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Introduction

Optimal transport theory, as first formulated by Monge in [43], involves finding the “optimal way”
to move an initial configuration of material (“déblais”) to build a castle (“remblais”), minimizing the
total “effort”. In the Monge formulation, there are given Polish spaces (X, 1) and (Y, ) endowed
with Borel probability measures 4, v, and a cost function ¢ : X x Y — [0,00|. The goal is to
minimize

/ (e, T(2))da(z)
X

among all Borel maps 7" : X — Y satisfying Ty = v.

As this formulation has several undesirable properties, Kantorovich proposed in [28] a relaxed
problem: given Polish spaces (X, 1) and (Y, v) endowed with Borel probability measures y, v, and
a cost function ¢ : X x Y — [0, oo]. The goal is to minimize

/ c(x,y)dy(z,y)
XxY

among measures 7 on X x Y satisfying mxyy = p, myyy = v where 7x : X xY — X and
my : X x Y — Y denote the projections on X and Y respectively.

In this formulation both measures are probability measures, which can be relaxed to require
1(X) = v(Y) < co. Over the there has been great progress in understanding the Monge-Kantorovich
problem, (see for instance [21], [18] and [56] and references therein).

Average distance problem

A related problem is the transport in presence of “Dirichlet regions”, i.e. subsets on which the trans-
port is essentially “free”. Dirichlet regions will be assumed pathwise connected. Given a domain
2 C R" (n > 2), a Dirichlet region ¥ C Q is such that for any points z,y € ¥, then the “cost” to
transport z in y is 0. Thus instead of the path distance of €2, which will be denoted with distq (-, -),
one considers distq x (-, -) defined as

disto s (x, y) := min{disto(z, y), min disto(z, 21 ) + min disto (22, y)}.
Z1EX 22€EX

Indeed, if z,y € ¥, then the cost to transport x to y is 0, independently of distq(z, y).

Dirichlet regions considered here will always be compact, pathwise connected, Hausdorff one
dimensional sets with finite 74! measure (the notation ! denotes the Hausdorff-1 measure). The
H! measure of a set will be often referred as “length”.
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A natural problem here is to determine the “optimal” Dirichlet region, which in some sense best
“serves” the domain (2, leading to the so-called average distance problem:

e Given a domain (2, a measure y, a function A : [0, diam ] — [0, 00) and a parameter L > 0
solve
min F, 4

where

Fua(®) = [ Aldista(e. )du(o),
Q
among all admissible Dirichlet regions ¥ satisfying H!(%) < L.

This problem was first introduced in [14], and later studied in several articles (e.g. [16], [17]). A
variant (see for instance [13]) is to solve

min/ﬂA(distQ(x,E))du(x) +AH(D)

among all admissible 3, with A > 0 a given parameter. These formulations are often referred as
“constrained” and “penalized” problem respectively. Such constraints are essential to the well-
posedness of this problem.

The average distance problem (in both formulations) can be used to model problems arising
from urban planning, or data cloud approximation.

In the constrained problem, if the length constraint is L = 0, connectedness imposes that all
admissible Dirichlet regions are single points. However, a related problem, referred in literature as
“location” problem, involves minimizing

min/QA(distQ(x,K))du(x)

among K = {P;}¥, set of single points, where N is a given parameter.

Both problems have a quite simple formulation, yet even with simple geometry and stringent
conditions on €2, i1, A, no explicit solution can be determined: indeed the average distance problem,
in both constrained and penalized formulation, cannot be solved for general L (or X for the penal-
ized problem) even with Q = B((0,0),1) C R?, = £|29 and A = id. The location problem is easier
to solve, especially in highly regular and symmetric domains, but for general domains it cannot be
solved either.

Some link with the classic optimal transport problem will be explained in Chapter 3.

The average distance problem is also related to the so-called g-compliance problem: given a
domain {2, consider
—Aqu=1in Q\X
gu = Lin 2\ (0.0.1)
u=0onX U0

where X verifies the same properties of Dirichlet regions, and A, denotes the g-Laplacian. The

energy associated is
1
()= (1= ) [ us(o)dz,
q Ja
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with uy, denoting a solution of (0.0.1), and given a parameter [ > 0, the associated g-compliance
problem is solving
in Cy(X
i Ca(®)
among ¥ satisfying the same properties of Dirichlet regions. As proven in [15], passing to the limit
q — oo, the energy C,(X) I'-converges to

/ dist(z, 0Q U X)dzx.
Q

Another related problem, which can be considered the “dual” problem, is the so called “maximal
distance problem”: given a domain §2, and a parameter L > 0, solve

in F* (%
min (%),
where
F*(¥) := maxmindisto(y, 2).

yeQN zeX

Similarly to the average distance problem, the maximal distance problem is not possible to solve
explicitly in general.

Due to the impossibility to solve the average distance problem (in both formulations), qualita-
tive properties of minimizers have been studied. In particular, it has been proven that under mild
assumptions on €2, i, A (more details will be given in Chapter 3), such minimizers must verify:

du
dLcr
minimizer ¥,pt cannot contain subsets homeomorphic to L

e Absence of loops: if the Radon-Nykodim density of 1, belongs to LP with p > 1, then any

d
e Absence of crosses: if {2 is a two dimensional domain, and d—MQ belongs to L” with p > 4/3

then any minimizer does not contain points with order greater than 3, and there are only a
finite number of order 3. Moreover, if a point has order 3, then all the three angles have value
27/3. The term “cross” is used as using Menger n-Beinsatz (see [30]), a point P with order 4
will have at least 4 disjoint arcs {;}}_, with endpoint (in all the thesis “endpoint” will refer
to a point with order 1, i.e. removing such point would preserve connectedness) in P and
disjoint outside P,

e Ahlfors regularity: if dd% belongs to L? with p > n/(n — 1) (p > 4/3 in two dimensional

domains), then any minimizer ¥qpt is Ahlfors regular, i.e. there exist constants ¢, C' > 0 such
that

H! (Sopt N B(P.p)) _

p

C

Cc

forany P € Yqpt, p > 0,
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d
e in two dimensional domains, if d—gg belongs to LP with p > 4/3 then any minimizer is finite

union of Lipschitz curves.

These results where first proven in two dimension cases by Buttazzo, Oudet and Stepanov (see
for instance [16], [17]); then in [44], Paolini and Stepanov extended some of these results to higher
d
dimensional domains. The thesis proves that condition ﬁ € L? with p > 1 is optimal; moreover,
d
it is proven that if TEMQ ¢ L' then the absence of crosses is false too.

An interesting problem concerning solutions of the average distance problem is the regularity
of minimizers: indeed Ahlfors regularity is a very weak property (nonetheless, it implies uniform
rectifiability).

Two results have given a partial answer:

e in [55], Tilli has proven that any C' L1 curve is minimizer under suitable choice of the domain
(indeed the bulk of the argument involves determining such domain),

e in [52], Slep&ev has shown that C! regularity can be false, by exhibiting an example of mini-
mizer which is not C* regular.

These two results can be considered together with results by Santambrogio and Tilli, in [50], which
prove C! regularity on certain points, and limit corners to points verifying specific conditions, i.e.
those on which positive mass is projected.

In Chapter 6, a new weak second order regularity has been proven for minimizers of the pe-
nalized problem: in collaboration with Slepcev, in [38] it has been proven that for the penalized
problem, any minimizer is finite union of curves {v;}!_,, with Zzzl 17} | By uniformly bounded
from above.

Evolutions

An interesting problem is to extend results proven for minimizers of the average distance problem to
solutions of evolution schemes related to the average distance functional. Two important evolution
schemes will be analyzed.

Given Q C RV, u, A as in the average distance problem, and an initial datum Sy, consider the
recursive sequence

w(0) := Sy
{w(n) S argminA(Q)FmA(.) + n('Hl(Aw(n _ 1))), (0.0.2)

where A denotes the symmetric difference, and 7 is a given function. Some of the natural conditions
on 7 (which will be assumed) include 1(0) = 0, and 1 non decreasing. However it will follow
from the arguments in Chapter 4 that the analysis when the penalization term has form 7j(t) = at?,
a > 0,b > 1, can be easily reduced to the case n(t) = kt, with £ > 0. The presence of symmetric
difference in the penalization term forces the evolution to be monotone w.r.t. set inclusion, i.e.
w(k1) C w(ke) whenever k; < ko. Here, given [ > 0, A4;(£2) denotes the collection of subsets ¥ C {2



CONTENTS 9

which are compact, path-wise connected, dimy> = 1 and H!(X) < I. The union U;>0A4,() will
be denoted with A(2). When (2 is the whole Euclidean space, A will be used instead of A(Q2). A
variant is

{’U)(O) = S() (003)

w(n) € argmin 4 F 4,

H1(S)+ne ()

where ¢ > 0 is a time step. The first evolution scheme is related to the penalized problem, the latter
to the constrained problem. These schemes are often referred as “quasi static” evolution.

Another important class of evolutions are gradient flows related to the average distance func-
tional. The framework of gradient flows has been first developed in Hilbert spaces. Given a Hilbert
space (H,(-,-)), a functional ¢ : H — R U {400} satisfying some weak properties (mainly \-
convexity, lower semicontinuity, coercivity and compactness of sublevels), a “gradient flow” z is
essentially a curve which at each instant descends along the steepest descent direction, i.e.

Xo:=2

zp € =07 P(a1).
This construction is not reproducible in a purely metric space (X, d) due to the explicit involvement
of the scalar product. Moreover, the purely metric setting requires a definition for “gradient” and
“speed”: these will be replaced by the “slope” and “metric derivative”. In [3], Ambrosio, Gigli and
Savaré used an approach (based on approximation via time discretized evolutions), which is the
one we will use. A variant (actually, three different variants) of the “gradient flow” can be obtained
using the discrete approximation method: consider a sequence {7;},en | 0 and consider (here we
omit all the details about existence and passage to the limit, as in the metric setting such properties
are not guaranteed - a more detailed discussion can be found in Chapter 2)

wo =T
Wp41 € argming(-) + 2%jal(-, wy)?

Here, in the generic framework ¢ and d can be quite general functional and distance. More details
about the choice of ¢ and d will be presented in Chapter 5. Then define the function

gl — X, () = w(it/n)

where [ is a time interval, and [-] denotes the integer part mapping. Then under suitable assump-
tions for a subsequence (which will not be relabeled) there exists a limit function

x: 1 — X, x(t) = lim z;(t)

j—00

for any ¢t € I. This function z (often called “minimizing movement” in literature, see for instance
[3]) can be considered an analogous of the gradient flow from Hilbert context. In the metric setting,
discussed more in detail in Chapter 2, there are three formulations; the function x is:
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1. Gradient flow in the Energy Dissipation Inequality sense if:
/|x )2dr + = /|VE]2 ))dr < E(z(t)) ae.t>0,Vs>t
/ |(r)|2dr + = / \VE|*(z(r))dr < E(Z) Vs >0,

2. Gradient flow in the Energy Dissipation Equality sense if:

/ |(r)|2dr + = / \VE|*(x(r))dr = E(x(t)) a.e.t>0, Vs>t

/ |(r) |2dr + = / \VE|?(x(r))dr = E(Z) Vs >0,
3. Gradient flow in the Energy Variation Inequality sense if:
1d A
E(x(t) + 5 d(x(t),y)* + Sd(@(t),9)* < E(y), Yy € X, a.e.t>0.

The main goal of this thesis is to analyze whether solutions of these evolutions schemes (in-
cluding solutions of discrete evolution schemes) related to the average distance functional satisfy
properties similar to those proven for minimizers of the average distance problem.

In particular it will be proven:

e Absence of loops: if the Radon-Nykodim density of 4, dd% belongs to LP with p > 1, and

the initial datum does not contain loops, then solutions of both quasi static and gradient flow
evolution schemes, in the discrete case, do not contain loops

d
e Absence of crosses: if () is a two dimensional domain, and —MZ belongs to LP withp > 4/3, and

the initial datum does not contain crosses, then solutions of gradient flow evolution schemes,
in the discrete case, do not contain crosses

e Ahlfors regularity: if —— d E belongs to L” with p > n/(n — 1) (p > 4/3 in two dimensional

domains), and the initial datum is Ahlfors regular, then solutions of both quasi static and
gradient flow evolution schemes, in the discrete case, are Ahlfors regular.

These results are proven for the discrete evolutions, by adapting techniques used to prove similar
results for solutions of the classic average distance problem.

An important subclass of these evolution schemes is the irreversible evolution, i.e. when the
additional condition of monotonicity w.r.t. set inclusion is imposed. This comes free for some type
of quasi static evolution. This condition is useful to model physical processes involving some kind
of irreversibility, e.g. fracture propagation and membrane debonding, or in urban planning where
removing the old network it is not advantageous, e.g. when planning to extend an existing subway
network. The irreversibility condition can alter qualitative properties of solutions, as the absence
of points with order at least 4 is not true anymore even if the initial datum does not contain points
with order at least 4. In other words, one can say that solutions exhibit a “branching behavior” at
some positive time, and one result of this thesis is to construct an example where an upper bound
for such time can be determined.
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Average distance problem with density penalization

The average distance problem, especially in the penalized formulation

min / dist(z, -)du + AH () (0.0.4)

can be used to approximate data distributions, which in this case would be represented by p. Dif-
ferently from the classic formulation in [14], it is not required that ;. is absolutely continuous w.r.t.
Lebesgue measure.

In data approximation it is often more convenient to work with parameterized curves instead
of elements of A, due to computational costs. The main result of Chapter 7 will be proving that the
average distance problem is still well posed if restricted to parameterized curves (an ad hoc notion
of convergence on the space of parameterized curves will be introduced), and injectivity is true for
minimizers.

However, as proven in [52], even under strong assumptions on 4 (indeed in [52] the counterex-
ample was with p € £°°), minimizers of (0.0.4) can fail to be C! regular simple curves, with the
second (distributional) derivative having an atom of positive mass.

In data approximation, this is equivalent to a strong loss of injectivity, as much data (a positive
fraction of the data) is projected onto one single point. In order to overcome this issue, a term
penalizing the density on ¥ is introduced, and to avoid excessive geometric rigidity caused by
projecting each point onto one of the closest points on 3, a relaxed version of (0.0.5) is introduced:

Problem 0.0.1. Given probability measure y on R¢ with compact support, and parameters \,n > 0, o, ¢ > 1,
solve

min/ |z — y|%dII(z,y) + XHL(D) + 6/ vidLt, (0.0.5)
RIXE s
among triples (X, v, I1), where ¥ varies among parameterized curves, v among probability measure on ¥, and

I among measures on R? x X having first marginal p and second marginal v.

The term [;, v9dL! is to be interpreted as +oo if vLL! # 0, and [ (2% )?dL if v < L. This

choice stems from Proposition 8.1.3. Injectivity is not guaranteed anymore, as the average distance
functional has been replaced by a different functional, but still desirable. Thus a term penalized non
injectivity will be introduced. The main result of Chapter 8 (Theorem 8.2.1) deals with regularity
properties of v, when (X, v, IT) is a minimizer.

Outline

This thesis will be structured as follows:

e Chapter 1 will present a general overview of the optimal transport problem, in the classic
Kantorovich formulation,

e Chapter 2 will recall notions from the theory of gradient flows in a purely metric spaces,

e Chapter 3 will recall results about solutions of the average distance problem,
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Chapter 4 (based on [33, 35]) will analyze solutions of the quasi static evolution,
Chapter 5 (based on [34, 35]) will analyze solutions of gradient flow evolutions,

Chapter 6 (based on [38]) will prove a weak second order regularity for minimizers of the
average distance problem in the penalized formulation, i.e. BV regularity of the derivative,
and a sort of “topological lower semicontinuity”,

Chapter 7 (based on [37]) will analyze the average distance problem restricted among param-
eterized curves. The main result is to prove injectivity of minimizers,

Chapter 8 (based on [36]) will analyze some regularity of v when (X, v, II) is a minimizer.

Chapters 1 and 2, along with most of Chapter 3 are not original results, but intended to recall
preliminary notions; Chapters 4, 5, 6, 7 and 8 contain new results.
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Chapter 1

Optimal Transport Theory

1.1 Introduction

The optimal transport theory was introduced in 1781 by Monge in [43], who proposed the follow-
ing optimization problem: given an initial deposit of rock (“déblais”), one wants to build a castle
(“remblais”) from it, with the minimum “effort”.

This chapter is dedicated to recall previous results concerning optimal transport theory. Sections
1.1, 1.2 and 1.3 are based on the work of several authors (see for instance [4], [18], [21], [24], [29], [56]
among others) during the last decade, while Section 1.4 (based on a work by Brenier) deals with the
quadratic cost penalization case.

The mathematical formulation, referred as Monge formulation, can be given in the following way:

Problem 1.1.1. Given Polish spaces (X, p), (Y,v), with p,v probability measures, and a cost function
c: X xY — [0, 00] define
T(pv)={f: X —Y: fin=v}

and consider the minimization problem

min / oz, T(2))du().
X

TeT (1v)

For the original formulation proposed by Monge in [43], data were X = Y = R?, ¢(z,y) == |z—y],
w1 and v denoted the “déblais” and the “remblais” respectively.

Elements of 7" are often referred as transport maps, between ;i and v. This formulation presents
several undesirable problems:

1. T(u,v) # 0 itis not guaranteed: a very easy exampleis X =Y :=R, ¢(z,y) := |z —y|, p := do,
0_1+ 61
V= ;
2

2. existence may not occur, i.e. (1.1.1) can admit no minima: an easy counterexample is X =
Y := B((0,0),1)\{(0,0)} < R?, n= 5(1/2,0)r Vi= 5(71/2,0)}

13



14 CHAPTER 1. OPTIMAL TRANSPORT THEORY

3. condition fyu = v is not weakly sequentially closed: a counterexample is 7, : R — R,
T, (z) :== T'(nx) with T : R — R a 1-periodic function equal to 1 on [0,1/2) and -1 on [1/2, 1),
p = Lo 1], v := 5(6_1 4 61). For every n equality T,,;p = v is true, but passing to the limit this
becomes Oy = v (O denoting the null function on R), clearly false.

A way to overcome these difficulties is provided by the Kantorovich formulation, first proposed
in [28]:

Problem 1.1.2. Given Polish spaces (X, p), (Y,v), with p,v probability measures, and a cost function
c: X XY — [0,00], define Adm(p,v) := {{ € M(X xY) : mxp€ = p, myp€ = v} where M(X x Y)
denotes the set of probability measureson X x Y, nx : X xY — Xand 7, : X x Y — Y the natural
projections, and consider the minimization problem

min /X><Y c(z,y)dé(z,y).

£€Adm(p,v)

Elements of Adm(u, ) are often referred as “transport plans”. This formulation provides several
advantages over formulation 1.1.1:

o Adm(u,v) > p x v, while T (i, v) can be empty,
e there exists a natural injection

i T (p,v) — Adm(p,v), i(T) == (id x T)p,
e Adm(u,v)is convex and compact with respect to the narrow convergence, and

£ c(x,y)dé(z,y)
XxY

is linear,

e importantly, as proven in [24], [4] and [46], under some additional conditions the infimum of
Monge problem is equal to the minimum of Kantorovich problem, which effectively renders
the latter a relaxation of the former.

Existence is not guaranteed in general, but requires very mild conditions:

Theorem 1.1.3. Problem 1.1.2 admits a solution if the cost function ¢ : X XY — Ris lower semicontinuous
and bounded from below.

Proof. From inequality
S((X X Y)\(K1 x Ka)) < p(X\K1) + v(Y\K>)

for any £ € Adm(u,v) one gets that if K1 C M(X), Ky, C M(Y) are tight, then {n : 7xyn €
Ky, myyn € Ky} is tight too. Combined with Ulam theorem, this gives Adm(pu, v) tightin M(X xY),
and by Prokhorov theorem, relatively compact.
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Given a sequence {¢, }72, converging to ¢ narrowly, and ¢ € C,(X), equality

/ pdrxst= | olx)de(x,y)
X XxY

= lim P(x)d&, (z,y)

n—oo XxY

= lim / ddrxiEn
X

n—oo

Z/chdu

holds, which gives compactness with respect to the narrow topology.

Assumptions on cost function c give the existence of a non decreasing sequence {c,} : X xY —
R of continuous bounded functions verifying ¢(z,y) = sup,, ¢,(x, y), and by monotone convergence

theorem
/ cd€ = sup / cndé
XXY n XXY

holds, which concludes the proof. O

The set of measures belonging to argmingc 4 ..., Jxewy (@, y)dé(x, y) will be denoted by Opt (u, v),
and referred as “optimal plans” from p to v with respect to the cost function ¢ (this dependence will
be omitted if there is no risk of confusion).

In the following, unless explicitly specified, the cost function ¢ will always be considered lower
semicontinuous and bounded from below. A natural connection between optimal maps and plans
is provided by the following result:

Lemma 1.1.4. Given Polish measure spaces (X, u), (Y,v), a transport plan § € Adm(pu, v) is induced by a
map if and only if supp(&) C X x Y is the graph of a function T'. In this case § = (id x T )y .

Proof. If a plan & € Adm(pu, v) is induced by amap 7' € T (i, v), then obviously & = (id x T)yp.

For the converse implication, define I' := supp(&), and upon &-negligible sets, assume I' is the

graph of a function 7. Due to inner regularity of measures it is possible to assume I' = U Iy, o-

n=0
compact, thus mx (I') (the domain of T') is o-compact, and 7|, (r,) is continuous, yielding 7" Borel
map. Since (z,y) € I' implies y = T'(x), given a test function ¢ : X x Y — R:

/ o(z,y)de(z,y) = / o(z, T(x))dé(z, )
XxY XxY
- /X o(z, T(x))dp(z)

and the proof is complete. O
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1.2 Optimality conditions

This section is aimed to discuss optimality of transport plans; several preliminary notions are re-
quired.

Definition 1.2.1. Given Polish spaces X,Y , a cost function ¢ : X xY — R, asetI' € X xY is c-cyclically
monotone if for any N-ple {(x;,v;)}Y., C T inequality

N

Z c(xi,yi) < Z (i, ya(i))

=1 =1
holds for any permutation o.

Definition 1.2.2. Given Polish spaces X,Y , a cost function ¢ : X x Y — R, a function i) : ¥ — R:

e its c-transform is
Y X — R, 9% (2) = inf e(z,y) — U (y);
ye
e its c_-transform is

P X — R, 9 (2) = sup —c(x,y) — ¥ (y).
yey

The c and c_-transform for functions on X are defined in a similar way.
Definition 1.2.3. Given Polish spaces X,Y , a cost function ¢ : X x Y — R, a function i : ¥ — R:

e is c-concave if there exists ¢ : X — R such that ¢ = ¢°+;

e is c-convex if there exists ¢ : X — R such that ¢ = ¢°~.

For functions on X notions of c-concavity and c-convexity are defined in a similar way.

Definition 1.2.4. Given Polish spaces X, Y, a cost function ¢ : X xY — R, and a c- concave function
¢ : X — R, the c-superdifferential is

0= {(r,y) € X XY 1 p(x) + 9™ (y) = c(z,y) }-
Given a c-convex function 1y : X — R, the c-subdifferential is
0= {(2,y) € X x Y : p(x) + ¢~ (y) = —c(z,y)}.
The next result, first studied in [47], is crucial in characterizing optimal transport plans:

Theorem 1.2.5. Given Polish spaces X,Y , a cost function ¢ : X x Y — R, continuous and bounded from
below, assume there exist p € M(X), v € M(Y) such that

c(x,y) < f(z)+g(y)

for some f € LY(X, u), g € LY(Y,v). Then given any measure & € Adm(p,v) the following statements are
equivalent:
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1. € € Opt(p,v);
2. supp(§) € X x Y is cyclically monotone;

3. there exists ¢ : X — R c-concave such that ¢ V 0 € L' (X, u) and supp(§) € 9% .

Proof. Integrating c(x,y) < f(z) + g(y) yields

/ ez, y)dn(e.y) < / F(@) + g(y)dn(z, y)
XxY XxY
- / f(@)du(z) + / g(y)dv(y) < oo
X Y

for any n € Adm(p,v); using ¢ bounded from below, this yields ¢ € LY(X x Y,n) for any €
Adm(p,v).

(1) = (2).
Assume there exists & € Opt(u, ) not cyclically monotone, thus there exists a N-ple {(z;,v;)}Y, C
X x Y and a permutation o on {1, --- , N} such that

N N
Z C(xia yl) > Z C(J:i’ yo’(l))
i=1 i=1
Arguing by continuity, for any ¢ = 1,--- , N there exists neighborhoods U; > z;, V; 3 y; such that
N

c(ui,v;) > Zc(uiava(i))

i=1 =1

for any u; € U;, v; € V;. Define

and

N 1
7= .
ZHl E(Ui X Vi)§ju, xv;

Denoting 7y, and 7y, projections of Q2 on U; and V;, define

N
.
C = N 1I§r’}l§nN§(UZ X ‘/l) ;((ﬂ-Ui - an(i))ﬂn - (ﬂ-Ui, - 77\/1)1177)

and consider the competitor ' := £ + (: ¢ verifies

e (~ < ¢ and has null first and second marginal;

. / c(z,y)d¢(z,y) <O0.
XxY



18 CHAPTER 1. OPTIMAL TRANSPORT THEORY

Thus the optimality of £ is contradicted.

(2) = (3).
Fix (z,y) € X x Y, as the goal is to determine a c-concave function ¢ such that I' C 0t ¢, for any
N-ple {(zi,9:) 14

p(z) < c(z,y1) — ™ (y1) = c(z1, 1) + p(21)
< (e(z,y1) — e(z1,91)) + c(z1,91) — ¢ (1)
< (c(z,y1) — e(z1,91)) + (c(z1,y2) — c(22,y2)) + P(2)
< (c(m,y1) — e(z1,91)) + (c(x1,¥2) — c(x2,42)) + -+ - + ()
Define
()= inf  (c(z,y1) —clz1,91)) + (c(z1,92) — c(z2,92)) + - + (c(zN, §) — c(Z,7)).

N2>1,(z4,y:)€T

This function is c-concave. As I is c-cyclically monotone, ¢(z) > 0 follows, and choosing N =1, i.e.

(z1,11) = (Z,7), () = 0 follows.
Apart from the definition, another (equivalent) characterization of c-superdifferential is

y € 0 p(x) <= ¢(z) — c(z,y) > p(z) — c(z,x) Vz e X.
Choosing again N =1, (z1,y1) = (Z, ), inequality
p(r) < c(z,9) — (T, 9) < fz) +9(7) — c(Z,7)
follows, yielding ¢ vV 0 € LY(X, p).
To prove I' C 9°t ¢, choose an arbitrary (z,y) € I', impose (z1,y1) = (Z,y) and

pla) <cz,9) = c(@,y) + inf(c(Z, y2) — c(22,42)) + - - + (2, §) — ¢(T, 7))
= c(z,9) — «(z,9) + (7).

(3) = (1)
Given an arbitrary n € Adm(u,v), as ¢ is c-concave, p(x) + ¢“t(y) < c(z,y) foranyz € X,y € Y,
with equality holding if and only if (z,y) € supp(§). Integrating on X x Y we have

/ C(x,y)di(%y):/ p(z) + ¢ (y)dé(z,y)
XXY XxY

:/ +/};SD
/

o(x) + ¢ (y)dn(z,y)

XxY

< / c(x,y)dn(z,y),

XxY

and the proof is complete. O
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A similar argument holds for transport maps: if for amap 7' : X — Y there exists a c-concave
function ¢ such that T'(x) € 0° ¢ for any z, then for any measure ;1 € 7 (X) such that there exists
f € LYX,p), g € LYY, Tyu) such that

c(r,y) < f(z)+9(y)  (v,y) € X XY,

we have T' € Opt(u, Typ).
This consequence allows to somewhat break the dependence between transport maps and ref-
erence measures.

1.3 Duality

The Kantorovich formulation of optimal transport problems involves minimizing a linear map with
affine constraints. This kind of problem has often an associated dual problem; for Problem 1.1.2 this
is:

Problem 1.3.1. Given Polish measure spaces (X, j1), (Y,v), and a cost function C : X xY — R, maximize

[ eadut@) + [ v
X Y
among ¢ € LY (X, n), ¢ € LYY, v), o(x) + ¥ (y) < c(z,y) forany (z,y) € X x Y.

Under some additional hypothesis, Problems 1.1.2 and 1.3.1 are related by

[ adste) - sup | et@riuta) + [ v,

§eAdm(p.v) PELL (X ) pEL (Yw), pti<c

Before proving the main result, observe that Problem 1.3.1 admits an equivalent formulation: indeed

inf d¢ =inf [ cd
geAdlgml(,u,nu)/cg in /c n+x(n),

where 7 varies among non negative probability measures on X x Y, and y is defined as

{ 0 ifneAdm(p,v)

X =\ o ifn ¢ Adm(u,v)

We claim

e the function y can be written as

x(§) = i§£{/}(¢du+/ywdv—/Xxy(so(x)+¢(y))d§(x7y)}

where 7x& = p, my4€ = v and (p, ) varies in Cp,(X) x Cy(Y).
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Indeed if £ € Adm(pu,v) then x(§) = 0, while if £ ¢ Adm(p,v) then x(§) = oo, that is the argument
of the supremum is greater than 0, thus multiplying (¢, ¢) by a suitable real number the supremum

goes to co.
Thus it holds:

inf / cd€ = inf sup { / cd&
§€Adm(pn,v) J X xY EEML(XXY) o JXxY

+/Xsodu+/y¢dv/XxySO(chib(y)d&(:v,y)}

where M, (X x Y) denotes the set of non negative probability measures on X x Y, and ¢, ¢ vary
in Cy(X) x Cy(Y) (Cp(+) denotes the set of continuous bounded functions). Define

(e 1) = /X e+ /X oy + /Y v — /X ela) + o))

and notice that £ — ®(&, ¢, 1) and (¢, ) — ®(, ¢, 1) are convex and concave respectively, then
from the min-max principle it holds

inf  sup ®(&, ¢,1) = sup inf P&, o,
g€ Adm(p,v) o (5 14 ) X)) EEM L (X XY) <§ v w)

which yields

inf / cd§ = sup inf { / cdé + / du
§eAdm(p,v) Jx xy o EEML(XXY) \JxxY XSD

+ /Y ey — /X Xygo@)w(y)dg(x,y)}

= iui){/x sodu+/y¢dv+feMi+rg(xy) {/XWC(WJ) — () —w(y)df(fv,y)}}-

The integrand in the quantity

inf c(z,y) —e(x) — dé(x,
it A o) - vnieten
is non negative and has infimum 0 if ¢(x, y) > ¢(z) + ¢ (y) for any (z,y) € X x Y, while conversely
if there exists (7,y) € X xY such that ¢(z,y) < ¢(z) +v(y) then define &, := nd, ), and for n — oo
the infimum is —oo. Thus it holds

inf / cd§ :sup/ d —I—/ Ydy
§eAdm(p,v) Jx xy @, XSO a Y

with (¢, ) varying in Cy,(X) x Cp(Y), p(z) + ¢ (y) < ¢(z,y) for any (z,y) € X x Y. Thus in Problem
1.3.1 it is possible to impose the additional condition (¢, ) € Cyp(X) x Cp(Y'). The following result
is crucial for the dual problem:
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Theorem 1.3.2. Given Polish measure spaces (X, j1), (Y, v), a cost function ¢ : X x Y — R continuous
and bounded from below, and assume there exist p € M(X), v € M(Y), and f € LY (X, ), g € L*(Y,v)
such that

c(z,y) < flz) +9(y) V(ry) e X xY.
Then the following results hold:
e the supremum of problem 1.3.1 is attained for some (o, ¢“+) with ¢ : X — R c-concave;

o the supremum of problem 1.3.1 and infimum of problem 1.1.2 are equal.

Proof. Choose an arbitrary £ € Adm(u,v): by hypothesis there exist f € L1(X, u), g € L*(Y,v) such
that

c(r,y) > f(x)+g(y)  V(x,y) € X XY,
and integrating on X x Y yields
| o) = [ 5w+ owien)
XxXY XxY .
[ t@dut@) + [ gwiviy)

X X
This gives
[ ez sw o @)+ [ o).
n€Adm(p,v) J X xY weL (X p) el (V) J X Y

For the converse inequality, choose an arbitrary { € Opt(u,r) and by Theorem 1.2.5 there exists
¢ : X — R c-concave such that supp(§{) C 9°t¢. This yields, using the argument found in the
proof of Theorem 1.2.5,

/ o(x,y)de(x,y) = / () + ¢+ (y)de( )
XxY XxY
= / o(x)dp(x) + / 0 (y)dv(y)
X Y

and c € LY(X x Y, ), implying » € L' (X, ), p“+ € LY(Y,v), thus (p, p°+) is admissible solution for
Problem 1.3.1, and the proof is complete. O

This result shows that c-concave functions ¢ : X — R belonging to £!(X, ), such that (¢, ¢°*)
is a point where

sup /X o(@)du(z) + /Y b(y)du(y)

pe LY (X,p) e L (Yv)

is attained, have a “special” role:
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Definition 1.3.3. Given Polish measure spaces (X, i), (Y, v), a cost function ¢ : X xY — R, a “c-concave
Kantorovich potential” is a function ¢ : X — R belonging to L1(X, u) such that (o, p“+) maximizes

/ o(@)du(z) + / b(y)dv(y)
X Y

1.4 Quadratic cost function case

In this Section our goal is to analyze some properties of optimal transport maps when the cost
function is quadratic. As seen previously even existence can be not true, as in the counterexample

1
X =Y :=1[0,1], p := do, v := 5(5_1/2 + d1/2) and c(z,y) = | — y|; similarly we cannot expect
neither uniqueness nor continuity in the general case. We restrict the discussion to the special case:

e X =Y =R? d > 1with cost function c(z,y) := |z — y/|*/2.

In this case the following result provides a simple characterization of c-concavity and c-superdifferential:

Proposition 1.4.1. Given an arbitrary function ¢ : R —s R U {oo}, d > 1, ¢ is c-concave if and only
2
ifr— ¢*(z) = 2| — () is convex and lower semicontinuous. In this case y € 0t p(z) if and only if

y €0 " ().
Proof. For the first part observe that

!I2

|z — y? ly|?

p(x) = igf 5~ V) =) = lnf — t{z,—y) + 5 Y
el ~ @ ~
= plz) - n;f@:, y)+ (5 =)

oy _ (P
= p*(z) = sup(z,y) — ( Y(y))-

y 2
For the second part observe that
2 2
C. xiy C. Zﬁy C.
ye o) = ole) = T i) o < BT eiy) vaems
22 y? o
=) - B = oy D ey,
[ lyl” d
pl2) = 5 s {e-y+ 5 -9 (y),  VzeR
= ¢(z) — |2| < p(x) — ’2|+<z—x—y>, Vz € RY

+ \I2
— —yed (p——)(x)

=y € ¢ (x),

and the proof is complete. O
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This result essentially transforms the problem of existence of optimal transport maps to the
(better understood) one of understanding how the set of non differentiability points of a convex
map is made. Some preliminary discussion is required:

Definition 1.4.2. A set E C R%isa c — ¢ (“convex minus convex”) hypersurface if in a suitable coordinate
system there exist convex functions f, g : R — R such that

E={(yt)eR":ye R t=f(y)—g(y)}

The following convex analysis result (whose proof will be skipped, see [3] for more details)
holds:

Theorem 1.4.3. Given an arbitrary set A C R4, there exists a convex function ¢ : RY — R such that A
is contained in the set of non differentiability points of o if and only if A can be covered by countably many
¢ — ¢ hypersurfaces.

