I'-CONVERGENCE ANALYSIS FOR DISCRETE TOPOLOGICAL
SINGULARITIES: THE ANISOTROPIC TRIANGULAR LATTICE

AND THE LONG RANGE INTERACTION ENERGY

L. DE LUCA

ABSTRACT. We consider 2D discrete systems, described by scalar functions
and governed by periodic interaction potentials. We focus on anisotropic near-
est neighbors interactions in the hexagonal lattice and on isotropic long range
interactions in the square lattice. In both these cases, we perform a complete
I'-convergence analysis of the energy induced by a configuration of discrete
topological singularities. This analysis allows to prove the existence of many
metastable configurations of singularities in the hexagonal lattice.
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INTRODUCTION

This paper deals with the asymptotic behaviour of the energy stored in a lattice,
induced by a configuration of discrete topological singularities, as the atomic scale
goes to zero.

Given an open bounded set Q C R?, a complex lattice A in R?, and a parameter
e > 0, we consider eAN$2, which represents the reference configuration of our phys-
ical system. We focus on scalar systems governed by periodic potentials {g; j}i jea
acting on pairs of atoms of our lattice and we define the energy associated to a
scalar filed u: eANQ — R as

FE,A(uv Q) = Z Gij (U(Ei) - U(EJ))

et,ej€eANQ

In [3] (see also [14, 1, 2]), the asymptotic expansion, as € — 0, of the energy F; s
has been rigorously derived in terms of I'-convergence for A = Z2 and assuming
that g; ite; = i ite, and g; ; = 0 otherwise. Here we present some generalizations
of the result in [3] for energies accounting for isotropic long range interactions in
the square lattice and anisotropic nearest neighbors interactions on the hexagonal
lattice which is a very relevant structure appearing in many context of discrete
systems. The general case of anisotropic long range interaction energies is a very
challenging goal and it goes beyond the purposes of this paper.

To clarify our setting, for every complex lattice A it is convenient to fix a map
Ly : R?* — R? such that Ly(A) = Z? and to consider a family of potentials { f¢ }¢ez2
defined by g; ; := fr,(i—j)- With this notation, the energy associated to a scalar
field u : Q@ NeA — R can be rewritten as

Foa(u, Q) = Z Frati—g) (u(ed) —u(eg)).

€i,ej €€ AN

We assume that fr are non-negative one-periodic potentials, vanishing on the in-
tegers and quadratic in a suitable neighborhood of 0 (see Subsection 1.5 for the
precise properties of the functions fe).

As mentioned above, we focus only on two special kinds of systems: Either we
assume fe = 0 for any £ ¢ {e1,ea,e1 +ea} or fe = fi¢ for any £ € Z2. The former
case accounts for anisotropic nearest neighbors interactions in the hexagonal lattice
and the corresponding energy will be denoteb by F7{. The latter corresponds to
isotropic long range interaction energies and the corresponding functional will be
denoted by F. Eer

Following along the lines the formalism in [5], discrete topological singularities
are introduced through a discrete notion of topological degree of the field v = 2™,
i.e., by giving a suitable definition of the discrete curl of the gradient of u; loosely
speaking, discrete topological singularities are points around which the discrete
gradient of u has non trivial circulation and their distribution can be identified
with a discrete vorticity measure, denoted by p(u). This is a finite sum of Dirac
masses centered in the triangular cells of the lattice and with multiplicities which
are +1 of —1.

The main example of topological singularities we are interested in is given by
the screw dislocations in crystals. In this context, €A is the projection of a complex
3D lattice e£ on a plane ortoghonal to ez, which is assumed to be one of the
generators of £, eA N is the horizontal section of an infinite cylindrical crystal,
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and u represents an anti-plane displacement in the direction ez (see [4] for more
details).

In the framework of linearized elasticity, the stored energy in its basic form can
be written as

1 . . .
SD. A(u, Q) = 3 Z CLA(i—j) dist®(u(ei) — u(ej), Z),
1,jEQNeA

where {c¢}eecze are non-negative constants. The choice fe¢(a) = Cfdist2 (a,Z) is
consistent with the fact that SD,  represents the elastic energy of the crystal and
that integer jumps of the displacement u, corresponding to plastic deformations,
do not store elastic energy (see [5, 2, 14] for more details).

We remark that in this framework, the choice of the potentials in the functional

A isrelevant in order to deal with anti-plane energies defined in the most common
crystal structures. As for instance, it can be seen that for Body Centered Cubic
crystals, the projection A of the 3D lattice on the plane orthogonal to a diagonal of
the cube gives the 2D hexagonal lattice and that the anti-plane energy with nearest
neighbors interactions has the form of F27} (see [11, 4]).

The goal of this paper is the asymptotic expansion by I'-convergence of the
discrete energies F'} and F| E“"A as € — 0. In order to obtain these results we adopt
the following strategy: To each u: eANQ — R we associate the function @ defined
on the nodes of €Z? by setting

with L. () :==eLa(-/¢). It follows that
FE,A(U7 Q) = FE,Z2 (ﬂ’a LE,A (Q))

First we prove the I'-convergence expansion for the functionals Fiy, and FEleQ (see
Section 2 and 3 respectively) and, afterwards, in Section 4, we translate such results
for obtaining the I'-expansion for F} and F, EZ)TA

Our I'-convergence analysis also contains a compactness statement, which repre-
sents the main difficulty. Indeed, one can see that short dipoles cost finite energy so
that sequence having logarithmic bounded energy do not have necessarily bounded
discrete vorticity. Therefore, the compactness result fails in the sense of weak
star convergence but holds in a topology with respect to which annihilating dipoles
have vanishing norm. This is the flat topology, i.e., the dual of Lipschitz continuous
compactly supported functions.

As for the I'-expansion of F?7. we prove that

(0.1) 92 (e, O) — Asertl ] (0) | log €| 5 W™ (1) + || ()™,

with respect to the flat convergence of u(u.) to p. Here Agerr is a number depending
on (the behaviour close to the wells of) fe,, fe,, fei+es, 1t 18 a finite sum of weighted
Dirac deltas with degrees d; = £1, W is the anisotropic version of the renormal-
ized energy studied within the Ginzburg-Landau framework (see [6, 17]) and "
can be viewed as a core energy depending on the specific choice of the potentials f.
The proof of this result is obtained through slight modifications of the techniques
used in [3], since in our case not only anisotropies are allowed but we have also to
deal with the interactions along the direction e; + es.
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As for the energies FEZTZQ we get an expansion analogous to the one in (0.1).
Indeed, thanks to our isotropy assumption (fe = f|5|), we can write F' éTZQ as a sum
of isotropic energies that account for nearest neighbors interactions (as done in [1])
and apply at each of these functionals the previous analysis.

Finally, in Section 5, as a consequence of our I'-convergence result, we show
that in the anisotropic case discrete systems exhibit many metastable configura-
tions. Analogous results relative to the existence of metastable configurations have
been recently obtained for isotropic energies in the square lattice in [3] and in the
hexagonal lattice in [11, 12].

Concerning the dynamics of dislocations, the analysis developed in this paper
is instrumental for the analysis of discrete screw dislocations along glide directions
done in the companion paper [4].

The analysis of metastable configurations and dynamics of discrete topological
singulaties in discrete systems governed by general long range interaction potentials
is a fascinated and challenging problem, which, to our knowledge, is still open.

1. THE DISCRETE MODEL FOR TOPOLOGICAL SINGULARITIES

In this Section we introduce the discrete formalism used in the analysis of the
problem we deal with. We will follow the approach of [5]; specifically, we will use
the formalism and the notations in [2] (see also [14]).

1.1. The discrete lattice. Here we recall the basic definitions of Bravais and
complex lattices in R2.

Let v1,v2 be two linearly independent vectors in R2, referred to as primitive
vectors. The Bravais lattice generated by vy, vs is given by

(1.1) Ap :={z101 + 2202 : 21,20 € Z}.
Let M € N and 7,...,7y be M given vectors in R?, the complex lattice Ac
generated by v, vs and with translation vectors 71,...,7Tas is defined by
M
(1.2) Ac = U {z1v1 + 20v0 + T, : 21,22 € Z}.
k=1

Trivially, a Bravais lattice is a particular case of complex lattice, corresponding
toM =1and 14 =0.

It is easy see that for any complex lattice A, there exists a piecewise linear map
Ly : R? = R2 such that

(1.3) La(A) =72
Moreover, if A is a Bravais lattice, then the application L, is linear.

1.2. Reference configuration. Let ) C R? be an open bounded set with Lips-
chitz continuous boundary, representing the horizontal section of an infinite cylindri-
cal crystal. We will consider discrete lattices casted in €2, representing our discrete
reference configuration. Then, we will introduce the notion of discrete topological
singularity and the energy functionals.

Let A be a complex lattice in R?, and let £ > 0 be a lattice spacing parameter.
Let Ly be a piecewise affine (linear if A is a Bravais lattice) transformation as in
(1.3). We set

(1.4) L. a(x) :=eLa(x/e),
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and we notice that there exist a linear map L : R? — R? and a constant C > 0
such that

(15) HLE’/\ — EA”LQO(Q) S CE.

We will introduce the notion of discrete lattice Q2 casted in Q. To this purpose,
we introduce the polygonal domain 2. as union of e-triangles contained in 2. In
this respect, the e-triangles will represent the minimal area elements in our model.

Let {T+, T~} be the partition of the unit square Q := [0, 1]? into two dimensional
simplices defined by

T = {(21,22) € Q : w1 > 72},
T ={(z1,22) € Q : x1 < 2}
We set
Qo p = U L;}\(sj + eT%).
jez®
ej+eTECL. A (Q)

The reference lattice is given by Qg’ A = €ANQ, . The class of bonds is given by
QL) = {(ei,ef) € Q2 x Q2 1 i # j}. Finally, the class of e-triangles is defined
b

' Q2 ) ={L_\(ej +eT*) 1 ej +eT* C Qe n}.
We will denote by Tf; = L;}\(L&A(ei) + eT*) the generic element in 2.

