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Abstract

We study the regularity properties of solutions to the single and double obstacle
problem with non standard growth. Our main results are a global reverse Hölder
inequality, Hölder continuity up to the boundary, and stability of solutions with
respect to continuous perturbations in the variable growth exponent.
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1. Introduction

The obstacle problem is, roughly speaking, solving a partial differential equa-
tion with the additional constraint that the solution is required to stay above
a given function, the obstacle. This leads to a variational inequality. From a
minimization point of view, the problem is to find a minimizer with fixed bound-
ary values in the set of functions lying above the obstacle function. Such a set
is convex, and thus a unique minimizer exists under reasonable assumptions.
The potential theoretic viewpoint to the obstacle problem is finding the small-
est superharmonic function which lies above the obstacle. This is the balayage
concept of potential theory. Finally, the double obstacle problem adds another
constraint, the requirement that the solution must also stay below another given
function.

In this paper we deal with the single and double obstacle problems associated
to quasi-linear elliptic equations

−divA(x,∇u) = 0 (1.1)

with non-standard structural conditions. These conditions involve a variable
growth exponent p(·). The prototype of such equations is the p(·)-Laplacian

−div
(
|∇u|p(x)−2∇u

)
= 0. (1.2)
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Our interests are regularity up to the boundary, and stability with respect to
perturbations in the growth exponent p(·). We work almost exclusively with
the definition in terms of a variational inequality.

In the last fifteen years or so, there has been a growing interest in the calcu-
lus of variations and nonlinear partial differential equations with nonstandard
growth conditions, and the related Lebesgue and Sobolev spaces with variable
exponent. This is not only a matter of purely mathematical interest, but also
applications to elasticity [42], non-Newtonian fluids [40], and image process-
ing [4] have been proposed. The interested reader can find numerous further
references in the overview paper [22] and the monograph [6].

Recently some papers appeared in the case of obstacle problems with non
standard growth. See [38, 37], for existence and uniqueness of an entropy so-
lution, in the framework of Lewy-Stampacchia inequalities. A treatment of the
double obstacle problem in Orlicz-Sobolev spaces can be found in [39]. For
work on regularity results, see [8, 9] for Hölder continuity results in the setting
of Morrey and Campanato spaces, and [10] for gradient estimates of Calderón-
Zygmund type. The balayage related to supersolutions of (1.2), and its relation
to the obstacle problem is considered in [31]. Finally, we mention the paper [21]
where the obstacle problem is employed as a tool to develop nonlinear potential
theory for (1.2), in the spirit of [25].

The current paper aims at complementing the paper [21] by extending the
results for weak solutions in [11] to cover the obstacle problem. More specifically,
we prove global higher integrability of the gradient, Hölder continuity up to
the boundary and stability of the solutions to the single and double obstacle
problem with respect to continuous perturbations in the growth exponent p(x)
for solutions of single and double obstacle problems.

It is well known that regularity results for problems of p(·)-growth require
some assumption on the function p(·). We make the standard assumption on
p(·), the so called logarithmic Hölder continuity condition. This condition was
introduced by Zhikov [43] in the context of Lavrentiev phenomenon, and it
has turned to be very useful in regularity problems and in other applications.
Indeed, the condition turns up quite naturally in the estimates of the De Giorgi
and Moser methods, and there are very few regularity results that do not assume
logarithmic Hölder continuity.

In order to consider properties of solutions up to the boundary, we need a
suitable hypothesis on the domain. Here we assume that the complement of the
domain satisfies a measure density condition. This condition is rather standard
in regularity theory. For our purposes, the most important consequences of it
are that Sobolev–Poincaré inequalities can be applied up to the boundary, and
that the boundary estimates from [32] become available.

Our stability results concerns perturbations in the growth exponent p(·).
More specifically, we consider a sequence pi(·) of variable exponents converg-
ing uniformly to the function p(·), and show that the corresponding sequence
of solutions with fixed boundary values and obstacles converges, up to subse-
quences, to the solution of the limit problem. The chief technical problem here
is that changing the growth exponent changes the underlying Sobolev space in
which the solutions lie. Higher integrability is the key tool in dealing with this
difficulty, as it allows working in a fixed Sobolev space.

The paper is organized as follows. In Section 2 we present the preliminaries
about the obstacle problem. In Sections 3, 4 and 5 we consider the single obstacle
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problem results for the solution to the obstacle problem. More precisely, Section
3 contains a higher integrability result, Section 4 the Hölder continuity up to
the boundary, and Section 5 deals with the stability. Finally, in Section 6 we
discuss how these results are extended to the double obstacle problem.

2. The obstacle problem

In this section, we discuss the definition of solutions to the obstacle problem.
To this end, we also introduce some notation, and recall a number of other
definitions and facts.

We call a bounded measurable function p : Rn → (1,∞), n ≥ 2, a variable
exponent. We denote

p−E = inf
x∈E

p(x), and p+
E = sup

x∈E
p(x),

where E is a measurable subset of Rn. We assume that 1 < p−Ω ≤ p+
Ω < ∞,

where Ω is an open, bounded subset of Rn. We abbreviate p− := p−Rn and
p+ := p+

Rn .
The variable exponent Lebesgue space Lp(·)(Ω) consists of all measurable

functions f defined on Ω for which∫
Ω

|f |p(x) dx <∞.

The Luxemburg norm on this space is defined as

‖f‖p(·) = inf

{
λ > 0 :

∫
Ω

∣∣∣∣f(x)

λ

∣∣∣∣p(x)

dx ≤ 1

}
.

Equipped with this norm Lp(·)(Ω) is a Banach space, see [30]. For a constant
function p(·) the variable exponent Lebesgue space coincides with the standard
Lebesgue space. The conjugate exponent p′(·) is defined pointwise by 1/p(x) +
1/p′(x) = 1. The Hölder inequality∫

Ω

fg dx ≤ C‖f‖p(·)‖g‖p′(·)

holds for functions f ∈ Lp(·)(Ω) and g ∈ Lp′(·)(Ω).
The variable exponent Sobolev space W 1,p(·)(Ω) consists of functions f ∈

Lp(·)(Ω) whose distributional gradient ∇f exists and satisfies |∇f | ∈ Lp(·)(Ω).
This space is a Banach space with the norm

‖f‖1,p(·) = ‖f‖p(·) + ‖∇f‖p(·).

For basic properties of the spaces Lp(·) and W 1,p(·), we refer to [6, 30].
Smooth functions are not dense in W 1,p(·)(Ω) without additional assump-

tions on the exponent p(·). This was observed by Zhikov [43, 44] in the context
of the Lavrentiev phenomenon, which means that minimal values of variational
integrals may differ depending on whether one minimizes over smooth func-
tions or Sobolev functions. Zhikov has also introduced the logarithmic Hölder
continuity condition to rectify this. The condition is

|p(x)− p(y)| ≤ C

− log (|x− y|)
(2.1)
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for all x, y ∈ Ω such that |x − y| ≤ 1/2. If the exponent is bounded and
satisfies (2.1), smooth functions are dense in variable exponent Sobolev spaces

and we can define the Sobolev space with zero boundary values, W
1,p(·)
0 (Ω),

as the completion of C∞0 (Ω) with respect to the norm ‖ · ‖1,p(·). We refer to
[5, 6, 20, 24, 41] for density results in variable exponent Sobolev spaces.

We will use logarithmic Hölder continuity in the form

R−(p+
B−p

−
B) ≤ C, (2.2)

where B = B(x0, 2R) b Ω. It is well-known that requiring (2.2) to hold for
all such balls is equivalent with condition (2.1); a proof of this is given in [5,
Lemma 3.2]. An elementary consequence of (2.2) is the inequality

C−1R−p(y) ≤ R−p(x) ≤ CR−p(y), (2.3)

which holds for any points x, y ∈ B(x0, 2R) with a constant depending only
on the constant of (2.2). We use phrases like “by log-Hölder continuity” when
applying either (2.2) or (2.3). Further, expressions such as“the constant depends
on p” are taken to mean a dependency on p+, p−, and the log-Hölder constant
of p.

We need the following assumptions, with strictly positive constants α and
β, to hold for the operator A : Ω× Rn → Rn.

1. x 7→ A(x, ξ) is measurable for all ξ ∈ Rn,

2. ξ 7→ A(x, ξ) is continuous for almost all x ∈ Ω,

3. A(x, ξ) · ξ ≥ α|ξ|p(x) for almost all x ∈ Ω and ξ ∈ Rn,

4. |A(x, ξ)| ≤ β|ξ|p(x)−1 for almost all x ∈ Ω and ξ ∈ Rn,

5. (A(x, η)−A(x, ξ)) · (η − ξ) > 0 for all x ∈ Ω and η 6= ξ ∈ Rn.

We may assume that α ≤ β by choosing β larger if necessary. These are called
the structure conditions of A.

In this article, we always assume that p(·) is log-Hölder continuous with
1 < p− ≤ p+ <∞ and that Ω is a bounded open set in Rn

The above structural conditions imply that we can define solutions in the
weak sense in the space W 1,p(·)(Ω). More precisely, a function u ∈ W 1,p(·)(Ω)
is a weak solution to

−divA(x,∇u) = 0,

if ∫
Ω

A(x,∇u) · ∇ϕdx = 0

for all test functions ϕ ∈ C∞0 (Ω). Further, u is a weak supersolution if the
above integral is nonnegative for all nonnegative test functions ϕ, and a weak
subsolution if it is nonpositive. By regularity theory [1, 2, 3, 12], there is a
locally Hölder continuous reprensentative of a weak solution.