Definition 1.4.4. A probability measure u € M(R?) is “reqular” if any ¢ — ¢ hypersurface is p-negligible.

The next result is an important one concerning existence and uniqueness of optimal transport
maps:

Theorem 1.4.5. Given an arbitrary p € M(RY) with [o4 |z|*du(z) < oo, the following statements are
equivalent:

1. for any v € M(RY) with [, |z|?dv(z) < oo, there exists a unique optimal transport plan from y to
v, and this plan is induced by a transport map T,

2. s reqular.

In this case the map T is the gradient of a convex function.

Proof. (1) = (2).
It is obvious that | PR
r—y T Y

c(a:,y) T 2 < 7"’77
define a(z) := |z|?/2, and by hypothesis a € L!(R?, ). Thus we are under hypothesis of Theorems
1.2.5 and 1.3.2, and for any c-concave Kantorovich potential ¢ and any optimal plan ¢ it holds
supp(¢) C 9%+ p. From Proposition 1.4.1 the map ¢* := | - | — ¢ is convex and 9°tp = 9~ p*. Since
©* is convex, Vy* is well defined yi-a.e., as the set of its non differentiability points mustbeac—c
hypersurface, and every optimal plan must be concentrated on its graph. Hence the optimal plan is
unique and induced by V*.
(2) = (1).
Assume there exists a convex function ¢* : R — R such that the set E of non differentiability
points is not p-negligible. Upon modifying ¢* outside a compact set, assume it has linear growth at
infinity, and define 7'(z) and S(z) the element with smallest and biggest norm in 0~ ¢*(z) respec-
tively, and the plan




24 CHAPTER 1. OPTIMAL TRANSPORT THEORY

€ = 3 (id, Ty + (id, S)ep).

The linear growth at infinity implies that v := my;¢ has compact support, hence [ |z[?dv(z) <
oo. Then § € Adm(u,v) is c-cyclically monotone, thus optimal, but it is not induced by a map,
contradiction. O

An interesting consequence is the following result about factorization of vector fields in R¢:
given a compact domain Q2 C R?, define pug := Wﬁ‘dﬂ’ and
S(Q2) :={s:Q — Q:s Borel,syug = po}.
The following result holds:

Proposition 1.4.6. Given an arbitrary S € L?(uq, R™) such that v := Sypq is regular, then there exists
unique s € S(Q) and YV with ¢ convex such that S = (V) o s. Moreover, s is the unique minimizer of

|15 fean

among f € S(Q).

Proof. By hypothesis both ;i and v are regular with finite second moment. The claim

oy Jo |15~ flam= i / v — y|*d(x, 14.1
feS(Q)/Q’ Tl = i) RdXRd’ yl"d¢(x, y) (1.4.1)

would conclude the proof except for uniqueness.
Associate to each f € S(Q2) a plan &; := (f, S)sp € Adm(p,v), yielding

inf S — fldu>  min / x — y|2dé(z, y).
nt /Q S—flau> _min [ je=yfacey

Denote with £* the unique optimal plan, and applying Theorem 1.4.5 twice yields

§ = (id, Vo)sua = (Ve ,id)sv

for suitable convex functions ¢, ¢*, which therefore satisfy VooV¢* = id p-a.e.. Define s := Vp*o S,
and syuq = po. Also S = Vo o s, which proves the existence part. Identity

/ @ — ylPde; (z,y) = / f — S]2dug _ / V' oS — SPdpg
RIxRE RdxRd R xRd

= V* —id|*dv = min / x — y|2dé(z,
L Ve —id min [ eyl
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proves the converse inequality in (1.4.1), and uniqueness of optimal plan ensures uniqueness of
such minimizer.

To prove the uniqueness of such factorization, assume S = (V¢') o &' is another polar factor-
ization, and notice that Vg, ug = v. Thus V¢' is a transport map from pq to v, and gradient of a
convex function, thus optimal map and V¢’ = V¢ follows. O
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Chapter 2

Gradient flows

In this chapter we present the gradient flow theory, first in the Hilbertian context, and then in a
metric setting. Recall that given a Riemannian manifold M, a point z € M and a smooth function
F : M — R, the gradient flow starting from 7 is a differentiable curve = : Rj — M verifying

z(0): ==
2'(t) = —VF(a(t))
An interpretation of this formulation is that the curve x is forced at each time to descend along the
steepest descent direction, i.e. along the opposite of the direction of the gradient.
Section 2.1 will briefly recall the Hilbertian case (based on the work [8] by Brézis), while the

remaining sections mainly deal with the purely metric setting (mainly based on [3] by Ambrosio,
Gigli and Savaré, but including ideas of other authors).

2.1 Hilbertian theory

Let us quickly recall some notions about gradient flows in Hilbert spaces. The following extension
of convexity will be useful:

Definition 2.1.1. Given a Hilbert space H, a parameter X > 0, a functional F' : H — RU{oo} is A-convex
if forany z,y € H, t € [0, 1] inequality

F((L~ )+ 1y) < (L= (@) + tF() — 211~ )]z — P

holds.

Obviously a A-convex function is convex too. As the functional F' can take value the oo, we will
denote with D(F) the set F~1(R).
The subdifferential of a A\-convex function F at a point z € D(F') is defined as:

O F(zx):={ve H: F(x)+ (v,y —z) + %\:U —y|* < F(y) forany y € H}.

27



28 CHAPTER 2. GRADIENT FLOWS
The set 0~ F'(z) is closed and convex, independently of the point . Thus if 0~ F(x) # (), then 0F (z)
has an element of minimal norm, which we will denote with VF'(z).
Moreover, given arbitrary points z,y € D(F), the “monotonicity inequality”
(v—w,z—y) >Nz -yl

Vv € OF (z),w € 0~ F(y)
holds. A natural generalization of gradient flow in this context is:

Definition 2.1.2. Given a Hilbert space H, an element & € H, a A-convex functional F' : H — R, a
gradient flow starting from Z is a curve x : R — H, locally absolutely continuous in R, verifying

z(0): == 21.1)
2 (t) € =0 F(x(t)) o

The following result (see for instance [8] and [9]) is crucial in dealing with existence and unique-
ness in the Hilbertian case:

Theorem 2.1.3. Given a Hilbert space H, a A\-convex, lower semicontinuous functional F' : H — RU{oo},
the following results hold:

1. forany & € D(F) the curve defined in (2.1.1) exists and is unique;

2. for every time t > O the right derivative, i.e. the derivative computed considering only times s — ¢,
o L, d , .
which will be denoted with d—;, exists, and it hold

dy B .
. Ex(t) = —VF(z(t)),
o %F(az(t)) = —|VF|?(x(t)), with |V F| denoting the slope;

: 1 -
o F(x(t)) < inf : {F(v) + %]’U — x\Q};

~ weD(F

1
as < inf FP? —lv—z*}.
o 10rPao) < it {IVFPO)+ gl - o)
3. |2'(t)|, [VF|(x(t)) are in L?

L (RT), F(x(t)) € AC(RT) (AC(-) denotes the set of absolutely continu-
ous functions), and the “Energy Dissipation Equality”

Fla(t) - Fla(s) = 5 [ [VFPG()dr+ 5 [ 1) Pdr

holds for any 0 <t < s < oo;

4. x : Ry — H is the unique solution of the “Evolution Variational Inequality”

5 Sla(0) P + Fa(t) + 5|

517 —yl* < F(y)

yE€H, ae t
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with z(t) varying in AC(R™) and converging to = for t — 0. Moreover, given another element
y € D(F), denoting by y : RY — H the unique solution of (2.1.1) starting from ¥, inequality

() —y(t)] < e Mz~ 7]
holds for any t;

5. there exists a unique minimum .y, of F' and inequality
F(x(t) = F(zmin) < (F(2) = F(zmin))e”"

holds. Then this gives

A
F(z) ZF(fvmin)+§|x—xmm\2 Ve H

and

(0 ] <y 2ECO) T Gma))

2.2 Metric space setting

In the previous Section we have given an introduction, with some results, about gradient flow the-
ory in Hilbert spaces. As derivatives can be defined in a purely metric space, without requiring
neither norms nor scalar products, the gradient flow theory can be extended to this context too.

Notice that in (2.1.1) the subdifferential is explicitly involved, i.e. a scalar product is required,
thus cannot be extended to the metric context in this form. As we will see in the following, there are
several analogous of (2.1.1) in the metric setting. Firstly, we need to define the notions of “gradient”
and “speed” in the metric context:

Definition 2.2.1. Given a metric space (X, d), a functional E : X — RU {400}, a point x € X such that
E(z) < oo, the “slope” of E in x is

E
|VE|(x) := limsup m
y—x (SL‘, y)

Definition 2.2.2. Given a metric space (X, d), a curve x : [0,1] — X, the “speed” of x at a time t € [0, 1]
is

|2’ ()] := lim M

s—t |s — t|

This gives three different formulations of gradient flow:
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Definition 2.2.3. Given a metric space (X, d), a functional E : X — RU {400}, a point & € X such that
E(z) < oco. Then the curve x : [0,00) — X is gradient flow in the Energy Dissipation Inequality (EDI)
sense starting in  if x is absolutely continuous, x(0) = T and

2

E(z(s)) + ;/Os |2(r) |2dr + % /OS \VE*(z(r))dr < E(Z) Vs >0

E(z(s)) + 1/ts ()| 2dr + % /ts \VE|*(x(r))dr < E(x(t)) a.e.t>0, Vs>t

Definition 2.2.4. Given a metric space (X, d), a functional E : X — RU{+o00}, a point T € X such that
E(z) < oco. Then the curve x : [0,00) — X is gradient flow in the Energy Dissipation Equality (EDE)
sense starting in T if x is absolutely continuous, x(0) = Z and

E(x(s)) + ;/t () 2dr + % /t VE[(2(r))dr = E(x(t)) ae.t>0, Vs >t

B(x(s)) + ;/0 ()2 + % /0 VER(x(r))dr = E(z) Ws >0

Definition 2.2.5. Given a metric space (X, d), a parameter X\ > 0, a functional E : X — R U {400}, a
point & € X such that E(Z) < oo. Then the curve x : [0,00) — X is gradient flow with respect to X in the
Evolution Variation Inequality (EVI) sense starting in T if x is absolutely continuous, x(0) = = and

B(a(t) + %%d(m(t), W2+ %d(w(t),y)z < By, WyeX aet>o. (22.1)

In the Hilbert context all these formulations are equivalent, while in the metric setting
EVI = EDE = EDI
holds, with no converse implication holding true.

Proposition 2.2.6. Given a metric space (X,d), a parameter X > 0, a lower semicontinuous functional
E: X — RU{+oo}, apoint z € X, and assume x : [0,00) — X is gradient flow in EVI sense with
respect to \. Then x : [0,00) — X is gradient flow in EDE sense too.

Proof. We will first assume that z : [0,00) — X is locally Lipschitz. From triangular inequality

1d

§$d(x(t),y)2 > —|z(t)|d(x(t),y), aet>0,VyeX

holds, and combining with inequality (2.2.1) we get

—|z(t)|d(z(t), y) + %d(w(t), y)? + E(z(t)) < E(y), ae.t>0 VyeX
and then

iy @O =BG
VE|(0) = msup S < (a0, et >0
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Fix an interval [a, b] C (0, c0), let L be the Lipschitz constant of z in [a, b], and for any y € X

id(() y)* = —la(t)]d(z(t),y) > —Ld(x(t),y)

holds for a.e. ¢ € [a, b]. Combining with inequality (2.2.1)

—Ld(z(t),y) + %al(a:(t),y)2 + E(z(1)) < E(y), ae.t € la,b], Vy € X

follows, and by lower semicontinuity of ¢ — E(z(t)) this holds for every ¢t € [a,b]. Choosing
y = z(s) yields

|E(x(s)) — E(x(t))| < Ld(z(t), 2(s)) — %

d(z(t),z(s))* < L|t — 5| <L + ;\’L\t — 3\) , Vt,s € [a, b]

implying t — E(x(t)) locally Lipschitz. Moreover

d o B(a(t)) — Be(t + 1))
— g PEW)=lin h
_ o E(a(t) — E(x(t+ b)) d(z(t + h), x(t))
hso  d(z(t + h),z(t)) h

A

<

S|

=

—~

~

52
8

—~~

N

1
< §|VE|2(1= )+ =|z®)|?,  ae.t>0.
The opposite inequality remains: integrating inequality (2.2.1) from ¢ to t 4+ h we get

" 2 o 2 t+h t+h
d( (t+h),y)2 d(t),y)* | [ B+ /t d(z(s),y)?ds < hE(y).

Putting y = z(t) this reads

. " 2 t+h t+h
e (HZ)’ OF i E(x<s>>ds+§ /t d(z(s), (t))*ds < hE(x(t))
thus
d(xz(t + ;),x(t))Q < o E(z(t)) — E(z(s))ds + |6)\|L2h3 (2.2.2)
Al
- h/ E(x (a(t + hr)dr + L0, (2.2.3)

Let A be the set of differentiability points of ¢ — E(z(t)) and where |i(t)| exists, choose t € AN
(0, 00), inequality (2.2.2) yields

d(z(t+h),x IA] 5
E(z + hr))dr + =-L
2h? h/ (w(t o)) dr 6 LM
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taking the limit 4 — 0 this reads

1 T x r !
BBt thr), 4 g, /0 rdr = =L B(a(1),

1
~|&())? < lim
2 h—0 Jo T

and combining with
IVE[(2(t) < |2(t)];
we finally get

d 1
— B () > |(t)]? + §|VE]2(x(t)), a.e.t > 0.
Lastly, we have to prove the local Lipschitz continuity of x. It is immediate to verify that ¢ — x(t+h)
is gradient flow in EVI sense starting in x(h) for any . > 0. The last point of Theorem 2.1.3 gives
that distance between two such curves is contractive up to an exponential factor, thus we have

d(xz(s),z(s+ h)) < exp(=A(s —1))d(z(t),z(t + h)), Vs > t.

Let B the set where the metric derivative of = exists, choosing t € B N (0, 00) we get

%d(w(s),w(s + 1)) < exp(—A(s — t))%d(x(t),x(t ), Vs>t

and taking the limit A — 0
d(z(s), (s + h))

|&(s)|= lim 7] < exp(=A(s = 1))2(t)]
for any B > s > t, thus the curve z is locally Lipschitz in (0, c0). O

2.2.1 Discrete evolution

In this subsection we will present a “discretized” version of gradient flow evolutions: let (X, (-, -))
be a Hilbert space, and F' a convex and lower semicontinuous function. Fix z € D(F) and 7 > 0,
we can define recursively the sequence

N> n+— w,(n)

as
wr(0) =2
and w-(n + 1) chosen among the minimizers of

2~ we(n)?

Xsxw— F(x)+
2T

Existence and uniqueness of such minimizer is easy in the Hilbertian case, thus the sequence {w,(n) } nen
is well defined; the Euler-Lagrange equation of w,(n + 1) is

wr(n+1) —ws(n)

€ -0 F(w;(n+ 1)),
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and this is a time discretization of (2.1.1). Here it is natural to consider the curve

vi[0,00) — X, a(t) = w, (H)

with [-] denoting the integer part mapping.

The same construction can be done in a purely metric setting: given a metric space (X, d), alower
semicontinuous functional F', 7 > 0, and an element £ € D(F’), consider the sequence {w.(n)}nen
defined recursively as

d(y,wr(n))? (2.2.4)

wr(n+1) € argmin, .y F(y) + o

and similarly the curve
t
vl =Y 0= (]
-

can be associated. This construction is often referred as “implicit Euler scheme”.

Definition 2.2.7. Let (X, d) be a metric space, E : X — R U {400} a lower semicontinuous functional,
z € D(E) a given point, and 7 > 0 a given parameter. A “discrete solution” is a map x : [0,00) — X

defined by
(e

Differently from the Hilbertian case, in the purely metric context neither existence nor unique-
ness is guaranteed, and without further assumptions, neither of them is true; two sets of assump-
tions, one ensuring existence and the other allowing the passage to the limit as 7 — 0, are required.
We will first assume existence:

where w(-) is defined as in (2.2.4).

Assumption 2.2.8. Let (X, d) be a metric space, E : X — R U {+o00} a lower semicontinuous function,
bounded from below. We will assume that there exists T such that for every T € [0, 7] and & € D(E) the map

d(z,7)?
2T

x— E(x)+

has at least a minimum.

This assumption ensures that for any point z, discrete solutions exist for an uniform interval of
time steps, with length not depending on z. The key problem here is to prove that these solutions
verify a discrete variant of Energy Dissipation Inequality, which passes to the limit 7 — 0. The next
result is crucial:
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Theorem 2.2.9. Given a metric space (X, d), and a lower semicontinuous function E : X — R U {400}

bounded from below verifying Assumption 2.2.8, fix a point & € D(E) and consider the function

x:[0,7] — X
such that for any T € [0, 7], x(7) is a minimizer of

d(z,7)?

— F
x (x) + o

Then the map

d(x(r), 7)°

0,7] 57— E(z(r)) + o

is locally Lipschitz in (0, T), and

(2.2.5)

dr 272

holds for a.e. 7 € (0,7).

Proof. Fix 19 € (0,7), due to minimality properties of x(7y) inequality

d(x (7o), Z)*
2T

d(x(m1), )

B(a(ro)) + o

< E(z(n)) +

holds for any 71 € (0,7), thus

d(z(m0), %)
2T

E(z(1)) +

With a symmetrical argument

d(x(m0), Z)*
2T

d(z(7), 7)

d(z(m),z)? S 7L

E(x(m0)) + — E(x(n)) +

2T - 271971

thus 7 — E(z(7)) +
71 — To, which gives immediately (2.2.5). ]

is locally Lipschitz, and the proof is complete by taking the limit

Lemma 2.2.10. In the context of Theorem 2.2.9, using the same notations, the following properties hold:

d -2
1. 7 (x(;),x) is non decreasing,
T

2. 7+ E(x(7)) is non increasing,

d(x(r),7)

T

3. [VE|(z(r)) <
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Proof. Let 19,71 € (0,7), 70 < 71, and from minimality properties of = : [0,7] — X U {400} the
following inequalities hold:

d(z(r), 7)*

E(z(m)) + 570 < E(z(n)) + 270
x(m),7)? x(10), 7)>
Bar) + B < () 4 L2002

and using 79 < 71, summing side by side yields d(z(7),z) < d(z(m1),Z), i.e. 7 — d(z(7),Z) non
decreasing. This leads to

d(z(r0),%)°
27

d(z(n), 7)*

E(x(m)) + o,

< E(z(n)) +
and combined with the minimality of z(7;) we have

d(x(ro), 7)*
27‘1

d(z(n), 7)*
27’1

d(z(n),7)*

E(z(m)) + o

< E(z(n)) + < E(xz(m0)) +

which implies 7 — E(z(7)) non increasing.
For the last point, fix 7 € (0, 7), and from minimality properties of z(7) we have

d(y, ©)2
+(y$)

E(z(7) + =5 —— < E(y) 5 WweX
which leads to
E(x(r)) - E(y) _ dly, 2)* — d(x(7),2)* _ d(x(7), ) + d(y, )
d(z(1),y) — 2rd(z(1),y) 2T
and
o (Blan) - B(y)*
‘VE|($(T))_ 1y—>$(7':§) d(:E(T)’ y)
< limsup d(z(1),z) + d(y, T) _ d(z(r), a’:)7
y—z(7) 27 T
completing the proof. O

Another definition is useful:

Definition 2.2.11. In a metric space (X, d), given an initial datum Z, a sequence {7;}jen | 0, and implicit
Euler schemes as defined in (2.2.4)

w]'(O) =T
w;j(k+ 1) € argmin E(-) + %Tjd(', w;(k))?
with associated functions (where I is a given interval)

zjol— X, x(t) == w;([t/7]),
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a function x : I — X is a minimizing movement with initial datum Z if there exists subsequence {7;, } hen
such that
2(t) lim a, (1

h—o0

forany t.

In view of these results it is natural to introduce another time-discretized variant in the mini-
mizing movement scheme, the “variational interpolation”:

Definition 2.2.12. Given a metric space (X, d) and a lower semicontinuous functional E : X — RU{+4o0}
bounded from below, satisfying Assumption 2.2.8, fix a point & € D(E). The map

[0,00) Dt — x,(t)
defined by
o 2,(0):=1z,
o z.((n+ 1)7) chosen among minimizers of (2.2.4) with z replaced by z.(nt),

e z.(t), t € (n1,(n + 1)7) chosen among minimizers of (2.2.4) with & and T replaced by x(nt) and
t — nT respectively.

In the context of variational interpolation, we are able to extend notions of speed and slope here.
Using notations from Definition 2.2.12:

1. the “discrete speed” is the map

Dspr : [0,00) —» [0,00),  Dsps(t) = d(“(m)’x;((” U7 e (nr, (n+ 1),

2. the “discrete slope” is the map

d(z-(n7),z.(t)

Dsl; : [0,00) — [0, 00), Dsl(t) := Pa—

,t€ (nt,(n+ 1)7).

Despite this definition of discrete slope seems unrelated to Definition 2.2.1, from Lemma 2.2.10 it
holds |VE|(z-(t)) < Dsl.(t), and passing to the limit as 7 | 0 will produce the slope from Definition
2.2.1 (see the proof of Theorem 2.2.14).

With these definitions, and notations from Theorem 2.2.9, equation (2.2.5) can be rewritten as

1 [° 1 [°
E(z.(s))+ 2/ |Dsp, (r)|2dr + 2/ |Dsl, (r)|?dr = E(x,(t)), Vt = n7,s = m7,n < m € N. (2.2.6)
t t

Assumption 2.2.8 is quite general, and guarantees existence of discrete solutions. Our next goal
will be to pass to the limit for 7 — 0, and stronger assumptions are required:
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Assumption 2.2.13. Let (X, d) be a metric space, E : X — RU {400} a functional, assume the following
conditions hold:

1. E is bounded from below, and its sublevels are boundedly compact, i.e. {E < ¢} N B(x,r) is compact
foranyceR,r >0and xz € X,

2. theslope |VE| : D(E) — |0, o] is lower semicontinuous,
3. for any sequence {xy }nen converging to x, implication

ilég{\VEKmn),E(xn)} < oo = E(z,) = E(x)

18 true.

Under these assumptions the following result holds:

Theorem 2.2.14. Let (X, d) be a metric space and E : X — RU{+o0} a functional satisfying Assumption
2.2.13 and equation (2.2.5). Fix z € D(E), 7 € (0,7), and consider a discrete solution z : [0,7] — X
defined via variational interpolation. Then the following results hold:

o the set {x,(t)}, is relatively compact in the set of curves in X with respect to the uniform local conver-
gence,

o any limit curve is a gradient flow in the EDI sense.

Proof. The proof is divided in two parts: the first deals with compactness, while the second concerns
the passage to the limit 7 — 0.
Compactness: from inequality (2.2.6) we have

2

T T
d(z(t),z) < (/0 DspT(r)]dr> < T/O |Dsp,(r)|?dr < 2T(E(z) — inf E)

forany ¢t < T, T = nr with n € N. Therefore for any 7" > 0 the set {«,(t) };<7 is uniformly bounded
in 7; as it is also contained in {E < E(Z)}, it is relatively compact. Using an Ascoli-Arzela like
argument on inequality

t 2
d(z-(t),z-(s)) < </ |DspT(r)|dr> <2(s—t)(E(z) —inf F), Vi=nr,s=mr,n<méeN

relative compactness with respect to local uniform convergence follows.

Limit 7 — 0: consider a sequence {7, }neny — 0 such that {z,(t)} converges (locally uniformly) to
a limit curve z : [0,00) — X. It is not difficult to check that ¢ — z(¢) is absolutely continuous and
satisfies

/ |&(r) |dr < lini)inf/ |Dsp,, (r)|>dr VO <t < s.
t oo Jt
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By lower semicontinuity of |VE| and Lemma 2.2.10 inequality
IVE|(x(t)) < lirginf \VE|(x5,(t)) < lilginf Dsl,, (t)

holds, and Fatou’s lemma gives that for any ¢t < s

/ VEP(2(r))dr < / lim nf [VE (a7, (d))dr < lim inf | Dsl,, (r) Pdr < 27(E(z)  inf E).
t t n o n o0

From this follows that the L2 norm of
ft) = lirginf |\VE|(z,,(t))

on [0, 00) is finite, thus {f < oo} has full Lebesgue measure, and for each t € {f < oo} there ex-
ists a subsequence {t,, }rey — 0 such that sup,cy |VE|(2,(t)) < co. Thus by Assumption 2.2.13
E(zr, (t)) = E(z(t)) and the lower semicontinuity of E guarantees E(z(s)) < liminfy_,o E(z-, (5))
for every s > t. Thus passing to the limit £ — oo in (2.2.6) gives

1 [ 1 [
E(xz(s)) + 2/ |2 (r)|dr + 2/ IVE*(x(r))dr < E(z(t))  Vte{f <o}, Vs>t
t t
Finally, passing to the limit £ — oo in equation (2.2.6) with t = 0 gives

1 /[° 1 /[°
E(z(s)) + 2/ () |dr + 2/ \VE|?(x(r))dr < E(z)¥s > 0,
0 0
and the proof is complete. O

In this generality equality in EDI is false, as the main problem is that the map 7 — E(x(7)) can
fail to be absolutely continuous. Consider the following counterexample:

e Choose C C [0, 1] the Cantor set, endowed with Euclidean distance, and a function
CO'NL's f:00,1] — [1,0],  fic =400, floapc € C™

let g : [0,1] — [0, 00) be the “devil staircase” built over C (i.e. g is a continuous function with
gic = [0,1], g(0) = 0,¢(1) = 1 and constant on every connected component of [0, 1]\C). Define
E,E:[0,1] — by

E(x) = —g(x) - /0 Cfwdy, B = - /0 " )y

and Assumptions 2.2.8 and 2.2.13 are easily verified by both E and E.

Build a gradient flow starting from 0, and it is possible to check that in both cases the mini-
mizing movement scheme converges to absolutely continuous curves z,Z : [0,00) — [0, 1]
satisfying

2'(t) = —|VE|(z(t)), a.e.t
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i) = —|VE|(Z(t), ae.t
respectively.

For any z € [0, 1] equality |VE|(z(t)) = |[VE|(Z(t)) = f(z) hold, and combined with the fact
[ = 1 gives that both equations admit a unique solution, thus z = 2. The effect of g is not
evident on these solutions, and it is easy to check that EDE holds for E, but not for E.

2.2.2 Geodesically convex case

Geodesically convex functions are generalization to metric spaces of convex functions on linear
spaces:

Definition 2.2.15. Given a metric space (X, d), a functional E : X — R U {400}, and A > 0, E is
“A-geodesically convex” if for any x,y € X there exists a constant speed geodesic y : [0,1] — X, v(0) =z,
(1) = y such that

B(1(1)) < (1~ )E() + tE(y) — 5101~ )d(z, ) (227)

In this subsection we will analyze gradient flows by assuming that the function E will be
geodesically convex:

Assumption 2.2.16. Let (X, d) be a metric space, E : X — R U {400}, assume that E is lower semi-
continuous, \-geodesically convex for some A € R; moreover assume that the sublevels of E are boundedly
compact.

Under this hypothesis the main goal is to prove the existence of gradient flows in EDE sense.

Lemma 2.2.17. Let (X, d) be a metric space, E : X — R U {+o0} verifying Assumption 2.2.16, then for

any x € D(E)

_ E(z) - E(y) | A "
|\VE|(z) = 21;12;) < + 2d(:c,y)) . (2.2.8)

Proof. 1t is easy to observe that

T E(@) - EB(y) A, * o [ E@) = E(y)
|VE|(x)_1lryIf§1p< d(z,y) T ’y)) §y¢€< d(z,y)

For the converse inequality, fix y # z, and let v : [0,1] — X a constant speed geodesic with
7(0) =z, v(1) = y, and due to Assumption 2.2.16, inequality (2.2.7) is satisfied with some \. Then

(B@) - B\ B - B\
IVE|(@) Sllr?f&lp( : ) _<1”?fé‘p @A (1) >

< (n%lp (W v t)d(a:,y)>>+ = (W ; ;d(a:,y)>+

and the proof is complete. O

+ ;\d(a:,y)>+ .
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It is possible to prove that Assumption 2.2.16 implies Assumptions 2.2.8 and 2.2.13, thus exis-
tence of gradient flows in EDI sense is achieved. In order to get existence in EDE sense, the following
result is useful:

Proposition 2.2.18. Let (X,d) be a metric space, E : X — R U {+oo} a A-geodesically convex and
lower semicontinuous functional. Then for any absolute continuous curve x : [0,00) — X such that
E(z(t)) < oo for any t it holds

|E(2(s)) — E(z(t))] < /t O IVIEG@)dr, < s. (2.2.9)

Proof. Assume that the right hand side is finite, otherwise the claim is trivial. Upon reparametriza-
tion, assume |#(t)| = 1 for a.e. t, thus z is 1-Lipschitz, and ¢ — |V E|(z(t)) is L! function.
It suffices to prove that ¢t — E(z(t)) is absolutely continuous, and use inequality

E(x(t+h)) — E(z(t)

| B@) - B+ h)*
ey s ey T
| (x(t) — B(e(t+ )" d(e(t),z(t + b))
S @ e k) e T
< [VE((®)||(t)]

valid for any ¢ € [0, 1]. Define functions f, g : [0,1] — R by
(f(t) — f(s)"

)

f(&) = E(x(t)),  g(t):=sup -
st |S t|

let D be the diameter of the compact set {x(t)};c[9,1), and combining the 1-Lipschitz property with
(2.2.8) yields

(Ba(t) - Bla(s)* AAO
A e A e ) R L I

Therefore the thesis follows if implication

ge L' = [f(s) — f(t)] < / Cg(rydr, Vi<

holds.
Fix M > 0 and define f™ := f A M. Fixe > 0, let p. : R — R be a mollifier with support in
[—¢,¢], and define

PMilel—el — R, M) = M op(t),
M

M- R M) = OO
s#t ‘S — t‘

From smoothness of fM and the fact g* > (fM)" it holds
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ww$—ﬁ%>s/4w¥mw,
and then

|Sit| /R(fM(t_T)_fM(S—T))+p5(T‘)dT‘ Ssgp

/ (ft—r) = fls=7)"
R (s—r)=(t—7)

1
|s —t]

gM ()< sup
S

Q@U@—m—f@—mﬁ&va

= sup pe(r)dr

S

which implies that the family {g2/}. is dominated in L'(0,1), and the family {f}. converges
uniformly to some f as e — 0. For the limit function it holds

\fM(@-—fM(ﬂ\sb[sgwﬁw.

We know that fM = fM on some A C [0,1] with £'([0,1]\\A) = 0 and the goal is to prove that
equality holds on [0, 1]\\A too. As f M is lower semicontinuous, fM < f NM is guaranteed. If it holds
M(to) < c < C < fM(ty) for some t, then there exists § > 0 such that f‘][\fo_é,tOJrﬂmA > (C,and

1 C—-c
/ g(t)dt > / g(t)dt > / dt = oo
0 [to—5,t0-+6]N.A [to—5,to+8]nA |t — tol

which is a contradiction. Thus if g € L'(0, 1), then

|fM(t)—fM(s)]§/ g(r)dr, vVt <sel0,1],M >0
t
and taking the limit A/ — oo concludes the proof. O

The next result allows to pass from existence in EDI sense to the one in EDE sense.

Theorem 2.2.19. Let (X, d) be a metric space, E : X — R U {400} verifying Assumption 2.2.16, and
z € D(E). Then all results of Theorem 2.2.14 are valid. Moreover, any gradient flow in EDI sense is gradient
flow in EDE sense too.

Proof. All results of Theorem 2.2.14 are valid as Assumption 2.2.16 implies both Assumptions 2.2.8
and 2.2.13.
By Theorem 2.2.14 the limit curve is absolutely continuous, and satisfies

Ba) +5 [ Wi+ 5 [ VEPG)r < B@). 520

In particular t — |i(¢)| and t — |VE|(z(t)) belong to L? (0, +00); using Proposition 2.2.9

loc
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B@) - B < [ kOIVEa()dr < 5 [a0)Pdr+ 5 [1VEPee)n

thus ¢ — E(z(t)) is locally absolutely continuous and it holds

Bla(s)) + /0 ()P + /0 VEP((r)dr = B(z), s> 0;

the same equation written with ¢ in place of s is

1 [ 1 [
E(x(t) + 2/ | (r)[Pdr + 2/ IVE|*(z(r))dr = E(z),  t>0;
0 0
and subtracting the last two equations the thesis follows. O

Geodesic convexity ensures more regularity properties, listed in the following result (see [3] for
more details):

Proposition 2.2.20. Let (X, d) be a metric space, E : X — R U {400} satisfying Assumption 2.2.16 for
some A € R, and z : [0, 00) — X limit of a sequence of discrete solutions. Then

1. for every t > 0 the limit
&t (1)] == lim d(z(t + h),z(t))
h—0 h

exists,
2. for every t > 0 it holds
d .
—B(®) = —[VEP(x(t) = —|i" ()| VE| (2(t)),

3. the map t — exp(—2A"t)E(z(t)) is convex; t + e M|V E|(z(t)) is non increasing, right continuous
and satisfies

%\VEIQ(SU(t)) < exp(=2A"1) E(2(t))(E(x(0)) — Et(2(0))),

tIVE)(z(t)) < (14 23 8)e2 M (E(2(0)) — inf E)

with B, : X — R defined as
. d(z,y)?
Ey(x) := ylg;f( E(y) + =

4. if X > 0, then E admits a unique minimum ,, and it holds

%d(w(t)v Zmin)’ < B(2(t) = B(@min) < e M(E(2(0)) = E(zmin))-
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Similarly to the EDI context, uniqueness is generally not true, as shown by the following coun-
terexample:

e Consider R? endowed with the L>* norm, E : R? — R defined by E(z1,72) := x1, and
z :=(0,0). Then |VE| = 1 and any Lipschitz curve t — z(t) = (z1(t), z2(t)) satistying

{xl(t) =t Wt

lzo(t) <1 a.e.t>0

satisfies also

thus such curve satisfies EDE too.

2.2.3 Limit of discrete solutions as n — oo

In this subsection our goal is to analyze limit sets of discrete solutions, as defined in (2.2.4). Given
a metric space (X, d), a functional F, an initial datum z € D(F) and a time step 7 > 0 consider the
sequence

z(0) ==

z(n+1) € argminE(-) + W
and our goal is to investigate properties of (k) as k — oco. We will assume that Assumption 2.2.8
holds. However without further hypothesis on the metric space existence of such limits is generally
false, and we will assume (X, d) sequentially compact.

