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Abstract

We study second order elliptic operators whose diffusion coefficients degenerate at
the boundary in first order and whose drift term strongly point outward. It is shown
that these operators generate analytic semigroups in L2 where they are equipped with
their natural domain without boundary conditions. Hence, the corresponding parabolic
problem can be solved with optimal regularity. In a previous work we had treated the
case of inward pointing drift terms.
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1 Introduction

In this paper we study wellposedness and regularity of elliptic and parabolic partial differ-
ential equations on the half space and on bounded domains assuming that the second order
coefficients degenerate at the boundary of first order. Since we are looking at second order
problems, first order degeneration is a borderline case where the drift term in normal direc-
tion is (roughly speaking) of the same ‘order’ as the diffusion part. Thus size and direction
of the drift term can influence the generation result in a crucial way. In this sense, first
order degeneration is the most interesting case in this context.

Locally, there are essentially two cases of first order degeneration at the boundary. Either
the diffusion coefficients behave as the distance to the boundary or only the tangential
component of the coefficients behave as the distance. (All other cases can be reduced
to these two.) For the case of tangential degeneration, in [6] we have recently developed
a wellposedness theory in Lp–spaces and spaces of continuous functions, and established
various properties of the generated semigroups. (See also [9].) In the tangential case, the
size or direction of the drift coefficients have no effect on the generation result. This is
different in the case of full degeneration of first order. We explain the effects of the drift
term on the level of the model operator

A = −y∆ + a · ∇x + bDy
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with constant drift coefficients a ∈ RN and b ∈ R acting on the half space

RN+1
+ = {z = (x, y) ∈ RN+1 : x ∈ RN , y > 0}.

In the paper [5] (co-authored by three of the present authors), it was proved that the
operator −A with the domain

D0
p =

{
u ∈W 1,p

0 (RN+1
+ ) ∩W 2,p

loc (RN+1
+ ) :

√
y |∇u|, y|D2u| ∈ Lp(RN+1

+ )
}

generates an analytic C0-semigroup of positive contractions on Lp(RN+1
+ ) if b > −1/p and

p ∈ (1,∞). In this case the drift points inward at the boundary, or only mildly outward.
Correspondingly, one has to impose Dirichlet boundary conditions. It was also shown by a
one dimensional example that −A with domain D0

p is not a generator if b ≤ −1/p.
In the paper [10] parabolic problems with full degeneration at the boundary were studied

in a more general framework, but assuming that the drift coefficients vanish at ∂Ω (which
means b = 0 in the model operator above). We also refer to e.g. [11], [15], [16] and [17] for
other contributions to degenerate problems, which however do not deal with the interplay
of diffusion and drift in the case of first order degeneration at the boundary.

To understand the situation if b ≤ −1/p, we investigated in detail the one dimensional
case Ω = (0, 1) in [7]. It turned out that then A = −yDyy + bDy exhibits a surprisingly
complicated behavior. In Section 2 we recall the corresponding results, which have been the
starting point for the study in higher dimensions.

In the present paper, we establish that −A generates an analytic C0-semigroup on L2

for each b < −1/2. Here the model operator A = −y∆ + a · ∇x + bDy on L2(RN+1
+ ) has the

domain

D2 =
{
u ∈W 1,2(RN+1

+ ) ∩W 2,2
loc (RN+1

+ ) :
√
y |∇u|, y|D2u| ∈ L2(RN+1

+ )
}

which possesses optimal regularity, but imposes no boundary condition because the drift
points outward and is large enough. In addition, the operator (A,D2) is accretive for
b ≤ −1 and a = 0, see Proposition 3.6, but it fails to be (quasi) accretive for b ∈ (−1,−1/2)
and a = 0, see Remark 3.8. This indicates that one cannot use form methods here.

Observe that our results complement those of [5] for p = 2 where the opposite condition
b > −1/2 was assumed. The approach of [5] relies on Hardy’s inequality which only works
with the Dirichlet boundary condition and under the restriction b > −1/2. We thus have
to proceed differently in the present paper.