Finally we define the discrete boundary of € as

(1.6) Do Q = 90 A NeA.

In the following, we will extend the use of these notations to any given open
subset of R2.

1.3. Discrete displacements and discrete topological singularities. Here we
introduce the classes of discrete functions on Q2 and a notion of discrete topological
singularities. To this purpose, we first set

AF () == {u: 02, - R},

which represents the class of admissible scalar functions on QY.
Moreover, we introduce the class of admissible vector fields from QY to the set
S! of unit vectors in R?, by setting

AXYe A (Q) = {v: QS’A — 51}.

Notice that, to any function u € AF. A(2), we can associate a function v €
AX Y- A (Q) setting
vi=v(u) = 2™,

In this framework, discrete topological singularities are defined on the triangular
cells Tfé, which in turns provide the minimal resolution for their positions. Other
variants could be taken into account, as for instance to consider primitive unit cells
instead of triangles, and the analysis developed in this paper would apply with
minor notational changes.

In order to define precisely discrete topological singularities, we first introduce a
notion of discrete vorticity corresponding to both scalar and S* valued functions.

Let P: R — Z be defined as follows
(1.7) P(t) = argmin{|t — s| : s € Z},
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with the convention that, if the argmin is not unique, then we choose the minimal
one. Let u € AF. A (Q2) be fixed. For every TjE € Q2 we introduce the discrete
vorticity

€1) +ee1 +¢eex) —uo L;}\(LE,A(EZ') + ge3)).

One can easily see that a, takes values in {—1,0,1} and that o, (T} ) + au(T+) €
{—1,0,1} for any ei € Q2 ,
Finally, we define the discrete vorticity measure u(u) as follows

(1.8) p(u) = > au(T;y) Y a Syrt )

T, €Q2 Tt eq?

where b(Ti) is the barycenter of the of the triangle T/~

This definition of discrete vorticity extends to S* valued fields in the obvious way,
by setting p(v) = p(u) where u is any function in AF. () such that v(u) = v.
Moreover, by the very definition of u(u), we have that for every open subset A of
2 we have that p(u)(A) depends only on ul 0. 5 A.

Let M(2) be the space of Radon measures in € and set

=1

N
X(Q) = {ueM(Q) D= didy,, N €N d; = 1,z 69}7

(1L9) Xea(@):=qneXinu= D> aT)oyn )+ D, aulli)oyqr ),
T, €92, Tt e?

a(T; ), (T;) € {-1,0, 1}}.

We will denote by ||4/|as the norm of the dual of W, °(£2), referred to as flat norm,

and by p, ag w the flat convergence of pu, to pu. Moreover, we will localize such
flat(A
notation on any open set A writing ., %) L

1.4. Discrete vorticity measure and Jacobian. Here we show the link between
the discrete vorticity measure introduced above and the Jacobian of a “continuous”
field. To this aim, let O C R? be open and bounded and let A = Z2. To each
v € AX)Y, 72(0) we can associate its piecewise affine interpolation 7 according
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with the triangulation {Ti}iezz, i.e., for any ei € O2 ; we set

v(ei + eer) — v(eid)
el¢]

v(ei + ceg) — v(ei)

(1.10) o(z) = v(ei) + ((x — i) - e1)

((x —ei) ex) forxzeT;,

i + eeq) — v(ed)
€
v(ei + eer) — v(er)
€
One can easily verify that if A is an open subset of O with smooth boundary
and if 0] > ¢ > 0 on A, z2, then

(1.11) p(v) = deg(0,0A; z2),
where, given an open bounded set V' C R? with Lipschitz continuous boundary, the
degree of a function w = (wy, wy) € H(dV;R?) with |w| > ¢ > 0, is defined by
1
(1.12) deg(w,dV) := —/ <w1vw2 - wngl> -7 ds.
2 Jov \|w| ~ [w]  |w| "~ |w]
In [8] it is proved that the quantities above are well defined and that the definition
in (1.12) is well posed. Note that ,u(v)(Tij;) = 0 whenever |3] > 0 on Tfs
Finally, we remark that, for every w € H'(V;R?), by Stokes theorem, we have

0 (@) = v(ei) + 2L

((z = 1) - ea)

((x —ei)-e1) forze Tfe

/ I e = deg(w, V),
1%

|w]

where Jw is the Jacobian of w and it is the L! function defined by Jw := det Vw.
Here we recall two results about the Jacobian and the discrete vorticity measure,
that will be useful in the proof of our I'-convergence theorems.

Proposition 1.1 (Proposition 5.2, [2]). Let {v.} € AXY. 72(0) be a sequence
such that XY, 2(ve,0) < C|loge| for some constant C > 0; then

” Jo
s

— p(ve)|lgat = 0 ase — 0.

Lemma 1.2 (Lemma 1, [1]). Let A C R? be an open bounded set and let {w.} and
{ze} be two sequences in WH2(A;R?). If there exists a constant C > 0 such that

(1.13) (a)/ e — 2|2 do < C|log ], (b)/ Vw, — Vz|? dz < C|loge],
A A

then || Jw: — Jz¢|lfas — 0 as € — 0.

1.5. The discrete energies. Here we introduce a class of energy functionals de-
fined on AF. A (£2). To this end, we fix Ly as in (1.3) and we consider interaction
potentials defined on Z2. More precisely, let { Je}teeze be a family of 1-periodic po-
tentials satisfying the following assumption: There exists a family of non-negative
constants {c¢}ecze with ce,,ce, > 0 such that

(1.14) fe(a) > %’C|ezma — 1% = ¢¢(1 — cos 27a),
(1.15) fe(a) = 2n2cea”® + O(a®).

We will focus on two specific cases: the anisotropic energy in the triangular
lattice and the isotropic long range interaction energy.
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The first one is obtained by assuming that fe = 0 if £ ¢ {e1,e2,e1 + e2}; we
define the anisotropic energy in the triangular lattice as

i (u, Q) = > Fon iy (u(ed) — uled)).
(si,sj)eQ;’A
La(i—j)e{e1,e2,e1+ea}

(1.16)

As for the case of isotropic long range interaction energy, we assume that the
constants c¢ satisfy:

(1.17) ce = ceo for every € € Z? (where (£1,6)" = (=€2,61));
(1.18) D celél? < +oo.
gcz2

and we define
(1.19) FEZTA(u, Q) = Z Jrai—g) (u(ei) —u(ef)).
(si,aj)EQ;A

The main motivation for our analysis comes from the study discrete screw dis-
locations in crystals and XY spin systems. In the screw dislocations case, the
potentials f¢(a) are nothing but c§dist2(a7Z); as for the spin systems, for any
v € AXY: A (Q), we define

an 1 . .
(1.20) XY 'R(v,Q) := 3 Z CrLy(i—j)|v(gd) — v(ef)|?,
(ei,ed) €L 4
La(i—j)€{er,e2,e1tea}

" 1 . .
(1.21) X}/;A(’U,Q) =g Z Cra(img|v(Ed) — v(Eh)]?.
(ei,ef)€QL 4

Also these potentials fit with our framework, once we rewrite it in terms of the
phase u of v. Indeed, setting f¢(a) = 1 — cos(2ma), we have

XY (0,Q) = 5 > frati—g) (uler) — uleg))
(ei,cd)€QL 4
La(i—j)e{e1,e2,e1+ea}

1 ) .
XY@ =5 S Sy (uei) — u))
(si,aj)EQ;A
We notice that assumption (1.15) on F2% (resp. F!7y) reads as
(1.22) SR (u,2) > X E?X(e%i“,ﬂ) (resp. FEITA(U,Q) > XYSZ)TA(eQM“,Q)).
Remark 1.3. Notice that the functionals FZ} and Fs”A can be seen as functionals
defined on the square lattice eZ?. More precisely, for any u € AF. () we have
(1.23) R (1, Q) = F%a (uo L;k, L. A ()
(1.24) Fly (u, Q) = Fl'a(wo L7}, Le ().

In the following we will prove the expansion by I'-convergence for the energies
F} and FE“’A As mentioned in the Introduction, we will adopt the following
strategy: In Sections 2 and 3 we will prove the I'-expansion for the functionals
F ;%2 and F 517’”22 respectively. Afterwards, in Section 4 we will use the I'-convergence
results above in order to prove the I'-expansion of the energies F'§ and F| E”A
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2. THE I'-CONVERGENCE ANALYSIS FOR F7,

In this section we develop the I'-convergence analysis of the functionals Fs‘f%z as
¢ — 0. Such analysis is closely related to the one given for the isotropic case in [3,
Sections 3 and 4], but requires some cares due to the presence of the anisotropies
and of the interaction along the direction %

2.1. The zero order I'-convergence result for F?7,. The essential ingredient
in order to obtain the I'-expansion of the energies FQ%Q is given by a localized
[-liminf inequality for this energy.

Let O C R? open and bounded with Lipschitz continuous boundary.

Theorem 2.1. Set Ageif := \/Ce, Cey T CeyCeytes T CenCeqtes -
The following I'-convergence result holds true.

(i) (Compactness) Let {u.} C AF. 72(0) be such that 7, (u.,0) < C|loge]

for some positive C. Then, up to a subsequence, p(u.) Aag u, for some
ue X(0).

(i) (Localized T'-liminf inequality) Let {u.} C AF. 72(0) be such that p(te.) a
= Zf‘il diby,, with d; € Z\ 0 and x; € O. Then, there exists a
constant C' € R such that, for any i = 1,..., M and for every o <
%dist(B*%xi,B*%(E)Q) UUji B’%xj), we have

e e am o
(21) hgl)l(l)’lf FE,ZZ (UEa EOB (l‘z)) — 7T>\self|di| log g Z 07
where B is defined in (2.5). In particular
fn an (- o
lim inf F572 (te, O) = mhseyl | (O) log — = C.

