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Abstract. We consider 2D discrete systems, described by scalar functions
and governed by periodic interaction potentials. We focus on anisotropic near-

est neighbors interactions in the hexagonal lattice and on isotropic long range

interactions in the square lattice. In both these cases, we perform a complete
Γ-convergence analysis of the energy induced by a configuration of discrete

topological singularities. This analysis allows to prove the existence of many

metastable configurations of singularities in the hexagonal lattice.
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Introduction

This paper deals with the asymptotic behaviour of the energy stored in a lattice,
induced by a configuration of discrete topological singularities, as the atomic scale
goes to zero.

Given an open bounded set Ω ⊂ R2, a complex lattice Λ in R2, and a parameter
ε > 0, we consider εΛ∩Ω, which represents the reference configuration of our phys-
ical system. We focus on scalar systems governed by periodic potentials {gi,j}i,j∈Λ

acting on pairs of atoms of our lattice and we define the energy associated to a
scalar filed u : εΛ ∩ Ω→ R as

Fε,Λ(u,Ω) :=
∑

εi,εj∈εΛ∩Ω

gi,j(u(εi)− u(εj)).

In [3] (see also [14, 1, 2]), the asymptotic expansion, as ε → 0, of the energy Fε,Λ
has been rigorously derived in terms of Γ-convergence for Λ = Z2 and assuming
that gi,i+e1 = gi,i+e2 and gi,j = 0 otherwise. Here we present some generalizations
of the result in [3] for energies accounting for isotropic long range interactions in
the square lattice and anisotropic nearest neighbors interactions on the hexagonal
lattice which is a very relevant structure appearing in many context of discrete
systems. The general case of anisotropic long range interaction energies is a very
challenging goal and it goes beyond the purposes of this paper.

To clarify our setting, for every complex lattice Λ it is convenient to fix a map
LΛ : R2 → R2 such that LΛ(Λ) = Z2 and to consider a family of potentials {fξ}ξ∈Z2

defined by gi,j := fLΛ(i−j). With this notation, the energy associated to a scalar
field u : Ω ∩ εΛ→ R can be rewritten as

Fε,Λ(u,Ω) =
∑

εi,εj∈εΛ∩Ω

fLΛ(i−j)(u(εi)− u(εj)).

We assume that fξ are non-negative one-periodic potentials, vanishing on the in-
tegers and quadratic in a suitable neighborhood of 0 (see Subsection 1.5 for the
precise properties of the functions fξ).

As mentioned above, we focus only on two special kinds of systems: Either we
assume fξ = 0 for any ξ /∈ {e1, e2, e1 + e2} or fξ = f|ξ| for any ξ ∈ Z2. The former
case accounts for anisotropic nearest neighbors interactions in the hexagonal lattice
and the corresponding energy will be denoteb by F anε,Λ. The latter corresponds to
isotropic long range interaction energies and the corresponding functional will be
denoted by F lrε,Λ.

Following along the lines the formalism in [5], discrete topological singularities
are introduced through a discrete notion of topological degree of the field v = e2πiu,
i.e., by giving a suitable definition of the discrete curl of the gradient of u; loosely
speaking, discrete topological singularities are points around which the discrete
gradient of u has non trivial circulation and their distribution can be identified
with a discrete vorticity measure, denoted by µ(u). This is a finite sum of Dirac
masses centered in the triangular cells of the lattice and with multiplicities which
are +1 of −1.

The main example of topological singularities we are interested in is given by
the screw dislocations in crystals. In this context, εΛ is the projection of a complex
3D lattice εL on a plane ortoghonal to e3, which is assumed to be one of the
generators of L, εΛ ∩ Ω is the horizontal section of an infinite cylindrical crystal,
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and u represents an anti-plane displacement in the direction e3 (see [4] for more
details).

In the framework of linearized elasticity, the stored energy in its basic form can
be written as

SDε,Λ(u,Ω) =
1

2

∑
i,j∈Ω∩εΛ

cLΛ(i−j) dist2(u(εi)− u(εj), Z),

where {cξ}ξ∈Z2 are non-negative constants. The choice fξ(a) =
cξ
2 dist2(a,Z) is

consistent with the fact that SDε,Λ represents the elastic energy of the crystal and
that integer jumps of the displacement u, corresponding to plastic deformations,
do not store elastic energy (see [5, 2, 14] for more details).

We remark that in this framework, the choice of the potentials in the functional
F anε,Λ is relevant in order to deal with anti-plane energies defined in the most common
crystal structures. As for instance, it can be seen that for Body Centered Cubic
crystals, the projection Λ of the 3D lattice on the plane orthogonal to a diagonal of
the cube gives the 2D hexagonal lattice and that the anti-plane energy with nearest
neighbors interactions has the form of F anε,Λ (see [11, 4]).

The goal of this paper is the asymptotic expansion by Γ-convergence of the
discrete energies F anε,Λ and F lrε,Λ as ε→ 0. In order to obtain these results we adopt
the following strategy: To each u : εΛ∩Ω→ R we associate the function ū defined
on the nodes of εZ2 by setting

ū := u ◦ L−1
ε,Λ,

with Lε,Λ(·) := εLΛ(·/ε). It follows that

Fε,Λ(u,Ω) = Fε,Z2(ū, Lε,Λ(Ω)).

First we prove the Γ-convergence expansion for the functionals F anε,Z2 and F lrε,Z2 (see

Section 2 and 3 respectively) and, afterwards, in Section 4, we translate such results
for obtaining the Γ-expansion for F anε,Λ and F lrε,Λ.

Our Γ-convergence analysis also contains a compactness statement, which repre-
sents the main difficulty. Indeed, one can see that short dipoles cost finite energy so
that sequence having logarithmic bounded energy do not have necessarily bounded
discrete vorticity. Therefore, the compactness result fails in the sense of weak
star convergence but holds in a topology with respect to which annihilating dipoles
have vanishing norm. This is the flat topology, i.e., the dual of Lipschitz continuous
compactly supported functions.

As for the Γ-expansion of F anε,Z2 we prove that

(0.1) F anε,Z2(uε, O)− λself|µ|(O)| log ε| Γ→Wan(µ) + |µ|(O)γan,

with respect to the flat convergence of µ(uε) to µ. Here λself is a number depending
on (the behaviour close to the wells of) fe1 , fe2 , fe1+e2 , µ is a finite sum of weighted
Dirac deltas with degrees di = ±1, Wan is the anisotropic version of the renormal-
ized energy studied within the Ginzburg-Landau framework (see [6, 17]) and γan

can be viewed as a core energy depending on the specific choice of the potentials fξ.
The proof of this result is obtained through slight modifications of the techniques
used in [3], since in our case not only anisotropies are allowed but we have also to
deal with the interactions along the direction e1 + e2.
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As for the energies F lrε,Z2 we get an expansion analogous to the one in (0.1).

Indeed, thanks to our isotropy assumption (fξ = f|ξ|), we can write F lrε,Z2 as a sum

of isotropic energies that account for nearest neighbors interactions (as done in [1])
and apply at each of these functionals the previous analysis.

Finally, in Section 5, as a consequence of our Γ-convergence result, we show
that in the anisotropic case discrete systems exhibit many metastable configura-
tions. Analogous results relative to the existence of metastable configurations have
been recently obtained for isotropic energies in the square lattice in [3] and in the
hexagonal lattice in [11, 12].

Concerning the dynamics of dislocations, the analysis developed in this paper
is instrumental for the analysis of discrete screw dislocations along glide directions
done in the companion paper [4].

The analysis of metastable configurations and dynamics of discrete topological
singulaties in discrete systems governed by general long range interaction potentials
is a fascinated and challenging problem, which, to our knowledge, is still open.

1. The discrete model for topological singularities

In this Section we introduce the discrete formalism used in the analysis of the
problem we deal with. We will follow the approach of [5]; specifically, we will use
the formalism and the notations in [2] (see also [14]).

1.1. The discrete lattice. Here we recall the basic definitions of Bravais and
complex lattices in R2.

Let v1, v2 be two linearly independent vectors in R2, referred to as primitive
vectors. The Bravais lattice generated by v1, v2 is given by

(1.1) ΛB := {z1v1 + z2v2 : z1, z2 ∈ Z}.
Let M ∈ N and τ1, . . . , τM be M given vectors in R2, the complex lattice ΛC

generated by v1, v2 and with translation vectors τ1, . . . , τM is defined by

(1.2) ΛC :=

M⋃
k=1

{z1v1 + z2v2 + τk : z1, z2 ∈ Z}.

Trivially, a Bravais lattice is a particular case of complex lattice, corresponding
to M = 1 and τ1 = 0.

It is easy see that for any complex lattice Λ, there exists a piecewise linear map
LΛ : R2 → R2 such that

(1.3) LΛ(Λ) = Z2.

Moreover, if Λ is a Bravais lattice, then the application LΛ is linear.

1.2. Reference configuration. Let Ω ⊂ R2 be an open bounded set with Lips-
chitz continuous boundary, representing the horizontal section of an infinite cylindri-
cal crystal. We will consider discrete lattices casted in Ω, representing our discrete
reference configuration. Then, we will introduce the notion of discrete topological
singularity and the energy functionals.

Let Λ be a complex lattice in R2, and let ε > 0 be a lattice spacing parameter.
Let LΛ be a piecewise affine (linear if Λ is a Bravais lattice) transformation as in
(1.3). We set

(1.4) Lε,Λ(x) := εLΛ(x/ε),
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and we notice that there exist a linear map L̄Λ : R2 → R2 and a constant C̄ > 0
such that

(1.5) ‖Lε,Λ − L̄Λ‖L∞(Ω) ≤ C̄ε.

We will introduce the notion of discrete lattice Ω0
ε casted in Ω. To this purpose,

we introduce the polygonal domain Ωε as union of ε-triangles contained in Ω. In
this respect, the ε-triangles will represent the minimal area elements in our model.

Let {T+, T−} be the partition of the unit square Q := [0, 1]2 into two dimensional
simplices defined by

T+ := {(x1, x2) ∈ Q : x1 ≥ x2},
T− := {(x1, x2) ∈ Q : x1 ≤ x2}.

We set
Ωε,Λ :=

⋃
j∈Z2

εj+εT±⊂Lε,Λ(Ω̄)

L−1
ε,Λ(εj + εT±).

The reference lattice is given by Ω0
ε,Λ := εΛ∩Ωε,Λ. The class of bonds is given by

Ω1
ε,Λ := {(εi, εj) ∈ Ω0

ε,Λ × Ω0
ε,Λ : i 6= j}. Finally, the class of ε-triangles is defined

by
Ω2
ε,Λ := {L−1

ε,Λ(εj + εT±) : εj + εT± ⊂ Ωε,Λ}.
We will denote by T±i,ε := L−1

ε,Λ(Lε,Λ(εi) + εT±) the generic element in Ω2
ε.

Finally we define the discrete boundary of Ω as

(1.6) ∂ε,ΛΩ := ∂Ωε,Λ ∩ εΛ.
In the following, we will extend the use of these notations to any given open

subset of R2.

1.3. Discrete displacements and discrete topological singularities. Here we
introduce the classes of discrete functions on Ω0

ε, and a notion of discrete topological
singularities. To this purpose, we first set

AFε,Λ(Ω) :=
{
u : Ω0

ε,Λ → R
}
,

which represents the class of admissible scalar functions on Ω0
ε.

Moreover, we introduce the class of admissible vector fields from Ω0
ε to the set

S1 of unit vectors in R2, by setting

AXYε,Λ(Ω) := {v : Ω0
ε,Λ → S1}.

Notice that, to any function u ∈ AFε,Λ(Ω), we can associate a function v ∈
AXYε,Λ(Ω) setting

v := v(u) = e2πiu.

In this framework, discrete topological singularities are defined on the triangular
cells T±i,ε, which in turns provide the minimal resolution for their positions. Other
variants could be taken into account, as for instance to consider primitive unit cells
instead of triangles, and the analysis developed in this paper would apply with
minor notational changes.

In order to define precisely discrete topological singularities, we first introduce a
notion of discrete vorticity corresponding to both scalar and S1 valued functions.
Let P : R→ Z be defined as follows

(1.7) P (t) = argmin {|t− s| : s ∈ Z} ,
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with the convention that, if the argmin is not unique, then we choose the minimal
one. Let u ∈ AFε,Λ(Ω) be fixed. For every T±i,ε ∈ Ω2

ε,Λ we introduce the discrete
vorticity

αu(T−i,ε) := P (u ◦ L−1
ε,Λ(Lε,Λ(εi) + εe1)− u(εi))

+ P (u ◦ L−1
ε (Lε,Λ(εi) + εe1 + εe2)− u ◦ L−1

ε,Λ(Lε,Λ(εi) + εe1))

+ P (u(εi)− u ◦ L−1
ε,Λ(Lε,Λ(εi) + εe1 + εe2))

αu(T+
i,ε) :=− P (u(εi)− u ◦ L−1

ε,Λ(Lε,Λ(εi) + εe1 + εe2))

− P (u ◦ L−1
ε,Λ(Lε,Λ(εi) + εe2)− u(εi))

− P (u ◦ L−1
ε,Λ(Lε,Λ(εi) + εe1 + εe2)− u ◦ L−1

ε,Λ(Lε,Λ(εi) + εe2)).

