0 and rg > 0
(and o = d) is also quasi-minimizer for Jy satisfying

(Au, )| < C3r®2|| V| 12, for every e (0,73), xo€ RY

and v € HY(B,(x0)), (5.3.8)

where C3 = Cy + C’dHf\|Lpr;7d/p and Cy is a dimensional constant.

ProoF. Without loss of generality we fix 29 = 0. Let r < ro and ¢ € H}(B,). Then we
have

/R2 fde < [9llll f g,z < M (B ™27V g2 f L, | o2

_ — 1-d
< M (B T2Vl g2 e, e < (A(B)TY2) flory )29 2,
1
where — = = — —. O
q p
In what follows we study the regularity properties of the quasi-minimizers. The two main
results of this section concern the solutions of u of elliptic equations of the form

—Au=f in Q u € H}(Q),

N |

which are quasi-minimizers for the Dirichket integral Jy. Our main results are:
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e the Lipschitz continuity of the quasi-minimizers;
e in the case f = Au, the Lipschitz constant of u does not depend on the local geometry
of the domain 2, but only on the eigenvalue A and the measure ||

LEMMA 5.3.9. Suppose that u € H'(RY) satisfies the following conditions:

(a) The positive and negative parts u™ and u~ of u are such that Au™+1>0 and Au™+1>0
as functionals on H'(RY) N L' (RY).

(b) w is an a-quasi-minimizer of the Dirichlet integral Jy, for some a € (d — 1,d].

Then the function u : R — R is continuous.

ProoF. Consider a sequence z,, € R? converging to some zo, € R? Without loss of
generality we suppose To, = 0 and we set d,, := |z, and &, := 0, 'z,,.
We will prove in a series of claims that u(z;,) converges to u(0). We consider the blow-up
sequence
u, € HY(R?), Up () = u(dpx).
e The blow-up sequence is uniformly bounded.
By condition (a) we have that u is bounded, precisely for every zo € R? and every
R > 0 the subharmonicity of the function x +— u(x) + % gives the estimate

R? 2R ullpgey  R?
u(xg §][ ud:c+§(][ uzdac) + —< — 4 —,

taking the minimum in R € (0, +00), we get

4
[ull Lo < Callul| 73, (5.3.9)
where Cy is a dimensional constant. Since ||uy ||z = ||u|/z, for every n € N, the same

inequality holds for w,, and so, u, is a uniformly bounded sequence in L>°(R%).

e On a fized ball B C R the blow-up sequence is asymptotically close in H'(BR) to a
sequence of harmonic functions with the same boundary values on OBR.
For all R > 1 and n € N, we consider the harmonic function vg, defined by

Avrn, =0 in Bgs,, VRn =u on ODBgs,,
and its rescaling vy, (z) 1= vr,(dpx) satisfying
Av, =0 in Bp, Up = Uy, on OBRg.
For n € N large enough we can test the quasi-minimality of v with ¢ = v —vg, €

Hg(Bgrs, ), obtaining

/ IV (t, — v3) 2 dr = 53;d/ V(1= v da
Br

Brs,

= §2d Vu-V(u—vpgy,)de

Brsy,

1/2
<Ccs? ( /B IV (u—vrn)l? dw) (Ro)™"?
Ron,

1/2
< CRI25P2 (/ IV (u — vn)|2da:> ,
Br
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where 8 := 2 —d+ o > 1. Thus, for n large enough, we have
/ IV (un — va)[? dz < C*RO0,
Br
where C is the constant from (5.3.8).

o Up to a subsequence, u, converges in Hl(BR/Q) to a harmonic function ur € Hl(BR/Q).
By the previous point, it is sufficient to prove the claim for the sequence v,. Since
Up, = U, on 0BR, we have the following equi-boundedness estimate:

_4
lonll oo (Br) < Callull 72

On the other hand, the gradient estimate (Lemma 5.2.1) gives

4d
HV%HLOO(B3R/4) < f”vnHL“(BR)a

4d 4d\? )
IV (Oz;vn) [ o0 (B ) < E||8€Eivn||L°°(BgR/4) < 7 lvnllzoo(Bry, Vi=1,...,d.
Thus on Bpg/ the sequences v, and Vv, are equi-bounded and equi-continuous. By
the Ascoli-Arzela Theorem v,, converges in C' norm, up to a subsequence, to a func-

tionup € HI(BR/Q). Moreover, being vr a weak limit of v, in HI(BR/Q), it is harmonic.

e The limit ug is constant on Bpjy. More precisely, ur = u(0).

Repeating the argument from the previous point for every R € N and taking a
diagonal sequence, we have that up to a subsequence u, converges in H'(B R/2), for
every R > 0. Moreover, for every S > R, we have that vg = vg on Bg/y. Thus,
there is a harmonic function v € HZIOC(Rd) such that v = vg on Bg/s, for every R > 0.
By construction v is bounded and so, it is a constant. On the other hand, being 0 a
Lebesgue point for u, we have

][ unda::][ udr —— u(0),
B, Bs, n—00

and so v = u(0) on R

e Ifu(0) >0, then u,, — 0 uniformly on Bg/s, for every R > 0.
Consider the function u, € H'(Bg) satisfying

~Au, =62 in Bp, Up =1u, on OBg.

By the Poisson formula we have the following expression for ,:

RQ N 2 — 5721 R2 _ 2
|‘T| / Uy, (y)d dedfl(y) + ( |‘73| )
dwaR  Jop, |z — y| 2d

Un(x) = , for every € Bgp,

and so, on Bg s we have

[tnll Lo (Bry5) < 2° ][ uy dHT + 62R? —— 0,

8BR n—oo

where the right-hand side converges to zero, since u,, converges to zero strongly in
H'(Bgr). Now the claim follows since by (a) and the maximum principle u,, < u, on
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Br.

If u(0) > 0, then u(0) < lilginfu(xn).
For 0 < s < 1 small enough consider the test function ¢5 € C2°(Bas(zy,)) such that

C
0<¢s<1 on R% ¢ps=1 on Bs(zy) and IVosllre < ?d,

for a dimensional constant Cy. By the quasi-optimality of u, there is a constant C' > 0
such that we have

[(Au, 6)| < O Ve[ 2 < O
Since 1 := Au™ + 1 and o := Au~ + 1 are positive measures, we have

,UI(BS(xn)) S <Nla ¢s> = <:u1 — M2, ¢s> + <:u27 ¢8> S Csa_l + NZ(BQS(xn))a

and for every s <1,

AuT (By(,)) < (C 4 wq)s® 1 + Au™ (Bas(y)). (5.3.10)
Multiplying both sides of (5.3.10) by s'~¢ and integrating for s € (0, d,), we obtain
1
][ ut dHI —ut () < = ][ u” dHIT 4+ 5o,
OBs,, (wn) 2 JoBas, (en)

and for the rescaling u,(x) = u(d,z), we get

_ 1 _ _ _
][ (G ) M = (€n) < 5 ][ Uy () MO+ COR L
831 832
Up to a subsequence, we may assume that &, — € in RE. Thus u, (&, + -) converges
to the constant u(0) strongly in H'(Bj). Together with the uniform convergence of u,,
to zero, we get

u(0) < liminfu™(z,). (5.3.11)

n—oo
If u(0) > 0, then u(0) = lim wu(zy).
n—oo
Indeed, by (a) we have the upper semi-continuity inequality

u(0) > limsupu™(x,),
n—oo

which together with (5.3.11) gives
u(0) = lim u't(z,).

n—oo

Now since u,, converges uniformly to zero we have that u™ (z,) converges to zero and
S0

u(0) = lim u(x,),

n—o0

which concludes the proof.

LEMMA 5.3.10. Suppose that v € H'(R?) satisfies the following conditions:

(a) The positive and negative parts ut and u™ of u are such that Au™+1>0 and Au™+1>0

as functionals on H'(RY) N L1 (RY).

(b) u is an a-quasi-minimizer of the Dirichlet integral Jy, for some a € (d — 1,d].
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Then we have the inequality

|Alul|(B,(z0)) < CrP,  for every r <, (5.3.12)
d—2
where § = % and the constant C is given by
teige ke

and ro = r2/4, where ro > 0 and Cy > 0 are the quasi-minimality constants from (5.4.15)
corresponding to the case f = 0.

ProoFr. Without loss of generality we can suppose z¢p = 0. Again, we divide the proof in a
series of claims.
For every r > 0, we consider the functions v;- € HY(B,), v;, € HY(B,) and v, := v, — v,
where
AvE=0 in B, vE=ur on 0B,

e For every r > 0 we have the bound

(7w —onar) ™ (f, o —wopar) " < cat i) s

+

s

/|eri|2d:c§/ |Vut|? d,
s BT

Since the functions vy~ minimize the Dirichlet integral we have

and so, we obtain

/ IV(u® — o) 2 de = Vut - V(ut —vh)de < 2/ \Vut|? de.
B, B, By

By the monotonicity formula (5.2.5) applied to u™ and u~, we get

<]{3 IV (ut — vh)? dm) <][B V(u~ — v,,)]zda;)

<4 <][ |Vu+|2d$> <][ |Vu_|2 dx) <Cy (1 + ||uH%2) ,
By

T

for a dimensional constant Cy > 0, which gives (5.3.14).

e Ifry and Cy are the a-quasi-minimality constants from (5.4.15) corresponding to the
case f =0, then for every r < ry we have

/ IV(u — o) da +/ IV(u™ —v) > de < (03 + Cy(1 + \|u||‘j2)rg—“)ra. (5.3.15)
s BT

By the a-quasi-minimality of u, for every r < ro we have

| W oPs -

1/2
Vu - V(u—v)de < Cor®/? </ |V(u—vr)]2da:) ,
B, B .

and thus we obtain

/ V(u—v,)Pde < C3r%, Vr<r. (5.3.16)
B,
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Now using the inequality

/ |V (ut — v,fr)|2d:1: +/ IV(u~ — vr_)|2d1:
B, B,

< [ W ([ v vmr?)m (f we - v;w)l/z,

together with (5.3.14) and (5.3.16), we obtain (5.3.15).

e For every r > 0 we have

/ (ot ) d / (o5 —u) dysa

where we denote with 1 and pg the positive measures

_|_

_16
< ((122 + Card™ 4 Cyl|u| 557 rg-a> e, (5.3.17)

p1 = Aut +1 and o = Au~ + 1.

Indeed, by the definition of 11 and v;", we have

[ @ —uyd

/ ( — V(v —ut) - Vut + (vf — u+)> dx

< / (]V(zﬁ — o)+ vt - uﬂ) dx
B
< (022 + Cdrg_a + CdHuH%oorg_a) r®,
which together with (5.3.9) gives (5.3.17).

, (r* = Jz)*
e Setting ¢ (x) := g for every r > 0, we have

/ ¢rdpr < Cy([lu™||pee +73)re. (5.3.18)
Rd
Indeed, using the definition g3 = Au™ + 1 and the equation —Ag¢, = 1 on B,, we have

[ = [ (=269 -6+ 62)da
Rd

Rd
- / (= 2V(ut ) - Vo, + 2ut |V, [ + ¢2) d
Rd

= / (—2uT o, +2ut |V, > + ¢7) do
R4

2 2 .2
:/ (2 <|fl|2_702d|x‘> u++¢%> dr < Cy(|lut| e + r?)rt2.

Applying the above inequality to ¢, and using the fact that ¢o,. > 3r2/(2d) on B,, we

get
2 37’2
¢2r dx 2 ¢27‘¢7‘ dz Z a9 (br dx,
Rd Rd 2d Rd

which gives (5.3.18).
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o Conclusion.
Let r > 0 be fixed and ¢, be as above. Setting U := u™ — v} — ¢,, we have

AU =y on B,  UecH}(B,).
Thus U <0 on B, and for every z € B, /; we have

1 3r/4 1

3r/4
s'741 (By(2)) ds / s'TIAU(Bs(2)) ds
0

:TW

= ][ UdHT —U(2)
8B3T/4(Z)

< v (2) — ut () + 60 (2).

dwa Jo

Integrating both sides on B, /, with respect to the measure dj;(z), we obtain

Cr® > / (v (2) = u™(2) + ¢p(2)) dpa(2)
By

1 3r/4 Ld
> [ dm) [ B ) ds
dwq JB, ,, 0
1 3r/4 d
> [ dm) [ B ds
Wd Br'/4 T/Q
1 3r/4 1d
> _— dulz/ S (B, 1) ds
B [, ) [ s
_ 2
> Cfd’r2 d [,ul(Br/Zl)] )
16
where C = ( C2 + C’drgfa + Cyllul|3* rga> . Now since the analogous inequality holds

for po, we have

|Alul|(By) < |AuT|(By) + |Au”|(B;)

at+d—2

< pi(By) + | Byl + p2(Br) + B < Cr 2

LEMMA 5.3.11. Suppose that v € H'(R?) satisfies the following conditions:

(a) The positive and negative parts ut and u~ of u are such that Aut+1>0 and Au~™+1>0
as functionals on H'(RY) N L' (RY).
(b) w is an a-quasi-minimizer of the Dirichlet integral Jy, for some a € (d — 1,d].

Then for every xo € R? such that u(xg) = 0 we have
1l Loo (B, (2)) < CrlfdiTa, for every r < rg/8, (5.3.19)

where
d—a

2 d-a
C =0y (Cg +1+ réJr 2 ull 7ty 2 ) ) (5.3.20)

and r2 and Cy are the a-quasi-minimality constants from (5.4.15) with f = 0.
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ProOF. Without loss of generality we assume xg = 0. By condition (a) the function v(z) =

|u|(z) — M is subharmonic on B, and v = |u| on dBy,. Thus, by the Poisson formula we
have

472

oo (s )<od][ | MO +
8B2’I‘ d

2r
<o [ s apBas +
0

4r2

<Cd/ Csl=HB g+ = y

< Cy(C+rf7) 2P,
where 8 = W. O

THEOREM 5.3.12. Suppose that u € H'(R?) satisfies the following conditions:
(a) u has support of finite measure: |{u # 0}| < +oo and there is a function f € L®(R?) such
that u satisfies the equation
—Au=f in {u#0}, u € Hi({u # 0});
(b) u is a quasi-minimizer for the Dirichlet integral Jy.
Then w is Lipschitz continuous on R and the Lipschitz constant depends on the dimension d,
the norm || f|| e, the measure |{u # 0}| and the a-minimality constant Co and ra from (5.4.15).

PROOF. We first note that the function @ = || f|| & u satisfies the conditions of Lemma 5.4.3

and that ¥ satisfies (5.4.15) with Cy = | £l 74 Ca. Thus @ is continuous and the set Q := {u # 0}
is open.

For every r > 0, denote with €2, C € the neighbourhood of the boundary 92 in €2
Q, = {CL‘ € Q: dist(z,00) < r}.

We now set rg = r/16 and we consider two cases:

e Suppose that zg € ,,. Let yo € 92 be such that R := |zg — yo| = dist(xp, 0). We
use the gradient estimate (Lemma 5.2.3) on the ball Br(xo):

~ 2d, 2d . ~
|Vu(zg)| < Cq+ EHUHLOO(BR(:BO)) <Cy+ EHUHL"O(BzR(yo)) < Cyq+ 2dC, (5.3.21)

where C is the constant from Lemma 5.3.11 with 52 in pace of Cs.
o Let zp € O\ Q,,. Again by the gradient estimate we have

|Vu(zo)| < Cq + —||uHLoo < Cy (1 + 7 1]qu+4> . (5.3.22)

By (5.3.21) and (5.3.22), we obtain that u is Lipschitz and
V|| < Cy <1 + 75 1||u||d+4 + 6) : (5.3.23)
U

REMARK 5.3.13. We note that the Lipschitz constant of u depends on the range of the
radii » € (0,72), for which the quasi-minimality of u holds. In particular the right-hand side of
(5.3.23) explodes as 13 — 0.
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THEOREM 5.3.14. Suppose that u € H'(R?) satisfies the following conditions:

(a) u is normalized in L*(RY) and its support has finite measure:
/Rduzdw—l and {u # 0}] < 4o0;
(b) there is a positive real number A > 0 such that u is an eigenfunction on its support, i.e. u
satisfies the equation
—Au =M in {u#0}, u € HY ({u # 0});

(c) u is a quasi-minimizer for the Dirichlet integral Jy.

Then w is Lipschitz continuous on R® and
IVull e < Ca(1+ Co) (1 4+ A7) (1+ |{u # 0}|/4), (5.3.24)

where Cyq is a dimensional constant and Co is the quasi-minimality constant from (5.4.15) with
a=d and f =0.

PROOF. We first notice that u is bounded. More precisely, Proposition 3.4.37 provides us
with the estimate
ull Lo < CaX®¥™. (5.3.25)

By Theorem 5.3.12 with f = Au, we already have that u is Lipschitz continuous and so, it
remains to estimate the Lipschitz constant of w.
Let Q = {u # 0} and let 79 = r2/16. We denote with €, the set

Q= {x € Q: dist(z,00) < 7“0}.
For every x € €2, we consider the projection yo € 92 such that R := dist(xg, Q) = |zo — yo.
As in Theorem 5.3.12 we use the gradient estimate (Lemma 5.2.3)
2d
[Vu(zo)| - < CaMllullz= + llull L~ (B (o))
d+a  2d
< Cax' T+ e (Bantn) (5.3.26)
d+a d+a d+2
<O+ Cu (Co AT (L r) + 07,

d+4\ —1

where the last inequality is due to Lemma 5.3.11 applied to (C’d)\T) U.

Consider the function P € C*°(Q) defined by
P = |Vu|* + M — 222 ||ul? «w,
where w is the solution of the equation
~Aw=1 in Q  we HI(Q).
Calculating the Laplacian of P in {2 we have
AP = (2[Hess(u)]> — 2A\|Vul?) + (2A|Vul* — 20%u?) + 2)%||uf|i~ >0 in €,

where we used the notation
d

[Hess(u)]? == Z

,7=1

2
0%u

(9:62‘6.%']'
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Since P is subharmonic in €2 the maximum is achieved in a neighbourhood of the boundary 912,
i.e

sup P(z) = sup P(x).
e Z‘GQTO

Let now z € €. Then there is z € {2, such that
Vu(@)| < P(x) — Mu(2)? + 20 |u][f o w(z)
< P(x) + 20 |Jul| feo [l 2o
< P(xo) + 2X°||uf foc ]| 1o

< [Vu(@o)® + Mlul[Foe + 2X%[|ullZoe ]| e

d+8

2
<y (02 FANT (14 r0) + Adff) + O+ o0,

where we used (5.3.26), (5.3.25) and the inequality ||w||z-~ < Cq|Q|*/?. Now by choosing ro < 1
and algebra we obtain (5.3.24). O

5.4. Shape quasi-minimizers for Dirichlet eigenvalues

In this section we discuss the regularity of the eigenfunctions on sets which are minimal
with respect to a given (spectral) shape functional.

Let A be the family of all Lebesque measurable sets in R® of finite measure. endowed with
the equivalence relation Q ~ Q if |QAQ| = 0.

DEFINITION 5.4.1. Let F : A — R be a given functional. We say that the measurable set
Q € A is a shape quasi-minimizer for the functional F, if there exist constants A > 0 and rg > 0
such that for each ball B.(x) C RY with radius less than ro we have

F(Q) < F(Q)+A|B,|, forevery Qe A suchthat QAQ C B(z).

REMARK 5.4.2. If the functional F is non increasing with respect to inclusions, then €2 is a
shape quasi-minimizer, if and only if,

F(Q) < F(Q U Br(x)) + A|B,|, forevery z¢€ RY and 7 < ro.

The shape quasi-minimality of a set 2 with respect to a functional F can usually be trans-
lated into a quasi-minimality condition on the state function (or functions) of F on Q. In the
following example we discuss the case when F is simply the Dirichlet Energy.

EXAMPLE 5.4.3. Suppose that 2 € A is a shape quasi-minimizer for the Dirichlet Energy

Ei(Q) = min{Jl(u) VRS ﬁ&(Q)}, where Jj(u) := ;/d \Vu|2dx—/dud:r.
R R

Then, for every Q such that QAQ C B,(z), we have
Ji(wa) = B1(Q) < Br(®) + AIB,| < Jiwg + @) + Al B,
for every ¢ € Hi(B,), where the energy function wgq is the solution of
—Awg=1 in Q  wgeHNQ).

Thus the function wq is a quasi-minimizer for the functional J; and so, by Theorem 5.3.12, the
it is Lipschitz continuous on R,
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In what follows we will study the case when the cost functional F depends on the spectrum
of the Dirichlet Laplacian. This analysis in this case is more involved since the eigenfunctions
are not defined through a single state function but are variationally characterized by a min-max
procedure involving an entire linear subspace of the Sobolev space.

We recall that there are two ways to define the Dirichlet eigenvalues on a set Q C RY of
finite measure. The results in this section are valid in both cases. Precisely the kth eigenvalue
of the Dirichlet Laplacian on € is defined as:

Vu|? dz
Ae(©) = min  max ‘[]Rdyiz‘
Sk ueS\{0}  Jpa u? dx
where the minimum is defined over one of the following classes:

e all k-dimensional subspaces S; of the Sobolev-like space ﬁ&(Q), which we recall is
defined as

Hy() = {ue H'®RY : [{u0\0} =0};
e all k-dimensional subspaces S, of the Sobolev space H}(f2), which we recall is defined
as
HH Q) = {u e HY(RY) : cap({u # 0} \ Q)}.
In the lemma below, we shall assume that € is a generic set of finite measure and [ > 1 is
such that
Ak(Q) == )\kfl+1(Q) > )\k,l(Q). (5.4.1)
Let ug—i41, ..., ug bel normalized orthogonal eigenfunctions corresponding to k-th eigenfunction
of the Dirichlet Laplacian on §2.
The following notation is used: given a vector o = (Qg_i41,...,0) € R! and functions
Ugy 415 - - - up € HY(RY), we denote with u, € H'(R?) the linear combination

Ug = Q|41 Uk—(+1 + - + QpUE. (5.4.2)
LEMMA 5.4.4. Let Q C RY be a set of finite measure and | > 1 is such that (5.4.1) holds.
Then for every € > 0 there is a constant rog > 0 such that:
e for every r € (0,70) and every xy € R,
o for every l-uple of functions vi_ii1,...,v5 € HY(By(x0)) with |[Vv;|lz2 <1, for j =
kE—1+1,...,k,
there is a unit vector (ak—l+17 e ak) € R such that
Jga IV (ua +va)|? dz + & [pa [Vva|* do
Jga |ta + vo|?dx — € [pa |[Vvo|? da
where ug_jy1,...,ur are l orthonormal eigenfunctions corresponding to the multiple eigenvalue
A:(Q) and the linear combinations w, and v, are defined as in (5.4.2).

Me(QU Br(0)) < ; (5.4.3)

ProoF. Without loss of generality, we can suppose xg = 0. Let € > 0 be fixed. For sake of
simplicity we will choose from the start rg < 1.
By the definition of the kth Dirichlet eigenvalue, we have that

[ |Vul?dz
)\k(Q U B?") < max {W

The maximum is attained for a linear combination

DU € span({u, ..., Ug—1, (Ug—1+1 + Vk—141)y ey (U + vk)>} :

aquy + oo+ gy F g1 (Uk—141 + Vk—141) + oo + ag(ug + vg). (5.4.4)
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e For g small enough, the vector (ag_i11, ..., cu) € Rl is non-zero.
Indeed, suppose that rg > 0 is such that

Me1(Q) < M(QU By (1)),  for every o € R%

The existence of such an rg can be proved by contradiction, since for every sequecne
z,, € R? the condition r,, — 0 implies that Q U B, (x,) y-converges to €. For every
0 < r <rgwe have

)\k—l(Q) < )\k(Q U Bro (xo)) < )\k(Q U Br(Io)).

Now if, by absurd ag_;41 = --- = ag = 0, then oz% + -+ a%_l # 0 and

V(iaiur + ... + ap_jug_g 2dx
Jpalarur + ... + ap_qup—y)? dx ad 4 +ad >

which proves the claim. We now can suppose that the vector (ag—_i11, ..., ax) is unitary,
i.e. we have

2 2 2
/Rduada::ozklﬂ—l—---+ak:1.

° Ifa%+--'+ai7l>0, then

Mot (D2 +2t [, Vu- Vo, ds + V(g + v4)|? dx
QU < oy M2 Ji 1V 2t + 02

u : 5.4.5
- t@g 12 +2thT UV, d:c+fRd |te + vo|? dx ( )

where

u = (alul + ...+ ak_luk_l).
oz% + ...+ Oéi,l

Indeed the function u € ﬁ&(ﬂ), defined as above, satisfies

/ wrdr =1 and / \Vau|? dz < Xp_1(2).
Rd Rd
Consequently, we have
v tu)|*d
M\ (U B,) < sup Jua |V(ua + va + UQ)‘ ’
teR fRd [Ua + Vo + tul? dz
B t? Joa |Vul? do + 2t [p0 Vu- V(ug 4+ vo) dz + [ |V(ua + v4)|? da
_igﬂg t2 fRd u2 d:c+2tfRdu(ua+'va)d:c+f|ua+va|2dx
N1 (Q) + 2t [ Vu - Vg do + [pa|[V(ua + va)[*ds
< sup 3 = 3 .
teR t +2thT UV o d:c+fRd |te + v |? dz

For simplicity, from now on we will use the notation \; := X;(Q), for every j.
Moreover, we define the modulus of continuity

f(r) ;== max max / \Vu,|? dr,
20€R? J=1,--k J B, (z0)

and we note that @ is an increasing function in 7, vanishing in zero.
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e Using the notation
. 2 __ 2
A= / |V (ug + vo)|” dz and B:= / |ua + vo | de,
Rd Rd

we have the inequalities

Ak — 2¢/0(r0) < A < M 4 24/0(r0) + 1, (5.4.6)
1—Cyrg < B <1+ Cyro, (5.4.7)
for a dimensional constant Cy.
Indeed, (5.4.6) follows since /Rd |Vva|?de < 1 and

1/2 12
< / Vol do </ \Vva|2dx> < Jaro).
Bry Rd

For (5.4.7) we notice that since v, € H}(B,,) we have

/ v2dr < Cdrg/ |Vva|? de < Cgrd,
R4 R4

1/2 1/2
/ UV, dx| < </ ui d:U) (/ vz d:v) < Cyro.
R R4 R4

e Using the notation

Vu, - Vo, dx
]Rd

and

a:= Vu - Vv, dzx and b:= / UV, dz,
R4 R4

and applying the Cauchy-Schwartz inequality we have the estimates

1/2 1/2
myg(/ |vuy2dg;> </ |V'va|2dx> < \O(ro)||[Vval L2, (5.4.8)
Brg By

1/2 1/2
|b] < (/ u? d:c) (/ v2 dx) < Cyrol|Voa| 2. (5.4.9)

Consider the rational function F': R — R defined as
t2\g—s + 2at + A
F(t) = k—1 + 2at +
t2 420t + B
e For rg small enough the mazximum of F is attained on R and is one of the solutions of

the equation
t2(Me—ib — a) + t(M\p— B — A) + (aB — bA) = 0.
Indeed, we have that lim;_, o F(t) = limy—,_o F(t) = Ag,—;. On the other hand, for
small enough rg we have
A A —24/0
F(O):izk—(’fo)>)\k_
B 1+ Cyrg

Now the claim follows by computing the derivative of F'.

l:
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e For every € > 0 there is rg > 0 such that for every r < rq and every v, € H&(BT) with
IVvallr2 <1, the mazimum of F' is achieved on the interval (—¢||Vva|r2,€||Vvalr2).
We consider two cases:
Case 1. Suppose that A\_ib — a # 0.

Then, we have that max F(t) = max {F(t1), F(t2)}, where t; and ty are given by
€

A= BE (A= XN B)? — 4(Mg—ib — a)(aB — bA)
o 2(/\k7lb - a)

L A- )\k_lB) (1 . \/1  4(Nib — a)(aB - bA))

t1,2

C2(\b—a (A—X\g_1.B)?
By (5.4.6), (5.4.7), (5.4.8) and (5.4.9), we can choose ¢ small enough, in order to have
4(/\kflb — a)(aB — bA) 1
(A — X\, B)?

5"
Since the function x +— /1 — x is bounded and 1-Lipschitz on the interval (—%, %), we
have the estimate

it = A= NeaB <1 _ \/1 4()\k—lb—a)(aB—bA)>'

2(Ag—1b — a) (A= N B)?
| A= 2B | [4Qkib — a)(aB ~ bA)
~2(A\k—ib — a) (A=A B)?
(5.4.10)
=2

aB — bA < 2|a]B +1b|A
A— e Bl — A-M\_ B

VO(r)(1+C C 12

(7"0)( + dTO) + Cgro </ |V’Ua|2d$> < EHV’UQHLQ,
M = 24/0(r0) — A—1(1 + Caro) \Jrd

for ryp small enough, where the last inequality is obtained using (5.4.6), (5.4.7), (5.4.8)

and (5.4.9). On the other hand, for 3, we have

1|A— X B A— X B
1A= AeB A-XB (5.4.11)
2 )\k,lb—a /\k,lb—a

Note that if we choose ry such that [t1| < |t2|, then the maximum cannot be
attained in to. In fact, (A\x_;b — a)te > 0 and so, in t9, the derivative F’ changes sign
from negative to positive, if £ > 0 and from negative to positive, if 5 < 0, which proves
that the maximum is attained in ¢;.

Case 2. Suppose that Ap_1b—a = 0.

Then the maximum of F' is achieved in
_ aB—-bA
M B—A

Using the inequalities (5.4.6), (5.4.7), (5.4.8) and (5.4.9), we get

O(ro)(1 + Cyro) + Caro
Ak — 24/0(r0) — A—i(1 + Cyro)

‘S’MSQ‘

t

1t <

1/2
([, 1wvaz) " < l¥valin
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which concludes the proof of the claim.

e Conclusion. Choosing o such that the maximum of F' is achieved on the interval
(—e||Vval 12, €l|Vval 12), we have

Nt (el Vwallz)? + 2lal (] Vel z2) + A
M(QUB,) < F(t) <
{0 Br) < g P < B — 2Bl (| Vol )

< )\k_l€2||vva||%2 + 26\/%||V’Ua||%2 +4
- B — 2Cd7“0€||vva||i2 7

which, by choosing rg small enough, concludes the proof.

