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Abstract. We consider the p-Laplacian in Rd perturbed by a weakly coupled potential.

We calculate the asymptotic expansions of the lowest eigenvalue of such an operator in the

weak coupling limit separately for p > d and p = d and discuss the connection with Sobolev

interpolation inequalities.
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1. Introduction

In this paper we consider the functional

QV [u] =

∫
Rd

(|∇u|p − V |u|p) dx, u ∈W 1,p(Rd), p > 1, (1.1)

with a given function V : Rd → R which is assumed to vanish at infinity in a sense to be

made precise. We are interested in the minimization problem

λ(V ) = inf
u∈W 1,p(Rd)

QV [u]∫
Rd |u|p dx

. (1.2)

If (1.2) admits a minimizer u, then the latter satisfies in the weak sense the non-linear

eigenvalue equation

−∆p(u)− V |u|p−2 u = λ(V ) |u|p−2 u , (1.3)

where −∆p(u) := −∇ · (|∇u|p−2∇u) is the p-Laplacian. Equation (1.3) is a particular

case of a quasilinear differential problem and we refer to the monographs [LU, PS] and

to [S1, S2, Tr] for the general theory of such equations. The p-Laplacian equation with a

zero-th order term V has attracted particular attention. Existence of positive solutions to

the equation −∆p(u) = V |u|p−2 u and related regularity questions were studied in [PoSh,

PT2, TT, To, PT1]. For the discussion of maximum and comparison principles and positive

Liouville theorems, see [GS, PTT].

In the present paper we are going to study the behaviour of λ(αV ) for small values of α.

It is not difficult to see that λ(αV )→ 0 as α→ 0 for all sufficiently regular and decaying V .

Our goal here is to find the correct asymptotic order and the correct asymptotic coefficient.

Key words and phrases. p-Laplacian, weak coupling, Sobolev inequality.

c© 2013 by the authors. This paper may be reproduced, in its entirety, for non-commercial purposes.

1



2 TOMAS EKHOLM, RUPERT L. FRANK, AND HYNEK KOVAŘÍK

It turns out that the asymptotic order depends essentially on the relation between the values

of the exponent p and the dimension d. If p < d, then by the Hardy inequality [OK] we have∫
Rd
|∇u|p dx ≥

(d− p
p

)p ∫
Rd

|u|p

|x|p
dx, u ∈W 1,p(Rd), d > p .

Therefore, if |V (x)| ≤ C |x|−p for some C > 0, then λ(αV ) = 0 for all α small enough.

However, if p ≥ d and
∫
Rd V > 0, then we have λ(αV ) < 0 for any α > 0. The latter is easily

verified by a suitable choice of test functions. Moreover, if V is bounded and compactly

supported, then λ(αV ) < 0 for any α > 0 even when
∫
Rd V = 0, see [PT1, Prop. 4.5].

Consequently, we will always assume that p ≥ p.

The question about the asymptotic behavior of λ(αV ) for small α was intensively studied

in the linear case p = 2 (see, e.g., [BGS, Kl1, KS, Si]), where equation (1.3) defines the

ground state energy of the Schrödinger operator −∆ − V . In particular, it turns out that

for sufficiently fast decaying V we have√
−λ(αV ) =

1

2
α

∫
R
V dx− c α2 + o(α2), α→ 0, d = 1, p = 2, (1.4)

with an explicit constant c depending on V , see [Si]. The proof of (1.4) is based on the

Birman-Schwinger principle and on the explicit knowledge of the unperturbed Green func-

tion. With suitable modifications, this method was applied also to Schrödinger operators

with long-range potentials, [BGS, Kl2], and even to higher order and fractional Schrödinger

operators [AZ1, AZ2, Ha].

Much less is known about the non-linear case p 6= 2 where the operator-theoretic methods

developed for p = 2 cannot be used. We will therefore apply a different, purely variational

technique which allows us to analyze the asymptotic behaviour of λ(αV ) for all p > 1. A

similar variational approach has already been used in a linear problem in [FMV], but here we

take it much further into the quasi-linear realm (where, for instance the symmetry reduction

that we crucial in [FMV] is no longer available).

We will present our main results separately for p > d, see Theorem 2.1, and for p = d, see

Theorem 2.2. In the case p > d we shall show, in particular, that there is a close relation

between the asymptotic behaviour of λ(αV ) and the Sobolev interpolation inequality (see,

e.g., [Ad, Thm 5.9])

‖u‖p∞ ≤ Sd,p ‖∇u‖dp ‖u‖p−dp , u ∈W 1,p(Rd) , d < p . (1.5)

By convention Sd,p will always denote the optimal (that is, smallest possible) constant in

(1.5). On one hand, the constant Sd,p enters into the asymptotic coefficient in the expansion

of λ(αV ), see equation (2.1). On the other hand, minimizers of problem (1.2), when suitably

rescaled and normalised, converge (up to a subsequence) locally uniformly to a minimizer of

the Sobolev inequality (1.5) as α→ 0, see Proposition 3.7.

The case p = d is much more delicate and requires (slightly) more regularity of the

potential V since functions in W 1,d(Rd), which appear in (1.2), are not necessarily bounded.

While the case p > d can be dealt with by energy methods (i.e. on the W 1,p(Rd) level

of regularity), heavier PDE technics (Harnack’s inequality, Hölder continuity bounds) are

necessary to deal with p = d. The subtly of the case p = d can also be seen in the asymptotic
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order: while λ(αV ) vanishes algebraically as α→ 0 for p > d, it vanishes exponentially fast

for p = d, see equation (2.2).

As we shall see, the asymptotic coefficient will depend on V only through
∫
Rd V dx. We

emphasize here that we do not impose a sign condition on V . Thus, the positive and

the negative parts of V contribute both to the asymptotic coefficient and there will be

cancellations. This is one of main difficulties that we overcome. In fact, if V is non-negative,

then the proof is considerably simpler.

A common feature of both Theorems 2.1 and Theorem 2.2 is that their proofs rely, among

other things, on the fact that minimizers uα of (1.2), suitably normalized, converge locally

uniformly to a constant. While in the case d < p this follows from Morrey’s Sobolev inequal-

ity and energy considerations, for d = p we have to employ a regularity argument related to

the Hölder continuity of uα, see Lemma 4.6, with explicit dependence on the coefficients of

the equation.

2. Main results

Our main results describe the asymptotics of the infimum λ(αV ) of the functional QαV [u]

as α→ 0, see (1.1) and (1.2). Our first theorem concerns the subcritical case p > d.

Theorem 2.1. Let p > d ≥ 1. Let V ∈ L1(Rd) be such that
∫
Rd V (x) dx > 0. Then

lim
α→0+

α
− p
p−d λ(αV ) = −p− d

p

(
d

p

) d
p−d

(
Sd,p

∫
Rd
V (x) dx

) p
p−d

, (2.1)

where Sd,p is the sharp constant in the Sobolev inequality (1.5).