In previous our works [5] or [6] we have approximated the model operator A on RN+1
+

by its realization on the strip {(x, y) : x ∈ RN , ε < y < 1/ε} with Dirichlet boundary con-
ditions. In contrast, following the analysis in [7], in the present paper we impose Neumann
boundary conditions at y = ε. The resolvent equation λu + Au = f for u ∈ D2 is then
solved by letting ε → 0+. The crucial step of our arguments are the gradient estimates in
Proposition 3.3 which ensure that D2 ⊂ W 1,2(RN+1

+ ). They are valid for all b < −1/2, but
we need a = 0 here. So far we do not know how to extend these estimates to the case p 6= 2
which is the main reason for the restriction to p = 2 in this paper. As a by-product of these
estimates we derive an inequality leading to analyticity in Proposition 3.5. The result for
b ≤ −1 and a = 0 can then be derived in Proposition 3.6. The cases b ∈ (−1,−1/2) and
a 6= 0 are treated in Proposition 3.7 and Theorem 3.9, respectively, by means of perturbation
arguments. In Proposition 3.7 we perturb the operator A0 for b = −1 and a = 0 by the drift
term (b+ 1)Dy which is relatively bounded w.r.t. A0 with precisely the constants needed to
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construct the perturbed resolvent by a Neumann series. In Theorem 3.9 we use the Kalton-
Weis theorem on sums of resolvent commuting operators to finally add the tangential drift
term a · ∇x.

Based on the properties of the model operator, we also treat the problem on a bounded
domain Ω in RN+1. We study an operator A in nondivergence form given in (4.1) with
continuous diffusion and drift coefficients on Ω, where the normal component of the drift is
strictly less than −1/2 times the normal component of the matrix of the diffusion coefficients,
see (H3) in Section 4. We then show that the negative of this operator generates an analytic
semigroup on L2(Ω) when equipped with the domain

DΩ
2 =

{
u ∈W 2,2

loc (Ω) ∩W 1,2(Ω) : %|D2u| ∈ L2(Ω)
}

having optimal regularity and no boundary conditions. (Here, % is a smooth extension of the
distance function to the boundary.) By standard semigroup theory, this generation result
allows to solve the corresponding inhomogeneous parabolic partial differential equation in
optimal regularity, see Corollary 4.2.

2 One dimensional operators

In this section we recall the basic results of the paper [7] concerning the one dimensional
operator A = −yDyy + bDy in Lp(0, 1) with b ∈ R.

First, we constructed an operator (−A,DD
p,b) by Dirichlet approximation, i.e., we solved

the resolvent equation λu + Au = f on (ε, 1), where A is endowed with the domain
W 2,p(ε, 1) ∩W 1,p

0 (ε, 1), and then let ε → 0+. We have shown that (−A,DD
p,b) generates

an analytic semigroup for all b ∈ R and p ∈ (1,∞). However, the domain DD
p,b heavily de-

pends on b: If b ≤ −1, then u ∈ DD
p,b is contained in W 1,p(0, 1) and satisfies yu′′ ∈ Lp(0, 1),

but no boundary condition at y = 0 is imposed. If b ∈ (−1,−1/p], then DD
p,b is not contained

in W 1,p(0, 1), but one imposes u(0) = 0 for u ∈ DD
p,b.

We have further seen that the Dirichlet approximation is unstable in the sense that for
the solutions uε ∈W 2,p(ε, 1)∩W 1,p

0 (ε, 1) of Auε = f the norms ‖u′ε‖p blow up as ε→ 0+ for
certain f ∈ Lp(0, 1) and each b ≤ −1/p (even though the limit function belongs to W 1,p(0, 1)
if b ≤ −1). We thus also employed Neumann approximations of A with the domains

DN
p,ε = {u ∈W 2,p(ε, 1) : u′(ε) = 0, u(1) = 0}.

This approximation turned out to be stable in W 1,p for all b < −1/p. Moreover, the limit
operator possesses the (optimal) domain

Dp = {u ∈W 1,p(0, 1) : yu′′ ∈ Lp(0, 1), u(1) = 0}

and generates an analytic semigroup on Lp(0, 1) for every p ∈ (1,∞) and b < −1/p. The
Neumann boundary condition at y = ε is lost in the limit, as we impose no boundary
condition at y = 0 in Dp. We checked that the two approximations yield the same operator
for b ≤ −1, but different ones for b ∈ (−1,−1/p). Here the Neumann approximation gives
the better regularity without any boundary condition. In the case b = −1/p the Neumann
approximation does not work and is unstable in W 1,p. This borderline case is excluded in
our further investigations.