Under these assumptions the following result holds:

Proposition 2.2.21. Let (X, d) be a compact metric space, E : X — R lower semicontinuous and bounded
from below, and suppose Assumption 2.2.8 holds. Consider a the recursive sequence

z(0) ==
z(n+1) € argminE(-) + d("f’;(T”))Q

Then every x* such that there exists a subsequence {x(a(h))}nen C {x(k)}ren converging to x* is station-
ary, i.e. [VE|(z*) = 0.

Proof. The proof is done by contradiction: suppose there exists a subsequence {z(a(h))}nen con-
verging to some point z* not stationary. Thus there exists ¢ > 0 and a sequence {yy, } ;e converging
to z* such that

E(z*) — E(yg) > cd(z*,yx) >0 Vk e N. (2.2.10)

It is easy to observe that { E(z(k)) }xen is decreasing, thus z(k) # y, for any k, h € N. Consider an
index a(h): from minimality properties it must hold
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d(z(a(h) + 1), z(a(h)))?

E(z(a(h)+1)) + o

thus combining with (2.2.10) yields

d(z(a(h) +1),z(a(h)))?
2T

d(z(a(h)), yr)?
2T

E(z(a(h) +1)) + < E(yx) +

d(z(a(h)), yx)

< E(z") — cd(x*
< B(a") - ed(@” ) + SO

for any h. Note that the distance between z(a(h)) and z(a(h) + 1) goes to 0, thus in the following
estimates the role of such points are somewhat interchangeable. Then passing to the limit ~ — 0
and using the lower semicontinuity of E concludes the proof. O

Notice that in the proof 7 > 0 fixed is crucial: indeed passing to the limit as 7 | 0 this result
can be false; however, if E is also convex, then passing to the limit 7 | 0 this result can be proven.
Moreover using the same argument the following stronger result can be proven:

Proposition 2.2.22. Let (X, d) be a sequentially compact metric space, E : X — R lower semicontinuous
and bounded from below, and suppose Assumption 2.2.8 holds. Consider a the recursive sequence

z(0):==x
z(n+1) € argminE(-) + W

Then for every set x* such that there exists a subsequence {x(a(h))}nen C {z(k)}ren converging to x* it
holds

i sup (B2 — E@))*

=0
y—x* d(.’E*, y)a

forany a < 2.



Chapter 3

Maximal and average distance problems

In the previous chapter we have presented a review of gradient flow theory in a general metric
setting, with weak assumptions on both functional and distance. In this chapter we will introduce
the “average distance” and the “maximal distance” functionals, and discuss associated problems. The
main focus will be on the average distance problem.

Section 3.1 will recall basic properties first proven by Buttazzo, Oudet and Stepanov. Section
3.2 will recall some geometric properties of solutions, and Section 3.3 will recall results concerning
asymptotic behavior (for large and small length constraints) and regularity. Most results from these
three sections were proven by Buttazzo, Oudet and Stepanov in several works (see for instance
[14], [16], [17]), but include contributions from other authors (including Santambrogio, Tilli and
Slepcev, mainly in the part concerning regularity). Section 3.4 deals with similar properties in higher
dimension cases (results are mainly from [44] by Paolini and Stepanov). Section 3.5 presents some
side notes by the author, about cases in which the total mass is infinite.

3.1 Maximal and average distance functional

The average distance problem was first introduced in [14] and [16], where some geometric and
analytic properties were studied.

We present first the main objects analyzed in this chapter: given N 5 N > 2 and a domain
Q C RY, denote with A(Q) the set of compact, pathwise connected subsets X C Q2 with dimyX =1
and H'(X) < oo. Moreover, given [ > 0, define

A(Q) :={X € AQ) : H'(X) < 1}.

Finally denote with distn(-,-) the geodesic distance in €2, and to simplify notation, “distq (z, K)”
(where z is a point and K a closed set) will be used instead of “min,cx disto(x,y)”.

In all the chapter we will assume that the domain €2 is closure of a connected, bounded and open
set.

Now we can present the “average distance problem”:

45
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Problem 3.1.1. Given quantities N > N > 2,1 > 0, a measure y on 2 and a function A : [0, diam Q] —
[0, 00), solve

in F X),
Km Qua(X)

where
Fopuat A(Q) — [0,00),  Foua(X):= /Q A(distg (x, X))du(z).

This formulation is often referred as “constrained problem”, and was originally introduced in [14]
. An alternative formulation (see for instance [13] and [31]) is

Problem 3.1.2. Given quantities N 5 N > 2,1 > 0, a measure p on , a function A : [0,diam Q] —
[0, 00), and a parameter X > 0, solve
in_ Foua(X) + AN (X).
win Foua(d) (X)
This formulation is often refereed as “penalized problem”, in which the length constraint H! (X)) <
l is replaced by the penalization term AH!(X). Both formulations exhibit little difference in most
arguments, thus unless explicitly stated, or made clear in the context, the expression “average distance
problem” will refer to both of them.

The average distance problem has several interpretations. An easy one arises from urban plan-
ning:

e (1is a city, with population distribution given by g,
e X is a transport network to be built,

e A gives the relation between the distance from the transport network and the cost to reach it.

Thus Fq , a(X) is the total cost to reach the transport network, which coincided with the average
cost if ;1 is a probability measure. The constraint/penalization on length accounts for the cost to
build the network. Solving Problem 3.1.1 is equivalent to find the “best” network satisfying length
constraints, which minimizes the average cost (or upon multiplying for a constant, the total cost)
for the whole citizenship to reach it.

An alternative interpretation is found in the field of cloud data approximation:

e () aregion of the space, with data distribution given by f,
e X is an one dimension set used to approximate the entire data cloud,

In this case, F , 4(X) represents the error of such approximation, while A#!(X) represents the
cost due to its complexity.

Thus solving Problem 3.1.2 is equivalent to find the “best” approximation which minimizes the
sum of approximation error and complexity cost. Despite the rather simple formulation, actually
solving the average distance problem (in both constrained and penalized formulation) is extremely
difficult, generally not possible without strong hypothesis on the domain, and computationally not
feasible.

A related problem is the “maximal distance problem”:
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Problem 3.1.3. Given quantities N > N > 2 and | > 0, the “maximal distance problem” is solving

where
F5(X) = max disto(z, X)).

Similarly to the average distance problem, the maximal distance problem has an easy interpre-
tation from urban planning to:

e ()is a city, with population distribution given by 1,
e X is a transport network to be built,

e A gives the relation between the distance from the transport network and the cost to reach it.

Solving Problem 3.1.3 is equivalent to find the “best” network satisfying length constraints
which minimizes the maximal cost (considered among all citizens) to reach: it.

For the maximal distance functional, the role of both u and A is less relevant: indeed Problem
3.1.3 does not involve any measure, and it is a more geometric problem. The function A plays no role
as long as it is increasing. Thus in the following, when discussing the maximal distance problem,
the measure and the function will be assumed Lebesgue measure and identity function respectively.
Notice that while both functionals have dependence on the domain €2, in the following we will omit
writing it explicitly when no risk of confusion arises, i.e “F), 4” instead of “Fq ,, 4” and “F™*” instead
of “F3”. Moreover, when Q, u, A are given, the expression “solution of the average/maximal distance
problem” will be used to denote a set solution of min 4,y Fj, 4 Or min 4,y F'* for some [ (or A for
Problem 3.1.2).

In this generality little can be said about such solutions, thus some restriction on the measure
w1 and function A is required. The first condition is that the measures ;1 does not charge ridges, i.e.
given an arbitrary W € A((Q2), the set

Rw = {x € Q: there exist distinct y;, y2 € W such that distq(z, y1) = distq(z, y2) = dist(x, W)}

is u-negligible. This is a quite weak condition, as from [39] these ridges are (#!, 1)-rectifiable. Thus
any measure absolutely continuous with respect to the Lebesgue measure does not charge ridges.
Some restrictions on the function A must be imposed too. As done in [14] and [44] assume:

(cv1) A:[0,diam ] — R is Lipschitz continuous with Lipschitz constant A, A(0) = 0, monotone
increasing,

(ag) for any ¢ > 0 there exists A = A(¢) > 0 such that |[A(xz) — A(y)| > Az — y| whenever |z — y| €
[c, diam Q.

From the above conditions (satisfied by several regular functions, like A(z) := P for any p > 1)
follows A injective on [¢/, diam ] for any ¢ € (0,diam ). In most cases, if a result is true with
A = id, then it is true with A satisfying above conditions.
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3.1.1 Link with optimal transport problem

Problem 3.1.1, albeit having a very different formulation with optimal transport problem, can be
seen as a Kantorovich problem in presence of “free regions”:

Definition 3.1.4. Given a domain 2, a cost function ¢ : @ x Q — [0, 00], a subset ¥ C Q is a “Dirichlet

region” (for the cost c) if for any points x,y € ¥ such that there existsapath o : [0,1] — X, z,y € «([0,1]),
c(x,y) = 0 holds.

In other words, a Dirichlet region is s subset where “transport is free”. In this context, geodesic

distance distg (-, ) is not significant as it does not consider Dirichlet regions, and a natural modifi-
cation is the semi-distance

distg 5 : 2 x @ — [0, o0, disto »(z,y) = ) ignf@ disto(x, &1) + disto(y, &2).
1,82

A natural generalization of optimal plans in presence of non empty Dirichlet regions ¥ C 2 can
be given:

Definition 3.1.5. Given a domain 2, a Dirichlet region ¥ C (2, Borel measures i, v, a Borel measure ~y on
Q x Q is a transport plan between p and v if

ﬂ;’y—wﬁ_'y:u—u on Q\X,
where T denotes the projection on the first and the second component respectively.

Combining this definition with the semi-distance distq »; yields the new Kantorovich problem

min{ A(distgg(:n,y))d’y(x,y)} (3.1.1)
QxQ

where A : [0, diam Q] — [0, 0o is a given function, and the minimum is taken for y varying among
transport plans (as in Definition 3.1.5) between ;. and v.

In this formulation it is not required ©(2) = v(2): indeed denoting with 4 the restriction of
Lebesgue measure on 2, and v = 0 (3.1.1) becomes Problem 3.1.1. The following definition will be
useful:

Definition 3.1.6. Given a domain Q, ¥ C Q, let Q' C Q be the set of points with unique projection on X.
Then given x € ' there exists an unique z € 3 such that distq(z, X) = disto(z, ), and the “transport
ray” passing through x is the set

{y € O : distq(y, ) = distq(y, 2)} > z.

Moreover, z will be referred as the endpoint of such transport ray.
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3.1.2 Link with ¢g-compliance problem

In this subsection we analyse the link between Problem 3.1.1 and the g-compliance problem, in two
dimension case.
Given a domain  C R?, for any ¥ € A(Q) and ¢ > 0 denote uy, the solution of problem

—Agu=1 inQ\X
u=20 ondNUX

where A, denotes the g-Laplacian (i.e. Ayu := div(|Vu|?2Vu)). For given ¥ the solution uyx can be

obtained by minimizing
1
Eq¢x(u) == / |Vulldx — / udx
qJ/o\x Q

among u € Wy (Q\X).
The g-compliance energy is defined as

1
¢,(5) = (12 [ usoyts

and given a parameter [ > 0, the associated ¢g-compliance problem is

in C,(X). 312
cuing o(2) (3.1.2)

The link with Problem 3.1.1 is stated in the following result:

Theorem 3.1.7. In the metric space (A(S2),dy) taking the limit ¢ — oo, the gq-compliance energy C, I'-
converges to

FLAQ) — 0,00),  F(X):i= / dist(z, 90 U X)) dx.
Q
For the proof we refer to [15].

3.1.3 Basic properties

Problem 3.1.1 explicitly involves finding minimum of certain functionals, and the first problem is
existence of such minimum. This is rather easy, and mainly consequence of Golab theorem:

Theorem 3.1.8. Given a domain Q C RY (N > 2), a parameter | > 0, and non negative measures i, v
consider the average distance problem

i A(disto(z, 2))dz. 3.1.3
zé%?m/g (disto(z, %)) dx (3.1.3)

If A is continuous, then (3.1.3) admits solutions.
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Proof. Consider a minimizing sequence {¥,},en € A;(Q) for the average distance functional: ac-
cording to Blaschke theorem, upon subsequence (for simplicity we do not relabel), ¥,, - £ € A(Q)
in the sense of Hausdorff convergence, and Golab theorem yields HY () <L

As Hausdorff convergence implies distq(z, ¥,,) — distq(z, £) for any x € €2, we obtain

disto x, (z,y) — disto »(z,y) Vr,y € ()

since distq y,, (-, ) are Lipschitz continuous with respect to the Euclidean distance, with the same
Lipschitz constant, the convergence is uniform.
Denote {7y, }nen the associated transport plans, i.e. for any n € N it holds

/ A(dist(z, So))de = [ A(disto.s, (2, 1)) drm(@, 1)
Q QAxN

and

W;r'yn—wﬁfvn:/ﬁ—u in Q\X,.
The sequence {7, }nen can be assumed bounded, and upon subsequence (again without relabeling)
Yn — 7 *-weakly in the space of Borel measures over (2, thus
w;*y—ﬁﬂ_’y:u—l/ in Q\X.

Indeed for every test function v it holds

/de(ﬁﬁ —my ) = lim vd(m o — 7 ) = /Q@Z)d(u —v),

Finally from

/A(dist(x,E))dw < A(distg x2(z,y))dvy(z,y) = lim A(disto x, (z,v))dyn(z, v)
Q QxQ oo Jaxa

follows the minimality of X. O

Existence of solutions for the penalized formulation is proven with similar argument.
Another basic property of solutions of the average distance functional is that they attain the
maximum length allowed:

Lemma 3.1.9. Given a domain Q C RY, a non negative measure i, a function A : [0,diam Q] — R, for
any elements X1, X9 € A(Q) with 31 C Xy inequality

Fua(32) < Fja(31)

holds. In other words, F), 4 is not decreasing with respect to the inclusion.

Moreover, suppose H'(X2\X1) > 0. Then inequality
Fua(X2) < Fjya(X1)

holds.
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Proof. The proof is very simple: ¥; C ¥, gives
distq(x, Xo) < distq(z, X1) Vo € Q,

thus
A(disto(z, X9)) < A(disto(x, X)) Vo € Q,

and integrating on ()

/ A(dista(x, 5))df (z) < / A(disto(z, 1))df (z) Vo € Q.
Q Q

For the second part, ¥; C X, implies there exists an open set B such that for any z € B the in-

=

equality disto(z,31) > distq(z, X2) holds, so using the strict monotonicity of A and integrating on
2 concludes the proof. O

This result has a first consequence: under these hypothesis on €2, 1, A, for any I > 0

argmin 4, o) Fjia C Ai(2)\ U Aj(€2).
0<j<l

3.2 Geometric properties

In the previous section we have proven that existence of solutions for the average distance problem
is quite simple, and requires very little assumption. In this section our goal is to analyse geometric
properties of such solutions in two dimension case. Some preliminary definition is useful:

Definition 3.2.1. Let S C R" be a given set, S is a “loop” if it is homeomorphic to S* C R2.

Definition 3.2.2. Let S C R" be a set, v € S an arbitrary point, the “multiplicity” (or “order”) of = does
not exceed the cardinal number n if for ¢ — 0 the set (S N B(x,¢))\{x} has not more than n connected
components. Denoted with N the set of cardinal numbers n for which the order of x does not exceed n, the
minimum element of N will be referred as “multiplicity” (or “order”) of x, and denoted with ord,S.

Moreover, it is convenient to distinguish the following class of points:

Definition 3.2.3. Let Q2 be a given domain, S € A(2) a given element, the point x € S is “noncut” point if
S\{z} is connected by arc.

It is easy to observe that endpoints are always noncut points; moreover, if a non endpoint point
is noncut, then the set S must contain a loop.
Given a domain 2 C R", n > 2 a function A, a measure ;x € L? with p > 1 (in order to simplify

d
notations in the following the expression “;1 € LP” will mean that the Radon density ﬁ belongs

to LP(Q2, L™)), and | > 0 we will prove that any solution

Topt € argming 4 q) /Q A(disto(x, X))du(z)

satisfies:
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1. Absence of loops: there are no subsets £ C Yopt homeomorphic to S 1 C R2

2. Absence of crosses: if p > 4/3 and n = 2, then for every point z € Xpt, the multiplicity of z is
at most 3, and their number is finite.

3. Ahlfors regularity: if p > 2 (if n > 3), or p > 4/3 (if n = 2), then there exists c_, c; € (0,00)
such that

oot N B
< H( opt (z,p)) <es
P

for any z € Yopt, p > 0.

Some further properties will be discussed later in this Chapter.

3.2.1 Absence of loops

The first property is the absence of loops, i.e. any solution X of the average distance problem
does not contain subsets homeomorphic to S'. The proof is done by contradiction, and consists of
two parts:

o first, if there exists £ C X,pt homeomorphic to S1, a suitable set I. € A.(Q2) C E is removed,
and the difference

Flua(Zopt\L:) — Fly a(Zopt) (3.2.1)

estimated,

e then a suitable J. with #!(J.) = H'(I.) is added at a suitable point of Zp¢\ /. and the differ-
ence

F:lhA(Eopt\Ie) - FM,A(EOpt\IE U Js) (3.2.2)
estimated.
A preliminary result from [16] is required:

Lemma 3.2.4. Given a domain Q C R?, 2 € A(Q) consisting of more than one point, let x € ¥ be a noncut
point of 3. Then there exists a sequence of open sets { Dy }ren C X such that:

o x € Dy for k sufficiently large,
o Y\ Dy, is connected for any k,
e diam Dy, | 0 for k — oo,

o Dy, is connected for any k.
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Proof. Fix x, and consider z € ¥\{z}; two points y, y’ are said to be connected through I" (compact)
in X if {y,y'} C I. Define the sets

Xy, :={y : y connected toz through some I' C ¥\ B(x,1/k)},

Oy := X\ X.

Observe that X, are closed by construction, as given y;, — y with {yx} C X}, denoting with T’ a
set connecting yy, to z, upon subsequence I';, — I, connecting y to z. Thus Oy, are open. As z # z, it
follows x € Oy, for k sufficiently large.

It remains to prove that diam O — 0 as k — oco. Assume the contrary holds, i.e. there exists a
sequnce {y} for which for any set I';, connecting yy, to z it holds

v N Bz, 1/k) # 0.

Choose an arbitrary accumulation point y of {y; }. Local connectedness implies that there exists Cj,
connecting y;, to y with Cy, N B(z,r/2) = 0, for some r > 0, thus for any set I' connecting y to z it
holds = € T'. Recall that y ¢ B(x,r), thus 2 € ¥\{z}, with the latter space being locally pathwise
connected, as it is open and completely metrizable. But every such arc connecting y and z must pass
through z thus leading to a contradiction.

Denote with D, the connected component of Oy, containing x, and simple topological consider-
ations yield that Dy, is relatively open in ¥. Thus all the points follow quite straightforward, from
properties proven for Oy, except for “3\ Dy, is connected for any k”.

To prove the latter, assume the contrary holds, i.e. for some y € O\ D, for any set I' connecting
y to z it holds I' N Dy, # (. Let « an arbitrary arc connecting y to z, with v(0) = y, 7(1) = z and
denote with

t :=sup{t € [0,1] : v(s) & Dy Vs € [0,t)}, T :=t.

Consider an arc [y, Z] C v and [y, Z) := [y, Z]\{Z}. It is straightforward to check [y, Z) C Oy. Using
a similar argument, it can be checked that z € Oy, thus giving ([0, ?]). Since Oy, open, there exists
t' > t such that ([0,t]) C Oy, thus belongs to the same coonected component of Oy, and since
by definition one has v([0,t']) C Oy # 0, this gives that this said connected component is Dy, and
y € Dg, which is a contradiction. O

Lemma 3.2.5. Given a domain Q C R?, a measure . € LP(Q), a function A : [0,diam Q] — [0, 00),
Y € A(Q) containing a subset E homeomorphic to S' C R?. Then for H'-a.e. point x € X there exists
I.(x) > x contained in ¥ such that

1
Fa(S\I:(x)) = Fja(E) < Ke'a
for some K > 0 not dependent on e, with q denoting the conjugate exponent of p.

Proof. Define

1
E* = {er: i (0 B@ 1) 21},

r—0+ 2r
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and as X is (H!, 1)-rectifiable, by Besicovitch-Marstrand-Mattila theorem (see [2] for more details)
HY(E*) = HY(E) follows. Forevery r € E* and ¢ > 0 denote with T'(z, €) the union of transport rays
of the Monge-Kantorovich problem of transporting /L|29 on its projection over 3 which end in ¥ N

B(z,¢). As E is homeomorphic to S?, clearly X\ B(z, ¢) is connected, and satisfies #!(X\B(z,¢)) <
H'(X). The following estimate holds:

/ dist(z, $\ B(z, &))du(x) — / dist(z, $\ B(z, £))dpu(x) + / dist(z, S\ B(z, ) dy(x)
Q O\T(z,¢) T(x,e)

< dist(z, X)du(x) + / dist(x, ) + edp(x)
O\T'(z,e) T'(z.)

_ /Q dist(z, B)du(x) + ep(T(w, )

Moreover, denoting with v the projection of 1 to X, one has

(B(z,¢))

limsup ————= < o©
e—0t €

for H'-a.e. z € ¥, and
LX(T(x,¢)) = (B(x,¢))

which implies
L3(T(x,¢)) < Ke
for some K = K (z) not dependent on ¢. Then applying Holder inequality yields
T, 2)) < Bl o) (3T ()Y < KEVA,

and combining with
disto(z, X\ B(z,¢)) < distq(z,X) +¢ Vo e Q

the proof is complete. O
Lemma 3.2.5 can be further generalized:

Lemma 3.2.6. Using the same notations of Lemma 3.2.5, with the only modification of u € L*(S) (instead
of p € LP(R2) as in Lemma 3.2.5), there exists x € ¥ and ey > 0 such that for any e < e¢ inequality

Fua(E\T:(2) — Fa(S) < €

where T.(x) C X is some suitable neighborhood of x (with respect to the induced topology) and C > 0 a
constant not dependent on e.

Proof. As ) is compact, it is clear that L' (2) C L*2(Q) if s; < so, thus Lemma 3.2.5 is sufficient to
yield the thesis if © € LP(Q2) for some p > 2.
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Denote with ' the set of points of Q2 with unique projection on ¥, and since 2, is the set of
differentiable points of z — distg(x,X) then £"(Y) = L£"(2), and condition p < L™ allows to
consider ' instead of 2 without loss of generality.

Choose an arbitrary point X € E (not influential for the rest of the proof), and define

$:10,1] — S*, v:S'— E, (3.2.3)

thus ¢ := ¢ 09 : [0,1] — E'is a parameterization, with ¢(0) = ¢(1) = X; then choose an arbitrary
p € LY(Q), and for any = € E denote with J.(z) := {y € E : dg(y,x) < £/2}, with dg denoting the
path distance on E, and

Us(z) :={z € @ : dist(z, %) = dist(z, J.(z))}.
H(E)

3

Then, define N, := {
that

] + 1, and for any e there exists a finite set of points {xjs}jv; 1 € E'such

N
U Je(xj) = E;
j=1

define U := U;VQ U.(x), and by definition U is the set of points with projection on E. Now two
configurations may arise:

1. p(U) = 0, which implies that the set of points projecting on E is y-negligible, thus F), 4(X) =

F,, A(X\E). From topological considerations there exists j € {1,--- , Nc} such that ¥\ J.(z5) is
connected for ¢ sufficiently small, thus the competitor ¥ := ¥\ J.(x;) satisfies

HIE) <HU(D)—e,  Fua(®) = Fua®);
2. u(U) > 0: as the projection om ¥ of any point in €’ is unique, for k # h sets J.(z) and J.(zp)

are disjoint, yielding

1<j<Ne

Ne Ne
wlU) = N(U Ua(l'j)) = ZUa(xj) > Ne min M(Us(xj))'
j=1 =1

This implies

min 1(U-(23)) < u(O)(|

or equivalently there exists j* such that u(U.(x;+)) < C*e for some constant C* > 0 not
dependent on €. Then

disto(z, X) = distq(z, X\ Je(zj+)) <= 2 ¢ U-(xj+)
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and considering that the difference distn(z, X) = dist(z, X\ J-(x;+)) is at most ¢, it holds

Fua(E\J:(2)) < Fya(X) + C*2

Finally, while generally ¥\ J.(z;+) ¢ A(2), denote with J?(z;-) the interior part of J.(z;+),
and X\ J?(z;+) verifies

S\J2(zj+) € AQ),  Fua(B\J2(x+)) < Fla(¥) +C"e?,
thus the proof is complete. ]

The next result, first proven in [16], is useful in estimating (3.2.2)

Lemma 3.2.7. Given a domain 2, a Borel measure < L™ (n > 2), a function A : [0,diam Q] — [0, c0)
and a sequence of closed sets {¥}ren. Assume there exists a Borel set B C ) such that ¥ := ¥, N B is
independent of k. Denote

T = {x € Q: Jky = ko(x) such that 0 < distg(z,X) < distg(x, Lp\X) for any k > ko}

and assume p(T") > 0. Then for any € > 0 there exists a closed segment I, € A.(SY) such that XN I. # 0
and there exists constants C,e > 0 not dependent on ¢ for which inequality

Fua(ZpUL) < Foa(S,) — Cem+/2
holds for any € < €.

Notice that this result is useful only for n = 2, as for n > 3 a stronger estimate holds (see Lemma
3.4.6 for more details).

Proof. Denote with €2, the set of points with unique projection on ¥, and let kj, : Q, — Xy, be the
projection map. Again, similar to the argument found in the proof of Lemma 3.2.6, since (2, is the
set of differentiable points of x — distq(z, X) then £(Q) = £"(Q2), and condition p < L™ allows
to consider Q' := [,y Q4 instead of Q without loss of generality.

Choose an arbitrary point x € 7" N €/, and consider the transport ray Rx(z) of z on X, and
put Iy, :== H'(Ry(z)). By hypothesis this ray ends on X for any k > ko, and Ri(x) C Ry (z) for any
h > k > ko; denote with R(z) the transport ray of x on ¥, Ry(z) 1 R(x), and I}, 1 | := H'(R(z)).
Denote with Oy, the endpoint of Rj(x) not belonging to ¥, then

Y N B(O, 1) # 0.

Without loss of generality impose a coordinate system with origin in Oy, with z,-axis directed
along R(x), and such that the endpoint P of R(z) on ¥ has coordinates P := (0,--- ,0, —[). Define
P.:=(0,---,0,—l +€ly), I. := [P, P, the segment between P and P.. For eachm € Nand ¢ < [,
define
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Ao :={(Y,z,) € B(0,lp,) : p, <0, disto((Y, ), P.) — disto((Y, ), 0B(0,1,,,)) < —ely/4}.
If there exists a choice of x such that

(Age) > Cent)/2 (3.2.4)

for some constant C' > 0 not dependent on € and for any ¢ sufficiently small then the thesis follows:
indeed if this is the case consider an arbitrary j > j(z) > ko such that

I, >1/2Yh > j
and for z € Ay, . inequality

distq(z, Xp U I) < disto(z,0B(0,1)) — elp/4 < dist(z,X) — el/8
holds, which implies

FM,A(Zh U Ie) — FM,A(Z) < —Slu(Ahﬁ)/g
for any h > j. Thus (3.2.4) need to be proven. Choose m € (0.1/2) and define

g = {2 = (Y,2,) € B(O, 1) : |2 + 1o/2] < (1 — 4m?)Y2/2,|Y| < mijet/?.}

For every z = (Y, z,) € I, 1 it holds

(Y + (@0 + b — eli)V?) = Iy + (22 + |YV]2)1/2
(m?Re + (@ + I — elp) )2 = I, + (Ml + 23)/?

m?l3e e(m?12 — 2l(zy + 1))
" l k n 2
2] + (zn, + lg) + 2lom + 1) + ae
m2li m2li 9
— 2l + —F) + ae
Ty + Ui |z

distq(z, P.) — disto(z, 0B(0, 1)) <
<

< -l + ]xn] +

(

N[O

where oo = a(m, ) > 0is a constant not dependent on k. It easy to verify

272

l
— 2l + m < =l Vz € Hm,k,e
T + U |xn|

272
m=ly

and assuming k£ > j it holds
distq(z, P-) — distq(z,0B(0,1x)) < eli/4

whenever ¢ < [/8c, implying IT,,, ;. - C Ay for such e.
d
Assume now z is chosen in such way that #!-a.e. z € Ry(z) is a Lebesgue point of ﬁ (which

is true for y-a.e. z € T N Q' in view of [17]). Fixed an arbitrary k > j,
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+
.. M(Hmks) lem d:U’ 1
3 vy > — o~
herg(l)ljrlf oz 2 Cn(Ri(z)) :=C T (Y, xp)dH (x4) (3.2.5)
o ke pa—am?)1? : :
holds, with [} := 3 + #———— and C > 0 is a constant not dependent on k. Indeed this steers
from
U m dp
plile) = [ aii o) | Y)Y
I Y |<miget/2 AL
i el/? l
— s | e [ ) [ (¥, B)AH™ (2)(Y)
25[ —el/2 0 |Y|<migel/2
— [ Bl @)
0
where
dp
fe(Yian) = ﬁ(y, xn)Xl[lém,lfm](%)a
1 Inte 1 1
frelw) =m0 FiY, )" (V) (5),
2e zp—el/? [Y|<migel/?

then in view of assumptions on R(x), for H!-a.e. on R(z) the convergence

D)2 — Cp(ml)" 1 £(0, z,)

holds, where C), > 0 is a constant depending only on n. Using Fatou’s lemma and [;, > [/2 estimate
(3.2.5) follows.

Observe C,,(Ri(x)) > 0 for some z, then choose k > j and m = m(k) € (0,1/2) such that
Cr(Ry(x)) > 0. Then (3.2.5) implies

(M o) > Con(Ri (@)™ D72
for any € < ¢, with g9 > 0 dependent only on k.

In view of I}, > I}, inclusion II;, ;. . C Il x - holds whenever

l,;jm > lljm lom < U Ml < ik (3.2.6)

Denoting

O =l i
the inequalities (3.2.6) can be written as

4m5? < <1 — (Gp(1 —4m?)Y2 +1 - 5)

= 0p(1 — (1 — 4m?)V2)(2 4 61,(1 — 4m>)'/2 = §p) (3.2.7)



3.2. GEOMETRIC PROPERTIES 59

If this system has to be solvable,

51+ (1 — 4m?)M/?) < 2+ 6,(1 — 4m?)V/% — 5, (3.2.8)

must hold, which is equivalent to ¢ < 1, always valid since [}, is non decreasing in k. Therefore
there exists m = m(k) satisfying (3.2.4).
Finally combining

and (11, ;) > Con( Ry ()"~ D/2 yields

M(Hm,k,s) > Cm(RE(x))g(”_l)/Q > Ce(n—1)/2

for some constant C' = C'(k) > 0 not dependent on k and ¢ and valid for any € < £¢. At last

M(Hm,k,a) c Am,kz,e
yields
(A e) > Ce=H/2
for the same C and ¢, and the proof is complete. O
Now we are able to prove that solutions of the average distance problem do not contain loops:

Theorem 3.2.8. Given a domain Q2 C R?, a measure u € L'(S2), a function A : [0,diam Q] — [0, 00), let
Yopt be an arbitrary solution of the average distance problem. Then no subsets S C Yopy can be homeomorphic
to S1.

Proof. The proof is now simple: if there exists £ C ¥,,t homeomorphic to .S 1 then applying Lemma
3.2.6 yields the existence of a competitor ¥’ € A(2) satisfying

HI(E)<HY(E) e,  Foa(X) < F a(X)+C*?

for any ¢ sufficiently small, and some constant C* > 0 not dependent on ¢.
Then applying Lemma 3.2.7 yields the existence of ¥ € A(12) satisfying

HI(E) <H' () +e,  Fua(®) < Fua®) -2
for some C, > 0 not dependent on ¢, thus for ¢ sufficiently small it holds
7_[1(2//) < H1<Eopt)7 Foa(X") < Fua(Xopt)
contradicting the optimality of ¥pt. O

For similar results in higher dimensional domains we refer to Section 3.4 later in this Chapter.
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3.2.2 Triple points and endpoints

In two dimensional domains, another property satisfied by solutions of the average distance prob-
lem, under particular hypothesis on the measure, is that they have only a finite number of endpoints.
Considering that a non endpoint cannot be a noncut point unless a loop is present, this is equivalent
to state that the number of noncut points is finite. All domains considered in this subsection will be
two dimension domains.

Proposition 3.2.9. Given a domain ), a measure p € LP(Q) with p > 4/3, a function A : [0, diam Q] —
[0,00), let Xopt be a solution of the average distance problem. Assume there exists y € Yopt such that
w(V(y)) > 0. Then there exists C > 0 such that for every noncut point x € opt it holds p(V (x)) > C, and
the number for noncut points is finite.

Proof. The first part would follow from the following claim:

e let z € Yyt be a noncut point, then

w(V(@) = sup PV W)

YEXopt 27

Choose an arbitrary point y € ¥qpt and let { Dy }ren a sequence satisfying conditions of Lemma
3.2.4, with Dy, > x for any k. Without loss of generality suppose ¢;, := diam D}, sufficiently small
such thaty ¢ Dy, for any k. Obviously H!(Dy) > &y, and in the following the index k will be omitted,
as this does not generate confusion.

Define ¥, := Sopt\ Dy, X7 := XL U 0B(y,e/2m), clearly XL, 37 € A(Q) and H' (Sopt) > H (XV).
Then

FM,A(Z,E) < Fu,A(Zopt) + 5M(V(Dk)) Vk e N

and

Fua(3) < Fua() —e(u(V(y) — w(Bly,&/2m))),
yielding

Fua(®Xl) < Fua(Sopt) +ep(V(Dy)) — e(u(V(y)) — m(B(y,e/27)))  VkeN.

As e —, D, — {x} and u(B(y,e/27)) — 0 as k — oo, the minimality of Xop; forces u(V(x)) >

n(V(y))/2m.
For the second part, i.e. finiteness of noncut points, consider z1, x2 noncut points, from the first

claim it holds
p(V(z1)) <2mp(V(zz)),  p(V(ze)) < 2mp(V(z1))

thus

p(V(x1)) < 2mp(V(a2)) < 4m°p(V (1))
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As by hypothesis there exists y € Yopt with p(V (y)) > 0, the first claim yields p(V (z1)) > u(V(y))/2m >
0,and p(V(z2)) > pu(V (y)) follows. From the arbitrariness of x1, 23 follows that fro any noncut point
x itholds p(V (z)) > pu(V(y))/2n thus there are at most

2mp(2)
w(V(y))

noncut points, and the proof is complete. O

Proposition 3.2.9 states that there exists a finite number of noncut points if there exists y € Xopt
with u(V(y)) > 0: the next result deal with this existence problem:

Proposition 3.2.10. Given a domain ), a measure . € LP(Q2) with p > 4/3, a function A : [0, diam Q] —
[0,00), and ¥ € A(RQ), there exists y € X such that u(V(y)) > 0.

Notice that combining Proposition 3.2.9 and 3.2.10 yields:

Theorem 3.2.11. Given a domain 2, a measure . € LP(Q) with p > 4/3, and Xopr € A(Q) solution of the
average distance problem, then Yop has finite endpoints.

