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Présenté

Abstract

The image matching within the framework of large deformations via diffeomorphisms is extended to the space
of bounded variation functions. Thanks to a semi-differentiation lemma, which is the central new result of this
article, we derive the geodesic equations for a general penalty term and we describe the associated momentum.
To cite this article: A. Nom1, A. Nom2, C. R. Acad. Sci. Paris, Ser. I 345 (2007).

Résumé

Le cadre de l’appariement d’images via des groupes de difféomorphismes est étendu à l’ensemble des fonctions
à variation bornée. Le résultat principal de l’article est la différenciation du terme d’attache aux données de la
fonctionnelle à minimiser. On établit ainsi les équations géodésiques associées à ce problème variationnel pour un
terme d’attache général et on décrit le moment relatif à cette géodésique.
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Version française abrégée

L’appariement d’images par difféomorphismes a été récemment développé dans le but d’applications à
l’anatomie computationnelle et l’imagerie médicale. Mathématiquement, on minimise une fonctionnelle
avec un terme d’énergie associé à la déformation de l’espace ambiant et un terme d’attache aux données
qui est le carré de la différence L2 entre l’image initiale déformée et l’image cible :

J =
1
2

∫ 1

0

|vt|2V dt+
1
σ2
‖I0 ◦ φ−1

1 − Itarg‖2L2 , (1)
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avec φ1 le flot au temps 1 du champ de vecteur dépendant du temps vt ∈ L2([0, 1], V ). On supposera que
I0 et Itarg sont des fonctions bornées à variation bornée. Le premier terme de la fonctionnelle J une fois
minimisée est une distance (premier terme dans (2)) sur un groupe de difféomorphismses définie dans le
paragraphe 2. L’espace des champs de vecteur est un espace de Hilbert V , tel qu’il existe une injection
continue dans les champs de vecteurs C1, ce qui assure l’existence du flot en tout temps. L’existence
d’un minimum pour cette fonctionnelle s’obtient par un argument classique de semi-continuité inférieure.
Pour obtenir plus d’information sur la géodésique, on différencie par rapport à une variation du champs
de vecteur minimisant la fonctionnelle. Le résultat principal (théorème 3.1) est la dérivation du terme
d’attache aux données, qui est classiquement la différence L2, mais qui peut être plus général (par exemple
Lp pour p > 1). Lorque I0 est suffisamment régulière (I0 ∈ H1), la dérivation est évidente. Un premier pas
pour comprendre le cas de fonctions discontinues a été fait dans [4] pour le cas de fonctions caractéristiques
d’un domaine du plan délimité par une courbe C1 par morceaux. La preuve dans le cas des fonctions à
variation bornée repose sur plusieurs réductions successives. Essentiellement, on démontre le résultat en
dimension 1 en utilisant la décomposition d’une fonction BV en somme d’une fonction SBV et d’une
fonction continue. On montre le résultat pour les fonctions Lipschitz par morceaux et on conclut par
densité des fonctions Lipschitz par morceaux dans l’ensemble des fonctions SBV . Le passage en dimension
quelconque se fait par l’utilisation du théorème du redressement du flot d’un champ de vecteur C1 et de
la décomposition de la distribution dérivée d’une fonction BV selon ses restrictions en dimension 1.
On explicite donc au paragraphe 4 la structure du moment associé au problème initial, qui est transporté
par l’action du flot (voir l’équation (6)). Au cas d’une image I0 ∈ SBV , le plus important pour les
applications, est associé un moment décomposé en une partie dense (homogène à ∇I0) et une partie
singulière supportée par l’ensemble de saut de la fonction I0. Cette décomposition permettra l’élaboration
d’algorithmes numériques efficients prenant en compte les discontinuités des images médicales.

1. Introduction

In this paper, our aim is to give an overview with short proofs of the state of the art of the large
deformation diffeomorphic approach for the case of images. This field has been widely studied since the
first preliminary works by Grenander and al, and especially by A.Trouvé, L.Younes and M.Miller ([8],
[6]). One of the most important and now widely developed application can be found in computational
anatomy and medical imaging. The idea of this field is to match objects which can be deformed by the
action of a diffeomorphism goup of Rn. These objects can be images, measures or group of points. A
functional is minimized over the group of diffeomorphisms, the sum of a cost term and a penalty term,
which is, in the case of image matching, the square of L2 distance,

J =
1
2
D(Id, φ)2 +

1
σ2
‖I0 ◦ φ−1 − Itarg‖2L2 . (2)