These one dimensional results crucially depend on properties which are not available in
higher dimensions. In particular, the full description of the domain of the generator relies
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on the possibility of writing explicitly the solutions of the ordinary differential equation
Au = f ; the proof of analyticity uses generation theorems from [1] and [14] in sup-norm
spaces which are based on Feller’s theory of diffusion processes on intervals, see [3] and [4].

3 Generation on the half space

In this section we establish the generation result for the model operator

A = −y∆ + a · ∇x + bDy

with constant drift coefficients a ∈ RN and b < −1/2 acting on the half space

RN+1
+ = {z = (x, y) ∈ RN+1 : x ∈ RN , y > 0}.

This operator will be endowed with the domain

D2 =
{
u ∈W 1,2(RN+1

+ ) ∩W 2,2
loc (RN+1

+ ) :
√
y |∇u|, y|D2u| ∈ L2(RN+1

+ )
}

in L2(RN+1
+ ). Let ε ∈ (0, 1/2]. To construct the resolvent of A, we use approximating

problems on the strip

Sε := {(x, y) ∈ RN+1 : x ∈ RN , ε < y < ε−1},

where we equip A with the domains

DN
2,ε = {u ∈W 2,2(Sε) : u(·, 1/ε) = 0, Dyu(·, ε) = 0}.

To unify the notation, we set S0 := RN+1
+ and DN

2,0 := D2. Lemma 2.1 of [5] provides us
with the following density result.

Lemma 3.1. The set C∞c (RN+1) is dense in D2 endowed with its canonical norm.

We first show that the operator A is accretive on DN
2,ε if b ≤ −1.

Proposition 3.2. Assume that b ≤ −1. Let Reλ ≥ 0, u ∈ DN
2,ε, and 0 ≤ ε ≤ 1/2. Set

f = λu+Au. We then have

(Reλ)‖u‖L2(Sε) ≤ ‖f‖L2(Sε)

In particular, the operator (A,DN
2,ε) is accretive in L2(Sε).

Proof. Let first ε > 0 and fix u ∈ DN
2,ε. We multiply the equation λu + Au = f by ū and

integrate by parts on Sε. It follows∫
Sε

fū = λ‖u‖2L2(Sε) +

∫
Sε

y|∇u|2 +

∫
Sε

(a · ∇xu)ū+ (b+ 1)

∫
Sε

(Dyu)ū. (3.1)

Since Re ((∇u)ū) = 1
2∇|u|

2, we can evaluate the last two integrals and deduce

Re

∫
Sε

fū = (Reλ)‖u‖2L2(Sε) +

∫
Sε

y|∇u|2 − (b+ 1)

2

∫
RN

|u(x, ε)|2dx

≥ (Reλ)‖u‖2L2(Sε)

using b ≤ −1. On RN+1
+ we obtain the corresponding estimate in the same way for u ∈

C∞c (RN+1). Due to Lemma 3.1, approximation yields the result for u ∈ D2.
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Our approach relies on the following gradient estimates for A with quite explicit constants
depending only on b. For technical reasons we first restrict ourselves to the case a = 0. This
restriction will be removed at the end of the section by a perturbation argument.

Proposition 3.3. Assume that a = 0 and b < − 1
2 . Let λ ≥ 0, u ∈ DN

2,ε, and 0 ≤ ε ≤ 1/2.
Set f = λu+Au. We then have

‖∇xu‖L2(Sε) ≤
2√

−2b− 1
‖f‖L2(Sε), (3.2)

‖Dyu‖L2(Sε) ≤
1

−b− 1
2

‖f‖L2(Sε). (3.3)

Proof. Let first ε > 0. Take u ∈ DN
2,ε and λ ∈ C. Multiplying the equation λu+Au = f by

Dyū and integrating by parts in x on Sε, we obtain

λ

∫
Sε

uDyū−
∫
Sε

yDyyuDyū+

∫
Sε

y∇xu · ∇xDyū+ b

∫
Sε

|Dyu|2 =

∫
Sε

fDyū.

The real parts thus satisfy∫
Sε

Re (fDyū) =
Reλ

2

∫
Sε

Dy|u|2 − Imλ

∫
Sε

Im (uDyū)− 1

2

∫
Sε

yDy|Dyu|2

+
1

2

∫
Sε

y Dy|∇xu|2 + b

∫
Sε

|Dyu|2.