The proof of Proposition 3.2.10 requires auxiliary construction. Given a domain 2, and ¥ €
A(§2), for any couple of points z, z € ¥ define

D(xz,z) := {y € ¥ : y is connected through a pathy to z and z ¢ ~}.

If ¥ does not contain loops, then every couple of points on X is connected by a unique arc, thus the
following order can be imposed: given x € ¥, and an arc y C X starting in x, 21, 22 € 7y

21 S'y,z 22

if [z, z1] C [, 22|, where [z, z] denotes the arc connecting = and z.
Similarly, z1 <,z 22 if 21 <, 22 and z; # 22. In this context a new natural distance can be
introduced:

ds : 2 x Y — [0, HYD)],  ds(z1,z2) := H([z1, 22)]).
The set D(z, z) satisfies several properties:

Proposition 3.2.12. Given a domain Q, ¥ € A(QY) consisting of more than one point, let = € X be arbitrary
point. Then for all z € ¥\{z} it holds:

e D(z,z) is connected and contains x,

o X\ D(z, z) is connected and closed.
Assume that X does not contain loops, then for any arc ~ starting in x it holds:

o D(x,21) C D(x,22) and H (D(x, 21)) < HY(D(x, 22)) whenever 21 <, 22,
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® Npen D(x, 21) = {x} whenever 2z, — x as k — oo and x is and endpoint.

The proof is from [16].

Proof. The proof will be split in several passages.
e To prove: D(z, z) is connected and contains z.

This follows from the definition of D(z, z).

e To prove: ¥\ D(z, z) is connected and closed.

Notice that z ¢ D(z, z); let v be an arc connecting y € X\D(z, z) to z. It follows v C ¥\ D(z, 2)
as the contrary would give the existence of v connected to = by some arc 7' not passing through z.
Denoting with [y, v] C ~ an arc connecting y to v, [y, v] o+’ is an arc connecting y to z without passing
through z, contradicting the choice of y.

It remains to prove that ¥\ D(z, z) is closed. Consider a sequence {y,} — y and suppose by
contradiction that y ¢ X\D(z,z), i.e. y is connected to by some arc v not containing z, and
assume y # z, as otherwise there is nothing to prove. Let ¢ > 0 such that z ¢ B(y,¢) and for
any h sufficiently large one has y;, € B(y,¢), and arcwise connectedness gives the existence of
v € £ N B(y, €) connecting yy, to y and clearly not containing z. Thus yj, is connected to  through
an arc not containing z, which contradicts y;, ¢ D(z, 2).

e To prove: D(z,21) C D(z,2) and HY(D(x,21)) < HY(D(x, 22)) whenever 21 <., 22,

Let v C X be an arc through = and choose z; <., z; consider an arbitrary y € D(x,2;) and
consider an arc 7/ connecting z to y. The set v N4/ is such that if v € v N4/ then for any w, if it
holds u <, voru <, v, thenu € v N~'. Thus either y N+ = {z} ot it is an arc [z,y'] C 7.
Clearly ' <,. z1 for some z; € 7, hence v/ <,, 22 and 22 ¢ 7. The arbitrariness of y gives
D(z,21) C D(z, 22).

Denote with A := [z1, 23], and by construction it is a piece of v between z; and z;. Consider an
arbitrary z € A, and z € D(x, 22); suppose z € D(x, z1), i.e. there exists an arc 7y; C ¥ connecting z
and z and not containing z;, which is a contradiction, as there would exist two arcs between z and
x. Thus 2z ¢ D(z, 21), H!(A) > 0 and the thesis is proven.

e To prove: oy D(, 2x) = {2} whenever 2, — x as k — oo and z is and endpoint.

Assume z is an endpoint, and consider a sequence z;, — x, and assume by contradiction that there
exists y € ey D(, 2)\{z}. Lety' := [z, y], and yN v # {z} since this would give ord, ¥ > 2, thus
vN~'is an arc, and this implies y ¢ D(z, z;) for any k sufficiently large, which is a contradiction. [

Some auxiliary results concerning solutions of average distance problem are required. The next
two results are from [16].
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Lemma 3.2.13. Let Yopt be a solution of the average distance problem, and {xy}ren C Lopt a sequence
of noncut points and {zy}ren C Xopt such that e, := diam D(wy,2;) — 0as k — oo. Then for any
o > (n—1)/2 it holds

V(D)
k—o0 8%

Proof. Denote with ¢(-) := u(V(+)). Upon subsequecne (which will not be relabeled) assume z;, —
x € Yopt for the sake of brevity denote with Dy, := D(x, zx) and the index in g3 := diam Dj, will
be omitted. Denote with ¥, := ¥\ Dy, and recall that ¥, is compact in view of Proposition 3.2.12.
Moreover it holds

/dist(x,Eg)dgos S/dist(a:,Eopt)dcp5+5¢(Dk).
Q Q

On the other hand one has ¥(Q) > ¢ (B(xz,r)) for some r, as otherwise it would mean that a single
point is optimal, which is not the case. Thus there exists X’ such that
H(ZL) = H' (Sopt),

and

/_ dist(z, X! )dps < / dist(z, 2. )dp, — Cem1)/2
Q Q

for some C independent of % for any e sufficiently small (independently of k). Arguing by contra-
diction yields et (Dy,) = o(c(*1)/2), which contradicts the optimality of Sopt. O

Lemma 3.2.14. Given a domain @ C R", measures i, v € LP(Q) with p > 2n/(n + 1), a solution Xopt of
the average distance functional, and an endpoint x € Yopy, let vy be an injective arc in ¥ starting at x. Then
there exists o > 1 such that (n — 1)go /2n < 1 (q is the conjugate exponent of p) and for all z € ~ the set H'
of points y € D(z, z) for which there exists z' € ~ such that y € D(x,2") and

ly 2 (Hl((D(l‘,z'))))(”—l)qa/%
where 1, denotes the maximum length of transport ray ending in y, satisfies u(V (H)) > 0.

Proof. Due to the assumptions on p one has ¢ < 2n/(n — 1) and there exists o > 1 such that (n —
1)go/2n < 1. Suppose the statement does not hold with this o, i.e. there exists z € v such that
$(B.) = $(D(x, z)) where

B.:={y e D(z,2): 1, < (H (D(x, 7)) Vw/2y," ¢ 5 y € D(z,2)}.

In this case theere exist 2/ € v N D(x,z) and y € D(x,2'). Denote with ¢ := H!(D(z,2')) and the
arbitrariness of 2’ allows to make ¢ as small as required. Consideran arbitrary v with y = k(v) (this
notation means that v belongs to the closure of some transport ray endpint in y), and it holds

=2 <|v—y|l+|y—2| <l +e<en D/ o
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Condition (n — 1)go/2n < 1 givces that in the above inequality the addend ¢ is negligible for ¢ < 1.
Therefore

T/J(D(x7 Z/)) = w(D(ﬂ% Z/) N Bz)
= ps({v: k(v) € D(z,2') N B,})
< ws(B(#', (n = 1)q0/2n))

and using Holder inequality gives

W(D(z, 7)) < Cllgs||Lre™ /2
contradicting Lemma 3.2.13, thus concluding the proof. -

Another construction, valid only in the two dimension case, is required: endow R? with a coor-
dinate system, let be given (2, the domain and a set ¥ € A(2). Consider the Monge-Kantorovich
problem of transporting £|29 on ’H‘lz. Let T be the transport set (union of transport rays without
endpoints) and define

TH={x €T :m(x) > m(k(x)) or mi(z) = m(k(x)), m2(x) > m2(k(z)}
7= = T\T*

where 7; : R? — R is the projection on the i-th coordinate, and k(x) is the projection of z on ¥,
uniquely defined if z € T'. Let y € Xopt be an endpoint of some transport ray, such that any point
projecting on y belongs to the same line /, and denote with §(y) € [0, 7/2] the angle between [ and
es, the second unit coordinate vector.

Moreover, the following notations will be used:

YEC) = pkTONTE), () = a(V ().

Lemma 3.2.15. Given a domain Q C R?, YoptA(€2) solution of the average distance problem, let x € Yopt
be a noncut point, and let D C € be and open set such that for 1-a.e. point y € DN\ Xopt, 0(y) is well defined,
while ¢ D and (D) > o~ (D). Then for every f € Cg(D), 1-Lipschitz and vanishing on Sopy, it holds

| Fsinbatwt =) < wifa))
The proof is from [16].

Proof. Denote with D, the sets from Lemma 3.2.4, and suppose ¢ := diam Dy, (in the following
the index will be omitted for the sake of brevity) to be sufficiently small such that D N Dy, = (). Let
Ye := Yopt\Di, then

/dist(z,EE)dgps§/dist(z,2)d¢s+51/1(Dk).
Q Q

Assume without loss of generality that
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co(supp(™) U supp(p™)) CC Q.
Consider a smooth function f € C}(D) as in the hypothesis and define the diffeomorphism

<I>5 : Q — Q, <I>5($1,1‘2) = (1'1 — 5f(l’1,172),{l)2),

for § sufficiently small. Then
H(D5(2.)) < HY(Ee) +Cyd

for some constant Cy > 0, and choose 0 := £/C. Define X, := ®5(2.) and it follows

HYEL) < HNE) + Cpd < H' (Sopt) — € + Cp6 = H (Sopt),

as H!(Dy)] > e. For the average distance term it holds

/_ dist(z, X0)dps < /_ dist(z, XL)dps — Ce + o(¢)
0 0
/ dist(z, Xopt)dps — Ce + o(e) + ey (Dy)
0

with
C:= / fsinfd(ypt — 7).
D

The optimality of Xopt forces C' < 9(Dy), and passing to the limit & — oo the proof is complete. [
Now it is possible to prove Proposition 3.2.10:

Proof. (of Proposition 3.2.10).
The proof is done by contradiction, and is split in several steps. Define ¥ (-) := u(V(-)), and
suppose the opposite, i.e. 1)(z) = 0 for any x € Xpt.

Step 1:
From assumptions on the measure, one has that 0 is ¥-a.e. well defined: indeed denote with F the
set on which 6 is not defined, and it is possible to decompose E into

E=FEyUE;

where Ej is the set of points ¥t which are not endpoints of any transport ray (i.e. the set of
points for which no point of Q\Xt projects onto), and FE is the set of points which are endpoints
of multiple non collinear transport rays. Thus V(Ey) C Yopt, forcing ¢(£p) = 0; E1 is at most
countable and assumption ¥ (y) = 0 for any y € Xop implies ¥(E7) = 0.

In view of Lemma 3.2.15 it holds sin ¢ (e) = sin#y~(e) for every Borel set e C Yop, which
implies

YT (en{0#0}) =v (en{0 #0})

and exchanging the coordinates yields

pr =9
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Step 2:

Fix an arbitrary endpoint € ¥qpt and an arbitrary point z € Xqpt; since 0 is well defined on D(z, z),
and combining Lemma 3.2.14 and ¢t = ¢~ yields that for a non v negligible set of y € D(z,z)
the angle 6(y) is defined and y is endpoint of exactly two transport rays R;- C T belonging to the
same line [, which satisfies

+ 1 o/4

ly > (HY(D(w,2)))*/
for some o > 1, where lyi = Hl(R;f), and go /4 < 1. Denote with C, the set of such y € D(x, z). It
holds:

e for i-a.e. y € C; are not endpoints of Xop once H'(D(z, 2)) is sufficiently small.

To prove the claim above, define

C(y") :={y € D(x,2) endpoint : [z,y] N [z, 2] = [x, 9]}

for every y' € [z, z] with order at least 3. Clearly every endpoint of D(z, z) belongs to a C(y’) for
some 3’ € [z, z]; moreover C(y)) # C(y5) whenever y; # y5, as ¥opt does not contains loops.
If it holds

{y e CW): IF > (HN(D(,7)))?/* for some 2’ € [z, 2],y € D(z,7)}| < 1,

for 2’ sufficiently close to x, then the claim is proven. Indeed the set of points with order at least
3 is at most countable, since Y¥opt does not contain loops. This would imply that the set Cﬁ”d of
endpoints of C, is at most countable, and due to assumptions on v, ) (C¢"¢) = 0.
Denote

5(y) := inf{H (D(z,2)) : 2 € [z,2],y € D(z,2)}

and it is clear that if y € C(y/) then

o(y) == inf{?—[l(D(m,z')) 1y <ya 2 €[z, 2]}

and thus forany y € C(y') §(y) is equal to a constant §. Let y; € C(y')NC;, without loss of generality
assume that the origin of the coordinate system is at y; the x axis coincides with the line of transport
rays R.. Then

Zopt N (B((O’ 5qa/4)’ 5q0/4) U B((Ov _5(10/4)7 5qa/4)) = @
Let 2’ >, , ¢/ such that #!(D(x, 2’)) < 26, then for any £ € D(x, 2’) it holds
€ —y1| < diam D(x, 2) < H'(D(z,2")) <26

and hence D(z,2') C B(y1,25). Assume z is close to y so that § < H!(D(z,2')) can be as small as
required and 26 < §9°/%. Moreover, without loss of generality suppose = € {22 < 0} which yields
D(z,2') Cxe < 0.

Suppose there exists another y» € C(y’) N C, distinct from y;. Then ¥, must be outside the
union of balls centred in R;‘; with radii 67/ and touching y2. Since y € B(y1,2J) then x must be
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Figure 3.2.1: This is a schematic representation of the configuration.

inside the shaded region in Figure 3.2.1, as otherwise the arc [z, y;| must pass through y», which is
assumed an endpoint.

Then ¥,p¢ must belong to this region as otherwise there exists ' € Xop; outside, and arc [z, 2]
must pass through ¥ or y2 which are assumed be endpoints. The diameter of this region cannot
exceed 24, thus diam ¥opt < 0. Letting 2 —, 2 § — 0 therefore diam ¥opt = 0, which would mean
Yopt consists of one point, contradiction.

Step 3:
Let z € ¥opt be an endpoint, v C ¥opt be an arc starting at x, using results from Step 2 it follows that
for any sequence {z}, }rhen C v with 2, —- « there exists a sequence {yp, }ren satisfying

e y, € D(z,2,) and are not endpoints,

e 0(yn) is defined and y;, is endpoint of exactly two transport rays belonging to the same line /
starting from outside B(yp, 7,) where

= (H'(D(, h%)))qa/‘l.

Then for any h there exists an endpoint x, of ¥opt such that D(xy,yn) C D(z, 2;,): indeed either
yn € 7, in which case z;, := z is acceptable choice, or y ¢ ~, in which case v N [0, y}] = [z, y}] for
some ¥ <,z 2, and xj can be taken any of the endpoints of ¥, belonging to D (yx, y},)-

Denote Dy, := D(zp,yp), and ep, := diam Dj,, omitting the index » when no risk of confusion
arises. Note that

Ep = diam Dh S Hl(Dh) S Hl(D($7Z;L)) —0
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as h — oo. Without loss of generality assume the coordinate system is placed with axis x; coinciding

with [, and the origin at y;,. Denote . := a;]f/ 4 < ry, and consider points PEjE = (%re,0). Clearly

Sopt N (B(PF,re) UB(P-,12)) =0

while Dy, C B(yp, ), thus
Dy € B(yn, e)\(B(P.",72) U B(PZ, 7).

Without loss of generality assume Dj, C {x2 < 0}. Consider points

AT = 0B(yn,e) NOB(PF,r:) N Q*
where QT are respectively the fourth and the third quadrant in the coordinate system. Then D,
belongs to the curvilinear triangle with vertexes y;, and AZ. By direct computation

AL = (£2/2r,e(1 = €2 /4r2)12) = (o(e), e + 0(e))

due to the choice of r. and assumptions on p.
Denote with R* the transport rays starting at P* and passing through AF, and with CZ the
cones with vertexes PEi and formed by axis = and rays R*; define also

Dsi = C’Ei\B(yha Ts)
DY := 25 < O\(DX U DZ UB(yp,re)).
Define the measures

Hsi = Hk=1(Dp)NTE He 1= M;r + e = Hk-1(Dy)-

Disintegrating the measures yields
i) = [ (Y e,
h

where Dy, > t — (uF)'(t,-) is measurable and probability measures (uZ)'(t, ) are concentrated
on k~1(t) N T* for ¢y*-a.e. and in view of results from Step 1, for y-a.e. t € D,
Note that

ME(DS) < /-'LE(B(yha TE))'

Indeed for ¢-a.e. e € Dy, the set k~1(t) is contained in a line ;. It is clear that if I; passes through
DY then both I := I; N T* intersect the horizontal segment (P., P;). Suppose without loss of
generality ;" N (P, yp] # 0. Then k=1(t) N T+ C (P,,t), where { P} := I;7 N (P=,yy]. Since u(¢,-)
are concentrated on [, then

(ud)'(t,17) = (ud)' (¢, (T2, 1)) = (ud)'(t, Byn, 7e)) = 1

while
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(n2) (8, 07) = (uz)' (6, D2) = (uz ) (t, Byn,7e)) = 1,

therefore (u2)'(t, D2) < (uf)'(t, B(yn, 7)) and symmetrically (uf)'(t, D2) < (uz)'(t, B(yn, 7<))-

Now construct the set 3. in the following way: remove D), from Xp, then add a segment I.
centred at yj, along z; axis and having length e. . € A((2) and satisfies #'(3.) < H!(Zopt), and
observe that

diStQ(~, Ee) < diStQ(-, Zopt) +e.
On the other hand by direct computation

distg(z, Xe) = distg(z, 25) < distq(z, D) — €/4

+

£ are the endpoints of I. in Q* respectively. Therefore

forany z € DI U D_, where z

F/.L,A(ZE) < Fy,A(Z> Zopt) + Eﬂs(Dg U B(yn,7e)) — E,UE(D: UD—¢e7)/4.

Considering that
pe(DFUD — &™) + pe(D2 U B(yn,re)) — 1(Dy),
it holds
F/L,A(EE) < Fu,A(ZOPt)a
contradicting the optimality of ¥pt. O

In two dimensional domain, under suitable assumptions on measure and function, another
property satisfied by solutions of the average distance problem is that any point has multiplicity
at most 3, and only a finite number of points can have multiplicity 3. The proof is similar to that
done for the absence of loops, but more stringent conditions on the measure are required.

Lemma 3.2.16. Given a domain 0, a measure y € LP(Q) with p > 4/3, a function A : [0,diam Q] —
[0, 00), let Xopt be a solution of the average distance problem. Then it holds:

1. {x € Xopt : ordzXopt > 3}| < o0,
2. forany z € Yopt, ord,Yopt < 3.
Before the proof, the notion of “depth” of a point is required:

Definition 3.2.17. Given a domain 2 and a set X € A(S2), the “depth” of a point =z € X is not exceeding
the cardinal number w if there exists an arc connecting z to an endpoint | containing not more than n points
with order at least 3; the “depth” of z is n if n is the minimal cardinal for which the depth of z does not exceed
n.

Another result is useful:
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Theorem 3.2.18. Given a domain ), an element X € A(S2) a constant L > 0, and a point P € X with order
ordpX > L, then there exists arcs {~;}£ | with positive length and an endpoint in P and ~; N ~; = {P}
whenever i # j.

This result is known as “Menger n-Beinsatz”. The proof can be found in [30].

Proof. (of Lemma 3.2.16)
As Yopt 8 connected, no point has order 0. Let £ be the number of endpoints of Yopts and the first
claim is:

e forany = € Xp, the depth of x is at most k — 1.

Consider an arbitrary point 2o € ¥pt, and an arc 7 connecting it to an arbitrary endpoint, and let
{z;}i>1 be the set of points with order at least 3. From Menger n-Beinsatz for any xz; there exists an
arc v, starting in z; and intersecting v only in z;. Pick an arbitrary internal point z; on this arc, and
consider the connected component of ¥op\{z;} containing z;. Choose an arbitrary endpoint /; on
Yopt\{zi}, and from Theorem 3.2.8 I; # lo. Using the same argument I; # I; whenever j # i, thus
the depth of z( does not exceed k — 1.

Denote with B; the set of points of ¥, with depth j, and with B the number of points with
order at least 3,

k-1
B=|]B,
=0
and considering that By < k, B;11 < B; for any i, |B| < oco.
The second claim is:
e every point has finite order, not exceeding k.

Consider an arbitrary point 2 € Xpt, and suppose the contrary i.e. the order of z is at least k + 1.
From Menger n-Beinsatz there exist k + 1 distinct arcs {7;}/7] starting at 2 and pairwise disjoint
outside of z. Taking an arbitrary internal point x; € 7;, the connected component of ¥op\{z}
containing {z; } must contain another endpoint /;, and using the same argument found before, I; # [;
whenever ¢ # j. This implies there exist at least k£ + 1 endpoints, contradiction.

Now the second point of the thesis can be proven. Suppose the contrary i.e. there exists x € Yopt
with ord,Xope > 4. From Menger n-Beinsatz there exist arcs {v;}._; starting at = and disjoint outside
z. Choose € > 0 sufficiently small such that v; N 0B(z,¢) # 0 fori = 1,--- ,4, and choose points
ai,--- ,aq such that a; € v; N OB(x,¢).

Without loss of generality there exist two points a;/, aj such that the minimum arc of 9B(z, ¢)
between them has length at most /2. Then define St(a;/, a;, x, ) the Steiner graph connecting a;,
a;r and z in B(z,¢), and by direct computation H!(St(a;,aj,z,¢)) = €(2 — 8), where 8 > 0 does
not depend on any other parameter.

Then the competitor
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= Yopt\(vir Uy (0B(z,€))) U St(ay, aj, x,€)

clearly satisfies X' € Ay (s,,)—-5(€2), and the points z for which disto(z, Eopt) # dista(z, X') are
those projecting on YXopt N 0B(x,¢). Denoting with I'.(x) this set, for ¢ — 0, L*(I':) — 0, thus
u(lz) — 0.

Combining with the fact that the difference |distq (2, Xopt) — disto(z, X')| is at most ¢, the thesis
follows. O

Notice that Proposition 3.2.9 is crucial: indeed its proof relies on geometric properties specific
to R?, which cannot be extended to higher dimensions without significantly changing the proof.
Such possible extension (for the constrained problem) is listed as one of the most interesting open
questions concerning the average distance problem in the review paper [31]. A partial answer has
been given in a work in progress of the author in collaboration with Slepcev,:

Theorem 3.2.19. Given a domain Q C RN with N > 2,a probability measure j1 < LN, there exists a closed
set A C [0, 00) with min A = 0, sup A = oo such that for any L € A, for any solution ¥opt of

min F,,(-),
i u()

the number of endpoints of Yopt is at most 1/ for some A = \(L) > 0. As consequence the number of triple
points is at most 1/\.

However very little is known about such set A.

3.3 Regularity and asymptotic behavior

In the previous Section we have shown that solutions of the average distance problem, under suit-
able assumptions on the measure (and for some of them, on the dimension), must satisfy certain
geometric properties. In this Section we will investigate regularity of such solutions, and their dis-
tance from the border. Only a weak regularity property is proven (see for instance [14]) in this
case.

3.3.1 Abhlfors regularity

The main analytic property satisfied by solutions of the average distance problem, is the “Ahlfors
regularity”:

Definition 3.3.1. A set S C R" with dimy S = 1 is Ahlfors reqular if there exists c, C, po > 0 such that

o< H'(S N B(z,p)) -

P

C

forany x € S, p € (0, po).
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This is a weak regularity property, but an interesting property is that Ahlfors regular sets are
uniform rectifiable.

The proof of Ahlfors regularity is split in two parts: lower bound estimates and upper bound
estimates. Notice immediately that the former is almost trivial: indeed given a domain 2 C R"
with n > 2, a solution Ypt of the average distance problem belongs to A(€2) by definition, and for
any x € Yopt, p < diam Xopt/2 there exists y € Yopt N (2\B(z, p)), and since Xopt is connected,
Yopt N 0B(z,p) # 0. Choose a point z € Xopt N dB(x, p) such that z is connected to = by an arc
v € Sopt N B(z, p), and clearly H! (Sope N 0B (z, p)) > H'(y) > disto(z, 2) > p, thus

Hl(zopt N B(a;, p))
P

Notice that lower bound estimate relies only on Xopt € A(2). The upper bound estimate will require
more stringent conditions:

1<

Vi € Sopt, p € (0, diam Tope/2). (3.3.1)

Proposition 3.3.2. Given a domain 2 C R2, a measure pn € LP(Q) with p > 4/3, a function A :
[0, diam Q] — [0, 00), let Xopt be a solution of the average distance problem. Then there exists C, pg > 0
such that

Hl(zopt N B(z,p))

p

Proof. The proof is achieved by contradiction: suppose there exists x € Yopt and {p;}en | 0 such
that

<C Va € Xopt, p € (0, po)-

lim HE (Zopt N B(z, pj))
j—o0 Pj

> 27 + 2.

Without loss of generality suppose that for any j it holds

Hl(EOpt N B(x, Pj))
Pj
The goal is to find a competitor X’ € Ay (s, ) () satisfying F), 4(¥') < Fj, 4(Xopt). Denote X :=
Yopt\(Xopt N B(x, pj)) U OB(x, pj), and from (3.3.2) it follows

> 2m + 1. (3.3.2)

H! (Sopt N B(z, pj)) > (21 + 1)p;.

As clearly H*(0B(z, pj)) = 27p;, this implies ’HI(E;) < HY(Sopt) — p; for any j.

Choose an arbitrary point y € 2, without loss of generality suppose y belongs to the set €’ of
points having unique projection on o, and ¥’ for any j € N, as such set has full measure. Denote
withk: Q) — Yopt the projection on Ypt, and the following cases are possible:

o if k(y) ¢ Sopt N B(x, pj) then k(y) € ¥, thus dista(y, Zopt) > dista(y, 2),

o if k(y) € Yopt N B(x,p;) and y ¢ B(x,p;) then the transport ray passing through y must
intersect 0 B(z, p’;), thus disto(y, Yopt) > dista(y, X%),
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o if k(y) € Xopt N B(z, p;) and y € B(x, pj) then dista(y, Xopt) + p; > dista(y, 3)).
Thus using Holder inequality we have

Fua(X}) < Fua(Sopt) + pju(B(z, pj))
1
= Fl,a(Zopt) + P;"|N||L/pIZB(x7p3))(7r(p;-)2)1/‘1

1
= Fyua(Sopt) + (1[5 (s 17/ (05) 2
where ¢ is the conjugate exponent of p. From Lemma 3.2.7 there exists ¥ € Ay ()40, (€2) such that

Fua(S) < Fua(Sh) — K(p))*?

once pj is sufficiently small, where K is a constant not dependent on p’;. As by hypothesis p > 4/3,
ie. g < 4, thus

Fo () < Fya()) — K(p)*?
< Fpa(Sopt) + (11 oy 7 ) 20 = K ()2

and for all j sufficiently large it holds F}, 4(¥7) < F'(¥opt). Thus Ahlfors regularity is proven, being
27 4 2 an admissible upper bound. ]

Combining (3.3.1) and Proposition 3.3.2 it follows:

Theorem 3.3.3. Given a domain Q C R?, ameasure i € LP(Q) withp > 4/3, a function A : [0, diam Q] —
[0, 00), let Yopt be solution of the average distance problem. Then Yot is Ahlfors regular.

3.3.2 Asymptotic behavior for H'(Xqp) — 00

In this subsection our goal is to analyze some asymptotic behavior of solutions of the average dis-
tance problem when the allowed length goes to infinity.
The first result concerns the asymptotic behavior of the average distance functional:

Proposition 3.3.4. Given a domain ¥ C R™ with n > 2, define

V() := min Frn 4.
(1) = min Fross

Then there exist constants ¢, C > 0 such that
c< V()T <O
for all I sufficiently large.

A preliminary lemma is required:
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Lemma 3.3.5. Let Q C R™ (n > 2) be a cube, divided by a uniform grid parallel to its edges into small
cubes with side €. Let 3 be a Lipschitz curve of length | intersecting exactly k such cubes. Then there exist
c1,c2 > 0 not dependent on € and 1 for which

kE<cil/e+ co.

Proof. Notice that in a union of 2" + 1 cubes with side ¢ there exist two cubes for which the distance
between them is at least ¢, thus if 8 intersects k cubes, then

1> [k/(2"+1))e
where [-] denotes the integer part mapping. O

Proof. (of Proposition 3.3.4). The proof is split into two steps.

Step 1:
Let @ C Q be a cube, and divide ) with an uniform grid parallel to its sides, such that each small
cube of the grid has side . Clearly for any [ > 0

/ disto(z, 5L )dr > / disto (z, S, )do
Q Q

where Eépt
Fix an arbitrary [ > 0, if ¥opt € argmin Al(Q)Fﬁ”,id/ then Hl(Eopt) = [. For each such cube Q.

with side € not intersecting ¥opt the following estimate holds:

is an arbitrary element of argmin AZ(Q)F£n7id.

disto(z, Xopt)dz > " (1 — a)eL™(Q:)
OF

for any « € [0, 1]. Maximizing in « yields
distg (z, Xopt)dz > Centt
Qe

where C' > 0 is a constant not depending on «.
Denote with & the number of cubes with side ¢ intersecting ¥qpt, since clearly @ contains £™(Q)e™"
cubes with side ¢, there exists L™"(Q)e ™" — k such cubes not intersecting Yopt, thus

/ distq (2, Sopt)dz > C(LM(Q)e™™ — k).
Q

From Lemma 3.3.5 we have
1> 1k/(2" + 1)]e,

and it holds

/ disto (z, Xopt)dx > c16 — coe™l — cqen Tt
0
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where ¢;, i = 1,2,3 are constants not dependent on ¢ and /. Choosing ¢ := klI'/(1=") with C' ¢
(0, (¢1/cx)V/ (0= 1))yields

/ diste (, Sopt)dz > ¢!/
Q
for some constant ¢ > 0 not dependent on € and /.

Step 2:

Consider an (n—1)-hyperplane 7 intersecting 2 by an open set 7. Impose an uniform grid parallel to
coordinate axis directions on 7', with each “cell” (n — 1 dimension cubes) having edge length ¢. Thus
the total length of the grid is at most C'/e, with some C' > 0 not dependent on €. Let ¥ be the union
of this grid with line segments perpendicular to 7 passing through nodes of 7" and staying in Q2. The
total length of all such segments is at most K /" !, thus for small ¢ it holds H!(¥) < K;/e" L. In
this construction distq(z, ¥) < Kse for any x € (2, where K5 > 0 is independent of ¢, thus

/ disto(z, X)dr < Kae.
Q
Finally putting [ := 1/¢"~! concludes the proof. O

Another interesting property of solutions of the average distance problem is that under regu-
larity conditions on the domain’s border, the distance between ¥,pt and 952 can be bounded from
below, when the length constraint on Xt goes to 0.

Proposition 3.3.6. Given a domain Q2 C R™ with 0Q C? reqular, there exist | dy > 0 depending only on
and n such that for any | < ly any element EOPt € argmin 4, ) Frn ia satisfies dH(Ef)pt, o) > dp.

Proof. The functionals

00 otherwise

anld(/'\f {/d1sthX)dx if HYU(X) <1

I’-converges to

/ distq(x, P)dx if X = {P} consists of one point
Fl:" ld(X

00 otherwise

for ! | 0. Indeed for any sequence {¥;, }reny — X in the Hausdorff sense, and [, := H(Zk) 1 0, then
¥, consists of one point, and

l
o q() = Jim F (5.

Suppose the thesis is false, i.e. there exists {2y }ren with H1(Zx) — 0and dgy (S, 02) — 0. Upon
subsequence, assume {¥; }reny — {P} € 09, thus P is optimal for the functional
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F(Q)= [ o= Qld.

Endow (2 with a coordinate system with origin at P, x,, axis directed in such way that all points
of Q have positive z,, coordinate, and (z1,--- ,z,—1) are in the supporting hyperplane of (2 at P.
Then foreachi =1,--- ,n it holds

8 xX;
FO.---.0)=— —— d 0
00 == [ e <0

contradiction. ]

3.3.3 Maximal regularity

A rather difficult problem for solutions of the average distance problem is the regularity: indeed
very little is known, apart from being countable union of Lipschitz curves (finite union of Lipschitz
curves in two dimension case, or when considering the penalized problem). Thus it would be in-
teresting to determine the “maximal regularity”, i.e. the most stringent regularity property satisfied
by any solution. Two results impose an upper bound on this: first in [55] it has been proven that
for some CH! regular curve v there exists a domain (2., such that v is a minimizer of the average
distance problem, with ;1 := £2. This leaves the question if such minimizers must be C'! regular. In
[52] an example of minimizer which is not C' 1 regular has been constructed.

1. the “maximal regularity” cannot exceed C':! (from [55]).

Proposition 3.3.7. Given a C! regular curve v : [0,1] — R? (endowed with the measure L?), parameter-
ized w.r.t. arclength, for any | € (0, R) with R > 0 satisfying

e ['(t)] < 1/Rfor Ll-ae. t €0,1].
e | < mR, which implies  injective,

there exists a domain ) for which
Y([0,1]) € argmin 4, ) Fir.

Proof. Define ¥, := v([0,1]) and
Q= {z € R? : distg(z, %, < \)}.
The proof relies on two important facts:

L2({z € R?: 0 < distg(x, %) < s}) = 2ls + 75> Vs

and

L2{x € R?: 0 < distg(z, %) < s}) < 2s + 7s? Vs
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for any X € A;(Q2) (see [55], and [51] for a proof of the last two estimates). Define D := diam (2, and
for any competitor ¥ € A;(Q2) it holds

D
/ disto (2, %) = / £2({x € R? : disto(z, %) > 5})ds
Q 0
D
— DLiQ) - / L2({r € B 0 < distg(z, £,) < s})ds
0
D
> DL Q) - / min{£'(Q), 2ls + ns*}ds
0
and equality holds if ¥ = X, i.e. ¥, is a minimizer. O
2. The “maximal regularity” is weaker than C! (from [52]).

The construction starts from a discrete configuration.

1. Basic configuration: in R2, define parameters m; = m3 := 0.38, mg := 0.24, A := 0.36 (a
posteriori we can replace this 0.36 with any value in (0.24,0.38), to guarantee that the two
“heavier” masses still attract the minimizer, while the “lighter” mass will not generate another
branch), points z; := (—1,0), 22 := (0, 1), z3 := (1,0), and the probability measure

3
o= Zmzéxz
i=1
The first step proves that the minimizer of
E,(-):= [ dist(z,-)da(z) + AH'(-)

RQ

is the set

Eopt = {t € [O, 1] : (1 — t)xl + tvg} @] {t € [0, 1] : (1 — t)xg + t’UQ},

where <0 1 )
vo = (0, —= ).
2 22

2. Counterexample: let  be a mollifier, i.e. smooth, radially symmetric, positive on B(0, 1), null
outside, 7(0,0) =1 and/ ndz = 1. For § > 0 define ns(x) := 6 2n(z/4), pis(-) := mins(-—xi),
R2
and the measure 15 := (p1,5 + p2s + p3s) - L2

A background measure i := 13/5 - L£? is required, and consider the smooth measure

fg,s == (1 — q)us + qfi-

The following result holds:
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7 (graph of)

Figure 3.3.1: The colored balls denote the area on which 15 is supported. The red set ilopt is the min-
imizer when the considered measure is fi, while the green set is a minimizer when the considered
measure is ji, 5, for ¢, 6 small.