We also have a theorem that describes the asymptotics of the minimizers of the functional

QαV [u]; see Proposition 3.7.

In the endpoint case d = p we have

Theorem 2.2. Let p = d > 1. Suppose that V ∈ Lq(Rd) ∩ L1(Rd) for some q > 1 and that∫
Rd V (x) dx > 0. Then

lim
α→0+

α
1
d−1 log

1

|λ(αV )|
= d ω

1
d−1

d

(∫
Rd
V (x) dx

)− 1
d−1

, (2.2)

where ωd denotes the surface area of the unit sphere in Rd.

Remark 2.3. Let us compare the assumptions on V in Theorems 2.1 and 2.2. If p > d and

V+ /∈ L1(Rd), V− ∈ L1(Rd), then Theorem 2.1 easily implies that

lim
α→0+

α
− p
p−d λ(αV ) = −∞ .

Thus, at least under the additional hypothesis V− ∈ L1(Rd), the condition V+ ∈ L1(Rd)
is necessary and sufficient for finite asymptotics of α

− p
p−d λ(αV ). This is not true for the

asymptotics of α
1
d−1 log |λ(αV )|−1 in the case p = d, and this is the reason for the additional

assumption V ∈ Lq(Rd) for some q > 1. Indeed, we claim that there are 0 ≤ V ∈ L1(Rd)
such that λ(αV ) = −∞ for any α > 0. To see this, choose σ ∈ (1, d) and consider V (x) =

|x|−d| log |x||−σ for |x| ≤ e−1 and V (x) = 0 for |x| > e−1. Then σ > 1 implies V ∈ L1(Rd).
Since σ < d we can choose a ρ ∈ [(σ− 1)/d, (d− 1)/d) and define u(x) = | ln |x||ρζ(x), where
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the function ζ ∈ C∞0 (Rd) equals one in a neighborhood of the origin. Then ρ < (d − 1)/d

implies that u ∈ W 1,d(Rd), whereas ρ ≥ (σ − 1)/d implies that
∫
Rd V |u|

d dx = ∞. Thus,

QαV [u] = −∞ for any α > 0.

Remark 2.4. In the quadratic case p = 2, Theorems 2.1 and 2.2 recover the asymptotics

originally found in [Si] using a different, operator theoretic approach. Both (2.1) and (2.2)

were originally proved in [Si] under more restictive conditions on V . For d = 1 these

restrictions were later removed in [Kl1, Sec.4]; note also that according to Lemma 3.3 below

we have S1,2 = 1 for p = 2 and d = 1.

While our theorems give a complete answer in the case V ∈ L1(Rd) (plus additional as-

sumptions if p = d) with
∫
Rd V dx > 0, the following questions, which we consider interesting,

remain open:

(1) What happens if V ∈ L1(Rd) (plus some additional assumptions), but
∫
Rd V dx = 0?

For results in the case p = 2, see [Si, Kl1, BCEZ].

(2) What happens if V /∈ L1(Rd), but V (x) = |x|−σ(1+o(1)) as |x| → ∞ with 0 < σ ≤ d?

For results in the case p = 2, see [Kl2].

The proofs of Theorems 2.1 and 2.2 are given in Sections 3 and 4 respectively.

Notation. Given r > 0 and a point x ∈ Rd we denote by B(r, x) ⊂ Rd the open ball with

radius r centred in x. If x = 0, then we write Br instead of B(r, 0). Furthermore, given a

set Ω ⊂ Rd we denote by Ωc its complement in Rd. The Lq norm of a function u in Ω will

be denoted by ‖u‖Lq(Ω) if Ω 6= Rd and by ‖u‖q if Ω = Rd.

3. Case d < p

Before we proceed with the proof of Theorem 2.1 we give some preliminary results con-

cerning Sobolev inequality (1.5) and the properties of the functional QV [u].

3.1. Sobolev inequality. We recall that Sd,p denotes the optimal constant in the Sobolev

interpolation inequality (1.5). In this subsection we discuss a closely related (and, in fact,

equivalent, as we shall show) minimization problem which depends on a parameter v > 0 in

addition to an exponent q > d ≥ 1. We define

E(v) = inf
‖u‖p=1

(
‖∇u‖pp − v|u(0)|p

)
. (3.1)

(Note that by the Sobolev embedding theorem any function in W 1,q(Rd), q > d, has a

continuous representative and therefore u(0) is unambiguously defined. The following lemma

shows, in particular, that E(v) > −∞.

Lemma 3.1. Let p > d ≥ 1 and v > 0. Then

E(v) = −p− d
p

(
d

p

) d
p−d

(Sd,pv)
p
p−d .

Moreover, the infimum is attained by a non-negative, symmetric decreasing function. Finally,

any minimizing sequence is relatively compact in W 1,p(Rd).

We include a proof of this lemma for the sake of completeness.
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Proof. By the Sobolev inequality (1.5) we have

|u(0)|p ≤ ‖u‖p∞ ≤ Sd,p‖∇u‖dp‖u‖p−dp

and, therefore, if ‖u‖p = 1,

‖∇u‖pp − v|u(0)|p ≥ ‖∇u‖pp − vSd,p‖∇u‖dp ≥ inf
X≥0

(
Xp − vSd,pXd

)
= −p− d

p

(
d

p

) d
p−d

(Sd,pv)
p
p−d .

This shows that E(v) ≥ −p−d
p

(
d
p

) d
p−d

(Sd,pv)
p
p−d . In particular, E(v) > −∞.

To prove the reverse inequality, we first note that, by scaling,

E(v) = E(1) v
p
p−d .

(To see this, write u in the form u(x) = v
d

p(p−d)w(v
1
p−dx).) We note also that E(v) < 0.

(Indeed, for a fixed u ∈ W 1,p(Rd) with ‖u‖p = 1 and u(0) 6= 0 we clearly have ‖∇u‖pp −
v|u(0)|p → −∞ as v →∞ and therefore E(v) < 0 for all sufficiently large v. By the scaling

law, this implies that E(v) < 0 for any v.)

Now let u ∈ W 1,p(Rd). Then, by the Sobolev embedding theorem u can be assumed to

be continuous and vanishing at infinity, so there is an a ∈ Rd such that |u(a)| = ‖u‖∞. Let

ũ(x) = u(x+ a)/‖u‖p. Then, by the definition of E(v),

‖∇ũ‖pp − v|ũ(0)|p ≥ E(v) ,

i.e.,

‖∇u‖pp ≥ v‖u‖p∞ + E(v)‖u‖pp = v‖u‖p∞ + E(1) v
p
p−d ‖u‖pp .