Integrating by parts in y, we then compute∫
Sε

Re (fDyū) = −Reλ

2

∫
RN

|u(x, ε)|2 − Imλ

∫
Sε

Im (uDyū)− 1

2ε

∫
RN

|Dyu
(
x, 1

ε

)
|2

− ε

2

∫
RN

|∇xu(x, ε)|2 − 1

2

∫
Sε

|∇xu|2 +

(
b+

1

2

)∫
Sε

|Dyu|2.

After multiplying by −1, for Imλ = 0 and λ ≥ 0 we derive

1

2

∫
Sε

|∇xu|2 −
(
b+

1

2

)∫
Sε

|Dyu|2 ≤ ‖f‖L2(Sε)‖Dyu‖L2(Sε).

It follows that

‖Dyu‖L2(Sε) ≤
1

−b− 1
2

‖f‖L2(Sε)

and consequently

1

2

∫
Sε

|∇xu|2 ≤ ‖Dyu‖L2(Sε)‖f‖L2(Sε) ≤
1

−b− 1
2

‖f‖2L2(Sε),

as asserted. If ε = 0, the previous estimates can be performed for u ∈ C∞c (RN+1). By
density (see Lemma 3.1), the inequalities (3.2) and (3.3) then also hold in D2.

Remark 3.4. Inspecting the above proof, one sees that the estimates in Proposition 3.3

also hold for λ ∈ C with Reλ ≥ 0 and (Imλ)

∫
Sε

Im (uDyū) ≥ 0.
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Again for b ≤ −1, we next establish a sectoriality estimate for (−A,D2).

Proposition 3.5. Assume that a = 0 and b ≤ −1. Let λ ∈ C with Reλ ≥ 0, u ∈ DN
2,ε, and

0 ≤ ε ≤ 1/2. Set cb = 4b+3
2b+1 . We then have

‖u‖L2(Sε) ≤
cb
|Imλ|

‖λu+Au‖L2(Sε).

Proof. We use the equation (3.1) with a = 0 that was shown in the proof of Proposition 3.2.
(If ε = 0, as before we first take u ∈ C∞c (RN+1) and then derive the assertion by approxi-
mation.) Taking the imaginary parts, we obtain

Im

∫
Sε

fū = (Imλ) ‖u‖2L2(Sε) + (b+ 1) Im

∫
Sε

(Dyu)ū. (3.4)

If (Imλ)

∫
Sε

Im (uDyū) ≥ 0, then (3.4) and Remark 3.4 yield

|Imλ| ‖u‖2L2(Sε) ≤ ‖f‖L2(Sε) ‖u‖L2(Sε) − (b+ 1)‖Dyu‖L2(Sε) ‖u‖L2(Sε)

≤ ‖f‖L2(Sε) ‖u‖L2(Sε) +
2b+ 2

2b+ 1
‖f‖L2(Sε) ‖u‖L2(Sε) = cb ‖f‖L2(Sε) ‖u‖L2(Sε),

which gives the asserted estimate. If (Imλ)

∫
Sε

Im (uDyū) < 0, we derive from (3.4) and

the assumption b+ 1 ≤ 0 that

‖u‖2L2(Sε) = −(b+ 1)
Im
∫
Sε

(Dyu)ū

Imλ
+

Im
∫
Sε
fū

Imλ
≤

Im
∫
Sε
fū

Imλ
≤
‖f‖L2(Sε)‖u‖L2(Sε)

|Imλ|
.

Again the asserted estimate follows.

We can now derive our basic generation result for the case b ≤ −1 and a = 0.

Proposition 3.6. Assume that b ≤ −1 and a = 0. The operator (−A,D2) then generates
a bounded analytic C0–semigroup of positive contractions on L2(RN+1

+ ).