What we will really use is the following corollary, which we state as a separate lemma.
LEMMA 5.4.5. Let Q C R? be a set of finite measure such that M\g(2) > A\,_1(Q). Then for
every € > 0 there is a constant rog > 0 such that:

e for every r € (0,70) and every xy € R,
e for every functions v € H}(B,(z0)) such that ||Vl <1,

we have the estimate

M (QU B, () < Jga IV (ug +0)|*dz + € [a [V|? dz
k " - fRd lug, + v|2 dx — 5fRd |Vo|2dz

(5.4.12)

where uy is a normalized eigenfunction on ), corresponding to the eigenvalue A (2).

REMARK 5.4.6. We note that in Lemma 5.4.5 we do not assume that \;(€2) is simple, but
only that Ag(2) > Ag—1(Q).

REMARK 5.4.7. The constant rg depends on the set € and, in particular, on the gap A\, (Q) —
Ae—1(22). In fact, if the gap vanishes, so does rg.

LEMMA 5.4.8. Let Q C R? be a shape quasi-minimizer for the kth Dirichlet eigenvalue
such that A\ (2) > A\g—1(2). Then every eigenfunction uy, corresponding to the eigenvalue A (€2)
and normalized in L?, is Lipschitz continuous on R% and

Vg2 < Ca(1+ A) (1 + )\k(Q)d“) (1 v \le/d), (5.4.13)
where Cy is a dimensional constant and A is the shape quasi-minimality constant of €.

PROOF. Let uy € ﬁ& (©) be a normalized eigenfunction corresponding to A;x. By the shape
quasi-minimality of 2, we have

Me(Q) < \e(QU B (2)) + Al By. (5.4.14)
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By choosing a radius 79 > 0 small enough, we can apply the estimate (5.4.12) for any v € H{ (B;)
such that | Vv||z2 < 1, obtaining

M) < M(QU By (2)) + AlB,)
- Ja IV (ui, +0)|? dz + € [pa |Vo|* d
T Jpalug o2 de — e [pq V]2 da
< () 4 2 [pa Vug - Vodz + (1 + ) [pa | Vo] da
- 142 [paugvde — e [pq [Vo|? da
< () 4 2 [pa Vug - Vodz + (1 +¢) [pa |Vv]? da
~ 1= 2]ugllpee| Br2Caro|[ Vv 12 — € [pa [VV]? d
- Me(€) + 2 [pa Vug - Vodz + (1 + ) [pa [Vo]? da
- 1 —€|B,| — 2¢ [pa |VV[?2 dz

+ A|B; |

+ A| B |

+A|B,|

+ AlB,|,

where for the last inequality we again choose ry small enough, depending also on the norm
||ug||Loe. Taking the common denominator of the both sides we get

2| Vu, Vods < (A\Bry - )\k(Q)) (1 —|B,| - 25/ \W\?d:c)
R4 R4
+)\k(Q)+(1+E)/ Vol do
Rd
< (A+eX() B + (1+5+2€)\k(§2))/ |Vo|? dz
Rd
< 2A|Br|+2/ |Vo|? di,
R4

for rp small enough. Since the above inequality holds for every v € HJ(B,) with ||[Vv| 2 <1,
by Lemma 5.3.7 uy satisfies the quasi-minimality condition

[(Aug, )] < Cq(A + 1)rd/2HVw||Lz, for every Vr € (0,79), z€R?

ad pe BBy ), MY

where Cy is a dimensional constant and 79 > 0 depends on ). Now the claim follows by Theorem
5.3.14. 0

REMARK 5.4.9. The exponent d+ 1 of A\;(€2) in (5.4.13) is just a rough estimate (for d > 2)
of the exponent of A in (5.3.24). We are only interested in the fact that this exponent is a
dimensional constant.

5.5. Shape supersolutions of spectral functionals

In the previous section we studied the regularity of the state functions of the simplest spectral
functional F(§2) = A\, (Q2) for domains €2 which satisfy some quasi-minimality condition as shapes
in R?. In this setting we were able to give only partial regularity result for the eigenfunctions,
under the additional condition Ag(€2) > Ap—1(£2). In this section we will investigate another
extremality condition on 2, which is stronger than the shape quasi-minimality. As we will
see this time we will obtain the Lipschitz regularity of the state functions without additional
assumptions on the extremal domain 2.

As in the previous section we will denote with A the family of measurable sets in RY.
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DEFINITION 5.5.1. We say that the measurable set Q C R is a shape supersolution for the
functional F : A — R if

F(Q) < F(Q), for all measurable sets QD Q. (5.5.1)

We now list some of the main properties of the shape supersolutions as well as some of the
basic manipulations that we can do with the functional F without violating the superminimality
property of a set €.

e Suppose that €2 is a shape supersolution for the functional 7 + A|-|: A — R. Then
the minimality of {2 can be expressed as

F(Q) < F(Q)+A|Q\ Q|, for all measurable sets VQ D €.

e If the functional F : A — R is non increasing with respect to the inclusion, we have,
by Remark 5.4.2, that every shape supersolution for F 4+ A| - | is also a shape quasi-
minimizer.

e Suppose that € is a shape supersolution for the functional 7 : A — R and that the
functional G : A — R is increasing with respect to the set inclusion, then € is a shape
supersolution for F + G. This property will be used mainly in the following situations

— Adding measure. Suppose that {2 is a shape supersolution for the functional F +
Al-]: A — R and that A’ > A. Then, taking G = (A" — A)|Q)|, we get that 2 is a
shape supersolution also for F + A’| - |.

— Deleting spectral terms. Suppose that €2 is a shape supersolution for the functional
F 4+ Ap. Then, taking G = — g, we get that € is a shape supersolution also for F.

By adding a positive measure term to the functional F one can assure that the inequalities
in (5.5.1) are strict. We state this property in a separate Remark since it will be used several
times in crucial moments.

REMARK 5.5.2. Suppose that F : A — R is a given functional and that the measurable set
Q* C R? is a shape supersolution for F + A|-|. Then for every A’ > A the set Q* is the unique
solution of the shape optimization problem

min {.7:(9) + A'|Q| : Q C R? Lebesgue measurable, € D Q*}

In Lemma 5.4.8 we showed that the kth eigenfunctions of the the shape quasi-minimizers
for A are Lipschitz continuous under the assumption A\g () > A\p_1(€2). In the next Theorem,
we show that for shape supersolutions the later assumption can be dropped.

Throughout this section the kth Dirichlet eigenvalue on a set Q C RY of finite measure will
be defined as

Vul?d
Ap(2) ;== min max M
Sk ueSi\{0}  [pa u?dx

)

where the minimum is over all k-dimensional subspaces Sy, of the Sobolev-like space fIOI(Q)

THEOREM 5.5.3. Let 0* C R? be a bounded shape supersolution for \;, with constant A. Then
there is an eigenfunction ux € HE(Q*), normalized in L* and corresponding to the eigenvalue
e (%), which is Lipschitz continuous on R,
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PrOOF. We first note that if A\g(Q2*) > Ap—1(©2*), then the claim follows by Lemma 5.4.8.
Suppose now that Ag(2*) = Ap—1(Q2*). For every ¢ € (0, 1) consider the problem

min {(1 — M) + N1 (Q) + 200 - QD Q} (5.5.2)

We consider the following two cases:

(i)

(i)

Suppose that there is a sequence €, — 0 and a sequence () of corresponding minimizers
for (5.5.2) such that Ag(Qc,) > M\e—1(€, ). For each n € N, Q. is a shape supersolution
for A, with constant 2(1 —&,) 'A and so, by Lemma 5.4.8, we have that for each n € N
the normalized eigenfunctions uj € H}(9.,), corresponding to Ar(Q,), are Lipschitz
continuous on R%. We will prove that the Lipschitz constant is uniform and then we will
pass to the limit. We first prove that €., ~y-converges to Q* as n — oco. Indeed, by [25,
Proposition 5.12], €2, are all contained in some ball Br with R big enough. Thus, there
is a weak-y-convergent subsequence of €2, and let Q be its limit. Then € is a solution of
the problem

min {Ak(Q) F2A|0/: Q> Q} (5.5.3)

On the other hand, by Remark 5.5.2 we have that Q* is the unique solution of (5.5.3) and
S0, Q = Q*. Since the weak ~-limit Q* satisfies Q* C €, for every n € N, then Q. ~-
converges to *. By the metrizability of the «-convergence, we have that 2* is the ~-limit
of ., as n — 0o. As a consequence, we have that A\ (€, ) — A\p(©2*) and by (5.4.13) we
have that the sequence uj is uniformly Lipschitz.

Then, we can suppose that, up to a subsequence uj} — wu uniformly and weakly in
H}(Bg), for some u € H}(Bg), Lipschitz continuous on R?. By the weak convergence of
ul, we have that for each v € H}(Q*)

Vu-Vudr = lim Vup - Vodr = lim A\g(Qe,) / upvdr = A\ (QF) / v dz.

n—oo Rd Rd

Rd n—oo Rd

By the v-convergence of ()., we have that u € H}(2*) and so u is a k-th eigenfunction of
the Dirichlet Laplacian on €2*.

Suppose that there is some g¢ € (0, 1) such that €., is a solution of (5.5.2) and A\;(€,) =
Ai—1(Qz,). Then, Q, is also a solution of (5.5.3) and, by Remark 5.5.2, Q., = Q*. Thus
we obtain that Q* is a shape supersolution for A\;_; with constant 2, LA. If we have

Ae(F) = Me—1(2F) > Ao (27),
then, we can apply Lemma 5.4.8 obtaining that each eigenfunction corresponding to Ag_1 (£2*)
is Lipschitz continuous on R%. On the other hand, if

Ae(F) = Me—1(2F) = A2 (27),
we consider, for each ¢ € (0,1), the problem

min {(1 — o) Me(Q) + 20 [(1 — &) Ap_1(Q) + eXp_a()] +3A|Q : QO Q} (5.5.4)

One of the following two situations may occur:
(a) There is a sequence €, — 0 and a corresponding sequence {2, of minimizers of (5.5.4)
such that

)\k'*l(Qen) > )\k*2(95n)'
(b) There is some £; € (0,1) and €, , solution of (5.5.4), such that

Ae-1(8,) = Ae—2(€2e, ).
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If the case (a) occurs, then since €., is a shape quasi-minimizer for A\;_1, by Lemma 5.4.8
we obtain the Lipschitz continuity of the eigenfunctions u}_,, corresponding to A;_; on
2.,,. Repeating the argument from (i), we obtain that 2., 7-converges to Q* and that
the sequence of eigenfunctions uj_; € H&(an) uniformly converges to an eigenfunctions
ug—1 € H}(Q*), corresponding to Ap(*) = A\,_1(Q*). Since the Lipschitz constants of
uj_, are uniform, we have the conclusion.

If the case (b) occurs, then reasoning as in the case (i7), we have that Q., = Q*. Indeed,
we have

(1 = €0)Ak(2e,) + c0Ak—1(2%e,) + 3A|L, |

(1= €0)A($2,) + €0 [(1 = £1)Ak—1(9e;) + E1Ak—2(e; )] + 3A[Qe, |
(1 — SO)Ak(Q*) + €o [(1 — 61))\k_1(Q*) + 61)\k_2(Q*)] + 3A’Q*|
(1 — ) Me (%) 4+ e Ap—1(2%) + 3A|Q*|.

(5.5.5)

IRVAN

On the other hand, we supposed that Q* is a solution of (5.5.2) with e = ¢y and so, it is
the unique minimizer of the problem

min {(1 — o) M)+ code1(Q) + 34|10 QD Q} (5.5.6)
Thus, we have Q* = Q.,. We proceed considering, for any ¢ € (0, 1), the problem

min {(1 —e0)Me(2) +eo(l — 1) Ae—1(9)

(5.5.7)
+eer [(1— &) Ak_2(Q) + ehe_s(Q)] +4A|Q] : QO Q}

and repeat the procedure described above. We note that this procedure stops after at most
k iterations. Indeed, if Q* is a supersolution for A; and A\ (Q2*) = --- = A1 (Q*), then we
obtain the result applying Lemma 5.4.8 to A;.

0

As a consequence, we obtain the following result on the optimal set for the kth Dirichlet
eigenvalue.

COROLLARY 5.5.4. Let Q C R be a solution of the problem

min{)\k(Q) . Q C R Q measurable, |Q] = 1}.

Then there exists an eigenfunction uy € ﬁ&(Q), corresponding to the eigenvalue A\ (£2), which
is Lipschitz continuous on RY.

REMARK 5.5.5. We note that Theorem 5.5.3 can be used to obtain information for the
supersolutions of a general functional F'. Indeed, let F' be a functional defined on the family of
sets of finite measure and suppose that there exist non-negative real numbers ¢, k € N, such
that for each couple of sets 2 C Q C R? of finite measure we have

(M (Q) — M(Q) < F(Q) — F(Q).

If Q is a shape supersolution for F'+A|-|, then for any k such that ¢, > 0, there is an eigenfunction
ug € H}(Q), normalized in L? and corresponding to A (€2), which is Lipschitz continuous on R%.
It is enough to note that, whenever ¢, > 0, we have

M () = M(Q) < 1 (F(Q) = F(Q)) < " AIQ\ Q).
The conclusion follows by Theorem 5.5.3.
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In order to prove a regularity result which involves all the eigenfunction corresponding to
the eigenvalues that appear in a bi-Lipschitz functional of the form F (A, (9),..., A, (Q)), we
need the following preliminary result.

LEMMA 5.5.6. Let Q* C R? be a supersolution for the functional Ny + Mpy1 + -+ + Netp
with constant A > 0. Then there are L*-orthonormal eigenfunctions uy, . . . yUk+p € H&(Q*),
corresponding to the eigenvalues A\g(L),. .., Aprp(Q*), which are Lipschitz continuous on RY.

PrROOF. We prove the lemma in two steps.

Step 1. Suppose that A\g(Q*) > A\_1(2*). We first note that, by Lemma 5.4.8, if j €
{k,k+1,...,k + p} is such that A\;(2*) > A\;_1(©*), then any eigenfunction, corresponding
to the eigenvalue A;(Q*), is Lipschitz continuous on R?. Let us now divide the eigenvalues
Ae(2%), ..., Aegp(22¥) into clusters of equal consecutive eigenvalues. There exists k = ki < ko <
-+ < kg < k4 p such that

Nt (7)< Ay () = o = Ay ()
< )\kQ (Q*) = ... = )\k3_1(Q*)
< A () = -+ = Xy (7).

Then, by the above observation, the eigenspaces corresponding to A, (€2%), Ag, (€2%), . .., Apgp(£27)
consist on Lipschitz continuous functions. In particular, there exists a sequence of consecutive
eigenfunctions ug, ..., ug4, satisfying the claim of the lemma.

Step 2. Suppose now that \i(Q*) = Ap_1(2*). For each € € (0,1) we consider the problem

min { > M () + (1= )Ak(Q) + X1 (Q) + 2410 - QF cQcC Rd}. (5.5.8)
j=1

As in Theorem 5.5.3, we have that at least one of the following cases occur:

(i) There is a sequence &, — 0 and a corresponding sequence (2., of minimizers of (5.5.8) such
that, for each n € N,

)\k(an) > Ak—l(ﬂen)-
(ii) There is some g¢ € (0,1) for which there is €2, a solution of (5.5.8) such that

Ak(Q%) = A\p-1 (QEO)‘

In the first case )., is a supersolution to the functional Ay + - - 4+ Ag4, with constant A/(1 —
en). Thus, by Step 1, there are orthonormal eigenfunctions uy, ..., up 4p € H}(9Qe,), which are
Lipschitz continuous on R%. Using the same approximation argument from Theorem 5.5.3, we
obtain the claim. In the second case, reasoning again as in Theorem 5.5.3, we have that €., = Q*
and we have to consider two more cases. If \p_1(22*) > A\x_2(Q2*), we have the claim by Step 1.
If Ap—1(92%) = Ap—2(Q2*), then we consider the problem

min { 3 N (Q) + (1= 20) () + 0 [(1— )M (Q) + eXa ()] + 34|12 : QF C QC Rd},
j=1

and proceed by repeating the argument above, until we obtain the claim or until we have a
functional involving Aq, in which case we apply one more time the result from Step 1. U
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THEOREM 5.5.7. Let F': RP — R be a bi-Lipschitz, increasing function in each variable and
let 0 < k1 < ko < --- < kp be natural numbers. Then for every bounded shape supersolution {*
of the functional

0= F()\kl(Q),...,/\kp(Q))a

there erists a sequence of orthonormal eigenfunctions ug,, ..., ux,, corresponding to the eigen-
values \i; (%), j = 1,...,p, which are Lipschitz continuous on R?. Moreover,

e if for some k; we have A\, (§2*) > A\, —1(Q2"), then the full eigenspace corresponding to
Ak, (%) consists only on Lipschitz functions;

o if A\, () = A, (%), then there exist at least kj — kj—1 + 1 orthonormal Lipschitz
eigenfunctions corresponding to A, ().

PROOF. Let ¢y, ...,¢, € RT be strictly positive real numbers such that for each z = (z;),y =
(yj) € RP, such that z; > y;, Vj € {1,...,p}, we have

F(z) = F(y) > ci(zr —y1) + -+ cpxp — 4p)-

We note that if Q* is a supersolution of F/(Ag,, ..., A, ), then Q* is also a supersolution for the
functional
F= min  ¢;i| (A, + -+ A ),
|:.]€{111p} J:| ( ! p)
and, since minjcgy 1 ¢; > 0, we can assume minjegy 1 ¢ = 1.
Reasoning as in Lemma 5.5.6, we divide the family (g, (2%),..., A, (22%)) into clusters of
equal eigenvalues with consecutive indexes. There exist 1 <141 < iy--- <1is < p— 1 such that

M (V) = 0= Ay, () < Ay 1) (QF) = - = A, (©7)
< )\k(i2+1)(Q*) == )‘1%3 ()
< )\k(is+1)(Q*) == A ()

Since the eigenspaces, corresponding to different clusters, are orthogonal to each other, it is
enough to prove the claim for the functionals defined as the sum of the eigenvalues in each
cluster. In other words, it is sufficient to restrict our attention only to the case when Q* is a
supersolution for the functional F'(Ag,,..., A,) = 25:1 Ak; and is such that

My (2F) = -+ = Mg (). (5.5.9)

Moreover, in this case Q* is also a supersolution (with possibly different constant A) for the sum
of consecutive eigenvalues Z]Zp: k, M- Indeed, it is enough to consider the functional

p kp
F0)= 33 A (9) +0 3 A(9),
j=1

k=k1

. The conclusion then follows by Lemma 5.5.6.

g

1
f itable val fO,eg. 0 = ————
or a suitable value of 0, e.g 30y — I 1)
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5.6. Measurable sets of positive curvature
In this section we study the properties of the shape supersolutions for functionals F :
B(R?) — R of the form
F() =6(92) + P(Q) + ol
where

e G : B(RY) — R is a decreasing (with respect to the set inclusion) functional on the
family B(R?) of Borel measurable sets in R%;
e P is the perimeter in sense of De Giorgi;
e o € R is a given constant.
The results from this section involve only local arguments. Thus, we will prove then for sets

which are shape supersolutions only locally. Most of the results are contained in the papers [59]
and [58].

DEFINITION 5.6.1. Let F : B(RY) — [0,400] be a functional on the family of Borel sets
BRY) on R? and let Q € B(R?Y) be such that F(Q) < 4+oo. We say that:

e ) is a supersolution for F in the set D C R?, if
F(Q) < F(Q), for every Borel set QD QO such that €\ Q C D.

e () is a local supersolution for F, if there is a constant ro > 0 such that € is a
supersolution for F in By, (z) for every ball By, (z) C R

The following simple Remark will play a crucial role in the study of spectral optimization
problems with perimeter constraint.

REMARK 5.6.2. Suppose that  C R? is a (local) subsolution for the functional F = G +
P+ a| - |, where G : B(R?) — R is decreasing with respect to the set inclusion. Then Q is a
(local) supersolution also for P + af - |. For every © D , by the monotonicity of G and the
super-optimality of {2, we have

G(Q) + P(Q) + a|] < G(Q) + P(Q) + ol < G(Q) + P(Q) + |,
which proves that
P(Q) +a|Q < P(Q) +alQ|, forevery QD Q. (5.6.1)
In particular, (5.6.1) holds for the sets €2, which are supersolutions for functionals F of the form
F(Q) = F(A(Q),...,\(Q) + P(Q) + Q]
where F': RF — R is a function on R increasing in each variable.

When we deal with shape optimization problems in a box D, a priori we can only consider
perturbations of a set €2 C D, which remain inside the box. The following lemma allows us to
eliminate this restriction and work with the minimizers as if they are solutions of the problem
in the free case D = R%.

LEMMA 5.6.3. Let Q C D be two Borel sets in R? and let F = P+l - |, where a > 0. If D
is a (local) supersolution for F and ) is a (local) supersolution for F in D, then Q is a (local)
supersolution for F in RY.
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PROOF. Let Q0 O Q. Since D is a supersolution, we get
P(Q;D°) + P(D; Q) + a|QUD| = F(QUD) > F(D) = P(D;Q) + P(D; Q°) + a|D|,
which gives _ _ N
P(D;Q) < P(;D°) + a2\ D. (5.6.2)
On the other hand, we can test the super-optimality of € with QN 7D and then use (5.6.2)
obtaining
F(Q) < F(QND) = P(;D) + P(D; Q) + a|QN D)
< P(Q; D) + P(Q; D°) + |2\ D| 4+ /2N D)
= P(Q) +a|Q| = F(Q).

For the case of local supersolutions, it is enough to consider Q such that Q\ D c Q\ Q C B,(z)
and then use the same argument as above. O

5.6.1. Sets satisfying exterior density estimate. In this subsection we show that the
local shape supersolutions for the functional P + «|{)| satisfy an exterior density estimate and
we deduce some preliminary results based only on this property.

The following lemma is the first step in the analysis of the supersolutions for P + «f - |
and shows that they are in fact open sets. The result is classical (see, for instance, [67], [80,
Theorem 16.14]) and so we only sketch the proof.

LEMMA 5.6.4. Let Q C R? be a local supersolution for the functional F = P + «f - | with
a > 0. Then there exists a positive constant ¢, depending only on the dimension d, such that for
every © € R?, one of the following situations occurs:
(a) there is v > 0 such that |By(x) N Q°| = 0;
(b) there is r1 > 0, depending on the dimension, a and the constant ro from Definition 5.5.1,
such that
|Br(z) N Q°| > ¢|By|, for every r e (0,11).

PRrOOF. Let # € R%. Suppose that there is no r > 0 such that B,(x) C Q. We will prove
that (b) holds. Testing the super-optimality of 2 with the set Q := QU B,(x), for r < rg, we
get that for almost every r € (0, rg),

P(Q, B;(z)) < HT Y (8B, () N Q%) + a|B,(x) N Q°].
Applying the isoperimetric inequality to the set B,(x) \ €2, we obtain
By () \ Q' < Cy (P, By(@) + MO (0B, (2) N )
< 20,H (OB, () 1) + Cual By (@) 01 € (5.6.3)
< 20,H (OB, (z) N O°) + %\BT@;) Qe
for r € (0,71), where r; = min {ro, (w;/dCda)_l}, and Cy > 0 is a dimensional constant (in the

case o = 0, we set r; = 19). Consider the function ¢(r) := |B;(x) \ ©|. Note that ¢(0) = 0 and
#'(r) = HY (OB, (x) N Q) and so, taking ¢ = d(4Cy)~! the estimate (5.6.3) gives

e< 0 (ar)d),

which after integration gives (b). O
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DEFINITION 5.6.5. If Q C R? is a set if finite Lebesque measure and if there is a constant
¢ > 0 such that for every point x € RY one of the conditions (a) and (b), from Lemma 5.6.4,
holds, then we say that ) satisfies an exterior density estimate.

In what follows we will denote with wq the solution of the problem
—Awg =1 in HMQ), wo € HE (D).

We first note that a classical argument provides the continuity of wgq on the sets with exterior
density.

PROPOSITION 5.6.6. Let Q C R? be a set of finite Lebesque measure satisfying an exterior
density estimate. Then there are positive constants C' and B such that, for every zo € R with
the property

|Br(x0) N Q| >0, for every r >0,
we have
||’lUQ”Loo(BT(xO)) < T6||'IUQ”LO<>(Rd), for every 0 <r <ry. (5.6.4)

In particular, if 0 is a perimeter supersolution, then the above conclusion holds.

PROOF. Let g € R? be such that that |B,(xz9) N Q¢ > 0, for every r > 0. Without loss
of generality we can suppose that g = 0. Setting w := wgq, we have that Aw + 1 > 0 in
distributional sense on R¢. Thus, on each ball B,(y) the function

2 2
r—lz -yl
u(z) = w(x) - ————
() = w(e) -~V
is subharmonic and we have the mean value property

72

w(y) < 24 + ]ér(y) w(z) dx. (5.6.5)

Let us define ,, =47". For any y € B, ,,, equation (5.6.5) implies

7,2

wy) < -2 —i-][ w(z)dx
4d B2rn+1(y)

ra QN0 Bar, ()]
< B4 I | peo(,, W)
4d | B, (¥)] nt1(v
(5.6.6)
r2 N B,,.,|
< n 12 sl -
< 2+ (1- Bl ol oo

—2n

—d—
<+ (1-27%) Jullecs,,).

where in the third inequality we have used the inclusion B, , C By, (y) for every y € B, ..

Hence setting
an = |[wllLe(,,),

we have
—n
apt1 < ad +(1— 2_d5)am
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which easily implies a, < Cagd™"™ for some constants 8 and C depending only on é This
gives (5.6.4). O

PROPOSITION 5.6.7. Let Q C R? be a set of finite Lebesque measure satisfying an external
density estimate. Then the set of points of density 1,

- d. 3y 2O B(@)]
Ql._{xeR&}% B0 =1,

is open and ﬁol(Q) = H} (). In particular, if Q is a local supersolution solution for the
functional F = P + al - |, then Q1 is open and H}(Q) = H} ().

PRrROOF. Thanks to Lemma 5.6.4, {2 is an open set. It remains to prove the equality between
the Sobolev spaces. We first recall that we have the equality

H(Q) = Hy({wg > 0}).

We now prove that 7 = {wq > 0} up to a set of zero capacity. Consider a ball B C ;.
By the weak maximum principle, wp < wgq and so

0 C {ZUQ > 0}.

In order to prove the other inclusion, we recall that for every zo € R? we have

wq(zg) = lim wq dzx,
r—0 Bi(z0)
By Proposition 5.6.6, wg = 0 on R%\ Q; which gives the converse inclusion. g

PROPOSITION 5.6.8. Let Q C RY satisfy an exterior density estimate. Then wq : R* — R is
Holder continuous and

wa(z) — wa(y)| < Cle -y’ (5.6.7)

where B is the constant from Proposition 5.6.6.

PRrROOF. Thanks to Proposition (5.6.7), up to a set of capacity zero, we can assume that
is open and that wq is the classical solution, with Dirichlet boundary conditions, of —Awq =1
in Q. Consider two distinct points x,y € R%. In case both x and y belong to Qf, the estimate
(5.6.7) is trivial. Let us assume that z € Q; and let xg € 9 be such that

|z — o] = dist(z, 0).

We distinguish two cases:

e Suppose that y € R? is such that
2|z — y| > dist(z, 98).
Hence x,y € Byj,_y|(70) and by Proposition 5.6.6, we have that
wo(z) < Clz—y|® and wq(y) < Clz —yl°.

Thus we obtain
|wa(x) — wa(y)| < 20|z —y|”. (5.6.8)
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e Assume that y € R? is such that
2|z — y| < dist(z, 02).
Applying Lemma 5.2.3 to wq in Bqjs(z,00,)(z) C {1 we obtain

Callwll oo (B ez 00, (@)

. 1
||VwQ”Loo(Bdist(w,agl)/z(x)) < diSt(:U, o) < Cydist(z, 691)5 , (5.6.9)

which, since 5 < 1, together with our assumption and the mean value formula implies
wa(x) — wa(y)| < Cadist(z,00)° |z —y| < |z —y|”.

O

5.6.2. Mean curvature bounds in viscosity sense. Let Q C R? be an open set with

smooth boundary. In a neighbourhood of a given boundary point z € 02 we can characterize
(up to a coordinate change) 2 as

Q= {(xl,...,xd) ERd: (b(xl,...,.%'d,l) > lEd},

for a smooth function ¢ : R“~! — R. Thus the mean curvature Hq(z) of Q (with respect to the
exterior normal) in a neighbourhood of z is given by

0N dididy
HQ — div n iPjPij 7
<\/1+ V<z>|2> Z < /14 |Vo|? ”zzl (1 + |Vg|2)3/2
and choosing the coordinates z1,...,x4 of x such that |V¢|(x) = 0 we get

d—1
= Zgﬁ“({ﬂ) = Ad*l(ﬁ(aj)'
=1

DEFINITION 5.6.9. For an open set Q C R? and ¢ € R we say that the mean curvature of
09 is bounded from below by c in viscosity sense (Hq > c¢), if for every open set w C
with smooth boundary and every point x € QN dw we have that H,(z) > c.

PROPOSITION 5.6.10. Let Q C R? be an open set of finite measure. If Q is a local superso-
lution for the functional P+ « - |, then Hg > —a in viscosity sense.

PROOF. Let w C 2 be an open set with smooth boundary and let zg € dw N 0. We can
suppose that zo = 0 and that w is locally a supergraph of a smooth function ¢ : R — R such
that ¢(0) = |V¢(0)| = 0. We can now suppose that {0} = dwN I, up to replace w by a smooth
set w C w, which is locally a supergraph of the function a(m) = ¢(x) + |z|*. We consider now
the family of sets w, = —eeyq + w, where eq = (0,...,0,1). By the choice of w, for every r» > 0
one can find g9 > 0 such that

we \ Q Cw: \w C By, for every 0< e < g,

and so one can use the sets 2. = w. U to test the local superminimality of 2. Let d. : w. — R
be the distance function

d.(x) = dist(z, Ow).