(iii) (T-limsup inequality) For every p € X (O), there exists a sequence {i.} C
AFc 72(0) such that p(ie.) g w and
Fo7,(ae, Q)

g,

TAseil 1] (2) = hr;l LD ]

The theorem above has been proved in [3] for ¢.; = ¢, = 1 and ¢e,4e, = 0 by
combining a sharp lower bound of the energy on annuli without singularities with
(a discrete modification of) the ball construction technique introduced by Sandier
[15] and Jerrard [13]. In this paper we will give only the anisotropic counterparts
of these tools (see Subsection 2.2 and 2.3 below). Then, the proof closely follows
the lines of the one of [3, Theorem 3.1] and it is omitted.

2.2. Lower bound on elliptic annuli. We notice that, as a consequence of (1.22),
it is enough to prove the lower bound of the energy for the functional X Y.
First of all, let us consider the continuous energy associated to X Y;%?' More
precisely, for every v € AXY, 72(0), let © : O.z2 — R? be the piecewise affine
interpolation of v according with the triangulation {Ti:,te}i€Z2 defined in Subsection
1.2 (see (1.10) for the definition of o).
Using that
2

vlei+eer + eea) = v(ed) = 2|0eytes 0()|%, for any z € T, UT, with TX € 0%,
3 : : 7 :

e
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it is easy to show that for any open subset A C O, the following holds true

22 | /A (@QVD, V) da + / (QVE, V) da

A
€2 BE,ZQ

> XV (0, A) > / (QVS, Vi) de,
A_ 42

&,

DN =

where BQZQ ={x € A,z : dist(x,0A, z2) < e} and

(23) Q — ( Ce, + Cei4es Ceiten ) .

Ceites Ce, + Ceites

For any A C R? open and bounded and for any w € H'(A;R?), we define

(2.4) F(w, A) = 1/(QVw,Vw) dz = det & / (BVw, Vw) dz,
2 Ja 2 A
where we have set
(2.5) B := Q@ )
VdetQ

Finally, we notice that

(2.6) Fo(w, A) = Vdth/ 1B} Vul? do
A

det @ / |V (w o B%)(Bf%zﬂ2 dx
2 Ja

Vdet@/l IV (wo BY)(y)? dy,
2 B~%(A)

where in the last line we have used the change of variable y = B~ 2z and the fact
that det(B~z) = 1.
We remark that by the very definition of @ in (2.3),

(27) )\self =/ det Q

Recalling the definition of B in (2.5), for any p > 0 and for any = € R?, we set
1 _1
(2.8) Ef(a:) = B2%(B,(B™ %x));

moreover we set Ef = Ef(O).

We first give the lower bound of the energy F*" on elliptic annuli. Let 0 < r < R
and let w € H'(EB \ EP;S") with deg(w,dEB) = d. Set wP(y) := w(Bzy), by
(2.6) and Jensen’s inequality, we get

)\Se
29) FrwERVED) =2 [ vl )P ay
BR\B7~

As

e [F 1 R
> = / / |(w? x Vw?B) 72 ds dp > Aself/ —md? dp > Aseierr|d|log —,
2 Jr Jop, r P r

where we have used that deg(w?,0Br) = deg(w,dEE) = d.
In the following Proposition we show that also for the functionals X Y7 an

estimate analogous to (2.9) holds up to an error due to the discrete setting. We
first notice that, by its very definition, B is symmetric and hence also B ~7 is. Using
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that det B—2 = 1, we have that the eigenvalues of B~z are of the form A, —%. We
set m := max{)\Q, % .

Proposition 2.2. Fiz ¢ > 0 and let my2e < r < R — my/2e. For any field

v (BR\EP)Nel? = S with [0 > 5 in Ef_ 5 \EP_ . . it holds
R

rt e (aln()(BB) + mv2)’

(2.10) S5 (0, ER N ES) 2 Aseyy mlpu(v)(E)7)|log

where a > 0 is a universal constant.

Proof. By (2.2), using Fubini’s theorem, we have that

R—m+/2¢
(2.11) (v, EE \ EP) > / F(5,0EY) dp.

’ r+my/2e
Fix r + mv2e < p<R-— my/2¢ and let T be a simplex of the triangulation of the
e-lattice. Set yr(p) := 8E,’)3 NT, let ¥7(p) be the segment joining the two extreme

points of yr(p) and let ¥(p) = Uz 77 (p); then

1
(2.12)F*"(3,0E)) = 7/ Cer|Oey D12 + Cey [0er | 4 2Cey 16y |Deries D) ds
2 Uryr(p) vz
= % ZT(Cel Iaelﬁ‘T|2 + Ce, |692,D|T |2 + 2C€1+62 |aclj§2 ,D‘T|2)H1(,7T(p))
> % ZT(Cel |3€11~1‘T|2 =+ Ce, |8ezl~)|T |2 + 2Ce; te, |8%{’\T|2)H1(’7T(p))
= fan(@’?p)'
Set m(p) := mins,) |0]. Set 05 (y) := #(B2y). By (2.6), we have
A
(213) FreAe) =25 [ et dy.
B~z (¥(p))

Using Jensen’s inequality and the fact that H!(3(p)) < H'(9E,) = H' (B2 (dB,)),
we get

1/ B 1 ) B o8
= [Vo©|*ds > 7/ m(p)|| == XV—ss | - T
2 J5) 2 /54000 [o5] —  [oF

V

1 m%p) LA
- 2HYW(L(*(p))) /B%(—y(p))<f23| ><v|1~)B|> d
m2(p)7r 2
(2.14) > ; |d|

where we have set d := deg (v, 0EP) = pu(v)(EP), which does not depend on p (since
5| > 1/2) and coincides with deg(9%,0B,). Moreover, by elementary geometry
arguments (see the proof of [3, Proposition 3.2] for more details), we have that
there exists a universal constant & such that

1— 2
(2.15) For(5,0EP) > a%(p).
In view of (2.14) and (2.15) for any r +m+/2e < p < R — m+/2e we have
Q(p) 1- m2(p) > Aselfﬂ—‘dld

m
F(p,0E8) > —Lr|d| v a > .
( L )2 P i EXselt|d] + ap
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By this last estimate and (2.11) we get

S (v) (BE)| = m/2) + R
(e () (BP)| +mv2) + 7

XY25 (0, BR \ BP) > Asairr|u(v) (E)| log

Assuming without loss of generality that @ < 1, we immediately get (2.10) with
_ AselfT
o = fsdff ([
(0%

2.3. Ellipse Construction. Here we introduce a slight modification of the ball
construction introduced in [15, 13]. We follow the formalism of [3, Subsection 3.3],
where this construction has been revisited in order to deal with isotropic discrete
energies. Since the energies X Y7 are anisotropic, we are led to consider ellipses
in place of balls (as in [16]).

Let G : R? = R? be an isomorphism. For any p > 0 and for every = € R?, we
set

(2.16) ES (z) := G™(B,(Gx)).

Let £ = {Eg1 (1), .. 7E1§N (atN)} be a finite family of pairwise disjoint ellipses
in R? of the type in (2.16) and let p = YN did,, with d; € Z\ {0}. Let F
be a positive superadditive set function on the open subsets of R?, i.e., such that
F(AUB) > F(A) + F(B), whenever A and B are open and disjoint. We assume
that there exist two constants ¢, C' > 0 such that

(2.17) F(AC () = Crelu(EC (x))] log ——,
’ c+r
for any elliptic annulus ATG’R(.%) = E(z) \ ES (), with AgR(;v) c Q\U, B (z:).
Let t be a parameter which represents an artificial time. For any ¢ > 0 one can
construct (see [3]) a finite family of pairwise disjoint balls B(t) satisfying

(1) Uiy Br,(Gi) © Upesq B,
(2) Xpese) B(B) < (1+t) 3, R;+(1+t)cN(N?+ N +1), where R(B) denotes
the radius of the ball B.

For every t let £9(t) := {G~1(B)}pen(). Using the same arguments in [3], one
can show that

(2.18) F(E®) > Cr|u(E)|log(1 +1t) for any EC € £°(t) with E® C Q.

2.4. The anisotropic renormalized energy and the first-order I'-limit. Here
we recall and revisit the main definitions and results of [6] we need in order to state
our I'-expansion result (Theorem 2.5).

Fix p = Zf\il d;dy, with d; € {—1,+1} and z; € O. In order to define the
anisotropic renormalized energy, let ®g o the solution to the following problem

div QV(I)QK) = AselfQﬂ',LL in O
(pQ,O =0 on 80,

and let Rg o(z) = ®g,0(x) — Zf\il d;log |B~= (x — x;)|. Notice that Rg o satisfies
div QVRg,0 =01in O and Rg o(z) = — Zf\il d;log |B~= (z — ;)| for any z € §O.
The anisotropic renormalized energy corresponding to the configuration p is then
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defined by
M
(219)  WE' (1) := —7 dsae(Y _ didjlog B2 (w; — xj)| + 7 ¥ _ diRg.0(x:)).
i#] i=1

It is easy to see that if Q = I, then W& (u) = Wo(u) where W is the classical
isotropic renormalized energy defined in the Ginzburg-Landau framework (see [6])
and given by

M M
(2.20) Wo (> didy,) = —m(> _ did;logly; — y;| + 7Y _ diRy.0(ys))-
i=1 i#j i=1

In general, using the change of variable B*%, we have

an 1

(2.21) WE (1) = AseatW g (B72p),
where we have denoted by B —3 1 the push-forward of the measure p through B _%,
. _1 M
ie. BT2p:=%".", diéB‘%wi'

We show now that W%"(x) is continuous with respect to the Hausdorft conver-
gence of the sets A. We recall that the Hausdorff distance among two closed subsets
Cy,Cy C R? is defined as follows

du(C1,Cs) := max{ sup inf dist(z,y), sup inf dist(w,y)}.
zeC, Y02 yeC, TECH

Let {A"} be a sequence of open bounded subsets of A such that supp (u) C A" for
any h € N; then

(2.22)  dg((A")°, A%) = 0ash — oo = W% () converges uniformly to W% (1),

where for any U C R?, we have set B¢ :=R?\ U.
To this end, by (2.21), it is enough to prove that

A (B_%ﬂ) converges uniformly to W’B,%(A)(B_%,u)7

B*% (Ah)
and, more precisely, that,

(2.23) R converges uniformly to R

1B~} (an) on the compact subsets of A.