Proof. Let λ > 0 and f ∈ L2(RN+1
+ ) be fixed. For every ε ∈ (0, 1/2), there is a unique

solution uε ∈ DN
2,ε of the equation λu+Au = f . Propositions 3.2 and 3.3 yield

‖uε‖L2(Sε) ≤ λ−1‖f‖L2(RN+1
+ ), ‖∇uε‖L2(Sε) ≤ K‖f‖L2(RN+1

+ ), (3.5)

where the constantK only depends on b. By local elliptic regularity and (weak) compactness,
there exists a sequence εn → 0 such that the corresponding functions uεn converge weakly in
W 2,2

loc (RN+1
+ ) and strongly in L2

loc(RN+1
+ ) to some u ∈W 2,2

loc (RN+1
+ ). Moreover, λu+Au = f

in RN+1
+ . Estimate (3.5) implies that u ∈W 1,2(RN+1

+ ) and

‖u‖L2(RN+1
+ ) ≤ λ

−1‖f‖L2(RN+1
+ ), ‖∇u‖L2(RN+1

+ ) ≤ K‖f‖L2(RN+1
+ ). (3.6)

It follows that Au ∈ L2(RN+1
+ ) and therefore y∆u ∈ L2(RN+1

+ ). To control yD2u, for each
k ∈ N we take η ∈ C∞(R) such that η = 1 in [0, k], η = 0 in [2k,+∞), 0 ≤ η ≤ 1,
‖η′‖∞ ≤ ck−1 and ‖η′′‖∞ ≤ ck−2. Then v = yηu ∈ W 1,2

0 (RN+1
+ ) and ∆v ∈ L2(RN+1

+ ). Set
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Ωk = RN × (0, k). Applying the Calderón-Zygmund estimate to v (see e.g. Lemma 9.12 in
[8]), we derive

‖yD2
xu‖L2(Ωk) + ‖y∇xDyu+∇xu‖L2(Ωk) + ‖yD2

yu+ 2Dyu‖L2(Ωk)

≤
√

3 ‖D2v‖L2(Ωk) ≤
√

3 ‖D2v‖L2(RN+1
+ ) ≤ C ‖∆v‖L2(RN+1

+ )

≤ C
(
‖ηy∆u‖L2(RN+1

+ ) + ‖η′yDyu‖L2(RN+1
+ ) + ‖η′u‖L2(RN+1

+ ) + ‖ηDyu‖L2(RN+1
+ )

+ ‖η′′y u‖L2(RN+1
+ )

)
for a positive constant C depending only on N . In the sequel, C may change from line to
line. Since both η′ and η′′ are supported in [k, 2k], we conclude

‖yD2
xu‖L2(Ωk) + ‖y∇xDyu+∇xu‖L2(Ωk) + ‖yD2

yu+ 2Dyu‖L2(Ωk)

≤ C
(
‖y∆u‖L2(RN+1

+ ) + ‖Dyu‖L2(RN+1
+ ) + k−1‖u‖L2(RN+1

+ )

)
.

The estimate (3.6) then yields

‖yD2u‖L2(Ωk) ≤ ‖yD2
xu‖L2(Ωk) + ‖y∇xDyu‖L2(Ωk) + ‖yD2

yu‖L2(Ωk)

≤ C
(
‖f‖L2(RN+1

+ ) + ‖y∆u‖L2(RN+1
+ ) + k−1‖u‖L2(RN+1

+ )

)
.

Observe that y∆u = λu+ bDyu− f . Letting k → +∞ and using (3.6), we thus infer

‖yD2u‖L2(RN+1
+ ) ≤ C‖f‖L2(RN+1

+ ).

To conclude that u ∈ D2, it remains to show that
√
y |∇u| ∈ L2(RN+1

+ ). We apply the
interpolative estimates (iii) and (iv) of Lemma 2.7 in [5] to the truncated functions uk =
ηu ∈ D2. As above, we deduce

√
y |∇u| ∈ L2(RN+1

+ ) letting k → +∞, and hence u ∈ D2.

We have thus proved that λ+A : D2 → L2(RN+1
+ ) is surjective. Since (−A,D2) is dissi-

pative by Proposition 3.2, this operator generates a contractive C0–semigroup on L2(RN+1
+ ).

This semigroup is bounded analytic due to Proposition 3.5 and e.g. Theorem II.4.6 in [2].
Finally, if f ≥ 0, then uε ≥ 0 and thus u ≥ 0. Hence, the resolvent of −A is positive for
λ > 0 which implies the positivity of the semigroup by e.g. Theorem VI.1.8 in [2].

As in [7] we use a perturbation argument to extend the generation result to the range
b ∈ (−1,−1/2). We point out that the gradient estimate (3.3) precisely gives the needed
smallness condition.