One can easily see that αu takes values in {−1, 0, 1} and that αu(T−i,ε) +αu(T+
i,ε) ∈

{−1, 0, 1} for any εi ∈ Ω0
ε,Λ.

Finally, we define the discrete vorticity measure µ(u) as follows

(1.8) µ(u) :=
∑

T−i,ε∈Ω2
ε,Λ

αu(T−i,ε)δb(T−i,ε)
+

∑
T+
i,ε∈Ω2

ε,Λ

αu(T+
i,ε)δb(T+

i,ε)
,

where b(T±i,ε) is the barycenter of the of the triangle T±i,ε.

This definition of discrete vorticity extends to S1 valued fields in the obvious way,
by setting µ(v) = µ(u) where u is any function in AFε,Λ(Ω) such that v(u) = v.
Moreover, by the very definition of µ(u), we have that for every open subset A of
Ω we have that µ(u)(A) depends only on u ∂ε,ΛA.

Let M(Ω) be the space of Radon measures in Ω and set

X(Ω) :=

{
µ ∈M(Ω) : µ =

N∑
i=1

diδxi , N ∈ N, di = ±1, xi ∈ Ω

}
,

Xε,Λ(Ω) :=

µ ∈ X : µ =
∑

T−i,ε∈Ω2
ε,Λ

α(T−i,ε)δb(T−i,ε)
+

∑
T+
i,ε∈Ω2

ε,Λ

αu(T+
i,ε)δb(T+

i,ε)
,

α(T−i,ε), α(T+
i,ε) ∈ {−1, 0, 1}

}
.

(1.9)

We will denote by ‖µ‖flat the norm of the dual of W 1,∞
0 (Ω), referred to as flat norm,

and by µn
flat→ µ the flat convergence of µn to µ. Moreover, we will localize such

notation on any open set A writing µn
flat(A)−→ µ.

1.4. Discrete vorticity measure and Jacobian. Here we show the link between
the discrete vorticity measure introduced above and the Jacobian of a “continuous”
field. To this aim, let O ⊂ R2 be open and bounded and let Λ = Z2. To each
v ∈ AXYε,Z2(O) we can associate its piecewise affine interpolation ṽ according
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with the triangulation {T±i,ε}i∈Z2 , i.e., for any εi ∈ O2
ε,Z we set

(1.10) ṽ(x) = v(εi) +
v(εi+ εe1)− v(εi)

ε|ξ|
((x− εi) · e1)

+
v(εi+ εe2)− v(εi)

ε
((x− εi) · e2) for x ∈ T−i,ε

ṽξ,h(x) = v(εi) +
v(εi+ εe2)− v(εi)

ε
((x− i) · e2)

+
v(εi+ εe1)− v(εi)

ε
((x− εi) · e1) for x ∈ T+

i,ε.

One can easily verify that if A is an open subset of O with smooth boundary
and if |ṽ| > c > 0 on ∂Aε,Z2 , then

(1.11) µ(v) = deg(ṽ, ∂Aε,Z2),

where, given an open bounded set V ⊂ R2 with Lipschitz continuous boundary, the
degree of a function w = (w1, w2) ∈ H 1

2 (∂V ;R2) with |w| ≥ c > 0, is defined by

(1.12) deg(w, ∂V ) :=
1

2π

∫
∂V

(
w1

|w|
∇w2

|w|
− w2

|w|
∇w1

|w|

)
· τ ds .

In [8] it is proved that the quantities above are well defined and that the definition
in (1.12) is well posed. Note that µ(v)(T±i,ε) = 0 whenever |ṽ| > 0 on T±i,ε.

Finally, we remark that, for every w ∈ H1(V ;R2), by Stokes theorem, we have∫
V

J
w

|w|
dx = deg(w, ∂V ),

where Jw is the Jacobian of w and it is the L1 function defined by Jw := det∇w.
Here we recall two results about the Jacobian and the discrete vorticity measure,

that will be useful in the proof of our Γ-convergence theorems.

Proposition 1.1 (Proposition 5.2, [2]). Let {vε} ∈ AXYε,Z2(O) be a sequence
such that XYε,Z2(vε, O) ≤ C| log ε| for some constant C > 0; then

‖Jṽεπ − µ(vε)‖flat → 0 as ε→ 0.

Lemma 1.2 (Lemma 1, [1]). Let A ⊂ R2 be an open bounded set and let {wε} and
{zε} be two sequences in W 1,2(A;R2). If there exists a constant C > 0 such that

(1.13) (a)

∫
A

|wε − zε|2 dx ≤ Cε2| log ε|, (b)

∫
A

|∇wε −∇zε|2 dx ≤ C| log ε|,

then ‖Jwε − Jzε‖flat → 0 as ε→ 0.

1.5. The discrete energies. Here we introduce a class of energy functionals de-
fined on AFε,Λ(Ω). To this end, we fix LΛ as in (1.3) and we consider interaction
potentials defined on Z2. More precisely, let {fξ}ξ∈Z2 be a family of 1-periodic po-
tentials satisfying the following assumption: There exists a family of non-negative
constants {cξ}ξ∈Z2 with ce1 , ce2 > 0 such that

fξ(a) ≥ cξ
2
|e2πia − 1|2 = cξ(1− cos 2πa),(1.14)

fξ(a) = 2π2cξa
2 + O(a3).(1.15)

We will focus on two specific cases: the anisotropic energy in the triangular
lattice and the isotropic long range interaction energy.
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The first one is obtained by assuming that fξ ≡ 0 if ξ /∈ {e1, e2, e1 + e2}; we
define the anisotropic energy in the triangular lattice as

F anε,Λ(u,Ω) :=
∑

(εi,εj)∈Ω1
ε,Λ

LΛ(i−j)∈{e1,e2,e1+e2}

fLΛ(i−j)(u(εi)− u(εj)).
(1.16)

As for the case of isotropic long range interaction energy, we assume that the
constants cξ satisfy:

cξ = cξ⊥ for every ξ ∈ Z2 (where (ξ1, ξ2)⊥ = (−ξ2, ξ1));(1.17) ∑
ξ∈Z2

cξ|ξ|2 < +∞.(1.18)

and we define

(1.19) F lrε,Λ(u,Ω) :=
∑

(εi,εj)∈Ω1
ε,Λ

fLΛ(i−j)(u(εi)− u(εj)).

The main motivation for our analysis comes from the study discrete screw dis-
locations in crystals and XY spin systems. In the screw dislocations case, the
potentials fξ(a) are nothing but cξdist2(a,Z); as for the spin systems, for any
v ∈ AXYε,Λ(Ω), we define

XY anε,Λ(v,Ω) :=
1

2

∑
(εi,εj)∈Ω1

ε,Λ

LΛ(i−j)∈{e1,e2,e1+e2}

cLΛ(i−j)|v(εi)− v(εj)|2,(1.20)

XY lrε,Λ(v,Ω) :=
1

2

∑
(εi,εj)∈Ω1

ε,Λ

cLΛ(i−j)|v(εi)− v(εj)|2.(1.21)

Also these potentials fit with our framework, once we rewrite it in terms of the
phase u of v. Indeed, setting fξ(a) = 1− cos(2πa), we have

XY anε,Λ(v,Ω) =
1

2

∑
(εi,εj)∈Ω1

ε,Λ

LΛ(i−j)∈{e1,e2,e1+e2}

fLΛ(i−j)(u(εi)− u(εj)),

XY lrε,Λ(v,Ω) :=
1

2

∑
(εi,εj)∈Ω1

ε,Λ

fLΛ(i−j)(u(εi)− u(εj)).

We notice that assumption (1.15) on F anε,Λ (resp. F lrε,Λ) reads as

(1.22) F anε,Λ(u,Ω) ≥ XY anε,Λ(e2πiu,Ω) (resp. F lrε,Λ(u,Ω) ≥ XY lrε,Λ(e2πiu,Ω)).

Remark 1.3. Notice that the functionals F anε,Λ and F lrε,Λ can be seen as functionals

defined on the square lattice εZ2. More precisely, for any u ∈ AFε,Λ(Ω) we have

F anε,Λ(u,Ω) = F anε,Z2(u ◦ L−1
ε,Λ, Lε,Λ(Ω))(1.23)

F lrε,Λ(u,Ω) = F lrε,Z2(u ◦ L−1
ε,Λ, Lε,Λ(Ω)).(1.24)

In the following we will prove the expansion by Γ-convergence for the energies
F anε,Λ and F lrε,Λ. As mentioned in the Introduction, we will adopt the following
strategy: In Sections 2 and 3 we will prove the Γ-expansion for the functionals
F anε,Z2 and F lrε,Z2 respectively. Afterwards, in Section 4 we will use the Γ-convergence

results above in order to prove the Γ-expansion of the energies F anε,Λ and F lrε,Λ.
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2. The Γ-convergence analysis for F anε,Z2

In this section we develop the Γ-convergence analysis of the functionals F anε,Z2 as

ε→ 0. Such analysis is closely related to the one given for the isotropic case in [3,
Sections 3 and 4], but requires some cares due to the presence of the anisotropies
and of the interaction along the direction e1+e2√

2
.

2.1. The zero order Γ-convergence result for F anε,Z2 . The essential ingredient
in order to obtain the Γ-expansion of the energies F anε,Z2 is given by a localized
Γ-liminf inequality for this energy.

Let O ⊂ R2 open and bounded with Lipschitz continuous boundary.

Theorem 2.1. Set λself :=
√
ce1ce2 + ce1ce1+e2 + ce2ce1+e2 .

The following Γ-convergence result holds true.

(i) (Compactness) Let {ūε} ⊂ AFε,Z2(O) be such that F anε,Z2(ūε, O) ≤ C| log ε|

for some positive C. Then, up to a subsequence, µ(ūε)
flat→ µ, for some

µ ∈ X(O).

(ii) (Localized Γ-liminf inequality) Let {ūε} ⊂ AFε,Z2(O) be such that µ(ūε)
flat→

µ =
∑M
i=1 diδxi , with di ∈ Z \ 0 and xi ∈ O. Then, there exists a

constant C ∈ R such that, for any i = 1, . . . ,M and for every σ <
1
2dist(B−

1
2xi, B

− 1
2 (∂Ω) ∪

⋃
j 6=iB

− 1
2xj), we have

(2.1) lim inf
ε→0

F anε,Z2(ūε, E
B
σ (xi))− πλself|di| log

σ

ε
≥ C,

where B is defined in (2.5). In particular

lim inf
ε→0

F anε,Z2(ūε, O)− πλself|µ|(O) log
σ

ε
≥ C.

(iii) (Γ-limsup inequality) For every µ ∈ X(O), there exists a sequence {ũε} ⊂
AFε,Z2(O) such that µ(ũε)

flat→ µ and

πλself|µ|(Ω) ≥ lim sup
ε→0

F anε,Z2(ūε,Ω)

| log ε|
.

The theorem above has been proved in [3] for ce1 = ce2 = 1 and ce1+e2 = 0 by
combining a sharp lower bound of the energy on annuli without singularities with
(a discrete modification of) the ball construction technique introduced by Sandier
[15] and Jerrard [13]. In this paper we will give only the anisotropic counterparts
of these tools (see Subsection 2.2 and 2.3 below). Then, the proof closely follows
the lines of the one of [3, Theorem 3.1] and it is omitted.

2.2. Lower bound on elliptic annuli. We notice that, as a consequence of (1.22),
it is enough to prove the lower bound of the energy for the functional XY anε,Z2 .

First of all, let us consider the continuous energy associated to XY anε,Z2 . More

precisely, for every v ∈ AXYε,Z2(O), let ṽ : Oε,Z2 → R2 be the piecewise affine

interpolation of v according with the triangulation {T±i,ε}i∈Z2 defined in Subsection

1.2 (see (1.10) for the definition of ṽ).
Using that∣∣∣∣v(εi+ εe1 + εe2)− v(εi)

ε

∣∣∣∣2 = 2|∂ e1+e2√
2

ṽ(x)|2, for any x ∈ T−i,ε ∪ T
+
i,ε with T±i,ε ∈ O

2
ε,Z2 ,
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it is easy to show that for any open subset A ⊂ O, the following holds true

(2.2)
1

2

∫
Aε,Z2

〈Q∇ṽ,∇ṽ〉 dx+
1

2

∫
BA
ε,Z2

〈Q∇ṽ,∇ṽ〉 dx

≥ XYε,Z2(v,A) ≥ 1

2

∫
Aε,Z2

〈Q∇ṽ,∇ṽ〉 dx,

where BAε,Z2 := {x ∈ Aε,Z2 : dist(x, ∂Aε,Z2) ≤ ε} and

(2.3) Q :=

(
ce1 + ce1+e2 ce1+e2

ce1+e2 ce2 + ce1+e2

)
.