Let ψ : Ω → [−∞,∞) be a function, called an obstacle; let f ∈ W 1,p(·)(Ω)
be a function which gives the boundary values. Define

Kf,p(·)ψ (Ω) = {u ∈W 1,p(·)(Ω) : u− f ∈W 1,p(·)
0 (Ω), u ≥ ψ, a.e. in Ω}.
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We say that a function u ∈ Kf,p(·)ψ (Ω) is a solution to the obstacle problem

Kf,p(·)ψ (Ω) if ∫
Ω

A(x,∇u) · ∇(v − u) dx ≥ 0 (2.4)

for every v ∈ Kf,p(·)ψ (Ω).
All basic properties of solutions to the obstacle problem follow as in [25],

Chapter 3. In particular, we note the fact that solutions to obstacle problems
are always weak supersolutions.

Let us now take care of the matter of existence and uniqueness of the solution
to the obstacle problem. If we make the mild additional assumption that the
operator A comes from an Euler–Lagrange equation of a strictly convex varia-
tional integral, such as the p(·)-Dirichlet integral, then existence and uniqueness

follow from the fact that we are minimizing over the convex set Kf,p(·)ψ . Alter-
natively, we may appeal to abstract functional analysis results about monotone
operators as in [36].

Remark 2.1. Let us notice that, by replacing f by f1 = max{f, ψ} we may
assume that the boundary value function f satisfies f ≥ ψ in Ω. Indeed f1 =
(ψ − f)+ + f and since

0 ≤ (ψ − f)+ ≤ (u− f)+ ∈W 1,p
0 (Ω),

the function (ψ− f)+, and hence u− f1 belongs to W 1,p
0 (Ω). Similar considera-

tions hold for the double obstacle problem. Here we denote (f)− := −min{f, 0}
and (f)+ := max{f, 0}.

3. Global higher integrability

In this section, we consider the higher integrability up to the boundary for
the single obstacle problem. More precisely, we show that under some natural

assumptions, the solution u to the Kf,p(·)ψ (Ω) obstacle problem, of which we a

priori only know that |∇u|p(·) ∈ L1(Ω), actually satisfies |∇u|p(·)(1+ε) ∈ L1(Ω),
for a small ε > 0, assuming that the boundary values and the obstacle are
sufficiently regular. This result can be used to study the corresponding stability
problem.

The outline of the arguments is standard: a combination of a Caccioppoli
inequality and a Sobolev-Poincaré inequality yields a reverse Hölder inequality.
Higher integrability then follows from a suitable version of Gehring’s lemma.

Since we are interested in regularity properties up to the boundary, we need
to make some assumption about the domain. Here we assume that the comple-
ment of Ω satisfies the measure density condition. More precisely, this means
that

|Ωc ∩B| ≥ c|B| (3.1)

whenever B = B(x0, r) is a ball centered at a point x0 ∈ Ωc. This condition
is widely used in regularity theory, and it is also fairly weak. For instance, all
domains with a Lipschitz boundary clearly satisfy this condition.

In what follows, we choose a number M such that

max

{∫
Ω

|∇u|p(x) dx,

∫
Ω

|∇ψ|p(x) dx,

∫
Ω

|∇f |p(x) dx

}
≤M.
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The dependency of the constant in our reverse Hölder inequality on the norms
of ∇u, ∇ψ and ∇f will be expressed by a dependency on M . By testing the
definition with v = max{ψ, f} and using Young’s inequality, we see that∫

Ω

|∇u|p(x) dx ≤ C
(∫

Ω

|∇ψ|p(x) + |∇f |p(x) dx

)
,

so any M larger than the right hand side will do.

Theorem 3.1. Suppose that the complement of Ω satisfies the measure density

condition (3.1), and let u be the solution to the Kf,p(·)ψ (Ω) obstacle problem,

where ψ, f ∈W 1,p(·)(Ω) and |∇ψ|, |∇f | ∈ Lp(·)(1+δ)(Ω) for some δ > 0. Assume
that there exists a compact set K ⊂ Ω such that f ≥ ψ in Ω \K.

Then there exist a positive number ε0 and a constant C depending only on
n, p, the structure of A, M and the constant in the measure density condition,
such that |∇u| ∈ Lp(·)(1+ε)(Ω) whenever 0 < ε < ε0, and∫

Ω

|∇u|p(x)(1+ε) dx ≤ C
[ ∫

Ω

|∇u|p(x) dx

+

∫
Ω

|∇ψ|p(x)(1+ε) dx+

∫
Ω

|∇f |p(x)(1+ε) dx+ 1

]
.

(3.2)

Proof. Let B0 be a ball with Ω ⊂ 1
2B0. Let r0 := dist{∂Ω,K}. Let B ≡ B(x, r),

x ∈ Ω, and assume that 0 < r < 1
4r0 and 4B ⊂ B0. The proof divides into two

cases depending on whether we are near the boundary or not.
• Case 1: 2B ⊂ Ω. Let η ∈ C∞0 (2B) be a cut-off function such that η = 1

in B̄, 0 ≤ η ≤ 1 and |∇η| ≤ C/diam(B). We would like to test (2.4) with

v := u− cu − ηp
+
2B (u− cu − (ψ − cψ)),

where cu and cψ denote the mean value of the functions u and ψ respectively in
2B, i.e.

cu := −
∫

2B

u dx :=
1

|2B|

∫
2B

u dx cψ := −
∫

2B

ψ dx :=
1

|2B|

∫
2B

ψ dx.

To this aim, we need to show that v is an admissible test function, for a suitable

obstacle problem. We notice that v ∈ Kf−cu,p(·)ψ−cu , v − (f − cu) ∈ W
1,p(·)
0 (Ω)

because η ∈ C∞0 (Ω). Since cu ≥ cψ we obtain

v = (1− ηp
+
2B )(u− cu) + ηp

+
2B (ψ − cψ)

≥ (1− ηp
+
2B )(ψ − cu) + ηp

+
2B (ψ − cu) = ψ − cu,

a.e. in Ω. We calculate

∇v = (1− ηp
+
2B )∇(u− cu) + ηp

+
2B∇(ψ− cψ) + p+

2Bη
p+

2B−1∇η[(ψ− cψ)− (u− cu)].

Since u − cu is a solution to the Kf−cu,p(·)ψ−cu obstacle problem and v is a test
function, we have

0 ≤
∫

Ω

A(x,∇u) · ∇(v − u) dx =

∫
2B

A(x,∇u) · ∇(v − u) dx

6



and thus∫
2B

A(x,∇u) · ∇u dx ≤
∫

2B

A(x,∇u) · ∇v dx

≤
∫

2B

(1− p+
2B)A(x,∇u) · ∇u dx

+

∫
2B

ηp
+
2BA(x,∇u) · ∇ψ dx

+ p+
2B β

∫
Ω

|∇u|p(x)−1 ηp
+
2B−1 |∇η| (|ψ − cψ|+ |u− cu|) dx,

where, in the last line, we used the structure conditions on A. Simplifying and
using again the structure conditions of A, we have

p+
2B

∫
2B

A(x,∇u) · ∇u dx ≥ αp+
2B

∫
2B

|∇u|p(x) dx.

On the other hand, using Young’s inequality, for some suitable ζ ∈ (0, 1) we get∫
2B

ηp
+
2BA(x,∇u) · ∇ψ dx ≤

∫
2B

β|∇u|p(x)−1|∇ψ| dx

≤ ζ
∫

2B

|∇u|p(x) + cζ

∫
2B

|∇ψ|p(x) dx

and

β

∫
2B

p+
2B |∇u|

p(x)−1 ηp
+
2B−1|∇η| (|ψ − cψ|+ |u− cu|) dx

≤ ζ
∫

2B

ηp
+
2B |∇u|p(x) dx+ cζ

∫
2B

(∣∣∣∣ u− cudiam(B)

∣∣∣∣p(x)

+

∣∣∣∣ ψ − cψdiam(B)

∣∣∣∣p(x)
)

dx.

Observe that we used the definition of p+
2B to get

p̃ :=
p(x)(p+

2B − 1)

p(x)− 1
≥ p+

2B ∀x ∈ 2B (3.3)

and to estimate ηp̃ ≤ ηp
+
2B in the second inequality. Now, we choose ζ, which

depends on n, p−, p+, α, β, small enough to absorb the gradient of u to the left
hand side. We connect all the previous estimates and take the mean values, and
get the Caccioppoli type inequality

−
∫
B

|∇u|p(x) dx ≤ C −
∫

2B

∣∣∣∣ u− cudiam(B)

∣∣∣∣p(x)

dx

+C−
∫

2B

∣∣∣∣ ψ − cψdiam(B)

∣∣∣∣p(x)

dx+ C −
∫

2B

|∇ψ|p(x) dx,

where C only depends on n, p−, p+, α, β. Now arguing as in [44], Theorem 1.3,
or [7], Theorem 3.1, we can use the usual constant exponent Sobolev-Poincaré
inequality and log-Hölder continuity, which yield

−
∫

2B

∣∣∣∣ u− cudiam(B)

∣∣∣∣p(x)

dx ≤ C

(
−
∫

2B

|∇u|
p(x)

θ̄ dx

)θ̄
+ C
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and

−
∫

2B

∣∣∣∣ ψ − cψdiam(B)

∣∣∣∣p(x)

dx ≤ C

(
−
∫

2B

|∇ψ|
p(x)

θ̄ dx

)θ̄
+ C ≤ C−

∫
2B

(|∇ψ|p(x) + 1) dx,

where we have chosen θ̄ := min
{√

n+1
n , p−

}
. From this we can deduce the

following reverse Hölder estimate:

−
∫
B

|∇u|p(x) dx ≤ C

(
−
∫

2B

|∇u|
p(x)

θ̄ dx

)θ̄
+ C −

∫
2B

|∇ψ|p(x) dx+ C,

with C ≡ C(n, p−, p+, α, β,M).
• Case 2: 2B \ Ω 6= ∅. This case is more complicated, as the boundary of

Ω will be involved in the analysis. We divide this case in three steps.
step 1: Caccioppoli type inequality. Let η ∈ C∞0 (2B) be the cut-

off function chosen in the previous case. This time we test (2.4) with v :=

u − ηp
+
D (u − f), where u − f ∈ W 1,p(·)

0 (Ω) and where we write D := 2B ∩ Ω.
Since f ≥ ψ in Ω \ K and the radius of B is small enough, it is not difficult

to see that v ∈ Kf,p(·)ψ and therefore it is an admissible test function. Thus we
have ∫

Ω

A(x,∇u) · ∇u dx

≤
∫

Ω

A(x,∇u) · ∇v dx

≤
∫

Ω

(1− ηp
+
D )A(x,∇u) · ∇u dx−

∫
D

p+
D η

p+
D−1(u− f)A(x,∇u) · ∇η dx

+

∫
D

ηp
+
DA(x,∇u) · ∇f dx.