Since this is true for any v > 0 we have

‖∇u‖pp ≥ v‖u‖p∞ + E(v)‖u‖pp ≥ sup
v>0

(
v‖u‖p∞ + E(1) v

p
p−d ‖u‖pp

)
= ‖u‖

p2

d∞ ‖u‖
− p(p−d)

d
p |E(1)|−

p−d
d

(
p− d
p

) p−d
d d

p
.

This proves that Sd,p ≤ |E(1)|
p−d
p

(
p−d
p

)− p−d
p
(
d
p

) d
p
.

We next prove that any minimizing sequence is relatively compact in W 1,p(Rd). Let

(un) ⊂ W 1,p(Rd) be a minimizing sequence for E(v). Using the bounds in the first part of

the proof it is easy to see that (un) is bounded in W 1,p(Rd) and therefore, after passing to

a subsequence if necessary, we may assume that un converges weakly in W 1,p(Rd) to some

u ∈W 1,p(Rd). By weak convergence,

lim inf
n→∞

‖∇un‖pp ≥ ‖∇u‖pp , 1 ≥ lim inf
n→∞

‖un‖pp ≥ ‖u‖pp , (3.2)

and, by the Rellich–Kondrashov theorem (see, e.g., [LL, Thm. 8.9]), un(0) → u(0). We

conclude that

0 > E(v) = lim
n→∞

(
‖∇un‖pp − v|un(0)|p

)
≥ ‖∇u‖pp − v|u(0)|p ≥ E(v)‖u‖pp .
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This, together with the second assertion in (3.2) implies that ‖u‖p = 1. Together with the

first assertion in (3.2) and the convergence of un(0) it also implies that ‖∇un‖p → ‖∇u‖p.
Thus, un converges in fact strongly to u in W 1,p(Rd).

Thus, we have shown that there is a minimizer. In view of the rearrangement inequalities

‖∇u∗‖p ≤ ‖∇u‖p, ‖u∗‖p = ‖u‖p and |u∗(0)| ≥ |u(0)| (see, e.g., [Ta] and [LL, Thm. 3.4]) we

see that among the minimizers there is a non-negative, symmetric decreasing function. This

concludes the proof. �

Remark 3.2. It is easy to see that

E(v) = inf
‖u‖p=1

(
‖∇u‖pp − v‖u‖p∞

)
.

This will be useful in the following.

In one dimension we can compute the value of the sharp constant Sd,p in (1.5).

Lemma 3.3. If d = 1, then S1,p = p
2 for any p > 1.

Proof. Let u be the (symmetric decreasing) optimizer for E(v). The Euler–Lagrange equa-

tion reads

(p− 1)u′′(x) (−u′(x))p−2 = λu(x)p−1 in (0,∞) , (3.3)

together with the boundary condition

2(−u′(0+))p−1 = vu(0)p−1 .

Multiplying (3.3) by u′ we obtain(
(p− 1)(−u′)p − λup

)′
= 0 in (0,∞) .

Since u ∈ W 1,p(Rd) we have u(x) → 0 as x → ∞. Since (p − 1)(−u′)p − λup is constant,

limx→∞ u
′(x) exists as well and, therefore, needs to be zero. Thus

(p− 1)(−u′)p − λup = 0 in (0,∞) . (3.4)

Note that this shows that λ > 0. Moreover, we obtain

−u′ =
(

λ

p− 1

) 1
p

u in (0,∞) ,

and, thus,

u(x) = u(0) exp

(
−
(

λ

p− 1

) 1
p

x

)
in (0,∞) .

The boundary condition implies that λ = (p− 1)(v/2)p/(p−1). We conclude that

E(v) =
2
∫∞

0 |u
′|p dx− vu(0)p

2
∫∞

0 up dx
= −(p− 1)

(v
2

) p
p−1

.

By Lemma 3.1 this implies the assertion. �
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3.2. Preliminaries.

Lemma 3.4. Let p > d and assume that V ∈ L1(Rd). Then for any u ∈W 1,p(Rd),

QV [u] ≥ −p− d
p

(
d

p

) d
p−d

(
Sd,p

∫
Rd
V+ dx

) p
p−d
‖u‖pp. (3.5)

Moreover, QV [u] is weakly lower semi-continuous in W 1,p(Rd).

Proof. For any u ∈W 1,p(Rd),

QV [u] ≥ ‖∇u‖pp −
∫
Rd
V+ dx ‖u‖p∞ ≥ E

(∫
Rd
V+ dx

)
.

The second inequality used Remark 3.2. The first assertion now follows from Lemma 3.1.

To prove weak lower semi-continuity assume that (uj) converges weakly in W 1,p(Rd) to

some u. Then the sequence (uj) is bounded in W 1,p(Rd) and hence, by (1.5), in L∞(Rd).
We have∣∣∣ ∫

Rd
V (|uj |p − |u|p) dx

∣∣∣ ≤ ‖uj − u‖L∞(BR)‖fj‖∞‖V ‖1 + 2

(
sup
j
‖uj‖p∞

)
‖V ‖L1(BcR), (3.6)

where fj := (|uj |p − |u|p)/(|uj | − |u|) satisfies |fj | ≤ pmax{|uj |p−1, |u|p−1} and is therefore

bounded. Since the sequence (uj) is bounded in W 1,p(Rd), inequality (1.5) implies that

‖fj‖∞ is bounded uniformly with respect to j. On the other hand, the Rellich-Kondrashov

theorem (see, e.g., [LL, Thm.8.9]) says that (uj) converges to u uniformly on compact

subsets of Rd. Hence, sending first j → ∞ and then R → ∞ in (3.6) shows that the

functional
∫
Rd V |u|

p dx is weakly continuous on W 1,p(Rd). Since ‖∇u‖pp is weakly lower

semi-continuous, due to the fact that p > 1, the same is true for QV [u]. �

Remark 3.5. Note that inequality (3.5) yields the lower bound in (2.1) in the case V ≥ 0.

Corollary 3.6. Let V ∈ L1(Rd) and p > d. Assume that λ(V ) < 0. Then there is a

non-negative function u ∈W 1,p(Rd) such that

λ(V ) =
QV [u]

‖u‖pp
. (3.7)

Proof. Let (uj) be a minimizing sequence for QV , normalized such that ‖uj‖p = 1 for any

j ∈ N. Since λ(V ) < 0, we may assume without loss of generality that QV [uj ] < 0 for any

j ∈ N. Hence with the help of (1.5) we get

‖∇uj‖pp <
∫
Rd

V+ |uj |p dx ≤ ‖V+‖1 ‖uj‖p∞ ≤ Sd,p ‖V+‖1 ‖∇uj‖dp . (3.8)

Since p > d, it follows that the sequence (uj) is bounded in W 1,p(Rd) and, after passing to

a subsequence if necessary, we may assume that (uj) converges weakly in W 1,p(Rd) to some

u ∈W 1,p(Rd). The weak convergence implies

‖u‖p ≤ lim inf
j→∞

‖uj‖p = 1.