For any A ⊂ R2 open and bounded and for any w ∈ H1(A;R2), we define

(2.4) Fan(w,A) :=
1

2

∫
A

〈Q∇w,∇w〉 dx =

√
detQ

2

∫
A

〈B∇w,∇w〉 dx,

where we have set

(2.5) B :=
Q√

detQ
.

Finally, we notice that

(2.6) Fan(w,A) =

√
detQ

2

∫
A

|B 1
2 ∇w|2 dx

=

√
detQ

2

∫
A

|∇(w ◦B 1
2 )(B−

1
2x)|2 dx

=

√
detQ

2

∫
B−

1
2 (A)

|∇(w ◦B 1
2 )(y)|2 dy,

where in the last line we have used the change of variable y = B−
1
2x and the fact

that det(B−
1
2 ) = 1.

We remark that by the very definition of Q in (2.3),

(2.7) λself =
√

detQ.

Recalling the definition of B in (2.5), for any ρ > 0 and for any x ∈ R2, we set

(2.8) EBρ (x) := B
1
2 (Bρ(B

− 1
2x));

moreover we set EBρ := EBρ (0).
We first give the lower bound of the energy Fan on elliptic annuli. Let 0 < r < R

and let w ∈ H1(EBR \ EBr ;S1) with deg(w, ∂EBR ) = d. Set wB(y) := w(B
1
2 y), by

(2.6) and Jensen’s inequality, we get

(2.9) Fan(w,EBR \ EBr ) =
λself

2

∫
BR\Br

|∇wB(y)|2 dy

≥ λself

2

∫ R

r

∫
∂Bρ

|(wB ×∇wB) · τ |2 ds dρ ≥ λself

∫ R

r

1

ρ
πd2 dρ ≥ λselfπ|d| log

R

r
,

where we have used that deg(wB , ∂BR) = deg(w, ∂EBR ) = d.
In the following Proposition we show that also for the functionals XY anε,Z2 an

estimate analogous to (2.9) holds up to an error due to the discrete setting. We

first notice that, by its very definition, B is symmetric and hence also B−
1
2 is. Using
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that detB−
1
2 = 1, we have that the eigenvalues of B−

1
2 are of the form λ, − 1

λ . We

set m := max
{
λ2, 1

λ2

}
.

Proposition 2.2. Fix ε > 0 and let m
√

2ε < r < R − m
√

2ε. For any field
v : (EBR \ EBr ) ∩ εZ2 → S1 with |ṽ| ≥ 1

2 in EB
R−
√

2ε
\ EB

r+
√

2ε
, it holds

(2.10) XY anε,Z2(v,EBR \ EBr ) ≥ λself π|µ(v)(EBr )| log
R

r + ε
(
α|µ(v)(EBr )|+m

√
2
) ,

where α > 0 is a universal constant.

Proof. By (2.2), using Fubini’s theorem, we have that

(2.11) XY anε,Z2(v,EBR \ EBr ) ≥
∫ R−m

√
2ε

r+m
√

2ε

Fan(ṽ, ∂EBρ ) dρ.

Fix r +m
√

2ε < ρ < R−m
√

2ε and let T be a simplex of the triangulation of the
ε-lattice. Set γT (ρ) := ∂EBρ ∩ T , let γ̄T (ρ) be the segment joining the two extreme
points of γT (ρ) and let γ̄(ρ) =

⋃
T γ̄T (ρ); then

Fan(ṽ, ∂EBρ ) =
1

2

∫
∪T γT (ρ)

ce1 |∂e1 ṽ|2 + ce2 |∂e2 ṽ|2 + 2ce1+e2 |∂ e1+e2√
2

ṽ|2 ds(2.12)

= 1
2

∑
T (ce1 |∂e1 ṽ|T |2 + ce2 |∂e2 ṽ|T |2 + 2ce1+e2 |∂ e1+e2√

2

ṽ|T |2)H1(γT (ρ))

≥ 1
2

∑
T (ce1 |∂e1 ṽ|T |2 + ce2 |∂e2 ṽ|T |2 + 2ce1+e2 |∂ e1+e2√

2

ṽ|T |2)H1(γ̄T (ρ))

= Fan(ṽ, γ̄ρ).

Set m(ρ) := minγ̄(ρ) |ṽ|. Set ṽB(y) := ṽ(B
1
2 y). By (2.6), we have

(2.13) Fan(ṽ, γ̄(ρ)) =
λself

2

∫
B−

1
2 (γ̄(ρ))

|∇ṽB(y)|2 dy.

Using Jensen’s inequality and the fact that H1(γ̄(ρ)) ≤ H1(∂Eρ) = H1(B
1
2 (∂Bρ)),

we get

1

2

∫
γ̄(ρ)

|∇ṽB |2 ds ≥ 1

2

∫
B−

1
2 (γ̄(ρ))

m2(ρ)

∣∣∣∣( ṽB

|ṽB |
× ∇ ṽB

|ṽB |

)
· τ
∣∣∣∣2 ds

≥ 1

2

m2(ρ)

H1(L(γ̄(ρ)))

∣∣∣∣∣
∫
B−

1
2 (γ̄(ρ))

(
ṽB

|ṽB |
× ∇ ṽB

|ṽB |

)
· τ ds

∣∣∣∣∣
2

≥ m2(ρ)

ρ
π|d|2(2.14)

where we have set d := deg(ṽ, ∂EBρ ) = µ(v)(EBr ), which does not depend on ρ (since

|ṽ| ≥ 1/2) and coincides with deg(ṽB , ∂Bρ). Moreover, by elementary geometry
arguments (see the proof of [3, Proposition 3.2] for more details), we have that
there exists a universal constant ᾱ such that

(2.15) Fan(ṽ, ∂EBρ ) ≥ ᾱ1−m2(ρ)

ε
.

In view of (2.14) and (2.15) for any r +m
√

2ε < ρ < R−m
√

2ε we have

Fan(ṽ, ∂EBρ ) ≥ m2(ρ)

ρ
π|d| ∨ ᾱ1−m2(ρ)

ε
≥ λselfπ|d|ᾱ
ελselfπ|d|+ ᾱρ

.
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By this last estimate and (2.11) we get

XY anε,Z2(v,EBR \ EBr ) ≥ λselfπ|µ(v)(EBr )| log
ε(λselfπ

ᾱ |µ(v)(EBr )| −m
√

2) +R

ε(λselfπ
ᾱ |µ(v)(EBr )|+m

√
2) + r

.

Assuming without loss of generality that ᾱ < 1, we immediately get (2.10) with

α = λselfπ
ᾱ . �

2.3. Ellipse Construction. Here we introduce a slight modification of the ball
construction introduced in [15, 13]. We follow the formalism of [3, Subsection 3.3],
where this construction has been revisited in order to deal with isotropic discrete
energies. Since the energies XY anε,Z2 are anisotropic, we are led to consider ellipses

in place of balls (as in [16]).
Let G : R2 → R2 be an isomorphism. For any ρ > 0 and for every x ∈ R2, we

set

(2.16) EGρ (x) := G−1(Bρ(Gx)).

Let E =
{
EGR1

(x1), . . . , EGRN (xN )
}

be a finite family of pairwise disjoint ellipses

in R2 of the type in (2.16) and let µ =
∑N
i=1 diδxi with di ∈ Z \ {0}. Let F

be a positive superadditive set function on the open subsets of R2, i.e., such that
F (A ∪ B) ≥ F (A) + F (B), whenever A and B are open and disjoint. We assume
that there exist two constants c, C > 0 such that

(2.17) F (AGr,R(x)) ≥ Cπ|µ(EGr (x))| log
R

c+ r
,

for any elliptic annulus AGr,R(x) = EGR (x) \ EGr (x), with AGr,R(x) ⊂ Ω \
⋃
iE

G
Ri

(xi).
Let t be a parameter which represents an artificial time. For any t > 0 one can

construct (see [3]) a finite family of pairwise disjoint balls B(t) satisfying

(1)
⋃N
i=1BRi(Gxi) ⊂

⋃
B∈B(t)B,

(2)
∑
B∈B(t)R(B) ≤ (1+t)

∑
iRi+(1+t)cN(N2 +N+1), where R(B) denotes

the radius of the ball B.

For every t let EG(t) := {G−1(B)}B∈B(t). Using the same arguments in [3], one
can show that

(2.18) F (EG) ≥ Cπ|µ(EG)| log(1 + t) for any EG ∈ EG(t) with EG ⊂ Ω.

2.4. The anisotropic renormalized energy and the first-order Γ-limit. Here
we recall and revisit the main definitions and results of [6] we need in order to state
our Γ-expansion result (Theorem 2.5).

Fix µ =
∑M
i=1 diδxi with di ∈ {−1,+1} and xi ∈ O. In order to define the

anisotropic renormalized energy, let ΦQ,O the solution to the following problem{
div Q∇ΦQ,O = λself2πµ in O
ΦQ,O = 0 on ∂O,

and let RQ,O(x) = ΦQ,O(x)−
∑M
i=1 di log |B− 1

2 (x−xi)|. Notice that RQ,O satisfies

div Q∇RQ,O = 0 in O and RQ,O(x) = −
∑M
i=1 di log |B− 1

2 (x−xi)| for any x ∈ ∂O.
The anisotropic renormalized energy corresponding to the configuration µ is then
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defined by

(2.19) Wan
O (µ) := −π λself(

∑
i 6=j

didj log |B− 1
2 (xi − xj)|+ π

M∑
i=1

diRQ,O(xi)).

It is easy to see that if Q = I, then Wan
O (µ) = WO(µ) where WO is the classical

isotropic renormalized energy defined in the Ginzburg-Landau framework (see [6])
and given by

(2.20) WO(

M∑
i=1

diδyi) := −π(
∑
i6=j

didj log |yi − yj |+ π

M∑
i=1

diRI,O(yi)).

In general, using the change of variable B−
1
2 , we have

(2.21) Wan
O (µ) = λselfW

B−
1
2 (O)

(B−
1
2µ),

where we have denoted by B−
1
2µ the push-forward of the measure µ through B−

1
2 ,

i.e. B−
1
2µ :=

∑M
i=1 diδB−

1
2 xi

.

We show now that Wan
A (µ) is continuous with respect to the Hausdorff conver-

gence of the sets A. We recall that the Hausdorff distance among two closed subsets
C1, C2 ⊂ R2 is defined as follows

dH(C1, C2) := max

{
sup
x∈C1

inf
y∈C2

dist(x, y), sup
y∈C2

inf
x∈C1

dist(x, y)

}
.

Let {Ah} be a sequence of open bounded subsets of A such that supp (µ) ⊂ Ah for
any h ∈ N; then

(2.22) dH((Ah)c, Ac)→ 0 ash→∞⇒Wan
Ah(µ) converges uniformly to Wan

A (µ),

where for any U ⊂ R2, we have set Bc := R2 \ U .
To this end, by (2.21), it is enough to prove that

W
B−

1
2 (Ah)

(B−
1
2µ) converges uniformly to W

B−
1
2 (A)

(B−
1
2µ),

and, more precisely, that,

(2.23) R
I,B−

1
2 (Ah)

converges uniformly to R
I,B−

1
2 (A)

on the compact subsets of A.

Set yi := B−
1
2xi and ν := B−

1
2µ =

∑M
i=1 diδyi . For any h ∈ N we set Ah :=

B−
1
2 (Ah) and A := B−

1
2 (A). Trivially, supp (ν) ⊂ Ah and distH((Ah)c,Ac) → 0

as h→∞. The interested reader can prove that such condition is equivalent to the
assumption that for any compact subset K ⊂⊂ Ω, K ⊂ Ah for h sufficiently large.

By its very definition, RI,Ah is the solution of the problem{
∆u = 0 in Ah
u(·) = −

∑M
i=1 di log | · −yi| on ∂Ah.