1,B~3(A)

Set y; := B~ iz; and v = B_%u = Zf\il d;6,,. For any h € N we set A" :=
B~ 2(AM) and A := B~2(A). Trivially, supp (v) € A" and distg ((A")¢, A°) — 0
as h — oo. The interested reader can prove that such condition is equivalent to the
assumption that for any compact subset K cC Q, K C A" for h sufficiently large.

By its very definition, R 4 is the solution of the problem

AU = 0 in Ah
u(-) = =M dilog|- —yi| on dA".

Proposition 2.3 below, applied with up, = R; 4» and ug = Ry 4, proves that
(2.23) holds true, whence (2.22) follows

Proposition 2.3. Let A C R? open bounded with Lipschitz boundary and let {Ah}
be a sequence of open bounded Lipschitz subsets of A such that dg((A")¢, A°) — 0
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as h — oco. Furthermore, let f € C* outside a compact subset of A. For any h € N
let up, be the solution of the problem

Au=0 in A"
u=f  ondA"

and let ug be the solution of

u=f ondA

Then up, converges uniformly to ug on the compact subsets of A.

{ Au=0 inA

Proof. First of all we notice that, by the classical theory on harmonic functions,
up, € C°(A") N C(AP) and ug € C°(A) N C(A). Fix now a compact K C A. By
the hypothesis, for h sufficiently large, K C A". Moreover v;, = uj, — uq is solution
of the problem
Av=0 in A"
{ v=f—uy ondA".

By the maximum principle of harmonic functions, we have that

max |vp| < max |vy| = ma — Ug]|.
13 [vn| < max |op| = max|f — o
The claim follows noticing that ug is continuous up to the boundary. (I

Through this section and whenever the dependence on the domain is clear from
the context, we will use W (1) in place of W& (u).

Let 0 > 0 be such that the ellipses EZ(z;) are pairwise disjoint and contained
in O and set OF := O\ UM, EB(z;). It is convenient to consider (as done in [6])
the following auxiliary minimum problems.

2.24 W (go) = i For(w) : d LOEB(2,)) =d; Y,
(2.24)  m™(o,p) weHrlr(l(l)r}?;Sl){ (w) : deg(w,IE; (x;)) = d; }

2.25 7O (0, 1) = - Fan () -
(2.25) m*" (o, p) weHlll%gf,;sl){ (w)

Q5

w(-) =

For any y € R?\ {0}, we define #(y) as the polar coordinate arctanys,/y; and let
08 (z) := §(B~2z). Moreover, for any i = 1,..., M we set

O'di

(B_%(' — ;)% on OEB(2;), || = 1}'

(2.26) 08 (z) == 0(B 2 (x — ;).
Given ¢ > 0, we introduce the discrete minimization problem in the ellipse EZ
(2.27) ~A*(e,0) == min {F5 (a,EP) : 2mu(-) = 05(-) on 0. 22 EP},

UEAF, 42 (EE)
where the discrete boundary 0, z2 is defined in (1.6).

Theorem 2.4. It holds
(2.28) ;% m™ (o, 1) — T Aserf| 1| ()] log o]
= lim (0, 1) = TAserr| 1l (2)[log o = W (u).

Moreover, for any fived o > 0, the following limit exists finite

(2.29) lim (v*" (e, 0) — TAseyf] log E|) =" eR
e—0 o
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The proof of (2.28) is a consequence of [3, Theorem 4.1] (see also [6]) and of the
change of variable y = B ~22. We briefly sketch it.

Sketch of the Proof. Set

m(J,B_%u) = min / ) o |VzPda
2€HY (B~ 3 (O\B, (B~ 32:);51) | /B 2(O\B, (B~ 2a;)

deg(z, 02 (B~ 4a)) = d; },
fn(mB_%u) = min / |Vz|? da :
2€H1(02;8Y)  JB~2(O)\Bo (B~ %)
Q
()=

By [3, Theorem 4.1] we have that

- (._(Ei)di on 8BU(B_%xi)7 |a’b| :1}
odi

lim m (o, B2 ) — 7| B2 | (0)| log o]

o—0

— lim 1o, B~} ) — 7B~ u|(0)] log o] = W(B~ ).

o—0

It is easy to see that, if z, is a minimizer of the problem m(a,B_%u) (resp.
m(o, B~2p)), then w, = z, - B~2 is a minimizer of the problem m® (o, 11) (resp.
m (o, 1)). Moreover, by (2.4),

(2.30) m(a,B_%,u) =m*(o,u) (resp. Th(U,B_%/L) =m*" (o, 1)).

The claim follows combining (2.30) with (2.21).
As for (2.29), its proof is identical to the one of [3, formula (4.6)] and it is
omitted. 0

2.5. The first-order I'-convergence result for F*},. We are now in a position
to state the first-order I'-convergence result for the functionals F’ 7S

Theorem 2.5. The following I'-convergence result holds true.

(i) (Compactness) Let M € N and let {u.} C AF.z2(0) be a sequence sat-
isfying F27,(te, O) — MmAsey|loge] < C. Then, up to a subsequence,

w(te) flag u for some p = Zf\;l d;b,, with d; € Z\ {0}, ; € O and
> ldil £ M. Moreover, if Y, |d;i| = M, then ) . |d;| = N = M, namely
|di| =1 for any i.
(i) (T-liminf inequality) Let {u.} C AF. 7z2(O) be such that p(u.) a , with
"= Zi\il d;6y, with |d;] =1 and z; € O for every i. Then,
(2.31) lign_}(r)lf F252(tic, O) — M7gers |loge| > W () + M~*".

(iii) (T-limsup inequality) Given p = Zf\il d;by, with |d;| =1 and x; € O for
every i, there exists {u.} C AF. 72(0) with p(u.) o i such that
F2%a(te, O) — Mgy |loge| — W™ () + M~

e,
Proof. The proof of Theorem 2.5 closely follows the proof of [3, Theorem 4.2] but
for the reader’s convenience we include it. Recalling that F%, (u) > XY (e*™)
the proof of the compactness property (i) will be done for F*%, = XY“7,. On the

)
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other hand, the constant v*" depends on the potentials fe (£ € {e1,e2,e1 + €2}),
so its derivation requires a specific proof.
Let us fix some notation we will use in this proof. We recall that Ef (z) is an

ellipse of the form (2.8). For any 0 < r < R and x € R?, set
(232) 4B y(z) = BE() \ B5(x).

Moreover, for any @. € AF. 72(0) we set v, := v(u.) = €™ and we indicate

with 0. the piecewise affine interpolation of v, defined in (1.10).

Proof of (i): Compactness. The fact that, up to a subsequence, p(u.) fla

u o= vazl d;6,, with Zfil |d;] < M is a direct consequence of the zero order
I-convergence result stated in Theorem 2.1 (i). Assume now vazl |d;| = M and
let us prove that |d;| = 1. Let 0 < 01 < o3 be such that Ef; (x;) are pairwise dis-
joint and contained in O and let ¢ be small enough so that Ef; (x;) are contained
in O, z2. Since F%, (1, 0) > XY 7, (>, 0),

N N
(2.33) F%a(tic,0) > Y XY 5 (™ BB (2;)) + > XY (> AD | (2:)).
i=1 i=1
Moreover let ¢ be a positive number and let € be small enough so that ¢ > my/2¢.
Then, by (2.1) and (2.2), we get

N
g ~
(234) ;TZL? (ﬁaa O) Zﬂ-)\self Z |dz‘ log ?1 + >\se1f -Fan('Ug, Aflth,ant(xi)) + C.
i=1
By the energy bound and by the definition of F%", we deduce that

2
Vil?de < ————  F(p., AB ) <C
/1401+t,02t(ﬂ?i) Vol do < min{ce,, Ce, } (@, Ul+t’02_t(zz)) -

and hence, up to a subsequence, 0. — v; in H'(AZ , , _,(2;); R?) for some field
v;. Moreover, since

Elg/A (1 - [5.2)? dz < CXY2, (v, 0) < Clogel,
o1+t,o0—t(Ti)
(see [1, Lemma 2] for more details), we deduce that |v;| =1 a.e..

Furthermore, by standard Fubini’s arguments, for a.e. o1 +t < 0 < 09 — t,
up to a subsequence the trace of ¥, is bounded in H'(0EZ (x;); R?), and hence it
converges uniformly to the trace of v;. By the very definition of degree it follows
that deg(v;, 0OEZ (1)) = d;.

Hence, by (2.9), for every i we have

(2.35) FO (03, Ay tt,05—1(2)) > Tserr |di]* log

g9 —
o1+ t
By (2.34) and (2.35), we conclude that for ¢ smal enough

N

—t
Fo%(:,0) = A <|dz-| log 7+ |dif? log 7> > +C
=1

N N
09 0'1(0'2—t)
> et | M| loge| + d;|? = |d;|) log —= + d;|*log ——=——= | + C.
e1f< |log el ,»§=1(| |* — |di]) & ;:1' | g02(01+t)>
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The energy bound yields
N

N
&% = |d;) log 22 42 1o 102 = 1)
S (i i) log 22 + 3 di o
=1

= 0'2(0'1 +t)

IN

C;

therefore, letting ¢ — 0 and o7 — 0, we conclude |d;| = 1.