We simplify the previous chain of inequalities, using the structure conditions on
A, and deduce

α

∫
D

ηp
+
D |∇u|p(x) dx ≤

∫
D

ηp
+
D β |∇u|p(x)−1 |∇f | dx

+p+
D

∫
D

ηp
+
D β |∇u|p(x)−1|u− f | |∇η| dx.

Exploiting the Young inequality, as in the previous case, and taking the mean
values, we obtain the Caccioppoli type inequality

1

|2B|

∫
D

ηp
+
D |∇u|p(x) dx ≤ C

1

|2B|

∫
D

∣∣∣∣ u− f
diam(B)

∣∣∣∣p(x)

dx

+C
1

|2B|

∫
4B∩Ω

|∇f |p(x) dx.

Here the constants C only depend on n, p−, p+, α, β. The choice to replace D
with 4B ∩ Ω in the last integral will be clear later.

step 2: choice of θ and localization. In order to obtain a suitable
reverse Hölder inequality, we have to choose a proper value of the parameter θ,
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which will be used in the application of Gehring lemma. First note that if p is
defined only in Ω then we can extend it to the whole Rn with a same log-Hölder
constant, p− and p+. Fix 1 < θ < min{n′, p−}, n′ being the conjugate exponent
of n. We choose an upper bound for the radius of B such that

p+
3B < n′

p−3B
θ

.

step 3: Application of Sobolev–Poincaré inequality. Since u−f ∈
W

1,p(·)
0 (Ω), u − f has a zero extension belonging to W 1,p(·)(Rn). Since the

complement of Ω satisfies the measure density condition, we see that there
exists a constant C, depending on the constant appearing in (3.1), such that
|{x ∈ 3B : u− f = 0}| ≥ C|3B|.

Let now q ∈ (1, n) such that p+ ≤ q∗ and write h := min{q, p−3B/θ}. We
combine the standard constant exponent (p+

3B , h)-Sobolev-Poincaré inequality
in a ball [33, Corollary 1.64, p.38] and the inequality

‖v‖Lq(3B) ≤ 2

(
|3B|

|{x ∈ 3B : v(x) = 0}|

)1/q

‖v − v3B‖Lq(3B)

(see, e.g., [26, Lemma 2.3]) to obtain(
−
∫

3B

|v|p
+
3B dy

) 1

p
+
3B ≤ C diam(B)

(
−
∫

3B

|∇v|h dy
) 1
h

,

where the constant C depends on n, p+
3B , h and the constant in the measure

density condition (3.1). Using this inequality with v = u− f in the second step
and Hölder’s inequality in the third step, we obtain

−
∫

3B

∣∣∣∣ u− f
diam(B)

∣∣∣∣p(x)

dx

≤−
∫

3B

∣∣∣∣ u− f
diam(B)

∣∣∣∣p
+
3B

dx+ 1

≤C
(
−
∫

3B

|∇(u− f)|h dx

)p+
3B/h

+ 1

≤C
(
−
∫

3B

|∇(u− f)|p
−
3B/θ dx

) p
+
3B

θ

p
−
3B + C

≤C
(
−
∫

3B

|∇(u− f)|p(x)/θ + 1 dx

) θ(p
+
3B
−p−

3B
)

p
−
3B

×
(
−
∫

3B

|∇(u− f)|p(x)/θ + 1 dx

)θ
+ C,

where the constant C depends only on n and q i.e. n and p+. Since p is log-

Hölder continuous |3B|−[θ(p+
3B−p

−
3B)]/p−3B is bounded, we obtain

−
∫

3B

∣∣∣∣ u− f
diam(B)

∣∣∣∣p(x)

dx ≤ C
(
−
∫

3B

|∇u|p(x)/θ dx

)θ
+ C

(
−
∫

3B

|∇f |p(x)/θ dx
)θ

+ C

≤ C
(
−
∫

3B

|∇u|p(x)/θ dx

)θ
+ C−

∫
3B

|∇f |p(x) dx+ C,
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where the integral of |∇f | has been estimated by Hölder’s inequality.
• Gehring lemma and conclusion. We set θ1 := min{θ̄, θ}, where θ̄ has

been fixed in Case 1 and θ in Case 2. Summing up, we obtain by Cases 1 and
2 the following reverse Hölder estimate

1

|B|

∫
B∩Ω

|∇u|p(x) dx ≤ C

(
1

|4B|

∫
4B∩Ω

|∇u|
p(x)
θ1 dx

)θ1
+

C

|4B|

∫
4B∩Ω

|∇f |p(x) dx+
C

|4B|

∫
4B∩Ω

|∇ψ|p(x) + C,

which holds for all sufficiently small balls with constants C depending on n, p,
α, β, θ,M but independent of the radius of the ball. Let

g(x) :=

{
|∇u|

p(x)
θ1 , if x ∈ Ω

0 otherwise

and

h(x) :=

{
|∇f |

p(x)
θ1 + |∇ψ|

p(x)
θ1 , if x ∈ Ω

0 otherwise.

Then the previous reverse Hölder inequality reads

−
∫
B

gθ1 dx ≤ C

(
−
∫

4B

g dx

)θ1
+ C −

∫
4B

hθ1 dx+ C, (3.4)

whenever 4B ⊂ B0 is sufficiency small. Now we can use a standard version of
Gehring’s lemma (see for example [17], Chap. V, or [18], Theorem 6.6), and
find a number ε > 0 and a constant C such that

−
∫
B

|∇u|p(x)(1+ε) dx ≤ C

[(
−
∫

4B

|∇u|p(x) dx

)1+ε

+−
∫

4B

|∇f |p(x)(1+ε) dx+−
∫

4B

|∇ψ|p(x)(1+ε) dx+ 1

]
.

The estimate (3.2) then follows from this by noting that due to the boundedness
of Ω, Ω can be covered by a finite number of balls such that the previous
inequality holds.

4. Continuity up to the boundary

In this section, we discuss continuity properties of solutions to the obstacle
problem up to the boundary. We start by briefly stating what can be said about
the obstacle problem by means of the Wiener criterion for weak solutions. The
main effort is then to prove Hölder regularity up to the boundary.

For solutions, we recall the following definition.

Definition 4.1. Let u be an arbitrary weak solution to (1.1) such that u −
f ∈ W 1,p(·)

0 (Ω), where f ∈ W 1,p(·)(Ω) ∩ C(Ω̄) is the function which gives the
boundary values. A boundary point x0 ∈ ∂Ω is regular, if

lim
x→x0

u(x) = f(x0)

for all such functions u.
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It is well known that for equations similar to the p-Laplacian, regular bound-
ary points can be characterized in terms of the so-called Wiener criterion, see
[13, 28, 34]. The variable exponent version of the Wiener criterion is Theorem
1.1 of [3]. See also [32].

If the obstacle ψ is continuous, the solution to the obstacle problem in Kf,p(·)ψ

is continuous, and it is a weak solution in the open set {u > ψ}, see [21,
Theorem 4.11]. Using this fact, boundary continuity for the obstacle problem
is a straightforward application of the Wiener criterion for solutions, see [25,
Theorem 6.29] and its p(·)-adaptation [31, Theorem 6.1].

Theorem 4.2. Let u be the solution of the Kf,p(·)ψ -obstacle problem, where ψ, f ∈
W 1,p(·)(Ω) ∩ C(Ω). If x0 ∈ ∂Ω is regular for solutions with respect to Ω, then

lim
x→x0

u(x) = f(x0).

Let us now switch our attention to the matter of Hölder regularity up to the
boundary. This turns out to be a consequence of certain estimates extracted
from the proof of the sufficiency of the Wiener criterion due to Gariepy and
Ziemer [13]. More precisely, one can use the method of [13] to estimate the rate of
convergence to the boundary value at a point in a precise manner. Further, since
the key estimate is for subsolutions, this works also for the obstacle problem.

For our present purposes, the following local Hölder estimate is convenient.

Theorem 4.3. Let u be a solution to the obstacle problem in Kf,p(·)ψ , and let
Br be a ball such that Br b Ω. If the obstacle ψ is Hölder continuous with the
exponent α, then the local Hölder estimate

osc
Bρ

u ≤ C
(ρ
r

)κ
(osc
Br

u+ c rα) (4.1)

where ρ ≤ r, holds for some 0 < κ < 1.