In order to get a proper distance on the diffeomorphism group, we need to work with sufficiently smooth
vector fields, and the distance will be chosen right invariant.
If the template image I0 is smooth, namely H1 then the differentiation of J with respect to a small
variation of the vector field can be performed and therefore we obtain the equation of a minimizing path
which is a geodesic on the group of diffeomorphisms. What happens if I0 is not sufficiently smooth?
An attempt to answer this question was presented in [4] for the case of piecewise C1 closed curves. We
will present the derivation of the geodesic equation in the case of BV functions (functions of bounded
variation). We will also extend our work to other penalty terms like for example the Lp norm for p > 1.
And we will detail the structure of the momentum associated to these geodesic. (The momentum is to be
understood as in the Hamiltonian formulation of the geodesic equation on a riemannian manifold.)
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The paper will be divided as follows. In the first part, we will briefly present the framework of large
deformation via diffeomorphisms, the space of images and the space of vector fields. In the second part,
we will establish the existence of a minimizer for the functional J and we will differentiate the functional.
In the last part, we will derive the geodesic equation and enlight our result within the framework of large
deformation via diffeomorphisms.

2. Basic framework: images and diffeomorphisms

Let U be a Lipschitz domain in Rn, BV (U) is the space of BV functions on U . In the following,
we will work with Im(U ) := BV (U ) ∩ L∞(U ). We will extensively use in the next section the one
dimensional restriction of BV functions. To fix the notations, let f ∈ Im(U ), we denote by (f+, f−, ν)
the precise representative of f and Jf is the jump set of f . As a BV function, we write the distributional
derivative of f , Df = ∇f + Dcf + j(f)(x)Hn−1xJf . The gradient ∇f is the absolutely continuous part
of the distributional derivative with respect to the Lebesgue measure and Dcf is the Cantor part of the
derivative. The jump part is written as j(f)(x) = (f+(x)− f−(x))νf (x),
Now, we turn to define the value of a function in Im(U ) with respect to a vector field. Although not a
standard one, this definition is straightforward and useful for the central result stated in the paper. In
the definition below, a vector field is an application from U to Rn without any further assumption but
to be measurable.
Definition 2.1 If X is a (measurable) vector field on U and g ∈ Im(U ), we define gX by gX(x) = g(x)
if x /∈ Jg. On Jg, we define Hn−1 a.e.
– if 〈ν(x), X(x)〉 > 0, gX(x) = g+(x),
– if 〈ν(x), X(x)〉 < 0, gX(x) = g−(x),
– else 〈ν(x), X(x)〉 = 0, gX(x) = g−(x)+g+(x)

2 .
Hence, gX lies in Im(U )× L∞(Jg ;Hn−1 ).
Remark 1 In order to make use of change of variables formulas, the action by a diffeomorphism ψ is
given by

(g ◦ ψ)X ◦ ψ−1 = gdψ(X◦ψ−1).

We will describe the group of diffeomorphisms as usual with a reproducing kernel Hilbert space of
vector fields. We suppose that V is a Hilbert space of C1 diffeomorphisms which can be continuously
embedded in C1(U,Rn), i.e. there exists c > 0 such that for any vector field v ∈ V , we have

‖v‖21,∞ ≤ c2〈v, v〉V .
Consider H = L2([0, 1], V ) the Hilbert space of square integrable time vector fields, then using Gronwall
lemma, it has been proved in [8] that the flow of such a vector field exists for all time and that under
weak convergence in H, vn ⇀ v then there is a uniform convergence of the flow on every compact sets:
φn1 7→ φn1 uniformly on every compact sets in U . The dual operator for the scalar product will be denoted
by L, i.e. for the duality relation we have, (Lv, v) = 〈v, v〉V .

Last, we define precisely the functional we aim to differentiate:

J =
1
2
D(Id, φ1)2 +

∫
U

F (I0 ◦ φ−1
1 (x), Itarg) dx. (3)

with (I0, Itarg) ∈ Im(U )2 . The distance D is a right invariant metric defined as follows,

D(φ, ψ)2 = D(Id, φ ◦ ψ−1)2 = inf{|v|2H2 =
∫ 1

0

|vt|2 dt|Φ1 = φ ◦ ψ−1}, (4)
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with v ∈ H and Φ1 the flow at time 1 of the time dependent vector field v. The penalty term involves the
function F : R2 7→ R which will be locally Lipschitz and C1 in the first variable and such that F (0, 0) = 0
(hypothesis which is required in our derivation result).