For small enough £ we have that d. is smooth in w. N B, up to the boundary dw.. By [67,
Appendix B], we have that H,(0) = H,,_(—ceq) = Ad:(—eey). if, by absurd H,(0) < —«, then
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B.(x0

FIGURE 5.1. Q has mean curvature bounded from below in viscosity sense, but
is not a local supersolution for P + «f - |.

for € small enough we can suppose that Ad; < —a in w. N B, and so, denoting with vq the
exterior normal to a set of finite perimeter €2, we have

—a|we: \ Q| > Adg(z) dx
we\Q2

= / Vd. - v, dHI —/ Vd. - vqdH* ! > P(w.; Q) — P(Qw.),
QNOwe weNON
which implies
P(Q) 4 a|Q] > P(QUuw:) + a|Q Uw,],
thus contradicting the local superoptimality of (2. O

REMARK 5.6.11. The converse implication is in general false. Indeed, the set {2 on Figure
5.1 has mean curvature bounded from below in viscosity sense. On the other hand it is not
a supersolution for P + « - | since adding a ball B, (x) in the boundary point o € 9 is an
operation that decreases the perimeter by a linear term (P(2) — P(QN B,)) ~r.

The following Lemma is a generalization of [59, Lemma 5.3] and was proved in [58]. We
prove that a set €2, which has a bounded from below mean curvature in viscosity sense, has a
distance function function dist(x,2¢) which is super harmonic in € in viscosity sense (see [39]
for a nice account of theory of viscosity solutions). In case 952 is smooth this easily implies that
the mean curvature of 02, computed with respect to the exterior normal, is positive (see for
instance [66, Section 14.6]). A similar observation already appeared in [40], in the study of the
regularity of minimal surfaces, and in [74, 82], in the study of free boundary type problems.

We recall that a continuous function f : Q — R satisfies the inequality Af < a in viscosity
sense on S, if and only if,

Ap(zg) < o, for every xog € Q and ¢ € C°(Q) such that zg is a local minimum for f — .

LEMMA 5.6.12. Suppose that € is an open set such that Hg > —a in viscosity sense. Then
the distance function do(x) = dist(x,00) satisfies Adq < « in viscosity sense.

PROOF. Suppose that ¢ € C2°(Q2) is such that ¢ < dg and suppose that z¢ € € is such that
o(x0) = da(xo). In what follows we set t = p(x), % = {p >t} C {dq >t} and n = ég:zg',

where yo € 0D is chosen such that |xo—yo| = t (see Figure 5.2). We first prove that V(o) = n.
Indeed, on one hand the Lipschitz continuity of dg gives

p(x) = p(xo) < da(x) — da(wo) < |z — o,
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FIGURE 5.2. Testing the viscosity bound Hg > —a with the set {¢ > t}.

and so |V|(zg) < 1. On the other hand, we have

go(xo) — cp(ﬂfo + 571) > dQ(l’O) — dg(l‘o + 5n) =g,

which gives |V|(zg) > g—i(xo) =1.

We now notice that ¢ is concave in the direction of n. Indeed

0? To+en xo —en) — 2p(x
8771(5(330) _ 51_i>%1+ ¢(wo +en) + @(520 ) — 2p(z0)
< lim da(zo + en) + do(zg — en) — 2dq(xo)
T e—0t g2
< lim (t+e)+(t—e)—2t o
T es0t g2

Since |Vo|(xg) = 1, the level set €2; has smooth boundary in a neighbourhood of z¢ and n =
—vq,(2o) is the interior normal at zo € 9. Then we have

2
Apleo) = 28 (wn) — 92 (z0) Hay (a0) < ~Ho (ao).
On the other hand setting w = nt + €, we have w C nt + {dq > t} C Q, yp € Ow and
H,(yo0) = Hq,(x0) > —a, which gives Ap(z9) < o and concludes the proof. O

We are now in position to prove that the energy functions on the sets, which have mean
curvature bounded from below in a viscosity sense, are Lipschitz continuous on R?. In order
to obtain this result, we use the distance function as a barrier (see [66, Chapter 14] for similar
proofs in the smooth case). Since we will apply the result in the study of shape optimization
problems we state it directly for local shape supersolutions  C R? and we note that the main
ingredients of the proof are the continuity of the energy function wq and the fact that Hq is
bounded from below in viscosity sense.

PROPOSITION 5.6.13. Suppose that Q C R is a local supersolution for the functional F =
P+ al-|. Then Q is an open set and the energy function wq is Lipschitz continuous on R? with
a constant depending only on «, the dimension d and the measure |Q].

PROOF. We set for simplicity w = wq. Consider the function

h(t) = Ct — bt'*?  with derivatives h/(t) = C —b(1+60)t’ and R"(t) = —bO(1 + 6)t"~ L.



5.6. MEASURABLE SETS OF POSITIVE CURVATURE 197

In what follows we will show that we can choose the positive positive constants C, b and 6 € (0, 1]
in such a way that the following inequality holds:

wa(z) < h(do(x)) = Cdo(x) — bdg(z)'*?, Vo e (5.6.10)

We first note that on the interval [0, (C'/2b)'/9], the derivative A’ is positive and thus

o\ 1/ c 7o\
() e(G)

is a diffeomorphism. If C, b and 6 are such that

)

O\ _ |/ o\’ _ o/
— | = > > oo d — > > d 5.6.11
3 (5) 2 ez el wd (F)0 2B oo, o)

then h(dg) and h~!(w) are well defined, positive and have the same regularity as do and w.
Suppose that there is € > 0 such that the function w. := (w — &)™ satisfies

we < h(dg) in Q and we(zg) = h(da(zp)), for some xzp € Q. (5.6.12)
Then considering the function u. = h™!(w.), we get
u <dg in and ue(x0) = da(xo).
By Lemma 5.6.12 we have Au.(7¢) < o and |Vue|?(z) = 1 and so
—1 = Aw(xg) = h" (ue(20))[Vue[* (z0) + I (ue(x0)) Au (o)
< —bO(1 4 0)ue(20)?~1 + 1 (ue(z0))x
< —b0(1 + O)uc(z0)’ " + (C = b(1 + O)uc(0)” )
< —bBug(20)?" ! + Ca. (5.6.13)
We now consider two cases.
o If o <0, then it is sufficient to take

O|/d
0=1, b=1 and C > %,
7d
“Wa

in order to have that there is no € > 0 satisfying (5.6.12). Thus, we obtain

‘Q|1/d
A
e If o > 0, then we choose 8, b and C as

1 C 2 C1/4 C1/4 ’Q|1/d
i ) = > 16.
bt <2b) avz ad o952 Wz V16

Then the conditions (5.6.11) are satisfied. Moreover, we have

wo(z) < do(x) — d(z), Vz € Q. (5.6.14)

2
1 |Q‘1/d 1 01/2
lwllz= < o (w}/d < v (5.6.15)
and so .
A (w)] Lo < (5.6.16)

= 64(a Vv 2)OV4
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Indeed, if (5.6.16) does not hold, then

1 1 b
~ > h = C = sllavacii
[w]ze > <64(a\/2)01/4> 64(cr v 2)C1/A < 64(av2)01/4>

- C _ 1 Lo
~ 64(aV2)CVA 2(av2)/203/8 ) — 128(a vV 2)’
which is a contradiction with (5.6.15). Thus, (5.6.16) holds and so

1+ Ca . 2(1+Ca)Hh_1(w)H1/2
Ih=2) b2 b -
1/8 1/2
4071+ Ca) ! < 1H+Ca (5.6.17)
Clav2)l/2 \64(aV2)CL/4 2(a Vv 2)C

If, by absurd, (5.6.12) holds for some € > 0, then both (5.6.13) and (5.6.17) must hold,
which is impossible.

Thus, we finally obtain that (5.6.10) holds for every o € R. Now by Corollary 5.2.4 (or simply
arguing as in the proof of Proposition 5.6.8) we conclude that w is Lipschitz. O

COROLLARY 5.6.14. Suppose that the set  is a supersolution for the functional F + P,
where F is decreasing with respect to the set inclusion. Then all the Dirichlet eigenfunctions on
Q are Lipschitz continuous.

PROOF. Since F is a decreasing functional, we have that € is also a perimeter supersolution.
By Proposition 5.6.13, we have that wg, is Lipschitz. Now since for each k& € N, there is a constant
¢ such that |Jug||ze < Ck, we have that |ug| < CpAp(Q)wq. Thus, |ug(z)| < Cdist(z, 0Q) for
some constant C' > 0, and the conclusion follows by a standard argument as in Corollary
5.2.4. O

5.7. Subsolutions and supersolutions

We conclude this chapter with a discussion on the combination of the techniques relative to
subsolutions and supersolutions. There are several indications that this combination is sufficient
to establish the regularity of the boundary of 2 and not only of the state functions on 2.

EXAMPLE 5.7.1. Suppose that €2 is both a subsolution and a supersolution for the functional
E(Q) + h(2), where h(Q) = / Q% dx , the weight function Q : R* — R is smooth and F is
Q
the Dirichlet Energy

1
E(Q):min{ |Vu]2d:n—/ udx : uGH&(Q)}
2 Jpa Rd

It was proved in [17], using the classical technique of Alt and Caffarelli from [1], that the
boundary 92 is C1<, for a € (0, 1).

We note that the regularity of the function @) plays a fundamental role in the proof of this
result in [1]. If @ is only measurable function such that 0 < ¢ < @Q < ¢!, then the regularity of
the boundary 9€ (if any!) is not known. More precisely, we state here the following:

CONJECTURE 5.7.2. Suppose that 0 < m < M < 400 are two constants and suppose that
the set Q) is a subsolution for E+m|-| and supersolution for E+ M| -|. Then the boundary 0
18 locally a graph of a Lipschitz function.
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In this section we prove an analogous result for measurable sets 2, which are subsolutions
for E +mP and supersolutions for E+M P, where P is the De Giorgi perimeter and E is the
Dirichlet Energy

- 1 ~
E(Q):min{/ |Vu]2d$—/ udzr : uEH&(Q)}
2 Rd Rd

The presence of the perimeter in the functional allows us to use the classical regularity theory of
the quasi-minimizers of the perimeter, which considerably facilitates our task of achieving some
regularity for €.

REMARK 5.7.3. Suppose that the measurable set €2 is a supersolution for E+ MP. Then,
by Remark 5.6.2 €2 is a perimeter supersolution. Thus, we may restrict our attention to sets,
which are subsolutions for E + mP and supersolutions for the perimeter.

THEOREM 5.7.4. Let Q C R be a set of finite Lebesque measure and finite perimeter. If
Q is an energy subsolution and a perimeter supersolution, then §2 is a bounded open set and its
boundary is C1 for every a € (0,1) outside a closed set of dimension d — 8.

PROOF. First notice that, by Lemma 4.6.3, €2 is bounded. Moreover, since €2 is a perimeter
supersolution, we can apply Proposition 5.6.7 and Proposition 5.6.13, obtaining that  is an
open set and the energy function w := wq is Lipschitz.

We now divide the proof in two steps.

Step 1 (CY< regularity up to o < 1/2). Let xo € 9Q and let B,(xg) be a ball of radius less
than 1. By Lemma 3.7.4, for each Q C Q, such that QAQ C B, (z0), the subminimality of
implies (for r < 1)

m(P(Q) — P()) g/ wdz + Cy <r+ me)/ wdH !
By (z0) r OBr(x0) (5 7 1)

< Cd"w"Lm(Bzr(IO))rd_l’
where C, is a dimensional constant. Now since w is Lipschitz and vanishes on 02, we have
||| oo (B, (20)) < O, hence equation (5.7.1), implies
P(Q, B, (x0)) < P(Q, B,(x0)) + Cr, (5.7.2)

where C' depends on the dimension d, the constant m and the Lipschitz constant of w (which,
in turn, depends only on the data of the problem). Moreover, by the perimeter subminimality,
equation (5.7.2) clearly holds true also for outer variations. Splitting every local variation Q of
) in an outer and inner variations, we obtain

P(Q,B,) — P(, B,) = P(, B,) — (P(ﬁ UQ,B,)+PQNQ,B,) — PO, BT))
< P(QvBT) —P(Qﬂﬁ’Br)
< Cr, for every Q c R? such that QAQ C B..

Hence Q is a almost-minimizer for the perimeter in the sense of [90, 91]. From this it follows
that 99 is a CH* manifold, outside a closed singular set ¥ of dimension (d — 8), for every
a € (0,1/2).

e Step 2. We want to improve the exponent of Holder continuity of the normal of 92 in the
regular (i.e. non-singular) points of the boundary. For this notice that, for every regular point
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xo € 02, there exists a radius 7 such that 9Q can be represented by the graph of a C' function
¢ in B,(zg), that is, up to a rotation of coordinates
Qn BT(xQ) = {l’d > (ﬁ(.fh c ,J}dfl)} N B,«(xg).

For every T' € C}(B,(w0); R?) such that T - vq < 0 and ¢ is sufficiently small, we consider the
local variation

Q= (Id + tT)(Q) C Q.
By the energy subminimality we obtain
m(P(Q) — P(Q)) < E(Q) — E(Q). (5.7.3)
Since T is supported in B, and 92N B, is C!, we can perform the same computations as in [72,
Chapter 5], to obtain that

2
E(y) — EQ) = —t/ dwe T-vodH! + o(t). (5.7.4)
oonB, | OV
Moreover, see for instance [80, Theorem 17.5],
P(y)=P(Q)+t / divoaT dH* ™t + o(t) (5.7.5)
oQNB,

where divgaT is the tangential divergence of T'. Plugging (5.7.4) and (5.7.5) in (5.7.3), a standard
computation (see [80, Theorem 11.8]), gives (in the distributional sense)

o Yo <1’f"wﬂ
V14 |Vo|? m | Ov

where the last inequality is due to the Lipschitz continuity of wg. Moreover applying (5.7.5) to
outer variations of Q (i.e. to variations such that 7" - vg > 0) we get

2
<,

Y LR
V14+|Vol2 ) —

In conclusion ¢ is a C! function satisfying

e[ Y2 e
VI+VoP ’

and classical elliptic regularity gives ¢ € O, for every a € (0,1). d



CHAPTER 6

Spectral optimization problems in RY

6.1. Optimal sets for the kth eigenvalue of the Dirichlet Laplacian

The aim of this section is to study the optimal sets for functionals depending on the eigen-
values of the Dirichlet Laplacian. A typical example is the model problem

min {)\k(Q) . Q C RY, Q quasi-open , Q| = c}, (6.1.1)

where ¢ > 0 is a given constant. The existence of an optimal set for the problem (6.1.1) was
proved recently by Bucur (see [20]) and by Mazzoleni and Pratelli (see [81])two completely
different techniques.

In [81] the authors reason on the minimizing sequence, proving that by modifying each
set in an appropriate way, one can find another minimizing sequence composed of uniformly
bounded sets. At this point the classical Buttazzo-Dal Maso theorem (see Theorem 2.4.4) can
be applied.

The argument in [20] is based on a concentration-compactness principle in combination
with an induction on k. The boundedness of the optimal set is fundamental for this argument
and is obtained using the notion of energy subsolutions. We note that this technique can easily
be generalized and applied to other situations (optimization of potentials, capacitary measures,
etc). The price to pay is the fact that some minor restrictions are needed on the spectral
functional. More precisely, for the penalized version of the problem it is required that the
spectral functional is Lipschitz with respect to the eigenvalues involved, while in [81] was shown
in the case of domains this assumption can be dropped.

We note that by a simple rescaling argument (see Remark 6.1.3), the problem (6.1.1) is
equivalent to

min {/\k(Q) +m|Q|: Q cR% Q quasi-open }, (6.1.2)

for some positive constant m, which we call Largange multiplier. For general spectral functionals
of the form

F(Q) = F( Mg, ()., M\, (),

the Lagrange multiplier problem is easier to threat, due to the fact that any quasi-open set can
be used to test (6.1.2). The connection between the optimization problem at fixed measure and
the penalized one is, in general, a technically difficult question; further complications appear if
we optimize under additional geometric constraints.

Our first result in this section concerns the existence of an optimal set for the problem
(6.1.2). Our result is more general and concerns shape optimization problems of the form

min {F(Akl(Q), A, () + 9] - Q C D, Q quasi-open }, (6.1.3)
where k1,...,k, € N and the function F' : RP — R satisfies some mild monotonicity and conti-

nuity assumptions. More precisely we work with functionals satisfying the following definition.

201
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DEFINITION 6.1.1. We will say that the function F : RP — R is:
e increasing, if for each x >y € RP, we have that F(z) > F(y)!;

e diverging at infinity, if lir+n F(x) = 4+00. More precisely, if li_>m F(x,) — oo, for
x_, 400 n—o00

every sequence T, = (xL,... 2h) € RP such that nlg]g@ x; = 400, foreveryi=1,...,p.

e increasing with growth at least a > 0, if F is increasing and the constant a > 0 is such
that, for every x >y, we have

F(z) — F(y) > alz — y|.

THEOREM 6.1.2. Consider the set {ki,...,k,} C N and let F : R¥ — R be an increasing
and locally Lipschitz function diverging at infinity. Then there exists a quasi-open set, solution
of the problem (6.1.3). Moreover, under the above assumptions on F, every solution of (6.1.3)
is a bounded set of finite perimeter.

If, furthermore, the function F' is increasing with growth rate at least a > 0, then for every
optimal set ), there are orthonormal and Lipschitz continuous eigenfunctions ug,,...,uy, €
H§(9Q), corresponding to the eigenvalues Ay, (Q), ..., Mg, (€).

PROOF. Let ©Q, be a minimizing sequence for (6.1.3) in R%. By the Buttazzo-Dal Maso
Theorem 2.4.4, for every n € N, there is a solution 2} of the problem

min {F(/\I(Q), L LA(Q) Q) QCQ,, Q quasi—open}. (6.1.4)

We now note that

o the sequence (2 is still a minimizing sequence for 6.1.3;
e cach )} is a subsolution for the functional F'(A1,..., \g) +] |-

By Theorem 4.4.1 €7 is a subsolution for E(£2) + m|Q|, where the constants m and ¢ from
Definition 4.2.4 depend only on f, d and Ag(€2). Thus, by Lemma 4.2.11, we can cover
by N balls of radius r, where N and r do not depend on n € N. We can now translate the
different clusters of balls and the corresponding components of (27 obtaining sets ﬁ: with the
same spectrum and measure as {2}, for which there is some R > 0 such that diam(ﬁ;:) < R, for
some R not depending on n € N. After an appropriate translation we can suppose (NZ;'; C Bg.
Applying the Buttazzo-Dal Maso Theorem, we obtain the existence of a solution  of (6.1.3).

For the boundedness and the finiteness of the perimeter of the optimal sets, we note that by
Theorem 4.4.1 any optimal set is an energy subsolution and so, it is sufficient to apply Theorem
4.2.16.

The existence of Lipschitz continuous eigenfunctions follows by Theorem 5.5.7. g
We now consider the spectral optimization problems at fixed measure
min {F()\;ﬂ(Q), () QcC R?, Q quasi-open , |Q] = c}, (6.1.5)

where the constant ¢ > 0, the function F' : R” — R and ky,...,k, € N are given. Before we
continue with our main existence and regularity result in this case, we make some considerations
in the case when the functionals involved are homogeneous. The following Proposition 6.1.3 holds
in the following very general setting, in which are given:

1 We say that © = (z1,...,2p) >y = (y1,...,4p), if. ©; >y, for every j =1,...,p.
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e a family A of subsets of the Euclidean space R? such that if Q € A, then also tQ € A,
for every t > 0;
e a positive functional G : A — (0, +00), which is S-homogeneous for some S € R, 5 # 0,
i.e.
G(tQ) =t°G(Q),  Vt>0, VQeA;
e a functional F : A — R which is a-homogeneous for some o € R, o # 0, i.e.

FQ) =t°F(Q), Vt>0, VYQe A

PROPOSITION 6.1.3. Let the family of subsets A and the functionals F and G be as above.
Then the set Q* € A is a solution of the problem

min {J—'(Q) LAGQ): Qe A}, (6.1.6)
if and only if, O* is a solution of
min {f(Q) L Qe A GQ) = g(Q*)}, (6.1.7)
and the real function f : (0,400) = R, given by
F(t) = t*F (") + 1P AG(Q),
has minimum int = 1.

PROOF. If O« is a solution of (6.1.6), then the claim follows by the fact that one can choose
the sets tQ* as competitors in (6.1.6), as well as the sets € such that G(2) = G(Q2*).

For the converse claim, suppose that 2 € A and ¢ > 0 is such that G(Q2) = G(¢tQ2*). By the
homogeneity of F and the fact that Q* solves (6.1.7), we have that F(tQ*) < F(Q). Together
with the fact that f(t) achieves its minimum in ¢ = 1 we get

F(QF) + AG(Q") < F(tQ") + AG(tQ") < F(Q) + AG(Q),
which proves that Q* minimizes (6.1.6). O

PROPOSITION 6.1.4. Let the family of sets A and the functionals F and G be as in Propo-
sition 6.1.3.

(1) If Q* € A is a solution of (6.1.6), for some A € R, then the set (C/Q(Q*))l/ﬁﬂ* is a solution
of the problem

min {f(Q) L Qe A, G(Q) = c}. (6.1.8)
(2) If F is a positive functional, a8 < 0 and Q* is a solution of (6.1.8), then Q* is a solution
of (6.1.6) with Lagrange multiplier A = f%é:((g:))

ProOF. For the first claim (1), let t = (C/Q(Q*))l/ﬁ and Q be such that G(Q2) = ¢. Then
G(t71Q) = G(*) and, by the optimality of Q*,
F(Q) =t F(t71Q) > t*F(Q*) = F(tQ"),
which gives (1). In order to prove (2), we note that ¢ = 1 is the unique minimizer of f(t) =

t*F(Q*) + AtPG(2*) and then apply Proposition 6.1.3. O

EXAMPLE 6.1.5. If A is the family of quasi-open sets in R?, F(Q) = A\1(Q) and G(2) = ||,
we have that « = —2, = d and the two problems (6.1.8) and (6.1.6) correspond, respectively,
to (6.1.1) and (6.1.2).



204 6. SPECTRAL OPTIMIZATION PROBLEMS IN R?

If the functional F is not homogeneous, the question is more involved and, in general, there
is no Lagrange multiplier A, that allows to transform the problem (6.1.7) into (6.1.6). For
functionals of the form F = F(Ag,, ..., A, ), we have the following result, which allows to apply
the results from Chapters 4 and 5.

PROPOSITION 6.1.6. Let G be a positive and S-homogeneous functional. Suppose that the
function F : RP — R is increasing, locally Lipschitz continuous and with growth at least a > 0.
Then, for every solution ) of the problem

min {F()\kl (), M, () 1 QCRY, G(Q) = 1}, (6.1.9)

there are constants m and M such that Q is a local (with respect to the distance d~) subsolution
for the functional

FOw (), -, A, () + mG(Q),

and supersolution for G and for the functional
F()\kl(Q), e )\kp(Q)) + MG(Q).

PROOF. We first prove that 2 is a subsolution. Indeed, suppose that U C Q and let ¢ =
(G(2)/G(U))/P. We note that G(tU) = G() and so tU can be used to test the optimality of
). Suppose that ¢t <1, ie. G(U) > G(©2). Then the inequality

F(Me, (), A, () + mG(Q) < F (A, (U), ..., A, (U)) + mG(U),

trivially holds for any m > 0.

Suppose that ¢ > 1, i.e. G(U) < G(2). By the optimality of €2, properties (f2), (f3),
the trivial scaling properties of the eigenvalues and of the perimeter and the monotonicty of
eigenvalues with respect to set inclusion, we obtain

0<F (N, (BU), .., Mg, (1U)) = F (A (), -+, Ak, ()
=F (M (tU), ..., N, ((U)) = F (M, (U), ., A, (U))
+ F (M (U), .., A, (U)) = F ()\kl(Q), A, ()
at™? = 1) | (A, (U), ..., A, (U))|
+ F (M, (U)o A, (U) = F (M (), 0, A, ()

< a(6() 7 (W) =G ) (A (V) A, (1)

+F()\k1(U),~- . ,)\kp(U)) - F ()\kl(Q); . .,/\kp(Q))

where L is the (local) Lipschitz constant of f and a > 0 is the lower on the growth of F. Using

the concavity of the function z — 5 if B < 2, or the fact that G(U) < G(Q) if 8 > 2, we can
bound

G(U)? —G(Q)F < C(Q) (V) - G(2),
which concludes the first part of the proof.

Consider the set Q D Q. We first note that G(Q) > G(€). Indeed, if this is not the case, we
have

t= (g@y/a@) " > 1

snd so, for any k£ € N, we have

A (12) < () < A(Q).
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On the other hand G(tQ) = G(Q) and so, by the optimality of € and the strict monotonicity of
F', we have

0 < F (M (89), - Ak, (80)) = F (A (), -, A, (2))
< FMa (), A, (D) = F (M ()2, A, () <0,

which is a contradiction and so, we have G(Q) > G(2) and ¢t < 1. We now reason as in the
subsolution’s case.

0 < F(Ny (89), -+, M, (82)) — F (Mg, (Q), -+, A, ()
= F (Mg, (1), A, (1)) — F (A (), -, Mg, ()
FF (N (), A, () — F (M (), -, Ak, ()
<L(t2-1) ‘(A,ﬂ(ﬁ), . ,Akp(ﬁ))‘
FF (N (), A, () — F (M (), -, Ak, ()
< L(G() 7 ()7 =97 ) | (s (), 2, ()]
FF (N (), A, (2) — F (M (), -+, M, (),
WhSI‘e2 L is theg Lipschitz constant of f. Now the conclusions follows estimating the difference
G(Q)7 — G(Q)7, as in the previous case. O

SN
[N

REMARK 6.1.7. We note that the conclusions of Proposition 6.1.6 hold also if we substitute
Akys - -+ 5 Ak, With any p-uple F1, ..., F, of functionals, which are positive, decreasing with respect
to the inclusion and a-homogeneous, for some o < 0.

We are now in position to prove an existence of optimal sets for problems with measure
constraint.

THEOREM 6.1.8. Consider the set {k1,...,ky} C N and suppose that the function f : R — R
18 increasing, locally Lipschitz continuous with growth at least a > 0. Then there exists a
solution of the problem (6.1.5). Moreover, any solution 2 of (6.1.5) is a bounded set with finite
perimeter and there are orthonormal Lipschilz continuous eigenfunctions ug,, ..., ux, € H&(Q),
corresponding to the eigenvalues Mg, (€2), ..., Mg, (£2).

PROOF. We argue by induction on the number of variables p. If p = 1, then thanks to the
monotonicity of f, any solution of (6.1.2) is also a solution of (6.1.5) and so we have the claim
by Theorem 6.1.2 and Remark 6.1.3.

Consider now the functional

F(Q) = F( M, (), ..., M\, (),

and let Q, be a minimizing sequence for (6.1.5). We now apply the quasi-open version (see
Remark 3.7.10) of Theorem 3.7.9 to the sequence §2,,. Note that the vanishing (Theorem 3.7.9
(ii)) cannot occur since the sequence (Ag, (Qn), ..., Ak, (2n)) € R? remains bounded. On the
other hand, by the translation invariance of A\, we can reduce the case Theorem 3.7.9 (i2) to
(i1). Thus we have two possibilities for the sequence Q,,: compactness (i1) and dichotomy (iii).

If the compactness occurs, then by (i1) and the continuity of f, we have

T F (A (Q0), - Ay (20)) = F (A (1), Ak, (1),
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where the capacitary measure u € ML (R?) is the y-limit of Ig,. Let Q := Q,. Then p > Iq

cap
and by the monotonicity of Ax and f, we have

F (1), M, (1) < F(A (), -, Ak, ().

Thus, it is sufficient to note that || < ¢, which follows since €,, weak-y-converges to 2 and so
we can apply Lemma 2.2.21.

Suppose now that the dichotomy occurs. We may suppose that 2, = A, U B,, where
the Lebesgue measure of A,, and B,, is uniformly bounded from below and dist(A4,, B,) — oc.
Moreover, up to extracting a subsequence, we may suppose that there is some 1 < [ < p and
two sets of natural numbers

1< < <o and 1§ﬂl+1<"'<ﬂp,
such that for every n € N, we have that the following to sets of real numbers coincide:
{)\al (An)s s Ay (An), Ag (Br), - - - /\gp(Bn)} = {)\kl(Qn), e )\kp(Qn)}.

Indeed, if all the eigenvalues of §2,, are realized by, say, A, arguing as in the proof of Theorem
6.5.8 we can construct a strictly better minimizing sequence. Moreover, without loss of generality
we may assume that

Ao (An) = Mg, (), Vi=1,...,1, and Ag;(Bn) = A, (), Vi =1+1,...,p.
We can also suppose that for every ¢ and j, the following limits exist:
Ay, = nh_}rgo A, (An) and  Aj = nh_)rlgo Ag; (Bn)-
By scaling we also have that without loss of generality

|Ayn| = ca and |Bp| = cg,

where ¢, and cg are fixed positive constants.
Let F,, : R — R be the restriction of F' to the I-dimensional hyperplane

{(ml,...,xp) eRP: x; :)\Ej, j:l—i-l,...,p}.
Since | < p, by the inductive assumption, there is a solution A* of the problem
min {Fa (Aar(A4),..., A (A)) : AC R?, A quasi-open, |A| = ca}, (6.1.10)

and since F' is locally Lipschitz, we have

lim F(Aay (An),s -3 Ay (An)s Agy (Bn), - - -5 A, (Bn))

n—oo

= lim F(Aal(An),...,Aal(An),A;M,...,A;p)

n—o0

> f(Aar (A7), oo Ay (A N5 -0 AG)

= lm F(Aay (A%), . A (A7), A8, (Bn), - Ag, (Bn)),

n—oo
and thus the minimum in (6.1.10) is smaller than the infimum in (6.1.5). Moreover, A* is
bounded and so, up to translating B,, we may suppose that dist(A*, B,) > 0, for all n € N.
Thus, the sequence A* U B,, is minimizing for (6.1.5).
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Let now Fj : RP~! — R be the restriction of F to the (p — [)-dimensional hyperplane
{(a:l,...,xp) ERP: ;= Ao (A7), i = 1,...,1},
and let B* be a solution of the problem
min {FB(/\ﬁlH(B), ...,Ag,(B)) : B CR? B quasi-open, |B| = c5}. (6.1.11)

Clearly the minimum in (6.1.11) is smaller than the minimum in (6.1.10) and so than that in
(6.1.5). On the other hand, since both A* and B* are bounded and the functionals we consider
are translation invariant, we may suppose that dist(A*, B*) > 0. Thus the set Q* := A* U B* is
a solution of (6.1.5).