Proof. This follows by the argument of Theorem 3.7 in [35]. The estimates
necessary to run this argument are the supremum estimate for obstacle prob-
lems [21, Theorem 4.9], and the weak Harnack inequality for supersolutions [23,
Theorem 3.7].

The following proposition provides the key estimate for Hölder continuity
near the boundary.

Proposition 4.4. Let x0 ∈ ∂Ω, assume that u is a function such that (u −
k)+ζ ∈W 1,p(·)

0 (Ω) whenever ζ ∈ C∞0 (B(x0, r)), and that

uk =

{
(u− k)+ in Ω,

0 otherwise

is a subsolution. Set
m(r) = sup

B(x0,r)

uk.

If the complement of Ω satisfies the measure density condition (3.1), there is a
number γ̃0 < 1 such that

(m(r) + r)γ̃0 ≤ m(r)−m(r/2) + r. (4.2)

11



Proof. Since the measure density condition implies the capacity density condi-
tion used in [32], (4.2) follows from the proof of [32, Theorem 3.3], the remark
after it, and the observations in Section 4 of [32].

We are now ready to estimate the convergence rate at a boundary point.

Proposition 4.5. Let u be the solution to the obstacle problem in Kf,p(·)ψ , where

ψ ∈W 1,p(·)(Ω)∩Cα(Ω) and f ∈W 1,p(·)(Ω)∩C(Ω)∩Cα(∂Ω) are such that f ≥ ψ
on ∂Ω.

Assume that the complement of Ω satisfies the measure density condition,
and define

v(r) = sup
B(x0,r)∩Ω

u(x)− f(x0).

Then either
v(r) ≤ C rα, (4.3)

or there is a number 0 < β < 1 such that

v(ρ) ≤ 2β
(ρ
r

)β
(v(r) + crα) (4.4)

for all ρ ≤ r/2.

Proof. We denote

Dr = Ω ∩B(x0, r) and Sr = ∂Ω ∩B(x0, r)

for short. Let

k(r) = max

{
sup
S2r

f, sup
D2r

ψ

}
.

The proof now divides into two parts: if supDr u ≤ k(r), then we will show that
(4.3) holds, and in the case supDr u > k(r) we will prove (4.4).

We begin by assuming that supDr u ≤ k(r). If k(r) = supS2r
f , then (4.3)

holds trivially. If k(r) = supD2r
ψ, we use the fact that f(x0) ≥ ψ(x0) to

estimate

sup
Dr

u− f(x0) ≤ sup
Dr

u− ψ(x0) ≤ sup
D2r

ψ − ψ(x0) ≤ C rα,

so that (4.3) holds also in this case.
Assume then that

sup
Dr

u > k(r). (4.5)

Since u is a solution in the set {u > ψ}, and k(r) ≥ supD2r
ψ, (u − k(r))+ is

a subsolution in D2r. Further, since k(r) ≥ supS2r
f and f gives the boundary

values of u, ζ(u − k(r))+ ∈ W
1,p(·)
0 (Ω) whenever ζ ∈ C∞0 (B(x0, r)). Thus we

may apply (4.2) to get(
sup
Dr

(u− k(r))+ + r

)
γ̃0 ≤ sup

Dr

(u− k(r))+ − sup
Dr/2

(u− k(r))+ + r.

Now, by (4.5), we have

sup
Dr

(u− k(r))+ = sup
Dr

u− k(r).
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Further, we have either

sup
Dr/2

(u− k(r))+ = sup
Dr/2

u− k(r),

or
−k(r) ≤ − sup

Dr/2

u.

In both cases, we get the estimate

(sup
Dr

u− k(r) + r)γ̃0 ≤ sup
Dr

u− sup
Dr/2

u+ r.

Adding and substracting f(x0) on both sides, we get

(v(r)− φ(r) + r)γ̃0 ≤ v(r)− v(r/2) + r,

where we denoted
φ(r) = k(r)− f(x0).

Rearranging this leads to

v(r/2) ≤ γ0(v(r) + φ(r) + r),

where
γ0 = max{1− γ̃0, γ̃0} < 1.

To deal with φ(r), we note that if k(r) = supS2r
f , we have

φ(r) = sup
S2r

f − f(x0) ≤ C rα,

and if k(r) = supD2r
ψ, we have

φ(r) ≤ sup
D2r

ψ − ψ(x0) ≤ C rα

since f(x0) ≥ ψ(x0).
We have arrived at the inequality

v(r/2) ≤ γ0(v(r) + Crα + r).

The estimate (4.4) now follows by a standard iteration procedure. Indeed, set-
ting B(r) = Crα + r, we see that

v(r/2m) ≤γm0

v(r) +

m−1∑
j=0

B(r/2j)γj−1
0


≤γm0

(
v(r) +

Crα

γ0(1− γ0)

)
for m = 1, 2, . . ., since B(r) ≤ Crα. Now, given ρ ≤ r/2, we find m such that

r

2m+1
< ρ ≤ r

2m
,
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or, it other words,

log2

(
r

2ρ

)
< m ≤ log2

(
r

ρ

)
.

We set β = log2(1/γ0); then 0 < β ≤ 1 and γ0 = 2−β . We have

γm0 ≤ 2−β log2(r/2ρ) = 2β
(ρ
r

)β
,

and the estimate

v(ρ) ≤ v(r/2m) ≤ 2β
(ρ
r

)β
(v(r) + Crα)

follows.

To glue together the local estimate of Theorem 4.3 and the boundary esti-
mate of the previous proposition, we use the following elementary lemma. See
[25, Lemma 6.47] for the proof.

Lemma 4.6. Assume that u is a function such that the estimate (4.1) holds.
If there are constants L ≥ 0 and 0 < γ < 1 such that

|u(x)− u(x0)| ≤ L|x− x0|γ ,

for all x ∈ Ω and x0 ∈ ∂Ω, then

|u(x)− u(y)| ≤ L1|x− y|γ1

for all x, y ∈ Ω. We can choose γ1 = min{γ, κ, α}, where κ and α are the
exponents in (4.1), and L1 = CLmax{1,diam Ωγ−γ1}.

Hölder continuity up to the boundary now follows by combining Proposition
4.5 and Lemma 4.6. We choose a number r0 ≤ 1 to function as a cutoff point
for being near the boundary.

Theorem 4.7. Let u be the solution to the obstacle problem in Kf,p(·)ψ , where

ψ ∈W 1,p(·)(Ω)∩Cα(Ω) and f ∈W 1,p(·)(Ω)∩C(Ω)∩Cα(∂Ω) are such that f ≥ ψ
on ∂Ω. Assume also that the complement of Ω satisfies the measure density
condition.

Then
|u(x)− u(y)| ≤M1|x− y|δ

for all x, y ∈ Ω, where δ is any number such that

0 < δ ≤ min{α/2, β/2, κ}.

Here κ is the local Hölder exponent from (4.1) and β the exponent from Propo-
sition 4.5, and M1 = C supΩ |u|r−2δ

0 M max{1,diam Ω2}.

Proof. The proof is a matter of verifying the assumption of Lemma 4.6 by means
of Proposition 4.5. Let x0 ∈ ∂Ω, x ∈ Ω, set ρ = |x − x0| and r = 2ρ1/2, and
assume first that ρ ≤ r2

0/10. If (4.3) holds for this value of r, it is clear that

|u(x)− u(x0)| ≤ C|x− x0|δ.
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On the other hand, if (4.4) holds for r, we have

|u(x)− u(x0)| ≤ v(ρ) ≤ Cρβ/2(v(r) + ρα/2) ≤ C|x− x0|δ.

Finally, if ρ = |x− x0| ≥ r2
0/10, we have the trivial estimate

|u(x0)− u(x)| ≤ C sup
Ω
|u|r−2δ

0 |x− x0|δ,

so that the assumption holds also in this case.

5. Stability of solutions to the obstacle problem

The aim of this section is to show that the solutions to the obstacle problem
are stable under perturbations in the growth exponent given suitable assump-
tions. More precisely, let pi : Rn → (1,∞) be continuous functions that converge
pointwise to a function p, and assume that they satisfy the log-Hölder continuity
condition

|pi(x)− pi(y)| ≤ C

− log |(x− y)|
with a constant independent of i; we will assume that the convergence is uniform
by Ascoli-Arzelà’s Theorem. Further, let the vector fields Ai(x, ξ) have pi-
growth with structural constants α and β independent of i, and assume they
converge to A0(x, ξ) uniformly on compact subsets of Rn. Suppose that ui is

the solution to the following Kf,pi(·)ψ (Ω)-obstacle problem∫
Ω

Ai(x,∇ui) · ∇(v − ui) dx ≥ 0 (5.1)

for every v ∈ Kf,pi(·)ψ (Ω) and u0 the solution to∫
Ω

A0(x,∇u0) · ∇(v − u0) dx ≥ 0 (5.2)

for all v ∈ Kf,p(·)ψ (Ω).
If the boundary values f are sufficiently regular, we will extract a limit

function u from the sequence (ui) and then show that u = u0. The main result
is the following theorem. The proof consists in a proper combination of the
proof of Theorem 7.1 in [11] together with the elements in [14].

As an example where the above conditions are satisfied, one can think of

Ai(x, ξ) = |ξ|pi(x)−2ξ.

Then the uniform convergence of Ai(x, ξ) to A0(x, ξ) = |ξ|p(x)−2ξ follows from
the uniform convergence of the functions pi by an application of the mean value
theorem.

Theorem 5.1. Suppose that the complement of Ω satisfies the measure density
condition (3.1). Let (pi), Ai(x, ξ), and A0(x, ξ) be as described above.