Proof of (ii): T-liminf inequality. Fix r» > 0 so that the ellipses EZ(z;) are
pairwise disjoint and compactly contained in O. Let {Oh} be an increasing sequence
of open smooth sets compactly contained in O such that UpenO" = O. Without
loss of generality we can assume that F°7 e (e, O0) < mAsetM|loge| + C, which
together with Theorem 2.1 yields

M
(2.36) F5a(ue, O\ | BP () < C.

i=1
For every r > 0, by (2.36) we deduce XY} (v., O \ Uf;l EB(x;)) <C. FixheN
and let & be small enough so that O" C O, z2. Since

2
/ V] < ———— X
Oh\U?]:1 EF (x4) mln{ce1 ) Cez}

by a diagonalization argument, there exists a unitary field v € H'(O \ EP(z;); ')
such that, up to a subsequence, ¥ — v in H\ (O \ UM, {z;};R?).

Let o > 0 be such that EZ(x;) are pairwise disjoint and contained in O". Re-
calling the definition of APy (z) in (2.32), we set AZp := AP(0). Let t < o, and
consider the minimization problem

min {]—"a”(w,AtB/Q,t) : deg(w,@E?) = 1}.

u)EHl(AB2 5SY)

7 ( UE,O\UEB (2;)) < C,

It is easy to see that the minimum is wAgerlog 2 and that the set of minimizers is
given by (the restriction at Af/z , of the functions in)

w\»—A

B~

(2.37) K=<« IZ caeClal=1;.
|B™22|

Set

(2.38) d¢(w, K) := min {f“”(w - U»Agz,t) RS IC} .

For any v € K and w € Hl(Agz £

F(w — v, AtB/Q’t) = Agelf / |VwB - VUB|2 dy,
Bi\Bi /2

R?), by (2.6), we have

where we have set w?(y) := w(Bzy) and vB(y) := v(B2y). By this fact, it follows
that (see [3] for further details) for any given § > 0 there exists a positive w(d)
(independent of ¢) such that

(2.39) ]:an( A?erfs t— mfe) > 7r)\self 10g2 +w(6)7

whenever d;(9.(-), ;) > 0, where

(z_xi):aEC7|a|:1}.
)|

e
|
—
_Q
N
ol ol
N
\
8
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Let P € N be such that Pw(d) > W (1) + M (y*" — wAseit log o — C') where C
is the constant in (2.1). For p = 1,..., P, set CP(x;) := E5_, (2:) \ E}, (2:).
We distinguish among two cases.

(a) First case: For € small enough and for every fixed 1 < p < P, there exists
at least one ¢ such that dai—», (0., KC;) > d, then by (2.1), (2.39) and the
lower semicontinuity of the functional F%"*, we conclude

. (iie, O >ngz2 ve, BB, _(z:) +ZZX ' (02, Cpl(:))

p=11i=1
> Asett M (7 log 2—}, + 7| loge| + C) + P(M Asers mlog 2 + w(8)) + o(e)
> wM st |log e + MA™ + W (1) + o(e).

(b) Second case: Up to a subsequence, there exists 1 < p < P such that for
every i we have dz (9., K;) < &, where & := 27?0 Let a.; be the unitary

_1
vector such that Fo(f, — ae ;2 E=2) O (2,)); R2) = dg (e, Ks).

1
"B 2 (z—ai)|
One can construct a function te € AF. 72(0) such that
(i) Ge = . on O z2 (R2 \ 5o (T4));

(i) e?m() = a; i for any j € 0. 72 EE _,_(z:);

(iii) F%,(t., B2 (2;)) > EZQ(UE,E (:))+7r(e, ) with hrn hm r(e,9) = 0.

&,
The proof of (i)-(iii) is quite technical, and consists in adaptlng standard
cut-off arguments to our discrete setting. For the reader convenience we
skip the details of the proof, and assuming (i)-(iii) we conclude the proof
of the lower bound.

By Theorem (2.4), we have that

M
F£%2(12570) > X 522 UE,Oh \ U EB xl ZFE(Z,%?(aEvE&B(xi))

=1
> Fo (., 0" \ UM, EB(z;) +ZF“” tie, BB () 4 r(e,8) + o(e)
i=1

> F (5., 0" \ UM EB (2;)) + M(7*" — TAsert log %) +7(e,8) +o(e)

> Fo(v,0\ UM EZ (2;)) + M ("™ — mAseit log %) +7(g,6) +o(e) +o(1/h)
> M7dser |loge| + M~ + W (u) + 7(e, ) + o(e) + 0o(a) + o(1/h).

The proof follows sending ¢ — 0, § — 0, 0 — 0 and h — oc.

Proof of (iii): T'-limsup inequality. This proof in analogue to the one given in
[3] for the isotropic case. We only sketch its anisotropic counterpart. Let w, be a
function that agrees with a minimizer of (2.25) in O \ Ui\il EB(x;) = OB. Then,
Wy = ;e on OEB (z;) for some |a;| = 1 (0P is defined in (2.26)).

For every p > 0 we can always find a function w,, € C>(04;8") such that
We,p = a;e®’ on OEB(z;), and

}—an(wﬂ,m Oa) - }—an(wm Ocr) <p.
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Moreover, for every i = 1,..., M let w; € AXY. z2(EZ(z;)) be a function which
agrees with aieief on 9. EZ(z;) and such that its phase minimizes problem (2.27).
If necessary, we extend w; to (Ef(mz) NeZ?)\ (BB (x;))? ;. to be equal to et
Finally, define the function we o, € AXY. 72(0) which coincides W, p o0 Oy NeZ?
and with w; on EB(z;) NeZ?. In view of assumption (3) on f, a straightforward
computation shows that any phase . o , of we ., is a recovery sequence, i.e.,

i P24 (5c 1, 0) — M| logel = W™ () + My + 0(p,0),
with lim, 0 lim,0 0(p,0) = 0. O

Remark 2.6. We notice that in the case of isotropic nearest neighbors interaction
on the square lattice, i.e., if c.;, = c., = 1 and c¢, ¢, = 0, Theorem 2.5 coincides
with Theorem 4.2 in [3]. In this case Q = B = I, EPZ(z) = B, (z) for every x € R?
and for every o > 0, and Mg = 1. In this case we set

(2.40) F.z2(-,0) == F!7:(+,0) and XY, 72(-, 0) := XY"7: (-, 0).

3. THE I'-CONVERGENCE ANALYSIS FOR FE“"ZZ

Here we give the asymptotic expansion by I'-convergence of the functional FEZTZT

The main idea is to decompose the energy FE“’Z2 in the sum of isotropic F; z2 energies
and to use for each of these energies the I'-convergence analysis developed in Section
2.

To this purpose, let us first introduce the main notation we will use throughout
this section.
3.1. Notation. For any ¢ = (£1,&) € Z2, we set &+ := (—£&2,&;) and we notice
that Z2 may be partitioned as follows

€12
(3.1) 2=z,
h=1

where Zj  := 2z, + ZE @ Z&*- with {zp}bper, jep i={r€Z? : 0<z-£<[¢,0<
x- &L < |€]} (here - denotes the standard scalar product in R?).
We define the £-cube as
Qe :={al +b&+ : 0<a,b< 1}
Let {T+,T€_} be the partition of the {-cube Q¢ into the 2-dimensional simplices
defined by
Tg‘ ={re€Qe:x-&H <&},
Ty ={re€Q: r-&<x-¢th
For every ¢ > 0, £ € Z%, h € {1,...,[¢]?} and for every i € ZZ, we set Tfai =
et + 5T§i.
Let O be an open bounded subset of R? with Lipschitz continuous boundary.
We set

(3.2) Ocen= | The

. Lt —
1€Z§,h~ T;°. (CO
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The reference lattice and the class of bonds in Z%’g are given by
OO’E h = EZg,h n OE,S,h
.o 0 0 . .
o! en = {(,J) €0y x Oy 1 # 5},
Moreover, the class of e£-triangular cells contained in €2 is defined by
2 2 +
O &, h = { e . Z € ng,h’ Tivev&- C OE,f,h}'

Let @ € AF. 72(0). Recalling the definition of P in (1.7), for every T/ ree €0
we set

ag(T; . ¢) =P(u(ei + &§) — u(ei)) + P(u(ei +e§ + e€1) —a(ei + €£))
+ P(a(ei) — a(ei + €€ + e€™))
oy (T;7) == — P(u(ei) — u(ei + € + e€t)) — P(a(ei + e€t) — u(ei))
— P(a(ei +e€ +e€) —ulei +e€h)),

and we define the discrete vorticity measure for each cell 7, fag € Oczp, a8

(33) W@ = Y 0Ty )y )+ > au(ﬂj;)(Sb(T;;)E),

+ 2 + 2
Ti,s,éeos,ﬁ,h T', ,Eeo ,€,h

where b(TfE6 ¢) 1s the barycenter of the of the triangle Tlis ¢

Once again, this definition of discrete vorticity extends to S' valued fields in the
obvious way, i.e., by setting p"(v) = p®" () where @ is any function in AF, 72(0)
such that v(@) = v.