In order to prove the boundedness of a generic optimal set 2 and the finiteness of its
perimeter, we first note that, by Proposition 6.1.6 with G(2) = ||, we have that that Q is a
subsolution for the functional F(/\kl, e )\kp) + |- |. Thus, by Theorem 4.4.1, Q is an energy
subsolution an so the claim follows by Theorem 4.2.16. O

6.2. Spectral optimization problems in a box revisited

In Section 2.4, we proved the Buttazzo-Dal Maso Theorem (see Theorem 2.4.4), which con-
cerns general decreasing and lower semi-continuous (with respect to the strong-vy-convergence)
shape functionals. Here we discuss more deeply the case when the box is an open subset of R,
proving some additional properties of the optimal sets. We start by noting that the technique
from the previous section can be used to easily show that the box D € R? need not be bounded
or of finite measure in order to have an existence for the problem

min {F()\kl(Q), A, () +19] - Q C D, Q quasi-open } (6.2.1)

THEOREM 6.2.1. Suppose that the function F' : RP — R is locally Lipschitz continuous and
increasing. Suppose that the open set D C R vanishes at infinity, i.e. is such that
lim sup |(D\ By) N Br(z)| =0,
n—oo zERA
for every R > 0. Then there is a solution of (6.2.1). Moreover, any solution of (6.2.1) is a
bounded quasi-open set of finite perimeter.

PRrROOF. Consider a minimizing sequence (2,, and let 2 be the solution of
min {F(Al(ﬂ), L LM(Q) Q) QCQ,, Q quasi—open}. (6.2.2)

As in Theorem 6.1.2, we have that each 2} can be covered by N balls of radius r, where N
and r do not depend on n € N. Let A, be an open set of at most N balls of radius r such
that Q) C A,. We can suppose that the number of connected components of A,, is constantly
equal to Ng < N. Moreover, each connected component A%, for j = 1,..., N¢ is such that
diam(A%) < R, for some universal R not depending on n and j. Since (2}, is minimizing, we can
also suppose that for each j =1,..., Ng,

liminf |42 N Q%[ > 0.
n—oo

Thus, by the condition (), the sequence dist(0, Aﬁl) remains bounded as n — oo. Thus, there
is some R > 0 such that )}, C Bg and so, we can apply the Buttazzo-Dal Maso Theorem 2.4.4,
obtaining the existence of an optimal set. The boundedness and the finiteness of the perimeter
are again due to Theorem 4.4.1 and Theorem 4.2.16. O
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REMARK 6.2.2. The problem at fixed measure also admits optimal sets
min {F(Akl(Q), .\, (Q) 1 QC D, Q quasi-open , Q] = c}, (6.2.3)

when the box D has finite measure. Since the presence of the external constraint D can sig-
nificantly complicate the passage from the problem at fixed measure (6.2.3) to the penalized
problem (6.2.1). Below we provide an example for an optimal sets (at fixed measure), which is
bounded and has infinite perimeter.

EXAMPLE 6.2.3. Suppose that D = D; U Dy C RY, where
Dlz{(az,y)eRd: x> 1, 0§y§1/x2}, (6.2.4)
and Dy = Dy + (2,0). Thus, the solution of the problem
min{)\l(Q) : Q C D, Q quasi-open, || = 1}, (6.2.5)

is one of the sets Dy or Do, which are both unbounded with infinite perimeter. A more compli-
cated counter-examples can be given also in the case when D is connected. In conclusion, we
note that this example shows that the analogue of Proposition 6.1.6 in a box D is in general
false, since the subsolutions for A\; + m| - | are necessarily bounded sets.

In the rest of this section, we aim to prove some regularity properties of the optimal quasi-
sets for low eigenvalues. In particular, we prove that the problem

min {A;(Q) + m|Q| : @ C D, Q open}, (6.2.6)

has solution in the cases k = 1 and k = 2, when D is an open set vanishing at infinity. We note
that for D = R? this is trivial since the solutions are given, respectively, by a ball (for k = 1)
and two equal balls (for k£ = 2).

It was first proved in [17] that if D is open, then every solution of the problem

min {\1(Q) +m|Q|: Q C D, Q quasi-open}, (6.2.7)

is a bounded open set. The analogous problem for higher eigenvalues (even for Ay) remained
open for a long time, the reason being that the available regularity techniques were based on the
classical approach by Alt and Caffarelli (see [1]) and can be applied for functionals of energy
type.

As far as we know, the first result for higher eigenvalues, was obtained by Michel Pierre who
claimed that if D is an open set of finite measure and (2 is a solution of

min {A2(Q) + m|Q]: Q C D, Q quasi-open}, (6.2.8)

such that A2(£2) > A1 (), then Q is (equivalent to) an open set. This, in fact, gives the existence
of an open solution of (6.2.8), provided that the following conjecture holds:

CONJECTURE 6.2.4. Suppose that D is a connected bounded open set. Then any solution

of (6.2.8) is given by two disjoint equal balls or is equivalent in measure to a set Q0 such that
)\Q(Q) > A\ (9)2

2We note that if € is a solution of (6.2.8), then there are disjoint quasi-open sets Q1,92 C € such that
Q1 U Qs is also a solution of (6.2.8) (it is sufficient to take the level sets Q1 = {uz > 0} and Q2 = {u2 < 0} of the
second eigenfunction uz on ). Our conjecture is based on the supposition that we can add part of the common
boundary of €2; and €22, thus obtaining a quasi-connected quasi-open set of the same measure.
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In [29] a direct proof was given to the fact that every solution of (6.2.8) contains an open
set, which is solution of the same problem. It was proved that, if uy is a sign-changing second
eigenfunction on the optimal quasi-open set 2, then the two quasi-open level sets {us > 0} and
{ug < 0} can be separated by two open sets, in which case regularity results for the problem
(6.2.7) can be applied.

We start discussing the regularity of the optimal quasi-open set for the first eigenvalue of
the Dirichlet Laplacian (originally proved in [17]).

PROPOSITION 6.2.5. Suppose that the quasi-open set ) is a solution of the problem (6.2.7),
where D is an open set. Then §2 is open and the first eigenfunction u € H&(Q) 18 locally Lipschitz
continuous in D. If, moreover, the external constraint D is such that its energy function wp is
Lipschitz continuous on R®, then w is also Lipschitz continuous on RY.

PRrROOF. We first note that the openness of €2 and the local Lipschitz continuity of u follow
by Proposition 5.1.3. Moreover, as we saw in the proof of Lemma 5.1.1, there is a constant
Cy > 0 such that, for every ball B,(z¢) C D, we have

(|Br(xo) \ Q| > o) - ( ]{93 . )ud?—[d_l < mC’dr>. (6.2.9)

Suppose now that w := wp is Lipschitz continuous. Since u € L°°, by the maximum
principle, there is a constant C' such that v < Cw. Let now zg € 02 and let 0 < r < rg. If
we have that B,.(xg) C D, then (6.2.9) holds. If there is y € 9D such that |xg — y| < r, then
u < 2CLr on 0B, (xg), where L is the Lipscitz constant of w, and so (6.2.9) holds again with
2C'L in place of mCy. Now the conclusion follows by Corollary 5.2.4. O

Before we proceed, with the study of the problem (6.2.8), we need a regularity result for the
optimal set for A; for fixed measure. The main tool is the following Lemma due to Briancon,
Hayouni and Pierre (see [17]).

LEMMA 6.2.6. Suppose that € is a solution of the problem
min {)\1(9) : QC D, Q quasi-open, | = c}, (6.2.10)

where ¢ < |D| and D is a quasi-open set of finite measure. Then, there is some m > 0 such that
Q is a supersolution for A\y +m|-| in D.

PrROOF. We will prove that there is some m > 0 such that €2 is a solution of the problem
min {)\1(9) +m(Q - : QCcD, Q quasi—open}. (6.2.11)
Suppose that €, is a solution of (6.2.11). We have two case. If |Q,| < ¢, then we have
A (@) = A (@) + m(1Qm] — )T < M(Q) +m(|Q] = )T = M(Q) < At (D),

and so, all the inequalities are equalities, which gives the optimality of 2. Suppose that |2,,| > ¢
and let u be the first normalized eigenfunction on €2,,,. Then €2, is a local shape subsolution for
A1 +m| - | and so, by Theorem 4.4.3 and the following Remark 4.4.6, we have

ML) > A1 () > caV/m|Qn| 5 > cq/mest,

which is absurd for m large enough (at least for d > 2, while the case d = 1 is trivial). O
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COROLLARY 6.2.7. Suppose that Q is a solution of (6.2.10), where D C R is a connected
open set of finite measure. Then ) is an open set and the first eigenfunction u of Q2 is locally
Lipschitz continuous on D. If, moreover, the energy function wp is Lipschitz continuous on R?,
then u is also Lipschitz continuous on RY.

We are now in position to state our first result concerning the optimal set for As.

PROPOSITION 6.2.8. Suppose that D C R% is an open set of finite measure and that Q0 is a
solution of the problem

min {)\2((2) +m|Q: QC D, Q quasi—open}. (6.2.12)
Then there is an open set w C ), which is also a solution of (6.2.12).

PROOF. Let us € HZ () be the second normalized eigenfunction of the Dirichlet Laplacian
on ). Note that we can assume that uy changes sign. Indeed, if ug > 0, then Q@ = {u; >
0} U {uz > 0} and moreover, by the optimality of Q, we have A;({u; > 0}) = A1 ({uz > 0}),
and so u; — ug is a second eigenfunction which changes sign on Q. Let now Q4 = {uz > 0}
and Q_ = {ug < 0}. Since A2(Q2) = Aa2(Q4+ U Q_), we have that 2, UQ_ is also a solution of
(6.2.12). Suppose that w C 4. Then

AM(w) + w]+ Q22 = A2 (wU Q) + JwUQ_|

> A(2, UQ) + 2, UQ|
= A (Q4) + Q24| + 102,

and so, Q4 and, analogously, {2_ are subsolutions for A; + | - | and, as a consequence, energy
subsolutions. By Proposition 4.3.17 there are open sets Dy and D_ in D such that Q C Dy,
Q_cD_,9.ND_ =Pand Q_ND, = 0. We note that £, is contained in exactly one connected
component of D,. Indeed, if this is not the case, we remove the parts of {2, contained in the
other connected components of D, thus obtaining a set SNLF U _ with the same second eigenvalue
as 24 U Q_ and lower measure. Thus 24 is a solution of

min {)\1(9) : Q C D4, Q quasi-open, |[Q|= \Q+\},
where D, is a connected open set. By Corollary 6.2.7, we get that 24 is open. Analogously,

also €)_ is open, which concludes the proof. O

6.3. Spectral optimization problems with internal constraint

In this section we consider problems of the form
min {F(Akl(Q), A, () + 19 D C QC R Q quasi-open } (6.3.1)

where {ki,...,kp} C N and D' ¢ R? is a given quasi-open set?, to which we usually refer to as
internal constraint. Before we state our main results we need some preliminary results.

3The index i stands for internal.



6.3. SPECTRAL OPTIMIZATION PROBLEMS WITH INTERNAL CONSTRAINT 211

6.3.1. Some tools in the presence of internal constraint. The following is a general-
ization of the notion of a subsolution

DEFINITION 6.3.1. Given the quasi-open set A, we say that the quasi-open set € is a shape
subsolution in A for the functional F if

F(Q) < Flw), Yw CQ, w quasi-open, QAw C A. (6.3.2)

We say that Q is a local shape subsolution, if there is some € > 0 such that (6.3.2) holds only
for quasi-open sets w such that d(Iq, 1,,) < €.

We will use this notion in the presence of internal constraint D¢, taking A = R?\ Di. The
following Theorems are analogous to (4.2.16) and Theorem 4.4.1, so we limit ourselves to state
the precise results.

THEOREM 6.3.2. Suppose that the set § is a local shape subsolution in A for the functional
E(Q) + m|Q|. Then there are constants C > 0 and ro > 0, depending only on m, d, € and A,
such that for every 0 < r < 1o, the set QN A, can be covered by Cr=%1 balls of radius r, where
A, ={zx € RY: dist(z, A) > r}. Moreover the perimeter of Q in A, P(S%; A) is finite.

THEOREM 6.3.3. Suppose that the set ) is a shape subsolution in A for the functional
Q= F(A(Q), ..., \(Q) + 9],

where F : R*¥ — R is a locally Lipschitz function in R¥. Then there are positive constants m > 0
and € > 0, depending only on d,  and f, such that Q is a local shape subsolution in A for the
functional E(Q) + m|Q|, where € is the constant from Definition 6.3.1.

A fundamental tool allowing to understand the behaviour of a minimizing sequence for
(6.3.1) in R? is the concentration-compactness principle for quasi-open sets. We state here the
result in the presence of internal constraint.

THEOREM 6.3.4. Let ), be a sequence of quasi-open sets of uniformly bounded measure, all
containing a given non-empty quasi-open set D'. Then, there exists a subsequence, still denoted
by Q,, such that one of the following situations occurs.

(i) Compactness. The sequence ), y-converges to a capacitary measure j1 and Rq,, converges
in the uniform operator topology of L*(R?) to R,,. Moreover, we have that D' C Q.
(ii) Dichotomy. There exists a sequence of subsets Q, C Q,,, such that:

|Ro, — Ra, |l cr2ray — 0;

Q,, is a union of two disjoint quasi-open sets (), = QruQ;
d(QF, Q) — oo;

lim inf,, o [Q5] > 0;

limsup,, . |2, N D! =0 or limsup,,_,, |2, N D! =0.

PROOF. Since €2, is a sequence of quasi-open sets of uniformly bounded measure we can
apply the quasi-open version (see Remark 3.7.10) of Theorem 3.7.9. Thus it is sufficient to
prove that the compactness at infinity (72) and the vanishing (7i) cannot occur. Indeed, the
vanishing cannot occur, since by the maximum principle we have wgq, > wp:, for every n € N.

Suppose that we have that compactness at infinity, i.e. there is a divergent sequence x,
such that w,, 1, converges in L'(R?) (and so, also in L?(R%)). We note that the energy
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function solution wpi ., is just wp: translated by z,. By the maximum principle, we have that
WQ, +z, = Wiy, and so

Wiy g, WO, 4z, AT > wQDi dx > 0.
R4 Rd

On the other hand, since x, — oo, we have that wpi , — 0 weakly in L?*(R%). By the strong
convergence of wq, 4, in L?(R%) we have

/d Wiy, WO, +a, AT — 0,
R

which is a contradiction.

It remains to check that the last claim from the dichotomy case. Indeed, since d(Q2;}, Q) —
0o, we have that one of the sequences of characteristic functions Lo+ or Lo- has a subsequence,
which converges weakly in L2(RY) to zero. Taking into account that 1%, € L2(R%), we have the
claim. O

6.3.2. Existence of an optimal set. We start by a discussion of the case of bounded
internal constraint D¢, in which the existence can be obtained in the same manner as in Theorem
6.1.2.

Let F' : RP — R be a given increasing and locally Lipschitz function which diverges at
infinity. Suppose that D is a bounded quasi-open set. Then the problem (6.3.1) has a solution.
Indeed, suppose that €2, is a minimizing sequence for (6.3.1) and, for each n € N, consider the
solution (2, of the problem

min {F(Akl(ﬂ), A, () Q] D' CQCQy, Q quasi-open } (6.3.3)

Then €2, is a subsolution for F (A, (), ..., A, () + |Q| in B, where Bp is a ball containing
D. By Theorem 6.3.3, we have that each 2}, is a local shape subsolution in Bf, for E(Q)+m|Q|,
for some universal constant m and so Theorem 6.3.2 applies. Reasoning as in Theorem 6.1.2,
we can suppose that the sets {2, are all contained in a ball of sufficiently large radius R >> 0.
Applying the Buttazzo-Dal Maso Theorem, we obtain the existence of a solution of (6.3.1).

We note that this argument works only if the internal constraint D? is bounded. The reason is
that Theorem 6.3.2 gives only that we can choose €2, to be in the set D%, = {a: . dist(x, DY) < R},
for some R > 0 large enough. But the set D}, has finite measure only if D* is bounded. Thus,
for the general case we will use an argument based on the concentration-compactness principle
from Theorem 6.3.4.

In order to prove existence for general internal obstacles D¢, we first consider the problem

min {)\k(Q) +m|Q] : D'cQCRY Q quasi—open}, (6.3.4)
where k € N, m > 0 and D’ C R? is a quasi-open sets. We have the following existence result.

THEOREM 6.3.5. Let D' C R? be a quasi-open set of finite Lebesque measure and suppose
that the set R¢ \ﬁ contains a ball of radius R, where R > 0 is a constant depending on k, m
and d. Then the problem (6.3.4) has a solution. Moreover, any solution 2 of (6.3.4) is such
that Q C (D' + Bg), where R > 0 is a constant depending only D', k and m. In particular, if
D' is bounded the optimal sets are also bounded. Finally, there is an eigenfunction uy, € H} (),
corresponding to the eigenvalue \i(€2), which is Lipschitz continuous on R,
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PRrOOF. We note that in the case D' = () the claim follows by Theorem 6.1.2. Thus we
suppose 0 < |D!| < co. We also note that if an optimal set exists, then Theorem 6.3.2 and
Theorem 6.3.3 give the last claim.

Let €2,, be a minimizing sequence for (6.3.4). We apply to ,, the concentration-compactness
principle 6.3.4. If the compactness occurs, then we obtain the existence immediately. Thus, we
only need to check what happens in the dichotomy case.

We first prove that (b) holds, then the dichotomy is impossible and so we have the existence.
In fact, if the dichotomy occurs and Q. and €2 are as in Theore 6.3.4, then we can suppose
that dist(0, §2;;) — oco. But then (b) implies that A;(€2,;) — oo and so, for n large enough

M (€ U Q) = Me(F) < A(Q U DY),

which is absurd, since liminf,,_, |2,] < liminf |7 U D.

Suppose now that (a) holds and that we have dichotomy. We also suppose that

lim [Q,|=c_>0 and lim |Q, NDY| =0.
n—oo

n—oo
Since €2, is a minimizing sequence, we can assume:

o M\ (QF) > M (QF UQ,,), since otherwise we would have
lirginf M(Q5) +m|QF uD < lirginf Me(Q,) +m|QF UDY < lin.linf e (Q25) + m|Qy,| — me—,

which is a contradiction;

o \u(Q) > M(2F UQ,), since otherwise we would have that the disjoint union Q* U D!
is optimal for (6.3.4), where Q* is the optimal set for A\; with measure constraint c_
placed in such a way that Q* N D’ = (). In the case kK = 1, this is a contradiction
with the minimality. In fact in this case Q* is a ball of measure c_ which does not
intersect D*. Taking a ball B of slightly larger measure intersecting D?, we obtain a
better competitor for (6.3.4).

Thus, we obtained that for £ = 1 the dichotomy does not appear and so we have the first step
of the induction.
For k > 1, we can assume that there is some 1 <[ < k — 1 such that

(@ 00 = max (9, u(@) )
Let (2;7)* be the solution of
min {)\k_l(Q) +m|Q[: D'CcQCQf, Q quasi—open},
and let 2* be a solution of
min {/\I(Q) : Q C RY Q quasi-open, Q| = c_}.

By Theorem 6.3.3 and Theorem 6.3.2, we have that all (;7)* can be covered by a finite number
of balls of sufficiently small radius. We now translate the connected components of this cover in
R?\ D?, obtaining a set ﬁ,f which has the same measure and spectrum as (;")* and is contained
in D'+ By, for some R not depending on n. We now can choose Q* in such a way to not intersect
any of the sets (2;{ We claim that the sequence ﬁ;t U Q* is still minimizing for (6.3.4). Indeed,



214 6. SPECTRAL OPTIMIZATION PROBLEMS IN R?

we have

lim A\p(Q,) +m|Q| = lim M\ (P UQL) +m|Qf UDY +m|Q, |

n—oo n—oo

= lim max{ (2, }—&—m\Q‘”‘UD’H—m\Q \

n—oo

= lim max{/\k l Q+ —i—m’Q+ U'Dl’ )\Z(Q;) —&-m\Q;f UDZ‘} + mc_

n—oo

n—oo

> lim max{/\k 1 Q+ —i—m!Qﬂ () +m’§rﬂ} +mec—

— lim max{/\k (), N (9 )} F | U,
n—oo

We now again apply the concentration compactness principle, this time to the sequence ﬁﬁ .
If O} ~y-converges to a capacitary measure u, then the set , U Q* is a solution of (6.3.4). If
we are in the dichotomy case of Theorem 6.3.4, then we reapply the above argument to the
sequence (2;{ , obtaining a minimizing sequence of sets composed of optimal sets for some A; in
R? and a sequence of sets containing D’ laying at finite distance from the internal constraint
D’. We note that this procedure stops since, as we saw above, the dichotomy in the case k = 1
is impossible for minimizing sequences.

The existence of Lipschitz continuous eigenfunction follows by Theorem 5.5.3. 0

We are now in position to state our main result.

THEOREM 6.3.6. Let D' C R? be quasi-open sets such that D' has finite Lebesque measure
and the set RY \ﬁ contains a ball of radius R, where R > 0 is a constant depending on k, m
and d. Then for every increasing and locally Lipschitz function F : R — R, the problem (6.3.1)
has a solution.

Any solution Q of (6.3.1) is such that Q C (D' + Bp), where R >0 is a constant depending
only D', f and m. Moreover, if F has growth bounded from below®, then there are orthonor-
mal eigenfunctions ug,, ..., ux,, corresponding to the eigenvalues )\kl(Q), ooy Ak, (), which are
Lipschitz continuous on R,

PROOF. The proof follows by induction on the number of variables of F', exactly as in
Theorem 6.1.8, the first step of the induction being proved in Theorem 6.3.6. The Lipschitz
regularity of the eigenfunctions follows by Theorem 5.5.7. U

Using the same argument we can deal with the fixed measure version of the above results.
As we saw in the case of external constraint, the presence of the geometric obstacle makes
the passage from the problem at fixed measure to the penalized problem quite complicated.
Thus, proving the boundedness of the optimal set, which was one of the fundamental steps in
Theorem 6.3.6 and Theorem 6.1.8, becomes a difficult and in some cases impossible task. Thus,
the existence result for the problem

min {F()\kl(Q), A, () D CcQcC RY, Q quasi-open, Q| = c}, (6.3.5)

relies on the following result.

4Recall that a function F : R” — R has growth bounded from below, if there is a constant a > 0 such that
for each > y € R?, we have F(z) — F(y) > alz — y|.
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PROPOSITION 6.3.7. Suppose that the internal constraint D' satisfies®

D'\ tD'
lim sup DI\ D < 0. (6.3.6)
t—1+ t—1

Suppose that the function F' : RP — R is locally Lipschitz and that there is a > 0 such that
F(z)— F(y) > alx —y|, Yy > x € RP.

Then every solution of the problem (6.3.5) is a shape subsolution for the functional F()\kl, . ,)\kp)—l—
m| - |, for some m > 0, depending on a, D' and the dimension d.

PROOF. Let Q be a solution of (6.3.5). Suppose by contradiction, that for each € > 0, there
is some quasi-open set €. such that D’ C Q. C €,

F (Mg (), Ak, () + el < F( ARy (), ..., A, () + ]9, (6.3.7)

and note that by the optimality of 2 we necessarily have |2\ Q| > 0.
By the compactness of the inclusion H}(2) C L?(), we can suppose, up to a subsequence
that 2. y-converges to some capacitary measure p, whose regular set €1, is such that

< limi
|2 < Tim inf [Q],
Ak(Qu) < Ak(p) = lim Ag(€k), VEk €N
e—0
Thus, by (6.3.7) we have that

M () = M () 1 -y Ay () = M,y ().

Note that [€,| = || = lim._|Q:|. Indeed, if this is not the case, then the set ¢, U D*, for
some t > 1 such that |tQ2. U D!| = ||, is a better competitor than Q in (6.3.5).
Let QL = t.Q. UD?, where t. is such that |QL| = c¢. Then, we have that

F(Mey (Q2), -3 Ak, (9)) 4+ €lQc| < F( Ay (), Ak, () +€]9
< F (Mg (L), A, () + €|
< F (M (869e), oo Ak, (8e82)) + €]t-Q: UDY|
< F (67N (), - 1720, (Qc)) + & (10| + [D'\ £9])

< P20 (), 1770, (Qe)) + e (JtQe| + D"\ t.DY))

and so
2 -1
£
Passing to the limit as e — 0 we have t. — 17 and so, by (6.3.6), there is some constant C' such
that for € small enough

0 | (a2, A (02)| < e (8 = 1)1 + D\ DY) (6.3.8)

‘()\kl (Qg)’ ceey Akp(Qa))‘ < eC.

Passing to the limit as ¢ — 0, we have a contradiction. g

5This condition is for instance satisfied if D is bounded and Lipschitz, or if D¢ is starshaped.
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As a consequence of this result and the argument from Theorem 6.3.5 and Theorem 6.1.8,
we have the following:

THEOREM 6.3.8. Suppose that the function F : RP — R is locally Lipschitz, diverges at
infinity and that there is some a > 0 such that

F(x)— F(y) > alx —y|, Yy >z € RP.

Suppose that D' C R? is a quasi-open set such that R? \ﬁ contains a ball of sufficiently large
radius and we have . A
_pip]
limsup ———— < o©
t—1+ t—1
Then the problem (6.3.5) has a solution. Moreover, any solution Q@ of (6.3.5) is such that

QCD + By, where R >0 is a constant depending only D, f and c.

6.3.3. Existence of open optimal sets for low eigenvalues. In this subsection we
prove that the problem

min {/\k(Q) +m|Q|: D' cQCRY Q open}, (6.3.9)

admits open solutions for k = 1,2. The case k = 1 was treated in [25] by the classical Alt-
Caffarelli technique, where was proved that any optimal set is necessarily open. An analogous
result for £k = 2 was, as far as we know, the first complete result concerning the openness of
an optimal set for higher eigenvalues. Our approach was inspired by the Pierre’s claim for the
optimal sets in a box and that the internal obstacle D' can be used to glue together the two
level sets {us < 0} and {ug > 0} of the second eigenfunction us € Hg(Q), thus proving that the
optimal set €2 must be (quasi-)connected and so, A\a(2) > A1 ().

We start discussing the regularity of the optimal quasi-open set for the first eigenvalue of
the Dirichlet Laplacian.

PROPOSITION 6.3.9. Suppose that the quasi-open set € is a solution of the problem
min {)\1(9) +m|Q: D'cQCcRY Q open}, (6.3.10)

where D is an open set of finite measure. Then §) is open and the first eigenfunction u € Hg ()
is Lipschitz continuous on RY.

PROOF. We first note that by Theorem 6.2.25, there is a Lipschitz continuous first eigen-
function u; € Hg (). Then Q = {u; > 0} UD?, which is an open set. O

PROPOSITION 6.3.10. Suppose that ) is a solution of the problem
min {)\Q(Q) +1Q: D'cQcRY Q quasz'—open}, (6.3.11)

where D' is a connected open set. Then there is an open set w C Q, which is also a solution of
(6.3.11).

PROOF. Let us € HZ () be the second normalized eigenfunction of the Dirichlet Laplacian
on Q. Suppose first that uy changes sign and consider the set w = {us # 0} U D" If Ap(w) >
A1(€2), then by Lemma 5.4.8 we have that ug is Lipschitz and so, w is open. If A\a(2) = A1(Q),
then wuo is also the first eigenfunction on w and so both u; and u, are first eigenfunctions. Thus,

6Alternatively, one may use Proposition 5.1.3.
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if {ug > 0} ND? # (), by the strong maximum principle on the connected open set D!, we have
that D° C {ug > 0} and by the optimality of w, {ug < 0} is a ball. Thus, we have that

M ({uz > 0}) = A ({uz < 0}) = Cyl {uz < 0}~2,
and so, we have that {ug > 0} is the solution of
min {)\1(9) FOM(Q) Y2110 Dy C Q}

Consider the function f(t) =t + Cyt~%? and note that its minimum is achieved for t = \;(B),
where B is the ball minimizing A1 + | - | in R%. If {uz > 0} is not a ball, then we have that
(M ({uz > 0})) > 0 and so {ug > 0} is a local supersolution for A\; + m| - |, for some m > 0.
Thus, applying again Lemma 5.1.1 as in Proposition 5.1.4, we have the claim in the case when us
changes sign. If ug > 0 the argument is the same as in the disconnected case A2(2) = A1(2). O

6.3.4. On the convexity of the optimal set for \;. Suppose that D' ¢ D C R? are
given (quasi-)open sets and let {2 be a solution of

min{/\l(Q) : D' C QC D, Q quasi-open, |Q| = c}. (6.3.12)

It is natural to ask if some of the qualitative properties of the obstacles D’ and D are transferred
to the optimal set €. The boundedness for example is such a property, i.e. if D’ is bounded,
then so is 2. A long-standing conjecture concerns the convexity of the optimal set.

CONJECTURE 6.3.11. Suppose that € is a solution of
min {)\1(9) : QC D, Q quasi-open, | = c},
where the external constraint D¢ is a bounded convexr open set. Then € is conver.

Here we give a negative answer to the analogous question for a convex internal constraint.
More precisely, we prove that a solution €2 of the optimization problem

min {Al(Q) . D' C Q C R% Q quasi-open, |Q| = c}, (6.3.13)
might not be convex, even if the constraint D° is convex.
Consider the sequence of internal constraints D}, where D!, = (—,1)x (—1,1) and consider

the sequence of optimal sets €, for the problem (6.3.13) with internal constraint D,.