3. Differentiation of the functional

The existence of a minimizer for the functional (3) is well known and use the compactness of bounded
balls in H for the weak topology. The proof relies on the lower semi-continuity of the functional with
respect to v ∈ H. Thanks to a convexity argument, the first term is weakly lower semi-continuous. For the
penalty term, thanks to the uniform convergence of the flow (presented in the section 2) and by means of
a smooth approximation, we also get the lower semi-continuity. Remark that we don’t need any regularity
assumption on both functions I0, Itarg. A sufficient condition would be that I0 and Itarg are both in L∞.
What was not known until now is the differentiation of the functional with discontinuities in both images.
The first step was done for the case of piecewise C1 closed curves in the plane in [4]. That work contains
an important lemma (see in appendix the lemma A.1) which enables the statement of our result.
Back to the differentiation, the first term gives, in dual notation,

∫ 1

0
(Lvt, ut) dt. The penalty term is

much more difficult to differentiate and in fact, it is only semi-differentiable. We state hereunder the main
theorem. Note that the flow at time 1 can be differentiated with respect to the vector field (see the lemma
A.2 in appendix).

Theorem 3.1 Let F be a locally Lipschitz function F : R2 7→ R and C1 in the first variable such that
F (0, 0) = 0, (f, g) ∈ Im(U )2 , X a Lipschitz time dependent vector field C1 in space and φt its associated
flow. Defining, Jt(f, g) =

∫
Rn F (f ◦ φ−1

t (x), g(x))dx, then we have

∂t=0+Jt =
∫
〈∂1F (f(x), gX0(x)),−X0〉dx ,

where ∂1F (f, gX0) is a part of the BV derivative of F (f, g), defined by ∂1F (f(x), l) = ∇1F (f(x), l)(∇f(x)+
Dcf(x)) + jF (x)Hn−1xJf , jF (x) = (F (f+(x), l)− F (f−(x), l)) νf (x).

Remark 1 Had we assumed I0 ∈ H1 in the functional (3), we could have dealt with Itarg ∈ L2. The
weaker the regularity assumptions on I0, the stronger are the assumptions on Itarg. Hence, we need Itarg
to be smooth enough in order to give a sense to the dual pairing with the distributional derivative of
I0 ∈ BV . It turns out that functions in BV gives a natural pairing (not to be understood here as dual)
with a distributional derivative in BV .

Sketch of the proof: The proof will follow three reductions.
• First reduction
It is sufficient to prove the result for autonomous vector fields (which do not depend on the time variable).
Comparing the penalty term for the constant vector field X0 and the initial one, we get the result with
the estimation in o(t) of the distance between the flows.

• Second reduction
It is sufficient to prove the result for F (x, y) = xy. As Im(U ) is an algebra since the functions are bounded,
the formula is easily true for polynomial functions. Then, approximating ∇1F on the first coordinate by
a polynomial function, we get the result with the following control if f is C1

|Jt(f, g)− J0(f, g)| ≤ Lip1(F )
∫
U

|f ◦ φ−1
t − f |dx ≤ Lip1(F )||X||∞

∫ t

0

∫
U

|∇(f ◦ φ−1
s )|dx ds.
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Here, Lip1(F ) is the Lipschitz constant of F on {(f(x), g(y))|(x, y) ∈ U2}. The inequality is also valid
for f ∈ BV by approximation. By a change of variable, we get the result. Remark the sup norm of the
vector field on a small time interval [0, t0] in the bound, so that the contribution of the equilibrium points
(X−1({0})) to the differentiation result is null. In the case of the product xy, we have the following
estimation: for t ≤ t0, if g ∈ Im(U ) and f ∈ BV (U) (also true if g ∈ L∞(U)), we have

|Jt(f, g)− J0(f, g)| ≤ Ct||g||∞||f ||BV .

We emphasize the continuity of this result with respect to the sup norm for g and the BV norm for f .
By a change of variable, we have the same result switching the role f and g.

• Third reduction
Remark first that if the result is true for F (x, y) = xy then it is true if g is an uniform limit in Im(U ).
We claim that it is sufficient to prove the result for the one dimensional case.
As we pointed it out above, we only need to focus on points x such thatX(x) 6= 0. By the flow-box theorem,
we obtain trough a change of variables, Jt =

∫
Rn f ◦ψ(x− tv) g ◦ψ Jac(ψ)dx. Remark that we have to deal

with the Jacobian of ψ, we need to assume that it is continuous in order to apply the result we prove in
one dimension. This is allowed thanks to our assumptions on V . Hence g ◦ ψ Jac(ψ) lies in the closure of
Im(U ) under the uniform norm. We then use the theorem (3.108 in [1]) which exhaustingly explains the
behaviour of the one-dimensional restrictions of a BV function and the dominated convergence theorem
to conclude.