Let the boundary value function f and the obstacle function ψ be in W 1,p(·)(1+γ)(Ω)
for some γ > 0. Then the following are true.
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1. There is a small number δ0 such that sequence (ui) of solutions to the ob-
stacle problems (5.1) has a subsequence which converges in W 1,p(·)(1+δ)(Ω)
for any δ < δ0 to the solution u0 of (5.2).

2. If the obstacle is locally Hölder continuous, we also get convergence in
Cαloc(Ω).

3. Finally, if the obstacle ψ is Hölder continuous up to the boundary, and the
boundary values f are Hölder continuous on the boundary, the subsequence
can be taken to converge in Cα(Ω̄).

Before proceeding with the proof, we note some results which will be used
to verify that the limit function attains the right boundary values in Sobolev’s
sense.

Lemma 5.2. Suppose that the complement of Ω satisfies the measure density
condition (3.1). Then the variable exponent Hardy inequality∥∥∥∥∥ u

dist(x, ∂Ω)

∥∥∥∥∥
Lp(·)(Ω)

≤ C‖∇u‖Lp(·)(Ω) (5.3)

holds for all functions u ∈ W
1,p(·)
0 (Ω). The constant C depends only on the

dimension, p(·), and the constant in (3.1).

Proof. The measure density condition implies that the pointwise Hardy inequal-
ity

u

dist(x, ∂Ω)
≤ CM|∇u|

holds; see [19]. Now the claim follows by integrating this and using the fact that
the maximal operator M is bounded on Lp(·)(Ω).

Applying the above Hardy inequality and [11, Lemma 4.5] as in [11, Lemma
4.7], we get the following result.

Lemma 5.3. Let (pi) be a sequence of log-Hölder continuous variable exponents
with 1 < infi p

−
i ≤ supi p

+
i < ∞ and with uniformly bounded log-Hölder con-

stants so that pi → p almost everywhere in Ω. Suppose that Ω is bounded, and
its complement satisfies the measure density condition.

Let u ∈ W 1,p(·)(Ω) and ui ∈ W 1,pi(·)(Ω) for every i be such that ui →
u almost everywhere in Ω. If f ∈ W 1,p(·)(Ω) ∩

⋂
iW

1,pi(·)(Ω) and ui − f ∈
W

1,pi(·)
0 (Ω) for every i with∫

Ω

|∇(ui − f)|pi(x) dx ≤M, (5.4)

where M is finite and independent of i, then u− f ∈W 1,p(·)
0 (Ω).

Proof of Theorem 5.1. We divide the proof in several step and we just sketch
the main points, referring to [11] and [14] for the missing details.
• step 1: By the assumption on the boundary data, and choosing the index i
large enough, we may suppose that

f ∈W 1,pi(·)(1+γ/2)(Ω). (5.5)
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We first need to prove that∫
Ω

|∇ui|p(x)(1+γ/4) dx ≤ C,

for large i and with the constant C <∞ independent of i. By virtue of Remark
2.1, we can use directly f as a test function in (5.1), so that we have∫

Ω

Ai(x,∇ui) · ∇(f − ui) dx ≥ 0.

Using the structure conditions on Ai and Young’s inequality, it is not difficult
to get ∫

Ω

|∇ui|pi(x) dx ≤ C

∫
Ω

|∇f |pi(x) dx

and this together with Hölder’s inequality, (5.5) and the global higher integra-
bility result obtained in Theorem 3.1 brings the desired result. Note that we
may choose

M = C

(
1 +

∫
Ω

|∇ψ|p(x)(1+γ) + |∇f |p(x)(1+γ) dx

)
to ensure that the constant in Theorem 3.1 is independent of i for large i.
• step 2: Working as in [11], it is still possible to establish the bound

||ui||W 1,p(·)(1+γ/4)(Ω) ≤ C. (5.6)

Let us set δ := γ/4. Having established (5.6), compactness arguments allow us
to extract a subsequence, still denoted by (ui), such that

ui ⇀ u weakly in W 1,p(·)(1+δ)(Ω) (5.7)

ui → u in Lp(·)(1+δ)(Ω) (5.8)

ui → u pointwise a.e. in Ω. (5.9)

• step 3: We need to show now that u ∈ Kf,p(·)ψ (Ω). Indeed, ui ≥ ψ and
therefore, using (5.8)-(5.9), it turns out that u ≥ ψ as well. On the other

hand, ui − f ∈W 1,pi(·)
0 (Ω) and we can use Lemma 5.3, (5.8)-(5.9), and (5.6) to

conclude that also u− f ∈W 1,p(·)
0 (Ω).

• step 4: The next step is to extract a further subsequence so that

∇ui → ∇u pointwise a.e. in Ω.

This can be done using a refinement of the method introduced by Kilpeläinen
and Malý [27], following the lines of [14], see also [11]. The only point to check

is to notice that, since ui, i = 1, 2, . . . is the solution to the Kf,pi(·)ψ (Ω)-obstacle
problem (5.1), it is also an Ai-supersolution, i.e. it holds∫

Ω

Ai(x,∇ui) · ∇ϕ dx ≥ 0,

for each ϕ ∈ C∞0 (Ω), ϕ ≥ 0. This allows to use the same test function as
in the case of equations and continue in the same way with the rest of the
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computations. This is an important point, because we will see that for the
double obstacle problem this fact fails to be true and we will need a different
argument to obtain the result.
• step 5: From the pointwise convergence of the gradients established in step
4, it follows that ui → u in W 1,p(·)(1+δ′)(Ω) for all δ′ < δ.
• step 6: To conclude we just need to check that u = u0. We do this along the

lines of [14]. We know that u0 ∈ Kf,p(·)ψ (Ω) and hence∫
Ω

A0(x,∇u0) · (∇u−∇u0) dx ≥ 0. (5.10)

In order to obtain the inequality∫
Ω

A0(x,∇u) · (∇u0 −∇u) dx ≥ 0, (5.11)

we use an approximation method; the difficulty is that we do not know that

u0 − f ∈ W 1,p(·)(1+δ)
0 (Ω) although u0, f ∈ W 1,p(·)(1+δ)(Ω). For (5.11) we may

again assume that f ≥ ψ. Now u0 − f ∈ W
1,p(·)
0 (Ω) and hence there is a

sequence ϕi ∈ C∞0 (Ω) such that ϕi → u0 − f in W 1,p(·)(Ω). Since ψ − f ≤ 0
and since ϕi has compact support, we can say that

max(ϕi, ψ − f) ∈W 1,p(·)(1+δ)
0 (Ω)

and then vi − f ∈ W
1,p(·)(1+δ)
0 (Ω), where vi = max{ϕi, ψ − f} + f . On the

other hand, vi ≥ ψ − f + f = ψ a.e. and thus vi ∈ Kf,p(·)(1+δ)
ψ (Ω). If v ∈

Kf,p(·)(1+δ)
ψ (Ω), then we may assume that v ∈ Kf,pi(·)ψ (Ω) for large i. Hence∫

Ω

Ai(x,∇ui) · (∇v −∇ui) dx ≥ 0,

and letting i→∞ we obtain from (5.8) that∫
Ω

A0(x,∇u) · (∇v −∇u) dx ≥ 0.

Set v = vi in the previous inequality; now as long as u0 ≥ ψ a.e., we have
vi → u0 in W 1,p(·)(Ω) and therefore (5.11) is obtained. Now the conclusion of
the proof comes easily: from the structure conditions on the operator A0, using
(5.10) and (5.11), we deduce

0 ≤
∫

Ω

(A0(x,∇u)−A0(x,∇u0)) · (∇u−∇u0) dx ≤ 0

and this is possible only if u = u0.
Finally, the convergences in Cαloc(Ω) and in Cα(Ω) follow from the fact that

the respective estimates are uniform in i.

6. The double obstacle problem

In this section we are going to complete the results obtained so far by con-
sidering some of the same questions for the double obstacle problem.
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Let Ω be as in Section 2; let ψ : Ω → [−∞,∞) and ϕ : Ω → (−∞,∞] be
functions, called obstacles and let f ∈W 1,p(·)(Ω) be a function which gives the
boundary values, such that ψ ≤ f ≤ ϕ a.e. in Ω. Define

Kf,p(·)ψ,ϕ (Ω) := {u ∈W 1,p(·)(Ω) : u− f ∈W 1,p(·)
0 (Ω), ψ ≤ u ≤ ϕ a.e. in Ω}.

We say that a function u ∈ Kf,p(·)ψ,ϕ (Ω) is a solution to the Kf,p(·)ψ,ϕ (Ω) double
obstacle problem if ∫

Ω

A(x,∇u) · ∇(v − u) dx ≥ 0

for all v ∈ Kf,p(·)ψ,ϕ (Ω); here the vector field A is as in Section 2. Note that we
allow the cases ψ ≡ −∞ and ϕ ≡ ∞, so that the single upper and lower obstacle
problems are a special case. This is useful when combined with the comparison
lemma below.

The question of existence and uniqueness of solutions can be dealt in a similar
way as for the case of the single obstacle problem. So let us devote our attention
to the question of regularity.

6.1. Interior regularity and continuity up to the boundary

First of all we deal with the problem of the interior regularity for solutions
to the double obstacle problems. In particular, we show that the solution is
continuous if both the obstacles are continuous. The corresponding theorems
have been established in the case of the single obstacle in [21]. We start with
a couple of preliminary lemmas, the first of them being a comparison result. It
allows us to transfer certain facts known for the single obstacle problems, for
instance boundary continuity, over to the double obstacle case.