Theorem 3.3.8. There exist ¢, > 0 for which one of the minimizers of

E() = /RZ dy (2, )dptg,s + 0.36H ()

is a simple curve. Denoting with v : [0,1] — R? a constant speed parameterization, v : [0,1] — R? is
BV, and ~" is a measure with an atom of size at least 1 at some point s € (0,1).

The value 0.36 as constant multiplying H!(-) can be replaced by any value in (1/3,m1 A m3), as this
guarantees that the minimizer is a simple curve. For the proof we refer to [52].

Notice that these two results can be considered in view of the following, proven in [50] for the
two dimensional case (as it involves using Proposition 3.2.9, not yet proven for higher dimensional
domains), stating that given a minimizer 3, C L1 holds near triple points, while corners may arise
only near atoms, i.e.:

e if z € X is a triple point, then using Menger n-Beinsatz there exist (locally) three curves
71,72, 3 intersecting only in x, which are C L1 regular,

e if x € ¥ is such that the mass projecting on it is zero, then it cannot be a corner.

In ([38]) it has been proven a stronger regularity result:

Proposition 3.3.9. Given a domain Q C RN with N > 2, a probability measure i < LN, a parameter
A > 0, any solution Yopt of the penalized problem

in F,(-) + \HL(:
e p() +AH ()
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is a finite union of curves {yk}izl (without loss of generality assume -y, parameterized by arclength), with
J = Jj(p, A, ), such that for any k the BV norm ||, || pv < C = C(u, A, Q).

For the proof we refer to Theorem 6.4.1, in Chapter 6.

3.4 Higher dimension case

In the previous Section we have discussed geometric properties of solutions of the average distance
functional, with some results proven only in the two dimension case. In particular, the proof of the
absence of loops, absence of crosses and Ahlfors regularity relied on construction specific to two
dimension case.

In this Section our goal is to generalize those results to higher dimension domains, imposing
more stringent conditions if necessary. Moreover, we will prove that (similarly to the two dimension
case) solutions of the maximal distance problem do not contain loops, and satisfy Ahlfors regularity.

3.4.1 Average distance functional solutions

The absence of loops can be generalized to higher dimension cases with minimal modifications. The
idea of the proof is the same as in two dimension case, but estimates differ. The main results were
developed in [44].

The next five results are from [44].

Lemma 3.4.1. Given p > 0, define the set

K, = |J{ter :t € [=p, ]},
k=1

where {e} }}_, is a standard orthonormal base of R™. Then it hold:
e K, is connected and contains 0 € R",
e H(K,) =2np,
e given y € R with |y| > n'/?p then it holds
du({y}, Kp) < lyl — p/(2n'?).
Proof. Claims “K, is connected and contains 0 € R"” and “H!(K,) = 2np” are very easy to check.
e To prove: given y € R™ with |y| > n!/2p then it holds

du({y}, K,) < Iyl — p/(2n'/?).
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Upon scaling in p, assume p = 1,y = (y1, - - , yn) with all coordinates nonnegative and y; = max; y;.
Then

du({y}. Kp) < (g1 — )2 + 3 + - +y2)/?
= (ly|* + 1 —2y)"/2 < (ly]* + 1 - 2Jy|/n"/H)1/2

Using Lemma 3.4.2 concludes the proof. ]
Lemma 3.4.2. Given «, 8 > 0 with o® < 43, and x > 23/, then it holds
(22 — oz + B)/? <z — a/4.

Proof. Tt suffices to notice that under such hypothesis, f(z) := = — (2? — az + §)'/? is non decreasing,
and it holds (by direct computation) f(25/a) > 28/a — (26/a — a/4) = a/4. O

Lemma 3.4.3. Let p > 0, B € [0,1], 7 > 9np, and a,b € [0, p] be given. Let R™ = R x R ! and consider
R :=[a,b] x B((0,0), Bp). Then there exists a set X = X+ U X~ such that

1. (—a,0) € X—, (b,0) € XT,

2. X+ are compact and connected,

w

. ify € R™ is such that |y| > 2r, then it holds
dy({y}, X) < du({y}, R) — Bp/2 — 3p°/(2r),

4. HL(XE) < 8n3/2(8 + p/r)p,

5. X C B((0,0),r/n'/?).

Proof. Statements 1 and 2 are clearly true, while 4 and 5 are straightforward to check, being 4 a direct
consequence of Lemma 3.4.1, and 5 a consequence of the estimate

It remains to prove
e if y € R™ is such that |y| > 2r, then it holds
dy({y}, X) < du({y}, R) — Bp/2 — 30°/(2r).
Lety := (y1,y') € R x R"~! satisfying |y| > 2r. There are two cases to consider.

CASE 1. Assume y; € [0, p] (the case y; € [—p, 0] is symmetric). Then it holds
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dist(y, Kx(b,0)) < (Jy1 — b]* + dist?(¢/, K»))'/?
< (p? + dist* (¢, K»)) Y2

Since |y| > 2r > 18np, while |y;| < p, it follows |y/| > 17np > /n), and using Lemma 3.4.1 it holds

dist(y, Kx (b, 0)) < (0 + (|y/] — ——)2)1/2

2vn

= (0 + (|| — 280 — 20" /r)*) /2.
Lett:= |y/| — Bp — p?/r so that

dist(y, Kx(b,0)) < (p* + (t — Bp — p?/r))/?
= (t—2(Bp + p2/r)t + p* + (Bp + p*/r)*) /2

Applying Lemma 3.4.2 gives

_ Bp+pP/r -

dist(y, K (b,0)) < ¢ 5 Y| - ;(Bp +p?/r)

whenever ) 5 o

i P Bp+p7/r)
~ BptpPr

This is true, since |y| > 2r it follows (by direct computation)

t>6np+r>2p+m,
and ) Y s
p*+(Bp+p7/1)
Bp+p*/r
Since |y/| = dist(y, R) + Bp, then we obtain

<2p-+r.

. . 1 3
dist(y, Kx(0,0)) < dist(y, R) — 5p — 5/)2/?"-

CASE 2. Consider the case y; > p (y1 < —p is symmetric). Since |y| > p we have

ly =0 =yl—p=r—p=8np
> 4n(Bp + p*/r) = VnA,
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so using Lemma 3.4.1 gives
. . 1 3 2
dist(y, K (b,0)) < dist(y, B) — 5 8p — 5 g/,

concluding the proof. O

Lemma 3.4.4. Given ¥ € A(S) containing a loop E, then H'-a.e. x € E is a noncut point (ie. E\{z} is
connected).

Proof. If x is not a noncut point, then there exists L, > x with L, N E = {z}, L, # {z} and
HY(L,) > 0. Moreover L, N L, = () whenever z # y. Using H'(X) < oo, it follows that for at most
countably many x such L, can exist. O

Lemma 3.4.5. Let Q C R" be the domain, ;1 a given measure, ¥ € A(2) containing a loop E C . Then
given B € (0,1], for H'-almost any point x € E, for any r > 0 there exists p € (0,r) and X' € A such that:

HU(Z) < HU(E) — p/2+ (16n%/2 +2)Bp,
Y\YX' C B(z,p), ¥\X C B(z,32np),

disto(y, X') < dista(y, X) for any y ¢ B(x,64n3/2p),

disto(y,¥') < dista(y, %) + p for any y € B(z, 64n%/2p).

Proof. Let v : [0,1] — X be a Lipschitz parameterization of E, and z := ~(¢) with ¢ € (0,¢) and
7 differentiable in ¢, Z a noncut point (i.e X\{z} is connected), and lim, o 85(Z,p) = 0, where
Bs(Z, p) := infy By (7, p), with the infimum taken among straight lines IT passing through z, and
Ben(Z, p) := Subyexnp(z,p) dist(y, I1)/p. Existence of such B and Sy i1 has been proven in [40].
In view of Lemma 3.4.4, it follows that 7{!-a.e. z € E has such property. Endow the configuration
with an orthogonal coordinate system (on R” = R x R"~!) with Z = (0, 0) and v/(£) = (]¥'(#)],0).
Let v(t) = (71(t),v2(t)), choose py € (0, r) such that

B(x,p)<B  Vp < po
Denote with Dy, a neighborhood of x in ¥ such that diam Dy, < pg, and let p > 0 be such that B(z, p)

is the smallest ball containing Dj. Hence Dy, C B(z,p) N X C [—p, p] x B(0, Bp).

Denote with a, b the smallest number such that Dy, C [—a,b] x B(0,3p) and choose 1 € ¥ N
B((=a,0), Bp), 2 € N B((b,0), Bp); choose ' := 32n3/2p and in view of Lemma 3.4.3 there exist
such X = X' U X~ (given by Lemma 3.4.3). Let S~ be the segment connecting z; to (—a, 0), and

ST the segment connecting x to (b, 0) respectively. Define

Y =¥\D,UuXUS uUSTt.

By construction it follows ¥’ connected, ¥\X' C Dy, C B(Z, p). On the other hand ¥\¥' C B(z, 32np),
by Lemma 3.4.3, while S* C B(z, (1 + 8)p).
Observing that #!(S*) < 8p, HY(Dy) > p, it follows

HI(E) <H(D) = p/2+ Caflp
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where Cy := 16n3/2 + 2.
Finally the statements on dist(y, X’) follow from Lemma 3.4.3 and X\¥' C B(z, p) respectively.
O

Another result estimating the “gain” for the average distance functional is required. While
Lemma 3.2.7 is valid for the higher dimension cases, a sharper estimate holds:

Lemma 3.4.6. Let 2 C R" be a given domain, | > 0 a given value, p a given measure, Borel sets H, K C §)
such that (K) > 0 and
r = inf{distq(z, H) : x € K} > 0.

Then for any compact set > C H with H'(X) < [ there exists for any ¢ sufficiently small a set >’ O 3 such
that

A K
?#@Ug%%m+ampaﬂmﬁgﬂﬂgn—(Qﬂlki

where \(-) is the constant for which
|A(z) — A(y)| = A(e)|x — |
for any z,y with |z — y| € [c,diam Q.

For the proof we refer to [44].
These preliminary results are sufficient to prove the absence of loops:

Theorem 3.4.7. Given a domain ) € R™ withn > 3, a measure u € L' (), a function A : [0, diam Q] —
[0, 00), any solution Xopt of the average distance problem does not contain loops.

Proof. Choose an arbitrary Ypt solution of the average distance problem, and define [ := Hl(Eopt).
Suppose | > 0, otherwise Xopt would consist of only one point. Since ;1(Xqpt) = 0, there exists a
compact set K not intersecting Yo such that (K) > 0. Define

1
R:= 5 min{disto(y, Xopt) 1y € K} >0
and

H = {z € Q: dista(z, Xopt) < R}.

Suppose there exists a subset E C ¥t homeomorphic to ST C R2. Put 8 := 4(16n%2 +2)~1; it holds
(see [2] for further details)

mlmB@mD
p—0F P

=0 H' —ae x€E.

Choose r > 0 (the exact value will be determined later): from Lemma 3.4.5 there exists 2’ € F with
M —0ast — 0", and p € (0,r) such that there exists ¥ € A(Q) satisfying

H(E) < H (Sopt) — p/2+4(160*% +2)8p = H' (Sopt) — p/4 (3.4.1)
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and

Fua() < Fua(Sop) + [ A(dista(y, Sop) + p) — A(disto(y,Sopo)iy)
B(x',64n3/2p

2',64n°/?p))
64n3/2p ’

B
< Fypa(Sopt) + 64n3/2Ap2'u( (

where A denotes the Lipschitz constant of A.
Applying Lemma 3.4.6 yields the existence of " € A((2) satisfying

HUE") < H'(Z) + 2ne < H' (Sopt)

and
F,oa(2") < FLa(Y) - Ci€?
3/2 C
3/2 o u(B(2',64n°/%p)) L1 o9
S FM,A(EOPf) + 64n Ap 64”3/2[) 16n2p
where C; := M, and A() denoted the function for which

32nl
|A(z) — A(y)| = Ac)|z — y| Ve >0, Vo,y € Q: |z —y| € [¢,diam ©].
Then choosing r > 0 satisfying

(B(z',64n*%p)) O

3/2 5 M
G A 2, Ton?

Vp e (0,7)
and passing to the limit p — 0 yields

Hl(zﬁ) < Hl(zopt)a FM,A(E//) < F;},,A(Eop’f)v
which is a contradiction. O

Theorem 3.3.3 proves that in the two dimension case, under summability conditions on the
measure, solutions of the average distance problem are Ahlfors regular. This can be generalized to
higher dimensions, under slightly different conditions on the measure. Some preliminary results
are required. All the proofs can be found in [44].

Lemma 3.4.8. Let Q C R" (n > 3) be a given domain, ¥ € A(QY), then for any x € X there exists X' € A(SQ)
such that for any p > 0
n—1

. HA(S) sHl@)—H1<m3<m,p>>+c<<%l@ ”5“’2””) "

e X\ C B(z,2p), ¥'\X C B(z,8/np),
o distg(z,Y) < distq(z, X) forany z ¢ B(x,4np),
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o disto(z,Y) < distg(z,X) + p for any z € B(x, 4np).
where C'is a positive constant depending only on n.

Lemma 3.4.9. Let Q C R"™ (n > 3) be a given domain, ¥ € A(S2) and suppose there exists r > 0 such that
forany x € 3,0 < p < r the inequality

HY(Z N B(x,p)) < a”Hl(E N B(xz,2p))"

+b
P 2p

holds for some fixed a > 0,b > 0, € (0,1). Then there exists a constant K = K (a,b, a,r, H1(X)) such

that
HU(E N0 Blr.p) _

P hS

K.

Now it is possible to prove that solutions of the average distance problem are Ahlfors regular,
under suitable conditions on the measure.

Theorem 3.4.10. Let be Q@ C R" (n > 3) a given domain, p € LP, p > n
n —

[0, diam Q] — [0, 00) a given function, and Sope € argmin 5, ) Fju 4 for some L > 0. Then Sopt is Ahlfors
regular.

T a given measure, A :

Proof. First suppose L > 0, otherwise Yt is a single point.

1. pu(Xopt) = O, thus there exists a compact set K with p(K) > 0 and K N Xop¢ = (). This can be
chosen as K := Q\(Xopt)2c, with ¢ € (0,diam opt) and (Sopt)2e 1= {y € Q : disto(y, Xopt) <
2c}; choose a small p > 0;

2. letbe ¥’ the competitor given in Lemma 3.4.8, and using Holder inequality yields
Fua(X) < Fyua(Sopt) + 28pu(B(w,4np)) < Fua(Sopt) + 2Ap||ul| 7 L7 (B(w, 4np)) /9
where L"(B(z,4np)) clearly has order O(p"),

3. inequality
HI(EOpt N B(z,2p))

HAS) = H (Sopt N Bz, p)) — pH( % +1) (34.2)
holds, and two cases arise:
(a) if
Sopt N Bz, 2
H (St 1 B, ) — pH (B2 gy

2p
7-ll(zop’( N B(.T, p))
P

< K’ for some K’ > 0.

Lemma 3.4.9 concludes
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. Yopt N B(x,2p
(b) if H! (Sopt N B(x, p)) — pH (= 2p( )

Y C {z € Q: distg(z, opt) < c} holds. Applying Lemma 3.4.6 yields to the existence of
aset ¥’ € A(Q) such that

+1) > 0 then for p sufficiently small inclusion

n—1

) " 11))? (343)

HY(Z' N B(x,2p))
2p

Fua(S) < Foa (€)= 100 (2B, p) ot

where H', H" are positive constants not dependent on p and z. Combining
Flua(¥) < Fua(Sopt) + O(ps ™) (3.4.4)

with (3.4.3) and the optimality of Xopt (i.e. Fj, A(Xopt) < F,a(E")) yields

(SIS

(s ﬂB(:):,2p)))n"1 " .

HY(Z N B(z,p)) — pH"(( % +1) < H*qu_% < H*(diam Xpt) 20

with H* independent of x and p, and applying Lemma 3.4.9 yields the thesis.

Thus the proof is complete. O

3.4.2 Maximal distance functional solutions

As presented at the beginning of this Chapter, a problem related to the average distance problem is
the “maximal distance problem”, in which the maximum displacement from a set with prescribed
maximum length is to be minimized. Solutions of this problem exhibit some similar properties. The
maximal distance problem will be discussed only marginally. The absence of loops, under suitable
hypothesis, holds too, and has simpler proof:

Theorem 3.4.11. Given a domain 2 € R™ with n > 3, any solution X3 of the maximal distance problem
does not contain loops.

Proof. The proof is done by contradiction: suppose there exists a solution X3, containing a loop E;
define r := F*(35,,)/(65n%2), 5 := 1/(4(16n*/? + 2)), and consider a point z* € 3%, and p < r for
which Lemma 3.4.5 yields the existence of ¥’ satisfying:

o HI(Y) < H' (St — p/2 + (160%/2 + 2)8p,

o disto(y,Y’) < disto(y, X5p¢) forany y ¢ B(z”, 64n°/2p),

o disto(y,>’) < disto(y, Z5p¢) + p forany y € B(z”, 64n3/2p).
Then from choices for r, 3, H!(X') < H! (Xopt) and

o if disto(y, 2*) > 64n3/2p then distq(y, ') < disto(y, .,),
opt
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o if disto(y, 2*) < 64n%/%p then

distq(y, ©') < dista(y, Sipe) + p < 64n%p + p < 65072 < F* (55,
and the proof is complete. B

Solutions of the maximal distance problem exhibit Ahlfors regularity too:

Theorem 3.4.12. Let be Q C R" (n > 3) a given domain, and X5, € argmin 4, o\ F™ for some L > 0.
Then 3. is Ahlfors regular.

Proof. Define r := F*(X,)/6n, and consider a point 2* € X5, and p < r for which Lemma 3.4.8
gives the existence of ¥’ satisfying those conditions:

o if y ¢ B(z*,4np) then it holds

distq (y7 Z/) < diStQ(yv Z:Zk)pt) < F*(Zop’t)a

e if y € B(z*,4np) then it holds

disto(y, ¥') < dista(y, Xgpe) +2p < 6np < 6nr = F* (Sopt),
thus

and the optimality of X3 yields

Using Lemma 3.4.8 gives

HY(ZE N B(z*, HY(XE, N B(x*,2p))
(X5pt N B( p))_C( ( pf2 (z*,2p)) 1) <0
p p

for some constant C' > 0 not depending on z*, p, and Lemma 3.4.9 gives the existence of K such that

H (Sgpe N B, p))
p

<K,

concluding the proof. O
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3.5 Counterexamples

In this Section we will present counterexamples to results about geometric properties of solutions of
the average distance problem, when key summability properties on the measure are not assumed.
In particular, Theorem 3.2.8 and Lemma 3.2.16 will be shown to be false if more general measures
are considered.

In Theorem 3.4.7 we have proven that given a domain 2 and a measure p € L'(f2), no opti-
mal set can contain a loop. In this subsection we will prove that without such assumption on the
measure, this result does not hold. A counterexample will be constructed by exploiting this lack of
summability.

Let  := B((0,0),2) C R? be the domain, x := f - £? the measure, where (in polar coordinates)

1

f(’l",e) = m)

and A := id the identity function.
First, clearly f ¢ L'(B((0,0),2)):

1 1
/ f(x)deQW/ T erﬂ/ ! dr = oo
B((0,0),2) 12 |r—1] 12 [r =1

Then consider Xqpt := {(r, ) € B((0,0),2) : 7 = 1} the unit circle, and it holds

/ disto (z, Xopt) f(z)dz = 277/ |r — d?" < 00
((0,0),2)

Consider the family

Gsn(B) :={(r,0) € B((0,0),2) : 7 € [L —3,1+6],0 € [8—n,8+n]},
where § € [0,1],n € [0, 7], B € [0, 27].
Clearly for any 6,7, 3,

1+6 p
[ fdezn dp = 00
Gs.n(B) 1-s |p—1

Thus given any X' € A(€2), if there exists ¢ > 0, 6,7, 8 such that disto (G5, (8), X) > €, then inevitably
Ff~£2,id(X) = OQ.

Thus in order to achieve Fy.;2 ;4(X) < oo, for any € > 0, §,7, 3, & should have distance from
G's,(B) not more than €. As X is connected and compact, it should intersect G, (3) for any §,7, 3,

thus it must intersect
U N N Gsa®

Be[0,2x] §€[0,1] n€[0,7]

which ultimately leads to ¥opt C X'
From this we can see that .4;(£2) does not contain any set S with finite energy for any I < 27,
while for [ > 27 any set with finite energy should contain Y.
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It has been proven that in the two dimension case a cross cannot be present in optimal sets if the
measure € LP(Q), p > 4/3. In this subsection we will construct a counterexample showing that
the same result does not hold when p ¢ L'(Q).

The case f € LP with p € [1,4/3] remains not clear.

Let Q :=[—1,1] x [-1, 1] be the domain, and define X := ({0} x [-1/2,1/2])U([—1/2,1/2] x {0}).
Then consider the measure x := f - £2, where

fELAX L] — [0,00), f(2) = ohst((xly)X)

and A := id the identity function.

Again, it holds
1 1 1
- dxdy = oo,
// disto((z,), %)

1 1
1
distq((z, y), X)— drdy < 0.
/_1/_1 ista((@,9): X) Gisto (), x) 2W <

Givena € [—1/2,1/2], ¢ € [0,1/4] consider the family

while

Le(a) ={(z,y) e [-L, 1] x [-L,1]:z € [(a—e)V=1/2,(a+¢) AN1/2],y € [—¢,¢])},

He(a) = {(z,y) € [-LA x [11] sy € [(a —e) V =1/2,(a+ ) AL/2),x € [-¢,e])},

and clearly for any a, e we have Fy.r2 ;4(L:(a)) = Fy.p2 jq(He(a)) = oco.
So, similarly to the previous subsection, if some set X' € A satisfies F.z2 ;4(X) < oo, then for
any 7 > 0, a, ¢, X must have distance from L.(a) not more than 7, which translates to

U () Le(a) = [-1/2,1/2] x {0} C X;
a€[—1/2,1/2] e€[0,1/4]

with the same argument applied to H,(a) leads to {0} x [-1/2,1/2] C X, and thus X C X.
Then any set with finite energy should contain X, which is homeomorphic to a cross.
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Chapter 4

Quasi static evolutions

In this chapter we study the evolution for a class of problems, the minimizing movement problems
associated to the average distance functional. Similarly to the average distance problem, they arise
from urban planning/network optimization problems, when some additional variables (frequently
a time variable is present) and constraints are considered. Given 2 C R¥ u, A as in the average
distance problem, and an initial datum Sy € A(€2), consider the recursive sequence

w(0) =5 , (4.0.1)
w(n) € argmin 4o Fj a(+) + A (-Aw(n — 1))

where A > 0 is a given constant. Here A denotes the symmetric difference. The choice of using the
penalization AH!(-Aw(n — 1)) may seem arbitrary, as a priori one can use more general penalization
terms like n(H!(-:Aw(n — 1))), where 7 is a given function satisfying natural conditions like:

e 7(0) =0,
e 7 non decreasing.

However, as will emerge from the arguments used in the proofs, the arguments used for functions
n of the form 7(t) = Mt can be easily generalized to functions of the form 7j(t) = kt" (k > 0,h > 1).
An important variant is (given a time step ¢ > 0)

{w(()) =50

w(n) € argmin 4 (40.2)

F
H1 (Sg)+ne (Q) A

The main difference between formulations (4.0.2) and (4.0.1) is in the constraints: in the former the
length is prescribed at any step, while in the latter no constraints on the length are imposed, but the
“penalization term” AH!(-Aw(n — 1)) interdicts optimality for sets with large length. Most results
proven for one case hold for the other too, and proofs for both cases often use the same argument.
Thus unless otherwise specified, results proven for one case will be valid for the other formulation
too.

In the following, when we will write “X" € argmin G”, where X is an element and G a functional,
we will mean that A" is an arbitrary element of argmin G (fargmin G > 1 is possible in general).

91
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An important sub-class, are the “irreversible” evolutions:

w(0) := Sy
w(n) € argmin ) Fj a(+) + AHI(Aw(n — 1)) (4.0.3)
w(n) 2 w(n —1),
and
w(0) := Sy
w(n) € argminAHI(Son(Q)F#,A ) (4.0.4)

w(n) D w(n —1)

In this case it is explicitly stated that every set in the evolution must contain all previous sets: this
property will be called “irreversibility” in the following. This property can be used to model irre-
versible physical phenomena, like fracture propagation or membrane debonding (see for instance
[11] and [10]), or transportation network expansion where removing existing network is highly un-
economical. As seen in the following this property, can significantly alter qualitative properties of
solutions.

For both problems (4.0.2) and (4.0.1) a solution will be a sequence {w(k)};2, of elements of
A(2), verifying the constraints and minimality properties imposed. In this chapter our goal is to
extend geometric/regularity properties satisfied by solutions of the average distance functional. In
particular we will prove that the absence of loops is valid even in higher dimensions, along with
some weak analytic regularity (Ahlfors regularity).

The main results are in Section 4.1, in which results from the static case are adapted to the evo-
lutionary case (most results concerning evolutions, in particular those stating some geometric prop-
erties, are from works by the author). Moreover it presents a counterexample (from a paper by the
author), when key properties are not assumed. Section 4.2 contains some side observations.

4.1 Evolution of solutions of the average distance problem

In this Section our goal is to study solutions of the quasi static evolution related to the average
distance problem. We will prove that many properties satisfied by solutions of the average distance
problem can be retrieved.

4.1.1 Geometric and analytic properties

Theorems 3.2.8 and 3.4.7 proved the absence of loops for solutions of the average distance problem.
In this subsection the proof will be adapted to prove absence of loops for solutions of (4.0.2) and
(4.0.1). These results have been discussed in [33] for the two dimension case, and [35] for higher
dimension case.

As we are considering evolutions like (4.0.2) or (4.0.1), it may be possible that at some step £ the
difference w(k)\w(k — 1) is not connected.

If this is the case, it holds

wk)\w(k—1) = C

1€
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where C; are its connected components and 7 is a suitable set of indices. As H!(w(k)\w(k—1)) < oo,
for at most countable indexes h € J the component Cj, verifies H!(C,) > 0, thus we can split the
passage (here the arrow does not indicate any sort of convergence, the expression w(k — 1) — w(k)
just says “passing from configuration w(k — 1) to configuration w(k)”)

w(k —1) = w(k)
in
w(k— 1) —>w(k— 1)UC¢1 —>w(k— 1)UC7;1 UCZ'2 —>w(/~c— 1)UCZ'1 UCi2 UCi3 — .
where {i;}2°, are indexes for which #!(C;,) > 0, and analyze each single passage separately, i.e.

Fua(w(k = 1)) = Fya(w(k)) = Fua(w(k — 1) = Fyaw(k — 1) UC:,)

00 J Jj+1
+)° (FH,A(w(k -nulJa,) - Fuawk-1nul cm) .
j=1 r=1

r=1

Notice that by construction w(k — 1) U Ui:1 C;, — w(k) as sets, thus in this way it is possible to
analyze each passage
J J+1
Fuatw(k—1) U] Ci,) = Fua(wk-1)ul ),
r=1 r=1

and sum all such terms in order to compute
Fualw(k = 1)) = Fya(w(k)).

Thus if w(k)\w(k — 1) is not connected, i.e. the passage from w(k — 1) to w(k) is obtained by adding
a non connected set, then it is possible to split it into at most countably many steps, in which a
connected set is added at each step. Notice that unlike w(k), which by definition is chosen among
minimizers of some energy (this will be explained later), “intermediate” steps are not required to
satisfy any minimality property.

The absence of loops for solutions of (4.0.2) was first proven in two dimension case (see [33]
for more details), then generalized to higher dimension cases (see [35] for more details). The proof
reported here deals with the general case.

Lemma 4.1.1. Let Q C R" be a given domain, p a given measure, A a given function, Sy € A(Q2) with
F.,.4(S0) < oo and not containing loops, and h > 0 a given positive value. Then any element

Yopt € {5 € argmmAHl(Slo(Q)FmA 052D S}
is such that Yiopt\So does not contain loops.
Proof. Suppose there exists an element

Yopt € {S € argminAﬂl(SOHh(Q)FmA 15D S50}
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such that the difference I := ¥qpt\ S contains a loop £ C I. From Lemma 3.1.9 follows that such
Yopt must verify H! (Sopt) = H'(So) + h. The goal will be finding a competitor X’ € Az (g,)41(2)
satisfying F), 4(¥X') < Fya(Zopt)-

The idea used here is similar to that used in [44] to prove the absence of loops in minimizers of
the average distance problem (and in [33] for the two dimension case).

As (1(Xopt) = 0 by hypothesis, there exists a not y-negligible compact set K such that ¥opt N K =
0, and put

1
R:= 5 min{dist(y, Xopt) : y € K} > 0.
We have supposed the existence of loop E C Yqpt, thus p(E) = 0, and

IIERD)

r—0t r

=0

for #!-almost every x € E (see [2] for further details).

BTy and t a free parameter for now. Applying Lemma 3.4.5 yields the exis-
n
tence of:

e pc(0,t)and ¥’ € A(R) such that
%1(2/) < Hl(zopt) — p/4

Choose z* € E such that lim M

r—0+ r

= (), this leads to

Fua(Y) < Fua(Sopt) + /( » )(A(distg(w, Yopt) + p) — A(disto(w, Xopt)) )dp(w)
B(z*,64n°/%p

< Fua(Sopt) + pu(B(x*, 64n3/2p)) A (4.1.1)
(B(a*, 64%/%p))
64n3/2p

= Fyua(Xopt) + 64n3/2p2u

Lemma 3.4.6 applied to X' gives the existence of a competitor ¥ verifying
HUE") < HUE) + 2ne < HY(Zopt) + 2ne — p/4

and choosing ¢ := p/8n this yields

HUE") < H (Sopt)-
For the average distance functional
CARME) P
32nH1(X') 64n?

holds. Combining (4.1.1) and (4.1.2), for p sufficiently small, " satisfies H'(2") < H!(Sopt) and

F 4(X") < FjA(Xopt). Finally, the competitor ¥ contains S, thus is admissible. O

F

wA(X") < Fua(X)

(4.1.2)
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Lemma 4.1.2. Let Q) be a given domain, p a given measure, A a given function, Sy € A(Q) with F,, 4(So) <
oo and not containing loops, and h > 0 a given positive value. Consider an arbitrary element

Yopt € {5 € argminAﬂl(Slo(Q)Fu,A : S 2 S}

Suppose there exists a loop E € Sopt, and let ¢ : R? D ST — E be an arbitrary homeomorphism. Then the
set V =@ 1 (E N (Sopt\So)) has non empty interior.

Proof. From Lemma 4.1.1 it follows that E ¢ Yop\So. As by hypothesis E ¢ Sy, then both £ N Sy
and E N Zopt\So are non empty. So V := ¢~ H(E N (Zept\So)) # 0. Without loss of generality we can
work with another homeomorphism ¢ satisfying:

1. ¢:[0,1] — E, ¢(0) = ¢(1) =P € EN Sy,
2. 90,1 : (0,1) — E\{P} is an homeomorphism.

This choice is due to technical reasons only, as it is easier to work with ¢. Proving that V' has non
empty interior is equivalent to prove W := ¢! (E N (Eopt\So)) has non empty interior. Suppose the
opposite, i.e. W has empty interior (that is, as both ¢ and ¢! are homeomorphism, E' N (Xopt\So)
has empty interior). From assumption (2) on ¢ this means (£ N (Xqpt\S0))\{ P} has empty interior
in E\{P}, or equivalently (£ N Sy)\{P} dense in E\{P}.

Since E\{P} dense in F, this leads to

(ENSo)\{F} = E\(P} = E

which ultimately yields
ENnSy=F

and considering that E, Sy are closed sets, £ N Sy = E follows, contradicting the hypothesis. O
Now we can prove the absence of loops for solutions of (4.0.2) and (4.0.1):

Theorem 4.1.3. Let Q C RY be a given domain, ;1 a given measure, A a given function, ¢ > 0 a given time
step So € A(Q) an initial datum with F), 4(So) < oo and not containing loops, and consider

w(0) := Soy
w(n+1) € argmin““m(so>+(n+1>a(Q)FM7A : (4.1.3)
w(n+1) 2 w(n)

Then for any n > 0 the set w(n) does not contain loops. Similarly solutions of (4.0.2) with the same initial
datum Sy do not contain loops.

Proof. The proof is done by induction on n:
e by hypothesis w(0) := Sy does not contain loops,

e suppose w(n) does not contain loops.
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The goal is to prove that w(n + 1) does not contain loops. Suppose the contrary, i.e. there exists a
loop S C w(n + 1): this may lead to two possibilities:

1. S Cw(n+1)\w(n),
or
2. SNnw(n+1)\w(n) and S Nw(n) are non empty,

with the third possibility S C w(n) excluded by inductive hypothesis.
Notice that by construction w(n + 1) 2 w(n), and

wn+1) e {X e argminA%1 Ff: X Dw(n)},

(w(n))+e
so hypothesis of Lemma 4.1.1 and 4.1.2 are applicable to both possibility (1) and (2). Applying
Lemma 4.1.1 would lead immediately S ¢ w(n + 1)\w(n), thus possibility (1) is excluded.

Letbe ¢ : [0,1] — S an homeomorphism like that chosen in the proof of Lemma 4.1.2; applying
the latter, ¢~ 1(E N (w(n + 1)\w(n))) is not empty, thus contains an open ball (t* — p,t* + p) C
¢ HE N (w(n + 1)\w(n))), with p > 0. The image ¢((t* — p,t* + p)) is an open connected arc in
E N (w(n+ 1)\w(n)). Then it is possible to apply Lemmas 3.4.5 and 3.4.6, similarly to what done
in [44], and construct a competitor ¥’ € {X € Api(ym)4:(Q) + & 2 w(n)} with F, 4(X) <
Fy a(w(n + 1)), contradicting the optimality of w(n + 1).

The proof for solutions of (4.0.2), (4.0.1) and (4.0.3) use the same argument, with very small
modifications. O

In [44] it has been proven that minimizers of the average distance functional exhibit Ahlfors
regularity, when the considered measure verifies some summability properties. In this section we
aim to extend these results to solutions of (4.0.2) and (4.0.4), by adapting the proof. We present now
some preliminary results about Ahlfors regularity.

The following condition regarding the domain will be assumed through the Chapter:

Assumption 4.1.4. The domain ) satisfies: for any point x € Q (where ) is the domain being considered)
there exists > 0 such that:

e B(z,6) C Qifxis in the interior,

e B(x,0) N is convex, and there exists a constant n > 0 such that L2(B(z,0) N Q) > né? for any
x € Of.

Lemma 4.1.5. Given natural numbers n and k, x € R"™, p > 0, points {zi}f’:l C B(z,p), there exists
Y € A(B(z, p)) such that

o z;€Xfori=1,---k,
o HI(X) < C*k:nT_lp, where C* depends only on n.