We notice that for any u € AF, 72(0), FEITZQ (@, O) can be rewritten as follows

€I
h
(3.4) Fla( = > Y Fiu,
£€72 h=1
where
(3.5) Fiya(u,0) = > fe(a(ei+e€)—a(ei)) + fer (a(ei+et) —a(ei)).
(si,sz'—&-e&)eO;yg,h
(6i,€i+6§)€0;’57h
Fon any v : Q2 ,, — S, we set
1 v(ei) —ve(h) |°
&h —
(3.6) XY 7o (v,0) := 3 Z T
(Ei,aj)EO;{’,L
li—jl=I¢

By assumptions (1.14) and (1.17) on the potentials f¢, we have immediately that
(3.7) FEp0(,0) > ce[¢PX Y5 (277, 0).

Finally, we define the piecewise affine interpolations according with the triangu-
lation {75 e 5}1622 since it will be useful in the proof of our results. Fix ¢ € Z? and

he{l,...,[¢°%. For any v : Q0. — St let 35" : Q. ¢, — R? be the piecewise
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affine interpolation of v, according with the triangulation {ng 5} _ i.e., for
=S Jieez ),
any i € Zgh we set
(38) ﬁ{,h(x) — U(EZ-) + U(E'L + Eé—) - U(EZ) <(x _ 52) ] £>
elé] €]
v(ei + e&t) — v(ed) ( , §L> _
+ T —€l) — for x € T} _
T e g o
iy . i+ e&t) — v(ei) L &
25 (z) = v(ed) + v(ed (r —ei) —
el¢] €]
v(ei + &) — v(et) ( N ) n
+ x—E€tl) — forx € T, ..
ele] =i 2

Remark 3.1. Notice that if £ = ey, then h = 1, and for any u € AF. 72 we have
perl(a) = p(a) and F;IZ; (,0) = F, z2(u,O), with F, z> defined as in Remark 2.6
(see formula (2.40)). Moreover, set v := e*™; then XY;IZ’Z1 (v,0) = XY, 72(v,0),
and the definition of v°*'! coincides wih the definition of © in (1.10).

3.2. The zero-order I'-convergence result for F 6“"22. We start this section by

stating the zero-order I'-convergence result for the functionals FEZTZ2' This result
has been proved in [1] for the XY/".

Theorem 3.2. The following T'-convergence result holds true.
(i) (Compactness) Let {u.} C AF. 72(0) be such that FEZTZQ (e, 0) < C|loge|
for some positive constant C. Then, up to a subsequence, u(i.) Aag u, for
some pu € X(0).
(ii) (Localized T'-liminf inequality) Let {u.} C AF. 72(0O) be such that p(ue.) a
= Zf\il d;6y, with d; € Z\{0} and x; € O. Then, there exists a constant
C € R such that, for any i = 1,..., M and for every o < %dist(mi,aO U
Ujzi j), we have
fn ] r (= 2 g
(3.9) h?l,%lf F.72 (e, Bo(2i)) — 7 Z ce|€]7|d;| log = > C.
£ez?
In particular
. o o
hgl_}glngl,Z? (e, O0) — Z ce|€)?|pl(9) logg > C.
E€Z?
(iii) (T-limsup inequality) For every p € X (O), there exists a sequence {u.} C
AFc 72(0) such that p(ue.) a W oand
Fl%s (1, 0)

2 .
celél"m|u|(0) > limsu
D celél*nlpl(0) = limsup =y

£ez?
The proof of this result is result is a consequence of the following lemma.

Lemma 3.3. Let {u.} C AF. 72(0) be such that F'"), (., 0) < C|loge| for some
positive constant C. Then for every & € Z2 and for every h € {1,...,[£]?}

115" (1) = pa(ie) llgae — 0.
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Proof. Set v. := e?™ and let ¥. and 95" be defined as in (1.10) and (3.8) respec-
tively. Fix ¢ € Z% and h € {1,...,|£|?}. By triangular inequality, we have

15" (@) = pite) [ < " (@) = J@E") lnae + [T (F") = T (02)lInat
+ ”J("je) - M(ae)Hﬂat-

By Proposition 1.1, we have that the first and the third terms on the rhs of the
inequality below vanish as € — 0; therefore, in order to prove the claim, it is enough
to show that for every open set U CC O

(3.10) [ J(55") — J(0e) lgatry = 0 as e — 0.

To this end we will show that the sequences {#¢"} and {@.} satisfy the assumptions
of Lemma 1.2. This fact has been proved in [1] (see proof of Theorem 4.8(i)) but,
for the sake of completeness, we present the proof here.

Let U’ be such that U cC U’ CC O. For ¢ small enough we have that U’ C
Oc ¢ n, with Oc ¢ 1, defined as in (3.2), and

(3.11) / (VH 2 4 Vi) de < XY. 00 (02, 0) + XY S (0, 0)
U/

< Frz2(a, 0) + 5|§|214§£2(%,0> < Clogel,
and hence
(3.12) VoSt — Vi, |2 doz < Clloge].
U/
Set g. := 95" — ¥.; since g.(ei) = 0 for every i € Zéh, we have that for every
x € i+ eQe,
1
(3.13) ge(x) = / Vye(ei+t(x —ei)) - (z —ei) dt
0
and hence, by Jensen’s inequality, we get
(3.14) |ge(x / Vg (gi + t(x — ei)) - (x — ei)|? dt.
Set to = f\él For any given ei+¢eQy¢, if t < o, we find |t(z—ei)| < €, which yields,

by construction of the piecewise affine interpolations, that Vg, (ei+t(x—ei))-(z—ei)
is constant on (0,tg). Then the following estimate holds true

1 1
Vg (gi +t(x —ei)) - (x —ei)|? dt < 2/ Vg (ei + t(x —ei)) - (x — ei)|? dt.
0 4

Integrating (3.14) over €i + eQ¢, and using the previous estimate, we get

1
/ |g= ()] da §52|§\22/ / Vg (gi + t(x — ei))|* du dt,
eiteQe %0 eiteQe

which, by the change of variable y = ei + t(x — €i), yields

2 852|£|2 2 21612 2
|9¢ ()" dz < —3 IVg=(y)I” dy < Ce7[¢] [Vgel|® da.
eiteQe 0 eiteQie eiteQe
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Finally, summing over &i € Uf’gz, by (3.13), we obtain

/|gg|2 dz < Z / lg-1? do < 052/ |Vg.|? dz < Ce?|loge].
U eiteQe U’

: &,h
E’LGUEYZ2
([l

Since the proof of Theorem 3.2 is based essentially on Theorem 2.1 and on the
proof of Theorem 4.8 in [1] we briefly sketch it.

Proof of Theorem 8.2. Since c., = c., > 0 the compactness property is a direct
consequence of Theorem 2.1(i).

As for the proof of I'-liminf inequality, fix ¢ € {1,...,M}. Without loss of
generality, we can assume that

o o o
llgi}élf FEI,ZQ (e, By () — 7 Z cel€|?|d;| log =
£ez?
. o o
= lim Fl% (5, By(r) —m Y celeldifog 7 < +oc.
£ez?

Fix ¢ € Z2 and h € {1,...,|¢]?}. By Lemma 3.3, we get u"(u.) 1% 1. Therefore,
by (3.7) and by Theorem 2.1(ii) applied with F*7, = XYg’Zh2 we get

67

liminf F&2% (e, By (25)) — cel€?|nd| logg

e—0

> cele]? (Hmjnf XYL (7%, B, (@) — wldi|log 7) = C.

By summing over h = 1,...,[£|? and over £ we get (3.9).
The proof of the I'-limsup inequality is standard and left to the reader. O
3.3. The first-order I'-convergence result for F E”ZQ. Finally, we state the first

order I'-convergence result for FE”ZQ. To this purpose we need to introduce the
following discrete minimum problem

Ir : Ir — —
,0) = F'".(u,By) : 2wu(-) = 6(- 0.72B,},
7" (e, 0) aeAg;r;(Ba){ o72(U, By) @ 2ma(-) = 0(-) on Oe z72Bo}

where the discrete boundary 0. 72 is defined in in (1.6) and #(y) is the polar coor-
dinate arctan ys/y;.
The following proposition is the long range counterpart of Proposition 2.28.

Proposition 3.4. For any fized o > 0, the following limit exists finite

: lr _ 2 1) —. Alr
(315) lia"(e,) = 37 cellog 1) =+ € .

Proof of (3.15). First, by scaling, it is easy to see that y(e,0)" = I'"(£) where
I'"(t) is defined by

1 (£) := min {F{TZZ (a, B1) | 2ma(-) = 6(-) on 8LZzB%} .
We aim at proving that

t
(3.16) O<t1<ty = I"(t;) <7 Y log tﬁ + I (ty) + O(ts).
£ez?
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By (3.16) and by Theorem 3.2(ii), it follows that

3 lim (I'"(t) —
Jim ( m Y celéP[logt]) >
£ez2

We prove now that (3.16) holds true. First we notice that for every x € A = Br\ B,

and for every & € Z2
Vo()] = \/ 0 0(a)|

for some constant ¢ > 0. Therefore, by standard interpolation estimates (see for
instance [9] and [1]) and using assumption (3) on f, we have that, as 0 <7 < R —
OO7

2
c
S,
r

+ |95 (@)

Hs
(3.17)  F{"pa(0/2m, A) = > 05ZF15’22 /27, A)
£ez? =
€|
Z ey > 10(ci + £€) — 0(ci)|* + |0(ci + e€*) — 0(ei)
5622 h=1 (ci,eitec)€A] ¢ )
(ei,eitest)eAd £

| 2

<m>y 65|£|210g§ +0(1/r).

£ez?

Let uy be a minimizer for I'"(ty) and for any i € Z? define

By (3.17) we have

I'"(1/R) < I'"(1/r) + Z;W celé[?log - + O(1/r),

which yields (3.16) for r = i and R = % O

To ease the notation, for any p = Zf\il d;6,, with d; € {-1,+1} and x; € O,
we set

(3.18) W () = D celéPW(n).
£€2?

where W is defined in (2.20).

Theorem 3.5. The following I'-convergence result holds true.