Proposition 2.3 below, applied with uh = RI,Ah and u0 = RI,A, proves that
(2.23) holds true, whence (2.22) follows

Proposition 2.3. Let A ⊂ R2 open bounded with Lipschitz boundary and let
{
Ah
}

be a sequence of open bounded Lipschitz subsets of A such that dH((Ah)c,Ac)→ 0
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as h→∞. Furthermore, let f ∈ C∞ outside a compact subset of A. For any h ∈ N
let uh be the solution of the problem{

∆u = 0 in Ah
u = f on ∂Ah

and let u0 be the solution of {
∆u = 0 in A
u = f on ∂A

Then uh converges uniformly to u0 on the compact subsets of A.

Proof. First of all we notice that, by the classical theory on harmonic functions,
uh ∈ C∞(Ah) ∩ C(Āh) and u0 ∈ C∞(A) ∩ C(Ā). Fix now a compact K ⊂ A. By
the hypothesis, for h sufficiently large, K ⊂ Ah. Moreover vh = uh − u0 is solution
of the problem {

∆v = 0 in Ah
v = f − u0 on ∂Ah.

By the maximum principle of harmonic functions, we have that

max
K
|vh| ≤ max

Ah
|vh| = max

∂Ah
|f − u0|.

The claim follows noticing that u0 is continuous up to the boundary. �

Through this section and whenever the dependence on the domain is clear from
the context, we will use Wan(µ) in place of Wan

O (µ).
Let σ > 0 be such that the ellipses EBσ (xi) are pairwise disjoint and contained

in O and set OBσ := O \ ∪Mi=1E
B
σ (xi). It is convenient to consider (as done in [6])

the following auxiliary minimum problems.

man(σ, µ) := min
w∈H1(OBσ ;S1)

{
Fan(w) : deg(w, ∂EBσ (xi)) = di

}
,(2.24)

m̃an(σ, µ) := min
w∈H1(Oσ;S1)

{
Fan(w) :(2.25)

w(·) =
αi
σdi

(B−
1
2 (· − xi))di on ∂EBσ (xi), |αi| = 1

}
.

For any y ∈ R2 \ {0}, we define θ(y) as the polar coordinate arctan y2/y1 and let

θB(x) := θ(B−
1
2x). Moreover, for any i = 1, . . . ,M we set

(2.26) θBi (x) := θ(B−
1
2 (x− xi)).

Given ε > 0, we introduce the discrete minimization problem in the ellipse EBσ

(2.27) γan(ε, σ) := min
ū∈AFε,Z2 (EBσ )

{
F anε,Z2(ū, EBσ ) : 2π ū(·) = θB(·) on ∂ε,Z2EBσ

}
,

where the discrete boundary ∂ε,Z2 is defined in (1.6).

Theorem 2.4. It holds

(2.28) lim
σ→0

man(σ, µ)− πλself|µ|(Ω)| log σ|

= lim
σ→0

m̃an(σ, µ)− πλself|µ|(Ω)| log σ| = Wan(µ).

Moreover, for any fixed σ > 0, the following limit exists finite

lim
ε→0

(γan(ε, σ)− πλself| log
ε

σ
|) =: γan ∈ R(2.29)
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The proof of (2.28) is a consequence of [3, Theorem 4.1] (see also [6]) and of the

change of variable y = B−
1
2x. We briefly sketch it.

Sketch of the Proof. Set

m(σ,B−
1
2µ) := min

z∈H1(B−
1
2 (O)\Bσ(B−

1
2 xi);S1)

{∫
B−

1
2 (O)\Bσ(B−

1
2 xi)

|∇z|2 dx :

deg(z, ∂Bσ (B−
1
2xi)) = di

}
,

m̃(σ,B−
1
2µ) := min

z∈H1(OBσ ;S1)

{∫
B−

1
2 (O)\Bσ(B−

1
2 xi)

|∇z|2 dx :

z(·) =
αi
σdi

(· − xi)di on ∂Bσ(B−
1
2xi), |αi| = 1

}
.

By [3, Theorem 4.1] we have that

lim
σ→0

m(σ,B−
1
2µ)− π|B− 1

2µ|(O)| log σ|

= lim
σ→0

m̃(σ,B−
1
2µ)− π|B− 1

2µ|(O)| log σ| = W(B−
1
2µ).

It is easy to see that, if zσ is a minimizer of the problem m(σ,B−
1
2µ) (resp.

m̃(σ,B−
1
2µ)), then wσ = zσ · B−

1
2 is a minimizer of the problem man(σ, µ) (resp.

m̃an(σ, µ)). Moreover, by (2.4),

(2.30) m(σ,B−
1
2µ) = man(σ, µ) (resp. m̃(σ,B−

1
2µ) = m̃an(σ, µ)).

The claim follows combining (2.30) with (2.21).
As for (2.29), its proof is identical to the one of [3, formula (4.6)] and it is

omitted. �

2.5. The first-order Γ-convergence result for F anε,Z2 . We are now in a position
to state the first-order Γ-convergence result for the functionals F anε,Z2 .

Theorem 2.5. The following Γ-convergence result holds true.

(i) (Compactness) Let M ∈ N and let {ūε} ⊂ AFε,Z2(O) be a sequence sat-
isfying F anε,Z2(ūε, O) − Mπλself| log ε| ≤ C. Then, up to a subsequence,

µ(ūε)
flat→ µ for some µ =

∑N
i=1 diδxi with di ∈ Z \ {0}, xi ∈ O and∑

i |di| ≤ M . Moreover, if
∑
i |di| = M , then

∑
i |di| = N = M , namely

|di| = 1 for any i.

(ii) (Γ-lim inf inequality) Let {ūε} ⊂ AFε,Z2(O) be such that µ(ūε)
flat→ µ, with

µ =
∑M
i=1 diδxi with |di| = 1 and xi ∈ O for every i. Then,

(2.31) lim inf
ε→0

F anε,Z2(ūε, O)−Mπλself | log ε| ≥Wan(µ) +Mγan.

(iii) (Γ-lim sup inequality) Given µ =
∑M
i=1 diδxi with |di| = 1 and xi ∈ O for

every i, there exists {ūε} ⊂ AFε,Z2(O) with µ(ūε)
flat→ µ such that

F anε,Z2(ūε, O)−Mπλself | log ε| →Wan(µ) +Mγan.

Proof. The proof of Theorem 2.5 closely follows the proof of [3, Theorem 4.2] but
for the reader’s convenience we include it. Recalling that F anε,Z2(u) ≥ XY anε,Z2(e2πiu),

the proof of the compactness property (i) will be done for F anε,Z2 = XY anε,Z2 . On the
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other hand, the constant γan depends on the potentials fξ (ξ ∈ {e1, e2, e1 + e2}),
so its derivation requires a specific proof.

Let us fix some notation we will use in this proof. We recall that EBρ (x) is an

ellipse of the form (2.8). For any 0 < r < R and x ∈ R2, set

(2.32) ABr,R(x) := EBR (x) \ EBr (x).

Moreover, for any ūε ∈ AFε,Z2(O) we set vε := v(ūε) = e2πiūε and we indicate
with ṽε the piecewise affine interpolation of vε defined in (1.10).

Proof of (i): Compactness. The fact that, up to a subsequence, µ(ūε)
flat→

µ =
∑N
i=1 diδxi with

∑N
i=1 |di| ≤ M is a direct consequence of the zero order

Γ-convergence result stated in Theorem 2.1 (i). Assume now
∑N
i=1 |di| = M and

let us prove that |di| = 1. Let 0 < σ1 < σ2 be such that EBσ2
(xi) are pairwise dis-

joint and contained in O and let ε be small enough so that EBσ2
(xi) are contained

in Oε,Z2 . Since F anε,Z2(ūε, O) ≥ XY anε,Z2(e2πiūε , O),

(2.33) F anε,Z2(ūε, O) ≥
N∑
i=1

XY anε,Z2(e2πiūε , EBσ1
(xi)) +

N∑
i=1

XY anε,Z2(e2πiūε , ABσ1,σ2
(xi)).

Moreover let t be a positive number and let ε be small enough so that t > m
√

2ε.
Then, by (2.1) and (2.2), we get

F anε,Z2(ūε, O) ≥πλself

N∑
i=1

|di| log
σ1

ε
+ λself Fan(ṽε, A

B
σ1+t,σ2−t(xi)) + C.(2.34)

By the energy bound and by the definition of Fan, we deduce that∫
Aσ1+t,σ2−t(xi)

|∇ṽε|2 dx ≤ 2

min{ce1 , ce2}
Fan(ṽε, A

B
σ1+t,σ2−t(xi)) ≤ C

and hence, up to a subsequence, ṽε ⇀ vi in H1(ABσ1+t,σ2−t(xi);R
2) for some field

vi. Moreover, since

1

ε2

∫
Aσ1+t,σ2−t(xi)

(1− |ṽε|2)2 dx ≤ CXY anε,Z2(vε, O) ≤ C| log ε|,

(see [1, Lemma 2] for more details), we deduce that |vi| = 1 a.e. .
Furthermore, by standard Fubini’s arguments, for a.e. σ1 + t < σ < σ2 − t,

up to a subsequence the trace of ṽε is bounded in H1(∂EBσ (xi);R2), and hence it
converges uniformly to the trace of vi. By the very definition of degree it follows
that deg(vi, ∂E

B
σ (xi)) = di.

Hence, by (2.9), for every i we have

(2.35) Fan(vi, Aσ1+t,σ2−t(xi)) ≥ πλself |di|2 log
σ2 − t
σ1 + t

.

By (2.34) and (2.35), we conclude that for ε smal enough

F anε,Z2(ūε, O) ≥ πλself

N∑
i=1

(
|di| log

σ1

ε
+ |di|2 log

σ2 − t
σ1 + t

)
+ C

≥ πλself

(
M | log ε|+

N∑
i=1

(|di|2 − |di|) log
σ2

σ1
+

N∑
i=1

|di|2 log
σ1(σ2 − t)
σ2(σ1 + t)

)
+ C.
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The energy bound yields

N∑
i=1

(|di|2 − |di|) log
σ2

σ1
+

N∑
i=1

|di|2 log
σ1(σ2 − t)
σ2(σ1 + t)

≤ C;

therefore, letting t→ 0 and σ1 → 0, we conclude |di| = 1.
Proof of (ii): Γ-liminf inequality. Fix r > 0 so that the ellipses EBr (xi) are

pairwise disjoint and compactly contained inO. Let
{
Oh
}

be an increasing sequence

of open smooth sets compactly contained in O such that ∪h∈NOh = O. Without
loss of generality we can assume that F anε,Z2(ūε, O) ≤ πλselfM | log ε| + C, which
together with Theorem 2.1 yields

(2.36) F anε,Z2(ūε, O \
M⋃
i=1

EBr (xi)) ≤ C.

For every r > 0, by (2.36) we deduce XY anε,Z2(vε, O \
⋃N
i=1E

B
r (xi)) ≤ C. Fix h ∈ N

and let ε be small enough so that Oh ⊂ Oε,Z2 . Since∫
Oh\

⋃N
i=1 E

B
r (xi)

|∇ṽε|2 ≤
2

min{ce1 , ce2}
XY anε,Z2(vε, O \

M⋃
i=1

EBr (xi)) ≤ C,

by a diagonalization argument, there exists a unitary field v ∈ H1(O \EBr (xi);S1)
such that, up to a subsequence, ṽε ⇀ v in H1

loc(O \ ∪Mi=1{xi};R2).
Let σ > 0 be such that EBσ (xi) are pairwise disjoint and contained in Oh. Re-

calling the definition of ABr,R(x) in (2.32), we set ABr,R := ABr,R(0). Let t ≤ σ, and
consider the minimization problem

min
w∈H1(AB

t/2,t
;S1)

{
Fan(w,ABt/2,t) : deg(w, ∂EBt

2
) = 1

}
.

It is easy to see that the minimum is πλself log 2 and that the set of minimizers is
given by (the restriction at ABt/2,t of the functions in)

(2.37) K :=

{
α
B−

1
2 z

|B− 1
2 z|

: α ∈ C, |α| = 1

}
.

Set

(2.38) dt(w,K) := min
{
Fan(w − v,ABt/2,t) : v ∈ K

}
.

For any v ∈ K and w ∈ H1(ABt/2,t;R
2), by (2.6), we have

Fan(w − v,ABt/2,t) = λself

∫
Bt\Bt/2

|∇wB −∇vB |2 dy,

where we have set wB(y) := w(B
1
2 y) and vB(y) := v(B

1
2 y). By this fact, it follows

that (see [3] for further details) for any given δ > 0 there exists a positive ω(δ)
(independent of t) such that

(2.39) Fan(ṽε, A
B
t
2 +m

√
2ε,t−m

√
2ε

) ≥ πλself log 2 + ω(δ),

whenever dt(ṽε(·),Ki) ≥ δ, where

Ki :=

{
α
B−

1
2 (z − xi)

|B− 1
2 (z − xi)|

: α ∈ C, |α| = 1

}
.
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Let P ∈ N be such that P ω(δ) ≥Wan(µ) +M(γan − πλself log σ − C) where C
is the constant in (2.1). For p = 1, . . . , P , set CBp (xi) := EB21−pσ(xi) \ EB2−pσ(xi).
We distinguish among two cases.