The proof can be found in [44].
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Proof. Upon translation and rescaling suppose = = (0,---,0), p = 1/2 and {z;}%_; C [0,1]". Let T}

be a uniform one dimensional grid with step j ({(z1,--- ,zn) : jx; € N for at least n — 1 indexes}):
it holds
‘ n— . Vvn
HY(T)) <n(j+ 1", max. dist(y,Ij) < 5. (4.1.4)
Let z; ; be an arbitrary projection of z; onI'; for j = 1,--- , k, and put
k
T5 =T, U J{szi+ (1 —s)z, : s €[0,1]}. (4.1.5)
i=1

It is obvious that z; € I'; for any i, j; from (4.1.4) inequality

k
H'(H) <n(G+1)" '+ ;;ﬁ
follows, and the choice j := [k!/"] gives
* n n— k\/ﬁ
H (Cham) < BT+ + 2o
which concludes the proof. ]

Remark 4.1.6. Let M C R™ be a convex set, and assume there exists a homeomorphism ¢ : M — B(x, p)
verifying:

e there exists my, mo > 0 such that
madistrn (¢(21), p(22)) < distar(z1, 22) < madistrn (p(21), p(22)) (4.1.6)
forany z1,zo € M.

Notice that (4.1.6) implies a bi-Lipschitz behavior.

Then the conclusion of Lemma 4.1.5 can be applied for points {y; }1< | C M: indeed given k points {z;}¥_,
of M, upon translation and rescaling, we can apply Lemma 4.1.5 to points {p(z;)}¥_, in the domain [0, 1]™.
Using the same construction, let I'; be the same set defined in the proof of Lemma 4.1.5, and define

k
T =T; U | J{sp(zi) + (1= 8)2p., : s € [0,1]}
=1

where z,; ;j denote an arbitrary projection of p(z;) on I';.
Now it is clear that o1 (T';) C M, as well o= ({sp(z;) + (1 — 8)zpij + s € [0,1]}) C M for any
i=1,---, k. From (4.1.6) there exists m’, m/, such that
mi ;) < H (97 (1)) < moH (T)

and
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m (distre (9(23), 20,5.5)) < distar(zi, 07 (205)) < mb(distrn (0(21), 20.1.5))

thus the same conclusion of Lemma 4.1.5 holds for points {z;}¥_; C M.
The next two (technical) results are from [44].

Lemma 4.1.7. Let Q@ C R"™ be a given domain, ¥ € A(QY), then for any x € X there exists ¥’ € A(Q) such
that for any p > 0

HY(Z N B(x, 2p))> T 1,

2p

o HI(X) < HY(E) - H (SN Bz, p) + c<<

e X\ C B(x,2p), ¥\X C B(x,8/np),

o distg(z,Y) < dist(z, X) for any z ¢ B(x,4np),

e distg(z,Y) < dist(z,X) + p forany z € B(z,4np).
where C'is a positive constant depending only on n.

Lemma 4.1.8. Let Q C R" be a given domain, ¥ € A(S2) and suppose there exists r > 0 such that for any
x € X, 0 < p < rthe inequality

HY (X N B(x,p)) < a?—[l(E N B(z,2p))“

p 2p

holds for some fixed a > 0,b > 0, € (0,1). Then there exists a constant K = K (a,b, a,r, H1(X)) such
that

+b

HU(ZN Br.p) _
) <

K.

Lemma 4.1.7 cannot be used when irreversibility condition is added. A slightly different result
is required.

Lemma 4.1.9. Let Q C R" be a given domain, ¥, € A(Q) Ahlfors reqular, ¥ O 3, then for any x € ¥
there exists X' € A(Q), ¥/ D X, such that for any p > 0

H(X N B(x,2p))
2p

o HI(X) ng(E)—Hl(EﬂB(m,p))—I—C(< ) +1)p,

e X\X C B(x,2p), ¥'\X C B(z,8y/np),
o distg(z,Y) < dist(z, X) for any z ¢ B(x,4np),
o distg(z,Y) < dist(z,X) + p forany z € B(z,4np).

where C'is a positive constant depending only on n and X,
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Proof. The proof uses an idea similar to that found for Lemma 4.1.7 (see [44] for instance), with
corrections due to irreversibility condition.
Given a point x € %, p € (0,9) (J given by Assumption 4.1.4), put k(z, p) := {3 N 0B(x,p)};

from coarea formula
2p

HY(Z N B(z,2p)) > /

2p
k(x,t)dazz/ k(x,t)dt
0 p

which implies there exists ¢t € [p, 2p] such that

HY (X N B(z,2p))
p :

k(z,t) <2

Lemma 4.1.5, with Assumption 4.1.4 and Remark 4.1.6 guarantees the existence of ¥y(t) € A(Q)
such that { N B(x,t)} C Bo(t), and H (Zo(t)) < C*(n)k(z, t)nT_lt.

Letbe ¥ (t) := x + Uj_,{se; : s € [1,t]}, where e; denotes the j-th unit vector
(e; = (0,---,0,1,0,---,0), with the only “1” occupying the j-th place). This set mainly serves to
preserve connectedness for ¥', which will be constructed in the following.

Some discussion about ¥ () is required, as we have only ¥, (¢) C B(x,t) butnot X, (¢) C Q, thus
we should prove ¥ (t) N Q is connected first. Thus given an arbitrary point zp € (£:(¢)\{z}) N Q,
there exists t(20) € [~t,?] and j(z0) € {1,--- ,n} such that zo = x + #(20)e;(,,), and since B(z,t) N
is convex by Assumption 4.1.4, {z + uej(,,) : u € [0,£(20)]} € Q2 follows. This guarantees that every
point z € X (¢) N Q is connected by a path (as {z + uej(,y) : v € [0,(20)]} € Q) tox € Q, thus
¥1(t) N Q is connected. In the following we will write ¥, (¢) instead of ¥, (¢) N 2.

Upon a rotation Xo(t) N X1 (t) # 0. Put

> = S\B(x,t) U (3 N Bz, 1)) Uo(t) Uy (t),
and inequality
HU(E) < HY D) - HY(Z N B(x,t) + H (T 0 B(x, 1) + H (Zo(t)) + H (Z1(2))

follows.
By construction H'(X;(t)) < 4n®/?t; combining

H(Zo(t)) < C*(n)k(a,t) "

given by Lemma 4.1.5 and
1
W) < 27 B0 B 29)
p

inequality

HY (SN B(z,20)\ "
2p ) '

W (Solt)) < 20%(n) (
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follows, yielding

n—1
HI(EQB($72P)))"t+4n3/2t
2p -
HY(ENB(z,2p)\ *
2p

HU(E) <HUZ) - HYUENB(z,t) + HY (S N B(z,t)) + 2C*(n) (

<HY D) - HYE N B(x,t) + HY(Zs N B(z,t)) + 4C*(n) p+ 8n3/%p

n—1

= HY(Z) — H (E N Bla,p)) + H' (S N B(x, 1)) + <40*(n) (Hl(z N B(, 2p))> L 8n3/2> N

2p
As ¥, is Ahlfors regular by hypothesis, there exists K > 0 such that

1
?{ (Ej* rllg(x7t)) f; l(,

thus
n—1

HIZ) < HU(S)—H (SN Blx,p)) + Kt (40*(n) (Hl(mi(‘”’%))) " —|—8n3/2>p

< H(S) — HL(S N B(x, p)) + (2[( +4C*(n) (%1(2 “;;(””’ 2’”) T 8n3/2> )

n—1

) " 4 8n%/2 concludes the proof. O

HY (XN B(z,2p))
2p

and putting C' := 2K + 4C*(n) <

Now we can present the result about evolution cases:

. . . N
Theorem 4.1.10. Let be @ C RN (N > 2)a given domain, p € LP(Q2) with p > N1

A : [0,diam Q] — [0, 00) a given function, Sy € A(Q2) an Ahlfors regular initial datum, e > 0 a given time
step, and consider

a given measure,

w(0) := Sy

w(n + 1) € argmin 4 Fa (4.1.7)

1 (So)+(n+1)e ()
w(n+1) D w(n).

Then for any n the set w(n) is Ahlfors reqular. Similarly solutions of (4.0.1) with the same initial datum S
are Ahlfors reqular.

Proof. The proof is done by induction. By hypothesis w(0) := Sy is Ahlfors regular. Suppose that
w(n) is Ahlfors regular, the goal is to prove w(n + 1) is Ahlfors regular too.

First notice that p(w(n + 1)) = 0 forces the existence of a compact set K C Q with p(K) > 0
(similarly to what done in the proof of Theorem 3.4.10, available in [44], the choice K := Q\{w € 2 :
disto(w, w(n + 1)) < 2¢} is acceptable for some ¢ € (0, diam w(n + 1)).

Consider a point y € w(n + 1). Applying Lemma 4.1.9 (with 3, = w(n)) yields the existence of
Y € A(Q) verifying
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e X' Dw(n),
e inequality

H' (w(n +1) N B(y,2p))
2p

N—-1
N

)N +1)p

HY(Z) < HY(wn+1)) = H (w(n+ 1) N B(y, p)) + C((

for some C' > 0 depending on N and w(n).
Moreover
Fua(?) < Fua(w(n-+ 1) + 20(By,ANp)
< Fua(w(n + 1) + 2812 5 i) L2 (B, AN )/ (418)
N
= Fua(w(n+1) + Cpa ™
for p sufficiently small, with A denoting the Lipschitz constant of A, g the conjugate exponent of p

and C’ > 0 a constant not dependent on y and p.
Then from the argument found in Theorem 3.4.10 follows:

H' (w(n +1) N By, 2p)) -1

H(w(n +1)) = H(Z) > H (w(n+1) N By, p) — pC(( % ) ¥ +1)

and if .
H (w(n+12)ﬂB(y,2p)))N—1 1) <0
P

Lemma 4.1.8 (applied witha = C, a = %, b=C,r =diamw(n+1),%X = w(n+ 1)) concludes the
proof. If

H!(w(n+1) N By, p)) — pC((

H(w(n +1)N B(y,2p)) n-1

H!(w(n+1) N By, p)) — pC(( % ) ¥ +1)>0

then put

H'(w(n+1) N B(y,2p))
2p

using Lemma 3.4.6 there exists X" € A(Q2), ¥’ D 3, such that

)N +1))/2N;

¢ := (H'(w(n+1) N By, p)) — pC((

Fua(S) < Fua(S) — G2, HU(S') <H(S) +2N¢ (4.1.9)
with C; > 0 not dependent on y and p, thus combined with H!(w(n + 1)) — H*(X') > 2N¢ gives
HY(E") < HY (w(n +1)). (4.1.10)

Combining ¥ 2 ¥’ O w(n), (4.1.10) and minimality property of w(n + 1), we get F,, 4(X") >
Fua(w(n+1)),

Thus the competitor X" verifies F}, 4(X") > F,, a(w(n + 1)), and from now the proof returns to
be valid in both cases. Combining (4.1.8) and F), 4(X") > F, a(w(n + 1)) leads to

HU(Z") < HY(D) + 2N€, Fyalw(n+ 1))+ C’p%H — 0162 > F A(2") > Fya(w(n + 1)).
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By direct computation we get

Hl(w(n + 12)pm B(y7 2[))))b 4 1))2 S C/p%Jrl’

(H'(w(n+1) N B(y, p)) — pC((

thus
H'(w(n +1) N B(y,2p))

2p

H' (w(n+1) N By, p)) — pC(( )% +1) < C’p%—%_

By hypothesis % > 1, thus forcing

N_1 N_1
p2 2 < (diam w(n + 1))z 2,
and Lemma 4.1.8 concludes the proof. O

In the proof of Ahlfors regularity a crucial role is played by Assumption 4.1.4: indeed an explicit
example shows that without this condition, Ahlfors regularity can be false.
4.1.2 Counterexample to Ahlfors regularity

Now we present an example of domain which is not convex, and the results concerning Ahlfors
regularity do not hold. In all this subsection the notation dist(-, -) will denote the geodesic distance
on the domain (which we will construct).

Given a € (1,2) (and this « will be fixed in all the subsection), £ € N, impose a cartesian
coordinate system in R? (see Figure 4.1.1), and define sets

Cp = {(x,y)eR2 N [1 1+4—’<>H

ke’ ke

and Ly, the rectangle of R? with vertices:
1 1 1 1 1 1
o Ta e, —— | if k
) <ka’0>’ (kza’ 4’”1)’ ((k + 1)6“0)’ ((k +1) 4’““) e

1 1 1 1 1 1 )
 (50) () () (e ) o

Let

Q:=Jcu{00,0}u L
k=1 k=1

be our domain, endowed with the geodesic distance (i.e. the distance between two points x1, z2 €
is given by the length of the shortest path 5 : [0,1] — Q, 5(0) = 21, 5(1) = z2).

Lemma 4.1.11. The set ) is sequentially compact.
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()

Figure 4.1.1: This domain (2 does not satisfy Assumption 4.1.4. Note that non convexity (actually
this domain is not even simply connected) is strongly used in this counterexample.

Proof. The proof is straightforward, using basic topological considerations. Let {z;}32, C (2 be an
arbitrary sequence. If I := {i : z; = (0,0)} verifies I = oo then {z;};cs is a converging sequence.

If I < oo, we can consider the sequence {x;}7%,\{z;}ies since removing finitely many elements
from a sequence has no influence on the Cauchy condition. Thus without loss of generality we will
assume I = (). The following dichotomy holds:

1. if there exists M > 0 such that {z;}72, C [ J(C; U L;), then {z;}32, admits a converging sub-

=

Il
R

%
M

sequence, since U (Ci U L;) is a finite union of compact sets,
i=1

2. if a similar M does not exist, then for any K > 0 we have

K
{z}2o\ J(Csu Ly) #0,
s=0

or equivalently

{zj}5%0n J (CsULy) #0,

s=K+1
and as U (CsU Lg) € B((0,0), K~%) for any K > 0,
s=K+1

{3320 0 B((0,0), K=) # 0.
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Thus there exists a subsequence {z;, }7%, C {;}32, converging to (0,0).
Thus (2 is sequentially compact. O

Now we provide some estimate on the distance between two points in €.

Lemma 4.1.12. Given arbitrary a,b € N, a < b, for any couple of points x1 € C,, x2 € Cy, inequality

2 21 4 b
j=a+1 J j=a—

holds.
Proof. The proof is split on several passages:
o We first estimate distq(Cy, Cj41) for a given k£ € N.

By construction for any £ € N we have

11
ke (k+1)e 4kl

disto(Cr, Cry1) >

On the other hand:

e if k even, there exists v : [0,1] — Q, y(0) = (k7%,0) € Cr N Lg, v(1) = ((k+1)7%,0) €
Cr+1 N Lg,as y(s) :== (1 — s)(k~*,0) + s((k + 1)7%,0) is admissible due to convexity of Ly,

e if k odd there exists ' : [0,1] — Q, 7/ (0) = (=k~*,0) € Ck, ¥ (1) = (—(k+1)7%,0) € Cry1,
as'(s) := (1 —s)(—k=,0) + s(—(k 4+ 1)7%,0) is admissible due to convexity of L.

thus in both cases disto(Ck, Cry1) < k™% — (k+1)7%, and

1 1 1 1 1

— _ < di < - -
e e S diste(Ch Cen) S 55— e

(4.1.12)

holds.
e Now we have to estimate distq(Lx, Li+1) for a given k € N.

By construction the only way to connect arbitrary points py € Ly and p; € Ly is through a
path 5 : [0,1] — Q verifying 3([0,1]) N Ly 2 {po}, B([0,1]) N Li+1 2 {p1}, and this path must “pass
through” Cj41.

As pg and p; are almost antipodal (i.e. dist(pg, —p1) < 2 - 4=(k+1) where —p; denotes the point
symmetric to p; with respect to (0, 0)), any such path g’ must verify

27 us 2
3(k + 1)« < (k+1)-« T gkl < H(B([0,1))).
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On the other hand, as both pg, p1 € Cj1, the path 5 can be chosen verifying

s 2 47

B0 D) < iy + g < 301 T

thus 5 A
T T
— < dist(L. L <

< ST 19 (4.1.13)

4 4

Similarly, given x; € C,, z2 € Cj, we have disto(z1, L) < 3—7; and dist(za, Ly—1) < 377; Combin-
a

ing with (4.1.12) and (4.1.13), with simple algebraic passages, leads to

b—1 b
211 1 1 . 4 (1 1 1
g (aaba—i_ﬂ-.z ﬁ) §dlstQ(x1,x2) 3 (aba—i-ﬂ'zja)
j=a+1 j=a
and the thesis follows with simple estimates. O

If we let b — oo, point 3 converges to (0,0), and (4.1.11) reads

T Z — (4.1.14)

gﬂ' Z —<dlstQ(:c1, (0,0)) <
Jj=a— 1

j= a+1‘]

QL

Notice that although we had better estimates for (4.1.13), the less accurate one is sufficient for our
goals.
Before proceeding with the main result, another important lemma is required.

Lemma 4.1.13. Any element of A(2)\Ao(S2) containing (0, 0) is not Ahlfors reqular.

Proof. LetW € A(Q)\Ay(2) be an arbitrary element, and H the smallest index for which WNCy # 0
(if such H does not exist, i.e. W N Cy = 0 for any g € N, would lead W = {(0,0)} contradicting
HYW) > 0), and choose X € W N Cy: as W 2 (0,0), there exists a path ¢ : [0,1] — W with
©(0) = X, (1) = (0,0). From (4.1.14) we have

and using

— > (4.1.15)

we get

2 1 1
- < .
37T o1 = dist(X, (0,0))

From the construction of (2, for any n > 0 there exists X,, € ¢([0,1]) N Cg4p. From (4.1.14) and
(4.1.15) we have that

1 1
T
a—1(H+n+2)2"1 —

2
3 < distq (X, (0,0)),
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holds for any n > 1.
Define r, := ia: for any £ > 1 it holds
S

HW N B((0,0),ra4k) o H(((0,1]) N B((0,0), rrk))

TH+k TH+k
disto (X, (0,0))

TH+k
1 2 1 1

- rH+k§7Ta_1(H+k;_|_2)a*1
2 1 (H+k)e
"3 a—1(H+k+20 1

V

leading do
1 «a
lim H (W N B((0,0), ra+k)) > lim 27r 1 (H +k) .
k—oo THik koo d a—1 (H +k+ 2)0‘_1
thus W cannot be Ahlfors regular. O

Given a parameter € > 0 consider the evolution

w(0) := {(0,0)}
w(n + 1) € argmin ;o

n (4.1.16)
(n+1) 2 w(n)

(n+1)e

1
1
where
FiAQ) — (0,00),  F(S) = / disto (x, S)dz.
Q

Proposition 4.1.14. For any parameter € > 0, any solution {w(j)}32, of (4.1.16) is such that w(1) is not
Ahlfors regular.

Proof. From
distq(z, (0,0)) < distq(z,w(1)) + ma()i) distq(y, (0,0)),
yew

integrating on (2 leads to

F({(0,0)}) = F(w(1)) :/Qdistg(x, (O,O))dx—/Qdistg(x,w(l))da:
g/Qdistg(a:,w(l))+y1é1£(}§)distg(y, (0,0))d:1:—/Qdistg(x,w(l))dx
< ma()i) distg(y, (0,0))£%(Q).

yew

As H!(w(1)) = e is admissible, we can choose S € A. containing (0, 0) such that max,cg disto (S, (0,0)) =
e, with {z € Q : distq(z, (0,0)) = €} is not empty as t — distq(¢, (0,0)) is continuous on 2. Let H be
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the smallest index for which S N Cy # (: this forces S N Ly # (); moreover, as S intersects both C'y

1 1 1
1 >
and Cp41, diam(S N Ly) > 5 (HO‘ [+ 1)a>, thus the set

{w € Q: distg(w, (0,0) < dist(w, S))}

1
contains at least {w € Ly : disto(w,S) < §distQ(C’H+2, (0,0))}, which has positive measure.

Thus F(S) < F({(0,0)}), and w(1) # {(0,0)} as by definition w(1) € argming,, Hl(S/)<EF(S,)‘
Lemma 4.1.13 concludes the proof. - N O

4.1.3 Branching and high order points

In this subsection we will restrict the discussion to two dimensional domains, endowed with the
Lebesgue measure. Moreover, irreversibility will be imposed, i.e. we will analyze only non de-
creasing solutions with respect to inclusion. Irreversibility will be crucial for this argument. Our
main goal is to analyze topological properties of solutions of Euler schemes, in particular condi-
tions related to branching behaviors, i.e. when a non endpoint increases its order, or an endpoint
increases its order by at least 2. The measure and function A considered will be Lebesgue measure
and identity function respectively. Although these restrictions actually lead to a loss of generality,
the arguments presented analyze the main properties leading to such topology changing, and give
a good explanation of the causes leading to such behavior.

Definition 4.1.15. Given a domain Q C R?, an initial datum ¢ a time step € > 0, consider a sequence
{w(k)}2, solution of (4.0.4), with time step e > 0, measure y := L2 and function A := id. Then we say
w(k) exhibits a branching behavior if

e there exists a non endpoint y € w(k — 1) such that ordyw(k — 1) < ord,w(k),
or
e there exists an endpoint y € w(k — 1) such that ord,w(k — 1) < ord,yw(k) — 2.

Thus an easy interpretation (valid when all points have finite order) branching behavior appears
if a non endpoint increases its order, or an endpoint increases its order from 1 to at least 3.

The next result is a crucial estimate (from below) for the gain for the average distance functional
in configurations containing points with non negligible Voronoi cell.

Proposition 4.1.16. Given a domain , let 3 € A(Q2), with a point P satisfying:

(awg) there exists & > 0 such that ¥ N B(P,€) is contained in the circular sector with center P and arc ~,
with length strictly less than €.

Then it holds:

(1) there exist p > 0 and 6 > 0 and a isosceles triangle T' C V (P) with a vertex in P, two sides with
length p and angle X1 P Xy measuring 6 not intersecting X\{P},
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Figure 4.1.2: Condition (a3) guarantees the existence of such triangle X; PXy C V(P).

(2) there exists eo > 0 such for any e < eq adding a segment X, in P, with H'(\.) = ¢ in yields
F£2,’id(2) — Fﬁzyid(E U )\5) Z K&,

where K > 0 is a constant not depending on e.

Proof. For statement (1) (Figure 4.1.2 is a schematic representation) is a simple consequence of the
fact that by construction, triangle X; PX5, with X1 P = X3P = p/2, is contained in V (P).

Now pass to statement (2): choose a small € > 0, adding a the segment A, := {(1 — ¢)P + tP* :
t € [0,e]} (P* is the projection of P on XXy, see Figure 4.1.2), by direct computation any point
z € X1 PX, with distance at least p/4 from P satisfies

X.PX —
disto(z, ¥) — distq (2, S U A.) > distq(z, P) — (distq(z, P)? + €2 — 2e cos(2-22)) = K (p, X1 PXo)e
(4.1.17)
Therefore
Fr21a(%) = Fr2ia(Z U ) = K (p, X1 PX2)eL2(X1 PX\B(P, p/4)),
and the proof is complete. O

Theorem 4.1.17. Given a domain , let ¥o € A(S2) be a generic element, T a positive time and ¢ > 0 a
positive time step, and consider the Euler scheme
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{w(O) = Y

w(k) € argmin Fr24(S")

HU(S)<HL (D) +ke, w(k—1)CS’

in the time interval [0, T]. Suppose that there exist Py € ¥ verifying condition (o) of Proposition 4.1.16,
and suppose there exists n > 0 such that B(FPy,n) N (w(k)\w(0)) = 0 for any k. Then there is an upper
bound T}, such that for any T > T}, a branching behavior is necessary.

Proof. Applying Proposition 4.1.16 to F, there exists a constant K (F) > 0 (not depending on ¢)
such that for any j

HI(S)<S (w42, (1) Fe2alS') < Frejalw(i = 1)) = K(Fo)e,

as this gain is achieved by simple adding a segment Seg. C Tp (H!(Seg.) = ) along the bisector of
Py, as in the proof of Proposition 4.1.16, which would imply a branching behavior.

If this is avoided, then for any %, w(k) must be obtained from w(d — 1) by adding length at
endpoints of w(k — 1), and it must hold

Fpoq(w(k)) < Fpagg(w(k —1)) — K(R)e  Vk=1,---, E] ,

which leads to
T
Fpoiaw(k)) < Fra a(w(0)) — kK (Py)e V=1, H

3

and finally, for k£ = {Z] ,
T
Foraal|£]) < Frasalwl) - | 2| K(Re
T .
As — —1< [} < o this leads to

3

0< Fpa o ﬂ) < Fpo aw(0)) — (T — )K (Py),

which forces

Fir2 1a(X0)
T<e4+ =2 -
K(P)
Fr2 42
and the choice T}, :=¢ + m completes the proof. O
K(Py)

Note that the dependency of T},
only ¢ sufficiently small, and replacing 77,

on ¢ is very weak, and can be easily removed by considering
with

ax

Fra;q(X0)

Thax =1
max + K(Po)
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Next we present an application of this result to determine an upper bound estimate for the
branching behavior, in a discrete irreversible evolution scheme. Some preliminary results are useful
to obtain sharper estimates.

Lemma 4.1.18. Given a domain ), an element ¥, € A(S2), and suppose that there exists Q € Qand R > 0
such that the ball B(Q, R) N X1 = 0. Then

A7 R3
27

Proof. As B(Q,R)N %y =0, for any r < R all points x € B(Q, r) verify disto(z,X1) > R —r, so

Fr2q(31) >

Fraq(1) = / distq(z, X1)dx > /( )distg(x,El)dx > (R —r)mr.
Q B(@Qr

Differentiating the expression (R — r)7r?, its maximum value is attained by r = §R’ which corre-

sponds to

47
Fraq(X1) > ?733

and the proof is complete. O

Lemma 4.1.19. Given a domain 2, an element ¥y € A(), a point Q' € Yo and suppose that its Voronoi
cell V(Q') has L2(V(Q")) > 0. Then there exists Q € §2 such that B(Q, %diam (V(@Q))) N3y =0.

Proof. From V(Q') C B(Q',diam (V(Q"))) it follows £2(V(Q")) < %diam (V(Q")% Letbe X1, Xo €
V(Q') points such that disto (X1, X2) = diam (V(Q')):

disto (X1, Xo) = diam (V(Q')) < distq (X1, Q') + dista(Q’, X2)

so min{disto(X1,Q), disto(Q', X)} > %diam V(@)
Assume that disto (X1, Q') > %diam (V(@Q")): X1 € V(Q') implies that for any s < %diam V@),

1
B(X1,s) N Yy = 0 to avoid disto (X7, B(X1,8) NYg) < s < idiam va@n).
_ 4
Choose @ := X}, and considering that diam (V(Q')) > 1/ —|V(Q’)|, the proof is complete. O
T

Consider the following configuration: given a domain €, let 3% be the initial datum, and sup-
pose there exist

e aclosed injective path v* : [0, 1] — Q such that y*([0, 1]) C $d%: the domain € is now divided
in two regions, Q1 and Q™ with @ = Q" U Q~ (they are the two connected components of
2\v*([0, 1]), and correspond to the “interior” and the “exterior” part of v*([0, 1]) — the order is
not relevant — given by the Jordan Curve Theorem);
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QJr

dat
EO

By

Figure 4.1.3: This is an example of possible set $4%; in this case the only point verifying the required
conditions is P}, and Q7 is the part “outside” the curve, while Q~ is the part “inside” the curve.

e P} c Ydo and a triangle Tp; C V(Fy) N B(Fy, &) with [Tpr N Q7| > 0, and ext(SgH) c Q.

In the rest of this subsection suppose that 2~ is large enough (both in diameter and in measure)
so that all computations can be done without considering constraints imposed by diam (27), £2(Q7).
This because such constraints, in the following discussion, can only diminish the mass projecting
on endpoints of w(k), thus can only decrease the time at which a branching behavior becomes nec-
essary, and we are looking for an upper bound for such time.

Consider

w(0) = w(0) := Xt
w(k) € argminHl(Xu)SHl(Egat)+k€/F()(//)
w(k) D w(k —1),

where ¢’ is a given (small) parameter, and

e 0,T] — A, upr(£) = w (H)

The main estimate here is Theorem 4.1.20.

Notice first that the only way to exclude a branching behavior is that the difference w(k)\w(k—1)
is always contained in 2~

The notations introduced (except mute counters like £ and n) will have the same meaning in the
following of this subsection. There exists a positive constant K (F}) (depending only on geometric
quantities, not on ¢’ and estimable with the same argument found in Proposition 4.1.16) such that
for any k£

i Froig(X") < Fpo k—1))— K(P)e
Hl(X”)gw(k—gl—&l-rkla’, w(h—1)Cr £2,ia(X") < Frz ja(w( ) (Fp)e’s
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thus
Fr2 jq(w(k)) < Frz jq(w(0)) — kK (Py)e’ (4.1.18)

ie. vVt €[0,7)
t . t ot
Foraluet) = Fosgalwl| 5])) < Foosa(5i) = | 5| KR < FeasalSff) - (5 - KR
But obviously

Frz iq(ue(t)) 2 0

and combining the above inequalities gives

t

0 < Frzja(ue (1) < Frzia(36") = (5 = DE(Py)e
which forces
Frzq(55") = (t = DE(Py).

Theorem 4.1.20. For this configuration, with the above notations, an upper bound for the branching time is
given by
Fpr2,a(Z5")

Tmax =1

Notice that the partition Q" U Q~ is crucial as it is not possible to “pass” from one region to
another without intersecting ([0, 1]), so it prevents u(¢) from visiting 7'(P;) NQ" without exhibiting
branching behaviors.

A very similar result is easily obtained for the penalized case:

Theorem 4.1.21. Under the same configuration consider

w(0) := Bget
w(k) € argming i <y (sdaty e Fr2,ia(X") + AX\w(k — 1))
w(k) 2wk —1),

and define
t
Ugt - [O,T] — A,’U,Ef(t) =w <|:€,]) .
Then there exists Ao > 0 such that for any X < Xg there exists an upper bound Ty,ax with dependence on A
for the branching time.

For the penalized problem an upper bound on the number of endpoints can be given too. Con-
sider the evolution

w(0) = w(0) 5= 2
w(k) € argminrH1(X//)SHl(Egat)+k€/F[,2,id(X//) + AMX"N\w(k —1))
w(k) D w(k —1),
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where A > 0 is a given parameter. Choose arbitrary £ € N and endpoint P € w(k)\w(k —1). Denote
with TM (P, w(k)) the total mass projecting on P; it is known (see for instance [14], [16] and [17])
that there exists 79 > 0 such that w(k)\B(P,r) is connected for any r € (0,r), and obviously

distq(z, w(k)) < distq(z, w(k)\B(P,r)) +r
for any point z, thus using the arbitrariness of r

F(w(k)\B(P,r)) — F(w(k)) <rTM(P,w(k))

which combined with

Flw(1)) + Mw(k)\w(k = 1)) < F(w(k)\B(P, 7)) + Aw(k)\B(P,r)\w(k — 1))

yields TM (P, w(k)) > X. Thus each “new” endpoint (i.e. endpoint of w(k) not present in w(k — 1))
has an uniform positive lower bound for the mass projecting on it, and the total number of such
“new” endpoints (i.e the number of endpoints present in w(k) for some k but not present in ¥g¢¢)
cannot exceed £2(£2)/\.

4.2 Limit sets

In this Section our goal is to analyze limit sets of quasi static evolutions related to the average
distance functional. The first problem to deal is existence of such limit sets: indeed given a domain
Q C R", n > 2, the space (A(Q),d) where d(-,-) := H!(-A-) is not sequentially compact, while
(A;(2), d) is sequentially compact for any {. Thus a natural way to retrieve sequential compactness
is to restrict the evolution to sets with limited length, but a priori such choice can cause loss of
generality. Fortunately for the average distance functional this does not happen. Indeed consider
arbitrary domain Q C R", measure y € L', function A : [0,diam Q] — [0, 00), initial datum
Yo € A(f), and the evolution

(k +1) € argmin ;) Fj, a () + XH' (-Aw(k))

with A > 0 a given constant. From minimality properties of w(j + 1) it follows
Euaw(5)) > Fua(w( +1) + M (w(5) Aw(j + 1)),

and thus
Jo—1

Fa(w(j)) — w(jz)) > A Z H (w(i)Aw(i + 1)),

i=J1

Choosing j; = 0 it follows

Fa(Zo) — w(jz)) > A Z HY (w(i) Aw(i 4+ 1)) > A (SoAw(jz)),
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yielding
Fy,4(%o)
S
effectively providing an upper bound for #!(w(j2)) independent of j, (but depending on \). Thus
sequential compactness is proven true for this kind of evolution.
The following result holds:

H' (SoAw(jz)) <

Proposition 4.2.1. Fix a domain Q@ C R"™, a measure u € L', a function A : [0,diam Q] — [0, 00), an
initial datum ¥ € A(S2), and consider the evolution

w(O) = 20
w(k +1) € argmin oy F a(-) + AH! (-Aw(k))

with X > 0 a given constant. Then it holds:
o if [VF, a|(X0) > A, then for any limit set ¥* it holds |V F, a|(X*) < A,

Proof. Assume for the sake of contradiction that there exists a limit set ¥*, a constant > 0 and a
sequence y, such that

Fua(S) = Fualye) = A+ mH (S Aye) Yk
Choose w(h) with h large, then it holds
Fya(w(h+ 1)) + AXH (w(h)Aw(h + 1)) < F,, a(ys) + AH (w(h)Ays) Vs.

As
Fua(ye) < Fua(S*) — A+ n)H (ypAX*) VY,

this yields

Fya(w(h+1)) + M (w(h)Aw(h 4 1)) < Fa(ys) + AH (w(h)Ays)
< Fua(E%) = (A + )R (yAS) + AM(H (w(h) AS*) + H (y,AX*))
= Fa(3%) — nH (ysAS*) + A (w(h)AXY),

or equivalently
MH! (ysA5) < [Fya(w(h +1)) = Fua(S9)] + AR (w(h)AS") = H (w(h)Aw(h +1))] Vs,
which is false once h is chosen sufficiently large as the right hand side goes to 0 as h — oc. O

Limit sets of quasi static evolution inherits Ahlfors regularity, but the proof is surprisingly diffi-
cult. This is being studied in a work in progress by the author. Here is an idea of the proof.
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Proposition 4.2.2. Let Q C RY be a given domain, an Ahlfors reqular initial datum ¥o € A(Q2), and
consider

’LU(O) = S()
w(n +1) € argmin y 4oy Fua(X) + AHE (X Aw(n))
Then any accumulation point of {w (k) }ren belonging to A(2) is Ahlfors regular.

Proof. (Sketch) The lower bound estimate follow from the fact of being in A(€2). For the upper
bound estimate, fix arbitrary, £ € N and consider a point P € w(k). Denote with £(1, p) := ((w(k +
1\w(k)) N B(P,p)), i.e. the set added in B(P, p)) at step k + 1, which can be empty. Denoting with
wi = w(k 4+ 1)\&(1, p). It holds

H (wiAw(k)) = H (w(k + 1) Aw(k)) = H' (€1, p))

as £(1, p) does not intersect w(k). Thus it must hold

F(wh) = F(w(k +1)) = XK' (£(1, p)),

as the contrary would contradict the optimality of w(k + 1). This argument can be repeated for all
steps: indeed denote with £(j, p) := ((w(k + j)\w(k +j — 1)) N B(P, p)) and w) := w(k + 7)\E(4, p)-
It holds

H (wiAw(k + 5 —1)) = H (w(k + j)Aw(k +j — 1)) = H' (£, p))

and
F(w)) = F(w(k +j)) = A1 (€35, p))-

Summing over j, and considering that £(j, p) € B(P, p) for any j, yields

Ay HUEG, ) < pLP(Q)
j=1

which implies

> HUEG ) < pL(Q)/A.
j=1

Using the arbitrariness of k£ and P € w(k), this is sufficient to prove Ahlfors regularity. O

Notice that this is only an idea of the proof: indeed here we have omitted several details, in
particular the discussion about connectedness of the competitor w?, as a priori it cannot be assured
that removing £(j, p) will preserve connectedness.
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Chapter 5

Gradient flow evolutions

In Chapter 4 we have analyzed the quasi static evolution related to the average distance functional,
mainly focusing on geometric and analytic properties. Another important class is the gradient flow
evolution, discussed in the abstract metric context in Chapter 2.