(i) (Compactness) Let M € N and let {u.} C AF. z2(0) be a sequence satisfy-
ing FETZQ (uE,O) — M Z£€Z2 ce|€)?|loge| < C. Then, up to a subsequence,
() a u for some p = Ef\il d;by, with d; € Z \ {0}, x; € Q and
>oildil £ M. Moreover, if Y, |d;| = M, then ) . |d;| = N = M, namely
|di| =1 for any i.
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(i) (T-liminf inequality) Let {u.} C AF. z2(O) be such that p(u.) a , with
w= Ef‘{l d;6y, with |d;] =1 and z; € O for every i. Then,

hmmfF "2 (e, O) — M Z cel€)?[loge| > W' (1) + MA'.
ez?
(iii) (T-limsup inequality) Given p = Zf\il di0y, with |d;| =1 and x; € O for
every i, there exists {t.} C AF. 72(0) with p(t.) a w such that

Flta (e, 0) — Mr S celé?|log el — Wi (1) + M
£ez?
Proof. The proof of the Theorem closely follows the one of Theorem 2.5. In par-
ticular, as for the proof of I'-liminf inequality we sketch only the main differences,
whereas the proof of I'-limsup inequality is the same of Theorem 2.5(iii) and it is
omitted.

Proof of (i) The fact that, up to a subsequence, u(ic) fla = Zil d;6,, with
Efil d; < M is a direct consequence of the compactness result stated in Theorem
3.9(i). Assume now Zf\il |d;] = M and let us prove that |d;| = 1. By (3.4) and by
assumption we have

&I
Cey (FE1 (12,0) — MT|logel) Z 052 "(te,0) — Mr|loge|) < C
£ez? =
then, recalling that F*'! = F_ 72 by Theorem 2.1(i) and Remark 2.6, we obtain
the claim.

Proof of (ii) Let r > 0 be such that the balls B, (z;) are pairwise disjoint and
contained in O. Let {O™} be an increasing sequence of open smooth sets compactly
contained in O such that U,cnyO™ = O. Without loss of generality we can assume
that FI', (iic, O) = MY oy cel€?|loge| < C, which together with Theorem 3.2
yields

(3.19) Fl%s (e, 0\ UL, By(z)) < C.
Set v, := €*™% and let ¥, be the piecewise affine interpolation of v. defined in

(1.10); for every r > 0, by (3.19) we deduce that XYE{TZz (ve, O\ UM, B,.(z;)) < C.
Fix n € N and let € be small enough so that O™ C O, z2. Since

2 e
/O . |VUE|2 dx < ciXY'E 1272 ( eaO \ UivilBr(xi))
nA\U

;QlBT(II) €1
2 XV (0. 0\ U, By () < O
e1
by a diagonalization argument , there exists a unitary field v € H'(O\UM, B,(x;); S!),
such that, up to a subsequence, 9. — v in HL_(O \ UM, B, (z;);R?). More-
over, by the proof of Lemma 3.3, it follows that for every ¢ € Z2 and for every
he{l,.... |2}, ||98" — 5.]|z2 — 0 and hence

f)g’h — v in HIIOC(O \ Uij\ilBr(zi);Rz)'

Let o > 0 be such that B, (x;) are pairwise disjoint and contained in O™. For any
0 <r <R, weset A, g(x) := Br(z)\ Br(x). Recalling the definition of K in (2.37)
and of d; in (2.38) and arguing as in the proof of Theorem 2.5, one can show that
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for any given ¢ > 0 there exists a positive w(d) such that for every t < o, for every
¢ € 72 and for every h € {1,...,|¢?}

(3.20) / V56| da > 7log 2 + w(5)
ALy Ualele,t—valele
whenever d. (38" (- + x;),K) > 6.
Let P € N be such that
Pw(8) > celé? > W (p) + M(y" =7 > cel¢]*logo — C)
£ez? £ez?

where C' is the constant in (3.9). For p = 1,..., P, set Cy(x;) := EE_,_(2;) \
EB , (x;). Then, arguing as in the proof of Theorem 2.5 (ii), one can prove the
claim. ]

4. THE I-CONVERGENCE ANALYSIS FOR F%} AND F'",

In this section we will develop the I'-convergence expansion for the energies F}
and FE”A Before stating the first order I'-convergence result for such functionals
we need to introduce the required notation.

_ Fix L. 5 as in (1.4) and let L be as in (1.5), i.e., there exists a positive constant
C such that

(41) HL57A7EA||LOC(Q) S 68.
For every pu = Zi\il d;dy,, with d; € {—=1,+1} and z; € Q, we set
(4.2) W (1) 7= W ) (Lap)  and WY (n) := WE o (Lap),

where W7 ) and W%A(Q) are defined in (2.19) and (3.18) respectively and Lau =

M
Zi:l diai/\xi'
Theorem 4.1. The following I'-convergence result holds true.
(i) (Compactness) Let M € N and let {us.} C AF- () be a sequence sat-
isfying FZR (ue, ) — M7Aseyp|loge| < C. Then, up to a subsequence,

w(ue) e w for some p = Zfil diby, with d; € Z\ {0}, z; € Q and
> ldil < M. Moreover, if Y, |d;| = M, then Y . |d;| = N = M, namely
|d;| =1 for any i.
ii liminf dnequality) Let {u.} C AF- A(Q) be such that p(u. flag , with
: o u
W= Zf‘il d'6,, with |d;| =1 and z; € Q for every i. Then,
(4.3) lign_%lf Fo A(Te, Q) — Mmserp| loge| > WR™ (p) + M~".

(iii) (T-limsup inequality) Given p = Zf\il diby, with |d;| =1 and z; € Q for
every i, there exists {us} C AF - A () with p(ue) Hap w such that
(44) F57A(UE,Q) - M7T/\self| 10g€| —>W7X"(,u) + M.
In order to prove Theorem (4.1) above, we need the following result.

Lemma 4.2. Let {u.} C AF: A (Q) be such that |u(u)|() < C'|loge| for some
constant C' > 0, then

(4.5) p(ue) fat@) w if and only if p(ue o L;l\) Aat(Zr () Li'p
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for every ' CC Q and for every p = ZZ 1 diby,, with d; € Z\ {0} and z; € .

Proof. Fix Q" CcC Q. We first show that if p(u.) ﬂﬂ ) 1 with g as in the statement,

then
(4.6) l4(ue © LZN) = Ly pell o (2.0 )y < (1) + 1Ll i(ue) — prllgaccer),

where lim._,oo(1) = 0 and |L'| := SUP|g|=1 |Ly'xz|. The proof of the opposite
implication is fully analogous and left to the reader.
Set @ := u. 0 L;/l\; by the triangular inequality

[ pe(tae) — EX1:LL||ﬂat(EA(Q’)) < lu(ae) — EXlll(Us)Hﬂat(EA(Qf))
LR p(ue) = Ly ()| a0 02))
< [|p(ae) — Exlﬂ(us)nﬂat(iA(Q’» + 1L Ml e(ue) = p(u)laser
and therefore it is enough to show that
(4.7) 4(tie) — Ly () (2.0 ) — O
to prove the claim.
Let p(ue) := Zf\iﬁ di 0z, . € XcA(Q2). Then

M,
N(ﬂa) = g A,u ue Z dz 85 AI7 R S XE,Z2 (LE,A(Q))

whence

M.

(i) = Lyt i(uie) a2 0y) = | Zdi,a(%;lﬁm — 0514, lfas(Ea @)
i=1
<M. sup |LZiy—Li'y| <|L7}|CC ellogel,
veLa(@) ’

where in the last inequality we have used (4.1) and the fact that M, = |u(u:)|(Q) <
C'|logel. O

We now are ready to the prove Theorem 4.1.

Proof of Theorem 4.1. Proof of (i). Let {O"} be an increasing sequence of open
smooth sets such that UpenO" = L (). Fix h € N, let £ > 0 be small enough so
that O" C L. A(Q). Set 1 = ue oL;}\; by combining (1.23) with the upper bound
in the assumption, we get

(4.8) F. 72 (tic, O") < Fy 72 (e, Le A () < M7 Asers|loge| + C;

therefore, by applying Theorem 2.5 and using a diagonal argument, we have that,
up to a subsequence, (i) ﬂmt(LA(Q)) [, for some measure i = ZZ]\LI d;d,,, with
d; € Z\ {0} and y; € LA (Q) and Zi:l |d;| < M.

Let us assume that Zi\il |d;] = M. Trivially, for h sufficiently large, supp(jz) C
O". By Theorem 2.5(i), we have that N = M and hence |d;| = 1 for any i. By
combining (4.8) with the fact that

(4.9) (e[ (Le, A (2)) < Fr g2 (e, Le A (€2)),

for € sufficiently small, we get
|14(@e)|(La () = [1(@e)|(On) < M7 dserr] loge| + C



28 L. DE LUCA

and hence the claim follows by Lemma 4.2 with y := L.
Proof of (ii). We can assume without loss of generality that Fi a(ue, ) <
MmXseif|loge| + C. Set 4. :=u. 0 L;/l\ By (4.9), it follows that

(4.10) |p(ae)[(Le A (92)) < AsaeM 7| loge| + C.

Let {Q"}nen be a sequence of open bounded smooth subsets of 2 such that
supp (p) C Q" for any h, UpenQ" = Q and dH((Qh)f, Q°¢) — 0 as h — oo.
Fix h € N. Then, for ¢ small enough L. 5(Q) D Lx(Q").

at(L h _
By (4.10) and Lemma (4.2), we get pu(u.) fat(La (@) Lap. Then, by Theorem
2.5(ii), applied with i = Ly and O = Ly (Q") we get

liminf F, 72 (Ge, Le A () — M7 Asar] log €|
e—0 ’ ’

> hgl_)l(l)lf Fg’Zz (e, [_/A(Qh)) — Mﬂ')\self| log E‘ > W%ﬁ(ﬂh)(ﬂ) + M~*",

The claim follows immediately by (4.2) and (2.22).