Lemma 6.1. Let f1, f2 ∈W 1,p(·)(Ω). Assume that ψ1 ≤ ψ2, ϕ1 ≤ ϕ2 a.e. in Ω

and that (f1 − f2)+ ∈W 1,p(·)
0 (Ω). Let u1 be the solution to the Kf1,p(·)

ψ1,ϕ1
-obstacle

problem and u2 be the solution to the Kf2,p(·)
ψ2,ϕ2

-obstacle problem. Then u1 ≤ u2

a.e. in Ω.

Proof. The proof is divided in two steps.
• step 1: Let us introduce the functions

v := min{u1, u2}, w := max{u1, u2}.

In this first step we prove that

v ∈ Kf1,p(·)
ψ1,ϕ1

(Ω), w ∈ Kf2,p(·)
ψ2,ϕ2

(Ω). (6.1)

If min{u1, u2} = u1 then clearly ψ1 ≤ u1 ≤ ϕ1, if instead min{u1, u2} = u2

then ψ1 ≤ ψ2 ≤ u2 ≤ u1 ≤ ϕ1, due to the assumptions. The counterpart for w

is analogous. Now, let h := u1 − f1 − (u2 − f2) ∈W 1,p(·)
0 (Ω). It follows that

h ≥ min{f2 − f1, h} ≥ −(f2 − f1)− − h− = (f1 − f2)+ − h− ∈W 1,p(·)
0 (Ω).

Elementary facts allow us to conclude that also min{f2 − f1, h} ∈ W 1,p(·)
0 (Ω)

and therefore

v − f1 = min{u2 − f1, u1 − f1} = u2 − f2 + min{f2 − f1, h} ∈W 1,p(·)
0 (Ω)
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and

w − f2 = max{u2 − f2, u1 − f2} = u1 − f1 + max{−h, f1 − f2}
= u1 − f1 −min{f2 − f1, h} ∈W 1,p(·)

0 (Ω).

This proves (6.1).

• step 2: In this step we would like to show that∫
Ω

(A(x,∇u1)−A(x,∇v)) · (∇u1 −∇v) dx = 0; (6.2)

if this holds, then from the structure conditions on A, we would have that
v := min{u1, u2} = u1 and therefore u1 ≤ u2, the desired result.

First of all, u1 is the solution to the Kf1,p(·)
ψ1,ϕ1

-obstacle problem and v ∈
Kf1,p(·)
ψ1,ϕ1

(Ω), so it is a good test function, i.e.∫
Ω

A(x,∇u1) · (∇v −∇u1) dx ≥ 0. (6.3)

If we would be able to prove that

−
∫

Ω

A(x,∇v) · (∇u1 −∇v) dx ≤ 0, (6.4)

then from the monotonicity condition coming from the structure conditions on
A we would come to (6.2).

On the other hand, u2 is the solution to the Kf2,p(·)
ψ2,ϕ2

-obstacle problem and

w ∈ Kf2,p(·)
ψ2,ϕ2

(Ω), so it is a good test function and this gives∫
Ω

A(x,∇u2) · (∇w −∇u2) dx ≥ 0. (6.5)

But w := max{u2, u1}, and thus

0 ≤
∫

Ω

A(x,∇u2) · (∇w −∇u2) dx

=

∫
{u1<u2}

A(x,∇u2) · (∇w −∇u2) dx+

∫
{u1>u2}

A(x,∇u2) · (∇w −∇u2) dx

= 0 +

∫
{u1>u2}

A(x,∇u2) · (∇u1 −∇u2) dx.

(6.6)

On the other hand, as v := min{u1, u2}∫
Ω

A(x,∇v) · (∇u1 −∇v) dx =

∫
{u1<u2}

A(x,∇v) · (∇u1 −∇v) dx

+

∫
{u1>u2}

A(x,∇v) · (∇u1 −∇v) dx

= 0 +

∫
{u1>u2}

A(x,∇u2) · (∇u1 −∇u2) dx
(6.6)

≥ 0.

which is nothing but (6.4). This finishes the proof of this comparison lemma.

20



The following lemma is a locality property of the double obstacle problem.

Lemma 6.2. Let ψ,ϕ : Ω→ [−∞,∞) and f ∈W 1,p(·)(Ω). Let u be the solution

to the Kf,p(·)ψ,ϕ (Ω)-obstacle problem and let Ω′ ⊂ Ω be open. Then u is the solution

to the Ku,p(·)ψ,ϕ (Ω′)-obstacle problem.

Proof. Let v ∈ Ku,p(·)ψ,ϕ (Ω′); then we have to show that∫
Ω′
A(x,∇u) · ∇(v − u) dx ≥ 0. (6.7)

Since v − u ∈ W 1,p(·)
0 (Ω′) ⊂ W

1,p(·)
0 (Ω) and v = (v − u) + u ∈ W 1,p(·)(Ω), we

can define v(x) = u(x) when x ∈ Ω \ Ω′. It follows that ψ ≤ v ≤ ϕ a.e. in Ω
since ψ ≤ v ≤ ϕ a.e. in Ω′ and v = u in Ω \ Ω′.

We also have

v − f = (v − u) + (u− f) ∈W 1,p(·)
0 (Ω)

thus v ∈ Kf,p(·)ψ,ϕ (Ω) and using the fact that u is the solution to the Kf,p(·)ψ,ϕ (Ω)-
obstacle problem, we get∫

Ω

A(x,∇u) · ∇(v − u) dx ≥ 0.

As long as v(x) = u(x) when x ∈ Ω \ Ω′, we obtain (6.7) and we are done.

The main result about continuity can be formulated as follows.

Theorem 6.3. Let u be the solution to the Kf,p(·)ψ,ϕ (Ω)-double obstacle problem,
where we assume that ϕ is continuous and ψ is locally bounded. Then the func-
tion

u∗(x) := ess liminf
y→x

u(y) := lim
r→0

ess inf
B(x,r)

u

is lower semicontinuous in Ω and it is such that u∗(x) = u(x) a.e. in Ω.
Moreover, if ψ is also continuous, then the same holds for u∗.

Proof. Since the upper obstacle is locally bounded from above and the lower
obstacle is locally bounded from below, the solution of the double obstacle
problem is locally bounded, and u∗ is finite at each point.

Now let α ∈ R, set A := {x ∈ Ω : u∗(x) > α} and x0 ∈ A. We have

u∗(x0) = lim
r→0

ess inf
B(x0,r)

u > α,

hence there exists δ > 0 such that ess infB(x0,δ) u > α. As for all y ∈ B(x0, δ)
there is δy > 0 such that B(y, δy) ⊂ B(x0, δ), we have

u∗(y) = ess liminf
z→y

u(z) ≥ ess inf
B(y,δy)

u ≥ ess inf
B(x0,δ)

u > α.

This shows that the set A is open and that u∗ is lower semicontinuous in Ω.
To show that u∗(x) = u(x) a.e. in Ω, let ε > 0. By the continuity of ϕ we

find for every x ∈ Ω a ball Bx := B(x, rx) such that

sup
Bx

ϕ ≤ inf
Bx
ϕ+ ε.
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We can cover Ω by countably many such balls. Let further v be the lower semi-

continuously regularized solution of the Ku,p(·)ψ (Bx)-obstacle problem provided
by [23], Theorem 4.1 (see also [21], Theorem 10).

Since u is a solution to the Ku,p(·)ψ,ϕ (Bx)- obstacle problem, due to Lemma
6.2, then the comparison Lemma 6.1 implies that

u ≤ v a.e. in Bx. (6.8)

Next, as ψ ≤ u ≤ ϕ ≤ supBx ϕ =: r a.e. in Bx, we have by the comparison
principle (due to the fact that v(x) = u(x) on ∂Bx) that v ≤ r a.e. in Bx.

Thus v is a solution to the Ku,p(·)ψ,r (Bx)-obstacle problem, which implies that

v − ε is a solution to the Ku−ε,p(·)ψ−ε,r−ε(Bx)-obstacle problem. As ψ − ε ≤ ψ,
r − ε ≤ infBx ϕ ≤ ϕ and u − ε ≤ u in Bx, another application of comparison
Lemma 6.1 implies that v − ε ≤ u a.e. in Bx. Together with (6.8) we get

v − ε ≤ u ≤ v a.e. in Bx (6.9)

and thus (passing to the semicontinuously regularizations)

v − ε = v∗ − ε ≤ u∗ ≤ v∗ = v

everywhere in Bx. This and (6.9) imply that

|u∗ − u| < ε a.e. in Bx (6.10)

Hence |u∗−u| ≤ ε a.e. in Ω, since for a given ε > 0 we can cover Ω by countably
many balls satisfying (6.10). Letting ε→ 0, we obtain that u∗ = u a.e. in Ω.

Next we prove that u∗ is continuous if ψ is continuous. We already know
that u∗ is lower semicontinuous. To show that it is upper semicontinuous let
ε > 0, x ∈ Ω and choose Bx as above. Let v be the continuous solution to the

Ku,p(·)ψ (Bx)-obstacle problem provided by Theorem 10 in [21]. It is shown above
that

v(z)− ε ≤ u∗(z) ≤ v(z) for all z ∈ Bx. (6.11)

Thus using the fact that v is continuous we obtain

v(z)− ε = lim sup
y→z

v(y)− ε ≤ lim sup
y→z

u∗(y) ≤ lim sup
y→z

v(y) = v(z)

for all z ∈ Bx. This and (6.11) give∣∣∣∣lim sup
y→z

u∗(y)− u∗(z)
∣∣∣∣ ≤ ε for alll z ∈ Bx

and hence ∣∣∣∣lim sup
y→z

u∗(y)− u∗(z)
∣∣∣∣ ≤ ε for all z ∈ Ω.