Proposition 3.7. Assume that b ∈ (−1,−1/2) and a = 0. The operator (−A,D2) then
generates a positive bounded analytic C0–semigroup on L2(RN+1

+ ).

Proof. We first show that −A = (−A,D2) generates a bounded analytic C0–semigroup. We
write the operator A as A = A0 + (b + 1)Dy, where A0 = −y∆ −Dy is endowed with the
domain D2 and corresponds to b = −1. Due to the previous result, A0 generates a bounded
analytic C0–semigroup. Let λ ∈ C with Reλ > 0. Then λ ∈ ρ(−A0), and estimate (3.3)
with ε = 0 and b = −1 yields

‖Dy(λ+A0)−1f‖L2(RN+1
+ ) ≤ 2 ‖f‖L2(RN+1

+ ),
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for every f ∈ L2(RN+1
+ ). Since b ∈ (−1,−1/2), it follows

‖(b+ 1)Dy(λ+A0)−1‖ ≤ 2(b+ 1) =: β < 1, (3.7)

and hence the operator I + (b+ 1)Dy(λ+A0)−1 is invertible. From the identity

λ+A =
(
I + (b+ 1)Dy(λ+A0)−1

)
(λ+A0) (3.8)

we infer that λ ∈ ρ(−A) and ‖(λ + A)−1‖ ≤ 1
1−β ‖(λ + A0)−1‖ ≤ 1

1−β
M
|λ| for some M > 0.

Therefore −A = (−A,D2) generates a bounded analytic C0–semigroup.
To show the positivity, we again approximate the resolvent. Let 0 ≤ f ∈ L2(RN+1

+ )
and λ > 0. For every ε ∈ (0, 1/2) there is a unique solution uε ∈ DN

2,ε of λu + Au = f .
The maximum principle yields that uε ≥ 0. Note that we cannot use Proposition 3.2 to
obtain a uniform bound on ‖uε‖L2(Sε) since b > −1. It is straightforward to check that
A0,ε = (A0, D

N
2,ε) is symmetric, and thus selfadjoint, on L2(Sε). Hence, the resolvents

(λ+A0,ε)
−1 are symmetric for λ > 0. It follows that

‖(λ+A0,ε)
−1‖ = r((λ+A0,ε)

−1) ≤ 1/λ,

where r(·) denots the spectral radius. Moreover, the estimate (3.7) holds with A0 replaced
with A0,ε. Setting Aε = (A,DN

2,ε), the identity (3.8) is true for Aε and A0,ε. These relations
imply

‖(λ+Aε)
−1‖ ≤ 1

1− β
‖(λ+A0,ε)

−1‖ ≤ 1

1− β
1

|λ|
,

which means that

‖uε‖L2(Sε) ≤
1

1− β
1

|λ|
‖f‖L2(RN+1

+ ).

Proposition 3.3 further yields a constant K such that

‖∇uε‖L2(Sε) ≤ K ‖f‖L2(RN+1
+ ).

There thus exists a sequence εn → 0 and a positive function u ∈W 1,2(RN+1
+ )∩W 2,2

loc (RN+1
+ )

such that uεn converges to u weakly in W 2,2
loc (RN+1

+ ) and strongly in L2
loc(RN+1

+ ). Moreover,
λu + Au = f . As in the proof of Proposition 3.6 one can see that u ∈ D2. As a result,
0 ≤ u = (λ+A)−1f , and hence the semigroup generated by −A is positive.

Remark 3.8. If b ∈ (−1,−1/2), then the operator (A,D2) is not quasi–accretive (i.e., A+ω
is not accretive for any ω ∈ R).