Proof of (iii). Let {Q"},en be a sequence of open bounded smooth subsets of
R? such that N,en2" = Q and dg ((27)¢, Q) — 0 as n — oo.

Fix n € N. Then, for € small enough L. 2 (2) C LA(Q2"). By Theorem 2.5(iii)
applied with fi = Lap and O = L ("), there exists a” € AF. z2(La(Q")) such

) ﬂat(LA>(Q")) i

that p(a? and

€

limsup Fy z2(u, L A(Q)) — M7Ascie| log g

e—0
< limsup Fy 72 (a?, Lo (")) — M7 Asere| loge] < W™ (1) + M~*".
e—0
By a standard diagonal argument there exists a sequence {u.} C AF. z2(L: A ()

) A Ea(@)

(te := ul) such that p(u. i and

limsup F. 72 (e, Lo A (Q)) — MaAser| loge| < W™ (L) + M~

e—0

Set u. = Ue 0 Le p; by Lemma 4.2 p(u.)) At p and by (1.23) and (4.2), it

satisfies (4.4). O

Remark 4.3. Set A:=det L\L,'Q(L")T and let 4 be the solution to

div AV® 4 = Ao 2 in Q
P4=0 on 0A,

Set C = \/dl:ﬂ and Ra(z) = ®(x) — Zi\il d;log |C~ 2 (x — x;)|, a straightforward

computation shows that
M
1
(4.11) W3 (1) = =7 Naetp (Y didjlog [C72 (i — z;)| + 7 > _ diRa(w:)).
i#j i=1

By using Theorem 3.5 and Lemma 4.2, arguing as in the proof of Theorem 4.1,
one can prove the I'-convergence expansion for the functionals FE“”A

Theorem 4.4. The following I'-convergence result holds true.
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(i) (Compactness) Let M € N and let {u.} C AF: A(Q) be a sequence satisfy-
ing FI"y (ue, Q) — M > ez cel€)?|loge| < C. Then, up to a subsequence,
w(ue) a w for some p = Zfil d;éy, with d; € 7\ {0}, x; € Q and
Yo ldil < M. Moreover, if Y-, |d;| = M, then ) . |d;| = N = M, namely
|di| =1 for any i.

(ii) (T-liminf inequality) Let {u.} C AF: () be such that p(ue) B, with
mw= Ef\il d;by, with |d;] =1 and z; € Q for every i. Then,

hg[r)lngfA(ua, Q) — Mr > cel¢loge| = WY (1) + M~
£ez?
(iii) (T-limsup inequality) Given p = Zf\il d;b, with |d;| =1 and z; € Q for
every i, there exists {us} C AF a(O) with p(ue) e u such that

Fly (ue, Q) — M Y celé]?|loge| — WY (1) + M~
£ez?

5. EXISTENCE OF METASTABLE CONFIGURATIONS OF SCREW DISLOCATIONS IN
THE TRIANGULAR LATTICE

Here we will prove the existence of many local minimizers for the functionals
@%. Through this section, we will assume that f¢(a) = ce f(a) for every & €
{e1,€2,e1 + €2} where f satisfies (1f)-(3f) Let f : R — R be such that
(1f) feC([-3,3]) NC*((=3,3));
(2f) There exists § > 0 such that for every ¢ € [+ —4, 1 4+ 6] we have Cy (5 —t)? <
f(3) — f(t) for some C; > 0 and

min{ce : £ € {e1,e2,e1 + 62}}0 .

1

S:= su "(t) <

te(fg,%)f ( ) 2256{61,62,e1+62} Ce

1

)2

We remark that the assumptions above are satisfied by the energy density of the

screw dislocations functionals, f(a) = dist?(a,Z), while they are not satisfied by
the spin functional potential of the XY model.

(3f) f is increasing in [0, 5] and even.

Lemma 5.1. There exists o > 0 and E > 0 such that the following holds true: Let
u € AF.7(Q) such that dist(u(i) — u(j),Z) > L — a for some (i,j) € QL. Then
there exists a function w € AF. A(Q) such that w = u in QS,A and F2} (w,Q) <
Fo% (u, Q) — E.

Proof. As a consequence of assumption (2f), it is easy to see that there exists v > 0
and a positive constant Cy such that

(5.1) fG) =) = f(3=7) > Ca

First, we prove the statement assuming f € C?(R). In this case, assumption (5)
reads as f(3) = 0 and | f”(3)| > 2Cy.

To ease the notation, we will assume that A = Z2.

Set N := {eq,e1 +e2,€e1,—€2, —€1 — €2, —e1 }. We will assume that i ¢ 0. 720 so
that i + € € QSZQ for any £ € N.
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The case i € 0, 721 is fully analogous and it is left to the reader. Without loss
of generality, we can assume that u(i) = 0. For sake of notation, we set

Ei(u) = " ecfuli + <6)).
EEN
Let N. be the set of the vectors ¢ satisfying dist(u(i + ££),Z) >
to be selected.
We distinguish among three cases.

Case 11 Y een, Ce > D ogen\n. Ce-

In this case, we set w(i) := 5 and we get

E'(u) = B'(w) > Yecn ce(f(5+ @) = (@) = Xeemn, cef (5 + )
= (dezvc Ce — dez\r\Nc C&)f(%) +o(1),

%—a, with «

where o(1) — 0 as a — 0.

Case 2: 3 e, ¢ = 2gen\N, C&-
Set

1
c 2
(5.2) a= (2,2561“ : >
mlngeN\Nc Cg

There are two possibilities: either max dist(u(i+€f),Z) > acor max dist(u(i+
EEN\N, ¢EN\N.
e€),Z) < aq.

In the first case, let £ be a vector which realizes the maximum in the problem
above. Then we set w(i) = 1 and we get

(5.3) E'(w) < Z cef(a) + Cg‘f(% —aa) + deN\(Ncu{g}) f(%)v
{ENC
moreover by definition of E*(u), we have that
(5.4) E'(u) > Y cef(5 — )+ cgf(a).
geNC
Combining (5.3) with (5.4) and by the definition of a in (5.2) we get

i i "oy— £ (L
B () =E'(w) 2 (Veen, ce=Ceenw, ¢ (3)H(cea ~Leen, c) =25 a? to(a?)
o ZEGNC C¢ f”(O) _f//(%) 2 2
= — a” +o(a”).
mingea\ v, {ce} 2
We assume now that dist(u(i + ££),Z) < aa for every £ € N\ N.. In this case
we set w(i) =y with 7 given in (5.1). Then, by continuity,

E'w)= Y cef(3-N+ Y cef(7)+o(1).
€EN, EEN\N,
Since E(u) > D cen. cef(3 — ), we get

E'(u)=E'(w) = Y ce(f(5)=f(5 =)= Y cef()to(a) = Y ceCatola),

§EN. EEN\N, EEN.

where the last inequality follows by (5.1) and by the assumption.
Case 3: Z&eNC ce < deN\NC Ce.
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Let
2een % Deeng %
A.—3 minge N c¢
’ Deen Gt )
mirffg\, ce deNc Ce — Z{eN\NC C¢
We set w(i) =n with [n| = A and 03"y, cef'(u(i +€)) > 0.
Then

E'(u) = E'(w) = Y ce(f(5 +a) = (3 +a — 4a))

£EN,
+ 3 celf(uli+ <€) — fluli+e€) —n)
£EN\N.
A(A-2 " , )
= 2D ()] Seen, 6 + 1 Seemn, el (uli-+20)
2
_ A?QQ Z c§f”(u(i _’_55)) + O(OZ2)
EEN\N,
Zgazs((A—2)n§rf€7ch Z CE_A Z C§)+O(0[2)
€eN Ce £EN. CEN\N,
_ A 5 Xeen G 2en, S 2
_EaS min€ € Neg + o(a”).

By combining Case 1, Case 2 and Case 3, choosing « small enough, the claim
easily follows.

The general case can be recovered by approximating f in a neighborhood of %
with C? functions still satisfying assumptions (1f)-(3f). O

As a consequence of Lemma 5.1, we obtain the existence of a minimimizer for the
energy F" assuming, in addition to (1)-(3), that fe(-) = cef(-), with f satisfying
(1f)-(3f).

Theorem 5.2. Given py = Zi\il diby, with z; € Q and d; € {1,—-1} for i =

1,..., M, there exists a constant K € N such that, for € small enough, there exists
k. € {1,..., K} such that the following minimum problem is well-posed
(55) min{FER (n,9) ¢ () — piolase < kec).

Moreover, let a be given by Lemma 5.1; then, any minimizer u. of the problem in
(5.5) satisfies

(5.6)  dist(uc(i) —ue(§),Z2) <

—

DO | =

for every (i — j) € QL \, withi—j € {:I:L;}@l7 :I:L;/l\eg, j:L;}\(el +e2)}

and it s a local minimizer for FZ}.
Moreover, let {u2} C AF. A(Q) be such that

lim R (12, Q) — Maer|log | = WE™ (o) + M~*".

Then, for € small enough, the following fact hold true:
(i) u? satisfies the condition (5.6);
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(i) The solution u. = u.(t) to the gradient flow of F} from u?, i.e.,

{ - —VFE (ug) in (0,400) x Q2
0

Moge] —
ue(0) = ug in Q9,

satisfies p(ue(t)) = p(ul) for every t > 0.
(iii) There exists 0 such that u? € argmin{ Sr(u) o op(u) = u(ul)} satisfies
(5.6) and it is a local minimizer for FZ}.

Theorem 5.2 is a consequence of Lemma 5.1 and its proof follows closely the ones
of Theorems 5.5 and 5.6 in [3].
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