Letting ε→ 0, we get that

lim sup
y→z

u∗(y) = u∗(z), for all z ∈ Ω.

This means that u∗ is continuous in Ω.
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We conclude the subsection with the following important result, which shows
that the continuous solution to the continuous double obstacle problem is a weak
solution in the open set where it does not touch either one of the two obstacles.

Theorem 6.4. Let ψ,ϕ : Ω→ [−∞,∞) be continuous and f ∈W 1,p(·)(Ω). Let

u be the continuous solution to the Kf,p(·)ψ,ϕ -obstacle problem. Let also

Ω′ := {x ∈ Ω : u(x) < ϕ(x)}.

Then u is the solution to the Ku,p(·)ψ (Ω′)-obstacle problem. Moreover u is a weak
solution in the open set {x ∈ Ω : ψ(x) < u(x) < ϕ(x)} (with boundary values
u).

Proof. Let v ∈ Ku,p(·)ψ (Ω′); our aim is to show that∫
Ω′
A(x,∇u) · (∇v −∇u) dx ≥ 0. (6.12)

First of all, notice that w := min{u, v} ∈ Ku,p(·)ψ,ϕ (Ω′). Using the fact that u is

the solution to the Ku,p(·)ψ,ϕ (Ω′)-obstacle problem, we get∫
Ω′
A(x,∇u) · (∇w −∇u) dx =

∫
{u>v}

A(x,∇u) · (∇v −∇u) dx ≥ 0.

Thus, in order to conclude, we also need to show that∫
{u≤v}

A(x,∇u) · (∇v −∇u) dx ≥ 0;

since∫
{u≤v}

A(x,∇u) · (∇v −∇u) dx =

∫
Ω′
A(x,∇u) · (∇max{u, v} − ∇u) dx,

this is the same thing as showing that (6.12) holds with the additional assump-
tion v ≥ u.

Let ε, ε′ > 0 be given. Using the density results mentioned in Section 2

and the fact that 0 ≤ v − u ∈ W 1,p(·)
0 (Ω′), we can conclude that there exists a

function 0 ≤ ϕ̃ ∈ C∞0 (Ω′) such that

||ϕ̃− (v − u)||
W

1,p(·)
0 (Ω′)

< ε′. (6.13)

Let ṽ := ϕ̃+ u. Taking possibly a smaller ε′, it is not hard to show that, using
(6.13) and the assumptions on the operator A∫

Ω′
A(x,∇u) · (∇ṽ −∇v) dx ≤ ε. (6.14)

On the other hand, u and ϕ are continuous on the compact set supp ϕ̃ and
u(x) < ϕ(x) for every x ∈ supp ϕ̃. Therefore we can conclude that there exists
σ > 0 such that u+σ ≤ ϕ on supp ϕ̃. Let 0 < t < 1 be such that tmaxΩ′ ϕ ≤ σ.
Then

ψ(x) ≤ z(x) := u(x) + t(ṽ(x)− u(x)) = u(x) + tϕ̃(x) ≤ ϕ
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for every x ∈ Ω′. Since z−u = tϕ̃ ∈W 1,p(·)
0 (Ω′) and ψ ≤ z ≤ ϕ in Ω′, we obtain

that z ∈ Ku,p(·)ψ,ϕ (Ω′). Elementary computations together with the fact that u is

a solution to the Ku,p(·)ψ,ϕ (Ω′)-obstacle problem, imply that

t

∫
Ω′
A(x,∇u) · (∇ṽ −∇u) dx ≥ 0.

Putting together this last inequality with (6.14) we get (6.12), therefore u is the

solution to the Ku,p(·)ψ (Ω′)-obstacle problem.
At this point, since

{x ∈ Ω′ : u(x) > ψ(x)} = {x ∈ Ω : ψ(x) < u(x) < ϕ(x)},

it follows from Theorem 4.11 in [21] that u is also a solution in the open set
{x ∈ Ω : ψ(x) < u(x) < ϕ(x)}. This finishes the proof.

6.2. Global higher integrability

The next result we are going to achieve is higher integrability for the solutions
to the double obstacle problem. Now an appropriate choice of M is

M = C

(∫
Ω

|∇f |p(x) + |∇ϕ|p(x) + |∇ψ|p(x) dx

)
Theorem 6.5. Suppose that the complement of Ω satisfies the measure den-

sity condition (3.1), and let u be the solution to the Kf,p(·)ψ,ϕ (Ω) double obstacle

problem, where ψ,ϕ, f ∈ W 1,p(·)(Ω) and |∇ψ|, |∇ϕ|, |∇f | ∈ Lp(·)(1+δ)(Ω). As-
sume that there exists a compact K ⊂ Ω such that ψ ≤ f ≤ ϕ in Ω \K. Then
there exist a positive number ε0 and a constant C depending only on n, p, the
structure of A, M , and the constant in the measure density condition, such that
|∇u| ∈ Lp(·)(1+ε)(Ω) whenever 0 < ε < ε0, and∫

Ω

|∇u|p(x)(1+ε) dx ≤C
[ ∫

Ω

|∇u|p(x) dx+

∫
Ω

|∇ψ|p(x)(1+ε) dx

+

∫
Ω

|∇ϕ|p(x)(1+ε) dx+

∫
Ω

|∇f |p(x)(1+ε) dx+ 1

]
.

(6.15)

Proof. The proof of this result goes along the lines of the proof of Theorem 3.1;
we will sketch here the main differences for the reader’s convenience. The most
important point is the choice of a suitable test function in the first case: unlike
the single obstacle problem, this choice is less apparent here. We will employ
an idea from [16].

Let B0 be a ball with Ω ⊂ 1
2B0. Let r0 := dist{∂Ω,K}. Let B ≡ B(x, r),

x ∈ Ω, and assume that 0 < r < 1
4r0 and 4B ⊂ B0.

• Case 1: 2B ⊂ Ω
Let η ∈ C∞0 (2B) be a cut-off function such that η = 1 in B̄, 0 ≤ η ≤ 1 and

|∇η| ≤ C/diam(B). Consider the function

v := (1− ηp
+
2B )(u− cu) + ηp

+
2Bw
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where
w = (ϕ− cu)− + min((ψ − cu)+, (ϕ− cu)+).

We notice that w ∈ W 1,p(·)(Ω) because of the assumptions on the obstacles

∇ψ,∇ϕ ∈ Lp(·)(1+δ) for some δ > 0. Moreover we see that v ∈ Kf−cu,p(·)ψ−cu,ϕ−cu(Ω)
because we have that

w =

{
(ψ − cu)+ ϕ ≥ cu
ϕ− cu ϕ < cu

and this implies that

ψ − cu ≤ v ≤ ϕ− cu a.e. in Ω.

At this point we exploit the fact that u− cu is a solution to the Kf−cu,p(·)ψ−cu,ϕ−cu(Ω)
double obstacle problem and therefore we can write∫

Ω

A(x,∇u) · (∇v −∇u) dx ≥ 0.

We proceed as in Section 3 and exploit the structure conditions ofA and Young’s
inequality, together with (3.3) and the fact that

|w| ≤
{
|ψ − cϕ| ϕ ≥ cu
|ϕ− cψ| ϕ < cu

This way, we finally deduce

−
∫
B

|∇u|p(x) dx ≤ C−
∫

2B

∣∣∣∣ u− u2B

diam(B)

∣∣∣∣p(x)

dx+ C−
∫

2B

|∇ψ|p(x) dx

+C−
∫

2B

|∇ϕ|p(x) dx,

where all constants C only depend on n, p−, p+, α, β. At this point, arguing in
a standard way, we get the following reverse Hölder estimate

−
∫
B

|∇u|p(x) dx ≤ C

(
−
∫

2B

|∇u|
p(x)

θ̄ dx

)θ̄
+C −

∫
2B

|∇ψ|p(x) dx+ C −
∫

2B

|∇ϕ|p(x) dx+ C,

with C ≡ C(n, p−, p+, α, β,M).

• Case 2: 2B \ Ω 6= ∅
In this case we can proceed as in the proof of Theorem 3.1 with the obvious

modifications, since, due to Remark 2.1, we can still use v := u − ηp
+
D (u − f)

as a test function. Therefore we obtain a proper Caccioppoli inequality, and
then localize and choose a suitable exponent θ so that we can apply a stan-
dard Sobolev-Poincaré inequality. We get the following reverse Hölder estimate
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(where θ1 := min{θ̄, θ})

1

|B|

∫
B∩Ω

|∇u|p(x) dx ≤ C

(
1

|4B|

∫
4B∩Ω

|∇u|
p(x)
θ1 dx

)θ1
+

C

|4B|

∫
4B∩Ω

|∇f |p(x) dx

+
C

|4B|

∫
4B∩Ω

|∇ψ|p(x) dx+
C

|4B|

∫
4B∩Ω

|∇ϕ|p(x) dx+ C,

which holds for sufficiently small balls with constants C depending on n, p,
α, β, θ,M but independent of the radius of the ball. Now we set

g(x) :=

{
|∇u|

p(x)
θ1 , if x ∈ Ω

0 otherwise

and

h(x) :=

{
|∇f |

p(x)
θ1 + |∇ψ|

p(x)
θ1 + |∇ϕ|

p(x)
θ1 , if x ∈ Ω

0 otherwise.

With this notation, the current reverse Hölder inequality becomes the same
as (3.4). Thus, as before, an application of Gehring’s lemma and a covering
argument conclude the proof.