Proof. We only look at the one dimensional operator A = −yD2 + bD on the half line
(0,+∞). (For the general case, consider functions of the form u(x)v(y) with u ∈ C∞c (RN ).)
If A were quasi–accretive in L2(0,+∞), then there would exist a constant ω ∈ R such that

Re (Au · u) ≥ ω‖u‖2L2(0,+∞) (3.9)

for every u ∈ D2. Fix η ∈ C2(R) with η = 1 in (−∞, (4e2)−1], η = 0 in [(2e2)−1,+∞) and
0 ≤ η ≤ 1. For small δ > 0 and α ∈ (0, 1/2), we define

uδ(y) = η(y)(− log(y + δ))α.
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Then uδ ∈ D2. Integrating by parts, (3.9) yields

b+ 1

2

(
uδ(0)

)2 ≤ −ω ∫ +∞

0

u2
δ +

∫ +∞

0

y(u′δ)
2. (3.10)

The functions uδ converge pointwise to u0 = η(− log)α as δ → 0 and u2
δ ≤ u2

0 ∈ L1(0,+∞).
Hence, uδ tend to u0 in L2(0,+∞). Moreover, y(u′δ)

2 converge pointwise to y(u′0)2. We
estimate

y(u′δ(y))2 ≤ 2α2η(y)2 y

y + δ

(− log(y + δ))2α−2

y + δ
+ 2y

(
η′(y)

)2
(− log(y + δ))2α

≤ 2α2η(y)2 (− log(y))2α−2

y
+ 2y

(
η′(y)

)2
(− log(y))2α =: v(y),

using that the function H(t) = t−1(− log(t))2α−2 is decreasing in (0, e−2) and that η
vanishes on [(2e2)−1,+∞). Since v ∈ L1(0,+∞), the norms ‖√y u′δ‖L2(0,+∞) tend to
‖√y u′0‖L2(0,+∞) as δ → 0. Letting δ → 0, we get a contradiction in (3.10).

We conclude the section by proving the generation result in the case a 6= 0.

Theorem 3.9. Assume that b < −1/2 and a ∈ RN . The operator (−A,D2) then generates
an analytic C0–semigroup on L2(RN+1

+ ). This semigroup is positive and bounded.

Proof. We write A = B+C, where B = −y∆+bDy, C = a·∇x andD(C) = {u ∈ L2(RN+1
+ ) :

Cu ∈ L2(RN+1
+ )} ⊃ D2. Propositions 3.6 and 3.7 show that (−B,D2) generates a positive,

bounded, analytic C0-semigroup T (·) on L2(RN+1
+ ). It is known that (C,D(C)) generates

the positive, contractive C0–group S(·) on L2(RN+1
+ ) given by (S(t)f)(x, y) = f(x+ at, y).

We want to check that these semigroups commute. Take v ∈ C∞c (RN+1
+ ) and t ≥ 0. Note

that S(s)v ∈ C∞c (RN+1
+ ) and C∞c (RN+1

+ ) ⊂ D(B2). Hence, T (t)C∞c (RN+1
+ ) ⊂ D(B2) ⊂

D2 ⊂ D(C). We can thus differentiate

∂s (S(t− s)T (t)S(s)v) = S(t− s)[T (t)C − CT (t)]S(s)v

for s ∈ [0, t]. Since C : D(B2)→ D(B) is bounded, we similarly obtain

∂r (T (t− r)CT (r)S(s)v) = T (t− r)(CB −BC)T (r)S(s)v = 0,

also using that B and C commute on D(B2). Integrating in r ∈ [0, t], it follows (CT (t) −
T (t)C)S(s)v = 0, and hence T (t)S(t)v = S(t)T (t)v. By density, the semigroups commute.

As result, the closure of A = B+C (initially defined on D2) generates the C0–semigroup
given by U(t) = T (t)S(t), t ≥ 0, see Paragraph II.2.7 in [2]. Observe that U(t) is positive
and bounded. Moreover, the resolvents of B and C commute.

In a next step we show that A is actually closed on D2 using a theorem on operator
sums by Kalton and Weis. We refer to [12] for the relevant background information. Due to
e.g. Theorem 11.5 in [12], the m–accretive operator −C has a bounded H∞–calculus of any
angle ωC > π/2. Since −B generates a bounded analytic semigroup on a Hilbert space, it is
R–sectorial of an angle ωB < π/2, cf. p.75 and 76 of [12]. Theorem 12.13 of [12] now shows
that A = B + C is closed on D2. Hence, the graph norm of A is equivalent to the norm of
D2 which in turn is equivalent to the graph norm of B. The analyticity of U(·) then follows
from that of T (·) because of

‖AU(t)f‖L2(RN+1
+ ) ≤ c

(
‖BT (t)S(t)f‖L2(RN+1

+ ) + ‖T (t)S(t)f‖L2(RN+1
+ )

)
9



≤ c
(
t−1‖S(t)f‖L2(RN+1

+ ) + ‖T (t)S(t)f‖L2(RN+1
+ )

)
≤ c t−1‖f‖L2(RN+1

+ )

for t ∈ (0, 1], f ∈ L2(RN+1
+ ) and some constants c > 0.