(a) First case: For ε small enough and for every fixed 1 ≤ p ≤ P , there exists
at least one i such that d21−pσ(ṽε,Ki) ≥ δ, then by (2.1), (2.39) and the
lower semicontinuity of the functional Fan, we conclude

F anε,Z2(ūε, O
h) ≥

M∑
i=1

XY anε,Z2(vε, E
B
2−Pσ(xi)) +

P∑
p=1

M∑
i=1

XY anε,Z2(vε, Cp(xi))

≥ λselfM(π log
σ

2P
+ π| log ε|+ C) + P (Mλself π log 2 + ω(δ)) + o(ε)

≥ πMλself | log ε|+Mγan + Wan(µ) + o(ε).

(b) Second case: Up to a subsequence, there exists 1 ≤ p̄ ≤ P such that for
every i we have dσ̄(ṽε,Ki) ≤ δ, where σ̄ := 21−p̄σ. Let αε,i be the unitary

vector such that Fan(ṽε − αε,i B
− 1

2 (x−xi)
|B−

1
2 (x−xi)|

, Cp̄(xi));R2) = dσ̄(ṽε,Ki).
One can construct a function ûε ∈ AFε,Z2(O) such that

(i) ûε = ūε on ∂ε,Z2(R2 \ EB2−p̄σ(xi));

(ii) e2πiûε(j) = αε,i
B−

1
2 (j−xi)

|B−
1
2 (j−xi)|

for any j ∈ ∂ε,Z2EB21−p̄σ(xi);

(iii) F anε,Z2(ūε, E
B
σ̄ (xi)) ≥ F anε,Z2(ûε, E

B
σ̄ (xi))+r(ε, δ) with lim

δ→0
lim
ε→0

r(ε, δ) = 0.

The proof of (i)-(iii) is quite technical, and consists in adapting standard
cut-off arguments to our discrete setting. For the reader convenience we
skip the details of the proof, and assuming (i)-(iii) we conclude the proof
of the lower bound.

By Theorem (2.4), we have that

F anε,Z2(ūε, O) ≥ XY anε,Z2(vε, O
h \

M⋃
i=1

EBσ̄ (xi)) +

M∑
i=1

F anε,Z2(ūε, E
B
σ̄ (xi))

≥ Fan(ṽε, O
h \ ∪Mi=1E

B
σ̄ (xi)) +

M∑
i=1

F anε (ûε, E
B
σ̄ (xi)) + r(ε, δ) + o(ε)

≥ Fan(ṽε, O
h \ ∪Mi=1E

B
σ̄ (xi)) +M(γan − πλself log

ε

σ̄
) + r(ε, δ) + o(ε)

≥ Fan(v,O \ ∪Mi=1E
B
σ̄ (xi)) +M(γan − πλself log

ε

σ̄
) + r(ε, δ) + o(ε) + o(1/h)

≥Mπλself | log ε|+Mγan + Wan(µ) + r(ε, δ) + o(ε) + o(σ̄) + o(1/h).

The proof follows sending ε→ 0, δ → 0, σ → 0 and h→∞.
Proof of (iii): Γ-limsup inequality. This proof in analogue to the one given in

[3] for the isotropic case. We only sketch its anisotropic counterpart. Let wσ be a

function that agrees with a minimizer of (2.25) in O \
⋃M
i=1E

B
σ (xi) = OBσ . Then,

wσ = αie
iθBi on ∂EBσ (xi) for some |αi| = 1 (θBi is defined in (2.26)).

For every ρ > 0 we can always find a function wσ,ρ ∈ C∞(Oσ;S1) such that

wσ,ρ = αie
iθBi on ∂EBσ (xi), and

Fan(wσ,ρ, Oσ)−Fan(wσ, Oσ) ≤ ρ.
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Moreover, for every i = 1, . . . ,M let wi ∈ AXYε,Z2(EBσ (xi)) be a function which

agrees with αie
iθBi on ∂εE

B
σ (xi) and such that its phase minimizes problem (2.27).

If necessary, we extend wi to (E
B

σ (xi) ∩ εZ2) \ (EBσ (xi))
0
ε,Z2 to be equal to αie

iθBi .

Finally, define the function wε,σ,ρ ∈ AXYε,Z2(O) which coincides wσ,ρ on Oσ ∩ εZ2

and with wi on EBσ (xi) ∩ εZ2. In view of assumption (3) on f , a straightforward
computation shows that any phase ūε,σ,ρ of wε,σ,ρ is a recovery sequence, i.e.,

lim
ε→0

F anε,Z2(ūε,σ,ρ, O)−Mπλself | log ε| = Wan(µ) +Mγan + o(ρ, σ),

with limσ→0 limρ→0 o(ρ, σ) = 0. �

Remark 2.6. We notice that in the case of isotropic nearest neighbors interaction
on the square lattice, i.e., if ce1 = ce2 = 1 and ce1+e2 = 0, Theorem 2.5 coincides
with Theorem 4.2 in [3]. In this case Q = B = I, EBσ (x) = Bσ(x) for every x ∈ R2

and for every σ > 0, and λself = 1. In this case we set

(2.40) Fε,Z2(·, O) := F anε,Z2(·, O) and XYε,Z2(·, O) := XY anε,Z2(·, O).

3. The Γ-convergence analysis for F lrε,Z2

Here we give the asymptotic expansion by Γ-convergence of the functional F lrε,Z2 .

The main idea is to decompose the energy F lrε,Z2 in the sum of isotropic Fε,Z2 energies
and to use for each of these energies the Γ-convergence analysis developed in Section
2.

To this purpose, let us first introduce the main notation we will use throughout
this section.

3.1. Notation. For any ξ = (ξ1, ξ2) ∈ Z2, we set ξ⊥ := (−ξ2, ξ1) and we notice
that Z2 may be partitioned as follows

(3.1) Z2 =

|ξ|2⋃
h=1

Z2
h,ξ,

where Z2
h,ξ := zh + Zξ ⊕ Zξ⊥ with {zh}h=1,...,|ξ|2 := {x ∈ Z2 : 0 ≤ x · ξ < |ξ|, 0 ≤

x · ξ⊥ < |ξ|} (here · denotes the standard scalar product in R2).
We define the ξ-cube as

Qξ := {aξ + bξ⊥ : 0 ≤ a, b ≤ 1}.

Let {T+
ξ , T

−
ξ } be the partition of the ξ-cube Qξ into the 2-dimensional simplices

defined by

T+
ξ := {x ∈ Qξ : x · ξ⊥ ≤ x · ξ},

T−ξ := {x ∈ Qξ : x · ξ ≤ x · ξ⊥}.

For every ε > 0, ξ ∈ Z2, h ∈ {1, . . . , |ξ|2} and for every i ∈ Z2
ξ , we set T±i,ε,ξ :=

εi+ εT±ξ .

Let O be an open bounded subset of R2 with Lipschitz continuous boundary.
We set

(3.2) Oε,ξ,h :=
⋃

i∈Z2
ξ,h:T±i,ε,ξ⊂O

T±i,ε,ξ.
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The reference lattice and the class of bonds in Z2
h,ξ are given by

O0
ε,ξ,h := εZ2

ξ,h ∩Oε,ξ,h
O1
ε,ξ,h := {(i, j) ∈ O0

ε,ξ,h ×O0
ε,ξ,h : i 6= j},

Moreover, the class of εξ-triangular cells contained in Ω is defined by

O2
ε,ξ,h := {T±i,ε,ξ : i ∈ εZ2

ξ,h, T
±
i,ε,ξ ⊂ Oε,ξ,h}.

Let ū ∈ AFε,Z2(O). Recalling the definition of P in (1.7), for every T±i,ε,ξ ∈ Oε,ξ,h
we set

αū(T−i,ε,ξ) :=P (ū(εi+ εξ)− ū(εi)) + P (ū(εi+ εξ + εξ⊥)− ū(εi+ εξ))

+ P (ū(εi)− ū(εi+ εξ + εξ⊥))

αū(T+
i,ε) :=− P (ū(εi)− ū(εi+ εξ + εξ⊥))− P (ū(εi+ εξ⊥)− ū(εi))

− P (ū(εi+ εξ + εξ⊥)− ū(εi+ εξ⊥)),

and we define the discrete vorticity measure for each cell T±i,ε,ξ ∈ Oε,ξ,h as

(3.3) µξ,h(ū) :=
∑

T±i,ε,ξ∈O
2
ε,ξ,h

αū(T−i,ε,ξ)δb(T−i,ε,ξ)
+

∑
T+
i,ε,ξ∈O

2
ε,ξ,h

αū(T+
i,ε)δb(T+

i,ε,ξ)
,

where b(T±i,ε,ξ) is the barycenter of the of the triangle T±i,ε,ξ.

Once again, this definition of discrete vorticity extends to S1 valued fields in the
obvious way, i.e., by setting µξ,h(v) = µξ,h(ū) where ū is any function in AFε,Z2(O)
such that v(ū) = v.

We notice that for any ū ∈ AFε,Z2(O), F lrε,Z2(ū, O) can be rewritten as follows

(3.4) F lrε,Z2(ū, O) =
∑
ξ∈Z2

|ξ|2∑
h=1

F ξ,hε,Z2(ū, O),

where

(3.5) F ξ,hε,Z2(ū, O) :=
∑

(εi,εi+εξ)∈O1
ε,ξ,h

(εi,εi+εξ)∈O1
ε,ξ,h

fξ(ū(εi+εξ)−ū(εi))+fξ⊥(ū(εi+εξ⊥)−ū(εi)).

Fon any v : Ω0
ε,Z2 → S1, we set

(3.6) XY ξ,hε,Z2(v,O) :=
1

2

∑
(εi,εj)∈O1

ε,ξ,h

|i−j|=|ξ|

∣∣∣∣v(εi)− vε(j)
|ξ|

∣∣∣∣2

By assumptions (1.14) and (1.17) on the potentials fξ, we have immediately that

(3.7) F ξ,hε,Z2(ū, O) ≥ cξ|ξ|2XY ξ,hε,Z2(e2πiū, O).

Finally, we define the piecewise affine interpolations according with the triangu-
lation {T±i,ε,ξ}i∈Z2

h,ξ
since it will be useful in the proof of our results. Fix ξ ∈ Z2 and

h ∈ {1, . . . , |ξ|2}. For any v : Ω0
ε,Z2 → S1, let ṽξ,h : Ωε,ξ,h → R2 be the piecewise
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affine interpolation of v, according with the triangulation
{
T±i,ε,ξ

}
i∈εZ2

ξ,h

, i.e., for

any i ∈ Z2
ξ,h we set

(3.8) ṽξ,h(x) = v(εi) +
v(εi+ εξ)− v(εi)

ε|ξ|

(
(x− εi) · ξ

|ξ|

)
+
v(εi+ εξ⊥)− v(εi)

ε|ξ|

(
(x− εi) · ξ

⊥

|ξ|

)
for x ∈ T−i,ε,ξ

ṽξ,h(x) = v(εi) +
v(εi+ εξ⊥)− v(εi)

ε|ξ|

(
(x− εi) · ξ

⊥

|ξ|

)
+
v(εi+ εξ)− v(εi)

ε|ξ|

(
(x− εi) · ξ

|ξ|

)
for x ∈ T+

i,ε,ξ.

Remark 3.1. Notice that if ξ = e1, then h = 1, and for any ū ∈ AFε,Z2 we have

µe1,1(ū) ≡ µ(ū) and F e1,1ε,Z2 (ū, O) ≡ Fε,Z2(ū, O), with Fε,Z2 defined as in Remark 2.6

(see formula (2.40)). Moreover, set v := e2πiū; then XY e1,1ε,Z2 (v,O) ≡ XYε,Z2(v,O),

and the definition of ṽe1,1 coincides wih the definition of ṽ in (1.10).

3.2. The zero-order Γ-convergence result for F lrε,Z2 . We start this section by

stating the zero-order Γ-convergence result for the functionals F lrε,Z2 . This result

has been proved in [1] for the XY lrε .

Theorem 3.2. The following Γ-convergence result holds true.

(i) (Compactness) Let {ūε} ⊂ AFε,Z2(O) be such that F lrε,Z2(ūε, O) ≤ C| log ε|

for some positive constant C. Then, up to a subsequence, µ(ūε)
flat→ µ, for

some µ ∈ X(O).