Since QV [u] is weakly lower semicontinuous by Lemma 3.4, the above inequality implies

0 > λ(V ) = lim
j→∞

QV [uj ] ≥ QV [u] ≥ λ(V ) ‖u‖pp ≥ λ(V ).
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This implies that QV [u] = λ(V ) and ‖u‖p = 1, i.e., u is a minimizer for the problem (1.2).

Since u ∈ W 1,p(Rd) implies |u| ∈ W 1,p(Rd) with |∇|u|| = |∇u| almost everywhere (see,

e.g., [LL, Thm. 6.17]), we may choose u non-negative. �

3.3. Proof of Theorem 2.1. Upper bound. For any fixed function ϕ ∈ W 1,p(Rd) with

‖ϕ‖p = 1 we define

vα(x) := α
d

p(p−d) ϕ(α
1
p−dx), α > 0 .

Then ‖vα‖p = 1 for all α > 0 and

λ(αV ) ≤ QαV [vα] = α
p
p−d
(
‖∇ϕ‖pp −

∫
Rd

V (x)|ϕ(α
1
p−dx)|p dx

)
.

Since ϕ ∈W 1,p(Rd), the Sobolev embedding implies that ϕ ∈ C(Rd)∩L∞(Rd) and therefore,

by dominated convergence,∫
Rd

V (x)|ϕ(α
1
p−dx)|p dx→

∫
Rd

V dx |ϕ(0)|p as α→ 0 .

Since ϕ is arbitrary, we have shown that

lim sup
α→0+

α
p
d−pλ(αV ) = inf

‖ϕ‖p=1

(
‖∇ϕ‖pp −

∫
Rd

V dx |ϕ(0)|p
)

= E

(∫
Rd

V dx

)
.

The upper bound in Theorem 2.1 now follows from Lemma 3.1.

3.4. Proof of Theorem 2.1. Lower bound. It follows from the proof of the upper bound

that λ(αV ) < 0 for all sufficiently small α > 0 and hence, by Corollary 3.6, for all such α

there is a non-negative minimizer uα of the problem (1.2). (It is easy to see that, in fact,

λ(αV ) < 0 for all α > 0. Indeed, α−1QαV [u] is non-increasing for every u ∈ W 1,p(Rd) and

therefore α−1λ(αV ) is non-increasing. Thus, if it is negative for some α > 0, it is negative

for all larger α’s.)

We normalize uα so that ‖uα‖p = 1. The key step in the proof is to show that

lim
α→0+

α
− d
p−d

∫
Rd
V (x) (uα(x)p − uα(0)p) dx = 0 . (3.9)

Assuming this for the moment, let us complete the proof. We define

fα(x) = α
− d
p(p−d) uα

(
xα
− 1
p−d
)

(3.10)

and observe that ‖fα‖p = 1 and

‖∇fα‖pp −
∫
Rd
Vα(x) fα(x)p dx = α

− p
p−d QαV [uα] ,

where Vα(x) = α−d/(p−d)V (xα−1/(p−d)). Since (3.9) can be rewritten as

lim
α→0

(∫
Rd
Vα(x) fα(x)p dx−

∫
Rd
V dx fα(0)p

)
= 0 ,
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we obtain

lim inf
α→0+

α
− p
p−d λ(αV ) = lim inf

α→0+
α
− p
p−d QαV [uα]

= lim inf
α→0+

(
‖∇fα‖pp −

∫
Rd
V dx fα(0)p

)
≥ E

(∫
Rd
V dx

)
= −p− d

p

(
d

p

) d
p−d

(
Sd,p

∫
Rd
V (x) dx

) p
p−d

. (3.11)

The last equality comes from Lemma 3.1. This is the lower bound claimed in Theorem 2.1.

It remains to prove (3.9). Arguing as in (3.8) we obtain ‖∇uα‖pp ≤ αSd,p‖V+‖1‖∇uα‖dp,
and therefore

‖∇uα‖p ≤ Cα
1
p−d . (3.12)

According to (1.5) this also implies

‖uα‖p∞ ≤ C ′α
d
p−d . (3.13)

By Morrey’s Sobolev inequality there is a constantM =Md,p such that for all v ∈W 1,p(Rd)
and all x, y ∈ Rd one has

|v(x)− v(y)| ≤ M|x− y|(p−d)/p‖∇v‖p . (3.14)

We now fix R > 0 and use Morrey’s inequality (3.14) together with (3.12) to get for all

x ∈ BR
|uα(x)− uα(0)| ≤ MR

p−d
p ‖∇uα‖p ≤ CR α

1
p−d

This, together with (3.13), yields for all x ∈ BR

|uα(x)p − uα(0)p| ≤ p |uα(x)− uα(0)| max{uα(x)p−1, uα(0)p−1} ≤ C ′R α
p+d(p−1)
p(p−d)

Thus,

α
− d
p−d

∣∣∣∣∫
Rd
V (x) (uα(x)p − uα(0)p) dx

∣∣∣∣
≤ α−

d
p−d ‖V ‖1 sup

BR

|upα − uα(0)p|+ α
− d
p−d 2 ‖uα‖p∞

∫
BcR

|V | dx

≤ α
1
pC ′R ‖V ‖1 + 2C ′

∫
BcR

|V | dx .

Letting first α→ 0 and then R→∞ we obtain (3.9). This completes the proof.

3.5. Convergence of minimizers. The following theorem about the behavior of the uα is

an (almost) immediate consequence of Lemma 3.1 and Theorem 2.1 and its proof.

Proposition 3.7. Let p > d and let V ∈ L1(Rd) with
∫
Rd V (x)dx > 0. For α > 0 let uα be

a non-negative minimizer of QαV [·] with ‖uα‖p = 1 and define fα by (3.10). Then for any

sequence (αn) ⊂ (0,∞) converging to zero there is a subsequence (αnk) and an f0 ∈W 1,p(Rd)
such that fαnk → f0 in W 1,p(Rd). Moreover, f0 is a minimizer of (3.1) with v =

∫
Rd V dx.
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We recall that, by the Sobolev embedding theorem and the Rellich–Kondrachov theorem,

convergence in W 1,p(Rd) for p > d implies convergence in L∞(Rd) and in C0,(p−d)/p(Rd).
We also note that if the minimizer of the Sobolev inequality (1.5) is unique (up to trans-

lations, dilations and multiplication by constants), then Proposition 3.7 implies that fα
converges as α→ 0 (without passing to a subsequence).

Proof. It follows from (3.11) together with the upper bound in Theorem 2.1 that (fα) is a

minimizing sequence for problem (3.1) with v =
∫
Rd V dx. Therefore, the assertion follows

from the relative compactness asserted in Lemma 3.1. �

4. Case d = p

Throughout this section we suppose that p = d. Similarly as in the case d < p we start

with a couple of preliminary lemmas which which will be used to ensure existence of a

minimizer of problem (1.2).