PROPOSITION 6.3.12. For every ¢ < 4/m, there is N > 0 such that Qy, is not convex for all
n>N.

PROOF. We begin with some observations on the optimal sets.

(1) By a Steiner symmetrization argument, all the sets (2, are Steiner symmetric with re-
spect to the axes z and y (in consequence, they are also star-shaped sets).

(2) For n large enough, we consider the set ), = D,, U B*(c — ), where for any constant

a > 0, B*(a) denotes the ball with center in 0 and measure a. By the optimality of €,
we have

4
Al(Qn) S )\1(9%) S Al (B*(C - =
n

))-
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F1Gure 6.1. Convex internal obstacle does not imply convex optimal set.

By Theorem 6.3.4, §2,, has a y-converging subsequence, still denoted by ,. Let Q be the ~-limit
of this subsequence. Then

e A\(©) <liminf A (Q,) < liminf A\ (B*(c —

n—oo n—oo

1) = n(B©):

o Q] <liminf|Q,|=-c
n—o0

Using the fact that the ball is the unique minimizer of A\; under a measure constraint, we obtain
Q = B*(c). Consider now the two small balls B’, of center (0, /< —¢) and radius €, and B”, of
center (0, —,/< + ¢) and radius e. Then we have

0,.NB —s0onB =B and Q,NB"—15Q0nB"=BRB".

n—o0 n—oo

Then there is some n large enough such that both sets B’ N, and B” N, are non-empty, and
2, cannot be convex (see Figure 6.1).

In fact, if by contradiction €2, was convex, then we should have that the rhombus R with
vertices (—1,0), (0,—/£+¢), (1,0) and (0, /< —¢) is contained in €,,. But

RI=2 /50> 0

for € small enough and ¢ < 4/m, which is in contradiction with the measure constraint. O

6.4. Optimal sets for spectral functionals with perimeter constraint

In this section we study the existence and regularity of optimal sets for spectral functionals
under a perimeter constraint in R%. In particular we study the shape optimization problem

min {F()\kl(Q), () QC R, Q open, P(Q) =1, |Q| < oo}, (6.4.1)

where the function I’ : RP — R is such that:

(F'1) F is locally Lipschitz continuous;
(F2) F is diverging at infinity, i.e. lim F(x) = +o0 in sense of Definition 6.1.1;

T —+00
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(F'3) F is increasing with growth at least a > 0, in sense of Definition 6.1.1, on every compact
set K C RP\ {0}, i.e. for any = (z1,...,2p) € RP and y = (y1,...,yp) € R? such that
x >y, i.e. satisfying x; > y;, for every j =1,...,p, we have F(z) > F(y). Moreover for
every compact set K C R?\ {0}, there exists a constant a > 0 such that

F(z) — F(y) > alx —y|, forevery xz,ye€ K suchthat x>y.

REMARK 6.4.1. Any polynomial of Ag,,...,\g,, with positive coefficients, satisfies the as-
sumptions (F'1), (F2) and (F'3).

As in the case of measure constraint, we simplest case when I’ depends only on one of the
variables. By the monotonicity of F', this case is equivalent to solving

min {A\4(©) : Q CRY Qopen, P(9) =1, | < +oo}, (6.4.2)
which, by Remark 6.1.3, is equivalent to

min { \() +mP(Q) : © R, Qopen, |] < +oo}, (6.4.3)
for some constant m > 0. In this case, we have the following result.

THEOREM 6.4.2. The shape optimization problem (6.4.3) has a solution. Moreover, any
optimal set Q is bounded and connected. The boundary 0S) is C1<, for every o € (0,1), outside
a closed set of Hausdorff dimension at most d — 8.

PROOF. We prove this theorem in four steps.
Step 1 (Existence of generalized solution). We claim that, for any k € N and m > 0, there
exists a solution of the problem

min {Xk(Q) +mP(Q): QCR% Q measurable, |Q] < oo}. (6.4.4)

Let Q,, be a minimizing sequence for (6.4.4). By the concentration-compactness principle (The-
orem 3.7.9), we have two possibilities for the minimizing sequence: compactness and dichotomy.
Suppose that the compactness occurs. Since (2, is minimizing, there is a constant C' > 0 such
that P(€2,) < C. Thus we may suppose that 1o, converges to 1o in L} (RY) and since 1, is
concentrated, we have that the convergence takes place in L'(R?) and P(Q2) < lim inf,, o, P(Qy).
On the other hand, the sequence of measures [€2,| is also bounded and so the sequence of
energy functions w,,, solutions of

—Aw, =1 in Q,, w, € ﬁé(Qn),

is bounded in L*°(R?). The sequence Tgn converges to a capacitary measure p in R?, i.e.
Wy, — Wy, in L' (R?), where w,, is the energy function of p. Since w,, < Clgq,, for dome universal
C > 0, we obtain that w, < Clg.Thus Q, := {w, > 0} C Q and so, u > I, which in turn gives

Xo(€) < Ap(p) = Jim Ae(Qn).

and so, if the compactness occurs, then  is a solution of (6.4.4).
Suppose now that the dichotomy occurs. Then we may suppose that Q, = QF UQ. where
dist(Q;7, Q) > n and

P() = P2 + P(2), Me(@a) = max { (€2, Wu() },

where [ € {0,...,k} is fixed. Since 2, is minimizing, we may suppose | € {1,...k —1}. In
particular, if £ = 1, then the dichotomy cannot occur.
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We now prove the existence of a solution of (6.4.4) reasoning by induction. if k =
then the existence holds since for every minimizing sequence, the compactness case of Theorem
3.7.9 necessarily occurs. Suppose now that the existence holds for 1,...,k — 1 and let €2, be a
minimizing sequence for the functional Ay + mP. If the compactness occurs for €2,, then the
existence holds immediately. If we are in the dichotomy case, then we consider the solutions Q.
and 2_ of the problems

min {X,(Q) . 0 C R% Q measurable, |Q] < 0o, P(Q) = lim P(m)}

n—oo
min {Xk_l(Q) : Q C RY, Q measurable, || < co, P(Q) = lim P(Q;)},
n—oo
which admit solutions by the inductive assumption and Remark 6.1.3. We now note that
N(Q) <liminf N(QF)  and  Ap_(Q-) < liminf Ap_ (),
n—oo n—oo
and since we can suppose that {2 and €2_ are disjoint and distant sets, we have

Ne(Q4 U QL) < max 2 N(Q24), e (Q-) b < liminf max 4 N (1), Ae—y(2) b = liminf A (€2,),
—

n—oo

which gives that the disjoint union Q4 U Q_ is a solution of (6.4.4).

Step 2 (Existence of open solution). Let © be a solution of (6.4.4). Then  is a supersolution
for Xk + mP and, since Xk is decreasing with respect to the inclusion, €2 is a supersolution for
the perimeter. Now by Proposition 5.6.7 we have that () is an open set and H}(Q2) = ﬁ&(Q)
In particular, by the variational definition of the Dirichlet eigenvalues, we have Ag(€2) = Agx(€2).
Let now U C R? be any open set. Then

Ae(Q) + mP()

() + mP(Q)
< M(U) +mP(U
(

)
< A(U) +mP(U),
which, by the arbitrariness of U proves that € is a solution of

(6.4.3). Moreover, we proved that
there is a solution of (6.4.3) which is also a solution of (6.4.4)

and so, any solution of (6.4.3)
which is also a solution of (6.4.4).

Step 3 (Boundedness and regularity). Let Q be a solution of (6.4.3) (and thus, of (6.4.4)).
Then ) is a perimeter supersolution and, by the results from Section 4.6, it is also a subsolution
for the functional E + mP, for some m > 0. By Theorem 5.7.4, this implies that €2 is a bounded
open set with C® boundary, for every o < 1.

Step 4 (Connectedness of the optimal set). We first prove the result in dimension d < 7,
in which case the singular set of the boundary 0f) is empty. We first note that, since € is a
solution of (6.4.3), it has a finite number (at most k) of connected components. Suppose, by
contradiction, that there are at least two connected components of €2. If we take one of them
and translate it until it touches one of the others, then we obtain a set Q) which is still a solution
of (6.4.6). Using the regularity of the contact point for the two connected components, it is easy
to construct an outer variation of € which decreases the perimeter (see Figure 6.2). In fact,
assuming that the contact point is the origin, up to a rotation of the coordinate axes, we can
find a small cylinder C, and two C'1* functions g; and g such that

91(0) = g2(0) = [Vg1(0)| = [Vg2(0)| = 0, (6.4.5)
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and
Q°nC ={qi(z1,...,24-1) <24 < g2(21,...,xa—1) } N Ch.

Now, for o < r, consider the set ﬁg = QU Cp, D Q. It is easy see that, thanks to (6.4.5) and the
C1@ regularity of g; and gs,

P(Q,) — P(Q) < Coo® 1 — G0 <0,

for ¢ small enough, which contradicts the minimality of Q.

We now consider the case d > 8. In this case the singular set may be non-empty and so,
in order to perform the operation described above, we need to be sure that the contact point is
not singular.

Suppose, by contradiction, that the optimal set €2 is disconnected, i.e. there exist two
non-empty open sets A, B C  such that AUB = Q and AN B = (. We have

DA UOB C 90 = oMQ,

where the last inequality follows by classical density estimates. By Federer’s criterion [80,
Theorem 16.2], A and B have finite perimeter. Arguing as in [3, Theorem 2, Section 4], we
deduce that P(Q2) = P(A) + P(B).

Since both A and B are bounded, there is some zo € R? such that dist(4,z¢ + B) > 0.
Then the set Q' = AU (20 + B) is also a solution of (6.4.6). Let x € A and y € d(zg + B) be
such that |z —y| = dist(A, xo+ B). Since the ball with center (z+y)/2 and radius |z —y|/2 does
not intersect ', we have that in both x and 3, €’ satisfies the exterior ball condition. Hence
both z and y are regular points®.

Consider now the set Q" = (—z + A) U (—y 4+ 2o + B). It is a solution of (6.4.6) and has
at least two connected components, which meet in a point which is regular for both of them.
Reasoning as in the case d < 7, we obtain a contradiction.

FIGURE 6.2. The variation from Step 4 of the proof of Theorem 6.4.2.

g

"Another way to conclude is to notice that for Q the origin is not a regular point, a contradiction with
Theorem 5.7.4.

8This can be easily seen, since any tangent cone at these points is contained in an half-space and hence it
has to coincide with it, see [88, Theorem 36.5]
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REMARK 6.4.3. The regularity of the free boundary proved in Theorem 6.4.2 is not, in
general, optimal. Indeed, it was shown in [24] that the solution € of (6.4.2) for k = 2 has smooth
boundary. The proof is based on a perturbation technique and the fact that A2(Q2) > A1 (£2)
and can be applied for every k € N under the assumption that the optimal set is such that
A(€) > Ap—1(2) . On the other hand it is expected (due to some numerical computations) that
the optimal set Q for A3 in R? is a ball and, in particular, A3(2) = Xo(Q).

We are now in position to state the following more general result

THEOREM 6.4.4. Suppose that F : RP — R satisfies the assumptions (F1), (F2) and (F3).
Then the shape optimization problem

min{F(/\kl(Q),...,)\kp(Q)) . QCRY Q open, P(Q) =1, Q] < +oo}, (6.4.6)

has a solution. Moreover, any optimal set € is bounded and connected and its boundary 0§ is
Cle, for every a € (0,1), outside a closed set of Hausdorff dimension at most d — 8.

PRrROOF. We first consider the problem
min {F(Xkl(Q),...,ka(Q)) . 0 C RY Q measurable, P(Q) =1, |Q] < +oo}. (6.4.7)

By Proposition 6.1.6 with G = P, we have that any solution  of (6.4.7) is a subsolution for
F(M (Q), ..., A, () + mP(Q) and asupersolution for F (A, (),..., A, (Q)) + MP(Q) for
some m, M > 0. Thus, by Theorem 4.6.2, {2 is a supersolution for E—i—ﬁzP, for some m > 0 and,
by Remark 5.6.2, €2 is a perimeter supersolution. Thus, by Theorem 5.7.4 ) is a bounded open
set with C1® outside a set of dimension at most d — 8, for every a € (0,1). Moreover, since
Q is a perimeter supersolution, we have H}(Q) = ﬁ&(Q) and so, by the same argument as in
Theorem 6.4.2, 2 is a solution of (6.4.6) and every solution of 6.4.6 is also a solution of (6.4.7).

The existence of a solution of (6.4.7) follows by induction on the number of variables p,
using the same argument as in Theorem 6.1.8.

In conclusion, the connectedness of the optimal set follows as in Step 4 of the proof of
Theorem 6.4.2. U

6.5. Optimal potentials for Schrédinger operators

In this section we consider optimization problems concerning potentials in place of sets, i.e.
we consider variational problems of the form

min {]—"(V) Ve V}, (6.5.1)

where V is an admissible class of nonnegative Borel functions on the open set Q ¢ R% and F is
a cost functional on the family of capacitary measures /\/lé;p(ﬂ). This problem was extensively
studied far a great variety of cost functionals F and admissible sets V. We refer to [71, Chapter
8] for a extensive survey on the known results (before [34] and [26]).

The admissible classes we study in this section are determined by a function ¥ : [0, +o0] —

[0, +o0]
Y = {V : Q0 — [0,400] : V Lebesgue measurable, / U(V)de < 1} .
Q

The cost functional F is typically given through the solution of some partial differential equation
involving the operator —A 4+ V on 2 as, for example, the functional

FV)=FMW), ..., (V) +/vadx,
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where A\, (V) := A\ (Vdx + Ig) and p € R.

6.5.1. Optimal potentials in bounded domain. In this subsection we consider the case
when € is a bounded open set. Our first result concerns constraints of the form ®(x) = 2P, for
some p > 1. More precisely, we have the following result:

THEOREM 6.5.1. Suppose that Q C R% is a bounded open set. Let F : LL(Q) — R be a
functional, lower semicontinuous with respect to the y-convergence, and let V be a weakly L' (£2)
compact set. Then the problem

min {J—"(V) Ve v}, (6.5.2)
admits a solution.

PRrOOF. Let (V},) be a minimizing sequence in V. By the compactness assumption on V, we
may assume that V,, tends weakly L!(Q) to some V € V. By Proposition 3.6.2, we have that V;,
~v-converges to V and so, by the semicontinuity of F,

F(V) <liminf F(V,,),
n—oo

which gives the conclusion. O

COROLLARY 6.5.2. Let F : R¥ = R be a lower semi-continuous function. let Q be a a given
quasi-open set of finite measure and let p > 1 be a given real numbers. Then, there exists a
solution of the problem

min {F(M(V), .- .7)\k(V)) +/

VPdx @ V:Q—[0,+o0] measumble}, (6.5.3)
Q

admits a solution.

PROOF. It is sufficient to note that both functionals F(A1,...,A;) and V — [, VP dz are
lower semi-continuous with respect to the 7y-convergence. Indeed, for the second one, it is
sufficient to note that, by Theorem 3.6.3 on the bounded sets of positive functions in LP the
~v-convergence and the weak convergence in LP are equivalent. O

REMARK 6.5.3. It is more appropriate to refer to the problem (6.5.3) as to a maximization
problem. In fact, in the typical case when the function f is increasing, the solution of (6.5.3)
is the potential constantly equal to zero on ). In order to have non-trivial solutions one has to
choose f to be a decreasing function on R¥.

We now turn our attention to the case when ® is a decreasing function. In this case it is
natural to expect that the problem (6.5.1) has a non-trivial solution for increasing functions f.
Before we state our main existence result in this case, we will need two preliminary Lemmas.
The first one (Lemma 6.5.4) is a classical result who can also be found in [31] and [5]. The
second one (Lemma 6.5.5) is a classical semi-continuity result, which can be found in [31]. We
report here the proofs for the sake of completeness

LEMMA 6.5.4. Consider an open set Q C R% and a o-finite Borel measure v on ). Let
{dn}nen e a sequence of positive Borel functions on R and let ¢ = sup,, ¢,,. Then, we have that

/§l¢dyzsup{ZAi¢idV},

i€l
where the supremum is over all finite subsets I C N and over all families {A;}icr of disjoint
open sets with compact closure in §2.
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PROOF. By the monotone convergence theorem, it is enough to prove that for each k € N,

k
sup ¢; dv = sup / ¢;dv » .
/Ql<i<k {; Ay

Let B; = {¢; = supy<;< #i} and C; = B; \ Uj<;B;j. Then C1, ..., C}, are disjoint Borel subsets

of ) and i
sup ¢;dv = / ¢; dv.
/Q ; C;

1<i<k

we have

Approximating each C; with compact sets K;;, from inside, and then aproximating each compact
set K;; with open sets A;j; such that {4, }1<i<k is a family of disjoint sets, we have the claim. [

LEMMA 6.5.5. Let 1 < p,q < oo and let u, € LP(Q) and v, € LI(QQ) be two sequences of
positive functions on the open set  C R? such that u, converges strongly in LP to u € LP(f)
and v, converges weakly in L9 to v € L1(Q2). Suppose that H : [0. + oco] — [0,+00] is a convex
function. Then we have

/ uH(v)de < liminf/ un H (vy,) dx.
Q Q

n—oo
PROOF. Let us first prove the claim for H(z) = z. Indeed, if ¢ > p, then for each ¢t > 0,
un At converges strongly L7 to u At and so, we have that

/ v(uAt)de = im [ vy(up At)der <lim inf/ Up Uy, dz, (6.5.4)
Q Q

n—o0 QO n—oo

and we obtain the thesis passing to the limit as ¢ — oco. If ¢’ < p, then for each R > 0, we have
that 1g,u, converges strongly in LY to 1 B and so

/UILBRudmz lim vl Bpuy dx Sliminf/ Uy Uy, AT, (6.5.5)
Q Q

n—oo [¢) n—oo

and we obtain the claim passing to the limit as R — oc.
We now prove the Lemma for generic function H. Let ay,,b, € R be such that for each
zeN
H(x) = sup {anz + b},
neN

and let Ay,..., Aj be disjoint open subsets of . On each A; consider a function ¢; € C°(Ay)
such that 0 < ¢; < 1. Then, we have that a,b € R

k k
Z / (av +b)Tpjudr < liminfz / (avy, + b) T pjup dz
= Q n—o00 s} Q

n—oo

k
<liminf )" / H(on) by da (6.5.6)
j=17%

<liminf [ H(v,)u,dz.

n—oo 0

Taking the supremum over all ¢; € C°(A;) such that 0 < ¢; < 1, we obtain that

n—oo

k
Z/ (av+b)+ud:c§liminf/ H(vp)uy, dx. (6.5.7)
o4 Q
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Now the claim follows by Lemma 6.5.4. U
The following existence result was proved in [34].

THEOREM 6.5.6 (Buttazzo-Dal Maso Theorem for potentials). Let Q C R? be a bounded open
set and ¥ : [0,400] — [0,+00] a strictly decreasing function such that there exists € > 0 for
which the function x — W=1(21%¢) defined on [0, +00], is convex. Then, for any functional F :
Meap(2) = R, which is increasing and lower semi-continuous with respect to the vy-convergence,
the problem (6.5.1) has a solution.

Proor. Let V,, € A(f2) be a minimizing sequence for problem (6.5.1). Then, v, :=
(\I/(Vn))l/ (149) s a bounded sequence in L'*¢(Q) and so, up to a subsequence, we have that
vy, converges weakly in L'*¢ to some v € L'*¢(Q). We will prove that V := U~1(v1+%) is a
solution of (6.5.1). Clearly V € A(Q) and so it remains to prove that F(V) < liminf,, (V).
By the compactness of the ~-convergence in a bounded domain, we can suppose that, up to a
subsequence, V;, y-converges to a capacitary measure p € Mc,p(£2). We claim that the following
inequalities hold true:

F(V) < F(v) < liminf F(V,,). (6.5.8)
n—oo

In fact, the second inequality in (6.5.8) is the lower semi-continuity of F' with respect to the -
convergence, while the first needs a more careful examination. By the definition of «-convergence,
we have that for any u € H}((2), there is a sequence u,, € Hg () which converges to u in L?(Q)
and is such that

/|Vu|2dm+/u2du: lim / VunIde—i—/UiVndl“
Q Q n—=0o0 JO Q

= lim / VunIde—I—/ui\I/_l(v,lfs)dm (6.5.9)
Q Q

n—oo

2/ |Vu2dx+/u2\11_1(v1+€)dx
Q Q

z/ |Vu2dx+/u2Vd:U,
Q Q

where the inequality in (6.5.9) is due to the strong-weak lower semi-continuity result from Lemma
6.5.5. Thus, for any u € H{ (), we have that

/u2d,uz/u2de,
Q Q

and so, V < p. Since F is increasing, we obtain the first inequality in (6.5.8) and so the
conclusion. 0

REMARK 6.5.7. The condition on the admissible set in Theorem 6.5.6 is satisfied by the
following functions:
(1) ¥(z) = z~P, for any p > 0;
(2) ¥(x) =e*, for a > 0.
Indeed, if ¥(x) = 2P, then
\I/_l(xH_E) _ :L,—(l-i-.»s)/p7
is convex for any £ > 0. If U(z) = e~ **, then the function

\I/_l(x1+€) — _1 +e€

log z,
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is convex, also for any € > 0.

REMARK 6.5.8. In particular, Theorem 6.5.6 provides an existence result for the following
problem

min {/\k(V) : V1 Q — [0,400] measurable, /

VP dy = 1}, (6.5.10)
Q

where k£ € N, p > 0 and 2 is a bounded open set.

6.5.2. Optimal potentials in R?. In this subsection we consider optimization problems
for spectral funcionals in R%. In particular, we consider the problem

min {)\k(V) . V:R? = [0, +00] measurable, /

VP dz = 1}. (6.5.11)
Rd

We note that the cost functional A\ (V') and the constraint [p, V" dz have the following rescaling
properties:
REMARK 6.5.9 (Scaling). Suppose that uy is the kth eigenfunction. Then we have
—Auy, + Vug = A\pug,
and rescaling the eigenfunction ug, we have

—A(uk(x/t)) + Viug(z/t) = t_QAkuk(x/t),

where
Vi(z) == t72V (z/t). (6.5.12)
Repeating the same argument for every eigenfunction, we have that
Me(V2) = t720(V). (6.5.13)
On the other hand, we have
/ V, Pde = / tPV (2/t) 7P do = t?PHd / VP dg. (6.5.14)
R4 R4 R4

Now as in the case of eigenvalues on sets, we have

REMARK 6.5.10 (Existence of a Lagrange multiplier). The potential V : R% — [0, +00] is a
solution of

min {)\k(V) +m [ VPdr: V:RY— [0, +oc] Ineasurable}, (6.5.15)

Rd

if and only if, for every ¢ > 0, we have that ‘N/t, defined as in (6.5.12), is a solution of
min {)\k(V) c ViR = [0, +od] measurable,/ V™ Pdx :/ VP d:n}, (6.5.16)
Rd Rd

and the function

F(t) == t2M(V) + mt?P*e | VP g,
Rd

achieves its minimum, on the interval (0, +00), in the point ¢ = 1.

In the case k = 1, the existence holds for every p > 0 by a standard variational argument.
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PROPOSITION 6.5.11 (Faber-Krahn inequality for potentials). For every p > 0 there is a
solution V, of the problem (6.5.11) with k = 1. Moreover, there is an optimal potential V,, given

by

1/p
v_< / yup|2p/<p+l>dx) 72/ 047), (6.5.17)
]Rd

where uy, 1s a radially decreasing minimizer of

(p+1)/p
min / \Vul|? dz + (/ |u|?P/ (P+D) dw) . ue HY(RY), / wrdr=1p. (6.5.18)
R4 R4 Rd

Moreover, u, has a compact support, hence the set {V, < 400} is a ball of finite radius in R,

PROOF. Let us first show that the minimum in (6.5.18) is achieved. Let u, € H'(R?) be a
minimizing sequence of positive functions normalized in L?. Note that by the classical Pélya-
Szegd inequality (see for example [78]) we may assume that each of these functions is radially
decreasing in R? and so we will use the identification u,, = u,(r). In order to prove that the
minimum is achieved it is enough to show that the sequence u, converges in L2(R?). Indeed,
since u, is a radially decreasing minimizing sequence, there exists C' > 0 such that for each
r > 0 we have

()2 < L [ i g < €
~ 1By JB, " o
Thus, for each R > 0, we obtain
+o0o
/ ul dr < Oy / pmdPHD/Ppd=1 g — CHLRTVP, (6.5.19)
B§, R

where Cy and Cy do not depend on n and R. Since the sequence u, is bounded in H'(R%), it
converges locally in L?(R?) and, by (6.5.19), this convergence is also strong in L?(R%). Thus,
we obtain the existence of a radially symmetric and decreasing solution u, of (6.5.18).

We now note that for any u € L?(R?) and V~? € L'(R?), we have

(p+1)/p 1/p
(/ ju|2P/ 1) dm) < / u?V dx (/ vr d:n) = / u?V dz.
Rd Rd R4 R4

Thus, for any u € H'(R?), such that [p,u®dz = 1, we have

(p+1)/p
/ |Vu2dﬂc+</ |u]2p/(p+1)d:v> </ yvu|2d:c+/ u*V dz,
Rd R4 R4 Rd

which gives that the minimum in (6.5.18) is smaller than A;(V), for any V such that [p, V7 dx
and so, it is also smaller than the minimum in (6.5.11) for £ = 1. We now note that, writing
the Euler-Lagrange equation for w,, which minimizes (6.5.18), we have that w, is the first
eigenfunction for the operator —A+V,, on R%. Thus, we obtain that V,, solves (6.5.11) for k = 1.
We now prove that the support of u, is a ball of finite radius. By the radial symmetry of
u, we can write it in the form u,(x) = u,(|z|) = u,(r), where r = |z|. With this notation, u,
satisfies the equation:
" d—1

/ s _
u,, + Cpuy, = Aup,
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where s = (p—1)/(p+1) <1 and C, > 0 is a constant depending on p. After multiplication by
u; and integration, we get

C \ A 1/2
() = (S - )

Now, since u, vanishes at infinity, we obtain for » > 0 large enough
C 1/2
/ P s+1
—Uy(r) 2 | =——<up(r .
1) = (™)
Integrating both sides of the above inequality, we conclude that u, has a compact support. [
We now prove an existence result in the case k = 2. By Proposition 6.5.11, there exists

optimal potential V},, for A;, such that the set of finiteness {V}, < +oo} is a ball. Thus, we have
a situation analogous to the Faber-Krahn inequality, which states that the minimum

min{)\l(Q) . QCRY, \Q|:c}, (6.5.20)

is achieved for the ball of measure c¢. We recall that, starting from (6.5.20), one may deduce,
by a simple argument (see for instance [71]), the Krahn-Szeg6 inequality, which states that the
minimum

min {)\Q(Q) L QCRY |0 = c} , (6.5.21)
is achieved for a disjoint union of equal balls. In the case of potentials one can find two optimal
potentials for A; with disjoint sets of finiteness and then apply the argument from the proof of
the Krahn-Szegd inequality.

PROPOSITION 6.5.12 (Krahn-Szegé inequality for potentials). There exists an optimal po-
tential, solution of (6.5.11) for k = 2. Moreover, it can be chosen to be of the form min{Vi, Va},
where Vi and Va are optimal potentials for A1, whose sets of finiteness {Vi < +oo} and
{Va < 400} are disjoint balls and, moreover, Vi is a translation of Vs.

PrOOF. Given V; and Vi as above, we prove that for every V : R? — [0,40c0] with
f]Rd V~Pdx =1, we have
A2 (min{Vy, Va}) < Ao (V).

Indeed, let uy be the second eigenfunction of —A + V. We first suppose that us changes sign on
R? and consider the functions Vy = sup {V, I{WSO}} and V_ = sup {V, Iiuy>0) }9. We note that

12/ V_pdacZ/ VJ:pdx—i—/ V_Pdz.
Rd Rd R

Moreover, on the sets {uz > 0} and {ug < 0}, the following equations are satisfied:
—Aug + Viug = Aa(V)ug, —Auy + Vouy = a(V)uy,
and so, multiplying respectively by u; and u, , we get

M(V) > MVE),  Aa(V) > M), (6.5.22)

IWe recall that, for any measurable A C R%, we have

~ +o0, x €A,
Ia(z) = {0 vd A
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where we have equalities, if and only if, u; and u, are the first eigenfunctions corresponding to
A1(V4) and A(V2). Let now V4 and V_ be optimal potentials for A\; from Proposition 6.5.11,
corresponding to the constraints

/ VP dr = / ViPde  and / VP dr = / VP da.
R4 R4 R4 R4

By Proposition 6.5.11, the sets of finiteness of 17+ and V_ are compact, hence we may assume
(up to translations) that they are also disjoint. By the monotonicity of A;, we have

max {A1(V1), (Vo) } < max {\(V}), M (V2)},
and so, we obtain
Ao (min{ Vi, Vo}) < max {1 (Vi), \(V2)} < max {A(V4), M (Vo) } < Aa(V),

as required. If uy does not change sign, then we consider Vi = sup{V, —7{u2=0}} and V_ =

sup{V, .7{“1:0}}, where u; is the first eigenfunction of —A + V. Then the claim follows by the
same argument as above. O

We now turn our attention to the general case k > 2.

REMARK 6.5.13 (Compactness of the embedding H{, < L'). We first note that if p € (0, 1]
and fle V=P dx < 400, then for every R > 0 the solution wg of the equation

—Awr +Vwr=1, wpe HY(Bg)NL*(Vdx),
is such that

(1+p)(d+2) (d—2)(1—p)
Lpl 2(d+2p) de2 2(d+2p)
wrdr < wh™ dx wi 2 dx
R R
R4 R4 R4
(1+p)(d+2) (d—2)(1—p)

IN

) ﬁ - ﬁ 2(d—+2p) ) d;jQ 2(d+2p)
/ wrV dzx V7 Pdx C’d/ |Vwg|* dx
R4 R4 R4
p(d+2) d+2 d(1—p)
9 2(d+2p) _ 2(d+2p) 9 2(d+2p)
< (/ wRVd:U> </ Vv pd:z:) (C’d/ |Vwg| dx)
R4 R4 R4
1/2
<C </ WR daz) ,
Rd

for some appropriate constant C' > (. Thus we have that the sequence wg is uniformly bounded
in L'(R%) and so the energy function wy = supg wg is in L'(R?), which in turn gives that the
inclusion H‘I,(Rd) — LY(R?) is compact and, in particular, the spectrum of —A + V is discrete.