(ii) (Localized Γ-liminf inequality) Let {ūε} ⊂ AFε,Z2(O) be such that µ(ūε)
flat→

µ =
∑M
i=1 diδxi with di ∈ Z\{0} and xi ∈ O. Then, there exists a constant

C ∈ R such that, for any i = 1, . . . ,M and for every σ < 1
2dist(xi, ∂O ∪⋃

j 6=i xj), we have

(3.9) lim inf
ε→0

F lrε,Z2(ūε, Bσ(xi))− π
∑
ξ∈Z2

cξ|ξ|2|di| log
σ

ε
≥ C.

In particular

lim inf
ε→0

F lrε,Z2(ūε, O)− π
∑
ξ∈Z2

cξ|ξ|2|µ|(Ω) log
σ

ε
≥ C.

(iii) (Γ-limsup inequality) For every µ ∈ X(O), there exists a sequence {ūε} ⊂
AFε,Z2(O) such that µ(ūε)

flat→ µ and∑
ξ∈Z2

cξ|ξ|2π|µ|(O) ≥ lim sup
ε→0

F lrε,Z2(ūε, O)

| log ε|
.

The proof of this result is result is a consequence of the following lemma.

Lemma 3.3. Let {ūε} ⊂ AFε,Z2(O) be such that F lrε,Z2(ūε, O) ≤ C| log ε| for some

positive constant C. Then for every ξ ∈ Z2 and for every h ∈ {1, . . . , |ξ|2}
‖µξ,h(ūε)− µ(ūε)‖flat → 0.
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Proof. Set vε := e2πiūε and let ṽε and ṽξ,hε be defined as in (1.10) and (3.8) respec-
tively. Fix ξ ∈ Z2 and h ∈ {1, . . . , |ξ|2}. By triangular inequality, we have

‖µξ,h(ūε)− µ(ūε)‖flat ≤ ‖µξ,h(ūε)− J(ṽξ,hε )‖flat + ‖J(ṽξ,hε )− J(ṽε)‖flat

+ ‖J(ṽε)− µ(ūε)‖flat.

By Proposition 1.1, we have that the first and the third terms on the rhs of the
inequality below vanish as ε→ 0; therefore, in order to prove the claim, it is enough
to show that for every open set U ⊂⊂ O

(3.10) ‖J(ṽξ,hε )− J(ṽε)‖flat(U) → 0 as ε→ 0.

To this end we will show that the sequences {ṽξ,hε } and {ṽε} satisfy the assumptions
of Lemma 1.2. This fact has been proved in [1] (see proof of Theorem 4.8(i)) but,
for the sake of completeness, we present the proof here.

Let U ′ be such that U ⊂⊂ U ′ ⊂⊂ O. For ε small enough we have that U ′ ⊂
Oε,ξ,h, with Oε,ξ,h defined as in (3.2), and

(3.11)

∫
U ′

(|∇ṽξ,hε |2 + |∇ṽε|2) dx ≤ XYε,Z2(vε, O) +XY ξ,hε (vε, O)

≤ Fε,Z2(ūε, O) +
1

cξ|ξ|2
F ξ,hε,Z2(ūε, O) ≤ C| log ε|,

and hence

(3.12)

∫
U ′
|∇ṽξ,hε −∇ṽε|2 dx ≤ C| log ε|.

Set gε := ṽξ,hε − ṽε; since gε(εi) ≡ 0 for every i ∈ Z2
ξ,h, we have that for every

x ∈ εi+ εQξ,

(3.13) gε(x) =

∫ 1

0

∇gε(εi+ t(x− εi)) · (x− εi) dt

and hence, by Jensen’s inequality, we get

(3.14) |gε(x)|2 ≤
∫ 1

0

|∇gε(εi+ t(x− εi)) · (x− εi)|2 dt.

Set t0 = 1√
2|ξ| . For any given εi+εQξ, if t ≤ t0, we find |t(x−εi)| ≤ ε, which yields,

by construction of the piecewise affine interpolations, that∇gε(εi+t(x−εi))·(x−εi)
is constant on (0, t0). Then the following estimate holds true∫ 1

0

|∇gε(εi+ t(x− εi)) · (x− εi)|2 dt ≤ 2

∫ 1

t0
2

|∇gε(εi+ t(x− εi)) · (x− εi)|2 dt.

Integrating (3.14) over εi+ εQξ, and using the previous estimate, we get∫
εi+εQξ

|gε(x)|2 dx ≤ ε2|ξ|22

∫ 1

t0
2

∫
εi+εQξ

|∇gε(εi+ t(x− εi))|2 dx dt,

which, by the change of variable y = εi+ t(x− εi), yields∫
εi+εQξ

|gε(x)|2 dx ≤ 8ε2|ξ|2

t20

∫
εi+εQtξ

|∇gε(y)|2 dy ≤ Cε2|ξ|2
∫
εi+εQξ

|∇gε|2 dx.
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Finally, summing over εi ∈ Uξ,hε,Z2 , by (3.13), we obtain∫
U

|gε|2 dx ≤
∑

εi∈Uξ,h
ε,Z2

∫
εi+εQξ

|gε|2 dx ≤ Cε2

∫
U ′
|∇gε|2 dx ≤ Cε2| log ε|.

�

Since the proof of Theorem 3.2 is based essentially on Theorem 2.1 and on the
proof of Theorem 4.8 in [1] we briefly sketch it.

Proof of Theorem 3.2. Since ce1 = ce2 > 0 the compactness property is a direct
consequence of Theorem 2.1(i).

As for the proof of Γ-liminf inequality, fix i ∈ {1, . . . ,M}. Without loss of
generality, we can assume that

lim inf
ε→0

F lrε,Z2(ūε, Bσ(xi))− π
∑
ξ∈Z2

cξ|ξ|2|di| log
σ

ε

= lim
ε→0

F lrε,Z2(ūε, Bσ(xi))− π
∑
ξ∈Z2

cξ|ξ|2|di| log
σ

ε
< +∞.

Fix ξ ∈ Z2 and h ∈ {1, . . . , |ξ|2}. By Lemma 3.3, we get µξ,h(ūε)
flat→ µ. Therefore,

by (3.7) and by Theorem 2.1(ii) applied with F anε,Z2 = XY ξ,hε,Z2 we get

lim inf
ε→0

F ξ,hε,Z2(ūε, Bσ(xi))− cξ|ξ2|π|di| log
σ

ε

≥ cξ|ξ|2(lim inf
ε→0

XY ξ,hε,Z2(e2πiūε , Bσ(xi))− π|di| log
σ

ε
) ≥ C.

By summing over h = 1, . . . , |ξ|2 and over ξ we get (3.9).
The proof of the Γ-limsup inequality is standard and left to the reader. �

3.3. The first-order Γ-convergence result for F lrε,Z2 . Finally, we state the first

order Γ-convergence result for F lrε,Z2 . To this purpose we need to introduce the
following discrete minimum problem

γlr(ε, σ) := min
ū∈AFε,Z∈ (Bσ)

{F lrε,Z2(ū, Bσ) : 2πū(·) = θ(·) on ∂ε,Z2Bσ},

where the discrete boundary ∂ε,Z2 is defined in in (1.6) and θ(y) is the polar coor-
dinate arctan y2/y1.

The following proposition is the long range counterpart of Proposition 2.28.

Proposition 3.4. For any fixed σ > 0, the following limit exists finite

(3.15) lim
ε→0

(γlr(ε, σ)− π
∑
ξ∈Z2

cξ|ξ|2|log ε
σ |) =: γlr ∈ R.

Proof of (3.15). First, by scaling, it is easy to see that γ(ε, σ)lr = I lr( εσ ) where

I lr(t) is defined by

I lr(t) := min
{
F lr1,Z2(ū, B 1

t
) | 2πū(·) = θ(·) on ∂1,Z2B 1

t

}
.

We aim at proving that

(3.16) 0 < t1 ≤ t2 ⇒ I lr(t1) ≤ π
∑
ξ∈Z2

log
t2
t1

+ I lr(t2) +O(t2).
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By (3.16) and by Theorem 3.2(ii), it follows that

∃ lim
t→0+

(I lr(t)− π
∑
ξ∈Z2

cξ|ξ|2| log t|) > −∞.

We prove now that (3.16) holds true. First we notice that for every x ∈ A = BR\Br
and for every ξ ∈ Z2

|∇θ(x)| =

√∣∣∣∂ ξ
|ξ|
θ(x)

∣∣∣2 +

∣∣∣∣∂ ξ⊥
|ξ|
θ(x)

∣∣∣∣2 ≤ c

r
,

for some constant c > 0. Therefore, by standard interpolation estimates (see for
instance [9] and [1]) and using assumption (3) on f , we have that, as 0 < r < R→
∞,

(3.17) F lr1,Z2(θ/2π,A) =
∑
ξ∈Z2

cξ

|ξ|2∑
h=1

F ξ,h1,Z2(θ/2π,A)

≤ 1

2

∑
ξ∈Z2

cξ

|ξ|2∑
h=1

∑
(εi,εi+εξ)∈A1

1,ξ,h

(εi,εi+εξ⊥)∈A1
1,ξ,h

|θ(εi+ εξ)− θ(εi)|2 +
∣∣θ(εi+ εξ⊥)− θ(εi)

∣∣2

≤ π
∑
ξ∈Z2

cξ|ξ|2 log
R

r
+O(1/r).

Let u2 be a minimizer for I lr(t2) and for any i ∈ Z2 define

u1(i) :=

{
u2(i) if |i| ≤ 1

t2
θ(i)
2π if 1

t2
≤ |i| ≤ 1

t1
,

By (3.17) we have

I lr(1/R) ≤ I lr(1/r) + π
∑
ξ∈Z2

cξ|ξ|2 log
r

R
+O(1/r),

which yields (3.16) for r = 1
t2

and R = 1
t1

. �

To ease the notation, for any µ =
∑M
i=1 diδxi with di ∈ {−1,+1} and xi ∈ O,

we set

Wlr(µ) :=
∑
ξ∈Z2

cξ|ξ|2W(µ).(3.18)

where W is defined in (2.20).

Theorem 3.5. The following Γ-convergence result holds true.

(i) (Compactness) Let M ∈ N and let {ūε} ⊂ AFε,Z2(O) be a sequence satisfy-

ing F lrε,Z2(ūε, O)−Mπ
∑
ξ∈Z2 cξ|ξ|2| log ε| ≤ C. Then, up to a subsequence,

µ(ūε)
flat→ µ for some µ =

∑N
i=1 diδxi with di ∈ Z \ {0}, xi ∈ Ω and∑

i |di| ≤ M . Moreover, if
∑
i |di| = M , then

∑
i |di| = N = M , namely

|di| = 1 for any i.
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(ii) (Γ-lim inf inequality) Let {ūε} ⊂ AFε,Z2(O) be such that µ(ūε)
flat→ µ, with

µ =
∑M
i=1 diδxi with |di| = 1 and xi ∈ O for every i. Then,

lim inf
ε→0

F lrε,Z2(ūε, O)−Mπ
∑
ξ∈Z2

cξ|ξ|2| log ε| ≥Wlr(µ) +Mγlr.

(iii) (Γ-lim sup inequality) Given µ =
∑M
i=1 diδxi with |di| = 1 and xi ∈ O for

every i, there exists {ūε} ⊂ AFε,Z2(O) with µ(ūε)
flat→ µ such that

F lrε,Z2(ūε, O)−Mπ
∑
ξ∈Z2

cξ|ξ|2| log ε| →Wlr(µ) +Mγlr.

Proof. The proof of the Theorem closely follows the one of Theorem 2.5. In par-
ticular, as for the proof of Γ-liminf inequality we sketch only the main differences,
whereas the proof of Γ-limsup inequality is the same of Theorem 2.5(iii) and it is
omitted.

Proof of (i) The fact that, up to a subsequence, µ(ūε)
flat→ µ =

∑N
i=1 diδxi , with∑N

i=1 di ≤M is a direct consequence of the compactness result stated in Theorem

3.9(i). Assume now
∑N
i=1 |di| = M and let us prove that |di| = 1. By (3.4) and by

assumption we have

ce1(F e1,1ε (ūε, O) − Mπ| log ε|) ≤
∑
ξ∈Z2

cξ

|ξ|2∑
h=1

(F ξ,hε (ūε, O) − Mπ| log ε|) ≤ C;

then, recalling that F e1,1ε ≡ Fε,Z2 by Theorem 2.1(i) and Remark 2.6, we obtain
the claim.