4.1. Preliminary results.

Lemma 4.1. Assume that V ∈ Lq(Rd) with some q > 1. Then QV [u]/‖u‖dd is bounded from

below and QV [·] is weakly lower semi-continuous in W 1,p(Rd).

Recall that by Sobolev inequalities, see, e.g., [Ad], for every r ∈ [d,∞) there is a constant

S̃d,r such that

‖u‖r ≤ S̃d,r ‖∇u‖θd ‖u‖1−θd , for all u ∈W 1,d(Rd) . (4.1)

Here 0 ≤ θ < 1 is defined by d
r = 1− θ.

Proof. Hölder’s inequality and (4.1) with r = dq/(q − 1) imply that∫
Rd
V |u|d dx ≤ ‖V+‖q‖u‖dr ≤ ‖V+‖q S̃d,r ‖∇u‖dθd ‖u‖

d(1−θ)
d .

Thus,

QV [u] ≥ ‖∇u‖dd − ‖V+‖q S̃d,r ‖∇u‖dθd ‖u‖
d(1−θ)
d

≥ inf
X≥0

(
X − ‖V+‖q S̃d,rXθ ‖u‖d(1−θ)

d

)
≥ −C ‖V+‖

1
1−θ
q ‖u‖dd

where C > 0 depends only on d and q (through r). This proves lower boundedness.

Now let us prove weak lower semi-continuity of QV [u]. As in the proof of Lemma 3.4

it suffices to show that
∫
Rd V |u|

p dx is weakly continuous on W 1,d(Rd). Assume that (uj)

converges weakly in W 1,d(Rd) to some u. Given δ > 0 define Ωδ = {x ∈ Rd : |V (x)| > δ}.
Since (uj) is bounded in Ld(Rd), we have∣∣∣ ∫

Ωcδ

V (|u|d − |uj |d) dx
∣∣∣ ≤ C δ (4.2)
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with C independent of j. Moreover, the Sobolev inequality (4.1) implies that uj is uniformly

bounded in Lr(Rd) for every r ∈ [d,∞). Hence by Hölder inequality∣∣∣ ∫
Ωδ

V (|u|d − |uj |d) dx
∣∣∣ ≤ ‖V ‖q (∫

Ωδ

||u|d − |uj |d|
q
q−1 dx

) q−1
q

= ‖V ‖q
(∫

Ωδ

|(|u| − |uj |)ϕj |
q
q−1 dx

) q−1
q

,

where for every r ∈ [d,∞) there is a Cr such that ‖ϕj‖r ≤ Cr for all j. Since Ωδ has

finite measure, uj → u in Lr(Ωδ) for any r < ∞ by the Rellich–Kondrashov theorem. (For

instance, in [LL, Thm. 8.9], the Rellich–Kondrashov theorem is only stated for bounded

sets. However, for any ε > 0 we can find a bounded set ω ⊂ Ωδ such that |Ωδ \ω| < ε. Then

uj → u in Lr(ω) by the bounded Rellich-Kondrashov theorem and, since (uj) is bounded

in Ls(Ωδ) for some s > r, by Hölder ‖uj‖Lr(Ωδ\ω) ≤ ‖uj‖Ls(Ωδ)ε
(s−r)/s. Thus, uj → u in

Lr(Ωδ), as claimed.)

We thus conclude, again with r = 2q/(q − 1), that∫
Ωδ

|(|u| − |uj |)ϕj |
q
q−1 dx ≤ C

q
q−1
r

(∫
Ωδ

|u− uj |
2q
q−1 dx

)1/2

→ 0 as j →∞.

This in combination with (4.2) proves the claimed weak continuity. �

4.2. Proof of Theorem 2.2. Upper bound.

Proposition 4.2. Let V ∈ L1(Rd) be such that
∫
Rd V (x) dx > 0. Then

lim sup
α→0+

α
1
d−1 log

1

|λ(αV )|
≤ dω

1
d−1

d

(∫
Rd
V (x) dx

)− 1
d−1

. (4.3)

Proof. Let β > 1 and consider the family of test functions vβ defined by

vβ(x) = 1 if |x| ≤ 1, vβ(x) =

(
1− log |x|

log β

)
+

if |x| > 1 . (4.4)

Then vβ ∈W 1,d(Rd) and, since 0 ≤ vβ ≤ χ{|·|<β}, we have

‖vβ‖dd ≤ c βd

for all β > 1 with a constant c > 0 depending only on d. Moreover,

QαV [vβ] ≤ ωd (log β)1−d − α
∫
Rd
V (x) dx+ αRβ

with

Rβ =

∫
{|x|>1}

V+

(
1−

(
1− log |x|

log β

)
+

)
dx .

By dominated convergence, Rβ → 0 as β →∞.

Let ε > 0 be given and choose βε > 1 such that

Rβ ≤ ε
∫
Rd
V dx for all β ≥ βε .
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Now, for any α, define

β(α) = exp

((
ωd

α(1− ε)
∫
Rd V dx

)1/(d−1)
)
.

Note that β(α) > 1 and that

ωd
(log β(α))d−1

− α(1− ε)
∫
Rd
V dx = 0 .

Define αε > 0 by β(αε) = βε. Then for α ≤ αε our upper bound on QαV [vβ] is non-positive

and therefore

λ(αV ) ≤
QαV [vβ(α)]

‖uβ(α)‖dd

≤ c−1 β(α)−d
(
ωd (log β(α))1−d − α

∫
Rd
V (x) dx+ αRβ

)
= −c−1α

(
ε

∫
Rd
V dx−Rβ(α)

)
exp

(
−d
(

ωd
α(1− ε)

∫
Rd V dx

)1/(d−1)
)
. (4.5)

This implies

lim sup
α→0+

α
1
d−1 log

1

|λ(αV )|
≤ dω

1
d−1

d

(
(1− ε)

∫
Rd
V (x) dx

)− 1
d−1

.

By letting ε→ 0 we arrive at (4.3). �

Corollary 4.3. Let V satisfy assumptions of Lemma 4.1. Then for every α > 0 there exists

a locally bounded positive function uα ∈W 1,d(Rd) such that λ(αV ) ‖uα‖dd = QαV [uα].

Proof. Inequality (4.5) with β large enough shows that λ(αV ) < 0 for all α > 0. Hence the

existence of a non-negative minimizer uα follows from Lemma 4.1 in the same way as in the

case d < p. Since uα is a non-negative weak solution of (1.3), the Harnack inequality [S1,

Thm. 6] implies that uα is locally bounded and positive. �

4.3. Proof of Theorem 2.2. Lower bound.

The case of positive V .