6.3. Continuity up to the boundary

Regularity up to the boundary for the double obstacle problem is a conse-
quence of the comparison Lemma 6.1, and the corresponding results for suitable
single obstacle problems. More specifically, we have the following theorem.

Theorem 6.6. Let u be the solution to the obstacle problem Kf,p(·)ψ,ϕ (Ω). Assume

that ψ,ϕ ∈W 1,p(·)(Ω) ∩ C(Ω) and f ∈W 1,p(·)(Ω) ∩ C(Ω).

1. If x0 ∈ ∂Ω is regular for solutions, then

lim
x→x0

u(x) = f(x0).

2. If ψ,ϕ ∈ Cα(Ω), then the local Hölder estimate (4.1) holds for u.
3. If the complement of Ω satisfies the measure density condition, and ψ,ϕ ∈
Cα(Ω), f ∈ Cα(∂Ω), then u is Hölder continuous in Ω.

Proof. Let v and w be the solutions to the Kf,p(·)ψ,∞ and Kf,p(·)−∞,ϕ obstacle problems,
respectively. The conclusion about attaining the right boundary value at regular
boundary points follows from the comparison Lemma 6.1 and the fact that
Theorem 4.2 holds for v and w. See [29, Theorem 4.1 and Corollary 4.2] for
how to prove the local Hölder estimate (4.1) for double obstacle problems. For
Hölder continuity up to the boundary, we note that since the second assumption
in Lemma 4.6 holds for v and w, the comparison lemma 6.1 again implies that
it holds also for u. More specifically, if x0 ∈ ∂Ω and x ∈ Ω, we have

|u(x)− u(x0)| = u(x)− u(x0) ≤ v(x)− v(x0) ≤ C|x− x0|δ

if u(x) > u(x0), and

|u(x)− u(x0)| = u(x0)− u(x) ≤ w(x0)− w(x) ≤ C|x− x0|δ

otherwise, since u, v, and w attain the same value f(x0) at x0.
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6.4. Stability

In the last subsection, we establish the stability result corresponding to The-
orem 5.1 for the double obstacle problem. Assume that the functions pi and
the fields Ai(x, ξ) converge to p and A0 respectively in the same senses as in
Section 5. Then the conclusion is analoguos; in other words if ui is the solution

to the Kf,pi(·)ψ,ϕ (Ω) double obstacle problem∫
Ω

Ai(x,∇ui) · ∇(v − ui) dx ≥ 0 (6.16)

for every v ∈ Kf,pi(·)ψ,ϕ (Ω) and u0 the solution to∫
Ω

A0(x,∇u0) · ∇(v − u0) dx ≥ 0 (6.17)

for all v ∈ Kf,p(·)ψ,ϕ (Ω), we can extract a a limit function u from the sequence
(ui) and then show that u = u0, provided that the boundary values and the
obstacles are sufficiently regular.

Theorem 6.7. Suppose that the complement of Ω satisfies the measure density
condition (3.1). If the boundary value function f and the obstacles ψ,ϕ are in
W 1,p(·)(1+γ)(Ω) for some γ > 0, then the following are true.

1. The sequence (ui) of solutions to the double obstacle problems (6.16) has
a subsequence which converges in W 1,p(·)(1+δ)(Ω) for any δ < δ0 for some
small δ0 to the solution u0 to (6.17).

2. If both of the obstacles are locally Hölder continuous, then the subsequence
can be taken to converge also in Cαloc(Ω)

3. Further, if the obstacles ψ and ϕ are Hölder continuous up to the boundary,
and the boundary values f are Hölder continuous on the boundary, we have
converge in Cα(Ω̄).

Proof. It is not difficult to see that the main difference in the proof with respect
to Theorem 5.1 is in Step 4, i.e. obtaining that ∇ui → ∇u a.e. This is due to the
fact that a solution to the double obstacle problem is no longer a supersolution
and therefore a different approach must by employed. We will adapt the idea
contained in [16]. We may proceed as in the proof of Theorem 5.1 to find
subsequences such that (5.6) and (5.8)-(5.9) still hold. We fix G b G′ b Ω
and η ∈ C∞0 (Ω) such that 0 ≤ η ≤ 1, supp η b G′ and η = 1 on G. Let

vi = ui + η(u− ui). Since u ∈ Kf,pi(·)ψ,ϕ (Ω), we have

vi ≥ (1− η)ψ + ηψ = ψ, vi ≤ (1− η)ϕ+ ηϕ = ϕ,

and since vi − f ∈W 1,pi(·)
0 (Ω), vi ∈ Kf,pi(·)ψ,ϕ (Ω), we can write∫

Ω

Ai(x,∇ui) · (∇vi −∇ui) dx ≥ 0.

Thus we have∫
Ω

(Ai(x,∇ui)−Ai(x,∇u)) · (∇ui −∇u) η dx

≤
∫

Ω

Ai(x,∇ui) · ∇η(u− ui) dx−
∫

Ω

ηAi(x,∇u) · (∇ui −∇u) dx

=: I1
i + I2

i .
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At this point, using the structure conditions of Ai, we see that

I1
i ≤ β C

∫
Ω

|∇ui|pi(x)−1 |u− ui| dx

≤ C ||ui − u||Lp(·)(1+δ)(Ω) → 0

as i→∞, because of (5.6) and (5.8)-(5.9); here we set δ = γ/4.
On the other hand

|I2
i | =

∣∣∣∣∣
∫

Ω

[η(Ai(x,∇u)−A0(x,∇u)) · (∇ui −∇u)

+ηA0(x,∇u) · (∇ui −∇u)] dx

∣∣∣∣∣
≤

∣∣∣∣∣
∫

Ω

η(Ai(x,∇u)−A0(x,∇u)) · (∇ui −∇u) dx

∣∣∣∣∣
+

∣∣∣∣∣
∫

Ω

ηA0(x,∇u) · (∇ui −∇u) dx

∣∣∣∣∣
The second term goes to zero as i→∞ due to (5.8). Moreover∣∣∣∣∫

Ω

η(Ai(x,∇u)−A0(x,∇u)) · (∇ui −∇u) dx

∣∣∣∣ ≤ C||Ai(x,∇u)−A0(x,∇u)||
Lp
′
i
(·)(Ω)

due to (5.6); here p′i is the conjugate exponent of pi. The fact that∫
Ω

|Ai(x,∇u)−A0(x,∇u)|p
′
i(x) dx→ 0

as i → ∞, then follows by Lebesgue’s dominate convergence theorem: indeed,
by assumption we have that

Ai(x, ξ)→ A0(x, ξ) for a.a. x ∈ Ω locally uniformly in Rn

and this implies

|Ai(x,∇u(x)−A0(x,∇u(x))|p
′
i(x) dx→ 0 a.e. in Ω;

and the conclusion comes out by taking into account the estimate

|Ai(x,∇u)−A(x,∇u)|p
′
i(x) ≤C|∇u|pi(x) + C|∇u|(p(x)−1)p′i(x)

≤C + C|∇u|p(x)(1+δ) + C|∇u|p(x)(1+δ).

Summing up, we have shown that∫
G

(Ai(x,∇ui)−Ai(x,∇u)) · (∇ui −∇u) dx→ 0,

as i→∞. This yields that

lim
i→∞

(Ai(x,∇ui)−Ai(x,∇u)) · (∇ui −∇u) = 0.

At this point the conclusion of Step 4 is reached by contradiction as in [11]. The
rest of the proof can be completed in a similar way, and we omit the details.

28



Acknowledgments

The first author wishes to thank the kind hospitality of J. Kinnunen and
the Nonlinear PDE research group at the Institute of Mathematics (Helsinki
University of Technology) for the nice and friendly atmosphere there. The third
author is also grateful to the University of Trento for the kind hospitality during
his visit in autumn 2009. This project has been financially supported by the
Academy of Finland and University of Trento. The third author was supported
by the Norwegian Research Council project “Nonlinear Problems in Mathemat-
ical Analysis.”

References

[1] E. Acerbi, G. Mingione: Regularity results for a class of functionals with
non-standard growth. Arch. Ration. Mech. Anal., 156(2) (2001), 121-140.

[2] Y. A. Alkhutov: The Harnack inequality and the Hölder property of solu-
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[22] P. Harjulehto, P. Hästö, Út V. Lê, M. Nuortio: Overview of differential
equations with non-standard growth, Nonlinear Anal. 72 (2010), 4551-4574.

[23] P. Harjulehto, J. Kinnunen, T. Lukkari: Unbounded supersolutions of non-
linear equations with nonstandard growth, Bound. Value Probl. (2007),
Art. ID 48348, 20 pp.
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[40] M. Růžička: Electrorheological Fluids: Modeling and mathematical theory,
Springer, Heidelberg (2000).

[41] S. Samko: Denseness of C∞0 (RN ) in the generalized Sobolev spaces
WM,P (X)(RN ), in: Direct and inverse problems of mathematical physics
(Newark, DE, 1997), Vol. 5 of Int. Soc. Anal. Appl. Comput., Kluwer Acad.
Publ., Dordrecht, 2000, pp. 333–342.

[42] Zhikov, V.: Averaging of functionals of the calculus of variations and elas-
ticity theory, Izv. Akad. Nauk SSSR Ser. Mat., 50 (1986), no. 4, 675-710.

[43] V. V. Zhikov: On Lavrentiev’s phenomenon, Russian J. Math. Phys., 3 (2)
(1995), 249-269.

[44] V. V. Zhikov: On some variational problems, Russian J. Math. Phys., 5
(1) (1997), 105-116.

31