Proof of (ii) Let r > 0 be such that the balls Br(xi) are pairwise disjoint and
contained in O. Let {On} be an increasing sequence of open smooth sets compactly
contained in O such that ∪n∈NOn = O. Without loss of generality we can assume
that F lrε,Z2(ūε, O) −Mπ

∑
ξ∈Z2 cξ|ξ|2| log ε| ≤ C, which together with Theorem 3.2

yields

(3.19) F lrε,Z2(ūε, O \ ∪Mi=1Br(xi)) ≤ C.

Set vε := e2πiūε and let ṽε be the piecewise affine interpolation of vε defined in
(1.10); for every r > 0, by (3.19) we deduce that XY lrε,Z2(vε, O \ ∪Mi=1Br(xi)) ≤ C.
Fix n ∈ N and let ε be small enough so that On ⊂ Oε,Z2 . Since∫

On\∪ri=1Br(xi)

|∇ṽε|2 dx ≤ 2

ce1
XY e1,1ε,Z2 (vε, O \ ∪Mi=1Br(xi))

≤ 2

ce1
XY lrε,Z2(vε, O \ ∪Mi=1Br(xi)) ≤ C,

by a diagonalization argument , there exists a unitary field v ∈ H1(O\∪Mi=1Br(xi);S1),
such that, up to a subsequence, ṽε ⇀ v in H1

loc(O \ ∪Mi=1Br(xi);R2). More-
over, by the proof of Lemma 3.3, it follows that for every ξ ∈ Z2 and for every
h ∈ {1, . . . , |ξ|2}, ‖ṽξ,hε − ṽε‖L2 → 0 and hence

ṽξ,hε ⇀ v in H1
loc(O \ ∪Mi=1Br(xi);R2).

Let σ > 0 be such that Bσ(xi) are pairwise disjoint and contained in On. For any
0 < r < R, we set Ar,R(x) := BR(x)\Br(x). Recalling the definition of K in (2.37)
and of dt in (2.38) and arguing as in the proof of Theorem 2.5, one can show that
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for any given δ > 0 there exists a positive ω(δ) such that for every t ≤ σ, for every
ξ ∈ Z2 and for every h ∈ {1, . . . , |ξ|2}

(3.20)

∫
A t

2
+
√

2|ξ|ε,t−
√

2|ξ|ε

|∇ṽξ,hε | dx ≥ π log 2 + ω(δ)

whenever dt(ṽ
ξ,h
ε (·+ xi),K) ≥ δ.

Let P ∈ N be such that

Pω(δ)
∑
ξ∈Z2

cξ|ξ|2 ≥Wlr(µ) +M(γlr − π
∑
ξ∈Z2

cξ|ξ|2 log σ − C)

where C is the constant in (3.9). For p = 1, . . . , P , set Cp(xi) := EB21−pσ(xi) \
EB2−pσ(xi). Then, arguing as in the proof of Theorem 2.5 (ii), one can prove the
claim. �

4. The Γ-convergence analysis for F anε,Λ and F lrε,Λ

In this section we will develop the Γ-convergence expansion for the energies F anε,Λ
and F lrε,Λ. Before stating the first order Γ-convergence result for such functionals
we need to introduce the required notation.

Fix Lε,Λ as in (1.4) and let L̄Λ be as in (1.5), i.e., there exists a positive constant
C̄ such that

(4.1) ‖Lε,Λ − L̄Λ‖L∞(Ω) ≤ C̄ε.

For every µ =
∑M
i=1 diδxi , with di ∈ {−1,+1} and xi ∈ Ω, we set

(4.2) Wan
Λ (µ) := Wan

L̄Λ(Ω)(L̄Λµ) and Wlr
Λ (µ) := Wlr

L̄Λ(Ω)(L̄Λµ),

where Wan
L̄Λ(Ω)

and Wlr
L̄Λ(Ω)

are defined in (2.19) and (3.18) respectively and L̄Λµ =∑M
i=1 diδL̄Λxi .

Theorem 4.1. The following Γ-convergence result holds true.

(i) (Compactness) Let M ∈ N and let {uε} ⊂ AFε,Λ(Ω) be a sequence sat-
isfying F anε,Λ(uε,Ω) − Mπλself | log ε| ≤ C. Then, up to a subsequence,

µ(uε)
flat→ µ for some µ =

∑N
i=1 diδxi with di ∈ Z \ {0}, xi ∈ Ω and∑

i |di| ≤ M . Moreover, if
∑
i |di| = M , then

∑
i |di| = N = M , namely

|di| = 1 for any i.

(ii) (Γ-lim inf inequality) Let {uε} ⊂ AFε,Λ(Ω) be such that µ(uε)
flat→ µ, with

µ =
∑M
i=1 d

iδxi with |di| = 1 and xi ∈ Ω for every i. Then,

(4.3) lim inf
ε→0

Fε,Λ(ũε,Ω)−Mπλself | log ε| ≥Wan
Λ (µ) +Mγan.

(iii) (Γ-lim sup inequality) Given µ =
∑M
i=1 diδxi with |di| = 1 and xi ∈ Ω for

every i, there exists {uε} ⊂ AFε,Λ(Ω) with µ(uε)
flat→ µ such that

(4.4) Fε,Λ(uε,Ω)−Mπλself| log ε| →Wan
Λ (µ) +Mγ.

In order to prove Theorem (4.1) above, we need the following result.

Lemma 4.2. Let {uε} ⊂ AFε,Λ(Ω) be such that |µ(uε)|(Ω) ≤ C ′| log ε| for some
constant C ′ > 0, then

(4.5) µ(uε)
flat(Ω′)−→ µ if and only if µ(uε ◦ L−1

ε,Λ)
flat(L̄λ(Ω′))−→ L̄−1

Λ µ



ANISOTROPIC AND LONG RANGE INTERACTION ENERGIES 27

for every Ω′ ⊂⊂ Ω and for every µ =
∑N
i=1 diδxi , with di ∈ Z \ {0} and xi ∈ Ω′.

Proof. Fix Ω′ ⊂⊂ Ω. We first show that if µ(uε)
flat(Ω′)−→ µ with µ as in the statement,

then

(4.6) ‖µ(uε ◦ L−1
ε,Λ)− L̄−1

Λ µ‖flat(L̄Λ(Ω′)) ≤ o(1) + |L̄−1
Λ |‖µ(uε)− µ‖flat(Ω′),

where limε→0 o(1) = 0 and |L̄−1
Λ | := sup|x|=1 |L̄−1

Λ x|. The proof of the opposite
implication is fully analogous and left to the reader.

Set ūε := uε ◦ L−1
ε,Λ; by the triangular inequality

‖µ(ūε)− L̄−1
Λ µ‖flat(L̄Λ(Ω′)) ≤ ‖µ(ūε)− L̄−1

Λ µ(uε)‖flat(L̄Λ(Ω′))

+ ‖L̄−1
Λ µ(uε)− L̄−1

Λ µ(u)‖flat(L̄Λ(Ω′)),

≤ ‖µ(ūε)− L̄−1
Λ µ(uε)‖flat(L̄Λ(Ω′)) + |L̄−1

Λ |‖µ(uε)− µ(u)‖flat(Ω′)

and therefore it is enough to show that

(4.7) ‖µ(ūε)− L̄−1
Λ µ(uε)‖flat(L̄Λ(Ω′)) → 0

to prove the claim.

Let µ(uε) :=
∑Mε

i=1 di,εδxi,ε ∈ Xε,Λ(Ω). Then

µ(ūε) = L−1
ε,Λµ(uε) =

Mε∑
i=1

di,εδL−1
ε,Λxi,ε

∈ Xε,Z2(Lε,Λ(Ω))

whence

‖µ(ūε)− L̄−1
Λ µ(uε)‖flat(L̄Λ(Ω′)) = ‖

Mε∑
i=1

di,ε(δL−1
ε,Λxi,ε

− δL̄−1
Λ xi,ε

‖flat(L̄Λ(Ω′))

≤Mε sup
y∈L̄Λ(Ω′)

|L−1
ε,Λy − L̄

−1
Λ y| ≤ |L−1

ε,Λ| C̄ C
′ ε| log ε|,

where in the last inequality we have used (4.1) and the fact that Mε = |µ(uε)|(Ω) ≤
C ′| log ε|. �

We now are ready to the prove Theorem 4.1.

Proof of Theorem 4.1. Proof of (i). Let {Oh} be an increasing sequence of open
smooth sets such that ∪h∈NOh = L̄Λ(Ω). Fix h ∈ N, let ε > 0 be small enough so
that Oh ⊂ Lε,Λ(Ω). Set ūε := uε ◦L−1

ε,Λ; by combining (1.23) with the upper bound
in the assumption, we get

(4.8) Fε,Z2(ūε, O
h) ≤ Fε,Z2(ūε, Lε,Λ(Ω)) ≤Mπλself | log ε|+ C;

therefore, by applying Theorem 2.5 and using a diagonal argument, we have that,

up to a subsequence, µ(ūε)
flat(L̄Λ(Ω))−→ µ̄, for some measure µ̄ =

∑N
i=1 diδyi , with

di ∈ Z \ {0} and yi ∈ L̄Λ(Ω) and
∑N
i=1 |di| ≤M .

Let us assume that
∑N
i=1 |di| = M . Trivially, for h sufficiently large, supp(µ̄) ⊂

Oh. By Theorem 2.5(i), we have that N = M and hence |di| = 1 for any i. By
combining (4.8) with the fact that

(4.9) |µ(ūε)|(Lε,Λ(Ω)) ≤ Fε,Z2(ūε, Lε,Λ(Ω)),

for ε sufficiently small, we get

|µ(ūε)|(L̄Λ(Ω)) = |µ(ūε)|(Oh) ≤Mπλself| log ε|+ C
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and hence the claim follows by Lemma 4.2 with µ := L̄−1
Λ µ̄.

Proof of (ii). We can assume without loss of generality that Fε,Λ(uε,Ω) ≤
Mπλself | log ε|+ C. Set ūε := uε ◦ L−1

ε,Λ. By (4.9), it follows that

(4.10) |µ(ūε)|(Lε,Λ(Ω)) ≤ λselfMπ| log ε|+ C.

Let {Ωh}h∈N be a sequence of open bounded smooth subsets of Ω such that
supp (µ) ⊂ Ωh for any h, ∪h∈NΩh = Ω and dH((Ωh)c,Ωc)→ 0 as h→∞.

Fix h ∈ N. Then, for ε small enough Lε,Λ(Ω) ⊃ L̄Λ(Ωh).

By (4.10) and Lemma (4.2), we get µ(ūε)
flat(L̄Λ(Ωh))−→ L̄Λµ. Then, by Theorem

2.5(ii), applied with µ̄ = L̄Λµ and O = L̄Λ(Ωh) we get

lim inf
ε→0

Fε,Z2(ūε, Lε,Λ(Ω))−Mπλself| log ε|

≥ lim inf
ε→0

Fε,Z2(ūε, L̄Λ(Ωh))−Mπλself| log ε| ≥Wan
L̄Λ(Ωh)(µ̄) +Mγan.

The claim follows immediately by (4.2) and (2.22).
Proof of (iii). Let {Ωn}n∈N be a sequence of open bounded smooth subsets of

R2 such that ∩n∈NΩn = Ω and dH((Ωn)c,Ωc)→ 0 as n→∞.
Fix n ∈ N. Then, for ε small enough Lε,Λ(Ω) ⊂ L̄Λ(Ωn). By Theorem 2.5(iii)

applied with µ̄ = L̄Λµ and O = L̄Λ(Ωn), there exists ūnε ∈ AFε,Z2(L̄Λ(Ωn)) such

that µ(ūnε )
flat(L̄Λ(Ωn))→ µ̄ and

lim sup
ε→0

Fε,Z2(ūnε , Lε,Λ(Ω))−Mπλself| log ε|

≤ lim sup
ε→0

Fε,Z2(ūnε , L̄Λ(Ωn))−Mπλself| log ε| ≤Wan(µ̄) +Mγan.

By a standard diagonal argument there exists a sequence {ūε} ⊂ AFε,Z2(Lε,Λ(Ω))

(ūε := ūnεε ) such that µ(ūε)
flat(L̄Λ(Ω′))−→ µ̄ and

lim sup
ε→0

Fε,Z2(ūε, Lε,Λ(Ω))−Mπλself| log ε| ≤Wan(L̄Λµ) +Mγan.

Set uε := ūε ◦ Lε,Λ; by Lemma 4.2 µ(uε))
flat(Ω′)−→ µ and by (1.23) and (4.2), it

satisfies (4.4). �

Remark 4.3. Set A := det L̄ΛL̄
−1
Λ Q(L̄−1

Λ )T and let ΦA be the solution to{
div A∇ΦA = λself 2πµ in Ω
ΦA = 0 on ∂A,

Set C := A√
detA

and RA(x) := Φ(x)−
∑M
i=1 di log |C− 1

2 (x− xi)|, a straightforward

computation shows that

(4.11) Wan
Λ (µ) := −π λself (

∑
i 6=j

didj log |C− 1
2 (xi − xj)|+ π

M∑
i=1

diRA(xi)).