Proposition 4.4. Assume that 0 ≤ V ∈ Lq(Rd)∩L1(Rd) for some q > 1 with V 6≡ 0. Then

there are α0 > 0 and C > 0 such that for all 0 < α ≤ α0 we have

λ(αV ) ≥ −C α−1 exp

[
−
(

dd−1 ωd
α
∫
Rd V dx

) 1
d−1

]
. (4.6)

Proof. Let V ∗ be the symmetric decreasing rearrangement of V . Since
∫
Rd V dx =

∫
Rd V

∗ dx,∫
Rd V

q dx =
∫
Rd(V

∗)q dx and, by rearrangement inequalities (see, e.g., [Ta] and [LL, Thm.

3.4]),

λ(αV ) ≥ λ(αV ∗) ,

we may and will assume in the following that V = V ∗.

By Corollary 4.3 there is a minimizer uα of QαV [u]/‖u‖dd. Again, by rearrangement

inequalities, we may assume that uα is a radially symmetric function which is non-increasing

with respect to the radius. Let ρ > 0 be an arbitrary parameter. (In this proof there is no
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loss in assuming that ρ = 1, but in the proof of Proposition 4.5 we will repeat the argument

with a general ρ.) We normalize uα such that

uα(x) = uα(|x|) = 1, for all x ∈ Rd with |x| = ρ .

Let R ≥ 2ρ be a parameter to be specified later and let χ be defined by

χ(r) = 1 if 0 ≤ r ≤ ρ, χ(r) =
(

1− r − ρ
R− ρ

)
+

if r > ρ .

Then for any ε ∈ (0, 1] we have

‖∇(χuα)‖dd ≤ (1 + ε)‖χ∇uα‖dd + c ε1−d ‖uα∇χ‖dd
≤ (1 + ε)‖∇uα‖dd + c′ ε1−dR−d ‖uα‖dd ,

and therefore

‖∇uα‖dd ≥ ‖∇(χuα)‖dd/(1 + ε)− c′′ ε1−dR−d ‖uα‖dd . (4.7)

Since χuα has support in the ball of radius of radius R and is bounded from below by one

on the ball of radius ρ, the formula for the capacity of two nested balls [M, Sec. 2.2.4] gives

‖∇uα‖dd ≥
ωd (log(R/ρ))1−d

1 + ε
− c′′ ε1−dR−d ‖uα‖dd . (4.8)

Moreover, since |uα(x)| ≤ 1 for |x| > 1, we obtain

λ(αV ) ≥
ωd (log(R/ρ))1−d − (1 + ε)α

(∫
B1
V udα dx+

∫
Bc1
V dx

)
(1 + ε) ‖uα‖dd

− c′′

εd−1Rd
. (4.9)

We next claim that there are constants C > and α0 > 0 such that for all 0 < α ≤ α0,

sup
Bρ

(
udα − 1

)
≤ Cα

1
d−1 . (4.10)

Accepting this for the moment and returning to (4.9) we obtain

λ(αV ) ≥
ωd (log(R/ρ))1−d − (1 + ε)

(
1 + Cα

1
d−1

)
α
∫
Rd V dx

(1 + ε) ‖uα‖dd
− c′′

εd−1Rd
.

For given 0 < ε ≤ 1 and 0 < α ≤ α0 we now choose

R = ρ exp


 ωd

(1 + ε)
(

1 + Cα
1
d−1

)
α
∫
Rd V dx

 1
d−1


so that

λ(αV ) ≥ − c′′

εd−1ρd
exp

−d
 ωd

(1 + ε)
(

1 + Cα
1
d−1

)
α
∫
Rd V dx

 1
d−1

 .

Finally, we choose ε = Cα
1
d−1 to obtain

λ(αV ) ≥ −c
′′′

α
exp

−d
 ωd(

1 + C ′α
1
d−1

)
α
∫
Rd V dx

 1
d−1

 . (4.11)

Up to increasing c′′′ this implies the statement of the proposition.
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Thus, it remains to prove (4.10). For simplicity we give the proof only for ρ = 1 (which is

enough for the proof of the proposition). We apply Alvino’s version of the Moser–Trudinger

inequality [Al] to the function uα − 1 and obtain

0 < uα(r)− 1 ≤ C ‖∇uα‖Ld(B1) | log r|
d−1
d , r ≤ 1. (4.12)

Using this upper bound on uα we arrive at

‖∇uα‖dLd(B1) ≤ ‖∇uα‖
d
d

≤ α
∫
Rd
V |uα|d dx

≤ α2d−1

(
‖V ‖L1(B1) + C‖∇uα‖dLd(B1)ωd

∫ 1

0
V (r)| log r|d−1rd−1 dr

)
.

The assumption V ∈ Lq(Rd) for some q > 1 implies that V ∈ L1(B1, | log |x||d−1 dx), and

therefore there is a C ′ > 0 and an α0 > 0 such that for all 0 < α ≤ α0

‖∇uα‖dLd(B1) ≤ C
′ α1/d .

Re-inserting this into (4.12), we find for all 0 < α ≤ α0

0 < uα(r)− 1 ≤ C ′′ α1/d | log r|
d−1
d , r ≤ 1. (4.13)

Hence the minimizer uα satisfies for all 0 < r ≤ 1,

((−r u′α(r))d−1)′ = αV (r)uα(r)d−1 rd−1 + λ(α)uα(r)d−1rd−1 (4.14)

≤ αV (r) rd−1
(
1 + C ′′α

1
d | log r|

d−1
d
)d−1

and

((−r u′α(r))d−1)′ = αV (r)uα(r)d−1 rd−1 + λ(α)uα(r)d−1rd−1 (4.15)

≥ λ(α) rd−1
(
1 + C ′′α

1
d | log r|

d−1
d
)d−1

.

Since the right hand sides of (4.14) and (4.15) are integrable with respect to r (for (4.14)

we use here again the assumption that V ∈ L1(Rd) ∩ Lq(Rd) for some q > 1), the function

(−r u′α(r))d−1 has a finite limit as r → 0. Since uα ∈ W 1,d(Rd), it follows that this limit

must be zero. Thus, from (4.14) we get for all 0 < r ≤ 1

(−r u′α(r))d−1 ≤ α
∫ r

0
V (s) sd−1

(
1 + C ′′α

1
d | log s|

d−1
d
)d−1

ds

≤ α‖V ‖Lq(B1)

(∫ r

0
sd−1

(
1 + C ′′α

1
d | log s|

d−1
d
)q′(d−1)

ds

)1/q′

≤ C ′′′α‖V ‖Lq(B1)r
d/q′ (1 + | log r|)

(d−1)2

d .

Finally, this implies that

uα(r)− 1 = −
∫ 1

r
u′α(s) ds

≤
(
C ′′′α‖V ‖Lq(B1)

) 1
d−1

∫ 1

r
s

d
q′(d−1) (1 + | log s|)

(d−1)
d

ds

s
.
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Since the integral on the right side converges, we have shown (4.10). This completes the

proof of the lemma. �

The case of compactly supported V .