This chapter’s structure is similar to that of Chapter 4, with main results about geometric and
regularity properties presented in Section 4.1, and some side notes in Section 4.2.

The discrete form of the gradient flow will be

{w(O) =% € A(Q)
w(n+1) € argmin [, dist(z, -)dp + 5=d?(-, w(n))

where €, ;1 are respectively a given domain and measure, X is a given initial datum, and 7 > 0
is a fixed (small) parameter. Note that here we have not specified which distance d is considered.
This will be determined later (and will be the #'-measure of the symmetric difference), and requires
some care to guarantee the well-posedness of such problem.

The two sets of assumptions (Assumptions 2.2.8 and 2.2.13) must be checked.

Given a domain 2 C R™ (n > 2), a measure p and a function A : [0,diam ] — [0,00),
Assumption 2.2.8 from Chapter 2 about existence of minimizers becomes:

Assumption 5.0.3. Let (A(S2), d) be the metric space, and F), s a nonnegative functional continuous with
respect to d. Assume that there exists T such that for every T € [0, 7| and o € D(F), a) the map

d(X,0)?

Y F,aA(2
— #,A( )+ o7

has at least a minimum.

We leave the distance d undefined for now, as the exact choice will be made later, but suppose
that (A(Q), d) is sequentially compact (which will be the case for all cases considered in this Chap-
ter). The first goal is to check if Assumption 5.0.3 holds for the average distance functional: fix the
domain © C R", n > 2, the measure ;1 < L£" and the function A : [0, diam Q] — [0, 00). Given
arbitrary 7 € (0,00), £* € A(Q2), consider the map

117
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d(x, x*)?

Y= F by
u,A( )+ 2

Consider a minimizing sequence {3 }ren C A(£2) converging to ¥, € A(Q2) (it has been assumed

that (A(Q2), d) is sequentially compact, and for the sake of simplicity we avoided renaming indexes)
with respect to d: this implies

distq(z, Xo) = lim disto(z, Xg)
k—o0
thus
F,A(3) = lim F,, o(Zp);
M,A( o) kglgo mA( k)i
obviously (from triangular inequality)
A3, X)) <d(Xa0, ) + d(Zg, Xoo)

(Yoo, X¥) < d(Zk, X%) + d(Zk, Xoo)
implying d(Xj, X*) = d(Xo, £*) and

*\2 *)2
d(Xoo, X¥) ~ lim d(Xg, X%) .
2T k—o0 2T
Thus
d(ZOO,E*)2 - d(Zk,E*)Q
Fina(Foc) =5 = = i B () 4 =5 =

and Assumption 5.0.3 is proven valid. From arbitrariness of 7 we conclude that interval [0, 7] (using
notations from Assumption 5.0.3) can be chosen [0, o).

5.1 Piecewise constant time discretization

In this Section we consider the discrete gradient flow evolution (see Definition 2.2.4) related to the
average distance functional. The distance d appearing in Assumption 5.0.3 has still to be determined
yet: in our context, where the main object of analysis are Hausdorff one dimensional sets with finite
length, the natural distances are dy (-, ) and H!(-A-). The former will be proven unsuitable in the
following, as Assumption 5.0.3 does not hold in (A(2), d3;), where sequential compactness is not
true.

Given a domain Q C R" (n > 2), a measure p € L'(Q2), a function A : [0, diam Q] — [0, 00), an
initial datum ¥, € A(2), a parameter 7 > 0, consider the following discrete evolution

w(0) := Xo 11
- dw(k—1))2 - (5.1.1)
w(k) € argmmA(Q)FH’A(-) + S
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The first problem is existence of such minimum, which can be not true in the general case. Consider
for instance the following example: 2 := B(0,1) C R?, y := £|29, A:=1id, X :={(0,0)}, 7 € (0,1/2)
an arbitrary value, and d := dy.

By definition a set w(1) must satisfy

, dy (-, %0)?
w(1) € argmin ;o) Fju a(-) + 7{(27_0),
thus unless w(1) = w(0) (which would lead w(0) = w(1) = ---, i.e. there is no evolution at all), it

must hold dy (w(1),w(0)) > 0.
It is clear that w(1) € B((0,0), dy(w(1),w(0))), and

/distQ(z,w(l))dz>/distg(x,B((O,O),dq.[(w(l),w(O))))dz.
Q Q

Thus let {3} }ren C A(Q) a sequence of elements satisfying

e 3, C B((0,0), dye(w(1), w(0))) for any k,
e ¥, D w(l) for any k,

e Y is strictly increasing (i.e. ¥} D ¥, and HI(E;\E%_l) > 0 for any k),

e for k — oo the sequence converges to a Hausdorff one dimensional set ¥’ dense in B((0,0), dz;(w(1), w(0))).

Clearly

{F,AQ%J}i/gdﬁkﬂﬁrBK&OhdHOUﬂ%ﬂKODDd%
thus existence of minimizers does not hold.

Therefore the distance considered in this Chapter will be
d(Xy, Xp) := HY (X1AX),

with A denoting the symmetric difference. From here, unless otherwise stated, the notation d(-, -)
will always refer to this specific distance.
Then the evolutions will have form

w(0) := %o
w(k) € argmin . 4oy Fu,a(X) + %}k*w

Several properties from the discrete quasi static case can be retrieved:

e if 3 does not contain loops, then w(k) does not contain loops for any k&,

e in two dimension case, if the measure p € LP(2) for some p > 4/3 and ¥, contains a finite
number of endpoints, then w(k) has a finite number of endpoints for any &,
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e in two dimension case, if the measure ;. € LP(Q2) for some p > 4/3 and X contains only points
with order at most 3, then w(k) contains points with order at most 3 for any &,

e if the measure ;1 € LP(Q2) for some p > n/(n — 1) (or p > 4/3 in two dimension case) and ¥ is
Ahlfors regular, then w(k) is Ahlfors regular for any k.

5.1.1 Geometric properties

In this subsection our goal is to analyze geometric and regularity properties of solutions of (5.1.1), in
the discrete case (i.e. with 7 > 0 being given). Apart from the absence of loops, the two dimension
case is significantly simpler than higher dimension cases, and will be discussed separately.

Theorem 5.1.1. Given a domain Q C R™ (n > 2), a measure . € L' (S2), a function A : [0, diam Q] —
[0, 00), an initial datum ¥y € A(Q2) not containing loops, a time step T > 0, consider the following evolution

’LU(O) = 20
. —1))2 . 512
w(k) € argmin ;o) Fpua(-) + d(’w(;_l)) 612

Then for any k the set w(k) does not contain loops.

Proof. The proof is done by induction: for £ = 0 the set w(0) = ¥y does not contain loops. Suppose
that for some k, w(k — 1) does not contain loops, but w(k) contains a loop E C w(k).
Choose r > 0 as in the proof of Theorem 3.4.7: from Lemma 3.4.5 there exists 2’ € E with

w —0ast — 0", and p € (0,r) such that there exists ¥ € A(Q) satisfying

B(a/, 64n%/2p))

1 1 3725 2 H(
M) <A (wk) = p/4 Fua®) < Fualw®) +64n*2Ap* ==

(5.1.3)

where A denotes the Lipschitz constant of A. Moreover, it holds w(k)AY C B(z', 32np).
Then the proof continues as in Theorem 3.4.7: for any ¢ > 0 sufficiently small, applying Lemma
3.4.6 yields the existence of a competitor A(£2) > X" D ¥ satisfying

HY(Z") < HYE) + 2ne, Foa(X") < Fua(X) — Ce?,

with C' depending only on geometric quantities. Clearly H!(X"\Y') < 2ne.
Thus X" satisfies
HI(E") <H (w(k),  Fua(3") < Fua(w(k)).

Notice that Theorem 3.4.5 states that for #!'-a.e. « € E there exists such set ¥/, thus 2’ can be
assumed chosen in £ N (w(k)\w(k — 1)), which must contain an open set (in the induced topology)
asboth w(k) and w(k—1) are compact. Thus for r sufficiently small it holds B(a2/, 32np)Nw(k—1) = 0
for any p € (0,r). Using X' Aw(k) C B(z/, 32np) yields

HU(Z Aw(k — 1)) < HY (wk)Aw(k — 1)) — HY (w(k) N B(z', 32np))
and considering that 2’ € w(k), it holds H! (w(k) N B(z,32np)) > 32np, thus
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HU(E Aw(k — 1)) < H (w(k)Aw(k — 1)) — 32np.
Using %" D ¥/ and H!(X"\X') < 2ne it holds
A" w(k —1)) < d(X, w(k — 1)) + 2ne.
Choose ¢ = p: this yields
A", wk — 1)) < d(E, w(k — 1)) + 2ne < d(w(k), w(k — 1)) — 32ne + 2ne.

By hypothesis it holds

) d(-,w(k —1))?
w(k) € argmin ) Fy a(-) + ((27_)),
while for ¥ it holds

(B(2, 64n3/262)) 9

" A 2 3/2p 21 —
FuaX') < Fua(X) —Ce® < Fya(w(k)) + 64n*/=Ae GAns/2e Ce

thus F, A(X") < Fj a(w(k)) as %ﬁgj%)) — 0 for any ¢ sufficiently small.
Combined with
dX" wk —1)) < d(w(k),w(k —1))

the minimality property of w(k) is contradicted, concluding the proof. O

Notice that in the proof inductive hypothesis on w(k — 1) is crucial as it serves to apply Lemma
3.4.5 and yielding the existence of a point ' € w(k)\w(k — 1) satisfying (5.1.3). This result has
important consequences: under such hypothesis, any solution {w(k)}ren of (5.1.1) does not contain
loops. This implies that for any % the set w(k) has endpoints (and potentially an infinite number of
endpoints).

Ahlfors regularity can be extended too, and the proof is quite different for two dimension case
and higher dimension case:

Proposition 5.1.2. Given a domain Q C R?, a measure p € LP(Q) with p > 4/3, a function A :
[0,diam Q] — [0, 00), an arbitrary Ahlfors reqular set ¥y € A(S2), consider the following minimization
problem:

in F, 4() +d(-,30)>. 5.1.4
31(1;% wA() +d(-, o) ( )

Then any solution is Ahlfors regular.

Proof. By hypothesis ¥ is Ahlfors regular, thus there exists ¢;, ca > 0 such that

< Hl(EO N B(xle)) <

P

Cc1 C2

forany z € Xy, p > 0.
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Choose an arbitrary
Sopt € argmin 4y Fy,a(-) + d(-, Zo)?.

The lower bound estimate is obvious, and follows from ¥qp: € A(£2). For the upper bound estimate,
consider an arbitrary point z € ¥t and suppose there exists p* such that
HI(ZOPt N B(w, P*))

" =k >21 Ve
p

For any j define

Y= Lopt\ (Zopt N B(z, p"))

and

> = UdB(z, pb).

Clearly [d(Xopt, o) — d(X',X0)] < kp*, and [d(X", %) — d(X',X0)| < 2mp* thus |d(Xopt, Xo) —
d(X",%0)| < (27 + k)p*.
Using Lemma 3.2.7 yields the existence of A(2) > ¥ DO X" such that

HI(E///) < Hl(zu) +e, FM,A(EH/> < F%A(E//) . 083/2

for any ¢ sufficiently small, where C' > 0 is a constant not dependent on €. Choosing ¢ := p* and
considering that distq (y, ¥") < distq(y, Xopt)+p* fory € B(z, p*), and disto(y, X"') < dista(y, Xopt)
elsewhere, yields

Fua(E") < Fua(Sopt) + / ( )A(distg(y, Sopt) + p7) — A(dista(y, Sopt) )dp(y) — Ce>/2

B(z,p*
2
< Fya(Sopt) + K (p7) o = C(p")*2

where K > 0 is a constant not dependent on p*, and ¢ is the conjugate exponent of p. Using
2 2

hypothesis p > 4/3 yields K (p*)a ™! <« C(p*)3/2, i.e. limp« o K (p*)a ™ /C(p*)3/% = 0.

Consider the difference:
(Fua(Sopt) = Fu.a(E")) + (d(Sopt, To)* — d(X", 3o)?).

The term F), o(Zopt) — F)u,4(X") is comparable with (p*)3/2, while (d(Sopt, £0)? — d(X", 50)?) is
comparable with (p*)?, and using arbitrariness of p* concludes the proof. O

Thus the following result follows:

Theorem 5.1.3. Given a domain Q@ C R?, a measure i € LP(Q) with p > 4/3, a function A : [0, diam Q] —
[0, 00), an Ahlfors regular initial datum 3y € A(S2), and a time step T > 0, consider the following evolution

w(0) := %o 2 -
w(k) € argminA(Q)F“’A(.) + d(,w(Qk;—l)) : 1.

Then for any k the set w(k) is Ahlfors reqular.
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Proof. The proof is done by induction: w(0) = X is Ahlfors regular by hypothesis, and suppose
w(k — 1) is Ahlfors regular, but w(k) is not. Using the construction in the proof of Proposition 5.1.2
yields a competitor ¥’ satisfying

Fua(X) < Foalw(k)) — Cie¥?,
1d(Y, w(k — 1)) — d(w(k),w(k — 1))?| < Cae.
In the difference

(Fua(w(k)) = Fua(X) + %(d(w(k)v w(k —1))* = (2, w(k —1))*)

and choosing ¢ sufficiently small yields
Fua(w(k)) = Fa(X) = O(?)

and
%d(w(k),w(kz 1)) — A, w(k — 1)) = O(2).

Thus it follows

A, w(k — 1)? d(w(k), w(k — 1))?
27 27 ’
contradicting the optimality of w(k). O

Fua(X)+

< Fua(w(k)) +

The absence of points having order greater than 3 in two dimension case can be extended too:

Theorem 5.1.4. Given a domain Q2 C R?, a measure i € LP(Q) with p > 4/3, a function A : [0, diam Q] —
[0, 00), an initial datum Xy € A(S2), and a time step T > 0, consider the following evolution

’IU(O) = 20
o we 5.1.6
w(k) € argmin 4 ) Fpua(-) + W oo

Then for any k > 1 the set w(k) is does not contain points with order greater then 3.
Similar to results about Ahlfors regularity, this stems from the more general results too:

Proposition 5.1.5. Given a domain Q@ C R?, a measure p € LP(Q) with p > 4/3, a function A :
[0, diam Q] — [0, 00), an arbitrary set ¥ € A(2) not containing points with order greater than 3, consider
the following minimization problem:

in F, 4(-) +d(-,X0)3. 5.1.7
g&g wA() +d(-, o) ( )

Then any solution does not contain points with order greater then 3.
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Proof. The proof is done by contradiction: suppose the contrary, i.e. there exists

Sopt € argmin 4o Fy a(-) + d(, Yo)?

containing a point x € Yopt with ord;Yept > 4. Thus from Menger n-Beinsatz there exists arcs

71, -+ ,74 starting in  and mutually disjoint outside «.
Using a construction similar to that used for the proof of Lemma 3.2.16, choose r > 0 (the
exact value is not relevant), and define z; := ~v; N dB(x,r) for i = 1,--- ,4. There exists at least a

couple z,, x;, such that the angle 7;, z7;, has value at most 7/2. Upon renaming indexes, suppose
T1x13 < 7/2. Let St(x1, z, ¥2) be a Steiner graph connecting those points, and by direct computation

HY(St(2z1,2,20)) < 2r < HY (91 N Bz, 7)) + H (v2 N B(z,7)).

Then define

5 = Sope\ (11 Ua) 1 Ba, ) U St(a, ,22))
and applying Lemma 3.2.7 yields the existence of A(Q2) > ¥” O ¥’ such that
HUE) <HUE ) 46,  Foa(X") < FaX) - Ce¥?

for any ¢ sufficiently small, where C' > 0 is a constant not dependent on «.
For any point z € it holds distq(z, ¥opt) < disto(z, Xopt) + 27, and such points belong to a set
[, with £2(T,.) < 2rdiam 2, thus using hypothesis p > 4/3 yields

Foa(X) < Fua(Zopt) — K32
for some K > 0 not dependent on . Combined with
|d(Eopt, o) — d(X',%0)] < (2 + 0)r

this yields
F#,A(E/) + d(zla E0)2 < F,u,A(Eopt) + d(zopt, E0)27

and the proof follows from the arbitrariness of r. O
Now this result can be easily used to prove Theorem 5.1.4:

Proof. (of Theorem 5.1.4). The proof is done by induction. By hypothesis w(0) = ¥y does not contain
points with order at least 4; suppose this is true for w(k — 1), but not for w(k). Let € w(k) a point
with ord,w(k) > 4, and choose r > 0 sufficiently small. Applying Proposition 5.1.5 yields the
existence of ¥’ € A(Q2) such that

Fua(X) < Fa(w(k)) — Kr?/?

with K > 0 no dependent on r, and ¥'Aw(k) C B(z,r) U B(2/,r) for some 2/ € Q. Moreover
HY(Y) < HY(w(k)), and [H1(Z) —H (w(k))| < (2+0)r where 6 > 0 is dependent only on geometric
quantities and not on r. Thus it holds

|d(w(k), o) — d(X,X0)| < (2+0)r,
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thus
Fua(X) < Fya(w(k)) — Kr2,

%]d(w(lﬂ),w(k —1)) —d(¥,w(k — 1)) = O(r?).

Therefore for any r sufficiently small it holds

Fpa(%) + (S, wllk — 1) < Fya(w(®)) + 5-d(w(k), w(k — 1)),

contradicting the minimality of w(k). O

The proofs of Theorems 5.1.1 and 5.1.3 can be easily extended to irreversible evolutions, while
the construction used in the proof of Proposition 5.1.5 strongly relies on the absence of irreversibility:
indeed Theorem 5.1.4 is false if irreversibility is imposed. Moreover, it is not known how to extend
this result to higher dimensional domains.

Theorem 5.1.3 can be extended to higher dimensions, but in this case the proof is significantly
different: for instance a key element was Lemma 3.2.7, which is valid only in R?; for higher dimen-
sions Lemma 3.4.6 holds, but provides a less sharp estimate.

An even more important problem is that the construction used in the proof for two dimen-
sional domains is inherently non reproducible in higher dimensions: indeed the proof in the former
strongly relies on the fact that a closed curve can separate the space in two connected components
(Jordan curve theorem), which is not the case for higher dimensional domains.

Theorem 5.1.6. Given a domain Q@ C R™ (n > 3), a measure y € LP(Q) withp > n/(n — 1), a function
A 1 [0,diam Q] — [0, 00), an Ahlfors regular initial datum ¥y € A(S2), and a time step T > 0, consider the
following evolution

w(O) = 20

, A wlk—1)2 - (5.1.8)
w(k) € argmin 4 Fpu,a(-) + ((27_))
Then for any k the set w(k) is Ahlfors reqular.

The proof can be found in [35], and it uses an argument similar to that used to prove Ahlfors

regularity for the quasi static case: the main difference is the penalization term, but since all the

(-, w(k — 1))

constructions are local (i.e. d(-,w(k — 1)) is small), the term is well approximated

-
with a linear term in d(-,w(k — 1)). Then the estimates (and arguments) used in Theorem 4.1.10
follow (upon non influent constants).

5.1.2 Discrete variational interpolation

In the previous Section we have analyzed some geometric properties of solutions of piecewise con-
stant discrete evolutions, first introduced in Definition 2.2.4 in a general context. As discussed in
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Chapter 2, in view of results as Theorem 2.2.9 and Lemma 2.2.10 another class of discrete evolution
is naturally introduced, the “variational interpolations” (see Definition 2.2.12 for instance).

Given a domain 2 C R™ (n > 2), a measure p, a function A : [0, diam Q] — [0, 00), an initial da-
tum X € A(Q) and a time step 7 > 0, a variational interpolated evolution (as defined in Definition
2.2.12) is a function

xr :[0,00) — A(Q)

defined as

z-((n +1)7) € argmin o Fj, a(-) + d(,xgg_nT))Q Vn € N
d(-, 2, (n1))?
2(t —nr)

Results from piecewise constant time discretized solutions are all proven valid:

z-(t) € argmin 4 ) Fj a(+) + vVt € (nt,(n+ 1)7)

Theorem 5.1.7. Given a domain Q C R™ (n > 2), a measure . € L' (), a function A : [0, diam Q] —
[0, 00), an initial datum ¥y € A(Q) not containing loops, consider the function x : [0, 00) — A(2) defined
as

J;T(O) = 20

z((h+1)7) € argmin o Fj a(-) + M

2T
d(-, x(h7))?
2(t — hr)
Then for any t € [0, 00) the set x(t) does not contain loops.

Vh €N . (5.1.9)

(t) € argmin 4 ) Fpua(-) + vt € (hr,(h+1)T)

Ahlfors regularity is true too:

Theorem 5.1.8. Given a domain Q C R?, a measure i € LP(Q) withp > 4/3, a function A : [0, diam Q] —
[0,00), an Ahlfors regular initial datum ¥y € A(SY), and a time step T > 0, consider the function x :
[0,00) — A(Q) defined by

.’L’(O) = 20

(i — 1)7))2
(j7) € argmin y o Fyua() + d(, ((]2 1)7))
2(t — j7)

vjeN . (5.1.10)
x(t) € argmin 4oy Fu () + Vt e (jr,(j +1)7)
Then for any t the set x(t) is Ahlfors reqular.

Similarly the absence of points having order greater than 3 can be proven:

Theorem 5.1.9. Given a domain Q@ C R?, a measure i € LP(Q) withp > 4/3, a function A : [0, diam Q] —
[0, 00), an initial datum ¥ € A(S2) not containing points with order greater than 3, and a time step T > 0,
consider the function x : [0, 00) — A(S2) defined by
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33‘(0) = 20 )

. d(-,z((j — DT .
w(j7) € argmin 4 gy Fua(") + : ((]25 = R (5.1.11)
x(t) € argmin 4oy Fyua(+) + Cm vt e (jr,(j+ 1)7)

Then for any t the set x(t) does not contain points with order greater than 3.

5.1.3 Topology

For solutions of the quasi static evolution, under irreversibility condition, we have discussed branch-
ing behavoirs, and presented an explicit example where branching is expected to occur after a given
time. The discussion for this case is quite similar: indeed all arguments used in the quasi static case
apply, with slight modification.

Consider the configuration from the quasi static case: given a domain 2, let ¥4 be the initial
datum, and suppose there exist

e aclosed injective path * : [0, 1] — Q such thatv*([0, 1]) C ¥d%*: the domain Q is now divided
in two regions, Q" and Q™ with Q@ = Q" U Q™ (they are the two connected components of
2\v*([0, 1]), and correspond to the “interior” and the “exterior” part of v * ([0, 1]) — the order
is not relevant — given by the Jordan Curve Theorem);

o Py e xi*and a triangle Tp C V(Py) N B(Fy, ') with [Tp N QY| > 0, and ext(S§*) € Q.

Similarly suppose that 2~ is large enough (both in diameter and in measure) so that all compu-
tations can be done without considering constraints imposed by diam (27), [Q27|.
Consider
w(0) = w(0) := Xdat
w(k) € argmin ;o) F(X") + =d(X" w(k—1))
w(k) Dwk—1)

where 7 > 0 is a given parameter, and define

wr : [0,00) — A(Q), s (£) = w (H) .

T

Using the same argument from the quasi static case, with slight modifications due to the different
penalization on the distance term, it can be proven that F(S4%)/K(P}) + 1 is an upper bound for
branching time, where K (P}) can be computed using Proposition 4.1.16.

Moreover, notice that if a branching arises in the point (0,0), then this point must have order
at least 4, thus contradicting the absence of crosses in two dimensional domains (Theorem 5.1.4).
Notice that irreversibility is the crucial condition here, as it does not allow the argument used in the
proof of Theorem 5.1.4 where the “cross” is replaced by a Steiner graph.
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Figure 5.1.1: The same example of configurations exhibiting a branching behavior works for this
kind of evolution too. The same example also provides a counterexample to the absence of crosses
under irreversibility condition.

5.2 Limit7 — 0"

Results from the previous Section are all about “discrete” evolutions, where the time discretization
had step 7 > 0. In this Section our goal is to pass to the “continuous” case, i.e. 7 — 0. From the
discussion about gradient flow in Chapter 2, in the purely metric space (X, m) neither existence nor
uniqueness is guaranteed; two sets of assumptions, one ensuring existence (already proven true in
the previous Section) and the other allowing the passage to the limit 7 — 0, were required.

Given a domain 2 C R"™ (n > 2), a measure x and a function A : [0,diam ] — [0,00),
Assumption 2.2.13 from Chapter 2 becomes:

Assumption 5.2.1. Let (A(Q),d) (d(X1, X2) := H'(X1AXz)) be the metric space, F,, 4 the average dis-
tance functional (with given measure pv and function A), assume the following conditions hold:

1. F, a is bounded from below, and its sublevels are boundedly compact, i.e. {F, 4 < ¢} N B(X,r) is
compact forany ¢ € R, r > 0and X € A(Q2),

2. the slope |V F),, a| : D(F),, a) — [0, 00] is lower semicontinuous,

3. for any sequence {3, }ren converging to Yo, implication

ZUE{NFM,AKEk)v Fa(Xg)} <oo= Fya(Zk) = Fja(E0)
€

is true.

The first goal is to check these assumptions.
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1. F), a is obviously bounded from below. To prove its sublevels are boundedly compact, con-

sider arbitrary ¥* € A(Q), » > 0, ¢ € R and a sequence {Ej}ren C {Fa < c} N B(X*,7r).

Condition {Z}reny € B(X*,r) implies H!(X;) < H1(Z*) + r < oco. Thus upon passing to
subsequence we can assume X, — Yo, € B(X*, 7). This implies F), o(X;) = F), a(Xo) which

combined with {¥; }ren C {F),,a < ¢}, yields F, 4(X) < ¢. Thus X € {Fj, 4 < c}NB(X*,71),
proving boundedly compactness,

2. theslope |VF), 4| : D(F), 4) — [0, 00] is defined as

: (Fa(®) = Fa(X))*
VF )| :=limsu : ’
| #’A( )| X_>Ekp d(X, E)

However very little is knows about slopes. In particular we are not able to prove lower semi-
continuity.

3. for any sequence {X} }rcn converging to ¥ it always holds F}, 4(2x) = Fja(Xx0)-

Now we are able to prove the following result:

Theorem 5.2.2. Let @ C R", n > 2 a given domain, p < L™ a given measure and A : [0,diam Q] —
[0,00) a given function. Fix ¥y € A(Q2), 7 > 0, and consider a discrete solution x : [0,00) — A(f)
defined via variational interpolation. Then the following results hold:

o theset {x,(t)}- is relatively compact in the set of curves in X with respect to the uniform local conver-
gence,

e any limit curve is a gradient flow in the EDI sense, but with the slope replaced |V F),, 4| by the relaxed
slope |0~ F), 4| (for the definition see [3]).

Proof. The proof is based on Theorem 2.2.14, and it is sufficient to check if its hypothesis are satisfied:
we recall that for Theorem 2.2.14 it is sufficient that Assumption 2.2.13.

For the average distance functional we have checked that Assumption 5.2.1, without the lower
semicontinuity part, which is Assumption 2.2.13 formulated for this specific case, holds. Thus we
can apply the same argument used in the proof of Theorem 2.2.14, and the proof is complete. O

Finally we discuss briefly some open problems regarding properties of solutions of evolutions
schemes related to the average distance functional when the time step goes to 0.

Differently from the time-discretized version, results concerning geometric and analytic proper-
ties for minimizing movements are surprisingly hard to prove.

There are mainly two problems in passing to the limit: first, no argument used in the discrete
case applies, as they rely on the fact that the set added at each step has positive length, and the esti-
mates used for discrete solutions always exhibit a dependence on the time step, and lack uniformity
when the time step goes to 0. Moreover, the argument used for Ahlfors regularity for limit sets of
the quasi static case cannot be applied here.
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The basic idea is quite simple, and involves constructing a competitor contradicting the minimal-
ity of some wj;(k), but many surprisingly difficult problems arise when dealing with connectedness
of such competitor.

Similar properties can be expected:

1. Absence of loops:
Given a domain 2 C R" (n > 2), ameasure ;. € L'(12), a function A : [0, diam Q] — [0, 00), an
initial datum ¥y € A(€2) not containing loops, a sequence of time steps {7x }ren | 0, consider
the following family of evolutions:

w;(0) := Xo 2
wy(k) € argmin g g Fya() + 228 = 1) B
IS

27;
Given T' > 0, define functions
zj [0, T] — AQ),  z;(t) == w;([t/75])
and suppose there exists the limit function

z:[0,T] — A(Q), x(t) ;== lim x;(t).

Jj—o0
Then there exists T > 0 such that for any ¢ € [0, T) the set x(t) does not contain loops.

2. Ahlfors regularity:
Given a domain 2 C R" (n > 2), a measure p € L(Q), a function A : [0,diam Q] — [0, 00),
an Ahlfors regular initial datum £y € A((2), a sequence of time steps {7 }ren | 0, consider the
following family of evolutions:

wj(()) = 20
d(-,w;(k — 1))
27;

wj(k) € argmin 4 ) Fyu,a(-) +
wj(k) 2wk — 1) .

Given T > 0, define functions
zj [0, 7] — A(Q),  a;(t) == w;([t/7])
and suppose there exists the limit function

z:[0,T] — A(Q), x(t) == lim x;(t).

Jj—00

Moreover assume there exists A > 0 such that |VF'(z;(t))|,|VF(x(t))] > A forany t € [0,7T]
and j € N. Then for any ¢ € [0, T] the set z:(¢) is Ahlfors regular.
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3. Absence of crosses:
It is expected that a similar result holds for the continuous case, without irreversibility condi-
tion, as Theorem 5.1.4 is proven false under irreversibility condition.

However, without very strong assumptions (e.g. in the irreversible evolution, assuming the ex-
istence of some sort of uniformly controllable set A; containing w(k), such that w(j)\w(k) never
intersects A, whenever j > k), no similar result can be proven actually.
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Chapter 6

BV regularity of derivatives and
“topological lower semicontinuity”

This chapter aims to extend regularity results, and prove that minimizers are finite unions of Lip-
schitz curves with BV derivatives. More precisely we show that given an arbitrary nonnegative
finite measure with compact support, 1, and A > 0, any solution ¥ € argmin Eﬁ (in all this chapter
the symbol Eﬁ‘() will denote the sum [ d(z, -)dp+AH!(+)) is finite union of Lipschitz curves {v; }_,
(without loss of generality assume that all 7, are arc-length parameterized), such that it holds

1
> iy < XIM(R”Z)L (6.0.1)
k

where || - |7y denotes the total variation.

In other words we provide an estimate on the total curvature of the curves that make up %,
where the curvature, k = ~; is understood as the signed measure. The fact the the total mass (times
1/)) bounds the curvature is not surprising. To motivate it let us assume that the minimizer ¥ is a
single smooth curve and that p is absolutely continuous with respect to the Lebesgue measure. Let
IT be the projection onto X (it is known from [39] that IT has unique value almost everywhere). Then
the first variation for the Problem 8.1.2 gives that for any smooth vector field v : ¥ — R? supported
away from the endpoints of ¥

IR ) R
_/En.vdHl(E)— . /Rd T () )

Taking supremum over all v, as above, with |v| < 1 implies (6.0.1).
The difficulties one faces in applying the reasoning above are that X is not regular, nor even a

curve in general, and that ;. is not assumed to be absolutely continuous with respect to the Lebesgue
measure.

The approach we use is based on approximating a measure ;. by a sequence of discrete measures
{{tn} =, and analyzing the minimizers of Problem 8.1.2 with y replaced by ,,. In addition to the
estimate on the BV norm, we prove a topological relation between minimizers of the approximating
problem and the minimizers of the limiting problem.

133
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This chapter is structured as follows:

e In Section 6.1 we recall the known results on the average-distance problem, introduce the
discrete approximations and prove a couple of preliminary results.

e In Section 6.2 we prove an upper bound on the number endpoints of minimizers and analyze
the behavior of endpoints in the approximation process. In particular we prove in Theorem
6.2.6 that if j1,, are discrete approximations of i and ¥,, are minimizers of El;\n which converge
to ¥, a minimizer of E;L\, then each endpoint of ¥ is a limit of endpoints of ¥,,. This result
(obtained in collaboration with Slep¢ev) will be crucial for the following sections.

e Section 6.3 (Whose results are mainly obtained in collaboration with Slepcev) is devoted to the
topological comparison between minimizers for the approximate problem and the minimizer
corresponding to f.

e In Section 6.4 (whose results are mainly obtained in collaboration with Slepcev) we prove
prove that minimizers of the average-distance problem are finite union of Lipschitz curves
with BV derivatives, and prove an a priori estimates on BV norms in Theorem 6.4.1.

6.1 Preliminary results

We restrict our attention to probability measures, 1, purely for notational simplicity. Given a com-
pactly supported probability measure, 1, and a compact set, ¥, we need to find a "projection” of the
measure £ onto X. The issue is that for z € R?, the minimizer of |z — y| over y € ¥ is in general not
unique. In fact it has been proven by the authors in [39] that the ridge of ¥ (points having nonunique
projection on ) is an H?~!-rectifiable set. If 11 is absolutely continuous with respect to the Lebesgue
measure, u < L%, then the ridge is p-negligible and thus the projection IT : = argmin, s[z — y|
is unique p-a.e. and one can define the projection of 1 onto X by o = Il (the push-forward of the
measure).

However if i is not absolutely continuous with respect to Lebesgue measure then more care is
needed. In particular we define the "projection" as a second marginal of a coupling (i.e. a trans-
portation plan) rather than the push forward by a projection map.

Lemma 6.1.1. Let i be a probability measure and ¥ a compact set. There exists a probability measure 7 on
RY x X such that the first marginal of 7 is yu (that is w(A x X) = u(A) for any Borel set A) and that for m-a.e.
(z,y), |z — y| = minex |z — z|.

We define o, the projection of 11 onto X, to be the second marginal of w. Finally we note that w and o may
be nonunique.

Remark 6.1.2. While, for given p and ¥, the measures m and o may be nonunique, all of the subsequent
statements in this chapter hold for any 7 (and associated o) chosen, unless explicitly stated otherwise.

Proof. Let Ps, be the set of Borel probability measures on 3. Consider the functional o — dy (1, 0)
on Ps;, where dyy is the Wasserstein distance. Since X is compact, Ps; is sequentially compact with
respect to the weak-+ convergence of measures. Given that dy(u, -) is continuous on Py with
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respect to the weak-+ convergence of measures we conclude that there exists & € Py, minimizing
the Wasserstein distance to x. Let 7 be the optimal transportation plan (for the quadratic cost)
between p and 6. We claim that 7 has the desired properties.