By using Theorem 3.5 and Lemma 4.2, arguing as in the proof of Theorem 4.1,
one can prove the Γ-convergence expansion for the functionals F lrε,Λ.

Theorem 4.4. The following Γ-convergence result holds true.
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(i) (Compactness) Let M ∈ N and let {uε} ⊂ AFε,Λ(Ω) be a sequence satisfy-
ing F lrε,Λ(uε,Ω) −Mπ

∑
ξ∈Z2 cξ|ξ|2| log ε| ≤ C. Then, up to a subsequence,

µ(uε)
flat→ µ for some µ =

∑N
i=1 diδxi with di ∈ Z \ {0}, xi ∈ Ω and∑

i |di| ≤ M . Moreover, if
∑
i |di| = M , then

∑
i |di| = N = M , namely

|di| = 1 for any i.

(ii) (Γ-lim inf inequality) Let {uε} ⊂ AFε,Λ(Ω) be such that µ(uε)
flat→ µ, with

µ =
∑M
i=1 diδxi with |di| = 1 and xi ∈ Ω for every i. Then,

lim inf
ε→0

F lrε,Λ(uε,Ω)−Mπ
∑
ξ∈Z2

cξ|ξ|2| log ε| ≥Wlr
Λ (µ) +Mγlr.

(iii) (Γ-lim sup inequality) Given µ =
∑M
i=1 diδxi with |di| = 1 and xi ∈ Ω for

every i, there exists {uε} ⊂ AFε,Λ(O) with µ(uε)
flat→ µ such that

F lrε,Λ(uε,Ω)−Mπ
∑
ξ∈Z2

cξ|ξ|2| log ε| →Wlr
Λ (µ) +Mγlr.

5. Existence of metastable configurations of screw dislocations in
the triangular lattice

Here we will prove the existence of many local minimizers for the functionals
F anε,Λ. Through this section, we will assume that fξ(a) = cξf(a) for every ξ ∈
{e1, e2, e1 + e2} where f satisfies (1f)-(3f) Let f : R→ R be such that

(1f) f ∈ C0
([
− 1

2 ,
1
2

])
∩ C2

((
− 1

2 ,
1
2

))
;

(2f) There exists δ > 0 such that for every t ∈ [ 1
2−δ,

1
2 +δ] we have C1( 1

2−t)
2 <

f( 1
2 )− f(t) for some C1 > 0 and

S := sup
t∈(− 1

2 ,
1
2 )

f ′′(t) <
min{cξ : ξ ∈ {e1, e2, e1 + e2}}

2
∑
ξ∈{e1,e2,e1+e2} cξ

C1;

(3f) f is increasing in [0, 1
2 ] and even.

We remark that the assumptions above are satisfied by the energy density of the
screw dislocations functionals, f(a) = dist2(a,Z), while they are not satisfied by
the spin functional potential of the XY model.

Lemma 5.1. There exists α > 0 and E > 0 such that the following holds true: Let
u ∈ AFε,Λ(Ω) such that dist(u(i) − u(j),Z) > 1

2 − α for some (i, j) ∈ Ω1
ε,Λ. Then

there exists a function w ∈ AFε,Λ(Ω) such that w ≡ u in Ω0
ε,Λ and F anε,Λ(w,Ω) ≤

F anε,Λ(u,Ω)− E.

Proof. As a consequence of assumption (2f), it is easy to see that there exists γ > 0
and a positive constant C2 such that

(5.1) f( 1
2 )− f(γ)− f( 1

2 − γ) > C2.

First, we prove the statement assuming f ∈ C2(R). In this case, assumption (5)
reads as f ′( 1

2 ) = 0 and |f ′′( 1
2 )| > 2C1.

To ease the notation, we will assume that Λ = Z2.
Set N := {e2, e1 + e2, e1,−e2,−e1 − e2,−e1}. We will assume that i /∈ ∂ε,Z2Ω so

that i+ εξ ∈ Ω0
ε,Z2 for any ξ ∈ N .
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The case i ∈ ∂ε,Z2Ω is fully analogous and it is left to the reader. Without loss
of generality, we can assume that u(i) = 0. For sake of notation, we set

Ei(u) :=
∑
ξ∈N

cξf(u(i+ εξ)).

Let Nc be the set of the vectors ξ satisfying dist(u(i + εξ),Z) > 1
2 − α, with α

to be selected.
We distinguish among three cases.
Case 1:

∑
ξ∈Nc cξ >

∑
ξ∈N\Nc cξ.

In this case, we set w(i) := 1
2 and we get

Ei(u)− Ei(w) ≥
∑
ξ∈Nc cξ(f( 1

2 + α)− f(α))−
∑
ξ∈N\Nc cξf( 1

2 + α)

= (
∑
ξ∈Nc cξ −

∑
ξ∈N\Nc cξ)f( 1

2 ) + o(1),

where o(1)→ 0 as α→ 0.
Case 2:

∑
ξ∈Nc cξ =

∑
ξ∈N\Nc cξ.

Set

(5.2) a :=

(
2

∑
ξ∈Nc cξ

minξ∈N\Nc cξ

) 1
2

.

There are two possibilities: either max
ξ∈N\Nc

dist(u(i+εξ),Z) ≥ aα or max
ξ∈N\Nc

dist(u(i+

εξ),Z) < aα.
In the first case, let ξ̄ be a vector which realizes the maximum in the problem

above. Then we set w(i) = 1
2 and we get

(5.3) Ei(w) ≤
∑
ξ∈Nc

cξf(α) + cξ̄f( 1
2 − aα) +

∑
ξ∈N\(Nc∪{ξ̄}) f( 1

2 );

moreover by definition of Ei(u), we have that

(5.4) Ei(u) ≥
∑
ξ∈Nc

cξf( 1
2 − α) + cξ̄f(aα).

Combining (5.3) with (5.4) and by the definition of a in (5.2) we get

Ei(u)−Ei(w) ≥ (
∑
ξ∈Nc cξ−

∑
ξ∈N\Nc cξ)f( 1

2 )+(cξ̄a
2−
∑
ξ∈Nc cξ)

f ′′(0)−f ′′( 1
2 )

2 α2+o(α2)

=

∑
ξ∈Nc cξ

minξ∈N\Nc{cξ}
f ′′(0)− f ′′( 1

2 )

2
α2 + o(α2).

We assume now that dist(u(i + εξ),Z) < aα for every ξ ∈ N \Nc. In this case
we set w(i) = γ with γ given in (5.1). Then, by continuity,

Ei(w) =
∑
ξ∈Nc

cξf( 1
2 − γ) +

∑
ξ∈N\Nc

cξf(γ) + o(1).

Since Ei(u) ≥
∑
ξ∈Nc cξf( 1

2 − α), we get

Ei(u)−Ei(w) ≥
∑
ξ∈Nc

cξ(f( 1
2 )−f( 1

2 − γ))−
∑

ξ∈N\Nc

cξf(γ)+o(α) ≥
∑
ξ∈Nc

cξC2+o(α),

where the last inequality follows by (5.1) and by the assumption.
Case 3:

∑
ξ∈Nc cξ <

∑
ξ∈N\Nc cξ.
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Let

A := 3

∑
ξ∈N cξ

∑
ξ∈Nc cξ

minξ∈N cξ∑
ξ∈N cξ

minξ∈N cξ

∑
ξ∈Nc cξ −

∑
ξ∈N\Nc cξ

.

We set w(i) = η with |η| = Aα and η
∑
ξ∈N\Nc cξf

′(u(i+ εξ)) ≥ 0.

Then

Ei(u)− Ei(w) =
∑
ξ∈Nc

cξ(f( 1
2 + α)− f( 1

2 + α−Aα))

+
∑

ξ∈N\Nc

cξ(f(u(i+ εξ))− f(u(i+ εξ)− η)

=
A(A− 2)

2
α2|f ′′( 1

2 )|
∑
ξ∈Nc cξ + η

∑
ξ∈N\Nc cξf

′(u(i+ εξ))

− A2

2
α2

∑
ξ∈N\Nc

cξf
′′(u(i+ εξ)) + o(α2)

≥ A

2
α2S((A− 2)

∑
ξ∈N cξ

minξ∈N cξ

∑
ξ∈Nc

cξ −A
∑

ξ∈N\Nc

cξ) + o(α2)

=
A

2
α2S

∑
ξ∈N cξ

∑
ξ∈Nc cξ

min ξ ∈ Ncξ
+ o(α2).

By combining Case 1, Case 2 and Case 3, choosing α small enough, the claim
easily follows.

The general case can be recovered by approximating f in a neighborhood of 1
2

with C2 functions still satisfying assumptions (1f)-(3f). �

As a consequence of Lemma 5.1, we obtain the existence of a minimimizer for the
energy F anε assuming, in addition to (1)-(3), that fξ(·) = cξf(·), with f satisfying
(1f)-(3f).

Theorem 5.2. Given µ0 =
∑M
i=1 diδxi with xi ∈ Ω and di ∈ {1,−1} for i =

1, . . . ,M , there exists a constant K ∈ N such that, for ε small enough, there exists
kε ∈ {1, . . . ,K} such that the following minimum problem is well-posed

(5.5) min{F anε,Λ(u,Ω) : ‖µ(u)− µ0‖flat < kεε}.

Moreover, let α be given by Lemma 5.1; then, any minimizer uε of the problem in
(5.5) satisfies

(5.6) dist(uε(i)− uε(j),Z) ≤ 1

2
− α

for every (i− j) ∈ Ω1
ε,Λ, with i− j ∈ {±L−1

ε,Λe1,±L−1
ε,Λe2,±L−1

ε,Λ(e1 + e2)}

and it is a local minimizer for F anε,Λ.

Moreover, let {u0
ε} ⊂ AFε,Λ(Ω) be such that

lim
ε→0

F anε,Λ(u0
ε,Ω)−Mπλself | log ε| = Wan

Λ (µ0) +Mγan.

Then, for ε small enough, the following fact hold true:

(i) u0
ε satisfies the condition (5.6);
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(ii) The solution uε = uε(t) to the gradient flow of F anε,Λ from u0
ε, i.e.,{ u̇ε

| log ε| = −∇F anε,Λ(uε) in (0,+∞)× Ω0
ε,Λ

uε(0) = u0
ε in Ω0

ε,

satisfies µ(uε(t)) = µ(u0
ε) for every t > 0.

(iii) There exists ū0
ε such that ū0

ε ∈ argmin{F anε,Λ(u) : µ(u) = µ(u0
ε)} satisfies

(5.6) and it is a local minimizer for F anε,Λ.

Theorem 5.2 is a consequence of Lemma 5.1 and its proof follows closely the ones
of Theorems 5.5 and 5.6 in [3].
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[7] Braides A., Truskinovsky L.: Asymptotic expansions by Γ-convergence, Contin. Mech. Ther-
modyn. 20 (2008), no. 1, 21–62.

[8] Brezis H., Nirenberg L.: Degree theory and BMO: Part I: compact manifolds without bound-
aries, Selecta Math. (N.S.) 1 (1995), no. 2, 197–263.

[9] Ciarlet P.G.: The Finite Element Method for Elliptic Problems, North Holland, Amsterdam

(1978).
[10] Hirth J.P., Lothe J.: Theory of Dislocations, Krieger Publishing Company, Malabar, Florida,

1982.

[11] Hudson T., Ortner C.: Existence and stability of a screw dislocation under anti-plane defor-
mation, Arch. Ration. Mech. Anal. 213 (2014) no. 3, 887–929.

[12] Hudson T., Ortner C.: Analysis of stable screw dislocation configurations in an anti-plane

lattice model, preprint 2014.
[13] Jerrard R.L.: Lower bounds for generalized Ginzburg-Landau functionals, SIAM J. Math.

Anal. 30 (1999), no. 4, 721–746.
[14] Ponsiglione M.: Elastic energy stored in a crystal induced by screw dislocations: from discrete

to continuous, SIAM J. Math. Anal. 39 (2007), no. 2, 449–469.

[15] Sandier E.: Lower bounds for the energy of unit vector fields and applications, J. Funct.
Anal. 152 (1998), no. 2, 379–403.

[16] Sandier E., Serfaty S.: A product-estimate for Ginzburg-Landau and corollaries, J. Funct.

Anal., 211 (2004), no. 1, 219–244.
[17] Sandier E., Serfaty S.: Vortices in the Magnetic Ginzburg-Landau Model, Progress in Nonlin-

ear Differential Equations and Their Applications, vol. 70, Birkhäuser Boston, Boston (MA),
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