Proposition 4.5. Let V be a function with compact support,
∫
Rd V (x) dx > 0 and V ∈

Lq(Rd) for some q > 1. Then there are α0 > 0 and C > 0 such that for all 0 < α ≤ α0 we

have

λ(αV ) ≥ − exp

−( dd−1 ωd

α
∫
Rd V dx (1 + Cα

1
d )

) 1
d−1

 . (4.16)

Similarly as in the case d < p a key ingredient in the proof is to show that minimizers,

when suitably normalised, converge locally to a constant function. In the case d < p we

deduced this from Morrey’s inequality. Here the argument is considerably more complicated

and based on Harnack’s inequality for quasi-linear equations. We shall prove

Lemma 4.6. For each d ∈ N, q > 1 and M > 0 there are constants C > 0 and β ∈ (0, 1)

with the following property. Let ρ > 0 and assume that W ∈ Lqloc(R
d) with W ≤ 0 in

Bc
5ρ and ρ

d− d
q ‖W‖Lq(B15ρ) ≤ M . Then, if u ∈ W 1,d(Rd) is a positive, weak solution of the

equation −∆d(u) = Wud−1 in Rd satisfying infB5ρ u ≤ 1 and if y ∈ Rd and r > 0 are so that

B(3r, y) ⊂ B3ρ, we have

sup
B(r,y)

u− inf
B(r,y)

u ≤ C ‖W‖1/dLq(B5ρ) ρ
1− 1

q
−β

rβ . (4.17)

The point of this lemma is that the dependence of W enters explicitly on the right side

of (4.17). In our application, we will have ‖W‖Lq(B5ρ) → 0, and therefore Lemma 4.6 shows

that the oscillations of u vanish with an explicit rate.

We recall that u is a weak solution of −∆d(u) = W |u|d−2u in Rd if∫
Rd
|∇u|d−2∇u · ∇ϕdx =

∫
Rd
W |u|d−2 uϕdx (4.18)

for any ϕ ∈W 1,d(Rd).
The following lemma, whose proof can be found, for instance, in [Mo1, Mo2] or [LU, Lem.

2.4.1], plays a key role in the proof of Lemma 4.6.

Lemma 4.7. Let Ω ⊆ Rd be open and assume that u ∈ W 1,d(Ω) is such that there are

constants K > 0 and β > 0 such that for all y ∈ Ω and r > 0 with B(r, y) ⊂ Ω one has∫
B(r,y)

|∇u|d dx ≤ K rβd . (4.19)

Then for all y ∈ Ω and r > 0 such that B(3r/2, y) ⊂ Ω we have

sup
B(r/2,y)

u− inf
B(r/2,y)

u ≤ 4

β

(
K

ωd

) 1
d

rβ. (4.20)

Proof of Lemma 4.6. By the Harnack inequality [S1, Thm.6] there is a constant C1, which

depends only on d, q and an upper bound on ρ
d− d

q ‖W‖Lq(B15ρ) such that

sup
B5ρ

u ≤ C1 inf
B5ρ

u .
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Since infB5ρ u(x) ≤ 1, we conclude that

sup
B5ρ

u(x) ≤ C1 . (4.21)

Our goal is to apply Lemma 4.7 with Ω = B3ρ. We have to verify condition (4.19) for

some K and β. First, note that∫
Rd
|∇u|d dx =

∫
Rd
Wud dx ≤

∫
B5ρ

W ud dx ≤ ω
1− 1

q

d (5ρ)
d− d

q ‖W‖Lq(B5ρ)C
d
1 = c1N ,

(4.22)

where we have set c1 = ω
1− 1

q

d 5
d− d

q and

N = ρ
d− d

q ‖W‖Lq(B5ρ)C
d
1 . (4.23)

Hence, for any β > 0, (4.19) holds for any ball B(r, y) ⊂ B3ρ with r ≥ ρ provided we choose

the constan K at least as big as c1Nρ−βd.
Thus, it remains to verify (4.19) for r < ρ. Let 0 ≤ ζ ≤ 1 be a radial function with support

in B2 which is ≡ 1 on B1 and satisfies |∇ζ| ≤ 1. Let y and s be such that B(2s, y) ⊂ B5ρ.

We choose the test function ϕ(x) = ζ(|x− y|/s)(u(x)− a) in (4.18), where the parameter a

will be specified later. This gives the inequality∫
B(s,y)

|∇u|d dx ≤
∫
Rd
ζ(|x− y|/s)|∇u|d dx

≤
∫
B(2s,y)

|W |ud−1 |u− a| dx+ s−1

∫
A(s,y)

|∇u|d−1|u− a| dx . (4.24)

with A(s, y) = B(2s, y) \B(s, y). Now we set a = 1
|A(s,y)|

∫
A(s,y) u dx, where |A(s, y)| denotes

the Lebesgue measure of A(s, y). By the Hölder and Poincaré inequalities,∫
A(s,y)

|∇u|d−1|u− a| dx ≤
(∫

A(s,y)
|∇u|d dx

) d−1
d
(∫

A(s,y)
|u− a|d dx

) 1
d

≤ CP s

∫
A(s,y)

|∇u|d dx ,

where CP is the constant in the Poincaré inequality in A(1, 0). By scaling one easily sees

that the Poincaré constant in A(s, y) is given by CPs. This fact was used in the previous

bound.

Let us bound the first term on the right side of (4.24). Since both u and |a| are bounded

from above by C1 on B(2s, y), see (4.21), we have∫
B(2s,y)

|W |ud−1 |u− a| dx ≤ ‖W‖L1(B(2s,y))2C
p
1 ≤ c2N (s/ρ)

d− d
q ,

where c2 = ω
1− 1

q

d 2
d+1− d

q .

Thus, (4.24) implies∫
B(s,y)

|∇u|d dx ≤ c2N (s/ρ)
d− d

q + CP

∫
A(s,y)

|∇u|d dx,
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where c1 = 2
d+1− d

q ω
1− 1

q

d . Adding CP
∫
B(s,y) |∇u|

d dx to both sides of the above inequality

we arrive at ∫
B(s,y)

|∇u|d dx ≤ c3N (s/ρ)
d− d

q + κ

∫
B(2s,y)

|∇u|d dx, (4.25)

with c3 = c2/(1 + CP) and

κ =
CP

1 + CP
< 1.

To simplify the notation, we introduce the shorthand D(s) =
∫
B(s,y) |∇u|

d dx. Iterating

inequality (4.25) gives

D(2−ns) ≤ c3N (s/ρ)
d− d

q 2
n( d
q
−d)

n−1∑
j=0

(
κ 2

d− d
q
)j

+ κnD(s)

for all n ∈ N and every s > 0 such that B(s, y) ⊂ B5ρ. Next, we sum the geometric series

on the right side and obtain a c4 and a µ < 1 (both depending only on d and q) such that

2
n( d
q
−d)

n−1∑
j=0

(
κ 2

d− d
q
)j ≤ c4 µ

n for all n ∈ N .