We now apply the results from Chapter 3 and Chapter 4 to obtain the existence of optimal
potential in RY.

THEOREM 6.5.14. Suppose that p € (0,1). Then, for every k € N, there is a solution of the
problem (6.5.11). Moreover, any solution V' of (6.5.11) is constantly equal to +o00 outside a ball
of finite radius.

PrOOF. By Remark 6.5.10, every solution of (6.5.11) is a solution also of the penalized
problem (6.5.15), for some appropriately chosen Lagrange multiplier m > 0. Thus, by Theorem
4.5.2 and Lemma 4.5.3, we have that if V' is optimal for (6.5.15), then it is constantly +oo
outside a ball of finite radius.



230 6. SPECTRAL OPTIMIZATION PROBLEMS IN R?

The proof of the existence part follows by induction on k. The first step £ = 1 being proved
in Proposition (6.5.11). We prove the claim for k£ > 1, provided that the existence holds for all
1,...,k—1.

Let V,, be a minimizing sequence for (6.5.11). By Remark 6.5.13, we have that the sequence
wy;, is uniformly bounded in L!(R?) and so, by Theorem 3.7.8, we have two possibilities for the
sequence of capacitary measures V,dx: compactness and dichotomy.

If the compactness occurs, then there is a capacitary measure p such that the sequence
Vpdz ~y-converges to u. By Proposition 3.5.14, we have that || - HH‘I/H I-converges in L2(R?) to

Il - HH}L Now, by the same argument as in Theorem (6.5.6), we have that V' = p,, is a solution
of (6.5.11).
If the dichotomy occurs, then we can suppose that V,, = V,F vV V= where

Ve =1/V,F+1/V,7,  dist({V,” < o0}, {V,; < o0}) = +o0.
Since V,, is minimizing, there is 1 <[ < k — 1 such that
Ae(Va) = M(Vi5) 2 Aea(Vy).

Taking the solutions, V™ and V~ respectively of

min {)\Z(V) . V:R? = [0, +00] measurable, / V7 Pdx = lim |74 d;v},

Rd n—oo Rd

min {)\k_l(V) . V:R? = [0, +00] measurable, / VPdr = lim V., dm},
Rd

n—oo Rd

in such a way that dist({V*+ < oo}, {V~ < oc0}) > 0, we have that V = V* AV~ is a solution
of (6.5.11). 0

6.6. Optimal measures for spectral-torsion functionals

In this section we consider spectral optimization problems for operators depending on ca-
pacitary measures. The admissible class of measures is determined through the torsion energy

1 1
E(p) = min{/ |Vul|? dx + / u? dp — / wdz : u e LYRY) ﬁHl(Rd)},
2 Rd 2 Rd Rd #
while the spectrum corresponding to the measure p is defined as

Vul?dz + 2d
Ak() = min max Joa [V :c2 S Ma
KCH} uek Jga u? dx

(6.6.1)

where the minimum is over all k-dimensional spaces K C H i We recall that if the F(u) < +oo,
then the torsion energy function w, € L'(R%) (u € Mz;p(Rd)), we have that the embedding
H ;11 C L'(RY) is compact and the spectrum of the operator (—A 4 p) is discrete and is given
precisely by (6.6.1).

Fixed a capacitary measure v on R? such that w, € Ll(Rd), we will prove the existence of

optimal capacitary measures for the problem
min {F()\l(,u), .., A(p)) ¢ p capacitary measure, E(p) =c, p > V}, (6.6.2)

where ¢ € [E(v),0) and F : R¥ — R is a given function. We note that the case v = Ip, where
D C R? is a bounded quasi-open set, corresponds to an optimization problem in the box D.
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THEOREM 6.6.1. Let v be a capacitary measure of finite torsion on R and let F : R¥ — R be
a given lower semi-continuous function. Then, for any ¢ € [E(v),0), the optimization problem
(6.6.2) has a solution.

PRrOOF. Consider a minimizing sequence p, for (6.6.2). By Corollary 3.6.1, we have that up
to a subsequence u,, y-converges to some capacitary measure pu € MCTap(Rd) such that u > v.
Thus, we have
1 .1 .
E(u) = ) /]Rd wy, dr = —nh_>rgo 3 Jo Wy, de = nILHQOE(“")

By the semi-continuity of F' and of the spectrum Ay, with respect to the y-convergence, we have
that

F()\l(,u), .. .,)\k(u)) < limian()\l(,un), . ,)\k(,un)),

n—0o0

which concludes the proof. O

In R? the existence of an optimal set is more involved due to the lack of the compactness
provided by the box D. In this case we consider the model problem

min {)\k(,u) : p capacitary measure, E(u) = c}. (6.6.3)

As in the case of potentials, we note that the functionals Ag(u) and E(u) have the following
rescaling properties:

REMARK 6.6.2 (Scaling). Suppose that uy is the kth eigenfunction of (—A + u). Then we
have

—Aug + prug, = A (p)ug,
and rescaling the eigenfunction wuy, we have
—A(ug(z/t)) + peug(z/t) = 2N (w)ur(2/t),
where p; == t42u(-/t), i.e. for every ¢ € L'(u), we have

/ oz /t) du(x) == tT2 [ ¢du. (6.6.4)
Rd Rd
Repeating the same argument for every eigenfunction, we have that

(i) = 120 (1). (6.6.5)

On the other hand, we have
—A(wy(z/t)) + 7 p(a /), (v /t) = 172,
and so,
wy, (z) = t*w,(x/t) and E(u) =t E(p). (6.6.6)
As in the cases of optimization of domains and potentials, we have:

REMARK 6.6.3 (Existence of a Lagrange multiplier). The capacitary measure ji € /\/lzap(]Rd)

is a solution of
min {)\k(ﬂ) —mE(u): € Mgp(Rd)}, (6.6.7)

if and only if, for every ¢ > 0, the capacitary measure fi;, defined as in (6.6.4), is a solution of

min { () : € MEL(RY), E(u) = E(i) }, (6.6.8)
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and the function
F(t) = 1720 () — mi*HE ),
achieves its minimum, on the interval (0, +00), for ¢ = 1.

THEOREM 6.6.4. For every k € N and ¢ < 0, there is a solution of the problem (6.6.3).
Moreover, for any solution p of (6.6.3), there is a ball Br such that u > Ip,,.

PROOF. Suppose first that p is a solution of (6.6.3). By Remark 6.6.3, y is also a solution of
the problem (6.6.7), for some constant m > 0. Let €2, be the set of finiteness of the capacitary
measure p. By the optimality of 1, we have that €1, is a subsolution for the functional

Q= Ae(pV Ig) —mE(pV Ig).

By Corollary 4.7.7, we have that €2, is a bounded set and so there is a ball Br such that u > Ig,,.
The proof of the existence part follows by induction on k. Suppose that £ = 1 and let u,
be a minimizing sequence for the problem

min {)\1(/1) —mE(p): pe McTap(Rd)}. (6.6.9)

By the concentration-compactness principle (Theorem 3.7.8), we have two possibilities: com-
pactness and dichotomy. If the compactness occurs, we have that, up to a subsequence, u,
y-converges to some pu € ML _(R%). Thus, by the continuity of A\; and F, we have that y is a

cap
solution of (6.6.9). We now show that the dichotomy cannot occur. Indeed, if we suppose that

Un = pt Vo, where pf and p,, have distant sets of finiteness, then
M(pn) = min{Ar (up), M)} and  B(pn) = B(uf) + E(uy,)-
Since, by Theorem 3.7.8
lim inf (—E(y)) >0  and lim inf (—E(p,)) >0,
we obtain that one of the sequences p,b and pu,, say u is such that
liminf (A () = mE () < lminf (A1 (4n) — mE(pn)),

which is a contradiction and so, the compactness is the only possible case for pi,.

We now prove the claim for k£ > 1, provided that the existence holds for all 1,...,k — 1.

Let p, be a minimizing sequence for (6.5.11). The sequence w,, is uniformly bounded
in L'(R?) and so, by Theorem 3.7.8, we have two possibilities for the sequence of capacitary
measures [i,: compactness and dichotomy.

If the compactness occurs, then there is a capacitary measure p such that the sequence i,
~-converges to u, which by the continuity of \; and the energy FE, is a solution of (6.6.3).

If the dichotomy occurs, then we can suppose that p, = " Ap,, where the sets of finiteness
Q it and € Lo are such that

dist(Q,+,9Q,-) = +00,  E(un) = E(uy) + E(uy),
lim E(yt) <0  and lim E(u,) < 0.
n—oo n—oo
Since p, is a minimizing sequence, there is a constant 1 <[/ < k — 1 such that

Ak (pn) = Ny ) > Ae—apy)-
Taking the solutions, u™ and p~ respectively of

min {(n) : g€ ML, R, B(u) = lim B(g)},
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min{Ak_z(u): p € MEp([RY), B(p) = lim E(uﬁ)},

n—oo

in such a way that diSt(QM-ﬁ—, Qu‘) > 0, we have that ;= u™ A u~ is a solution of (6.6.3). [

REMARK 6.6.5. The Kohler-Jobin inequality (we refer to [14] and the references therein
for more details on this isoperimetric inequality) states that the ball B minimizes the first
eigenvalue \;(2) among all (open) sets Q of fixed torsion T'(2) = T(B). Since the family
{Io: © c R%open} C Mz;p(]Rd) is dense in Mg;p(Rd) (see [33]), we have that the measure Ip
solves (6.6.3) for k = 1.

6.7. Multiphase spectral optimization problems

Let D € R? be a quasi-open set of finite measure, let p € N and let
ki,....,kp, €N and mi,...,my, € (0, +00),

be given numbers. We consider the problem

P
min { (Ak; () +myl€]) = (Q,...,9Qp) quasi-open partition of D}, (6.7.1)
j=1
where we say that the p-uple of quasi-open sets (Ql, ce ,Qp) is a quasi-open partition of €, if
P
Uocp and  QinQ; =0, fori#je{l,...,p} (6.7.2)
j=1

We say that the partition is open, if all the sets €2; are open.

REMARK 6.7.1. We note that the existence of optimal partitions holds thanks to Theorem
2.4.6.

In this section we study the qualitative properties of the optimal partitions and we prove
the existence of an open optimal partition in the case when the eigenvalues involved in (6.7.1)
are only A; and A2. The results we present here were obtained in [29]. We refer also to [12]
for some numerical computations and further study of the qualitative properties of the optimal
partitions. For the existence part we use the general result from Theorem 2.4.6, the openness
and the other properties of the optimal partitions follow by the results on the interaction be-
tween the energy subsolutions and the regularty results from Section 6.3.3.

We start by a result on the multiphase optimization problems in their full generality, i.e.
we consider the variational problem

P
min {g(}"l(Ql), .. ,fp(Qp)) + Z m; || : (Ql, . Qp) quasi-open partition of D}, (6.7.3)
i=1

where

(P1) the function g : RP — R is increasing in each variable and lower semi-continuous;

(P2) the functionals Fi,...,F, on the family of quasi-open sets are decreasing with respect to
inclusions and continuous for the y-convergence;

(P3) the multipliers my,...m, are given positive constants.
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DEFINITION 6.7.2. We say that the functional F, defined on the family of quasi-open sets in
RY, is locally y-Lipschitz for subdomains (or simply vy-Lip), if for each quasi-open set @ C RY,
there are constants C' > 0 and € > 0 such that
F(Q) = F(Q)] < Cdy(2, ),
for every quasi-open set Qc Q, such that dw(ﬁ, Q) <e.

REMARK 6.7.3. Following Theorem 4.4.1, we have that the functional associated to the k-th
eigenvalue of the Dirichlet Laplacian Q +— A () is y-Lip, for every k € N.

THEOREM 6.7.4. Let D C R? be a quasi-open set of finite measure. Under the conditions
(P1), (P2) and (P3), the problem (6.7.3) has a solution.
Suppose that the function g : RP — R is locally Lipschitz and that each of the functionals
Fi, i =1,...,p is y-Lip. If the quasi-open partition (4,...,Qp) is a solution of (6.7.3), then
every quasi-open set ), 1 =1,...,p, is an energy subsolution. In particular, we have
(i) the quasi-open sets Q; are bounded and have finite perimeter;
(ii) there are no triple points, i.e. if i,j and k are three different numbers, then

8MQZ‘ N 8MQ]‘ N aMQk = (.10
(iii) There are open sets Dy, ..., D, C R? such that
Q, CD;, Vi and QiﬂDj:Q), if i+ j.
PROOF. The existence part follows by Theorem 2.4~.6. We now prove that each €2; is an
energy subsolution. We set for simplicity ¢ = 1 and let 21 C ; be a quasi-open set such that
d(21,€1) < e. We now use the partition (91, Qs,...,€,) to test the optimality of (Q1,...,€,).

By the Lipschitz continuity of g, the ~-Lip condition on Fi,...,F; and the minimality of
(Q1,...,9Qp), we have

my(|Q] = |]) < g(Fi(Q), Fa(Qa), -, Fa(Qm)) — g(Fi (), F2(Qa), . .., Fu(Qn))

< L(Fi(Q1) — Fi()) < CLdy(Q1, ) < CL(E(Q1) — E(M)),

where L is the Lipschitz constant of ¢ and C' the constant from Definition 6.7.2. Repeating
the argument for €2;, we obtain that it is a local shape subsolution for the functional E () +
(CL)~'m;|Q|. The claims (i), (ii) and (iii) follow by Theorem 4.2.16, Proposition 4.3.17 and

Theorem 4.3.21. O
REMARK 6.7.5. A consequence of the claim (iii) of Theorem 6.7.4, we have that each cell

€2; of a given optimal partition (€,...,€2,) is a solution of the problem
min {FZ(Q) : QC D;ND, Q quasi-open, || = |Q,\} (6.7.4)

THEOREM 6.7.6. Let D C R? be a bounded open set. Then every partition (Q,...,Qp),
optimal for (6.7.1), is composed of energy subsolutions satisfying the conditions (i), (ii) and
(iii) of Theorem 6.7.4. Moreover, we have that

(iv) For everyi € {1,...,p}, there is an open set D; C D such that the set Q; is a solution of
the problem

min {)\kZ(Q) +m;i|Q: QCD; quasi—open}. (6.7.5)

10We recall that by 0MQ we denote the measure theoretic boundary of Q.
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(v) If k; = 1, then the set §; is open and connected.
(vi) If ki = 2, then there are non-empty disjoint connected open sets wf and w; ,
subsolutions for the functional \y +m;|-| and are such that the set w; := wf Uw, CQ

is also a solution (6.7.5) and the partition (4, ... ,w;,...,Qp), of (6.7.1).

which are

PROOF. We first note that, by Theorem 4.4.1, we have that A\, is y-Lip and so, satisfies the
hypotheses of Theorem 6.7.4.

In order to prove (iv), we set i = 1 and then we note that by Theorem 6.7.4 (i), there is
an open set D; C D such that

0 C Dy and ’DlﬂQi:@, for ¢ > 2.

Thus, we can use any quasi-open set 2 C D; and the associated quasi-open partition (2, Qs, ..., )
to test the optimality of (21, ...,€,), which gives that 2y solves (6.7.5).

Now (v) and (vi) are consequences of (iv) and Proposition 6.2.7 and Proposition 6.2.8 from
Section 6.3.3. O

REMARK 6.7.7. We note that if we know that, for a generic bounded open set D C R, the
problem

min {)\k(Q) +m|Q: QC D, Q quasi—open},

has an open solution, then also the multiphase problem (6.7.1) has an open solution.






CHAPTER 7

Appendix: Shape optimization problems for graphs

In the previous chapters we discussed a wide variety of spectral optimization problems.
In particular, we have a theory, which can be successfully applied to study the existence of
optimal sets in the very general context of metric measure spaces. The variables in this case
were always subsets of a given ambient space, since most of the geometric and analytical objects
can be viewed as subspaces of some bigger space, this is quite a reasonable assumption. The
more restrictive assumption, and the one that provided enough structure to develop the theory,
concerns the cost functionals. More precisely, to each subset ) of the ambient space X we
associate in a specific way a subspace H(f2) of some prescribed functional space H on X. The
cost functionals with respect to which we optimize are in fact of the form F(Q) = F(H(?)),
where F is a functional on the subspaces of H.

If we have a functional F' for which we cannot prescribe a functional space H and represen-
tation of the form above, then the question becomes more involved. This is the case for example
with the problem

min {,uk(Q) : QCRY Qopen, Q] = 1},

where p(€) is the kth eigenvalue of the Neumann Laplacian on 2. A similar problem occurs
when we consider the problem

min {)\k(M) . dim(M) = m, M embedded in RY, 9M =D, H™(M) < 1},

where D C R? is a given compact embedded manifold of dimension m —1 and the optimization is
over all embedded manifolds M C R? of dimension 2 < m < d, with respect to the kth Dirichlet
eigenvalue on M. By H™, as usual, we denote the m-dimensional Hausdorff measure on R
The one dimensional analogue of this problem can be stated as

min {)\k(C’) : ¢ c R? closed connected set, D C C, H}(C) < 1}, (7.0.6)

where D is a given (finite) closed set and Ay is defined through an appropriately chosen functional
space on C' of continuous functions vanishing on D. In this Chapter we will concentrate our
attention on (7.0.6) in the case k = 1 and in the case of the Dirichlet Energy £(C)!.

Our main result is an existence theorem for optimal metric graphs, where the cost functional
is the extension of the energy functional defined above. In Section 7.3 we show some explicit
examples of optimal metric graphs. The last section contains a discussion, on the possible
extensions of our result to other similar problems, as well as some open questions.

IThe change of notation with respect to the previous chapters is due to the fact that the letter F is reserved
for the number of edges of graph.

237
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7.1. Sobolev space and Dirichlet Energy of a rectifiable set

Let C C R? be a closed connected set of finite length, i.e. H!(C) < oo, where H! denotes
the one-dimensional Hausdorff measure. On the set C we consider the metric

1
de(z,y) = inf {/0 [5(t)|dt : ~:1]0,1] — R? Lipschitz, ¥([0,1]) € C, ¥(0) = z, (1) = y} ,

which is finite since, by the First Rectifiability Theorem (see [6, Theorem 4.4.1]), there is at
least one rectifiable curve in C' connecting x to y. For any function v : C — R, Lipschitz with
respect to the distance d (we also use the term d-Lipschitz), we define the norm

s ) = /C () dH () + /c | ()2 dH (),

where

| (z) = hr;ljal;lp W

The Sobolev space H'(C) is the closure of the d-Lipschitz functions on C with respect to the

norm || - HHl(C)-

REMARK 7.1.1. The inclusion H'(C) € C(C;R) is compact, where C(C;R) indicates the
space of real-valued functions on C, continuous with respect to the metric d. In fact, for each
x,y € C, there is a rectifiable curve « : [0,d(x,y)] — C connecting z to y, which we may assume
arc-length parametrized. Thus, for any u € H'(C), we have that

d(z,y)
uz) — u(y)| < /0 '

d(z,y)
< d(z,y)"/? (/0

< d(a,y)"? ||| 2(c),

o)

and so, u is 1/2-Holder continuous. On the other hand, for any = € C, we have that
L) = [ (uw) = i) 2 ) 04 w) > tua) =2 ey,
where [ = H'(C). Thus, we obtain the L> bound
[ullzee < T2 ull 2oy + 1210 2y < 02 +172) ull g ey
and so, by the Ascoli-Arzeld Theorem, we have that the inclusion is compact.

REMARK 7.1.2. By the same argument as in Remark 7.1.1 above, we have that for any
u € H*(C), the (1,2)-Poincaré inequality holds, i.e.

/C u(z) — ;/cud’;’-ll dH! (z) < 1P/? (/C \u'\QdH1>1/2. (7.1.1)

Moreover, if u € H'(C) is such that u(z) = 0 for some point x € C, then we have the Poincaré

inequality:
lullp2ey < 2l oo ey < Ul [l z2ce)- (7.1.2)
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Since C is supposed connected, by the Second Rectifiability Theorem (see [6, Theorem 4.4.8])
there exists a countable family of injective arc-length parametrized Lipschitz curves ~; : [0,{;] —
C, i € N and an H!'-negligible set N C C such that

C=NU <Ulm(%)> )

i

where I'm(v;) = 7:([0,1;]). By the chain rule (see Lemma 7.1.3 below) we have
| Suu0)| = W1it),  vien

and so, we obtain for the norm of u € H'(C):

el o / (o) )+ 3 /

Moreover, we have the inclusion

St (7.1.3)

H'(C) C ®ienH' ([0, 1)), (7.1.4)

which gives the reflexivity of H!(C) and the lower semicontinuity of the H'(C) norm, with
respect to the strong convergence in L?(C).

LEMMA 7.1.3. Let v : [0,1] = R? be an injective arc-length parametrized Lipschitz curve
with v([0,1]) € C. Then we have

'jtu(*y(t))‘ = |u/|(y(t)), for L'-a.e. t €10,1]. (7.1.5)

PROOF. Let u : C — R be a Lipschitz map with Lipschitz constant Lip(u) with respect to
the distance d. We prove that the chain rule (7.1.5) holds in all the points ¢ € [0,!] which are
Lebesgue points for }%u('y(tm and such that the point (¢) has density one, i.e.

L HHUCN B (1))

r—0 2r

=1, (7.1.6)

(thus almost every points, see for istance [82]) where B,.(x) indicates the ball of radius r in R
Since, H'-almost all points = € C have this property, we obtain the conclusion. Without loss of
generality, we consider ¢ = 0. Let us first prove that |u/|(7(0)) > |%u('y(0))‘. We have that

(3 (®) — u((0))] | d
@A) a0

since 7 is arc-length parametrized. On the other hand, we have

)

|u'|(7(0)) > limsup
t—0

) = Tim sup [23) — w(@)]
[u'|(z) =1 nsup
u(yn) — u(z)|

= 1‘

[u(n(rn)) — u(1n(0))]

um@))\ i (7.17)
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where y,, € C is a sequence of points which realizes the lim sup and =, : [0, 7,] — R? is a geodesic
in C connecting z to y,. Let S, = {t : v,(t) = v(t)} C [0,7y], then, we have

2

| d 2 d ,
| |Guon@)] de< [ |GuGo)] de+ Lit) (- 150
0 S7L
™| d 2
< [ |G| de+ Lite) 04 (B, (10) ) - 20). (T.18)
0
and so, since v(0) is of density 1, we conclude applying this estimate to (7.1.7). O

Given a set of points D = {Dy,..., D} C R? we define the admissible class A(D;1) as the
family of all closed connected sets C containing D and of length H!(C) = I. For any C € A(D;1)
we consider the space of Sobolev functions which satisfy a Dirichlet condition at the points D;:

HY(C;D)={uec H'C):u(Dj)=0,j=1...,k},

which is well-defined by Remark 7.1.1. For the points D; we use the term Dirichlet points. The
Dirichlet Energy of the set C with respect to D1, ..., Dy is defined as

E(C;D)=min{J(u) : ue Hy(C;D)}, (7.1.9)
where

J(u) = ;/C\u’](az)Qd’l-ll(x)—/cu(x) M (). (7.1.10)

REMARK 7.1.4. For any C € A(D;l) there exists a unique minimizer of the functional
J H& (C;D) — R. In fact, by Remark 7.1.1 we have that a minimizing sequence is bounded
in H' and compact in L?. The conclusion follows by the semicontinuity of the L? norm of the
gradient, with respect to the strong L? convergence, which is an easy consequence of equation
(7.1.3). The uniqueness follows by the strict convexity of the L? norm and the sub-additivity of
the gradient |u'|. We call the minimizer of J the energy function of C with Dirichlet conditions
in Dy,...,Dy.

REMARK 7.1.5. Let u € H'(C) and v : C — R be a positive Borel function. Applying the
chain rule, as in (7.1.3), and the one dimensional co-area formula (see for instance [5]), we obtain
a co-area formula for the functions u € H'(C):

l;
/Cv(x)m(x) dH (z) = Z/O
ZZ/;OO( > vow(t)) dr (7.1.11)

uoy; (t)=1

:/Om( > v(a)) dr.

u(z)=T7

Lufou(0) | v(oi(0)

7.1.1. Optimization problem for the Dirichlet Energy on the class of connected
sets. We study the following shape optimization problem:

min {£(C; D) : C € A(D;1)}, (7.1.12)

where D = {Dy, ..., D;.} is a given set of points in R? and [ is a prescribed length.
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REMARK 7.1.6. When k = 1 problem (7.1.12) reads as
E=min{&(C;D) : H'(C)=1, DeC}, (7.1.13)

where D € R? and | > 0. In this case the solution is a line of length [ starting from D (see
Figure 7.1). A proof of this fact, in a slightly different context, can be found in [64] and we
report it here for the sake of completeness.

T

FiGurE 7.1. The optimal graph with only one Dirichlet point.

Let C € A(D;!) be a generic connected set and let w € Hg(C; D) be its energy function, i.e.
the minimizer of J on C. Let v : [0,]] = R be such that (., (7) = py(7), where p,, and pu, are
the distribution function of w and v respectively, defined by

p (1) = H(w < 1) ZH (w; <71), (1) = H (v < 7).

It is easy to see that, by the Cavalieri Formula, ||v||z»(j0)) = [lwllzr(c), for each p > 1. By the
co-area formula (7.1.11)

too oo 1 \-1 T dr
/C|w/|2dH1:/0 (;M) de/O (;Iwﬂ) dT:/O T (7.1.14)

where we used the Cauchy-Schwartz inequality and the identity

-tz e [ (5 )

<t ||

which implies that p,(t) = >, |w/| The same argument applied to v gives:

/Ol v/\2dx:/0 OO(UZ:;W\) dr:/o+oo Mj(TT). (7.1.15)

Since fy, = py, the conclusion follows.

The following Theorem shows that it is enough to study the problem (7.1.12) on the class
of finite graphs embedded in RY. Consider the subset Ay (D;1) C A(D;l) of those sets C, for
which there exists a finite family 7; : [0,/;] = R, i =1,...,n with n < N, of injective rectifiable
curves such that U;v;([0,1;]) = C and ~;((0,1;)) N ;((0,;)) = 0, for each i # j.

THEOREM 7.1.7. Consider the set of distinct points D = {D1,..., Dy} C R? and 1 > 0. We
have that
inf {£(C;D) : C€ A(D;1)} =inf {E(C;D) : C e An(D;1)}, (7.1.16)
where N = 2k — 1. Moreover, if C is a solution of the problem (7.1.12), then there is also a
solution C of the same problem such that C € Ay (D;l).

PROOF. Consider a connected set C € A(D;1). We show that there is a set C € An(D;1)
such that £(C; D) < E(C;D). Let ny : [0,a1] — C be a geodesic in C connecting D1 to Dy and
let 12 : [0,a] — C be a geodesic connecting D3 to Dp. Let ay be the smallest real number such
that n2(a2) € 11([0,a1]). Then, consider the geodesic 3 connecting Dy to D; and the smallest
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real number ag such that n3(as) € n1([0,a1]) Un2([0, az]). Repeating this operation, we obtain
a family of geodesics n;, ¢ = 1,...,k — 1 which intersect each other in a finite number of points.
Each of these geodesics can be decomposed in several parts according to the intersection points
with the other geodesics (see Figure 7.2).

FI1GURE 7.2. Construction of the set C’.

So, we can consider a new family of geodesics (still denoted by n;), n; : [0,1;] — C, i =
1,...,n, which does not intersect each other in internal points. Note that, by an induction
argument on k > 2, we have n < 2k — 3. Let C' = U;n;([0,;]) C C. By the Second Rectifiability
Theorem (see [6, Theorem 4.4.8]), we have that

C=C UFEUT,

where H}(E) = 0 and T’ = (U;r:f 'yj), where v; : [0,/;] — C for j > 1 is a family of Lipschitz
curves in C. Moreover, we can suppose that H!(I'NC’) = 0. In fact, if H'(Im(y;) NC") # 0 for
some j € N, we consider the restriction of v; to (the closure of) each connected component of
IR\ C).

Let w € H}(C; D) be the energy function on C and let v : [0,#(T")] — R be a monotone
increasing function such that [{v < 7}| = H!({w < 7} NT). Reasoning as in Remark 7.1.6, we

have that
1 H(D H'(I) 1
/ \v'\zdac—/ vdr < /]w’]zd”;’-ll —/wd?-[l. (7.1.17)
2 Jo 0 2 Jr r

Let o : [0, H!(T")] — R? be an injective arc-length parametrized curve such that Im(o)NC’ =
0(0) = 2/, where 2’ € C' is the point where wes achieves its maximum. Let C = C' U I'm(0).

Notice that C connects the points Dy, ..., Dy, and has length H1(C) = HY(C') + H (Im(c)) =
H(C") + HY(T) = . Moreover, we have

E(C;D) < J(w) < J(w) = E(C; D), (7.1.18)
where w is defined by

@(z) = {w(x)’ foed, (7.1.19)

v(t) + w(z') —v(0), if z=o0o(t).

We have then (7.1.18), i.e. the energy decreases. We conclude by noticing that the point 2’
where we attach ¢ to C’ may be an internal point for 7;, i.e. a point such that n; *(z’) € (0,1;).
Thus, the set Cis composed of at most 2k — 1 injective arc-length parametrized curves which
does not intersect in internal points, i.e. C € Aok_1(D;1). d

REMARK 7.1.8. Theorem 7.1.7 above provides a nice class of admissible sets, where to search
for a minimizer of the energy functional £. Indeed, according to its proof, we may limit ourselves
to consider only graphs C such that:
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(1) C is a tree, i.e. it does not contain any closed loop;

(2) the Dirichlet points D; are vertices of degree one (endpoints) for C;

(3) there are at most k — 1 other vertices; if a vertex has degree three or more, we call it
Kirchhoff point;

(4) there is at most one vertex of degree one for C which is not a Dirichlet point. In this
vertex the energy function w satisfies Neumann boundary condition w’ = 0 and so we
call it Neumann point.