Now, the conclusion in one dimension is easier. However it appeared that we are not able to prove it
without the use of a density argument: this led in [7] to a more general proof which is interesting in
itself, due to its higher dimensional taste and to weaker assumptions on the vector fields. In dimension 1,
integrating the derivatives, a BV function is the sum of an SBV function and a continuous BV function.
It is not difficult to prove that piecewise Lipschitz function are dense in SBV . Actually, we can prove
an equivalent statement in any dimension. Our result is continuous with respect to the BV norm of f .
Hence we first treat the case of two piecewise C1 functions which is straightforward. If f is in BV and g
is C1, the very definition of BV derivative gives the result. As the result is continuous for the sup norm
of g, we get the result for f ∈ SBV and g ∈ BV . To complete the proof, we have to deal with the case
f ∈ BV ∩ C0 and g ∈ SBV . Switching the role of the two functions through a change of variable and
then integrating by part, we obtain the result.

4. Geodesic equations and conclusion

Let us define the adjoint for φ a diffeomorphism of Rn and v a vector field on Rn by Adφv = (dφ v)◦φ−1.
The conclusion of the previous section is that the differentiation of the functional gives, for a perturbation
ut of the minimizer vt and δu = −

∫ 1

0
Adφt,1(u) dt (recall that the flow φ is associated to the minimizer

vt), ∫ 1

0

[〈vt, ut〉V −
∫
〈Ad∗φt,1

∂1F
(
I1, (Itarg)δu

)
, ut〉] dt = 0 . (5)

In this equation one should notice that the distributional derivative in the second term belongs to the
dual of V thanks to the smoothness of vector fields.
Now we could conclude that there exists Zt ∈ Conv({Ad∗φt,1

∂1F
(
I1, (Itarg)U

)
|ut ∈ H}) such that

∫ 1

0
(Lvt, ut)−

(Zt, ut)dt = 0, applying the first lemma in appendix. Yet to be more precise on the structure of Zt, we
need to apply the lemma on a different space in order to control Zt with a stronger norm. If µ =
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dx⊗|Dcf |⊗ |j(x)|Hn−1xJf , we consider the equation (5) as a scalar product on H×L2([0, 1], L2(µ)) and
we apply the lemma. Since F is continuous, by the intermediate value theorem there exists Ĩtarg which is a
modification of the precise representative of Itarg only on the jump set Jf such that Ĩtarg(x) ∈ [I−targ, I

+
targ]

for which we have a.e. for t ∈ [0, 1]:

Lvt =
∫
Ad∗φt,1

∂1F
(
I1, Ĩtarg

)
. (6)

This equation shows the transportation of the momentum by the action of the flow which is similar
in its expression to the smooth case. The structure of the momentum is given by the structure of the
distributional derivative of f , which has an absolutely continuous part, a singular part on the jump set
of I0, and a Cantor part. The absolutely continuous part and the Cantor part of the momentum are just
the restriction of a BV function to the sets involved. The Cantor part of the momentum behaves like the
absolutely continuous one, and this is essentially due to the chain rule on BV functions.

In this work, we have detailed the structure of the momentum in the geodesic equations of the matching
via diffeomorphisms for images as BV functions. Future work may essentially be devoted to develop
numerical scheme to take into account this structure in the simpler case of SBV functions, which is
sufficient for practical applications.

Appendix A. Lemmas

Lemma A.1 Let E a Hilbert space, H ⊂ E a vector space and B a non-empty bounded subset of E,
Assume that for any a ∈ H, there exists ba ∈ B such that 〈ba, a〉 ≥ 0. Then, there exists b ∈ Conv(B)
such that 〈b, a〉 = 0, ∀a ∈ H.
For a proof, refer to [9] or [4].
With the notation φt,t′ = φt′ ◦ φ−1

t , we have the differentiation lemma (refer to [9] for a short proof)

Lemma A.2 Let (ut, vt) ∈ H be two time dependent vector fields on Rn, and denote by φε0,t the flow
generated by the vector field ut + εvt, then we have:

∂εφ0,1(x) =
∫ 1

0

[dφt,1]φ0,t(x)v(φ0,t(x))dt = dφ1(
∫ 1

0

Adφt,0(vt) dt).

We can rewrite the formula to derive the expression used for the geodesic equations

∂ε[φ1 ◦ (φε1)−1] = −
∫ 1

0

Adφt,1(v) dt.
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[8] A.Trouvé. Infinite dimensional group action and pattern recognition 1995.

[9] F.X.Vialard. Hamiltonian approach to geodesic image matching. arXiv:0801.2095v1, submitted, 2008.

7