Thus, recalling (4.22),

D(2−ns) ≤
(
c3c4 (s/ρ)

d− d
q + c1

)
N max{µn, κn} (4.26)

for all n ∈ N and all s such that B(s, y) ⊂ B5ρ.

Now let B(r, y) ⊂ B3ρ with r < ρ. There are k ∈ N and t ∈ [1, 2) such that 2−k−1 tρ <

r ≤ 2−k tρ. Since B(tρ, y) ⊂ B5ρ we may apply inequality (4.26) with k = n and s = tρ to

get ∫
B(r,y)

|∇u|d dx ≤ D(2−ktρ)

≤
(
c3c4 t

d− d
q + c1

)
N max{µk, κk}

≤
(
c3c4 2

d− d
q + c1

)
N
(

2r

ρ

)βd
with β = − log max{µ, κ}

d log 2
> 0 .

To summarize, we have shown that (4.19) holds for any B(r, y) ⊂ B3ρ with the above

choice of β and with

K = max
{
c1,
(
c3c4 2

d− d
q + c1

)
2βd
}
Nρ−βd .

Here c1, c3 and c4 depend only on d and q, and N was defined in (4.23). In view of Lemma

4.7 this proves (4.17). �

Proof of Proposition 4.5. The beginning of the proof is identical to that of Proposition 4.4.

Let ρ > 0 be such that the support of V is contained in B5ρ. We let again uα be a minimizer

of QαV [u]/‖u‖dd. From Corollary 4.3 we know that uα can be chosen strictly positive and

therefore we may normalize uα by infBρ uα = 1. Arguing exactly as before we arrive at the

following variant of (4.9),

λ(αV ) ≥
ωd (log(R/ρ))1−d − (1 + ε)α

∫
Rd V |uα|

d dx

(1 + ε) ‖uα‖dd
− c′′ ε1−dR−d . (4.27)
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We now claim that there is a constant C > 0 (depending on d, q, V , but not on α) such

that

|uα(x)− 1| ≤ C α
1
d for all x ∈ Bρ . (4.28)

Indeed, this follows from Lemma 4.6 applied to W = αV +λ(αV ) and u = uα with B(r, y) =

Bρ. Note that we indeed have infB5ρ uα ≤ infBρ uα = 1. Moreover, we use the fact that

λ(αV ) ≥ −Cα, which follows easily from the bounds in Lemma 4.1.

With a similar choice as in Lemma 4.4 for R we obtain

λ(αV ) ≥ − c′′

εd−1ρd
exp

−d
 ωd

(1 + ε)
(

1 + C α
1
d

)
α
∫
Rd V dx

 1
d−1

 .

Choosing ε = Cα
1
d we obtain

λ(αV ) ≥ − c′′′

α
d−1
d

exp

−d
 ωd(

1 + C ′ α
1
d

)
α
∫
Rd V dx

 1
d−1

 .

This implies the statement of the proposition. �

The general case. We can finally give the

Proof of Theorem 2.2. We use an approximation argument and fix ε ∈ (0, 1) and R > 0.

Define V< = V χ{|·|<R} and V> = V+χ{|·|≥R}. Then the inequality

QαV [u] ≥ (1− ε)Q(1−ε)−1αV< [u] + εQε−1αV> [u]

for every u ∈W 1,d(Rd) implies

λ(αV ) ≥ (1− ε)λ
(

α

1− ε
V<

)
+ ελ

(α
ε
V>

)
.

Thus,

log
1

|λ(αV )|
≥ log

1

(1− ε) |λ((1− ε)−1αV<)|
− log

(
1 +

ε |λ(ε−1αV>)|
(1− ε) |λ((1− ε)−1αV<)|

)
≥ log

1

(1− ε) |λ((1− ε)−1αV<)|
− ε |λ(ε−1αV>)|

(1− ε) |λ((1− ε)−1αV<)|
.

From now on we consider R so large that
∫
BR

V dx > 0. It then follows from Proposition

4.5 that

lim inf
α→0+

α
1
d−1 log

1

(1− ε)|λ((1− ε)−1αV<)|
≥ (1− ε)

1
d−1d ω

1
d−1

d

(∫
BR

V (x) dx

)− 1
d−1

.

On the other hand, we recall from Proposition 4.6 that there are constants C > 0 and α0 > 0

such that for all 0 < α ≤ α0ε,

λ(ε−1αV>) ≥ −Cεα−1 exp

−( εdd−1 ωd
α
∫
BcR

V+ dx

) 1
d−1
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Moreover, we recall from Proposition 4.2 that for every δ ∈ (0, 1) there are constants Cδ > 0

and αδ such that for all 0 < α ≤ αδ(1− ε),

λ((1− ε)−1αV<) ≤ −(1− ε)−1α Cδ exp

−( (1− ε)dd−1ωd
α(1− δ)

∫
BR

V dx

) 1
d−1

 . (4.29)

Thus, for α ≤ min{α0ε, αδ(1− ε)},

|λ(ε−1αV>)|
|λ((1− ε)−1αV<)|

≤ Cε(1− ε)
Cδα2

exp

−( εdd−1 ωd
α
∫
BcR

V+ dx

) 1
d−1

+

(
(1− ε)dd−1ωd

α(1− δ)
∫
BR

V dx

) 1
d−1


For every fixed ε and δ there is an R0 > 0 such that for all R > R0,

ε∫
BcR

V+ dx
>

1− ε
(1− δ)

∫
BR

V dx
.

Thus, for all R > R0 we have

lim
α→0

|λ(ε−1αV>)|
|λ((1− ε)−1αV<)|

= 0 .

To summarize, we have shown that for all ε ∈ (0, 1) and for all R > R0,

lim inf
α→0+

α
1
d−1 log

1

|λ(αV )|
≥ (1− ε)

1
d−1d ω

1
d−1

d

(∫
BR

V (x) dx

)− 1
d−1

.

Letting ε→ 0 and R→∞ we obtain the theorem. �
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[TT] P. Takáč, K. Tintarev: Generalized minimizer solutions for equations with the p-Laplacian and a

potential term, Proc. Roy. Soc. Edinburgh Sect. A 138 (2008), 201–221.

[To] P. Tolksdorf: Regularity for a more general class of quasilinear elliptic equations, J. Differential

Equations 51 (1984) 126–150.

[Tr] N.S. Trudinger: On Harnack Type Inequalities and Their Application to Quasilinear Elliptic Equa-

tions, Comm. Pure Appl. Math. 20 (1967) 721–747.

Tomas Ekholm, Department of Mathematics, Royal Institute of Technology, S-100 44 Stock-

holm, Sweden

E-mail address: tomase@math.kth.se

Rupert L. Frank, Mathematics 253-37, Caltech, Pasadena, CA 91125, USA

E-mail address: rlfrank@caltech.edu
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