The previous properties are also necessary conditions for the optimality of the graph C (see
Proposition 7.2.11 for more details).

As we show in Example 7.3.3, the problem (7.1.12) may not have a solution in the class of
connected sets. It is worth noticing that the lack of existence only occurs for particular config-
urations of the Dirichlet points D; and not because of some degeneracy of the cost functional
E. In fact, we are able to produce other examples in which an optimal graph exists (see Section
7.3).

7.2. Sobolev space and Dirichlet Energy of a metric graph

Let V = {Vi,...,Vn} be a finite set and let E C {e;; = {V;,V;}} be a set of pairs of
elements of V. We define combinatorial graph (or just graph) a pair I' = (V, E'). We say the set
V = V(I') is the set of vertices of I and the set E = E(I") is the set of edges. We denote with
|E| and |V| the cardinalities of E and V' and with deg(V;) the degree of the vertex V;, i.e. the
number of edges incident to V;.

A path in the graph I is a sequence V,,, ..., Vs, € V such that for each k =0,...,n—1, we
have that {V4,, Va,,,} € E. With this notation, we say that the path connects Vi, to V;,. The
path is said to be simple if there are no repeated vertices in V,,, ..., V,, . We say that the graph
I' = (V, E) is connected, if for each pair of vertices V;, V; € V' there is a path connecting them.
We say that the connected graph I' is a tree, if after removing any edge, the graph becomes not
connected.

If we associate a non-negative length (or weight) to each edge, i.e. amapl: E(T') — [0, +00),
then we say that the couple (I',1) determines a metric graph of length

(T) =Y Ieij).

1<J

A function u : I' — R™ on the metric graph I' is a collection of functions w;; : [0, ;] — R,
for 1 <1i# j < N, such that:

(1) uji(x) = uij(lij — x), for each 1 <i # j < N,
(2) ul](o) - ulk(o)a for all {i7j7 k} - {17 e '7N}7
where we used the notation l;; = I(e;;). A function u : I' — R is said continuous (u € C(T")),

if u;; € C([0,1;]), for all i,5 € {1,...,n}. We call LP(I") the space of p-summable functions
(p € [1,400)), i.e. the functions u = (u;;);; such that

1
Hu||1£p(r) = 9 Z ‘|Uij‘|1£p(0,lij) < 400,
1,J
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where ||+ || 1r(q,5) denotes the usual LP norm on the interval [a,b]. As usual, the space L?(T') has
a Hilbert structure endowed by the scalar product:
1
<U7U>L2(F) = 3 ZWU’UUM?(OJM)-
1,3

We define the Sobolev space H!(T) as:
H%D:{ueC@yuUEHﬂmﬁm,WJE{LHWM}

which is a Hilbert space with the norm

1 1 lij lij
HUHJ%P(F) =3 Z Huz‘jHip([o,zij]) =35 Z (/0 ’“ij‘2d$+/0 ’“QJle’) .

i3 .3
REMARK 7.2.1. Note that for u € H(T') the family of derivatives (u;j)lgi#SN is not a
function on T', since uj;(z) = a%uji(lij —x) = —uj;(lij — ). Thus, we work with the function
‘u/’ = (’u;j’)1§i7ﬁjSN € L2(F)'

REMARK 7.2.2. The inclusions HY(T') ¢ C(T) and H*(T') C L*(T) are compact, since the
corresponding inclusions, for each of the intervals [0, l;;], are compact. By the same argument,
the H! norm is lower semicontinuous with respect to the strong L? convergence of the functions
in H(T).

For any subset W = {W1,..., Wy} of the set of vertices V(I') = {V1,..., Vn}, we introduce
the Sobolev space with Dirichlet boundary conditions on W:

HyT;W)={ue H'(T) : u(Wy) =" =u(W;) =0}.

REMARK 7.2.3. Arguing as in Remark 7.1.1 we have that for each u € HE(T'; W) and, more

generally, for each u € H'(T') such that u(V,) = 0 for some o = 1, ..., N, the Poincaré inequality
el oy < 02 Jlullzoe < 2|l 22, (7.2.1)

holds, where
o lay = [P dei= 3 [ i da
r 7 0

On the metric graph I', we consider the Dirichlet Energy with respect to W:
ET; W) =inf{J(u) : ue Hy(I;W)}, (7.2.2)
where the functional J : H}(I'; W) — R is defined by

J(u):;/r\ullzdx—/rud:c. (7.2.3)

LEMMA 7.2.4. Given a metric graph T of length | and Dirichlet points {Wy,... , Wi} C
V([) = {Vi,...,Vn}, there is a unique function w = (w;j)1<izj<n € Hg(T; W) which minimizes
the functional J. Moreover, we have

(i) for each 1 <i#j < N and each t € (0,1;;), —wj; = 1;
(ii) at every vertex V; € V(I'), which is not a Dirichlet point, w satisfies the Kirchhoff’s law:

where the sum is over all j for which the edge e;; exists;



7.2. SOBOLEV SPACE AND DIRICHLET ENERGY OF A METRIC GRAPH 245

Furthermore, the conditions (i) and (i1) uniquely determine w.

PROOF. The existence is a consequence of Remark 7.2.2 and the uniqueness is due to the
strict convexity of the L? norm. For any ¢ € H{(I'; W), we have that 0 is a critical point for
the function

1
E»—>/|(w+5<p)’|2dx—/(w+scp)dx.
2 Jr r

Since ¢ is arbitrary, we obtain the first claim. The Kirchhoff’s law at the vertex V; follows by
choosing ¢ supported in a “small neighborhood” of V;. The last claim is due to the fact that if
u € H}(T; W) satisfies (i) and (ii), then it is an extremal for the convex functional J and so,
U= W. 0

REMARK 7.2.5. As in Remark 7.1.5 we have that the co-area formula holds for the functions
u € H(T') and any positive Borel (on each edge) function v : I' — R:

[r@hl@ar= 3 / 7 ()

1<i<j<N

_ /+°° o(x)) dr (7.2.4)

1<i<j<N u”(m =7

_ /0 +°°( > () dr

u(x)=T
7.2.1. Optimization problem for the Dirichlet Energy on the class of metric

graphs. We say that the continuous function v = (vij)i1<izj<ny : I' = R? is an immersion of
the metric graph I' into RY, if for each 1 < i # j < N the function 7;; : [0,1;;] — R? is an
injective arc-length parametrized curve. We say that v : I' — R? is an embedding, if it is an
immersion which is also injective, i.e. for any ¢ # j and i’ # j’, we have

(1) 75 ((0,255)) Myiryo ([0, Lirjr]) = 0,

(2) 745(0) = v4#4(0), if and only if, i =i’

REMARK 7.2.6. Suppose that I' is a metric graph of length [ and that v : T — R? is an
embedding. Then the set C := (I') is rectifiable of length H'(y(I')) = I and the spaces H'(T")
and H'(C) are isometric as Hilbert spaces, where the isomorphism is given by the composition
with the function ~.

Consider a finite set of distinct points D = {Dy,..., Dy} C R? and let [ > St(D), where
St(D) is the length of the Steiner set, the minimal among the ones connecting all the points D;
(see [6] for more details on the Steiner problem). Consider the shape optimization problem:

min {5(F;V) : T e CMG, (T) =1, Vc V(T'), 3y:T — R? immersion, v(V) = D} ,
(7.2.5)
where C MG indicates the class of connected metric graphs. Note that since [ > St(D), there is
a metric graph and an embedding v : T' — R such that D C v(V(T')) and so the admissible set
in the problem (7.2.5) is non-empty, as well as the admissible set in the problem

min {S(F;V) . T e CMG, I(T) =1, V C V(I), 3y:T — R? embedding, (V) = D}
(7.2.6)
We will see in Theorem 7.2.10 that problem (7.2.5) admits a solution, while Example 7.3.3 shows
that in general an optimal embedded graph for problem (7.2.6) may not exist.
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REMARK 7.2.7. By Remark 7.2.6 and by the fact that the functionals we consider are
invariant with respect to the isometries of the Sobolev space, we have that the problems (7.1.12)
and (7.2.6) are equivalent, i.e. if ' € CMG and v : I' — R? is an embedding such that the
pair (T',) is a solution of (7.2.6), then the set «(I') is a solution of the problem (7.1.12). On
the other hand, if C' is a solution of the problem (7.1.12), by Theorem 7.1.7, we can suppose
that C' = Uf\il 7i([0,1;]), where ~; are injective arc-length parametrized curves, which does
not intersect internally. Thus, we can construct a metric graph I' with vertices the set of points
{~i(0), %(lz)}ii , C RY and N edges of lengths ; such that two vertices are connected by an edge,
if and only if they are the endpoints of the same curve ;. The function v = (v;)i=1,.. v : ' = NG
is an embedding by construction and by Remark 7.2.6, we have £(C; D) = E(I'; D).

THEOREM 7.2.8. Let D = {Dy,..., D} C R be a finite set of points and let | > St(D) be
a positive real number. Suppose that T' is a connected metric graph of length I, V C V(T') is a
set of vertices of I' and v : T' — R? is an immersion (embedding) such that D = (V). Then
there exists a conmected metric graph r of at most 2k vertices and 2k — 1 edges asetV C V( )
of vertices of T' and an immersion (embedding) 7 : T — RY such that D = ’y(V) and

E(T;V) < EI; V). (7.2.7)

PRrROOF. We repeat the argument from Theorem 7.1.7. We first construct a connected metric
graph I such that V(I'V) C V(') and the edges of I are appropriately chosen paths in I'. The
edges of I', which are not part of any of these paths, are symmetrized in a single edge, which we
attach to I'V in a point, where the restriction of w to I achieves its maximum, where w is the
energy function for I.

Suppose that Vi,...,V, € V C V(T') are such that v(V;) = D;, i = 1,..., k. We start con-
structing I by taking V := {V4,...,V;} € V(I"). Let o1 = {Vi,, Vi, ..., Vi.} be a path of dif-
ferent vertices (i.e. simple path) connecting Vi = V;, to Vo =V, and let 62 = {V},,Vj,,...,V}, }
be a simple path connecting Vi =V}, to V3 = Vj,. Let t’ € {1 ..,t} be the smallest integer
such that Vj, € o1. Then we set V;, € V(I) and o2 = {V},,V};,...,V},}. Consider a simple
path 3 = {Ving, Vinys - - -, Vin, } connecting Vi =V, to V3 = V,,,, and the smallest integer »’
such that V;, , € o1 Uoa. We set V,,, , € V(T’) and o3 = {Ving, Vinys - - - , Vin,, }. We continue
the operation until each of the points Vi,...,V} is in some path o;. Thus we obtain the set of
vertices V(I). We define the edges of I by saying that {V;,Vi} € E(I") if there is a simple
path o connecting V; to Viy and which is contained in some path o; from the construction above;
the length of the edge {V;, Vi/} is the sum of the lengths of the edges of I" which are part of o.
We notice that IV € CMG is a tree with at most 2k — 2 vertices and 2k — 2 edges. Moreover,
even if I is not a subgraph of I' (E(I') may not be a subset of E(I")), we have the inclusion
HY(T") c HY(T).

Consider the set E” C E(T") composed of the edges of I' which are not part of none of the
paths o; from the construction above. We denote with I” the sum of the lengths of the edges in
E". For any e;; € E" we consider the restriction w;; : [0,;;] — R of the energy function w on e;;.
Let v : [0,1”"] — R be the monotone function defined by the equality [{v > 7}| = ZeijeE” H{wi; >
7}|. Using the co-area formula (7.2.4) and repeating the argument from Remark 7.1.13, we have

that
1 l// ll‘]
2/ W' |2da —/ x)dr < Z < / w; 2da —/ Wy d:c) : (7.2.8)
0 0 0

eEU

l//
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Let I be the graph obtained from I' by creating a new vertex Wj in the point, where the
restriction wps achieves its maximum, and another vertex W, connected to Wi by an edge of
length 1”. Tt is straightforward to check that [ is a connected metric tree of length [ and that
there exists an immersion 7 : I — R? such that D = (V). The inequality (7.2.7) follows since,
by (7.2.8), J(@) < J(w), where @ is defined as w on the edges E(I") € E(I') and as v on the
edge {W1, Wa}. O

Before we prove our main existence result, we need a preliminary Lemma.

LEMMA 7.2.9. Let I' be a connected metric tree and let V C V(') be a set of Dirichlet
vertices. Let w € HY(T;V) be the energy function on T with Dirichlet conditions in V, i.e.
the function that realizes the minimum in the definition of £(I';V). Then, we have the bound
[w'|[ L < U(T).

Proor. Up to adding vertices in the points where |w’| = 0, we can suppose that on each
edge €;; = {V;,V;} € E(T) the function w;; : [0,l;;] = RT is monotone. Moreover, up to
relabel the vertices of I" we can suppose that if e;; € V(I') and ¢ < j, then w(V;) < w(Vj). Fix
Vi, Vir € V(I') such that e;» € E(I'). Note that, since the derivative is monotone on each edge,
it suffices to prove that ]w“,( )| < U(T). It is enough to consider the case i < 7', i.e. wl,(0) > 0.
We construct the graph I' inductively, as follows (see Figure 7.3):

(1) Vi e V(D);
(2) ifV; e V(') and Vj, € V(I') are such that ejr € E(I') and j < k, then V}, € V(') and
€k € E(f)

FiGure 7.3. The graph r ; with the letter N we indicate the Neumann vertices.

The graph I constructed by the above procedure and the restriction w € H! (f) of wto D
have the following properties:
(a) On each edge ej;, € E(I), the function Wjy, is non-negative, monotone and w7, = —1;
(b) w(Vj) > w(Vy) whenever e, € E(I' T) and j > k; N
(c) if V; e V(I I') and j > i, then there is exactly one k < j such that ex; € E(I);
(d) for j and k as in the previous point, we have that

0 < Wi (l) < Z{E

where the sum on the right-hand side is over all s > j such that es; € E (T'). If there are not
such s, we have that wk] (lg;) = 0.



248 7. APPENDIX: SHAPE OPTIMIZATION PROBLEMS FOR GRAPHS

The first three conditions follow by the construction of I, while condition (d) is a consequence
of the Kirchkoft’s law for w.

We prove that for any graph I and any function @ € H(T'), for which the conditions (a), (b),
(c) and (d) are satisfied, we have that

> wj;(0) <UL,
j

where the sum is over all j > 7 and ¢;; € E(f) It is enough to observe that each of the
operations (i) and (i7) described below, produces a graph which still satisfies (a), (b), (c) and
(d). Let V; € V(') be such that for each s > j for which ejs € E(T), we have that wi(ljs) =0
and let k < j be such that e;;, € E(T).

(i) If there is only one s > j with ejs € E(T), then we erase the vertex V; and the edges
erj and ejs and add the edge ey of length Iy, := l; + [js. On the new edge we define
Wgs : [0, lsx] — RT as

2
~ x -
Whs () = ==+ les 2 + 101 (0),
which still satisfies the conditions above since @;Cj —lej <ljs, by (d), and W), = s > @;j(O).
s ) I ]

(ii) If there are at least two s > j such that ejs € E(T'), we erase all the vertices V; and edges

ejs, substituting them with a vertex Vg connected to V; by an edge e;g of length

lis = szs,

where the sum is over all s > j with e;s € E(I’ ) On the new edge, we consider the function

w;s defined by
2

~ €T ~
sz(a:) = —? + ljgl‘ + w(Vj),

which still satisfies the conditions above since

Yo @ 0)= Y s =ls = wjs(0).
{s:s>j} {s:s>5}
We apply (i) and (¢) until we obtain a graph Wlth Vertlces Vi, Vj and only one edge e;; of length
I(T'). The function we obtain on this graph is —Z- ° 4+ I(T')x with derivative in 0 equal to I(T').

Since, after applying (¢) and (i), the sum 3., w (O) does not decrease, we have the claim. [

THEOREM 7.2.10. Consider a set of distinct points D = {D1, ..., Dy} C R? and a positive
real number | > St(D). Then there exists a connected metric graph I, a set of vertices V C V(I)
and an immersion v : T — R which are solution of the problem (7.2.5). Moreover, T can be
chosen to be a tree of at most 2k vertices and 2k — 1 edges.

PROOF. Consider a minimizing sequence (I',,~,) of connected metric graphs I',, and im-
mersions v, : I';, — R By Theorem 7.2.8, we can suppose that each T',, is a tree with at most
2k vertices and 2k — 1 edges. Up to extracting a subsequence, we may assume that the metric
graphs I'), are the same graph I' but with different lengths Lis of the edges e;;. We can suppose
that for each e;; € E(T) Iy — lij for some l;; > 0 as n — oo. We construct the graph I from T
identifying the vertices V;, V; € V(I') such that l;; = 0. The graph [ is a connected metric tree
of length [ and there is an immersion 3 : I' — R% such that D C ~(T ) In fact if {V1,...Vn}
are the vertices of I', up to extracting a subsequence, we can suppose that foreacht=1,..., N
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(Vi) = X; € RE We define 5(V;) := X; and vij = [0,1;5] — R? as any injective arc-length
parametrized curve connecting X; and X, which exists, since
To prove the theorem, it is enough to check that

ET;V) = lim €(I'; V).

Let w™ = (wg)u be the energy function on I';,. Up to a subsequence, we may suppose that

for each i = 1,..., N, w"(V;) — a; € R as n — oo. Moreover, by Lemma 7.2.9, we have that
if [;; = 0, then a; = a;. On each of the edges e;; € E(I'), where [;; > 0, we define the function
Wij : [0, ll]] — R as the parabola such that ’U)U(O) = aq, w”(l”) = aj and w;’] = —1on (O, l”)
Then, we have

1 l?j n\/2 l?j n 1 tij 112 tis

2/0 |(wij) |“ dx _/0 wi; dx — 5 ; |(wiz)'|* dz _/0 w;j dx,

and so, it is enough to prove that w = (wj;);; is the energy function on T, ie. (by Lemma 7.2.4)
that the Kirchoff’s law holds in each vertex of I'. This follows since for each 1 < i # j < N we
have

(1) (w}5)'(0) — w;;(0), as n — oo, if l;; # 0;
(2) [(wf)'(0) = (wib)'(IF)| < 17 — 0, as n — o0, if l;; = 0.

The proof is then concluded. O
The proofs of Theorem 7.2.8 and Theorem 7.2.10 suggest that a solution (I',V,~) of the

problem (7.2.5) must satisfy some optimality conditions. We summarize this additional infor-

mation in the following Proposition.

PROPOSITION 7.2.11. Consider a connected metric graph T', a set of vertices V C V(I') and
an immersion v : I' — R? such that (I',V,7) is a solution of the problem (7.2.5). Moreover,
suppose that all the vertices of degree two are in the set V. Then we have that:

(i) the graph I is a tree;
(ii) the set V has exactly k elements, where k is the number of Dirichlet points {D1,..., Dg};
(iii) there is at most one vertex V; € V(I') \'V of degree one;
(iv) if there is no vertex of degree one in V(I')\'V, then the graph I' has at most 2k — 2 vertices
and 2k — 3 edges;
(v) if there is exactly one vertex of degree one in V(I') \ 'V, then the graph T' has at most 2k
vertices and 2k — 1 edges.

Proor. We use the notation V(I') = {V1,...,Vn} for the vertices of I" and e;; for the
edges {V;,V;} € E(T'), whose lengths are denoted by l;;. Moreover, we can suppose that for
j =1,...,k, we have v(V;) = Dj;, where Dy,..., Dy are the Dirichlet points from problem
(7.2.5) and so, {Vi,...,Vi} C V. Let w = (w;j)i; be the energy function on I' with Dirichlet
conditions in the points of V.

(i) Suppose that we can remove an edge e;; € E(I'), such that the graph I" = (V(T'), E(T')\ e;5)

is still connected. Since w;; = —1 on [0,/;;] we have that at least one of the derivatives

(0) and wj;(l;;) is not zero. We can suppose that w;;(l;;) # 0. Consider the new graph r

/
ij N
to which we add a new vertex: V(I') = V(I') UVj, then erase the edge e;; and create a new
one ejo = {V;, Vo}, of the same length, connecting V; to Vo: E(I') = (E(I") \ ei;) U eso. Let

w
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w be the energy function on ' with Dirichlet conditions in V. When seen as a subspaces
of @;;H([0,1;5]), we have that HZ(T;V) C H}(T;V) and so E(T'; V) < E(T; V), where the
equality occurs, if and only if the energy functions w and w have the same components in
@®i;H1(0,1;;]). In particular, we must have that w;; = w;o on the interval [0, ;;], which is
impossible since wj;(l;;) # 0 and wjy(l;;) = 0.

(it) Suppose that there is a vertex V; € V with j > k and let w be the energy function on I' with
Dirichlet conditions in {V4, ..., Vi }. We have the inclusion H}(I'; V) C HY(T; {V4,...,Vi})
and so, the inequality J(w) = £(I;{V1,...,Vi}) < E(I;V) = J(w), which becomes an
equality if and only if w = w, which is impossible. Indeed, if the equality holds, then in
Vj, w satisfies both the Dirichlet condition and the Kirchoft’s law. Since w is positive, for
any edge ej; we must have w;;(0) = 0, w7;(0) = 0, wf; = =1 ad wj; > 0 on [0, l;;], which is
impossible.

(#11) Suppose that there are two vertices V; and Vj of degree one, which are not in V, i.e. ,j > k.
Since I is connected, there are two edges, e; and e;; starting from V; and Vj respectively.
Suppose that the energy function w € HJ(I; {V4, ..., Vi}) is such that w(V;) > w(V;). We
define a new graph I' by erasing the edge ej; and creating the edge e;; of length [;;. On
the new edge e;; we consider the function w;j(z) = wj; (x) +w(V;) —w(Vj). The function w
on I obtained by this construction is such that J(@) < .J(w), which proves the conclusion.

The points (iv) and (v) follow by the construction in Theorem 7.2.8 and the previous claims (3),

(ii) and (%ii). O

REMARK 7.2.12. Suppose that V; € V(I') \ V is a vertex of degree one and let V; be the
vertex such that e;; € E(I'). Then the energy function w with Dirichlet conditions in V satisfies

w;i

has at most one Neumann vertex.

(0) = 0. In this case, we call V; a Neumann vertex. By Proposition 7.2.11, an optimal graph

In some situations, we can use Theorem 7.2.8 to obtain an existence result for (7.1.12).

PROPOSITION 7.2.13. Suppose that D1, Do and Ds be three distinct, non co-linear points in
R? and let | > 0 be a real number such that there exists a closed set of length I connecting D1,
Dy and Ds. Then the problem (7.1.12) has a solution.

PROOF. Let the graph T' be a solution of (7.2.5) and let v : T' — R be an immersion of T
such that v(V;) = D; for j = 1,2, 3. Note that if the immersion v is such that the set v(I') C R¢
is represented by the same graph I', then v(I") is a solution of (7.1.12) since we have

E(Fa {Vlavéa‘/é}) = E(O7 D1>D27D3)'

By Proposition 7.2.11, we can suppose that I' is obtained by a tree IV with vertices V4, V5 and
V3 by attaching a new edge (with a new vertex in one of the extrema) to some vertex or edge
of I". Since we are free to choose the immersion of the new edge, we only need to show that
we can choose v in order to have that the set y(I") is represented by IV. On the other hand we
have only two possibilities for IV and both of them can be seen as embedded graphs in R? with
vertices D1, Dy and Dsg. O

7.3. Some examples of optimal metric graphs

In this section we show three examples. In the first one we deal with two Dirichlet points,
the second concerns three aligned Dirichlet points and the third one deals with the case in which
the Dirichlet points are vertices of an equilateral triangle. In the first and the third one we find
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the minimizer explicitly as an embedded graph, while in the second one we limit ourselves to
prove that there is no embedded minimizer of the energy, i.e. the problem (7.2.6) does not admit
a solution.

In the following example we use a symmetrization technique similar to the one from Remark
7.1.6.

EXAMPLE 7.3.1. Let D; and Dy be two distinct points in R? and let [ > |D; — Ds| be a real
number. Then the problem

min {g(r; (Vi,Va}): T € CMG, I(T) =1, Vi, Vs € V(I),

7.3.1
exists v : I' = R immersion, (V1) = Dy,v(Va) = DQ}. ( )

has a solution (I',~), where I' is a metric graph with vertices V(I") = {V1, Vo, V3, V4} and edges
E(T) = {e1s = {V1,Vs}, €23 = {V2, V3}, eas = {V4, V3}} of lengths l13 = ly3 = 3|Dy — Ds| and
I34 = | — |Dy — Ds|, respectively. The map v : I' — R? is an embedding such that v(V;) = Dy,
v(Va) = Dy and v(V3) = 212 (see Figure 7.4).

2

2

=~
B
&

FIGURE 7.4. The optimal graph with two Dirichlet points.

To fix the notations, we suppose that |D; — Da| = [ —e. Let u = (uj;);; be the energy
function of a generic metric graph ¥ and immersion o : ¥ — R? with Dy, Dy € o(V(%)).
Let M = max{u(z) : € ¥} > 0. We construct a candidate v € H}(T;{V1,V2}) such that
J(v) < J(u), which immediately gives the conclusion.

We define v by the following three increasing functions

V13 = V23 EHl([O, (Z—E)/QD, v34€H1([0,€D,
with boundary values
1)13(0) = 1)23(0) =0, 1)13(([ — 8)/2) = U23((l — 8)/2) = 7)34(0) =m < M,

and level sets uniquely determined by the equality g, = u,, where u, and u, are the distribution
functions of v and v respectively, defined by

p() =H' (fu<t) = Y H'{uy <t}),

ei;€E(X)

() =H' {v<th) = Y H'{vs <t}).

§=1,2,4

As in Remark 7.1.6 we have |[v||1 ) = [|u[/1(¢) and

—1
/2 | do = /0M<UZ:; ]u’|) dr > /OMnZ(T) (uzz; u’|1(7')) dr = /OM Z}EE:; dr (7.3.2)
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where n,(7) = H°({u = 7}). The same argument holds for v on the graph T' but, this time,

with the equality sign:
M M2
/|v’|2dx:/ (> 1w1) dT:/ () o (7.3.3)
r 0o N 0

1 (T)

since [v'| is constant on {v = 7}, for every 7. Then, in view of (7.3.2) and (7.3.3), to conclude
it is enough to prove that n,(7) > n,(7) for almost every 7. To this aim we first notice that,
by construction n,(7) = 1 if 7 € [m, M] and n,(7) = 2 if 7 € [0,m). Since n, is decreasing
and greater than 1 on [0, M], we only need to prove that n, > 2 on [0, m]. To see this, consider
two vertices Wp, Wy € V() such that o(W;) = Dy and o(Ws) = Ds. Let n be a simple path
connecting Wy to Ws in X. Since o is an immersion we know that the length (1) of n is at least
[ — e. By the continuity of u, we know that n, > 2 on the interval [0, max, u). Since n, =1 on
[m, M], we need to show that max, u > m. Otherwise, we would have

tn) < {u < maxu}| <[{u <m}| = {v < m}| =[D1 — Dof < In),
which is impossible.

REMARK 7.3.2. In the previous example the optimal metric graph I' is such that for any
(admissible) immersion v : I' — R?, we have |y(V1) — v(V3)| = l13 and |y(Va) — v(V3)| = la3, i.e.
the point v(V3) is necessary the midpoint w, so we have a sort of rigidity of the graph I'.
More generally, we say that an edge e;; is rigid, if for any admissible immersion v : I' — R?, i.e.
an immersion such that D = v(V), we have |y(V;) — v(V})| = l;j, in other words the realization
of the edge ¢;; in R? via any immersion v is a segment. One may expect that in the optimal
graph all the edges, except the one containing the Neumann vertex, are rigid. Unfortunately,
we are able to prove only the weaker result that:

(1) if the energy function w, of an optimal metric graph I', has a local maximum in the
interior of an edge e;;, then the edge is rigid; if the maximum is global, then I" has no
Neumann vertices;

(2) if " contains a Neumann vertex Vj, then w achieves its maximum at it.

To prove the second claim, we just observe that if it is not the case, then we can use an argument
similar to the one from point (iii) of Proposition 7.2.11, erasing the edge e;; containing the
Neumann vertex V; and creating an edge of the same length that connects V; to the point,
where w achieves its maximum, which we may assume a vertex of I' (possibly of degree two).

For the first claim, we apply a different construction which involves a symmetrization
technique. In fact, if the edge e;; is not rigid, then we can create a new metric graph of
smaller energy, for which there is still an immersion which satisfies the conditions in problem
(7.2.5). In this there are points 0 < a < b < l;; such that l;; — (b — a) > |v(Vi) —v(V;)| and
ming, y wi; = wij(a) = wi;(b) < max, ;) wi;. Since the edge is not rigid, there is an immersion
such that |y;;(a) —755(b)| > |b — a|. The problem (7.3.1) with D; = 7;j(a) and Dy = ~;;(b) has
as a solution the T-like graph described in Example 7.3.1. This shows, that the original graph
could not be optimal, which is a contradiction.

ExAMPLE 7.3.3. Consider the set of points D = {D;, D9, D3} C R? with coordinates re-
spectively (—1,0), (1,0) and (n,0), where n is a positive integer. Given [ = (n + 2), we aim to
show that for n large enough there is no solution of the optimization problem

min{E(F;V) T e OMG, I(T) =1, VC V(I), 3y:T — R embedding, D = V(V)}.
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In fact, we show that all the possible solutions of the problem
min {E(F;V) :'e CMG, I(T)=1, vcV(), 3Iy:T — R immersion, D = v(V)}, (7.3.4)

are metric graphs I' for which there is no embedding v : I' — R? such that D C ~(V(I)).
Moreover, there is a sequence of embedded metric graphs which is a minimizing sequence for
the problem (7.3.4).

More precisely, we show that the only possible solution of (7.3.4) is one of the following
metric trees:

(i) Ty with vertices V(I'1) = {V1,Va,V3,V4} and edges E(I'1) = (ens = {V1,Vi},eaq =
{Va,Vi},e34 = {V3,V4} of lengths l14 = log = 1 and l34 = n, respectively. The set of
vertices in which the Dirichlet condition holds is Vi = {V1, V, V3}.