4 Generation on bounded domains

Let Ω be a bounded open subset of RN+1 with C2 boundary and let % be a function in
C2(Ω) such that % > 0 in Ω, % = 0 on ∂Ω and ∇%(ξ) = ν(ξ), for every ξ ∈ ∂Ω. Here, ν(ξ)
is the inward unitary normal vector to ∂Ω at ξ. We consider the operator

A = −%
N+1∑
i,j=1

aijDij +

N+1∑
i=1

biDi, (4.1)

and set a(ξ) =
(
aij(ξ)

)
i,j

and

κ = max
ξ∈∂Ω

〈b(ξ), ν(ξ)〉
〈a(ξ)ν(ξ), ν(ξ)〉

.

Assume that

(H1) aij are real continuous functions on Ω, aij = aji, and satisfy the ellipticity condition
〈a(ξ)ζ, ζ〉 ≥ α|ζ|2 for every ξ ∈ Ω, ζ ∈ RN+1 and some α > 0.

(H2) bi are real continuous functions on Ω.

(H3) κ < −1/2.

We endow A with the domain

DΩ
2 =

{
u ∈W 2,2

loc (Ω) ∩W 1,2(Ω) : %|D2u| ∈ L2(Ω)
}
.

Theorem 4.1. Under assumptions (H1), (H2) and (H3) the operator (−A,DΩ
2 ) generates

an analytic C0–semigroup on L2(Ω).

The proof is based on Theorem 3.9. It follows the lines of the arguments in Lemma 2.13,
Corollary 2.14 and Section 3 of [5]. We thus omit the proof, but briefly indicate the main
ideas. One first extends Theorem 3.9 to operators on RN+1

+ where one replaces y∆ by
a term y

∑
ij aijDij with constant coefficients. Then one localises the operator A on Ω

around suitably chosen points ξ1, · · · , ξm ∈ ∂Ω and ξ0 ∈ Ω and for j ≥ 1 one transforms
the localised operators to the half space RN+1

+ in such a way that the normal is preserved
at ξj . In particular, the factor % transforms into functions φj that behave like y. One
freezes the coefficients of the transformed operators and replaces φj by y, thus obtaining
operators as in the indicated extension of Theorem 3.9. Condition (H3) then yields that
the resulting normal drift coefficient is strictly less than −1/2. (In [5] we had the opposite
sign.) For these operators with frozen coefficients one has a resolvent in L2(RN+1

+ ) with the
regularity properties established in the previous section. Using this regularity, the backward
transformation, perturbation and partitions of unity, one can now construct the resolvent
of A on Ω that satisfies the appropriate estimates.
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The above theorem enables to solve the parabolic problem on Ω corresponding to A in
optimal regularity. We thus consider the evolution equation

∂tu(t) +Au(t) = f(t) on Ω, t > 0,

u(0) = u0 on Ω.
(4.2)

The next result follows from standard theory of analytic semigroups. We also refer to e.g.
Corollary 1.7 in [12] for the needed result about W 1,2–regularity and to e.g. Proposition 6.2
and Corollary 1.14 of [13] for the regularity of semigroup orbits starting in the real interpo-
lation space (L2(Ω), DΩ

2 )1/2,2.

Corollary 4.2. Assume that (H1), (H2), (H3) hold. Let u0 ∈ L2(Ω) and f ∈ C(R+, L
2(Ω)).

Then the problem (4.2) has a unique solution u ∈ C1((0,∞);L2(Ω)) ∩ C((0,∞);DΩ
2 ) ∩

C(R+, L
2(Ω)), which belongs to C1(R+;L2(Ω)) ∩ C(R+;DΩ

2 ) if u0 ∈ DΩ
2 . Let u0 ∈

(L2(Ω), DΩ
2 )1/2,2 =: V and f ∈ L2((0, T );L2(Ω)) for any T > 0. Then the evolution

equation (4.2) has a unique solution u ∈W 1,2((0, T );L2(Ω))∩L2((0, T );DΩ
2 )∩C([0, T ];V ).
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