(ii) I'y with vertices V(Fg) = {M}?:p and edges E(FQ) = {614, €24, €35, €45, 656} ,where € =
{Wi, Wi} for 1 <i#j<6oflengths iy =14+, loa=1—-a,l3s =n—f,l4s =5 — a,
ls6 = «, where 0 < o < 1 and @ < 8 < n. The set of vertices in which the Dirichlet
condition holds is V; = {Vi, V, V3}. A possible immersion v is described in Figure 7.5.

Vs
o« 1 o+
Vs
1 Vi Vo V3 |41 Vi Va V3

F1GURE 7.5. The two candidates for a solution of (7.3.4).

We start showing that if there is an optimal metric graph with no Neumann vertex, then
it must be I'y. In fact, by Proposition 7.2.11, we know that the optimal metric graph is of the
form T'y, but we have no information on the lengths of the edges, which we set as l; = l(e;4), for
i =1,2,3 (see Figure 7.6). We can calculate explicitly the minimizer of the energy functional
and the energy itself in function of Iy, I3 and [3.

h

lo( Va I3

Vi Va V3
FIGURE 7.6. A metric tree with the same topology as I'y.

The minimizer of the energy w : I' — R is given by the functions w; : [0,l;] — R, where
1=1,2,3 and
2
x
wi(x) = D) + a;x.

where
_h lols(ly + lo + 13)

2 2(l1l2 + lol3 —l—l3l1)7
and as and ag are defined by a cyclic permutation of the indices. As a consequence, we obtain

a

that the derivative along the edge e14 in the vertex Vj is given by

Lo lls(ly+ 1o+ 13)
- _h 7.3.5
wy(l1) 1ta 2 + 2(l1lz + lal3 + 1311)’ ( )
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and integrating the energy function w on I', we obtain

(I3 + I + 13)211 1513

4<lll2 + lols + l3l1)'

Studying this function using Lagrange multipliers is somehow complicated due to the com-

1
EM {1, Vo, V3}) = —ﬁ(lf +134+ 1) —

plexity of its domain. Thus we use a more geometric approach applying the symmetrization
technique described in Remark 7.1.6 in order to select the possible candidates. We prove that
if the graph is optimal, then all the edges must be rigid (this would force the graph to coincide
with I'1). Suppose that the optimal graph I' is not rigid, i.e. there is a non-rigid edge. Then,
for n > 4, we have that Iy < I3 < I3 and so, by (7.3.5), we obtain w§(l3) < w)(l1) < wh(l2). As
a consequence of the Kirchoff’s law we have wj(l3) < 0 and wj(l2) > 0 and so, w has a local
maximum on the edge es4 and is increasing on ej4. By Remark 7.3.2, we obtain that the edge
e3q is rigid.

We first prove that wj(l;) > 0. In fact, if this is not the case, i.e. wj(l1) < 0, by Remark
7.3.2, we have that the edges ey4 is also rigid and so, I; +13 = |D; — D3| =n+ 1, ie. Iy = 1.
Moreover, by (7.3.5), we have that w/(l;) < 0, if and only if I? > lyl3 = I3. The last inequality
does not hold for n > 11, since, by the triangle inequality, lo + I3 > |Dy — D3| = n — 1, we have
Iy < 3. Thus, for n large enough, we have that w is increasing on the edge e4.

We now prove that the edges ej4 and egy are rigid. In fact, suppose that eaq is not rigid.
Let a € (0,11) and b € (0,l3) be two points close to [; and Iy respectively and such that
wig(a) = waey(b) < w(Vy) since wyg and woyy are strictly increasing. Consider the metric graph
I whose vertices and edges are

VD) = {Vi=W, Va=Vo, V3 = V3, Vi = Vi, Vs, Vi },

E() = {e1s, eas, eus, esa, eas},

where €;; = {IZ, 17}} and the lengths of the edges are respectively (see Figure 7.7)

lis=a, loys=0b, lys =1lo— b, s34 =13, lsg =1, —a.

a Vi Vi

'/.;/\O\ Ve
7
i b i °

Va V3 Va V3

FIGURE 7.7. The graph I (on the left) and the modified one ' (on the right).

The new metric graph is still a competitor in the problem (7.3.4) and there is a function
w € H(T;{V1, Vs, V3}) such that E(T;{Vi, V2, V3}) < J(w) = J(w), which is a contradiction
with the optimality of I'. In fact, it is enough to define w as

W15 = wid|[0,a), Was = Waalop], Wss = W2alp1,), W4 = W34, Wea = Widl[ay];

and observe that w is not the energy function on the graph T since it does not satisfy the
Neumann condition in YN/G. In the same way, if we suppose that w4 is not rigid, we obtain a
contradiction, and so all the three edges must be rigid, i.e. I' =T';.

In a similar way we prove that a metric graph I' with a Neumann vertex can be a solution
of (7.3.4) only if it is of the same form as I's. We proceed in two steps: first, we show that, for
n large enough, the edge containing the Neumann vertex has a common vertex with the longest
edge of the graph; then we can conclude reasoning analogously to the previous case. Let I' be



7.3. SOME EXAMPLES OF OPTIMAL METRIC GRAPHS 255

a metric graph with vertices V(I') = {Vi}?:l, and edges E(T') = {ei5, €24, €34, €45, €56}, where
eij ={Vi,Vj} for 1 <i# j <6.

We prove that w(Vs) < maxe,, w, i.e. the graph I' is not optimal, since, by Remark
7.3.2, the maximum of w must be achieved in the Neumann vertex Vi (the case E(I') =
{614, €925, €34, €45, 656} is analogous). Let w15 - [0, l15] — R, wes - [0, l65] — R and w34 : [O, 134] —
R be the restrictions of the energy function w of I' to the edges ej5, eg5 and e3q of lengths I15,
lgs and l34, respectively. Let u : [0,115 + l56] — R be defined as

w15(a:), T € [0,[15],
u(z) =
wse(r — l15), € [l15.015 + I56)-

If the metric graph I' is optimal, then the energy function on wss4 on the edge eq5 must be
decreasing and so, by the Kirchhoff’s law in the vertex Vs, we have that w/5(l15) + wgs(le5) < 0,
i.e. the left derivative of u at [15 is less than the right one:

d—u(li5) = wis(his) < wyg(0) = Oy u(lys).

By the maximum principle, we have that

2
~ x 1
u(@) < (z) = —— + (lis +lse)z < 5 (ls + Is6)°.
On the other hand, wz4(z) > v(z) = —% + 137433, again by the maximum principle on the interval

[0,134]. Thus we have that
gy ) 2 g ) = gl gl ) 2 w00
for n large enough.

Repeating the same argument, one can show that the optimal metric graph I' is not of the
form V/(I') = (V1,V2, V3, V4, V5), E(I') = {V1, Va}, {Va, Va}, {V5, Va}, {Vi, V5 .

Thus, we obtained that the if the optimal graph has a Neumann vertex, then the corre-
sponding edge must be attached to the longest edge. To prove that it is of the same form as Iy,
there is one more case to exclude, namely: T' with vertices, V(T') = (V4, Va2, V3, Vy, V5), E(T) =
{{V, Va}, {Va, Va}, {Va, Va},{V4, V5 }} (see Figure 7.8). By Example 7.3.1, the only possible can-
didate of this form is the graph with lengths [({V1,V2}) = |D1 — Do| = 2, {({Va,V4}) = "T_l,
I({V3,Va}) = 251, 1({Va,V5}) = 2. In this case, we compare the energy of I' and I'y, by an
explicit calculation:

5 —3n2+6 ?(n+1)?
E(T {1, Vo, V3}) = — = 271 ”>—7f2gn+i)=5<F1;{v1,w,v3}»

for n large enough.

n Vs
Vi Vi Vi Vs Vi Voo ol Wy ol W

FIGURE 7.8. The graph I'; (on the left) has lower energy than the graph I' (on the right).

Before we pass to our last example, we need the following Lemma.
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LEMMA 7.3.4. Let wg : [0,1] — R be given by we(z) = % + ax, for some positive

real number a. If wa(1) < wa(l) < maxgeio1) wa(z), then J(wa) < J(wa), where J(w) =
1 1

3 Jo WP de — [§ wda.

PRrOOF. It follows by performing the explicit calculations. O

EXAMPLE 7.3.5. Let D1, Dy and D3 be the vertices of an equilateral triangle of side 1 in

R?, i.e.
V3 V3 1 V3 1
500 D=l ) D=l

We study the problem (7.2.5) with D = {Dy, Dy, D3} and | > /3. We show that the solutions
may have different qualitative properties for different [ and that there is always a symmetry
breaking phenomena, i.e. the solutions does not have the same symmetries as the initial config-
uration D. We first reduce our study to the following three candidates (see Figure 7.9):

(1) The metric tree I'1, defined by with vertices V(I') = {V3, Vo, V3, V4 } and edges E(I") =
{e14, €24, €34}, where e;; = {V;, V;} and the lengths of the edges are respectively log =
l34 =, L1y = ‘[ — /22 — %, for some z € [1/2,1/+/3]. Note that the length of I'y is
less than 1+ f/2, i.e. it is a possible solution only for [ < 1+ \/§/2 The new vertex
V4 is of Kirchhoff type and there are no Neumann vertices.

(2) The metric tree I'y with vertices V' = (V1, Va, V3, Vi, V5) and E(T") = {e14, €24, €34, €45},
where e;; = {V;,V;} and the lengths of the edges l14 = loy = l34 = 1/V3, lys =1 — /3,
respectively. The new vertex V} is of Kirchhoff type and V5 is a Neumann vertex.

(3) The metric tree I's with vertices V(I') = {Vi,Va, V3, V4, V5, Vs} and edges E(I') =
{e15, €24, €34, €45, €56}, where e;; = {V;,V;} and the lengths of the edges are loy =

l34 =, l15 = rgllfgx) + @ — i\/m, lys = - ‘2(2llx3x) - *\/44”271 and 56 =
l —2x — \/5/2 + %\/4x2 — 1. The new vertices V4 and V5 are of Kirchhoff type and Vg

is a Neumann vertex.

Vs Ve
Vi Va3 Va3
Vi Vi Vi Vi Wi Vi
Vs
Va Va Va

FI1GURE 7.9. The three competing graphs.

D)= (-

Suppose that the metric graph I' is optimal and has the same vertices and edges as I';.
Without loss of generality, we can suppose that the maximum of the energy function w on I is
achieved on the edge eyq. If l24 #* 134, we consider the metric graph [ with the same vertices
and edges as I' and lengths l14 = ly4, l24 = l34 = (lg4 + l34)/2. An immersion 7 r— R2, such
that 4(V;) = Dj, for j = 1,2, 3 still exists and the energy decreases, i.e. ET;{V1, Vo, V3}) <

E(M;{V1, Vo, V3}). In fact, let v = woy = wsy : [0, 124'”34] — R be an increasing function such
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that 2[{v > 7}| = [{wa4 > 7} + [{wss4 > 7}|. By the classical Polya-Szeg6 inequality and by the
fact that woy and wsy have no constancy regions, we obtain that

J(waq) + J(w34) < J(w24) + J(w34),

and so it is enough to construct a function w14 : [0,714] — R such that wi4(l14) = Wa4 = w34 and
J(w14) < J(wiq). Consider a function such that @}, = —1, w14(0) = 0 and w14(l14) = Waa(l24) =
w34(l34). Since we have the inequality wi4(l14) < W14(l1a) < maxjgy,,) w14 = maxp w, we can
apply Lemma 7.3.4 and so, J(w14) < J(w14). Thus, we obtain that loy = l34 and that both the
functions wyy and wsy are increasing (in particular, l14 > log = l34). If the maximum of w is
achieved in the interior of the edge e14 then, by Remark 7.3.2, the edge e;4 must be rigid and
80, all the edges must be rigid. Thus, I" coincides with I'; for some x € (%, %] If the maximum
of w is achieved in the vertex Vj, then applying one more time the above argument, we obtain
lig =loy =34 = %, i.e. I'is I'y corresponding to x = %

Suppose that the metric graph I' is optimal and that has the same vertices as I'y. If
w = (w;;)i; is the energy function on I' with Dirichlet conditions in {V1, V2, V3}, we have that
w14, Wo4 AN w34 are increasing on the edges eq4, ea4 and e3y4. As in the previous situation I' = I'y,
by a symmetrization argument, we have that l;4 = log = l34. Since any level set {w = 7}
contains exactly 3 points, if 7 < w(Vy), and 1 point, if 7 > w(Vy), we can apply the same
technique as in Example 7.3.1 to obtain that l{4 = loy = l34 = %

Suppose that the metric graph I' is optimal and that has the same vertices and edges as
I's. Let w be the energy function on I' with Dirichlet conditions in {V1, Va2, V3}. Since we
assume I' optimal, we have that wys is increasing on the edge ess and w(Vs) > w;;, for any
{i,7} # {5,6}. Applying the symmetrization argument from the case I' = I'y and Lemma
7.3.4, we obtain that lyy = l34 = x and that the functions wgg = w34 are increasing on [0, la4].
Let a € [0,l15] be such that wis(a) = w(Vs). By a symmetrization argument, we have that
necessarily l15 —a = ly5 an that wgs(x) = wis(x — a). Moreover, the edges e15 and ey are rigid.

Indeed, for any admissible immersion v = (y;5)s : I' — R?, we have that the graph I with
vertices V(I') = {V1, V4, Vs, Ve} and edges E(I') = {{YZ,V5},{V4,V5},{V5,V6}}, is a solution
for the problem (7.3.1) with Dy := v15(a) and Dy := ~(Vy). By Example 7.3.1 and Remark
7.3.2, we have |y15(a) —v(Va)| = 2145 and, since this holds for every admissible v, we deduce the
rigidity of e15 and eyq5. Using this information one can calculate explicitly all the lengths of the
edges of I' using only the parameter x, obtaining the third class of possible minimizers.

Ve
Vi V3 Vs Vi
Ve
Vi Vi Vi Vi Vi Vi Vi Vi
Vs
Va Va Va Va

FIGURE 7.10. The optimal graphs for | < 1++/3/2, 1 =14++/3/2,1 > 1++/3/2
and [ >> 1+ +/3/2.

An explicit estimate of the energy shows that:
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(1) If V3 <1 < 14 +/3/2, we have that the solution of the problem (7.2.5) with D =
{D1, D3, D3} is of the form I'; (see Figure 7.10).

(2) If I > 1+ +/3/2, then the solution of the problem (7.2.5) with D = {Ds, Dy, D3} is of
the form I's.

In both cases,the parameter x is uniquely determined by the total length [ and so, we have
uniqueness up to rotation on %’r Moreover, in both cases the solutions are metric graphs, for
which there is an embedding v with v(V;) = D;, i.e. they are also solutions of the problem

(7.2.6) with D = {Dy, Do, D3} and | > /3.



(1]

Bibliography

H.W. Art, L.A. CAFFARELLL: Existence and regularity for a minimum problem with free boundary. J. Reine
Angew. Math. 325 (1981), 105-144.

H. W. Art, L. CAFFARELLI, A. FRIEDMAN: Variational problems with two phases and their free boundaries.
Trans. Amer. Math. Soc. 282 (1984), 431-461.

L. AMBROSIO, V. CASELLES, S. MasNou, J.M. MoOREL: Connected components of sets of finite perimeter
and applications to image processing. J. Eur. Math. Soc. 3 (1) (2001), 39-92.

L. AMBROSI0, M. COLOMBO, S. DI MARINO: Sobolev spaces in metric measure spaces: reflexivity and lower
semicontinuity of slope. Preprint available at http://cvgmt.sns.it/paper/2055/.

L. AMmBROSsIO, N. Fusco, D. PALLARA: Function of Bounded Variation and Free Discontinuity Problems.
Oxford University Press (2000).

L. AMBROSIO, P. TILLI: Topics on Analysis in Metric Spaces. Oxford Lecture Series in Mathematics and
its Applications, Oxford University Press, Oxford (2004).

P. R. S. ANTUNES, P. FREITAS: Numerical optimisation of low eigenvalues of the Dirichlet and Neumann
Laplacians. J. Optim. Theory Appl. 154 (2012), 235-257.

M.S. ASHBAUGH: Open problems on eigenvalues of the Laplacian. In Analytic and Geometric Inequalities
and Applications. Math. Appl. 478, Kluwer Acad. Publ., Dordrecht (1999), 13-28.

H. ArToucH: Variational convergence for functions and operators. Pitman Advanced Publishing Program
(1984).

D. Bao, S.-S. CHERN, Z. SHEN: An Introduction to Riemann-Finsler Geometry. Graduate texts in math-
ematics, Springer-Verlag New York (2000).

J. BAXTER, G. DAL MAso, U. Mosco: Stopping times and I'-convergence. Trans. Amer. Math. Soc. 303
(1) (1987), 1-38.

B. BoGoseL, B. VELICHKOV: Multiphase optimization problems for eigenvalues: qualitative properties and
numerical results. In preparation.

B. BOURDIN, D. BUCUR, E. OUDET: Optimal partitions for eigenvalues. SIAM J. Sci. Comput. 31 (6)
(2009), 4100-4114.

L. Brasco: On torsional rigidity and principal frequencies: an invitation to the Kohler-Jobin rearrangement
technique. ESAIM COCV 20 (2) (2014), 315-338.

L. Brasco, G. DE PHILIPPIS, B. VELICHKOV: Faber-Krahn inequalities in sharp quantitative form. Preprint
available at http://cvgmt.sns.it/paper/2161/.

H. BrEzis: Analyse Fonctionnelle: Théorie et applications. Collection Mathématiques appliquées pour la
maitrise, MASSON Paris Milan Barcelone Bonn (1992).

T. BRIANGON, M. HAYOUNI, M. PIERRE: Lipschitz continuity of state functions in some optimal shaping.
Calc. Var. Partial Differential Equations 23 (1) (2005), 13-32.

T. BRIANCON, J. LAMBOLEY: Regularity of the optimal shape for the first eigenvalue of the Laplacian with
volume and inclusion constraints. Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (4) (2009), 1149-1163.

D. Bucur: Uniform concentration-compactness for Sobolev spaces on variable domains. Journal of Differ-
ential Equations 162 (2000), 427-450.

D. Bucur: Minimization of the k-th eigenvalue of the Dirichlet Laplacian. Arch. Rational Mech. Anal. 206
(3) (2012), 1073-1083.

D. Bucur, G. Burrtazzo: Variational Methods in Shape Optimization Problems. Progress in Nonlinear
Differential Equations 65, Birkhduser Verlag, Basel (2005).

D. Bucur, G. BuTrTAazzo: On the characterization of the compact embedding of Sobolev spaces. Calc. Var.
PDE 44 (3-4) (2012), 455-475.

259



260
[23]
[24]
[25]
[26]
[27]
[28]

[29]

[47]
(48]
[49]

[50]

BIBLIOGRAPHY

D. Bucur, G. ButTAazzo, A. HENROT: FEzistence results for some optimal partition problems. Monographs
and Studies in Mathematics 8 (1998), 571-579.

D. Bucur, G. BurTazzo, A. HENROT: Minimization of A2(Q2) with a perimeter constraint. Indiana Uni-
versity Mathematics Journal 58 (6) (2009), 2709-2728.

D. Bucur, G. BuTrTAzZ0, B. VELICHKOV: Spectral optimization problems with internal constraint. Ann. 1.
H. Poincaré 30 (3) (2013), 477-495.

D. Bucur, G. BuTrTAzzo, B. VELICHKOV: Spectral optimization problems for potentials and measures.
Preprint available at http://cvgnt.sns.it/paper/2245/.

D. Bucur, A. HENROT: Minimization of the third eigenvalue of the Dirichlet Laplacian. Proc. Roy. Soc.
London Ser. A 456 (2000), 985-996.

D. Bucur, D. MAZzOLENI, A. PRATELLI, B. VELICHKOV: Lipschitz reqularity for spectral minimizers.
Preprint available at: http://cvgmt.sns.it/person/336/.

D. Bucur, B. VELICHKOV: Multiphase shape optimization problems. Preprint available at:
http://cvgmt.sns.it/paper/2114/.

G. BuTTAZZO: Spectral optimization problems. Rev. Mat. Complut. 24 (2) (2011), 277-322.

G. BuTrTAZZO: Semicontinuity, relacation and integral representation in the calculus of variations. Pitman
Research Notes in Mathematics 207, Longman, Harlow (1989).

G. BurTazzo, G. DAL MASO: Shape optimization for Dirichlet problems: relaxzed formulation and opti-
mality conditions. Appl. Math. Optim. 23 (1991), 17-49.

G. BurTAazzO, G. DAL MASO: An existence result for a class of shape optimization problems. Arch. Rational
Mech. Anal. 122 (1993), 183-195.

G. BurTazzo, A. GEROLIN, B. RUFFINI, B. VELICHKOV: Optimal potentials for Schrédinger operators.
Preprint available at: http://cvgmt.sns.it/paper/2140/.

G. BurTazzo, B. RUFFINI, B. VELICHKOV: Spectral optimization problems for metric graphs. ESAIM:
COCV 20 (1) (2014), 1-22.

G. BurTAazzO, N. VARCHON, H. SOUBAIRI: Optimal measures for elliptic problems. Ann. Mat. Pura Appl.
185 (2) (2006), 207-221.

G. BurTazz0, B. VELICHKOV: Shape optimization problems on metric measure spaces. J.Funct.Anal. 264
(1) (2013), 1-33.

G. BurTAzz0, B. VELICHKOV: Some new problems in spectral optimization. Banach Center Publications
101 (2014), 19-35.

L. CAFFARELLI, X. CABRE: Fully Nonlinear Elliptic Equations. Amer. Math. Soc., Colloquium publications
43 (1995).

L. CAFFARELLI, A. CORDOBA: An elementary reqularity theory of minimal surfaces. Differential Integral
Equations 6 (1993), 1-13.

L. CAFFARELLI, D. JERISON, C. KENIG: Some new monotonicity theorems with applications to free boundary
problems. The Annals of Mathematics 155 (2) (2002), 369-404.

L. CAFrFERELLI, F. H. LIN: An optimal partition problem for eigenvalues. J. Sci. Comput. 31 (2007), 5-14.
L.A. CAFFARELLI, S. SALSA: A geometric approach to free boundary problems. Graduate Studies in Math-
ematics 68, AMS (2005).

J. CHEEGER: Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal. 9 (3)
(1999), 428-517.

M. CHipOT, G. DAL MASO: Relaxed shape optimization: the case of monnegative data for the Dirichlet
problem. Adv. Math. Sci. Appl. 1 (1992), 47-81.

D. CioraNEScuU, F. MURAT: Un terme etrange venu dailleurs. Nonlinear partial differential equations and
their applications. College de France Seminar 2 (Paris,1979/1980), pp. 98-138, 389-390; Res. Notes in Math.
60, Pitman, Boston, Mass. London (1982).

M. ConTI1, S. TERRACINI, G. VERZINI: An optimal partition problem related to monlinear eigenvalues. J.
Funct. Anal. 198 (2003), 160-196.

M. ConTI, S. TERRACINI, G. VERZINI: A variational problem for the spatial segregation of reaction-diffusion
systems. Indiana Univ. Math. J. 54 (3) (2005), 779-815.

M. ConTI, S. TERRACINI, G. VERZINI: On a class of optimal partition problems related to the Fucik
spectrum and to the monotonicity formula. Calc. Var. 22 (2005), 45-72.

G. DAL Maso: An Introduction to I'-convergence. Birkh&user, Boston (1993).



[51]

oot o
SN BN =2)

=)
=3

BIBLIOGRAPHY 261

G. DAL Maso, A. GARRONI: New results on the asymptotic behaviour of Dirichlet problems in perforated
domains. Math. Models Methods Appl. Sci. 3 (1994), 373-407.

G. DAL Maso, U. Mosco: Wiener criteria and energy decay for relaxed Dirichlet problems. Arch.Rational
Mech. Anal. 95 (1986), 345-387.

G. DAL Maso, U. Mosco: Wiener’s criterion and I'-convergence. Appl. Math. Optim. 15 (1987), 15-63.
G. DAL MaAso, F. MURAT: Asymptotic behavior and correctors for Dirichlet problems in perforated domains
with homogeneous monotone operators. Ann. Scuola Norm. Sup. Pisa 24 (1997), 239-290.

G. DA PrATO, J. ZABCZYK: Second order partial differential equations in Hilbert spaces. Cambridge Uni-
versity Press (2002).

E. DaviES: Heat kernels and spectral theory. Cambridge University Press (1989).

E. DAVIES: Spectral theory and differential operators. Cambridge University Press (1995).

G. DE PHiuipPIs, J. LAMBOLEY, M. PIERRE, B. VELICHKOV: TBA. In preparation.

G. DE PHILIPPIS, B. VELICHKOV: FExistence and reqularity of minimizers for some spectral optimization
problems with perimeter constraint. Appl. Math. Optim. 69 (2) (2014), 199-231.

K. J. ENGEL, R. NAGEL: One-parameter Semigroups for Linear Evolution Equations. Springer (2000).

L. C. EvaNS: Partial Differential Equations. AMS Press (2010).

L. Evans, R. GARIEPY: Measure Theory and Fine Properties of Functions. Studies in Advanced mathe-
matics, Crc Press (1991).

S. FRIEDLAND, W. K. HAYMAN: Figenvalue inequalities for the Dirichlet problem on spheres and the growth
of subharmonic functions. Comm. Math. Helv. 51 (1979), 133-161.

L. FRIEDLANDER: Extremal properties of eigenvalues for a metric graph. Ann. Inst. Fourier 55 (1) (2005),
199-211.

V. FERONE, B. KAWOHL: Remarks on a Finsler-Laplacian. Proceedings of the AMS 137 (1) (2007), 247-
253.

D. GILBARG, N. S. TRUDINGER: Elliptic partial differential equations of second order. Reprint of the 1998
edition, Classics in Mathematics, Springer-Verlag, Berlin (2001).

E. Gsti:  Minimal surfaces and functions of bounded wvariation. Monographs in Mathematics 80,
Birkh&auser, Boston-Basel-Stuttgart (1984).

P. HaJLASZ, P.KOSKELA: Sobolev met Poincaré. Memoirs of the AMS 145 (688) (2001).

B. HELFFER, T. HOFFMANN-OSTENHOF, S. TERRACINI: Nodal domains and spectral minimal partitions.
Ann. I. H. Poincaré 26 (2009), 101-138.

A. HENROT: Extremum Problems for Eigenvalues of Elliptic Operators. Frontiers in Mathematics,
Birkhéauser Verlag, Basel (2006).

A. HENROT: Minimization problems for eigenvalues of the Laplacian. J. Evol. Equ. 3 (3) (2003), 443-461.
A. HENrROT, M. PIERRE: Variation et optimisation de formes: une analyse géométrique. Springer-Berlag,
Berlin (2005).

L. HORMANDER: Hypoelliptic second-order differential equations. Acta Math. 119 (1967), 147-171.

H. Jiang, C. LARSEN, L. SILVESTRE: Full reqularity of a free boundary problem with two phases. Calc. Var.
Partial Differential Equations 42 (2011), 301-321.

J. JosT: Partial differential equations. Springer-Verlag New York (2002).

P. KUCHMENT: Quantum graphs: an introduction and a brief survey. In“Analysis on graphs and its appli-
cations”, AMS Proc. Symp. Pure. Math. 77 (2008), 291-312.

N. LANDAIS: Problemes de Regularite en Optimisation de Forme. These de doctorat de L’Ecole Normale
Superieure de Cachan (2007).

E.H. LieB, M. Loss: Analysis. Graduate Studies in Mathematics 14, American Mathematical Society,
Providence, Rhode Island (1997).

P.L. LioNs: The concentration-compactness principle in the calculus of variations. The locally compact
case, part 1. Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (2) (1984), 109-145.

F. MAGGL:  Sets of finite perimeter and geometric variational problems: an introduction to Geometric
Measure Theory. Cambridge Studies in Advanced Mathematics 1835, Cambridge University Press (2012).
D. MAZZOLENI, A. PRATELLL: Ezistence of minimizers for spectral problems. J. Math. Pures Appl. 100 (3)
(2013), 433-453.

F. MAzzoNE: A single phase variational problem involving the area of level surfaces. Comm. Partial Dif-
ferential Equations 28 (2003), 991-1004.



262
[83]
[84]
[85]
[86]
[87]

[88]

[92]
(93]

BIBLIOGRAPHY

A. NAGEL, E. STEIN, S. WAINGER: Balls and metrics defined by vector fields I: Basic properties. Acta
Math. 55 (1985), 103-147.

B. OstTinG, C.-Y. KAO: Minimal conver combinations of three sequential Laplace-Dirichlet eigenvalues.
Preprint (2012).

E. OUDET: Numerical minimization of eigenmodes of a membrane with respect to the domain. ESAIM
Control Optim. Calc. Var. 10 (2004), 315-330.

F. PACARD, P. SICBALDI: Eztremal domains for the first eigenvalue of the Laplace-Beltrami operator.
Annalles de I'Institut Fourier 59 (2) (2009), 515-542.

SUSSMANN: Orbits of families of vector fields and integrability of distributions. Transactions of the AMS
180 (1973), 171-188.

L. SIMON: Lectures on geometric measure theory. Proceedings of the Centre for Mathematical Analysis,
Australian National University, 3. Australian National University, Centre for Mathematical Analysis, Can-
berra (1983).

G. TALENTI: Elliptic equations and rearrangements. Ann. Scuola Normale Superiore di Pisa 3 (4) (1976),
697-718.

I. TAMANINI: Boundaries of Caccioppoli sets with Hélder-continuous normal vector. J. Reine Angew. Math.
334 (1982), 27-39.

I. TAMANINI: Regularity results for almost minimal hyperurfaces in R™. Quaderni del Dipartimento di
Matematica dell’ Universita di Lecce (1984).

B. VELICHKOV: Lipschitz regularity for quasi-minimizers of the Dirichlet Integral. In preparation.

B. VELICHKOV: Note on the monotonicity formula of Caffarelli-Jerison-Kenig. Rend. Lincei Mat. Appl. 25
(2014), 165-189.