Since, by definition, the first marginal of 7 is i we only need to verify that for m-a.e. (z,y),
|z — y| = min ey |z — z|. Assume that this is not the case, that is that there exists (z,y) € suppm and
z € Ysuchthat |z —y| > |z — z|. Letd = (Jx —y| — |z — z|)/3and U = B(x,d) x (B(y,d) N X). Since
(z,y) € suppm, € := w(U) > 0. Let mpewy = ™ — TLy+€6(, ) and let oy,e,, the the second marginal of
Tnew- Then opey € Py and dyy (14, onew) < dw (1, @) which contradicts the fact that ¢ is a minimizer.

To see that 7 an 0 may not be unique consider 1 = §p and ¥ = 0B(0, 1). Then any Borel measure
o on X can be obtained as a "projection" by choosing 7 to be any coupling between i and o (for
example the product measure p x o). O

We introduce some notation and terminology:

e The measure o defined in Lemma 6.1.1 can have atoms. For simplicity for y € ¥ we write o(y)
to mean o({y}).

e Sometimes it is important to emphasize which p and ¥ the measure o corresponds to. Then
we write o(u, X, A) for o(A), where A is a measurable subset of X.

e The order of a point y € X is defined to be the supremum of the number of connected subsets
of ¥ which contain y and are mutually disjoint on ¥\{y}. If ¥ is a minimizer of E; then
all points on ¥ are of order 1,2, or 3 (see Lemma 6.2.5). Also, if ¥ is a minimizer then it is
topologically a tree (Lemma 6.2.2) and thus the order of a point is equal to the number of
connected components of ¥\ {y}.

e Point y € X of order one is called an endpoint. We show in Lemma 6.2.1 that for any endpoint
o(p,3,y) > X. We denote the set of endpoints of ¥ by 3(X). A point of order three is called a
triple junction. A point y € 3 is called a corner if it is of order two and o (1, £, y) > 0.

We note that there is a simple bound on the length of the minimizers of E}. Namely if X is a
minimizer of £, then

HI(D) < %diam supp(u). (6.1.1)

The reason is that for any z € suppu the minimality of ¥ implies
MHU(D) < E(2) < By({2})
— [ A =Nduts) = [ dly (=Dduly) < diam supp ().
R supp ()

We also remark that if A > 3 then the only minimizer of E;) is a single point; see Corollary 6.2.4.

We recall the following facts on the average-distance problem. We refer to [52] for further details.
Let P, be the set of probability measures supported in B(0,r).
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(i) Forany p1 € P, and A > 0, the functional Eﬁ‘ is lower semicontinuous w.r.t. Hausdorff distance,
dy.

(ii) Given ¥ € A, and A > 0, the mapping . EQ(E) is continuous on P, w.r.t. weak-* conver-
gence of measures.

(iii) If {pn}—u on P, then for any A > 0, E;)n I'-converges to E;) w.r.t. Hausdorff convergence of
sets of A.

(iv) Consider a sequence {1, }—y in P,. For any n choose %,, € argmin Eﬁn . Then along a subse-

d .
quence ¥, Y for some ¥ € argmin E;)

(v) Given R > 0, consider a sequence {v,} : [0,1] — B(0, R) of Lipschitz curves with constant-
speed parameterization, satisfying sup H!(7,,) < oo and sup |7/, ||sv < co. Then upon subse-
quence there exists a Lipschitz curve v such that:

e {7} > vinC*forany a € [0,1),
e {7,} =~ in LP for any p € [1,00),

e {7/} — ~" weakly in the space of signed finite Borel measures on R%.

We also need a basic result on the nature of path connectedness of X. Given points p,q € ¥, we
use the following terminology:

e a “curve between p and q” is a continuous (not necessarily injective) mapping v : [0,1] — X
with7(0) = p, ¥(1) = ¢.

e a “path between p and ¢” is the image of a curve v : [0, 1] — X with v(0) = p, (1) = ¢.

Lemma 6.1.3. Consider an arbitrary element X € A. Given distinct points p,q € X there exists a minimal
(w.r.t. set inclusion) path connecting them. Moreover such path is a geodesic (in the metric sense), and as
such can be parameterized by an injective curve.

For the proof we refer to the general result about the existence of geodesics in metric spaces
(Theorem 4.3.2 in [6]).

We refer to such, minimal (w.r.t. inclusion), compact, injective paths as the “minimal paths”.
Notice that nothing is claimed about uniqueness of such minimal paths. The, well known, result
which we state below shows that if the minimal path is not unique then the set contains a loop.

Lemma 6.1.4. Assume X € A, and p,q € X are distinct points. If there exist distinct minimal paths, L,
and Lo, parameterized by

1,721 [0,1] — X, 71(0) =72(0) = p, 11 (1) =12(1) = g,

then X contains a loop.
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Proof. Since the roles of L; and Ly are symmetric, we can assume that there exists ¢ € (0, 1) such
that v1(t) € L1\ Ls. Define

t1 :=inf{r € [0,¢] : 11 ((7,t)) N Ly = 0},

to :=sup{t € [t,1] : y1((¢t, 7)) N Ly = 0}.

Since Ly N Lz is closed, 71 (t1) and 71 (t2) belong to L. We also note that 1 (¢1) and 1 (2) are distinct
since otherwise L; is not a minimal path. By Lemma 6.1.3 there exists a minimal path Ly C Lo
connecting the points. It follows that v, ([¢1, t2]) U L2 is a loop. O

Since the minimizers of Eﬁ‘ cannot contain loops (Lemma 6.2.2), Lemmas 6.1.3 and 6.1.4 imply
that for minimizers the minimal path between any two or their points is unique.
6.1.1 Discrete approximations
We first recall the setup and some results from [52].

Definition 6.1.5. Given points yi,...,yn € R4, g Steiner graph St(yi, ..., yn) is a set of minimal length
containing y1, . . . , Yn.

We note that in general Steiner graphs for the given set of points are not unique in general. Here
we list a few basic properties of Steiner graphs, their proofs and more on Steiner graphs can be
found in [26] and [27].

Proposition 6.1.6. Let G be a Steiner graph.
(i) G is a tree with straight edges,
(ii) The order of any point of G does not exceed 3,

(iii) If v € G\{y1, - ,yn} has order 3, then the edges intersecting in v are coplanar, forming 3 angles
measuring 2m /3 each.

The next definition is similar to the notion of curvature:

Definition 6.1.7. Given a graph with straight edges ¥ and a vertex v € ¥ with degree 2, denote by wq, wo
its neighbors. The turning angle at v is

TA() :=m — Zwjvws.

The turning angle for a subset A C X is defined to be the sum of all turning angles at vertices of degree 2
which belong to A.

The following facts were established in [52]:

(i) If p is a discrete probability measure, then for any A > 0, any ¥ € argmin E, is a Steiner graph
for a set of points (which in general are not the points in the support of ;). More precisely there
exists a projection, o, of 1 onto ¥ (as defined in Lemma 6.1.1) such that ¥ is a Steiner graph for
the support of o.



138CHAPTER 6. BV REGULARITY OF DERIVATIVES AND “TOPOLOGICAL LOWER SEMICONTINUITY”

(ii) Given a discrete probability measure, i, A > 0, and X € argmin E;), for any endpoint v € ¥ it
holds that
o(u,2,v) > A (6.1.2)

(iif) Given a discrete probability measure, 1, A > 0, ¥ € argmin Eﬁ‘, for any A C ¥ measurable

s
TAA) < — >, A).
(4) < =01, %, A)

6.2 Endpoint estimates

We first establish an upper bound on the number of endpoints by proving a lower bound on the
mass that projects on each endpoint.

Lemma 6.2.1. Let 1 be a finite, compactly supported, measure, let X\ > 0, and let ¥ € argmin Eﬁ‘ If ¥ is not
a single point then o(u, 3, v) > X for any endpoint v € X.

For discrete measures 4 this is the statement (6.1.2) we mentioned above; here we prove it for
general measures.

Proof. Choose an arbitrary endpoint v € X. In [16] it has been proven that there exists 79 > 0 such
that X\ B(v,r) € Aforall r < ry. Let 7 be a coupling between 1 and o defined in Lemma 6.1.1. Let
I(r) = HY(Z N B(v,7)).

Note that for m-a.e. (z,y) € supprand y € B(v, )

d(x,X\B(v,r)) — d(z,y) < I(r).
Furthermore if y € ¥\ B(v,r) then
d(z,X\B(v,r)) = d(z,y).

Therefore

Fu(E\B(v,7)) = Fu(X) = /WXE d(z,X\B(v,r)) — d(z,y)dr
< U(r)m(R? x B(v,r)) = 1(r)o(u, 2,5 N B(v,r)).

Combining this with the fact that #'(3\B(v,7)) = H(X) — I(r), and using the minimality of %
implies
Fu(2) + XN (E) < Fu(B\B(v,7)) + XH (Z\B(v, 7))
< Fu(Z) +1(r)o(p, 2,20 B(o, 1) + A(HI(E) — U(r)).
Passing to the limit » — 0" gives o (p, 3,v) > A. O

We show that minimizers of the average-distance problem cannot contain loops. A similar result
was shown in [14] for i absolutely continuous with respect to Lebesgue measure.
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Lemma 6.2.2. Given a finite compactly supported measure p, a parameter X\ > 0, and ¥ € argmin E;}, the
set X does not contain a loop.

Proof. Suppose that ¥ contains a loop, E, and let ¢ : [0,1] — E be a constant speed parameteri-
zation, with ¢(0) = ¢(1) and injective in (0, 1). Choose an arbitrary (large) N € N, and partition
FE into N mutually disjoint measurable sets I;,--- ,In, with I; := ¢([(j — 1)/N,j/N)). Clearly
HY(I;) = H'(E)/N for any j.

Denote with {C]’“} ke, the set of connected components of ¥\ I; which do not intersect £, where
Jj is a suitable set of indexes. Choosing N > 2/ guarantees that there exists index j such that

o (Ij U ukejjcj’?) < )\/2.

Consider the competitor >’ defined in the following way:
(i) remove I; from 3,

(ii) forall k € J, choose pj, € CJIc N I; (such py, exists since ¥ is connected). Noticing that p(j/N) €
¥\I;, consider Tj(x) := 2+ (¢(j/N)—ps) the translation by the vector ¢(j/N)—py, and replace
C¥ by Tj.(CF) in X\ I;.

By construction ¥’ € A. As o(I;) < /2, and each T} is a translation by a vector ¢(j/N) — pi, and

0(7/N) — pi| < HY(E)/N, it follows F,(¥) < F, (%) + AHUE)  Gince by construction HYY) <
I Iz 2N y

HY(Z) — HL(E)/N, this contradicts the minimality of . O

Lemma 6.2.3. Let X be a minimizer of Eﬁ‘ with H(X) > 0. For any point p € X, each connected
component of X \{p} must contain an endpoint of X.

Proof. Choose an arbitrary connected component of X\{p}, and denote it by C. Let d¢c be the path
distance on C'. Choose an arbitrary point ¢ € argmax_ .,y dc(z,p), which exists by compactness
of C'U {p}. Note that since C' is nonempty, ¢ # p. We claim that ¢ is an endpoint. For if ¢ is not
an endpoint, then choose ¢’ belonging to the component of C'\{¢} which does not contain p. Due
to the absence of loops, dc(¢',p) > dc(q, p), as each path connecting p and ¢’ must contain ¢. This
contradicts the construction of g. O

Combining with Lemma 6.2.1 we establish the following corollary:

Corollary 6.2.4. Let ;i be a finitely supported probability measure. If X > 1 the only minimizer of ¥ of Eﬁ‘
is a singleton ¥ = {p}.

Proof. If ¥ is not a singleton then, by Lemma 6.2.3, it must have at least two endpoints. But each
endpoint has at least mass \ projecting to it. Hence o(X) > 1. Contradiction. ]

Another property of minimizers is that they do not contain crosses, i.e. points with order at least
4. This result was proved in two dimensions in [14]. We use a similar construction here.

Lemma 6.2.5. Let p be a finite compactly supported measure and let X > 0. No minimizer, ¥, of E;} contains
points of order 4 or more.
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Proof. Assume for the sake of contradiction that there exists a point z in a minimizer ¥ which has
order at least 4. Menger n-Beinsatz gives the existence of 9 > 0 and curves (which we assume to be
parameterized by arclength) &; : [0,e9) — X N B(z,e0),¢ = 1,--- ,4 such that

(Vi) &i(0) =2, (Vi#j) &((0,6:) N¢&;((0,65)) = 0.

Moreover upon choosing ¢ > 0 sufficiently small it can be guaranteed that &;([0, d;))N{w : |z —w| =
r} # ) for any index ¢ and radius 0 < r < ry.

Given 0 < 7 < ro, denote for by p;, the intersections £([0,4;)) N B(z,r). Denote by 0] ; the
angle between vectors p; — z and p; — z. To apply the construction from [14] we need to prove that
lim inf, 0 min;; 6; ;<2m /3. This is a consequence of the following:

Claim: Given k > 4 unit vectors vy, - - - , v;, denote with 3; ; the angle between v; and v;. Then
8= min#j 57;7]' < 27T/3.

To prove the claim note

k k k k
0§<ZW)' Zvj :Zvi~vj:k+ZZcosBi,jgk—i—k(k—l)cosﬂ.

i=1 j=1 ij=1 i=1 j#i

Hence
—k <k(k—1)cosp,

1 1 - 2
< —— | < —— | =: —TT.
B < arccos ( 2 1) arccos < 3) 8 < 3

Thus for any 7 € (0,79) there exists i, j such that angle 0] ; =: 6, < B. Let us write z, = p! and
yr = pj. Now we can use the construction from the proof of absence of crosses in [14].

The competitor ¥, is constructed by replacing the paths [z,, 2]y, and [y, 2], (the parts of §; and ¢;
between z, and z, and y, and z, respectively; see Figure 6.2.1) with the Steiner graph for {z,,y,, z}
(i.e. the union of line segments between z, and z,, y, and z,, and z and z,, where 2, is such that the
angles between the segments are 120°). More formally, the competitor ¥, is defined as

and consequently

Y= X\([zr, 2]ls U lyr, 2]x) U{(1 — t)x, + t2, : t € [0,1]}
[0,1]}

U{(l —t)y, +tzr : t €[0,1]
U{(l—t)z, +tz:t € [0,1]}.
Note that by construction, the only points w for which d(w, ¥,) > d(w, X), are those for which
argmin, y|w —y| C I, := [y, 2|5 U[yr, 2] \{2r, yr, 2} holds. The diameter of I, is less than or equal

to 2r which implies
Fu(3r) < Fu(2) + 2ro(p, 2, 1)

Since by construction N>l =0, o(p, X, I,) = 0 as r — 0. Elementary geometry gives

HY(D,) < HY(Z) - <2 - \/gsin% - cos%) T,
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Figure 6.2.1: The modification of 3: The paths [z,, z] and [y, 2] (continuous curves) are replaced by
the union of line segments 7, z,, ¥, z,, and Z, z. The distances from z, to z and from y, to z are both
equal to r.

and since g < Z, the quantity 2 — v/3sin % — cos %T is positive. Thus

b, O
E)(Sr) < ENE) = A (2 —V/3sin - —cos 2) r+2ro(p, 2, 1),

which contradicts the minimality of X for r sufficiently small. O

The main result of this section deals with the relation of endpoints of minimizers corresponding
to discrete approximation of i and the endpoints of a minimizer, ¥, corresponding to y:. Recall that
by 3(3) we denote the set of endpoints of .

Theorem 6.2.6. Let 1w be a compactly supported probability measure. Given a sequence of probability mea-
sures { i }—p, with uniformly bounded supports, for any n choose an element

A
Y, € argmin Eun.

Then along a subsequence {En}d—@E for some %3 € argmin E.
By relabeling the indices we can assume that the subsequence is the whole sequence. Then for any endpoint
z € 3(X) there exists a sequence of endpoints z, € exp(%,,) such that z, — z as n — oo. This in particular
implies
liminf §3(3,,) > $3(%).

n—o0
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Tn

Figure 6.2.2: 3 is an example of a double line.

This estimate is crucial in the next section, when we discuss the topological relation between
minimizers of Eﬁ\ and minimizers of Eli‘", where 1, is a discrete approximation to .

The proof requires us to introduce the notion of a double line and prove a preliminary technical
result.

Definition 6.2.7. Consider a sequence of probability measures with uniformly bounded supports, {i,},
converging to a probability measure p w.r.t. weak-* topology, and a sequence of minimizers ¥,, € argmin E;}n
converging to ¥ € argmin E/;\ w.r.t. dy. A closed subset L C ¥ is a double line if it is a minimal path
connecting distinct points v and w (in ) and there exist points {vy, Ty, Pn, ¢n} C Xy, satisfying

® Uy U, Ty =V, Py — W, G —> WAS T —> OO,
e For any n, the minimal paths between p,, and v,,, and between x,, and gy, are disjoint.
Lemma 6.2.8. Assume the setting of the Definition 6.2.7. X cannot contain any double lines.

Proof. Assume there exists a double line L C . The aim is to find, for some n, a competitor Y
contradicting the optimality of ¥,,.

By considering a subsequence we can assume that the minimal paths L/, and L in ¥,, connecting
pn to vy, and ¢, to z, respectively converge in the Hausdorff distance to L' € ¥ and L” C X.
Since v,w € L' N L" and L is the minimal path between v and w it follows that L C L' N L".
Let L,, := L, U L. It also holds that (¥,\L,) UL UL" — ¥ wurt. dy asn — oo. By the lower
semicontinuity of H! it follows that lim inf,, oo H*(L},) > HY(L') and liminf, o H1(L2) > HY(L").
We note that

HYL) + HY (L) —HY L UL > HYL) > dp(v,w) =:a >0,

where d;, denotes the path distance on L. It follows that for n sufficiently large

HY(L,) > HY L UL") +0.9HY(L).
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Choose ¢ > 0, and n sufficiently large such that max{|p, — w|, |g, — w|, |v, —v|, |z, —v|} < € and
max{dy(X,,%),dy(L,, L' UL"),dy(E,\L, UL UL" X))} < e. Denote by Ty the line segment with
endpoints in z and y. Define

Ay = (Z\Lp) Uppow U guo U T, 0 UT,o UL U L”,

i.e. A, is obtained from X, by first removing L,, and then replacing it with line segments p,w, g,w v,v, Z,v
and L' U L". For any sets A, B C R? we define
doy (A, B) = sup inf |a — b|.
pcB a€EA
Note that dy (A, B) = max{dq» (A, B),don (B, A)}. Then dyy (3, prnw) < |pp —w| < €, and similarly

Aot (Zn, Gn0) < €, dgp (B, Tp0) < €, dgp(Xn, Tpv) < . Combining with dy (3,\L, UL’ UL" X)) < ¢
gives dgy(An, Xy) < €. Moreover it holds

%I(An) < Hl(zn) - /Hl(Ln) + |pn — wl + |gn — w| + |vn — | + |zn — 0| + HI(L, u L)
<HYZ,) — 0.9HY (L) + 4e 6.2.1)
<HY(Z,) —0.9a + 4e.

The issue we still face is that A,, may not belong to .A. Namely A,, may be disconnected (for example
if L,, contains triple junctions). Let C§ be the connected component of A,, containing L' U L”. Let
F" = {C}}jer, be the family of connected components of A,, other than Cf. Since each connected
component must contain an endpoint of ¥,,, by Lemma 6.2.1, I,, must be finite. We now translate
these components so that they connect to L' U L”. Consider an arbitrary C' € F". As Ly, is the only

set present in ¥,, but not present in A,,, there exists a point si€Lpn C'j’-‘. Define
Ty:RT— RY Ty(z):=x+0

the translation by a vector 6, and let IT be the projection on L' U L”, i.e. for any x the point II(z)
satisfies |z — II(z)| = d(z, L’ U L") (if there is more than one minimizer, then II(x) can be chosen
arbitrarily among these). Define

J€In J€ln
It is pathwise connected and compact by construction. Notice that dy (L, L' U L") < e implies |s7 —
H(s?)] < e. Therefore daH(in, A,) < &, which combined with dgy(A4,, Xy) < € gives da;{(in, Yn) <
2¢. From |d(z,%,,) — d(x, $,)| < dapy(En, En) < 2¢, integrating on R? yields

‘/d(w,f}n)dun — /d(:p,En)dun < pin (RN (2, 50) < 2e. (6.2.2)

The last step involves estimating #'(%,,): by construction ¥,, is obtained from A,, by first remov-
ing U, C}, then adding U, ¢, TH(S?)_S;; (C7). Since TH(s?)—s’;(C;‘L) is the image of C7' through a
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translation HI(TH(S?),S?(C}?)) = ’HI(C;L) for any j. Using that by definition C}' N Oy = 0 if j # s it
follows that

(e (U Tms;)s;(C;L)) < HY(C]) = ’Hl( U c;ﬁ) < HN ().

jE€ln J€In J€In

Using (6.2.1) this gives 3
HYU(E,) < HY(A,) < HYUE,) — 0.9a + 4e.

Combining with (6.2.2) we conclude
b A
B, (3n) < B (3n) + 26 — 0.9Xa + 4e),
which for ¢ sufficiently small contradicts the minimality of ¥,,. O

Proof. [of Theorem 6.2.6] By our assumptions there exists R > 0 such that for all n, suppu, C
B(0,R). Note that then X,, C B(0,R). Let us also note that by (6.1.1) the lengths H!(3,,) are

uniformly bounded. By Blaschke’s theorem, along a subsequence Sa 3 as n — . By relabeling
the subsequence we can assume that it is the whole sequence. The lower-semicontinuity of the
#H! with respect to Hausdorff metric proved by Golab and the continuity of F,,(X) in both u (with
respect to weak-x topology) and ¥ (with respect to Hausdorff metric) implies that 3 is a minimizer
of E;,. Furthermore for any endpoint z of ¥ the convergence ¥, to ¥ in Hausdorff metric implies
that there exists a sequence z,, € ¥,, such that z,, = zasn — oo.

If z,, are all endpoints then there is nothing to prove. We start the discussion by assuming that z,
has a subsequence of points of order 2 (triple junctions are considered later). By relabeling we can
assume that all of z,, € 3,, are of order 2. We denote by ¥/, and X the two connected components of
¥, \{zn}. We also choose sequences {v, }, {z,} both converging to z and such that v,, € ¥/ , z,, € X!/
for any n.

For any set X C R?let r(X) = sup,cy |y — 2. The following dichotomy applies:

(£) Timsup, o min{r(%,), r()} = 0.

(*) There exists § > 0and a subsequence {ny}x=12,.. such that for all k large enough min{r(3;, ),7(¥;, )} >

8.

If (%) holds then, since by Lemma 6.2.3 both ¥/, and ¥/ contain at least one endpoint, there exists
an endpoint, Z,, at distance at most min{r(X’), 7(X”)} to z,. Then z, — z as n — oo and thus z is a
limit of endpoints as desired.

What remains is to show that the case (x) is impossible. If (x) holds then, from Blaschke’s com-
pactness theorem, follows that along a further subsequence, which we relabel to be the whole se-
quence, both connected components converge in dy,, to sets with positive length. More precisely

I 15 / "n._ i "
Y= 11151010 X U{zn}, Y= HILH;O ¥, U{zn}
We observe that z € ¥ N ¥" and that »(X') > 3 and r(X") > 3. Therefore #'(¥X') > B and
HI (D) > 6.
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We claim that there exists a point besides z in ¥’ N ¥”. The reason is that, if ¥’ N X" = {z} then
the order of z is at least two, so it cannot be an endpoint, which would contradict the assumption
on z. So letw € ¥’ N ¥"\{z}. Denote by X, ,, ¥, the minimal paths connecting z and w in ¥’ and
¥ respectively. As ¥/, , # ¥, would imply the existence of a loop in ¥ (in view of Lemma 6.1.4),
¥, = X7, must hold.

There exist sequences {p,}, {¢.} with p, € ¥7, ¢, € X}, both converging to w. Let L = X/, be
the minimal path in ¥ between z and w. The above shows that L is a double line. This contradicts
the claim of Lemma 6.2.8.

It remains to consider the case that an endpoint z € 3(X) is a limit of points z, € 3, of order 3.
We note that arbitrarily close to any point of order 3 there exists a point of order 2. Thus z can be
obtained as a limit of points of order 2, which is the case considered above. O

6.3 Topological "lower semicontinuity"

6.3.1 Topological relation

Given A > 0 and a compactly supported probability measure 1, consider a sequence of probability
measures {/i,}—u, and for any n choose a minimizer ¥, € argminEl’L\n. Then upon subsequence

», 25 € argminE),. The aim of the this section is to analyze topological relation between ¥, (for n
sufficiently large) and .
The main result is:

Theorem 6.3.1. Given A > 0 and a compactly supported probability measure p, consider a sequence of
probability measures {1, }—p, with uniformly bounded support, and for any n choose a minimizer ¥, €

argmin E;}n. Then, along a subsequence, .2y € argmin E;) For all sufficiently large n along the
subsequence, there exists a homeomorphism ¢,, : ¥ — Sy, for some S, C ¥,,.

Proof. We note that the statement is trivial if ¥ is a singleton. Thus we assume that X is not a single
point. The convergence of 3, along a subsequence follows from Theorem 6.2.6. We again assume
that the subsequence is the whole sequence. Let V' be the set of all endpoints and triple junctions of
Y. By Theorem 6.2.6, ¥ and %,, contain at most 1/ endpoints. By induction on the number of triple
junctions, it is easy to prove that in any tree the number of endpoints is greater than the number of
triple junctions. Thus the number of triple junctions is also bounded by 1/A. Hence V is a finite set.
Thus there exists ¢ > 0 such that
¢c< min |v—7|. (6.3.1)
v,0€V,u#D

Choose n sufficiently large such that dy(%,,%) < ¢/2. From Theorem 6.2.6 it follows that any
endpoint v of ¥ is limit of a sequence of endpoints {v,} of £,,. Such a sequence may be not unique;
we fix one for each endpoint of X. By relabeling the sequence, it can be assumed that for all end-
points v of ¥ and the corresponding sequence of endpoints v,, of ¥,,, it holds that |[v — v,| < ¢/2 and
all n.

To continue the proof we need the following lemma:
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Figure 6.3.1: ¢,, is an example of homeomorphism between X and a (proper) subset of 3,,. The part
within the dashed rectangle R is not involved in the homeomorphism.

Lemma 6.3.2. Let ¥, and ¥ be as above. If some sequences {yy } and {w, } in ¥,, converge to distinct points
y,w € X then the sequence of minimal paths [y, wy]x,, converges in dyy to the minimal path [y, w]s.

Here [y, w]y, is the minimal path in ¥ containing y and w. The existence of such minimal path is
ensured by Lemma 6.1.3.

Proof. Assume that this is not the case. Then there exists ¢ > 0 and a subsequence of [y,,, w,]s, such
that all paths in the subsequence are at distance at least € from [y, w|x. By relabeling we can assume
that this is the whole sequence. To obtain a contradiction it is enough to find a (further) subsequence
which does converge to [y, w]y.. By compactness we know [y,,, wy,]5;,, converges along a subsequence
to some connected set A C ¥ which contains y and w. Since ¥ is a tree, [y, w]s, C A. Let us assume
that L := A\[y,w]x # 0. Then there exists a sequence z,, € [yn,wy]s, such that z, — = € L as
n — oo. Let L’ be the connected component of L containing z. If L' N [y, w]x has two or more points
then ¥ contains a loop, which contradicts the fact that ¥ is a tree. Hence L' N [y, w]x. is a single point,
denote it by p. Then p € [y,z]|y and p € [z, w]s. Thus there exist sequences p,, € [yn,Zy]x, and
qn € [Tn,wy]x, such that p, — pand ¢, — p as n — oo. Consequently ¥ contains a double line
which contradicts Lemma 6.2.8. O

We return to the proof of the theorem.
Claim 1. Any triple junction z € X can be obtained as limit of a sequence of triple junctions
zn € Xy, If this is not the case, there exists a triple junction z € 3 which cannot be obtained as limit
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of triple junctions. Then there exists ¢ > 0 such that no point in ¥ N B(z,¢) is a limit of a sequence
of triple junctions. Since z is a triple junction, there exist paths I'; C B(z,¢), for i = 1,2,3 such
that z € T; and except for 2, the paths are mutually disjoint. Choose, for i = 1,2,3, w' € I';\{z}.
Then there exist sequences w!, € ¥, for i = 1,2,3 such that w), — w’ as n — co. By Lemma
6.3.2, for i,j € {1,2,3} distinct, [w}, wh]s, — [w',wi]s asn — oo. Since [w',w’]y C B(z,¢), none
of [wi w}]s, contain a triple junction (for n large enough). Hence one of the points has to lie on
the minimal path connecting the other two, say w? € [w}, w3y, for all n large enough (along a
subsequence). Thus w? € [w!, w?]s;, which contradicts the facts that wy € 9\ {2}, [w!,w3] C T; UT;

and (Fl U Fg) N FQ\{Z} = 0.

Similarly to the argument made for endpoints, we can assume that any triple junction z € %,
is a limit of a sequence of triple junctions {z,} such that |z — z,| < ¢/2 for all n. This sequence
may be nonunique, but we select one. From (6.3.1) follows that sequences converging to distinct
endpoints/triple junctions have no overlapping elements. Let V;, be the set of endpoints and triple
junctions of ¥,, which are in the sequences (selected above) converging to elements of V.

Claim 2. If w', w? € V are such that [w!, w?]x; does not contain endpoints/triple junctions besides
w! and w? then for all n large enough [w}, w?]s,, does not contain any elements of V;, besides w}
and w?. Assume that this is not the case: that along a subsequence V;, N [w}, w?]s, contains an
element of V;, other than w}, and w?. By considering a further subsequence we can assume that it
is always from the same sequence, say {w }. Thatis w3 € [w},w?]s, for all n along a subsequence.
As before we can assume that the subsequence is the whole sequence. From Lemma 6.3.2 it follows
that w? € [w', w?]x. Contradiction.

We are finally ready to define the desired homeomorphism. Choose a function ¢, : ¥ —
©n(X) C ¥, such that:

(i) if an endpoint v € X is limit of a sequence of endpoints {v, } with v,, € V;, then ¢, (v) = v,

(ii) if a triple junction z € X is limit of a sequence of triple junctions {z,} with z, € V,, then
Pn(2) = zn,

(iii) if w',w? € V are such that [w!, w?]y; does not contain endpoints/triple junctions besides
w', w?, then define @y, ,1 2], as an arbitrary homeomorphism between [w!, w?]s and [w),, wi]s,,,

where w, w2 € V,, and {w}} — w!, {w2} — w? asn — oo.

The function ¢, : ¥ — ¢, (2) C X, is well defined, for n large enough, by Claim 2. It is injective
and continuous by construction. Since ¥ is compact and ¢,, is a bijection, ¢, ! is continuous. Thus
¢p, is a homeomorphism. O

6.4 BV estimates

The aim of this section is to prove a regularity result about minimizers of Problem 8.1.2. In [14], [16]
and [17] is has been proven that any minimizer > of Problem 8.1.2 is a countable union of Lipschitz
curves or a single point. Given that, by Theorem 6.2.6, the total mass arriving at each endpoint is at
least A there exists at most 1/ endpoints. Since the number of triple junctions in a tree is less than
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the number of endpoints the number of curves, forming the tree, is bounded by 1/\. Thus ¥ is a
finite union of Lipschitz curves or a single point. We recall that by Corollary 6.2.4 if A > 1/2 then
the only minimizer is a singleton.

The main objective of this section is to prove the following regularity result:

Theorem 6.4.1. Given a compactly supported finite measure i, and X > 0, any . € argmin E;), which is
not a single point, is finite union of Lipschitz curves {~ }X_, (without loss of generality assume that all ~j,
are arc-length parameterized), such that

1
> illrv < X!M(Rd)\,
k

where || - || v denotes the total variation.

Note that we do not assume that 1 is a probability measure.
The proof uses a discrete approximation of x; thus we start by proving the result for discrete
measures.

Lemma 6.4.2. Given an arbitrary positive discrete measure p, and X\ > 0, any ¥ € argmin Eﬁ‘ is either a
single point or a finite union of Lipschitz curves {yx}I_, (without loss of generality assume -y are arc-length
parameterized), such that

1
ellrv < o(u, %)
where o is defined in Lemma 6.1.1.

Proof. Let pbe a probability measure. The result for general measures follows by scaling (See Section
2.1 in [52]). Consider an arbitrary minimizer ¥ € argmin E;) which is not a single point. As we
mentioned in Subsection 2.1(i) the minimizer X is a Steiner graph with finitely many vertices. As
Steiner graphs are trees, it follows that ¥ is finite union of arc-length parameterized Lipschitz curves
{yk}fcv:l, where each of these curves is union of line segments. Moreover, the number of curves, IV,
is bounded by 1/A. Choose an arbitrary £ € {1,---,N}. To simplify notation set v := ~5; and
L:=H(y). Let s; < s3 < -+ < s, be the values in [0, L] for which +(s;) is a corner.
From definition of total variation and the fact that the curve is piecewise linear

M-1 m
1 l7v(o,z)) == sup ST (i) =2 )] =D 1V (s5=) = (s;4)]
O=to<t1<---<tp—1<tpr=L i—0 j=1

where +/(-—) and 7/(-+) denote the left and the right derivative respectively.
From the proof of Lemma 11 in [52] follows that

“ 1
D 1 (s5=) = ¥ (s54)] < XU(IM 3,7).
j=1

The inequalities above imply the desired estimate on total variation. O
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We remark that combining the estimate on the total variation above and the estimate (6.1.1) on
H!(X) we obtain an estimate on the BV norm

Z IvllBv < < !u(Rd)l + diam suppy).

Proof. (of Theorem 6.4.1) As in the proof of the Lemma 6.4.2, we assume that u is a probability
measure, as the general result follows by scaling. In [14], [16] and [17] (to which we refer for further
details) it has been proven that minimizers of the average-distance functional are at most countable
unions of Lipschitz curves, for the constrained formulation. It easy to notice that each minimizer
¥ € argmin Eﬁ‘ is a minimizer of miny1(x)<y1(x) Fu (&) too. In Lemma 6.2.1 it has been proven that
minimizer ¥ € argmin E;) has at most 1/\ endpoints, thus ¥ is finite union of Lipschitz curves.

For BV regularity, consider an arbitrary minimizer ¥ € argmin E;. If we consider a sequence
of discrete approximations of y and denote the corresponding minimizers by ¥, then 3, converge
along a subsequence to some 3. € argmin E)‘ The problem, we need to overcome, is that ¥ may be
different from ¥, as the minimizers are not unique in general. Note that if ¥ C Y then there is no
problem since the regularity of ¥ implies the regularity of .

Thus we modify the measure 1 in such a way that ¥ is still a minimizer of the energy correspond-
ing to the modified measure, but that ensures that any minimizer of the energy corresponding to
the modified measure contains X. This is one of the key ideas of the chapter. Thus we introduce a
perturbation /. of the original measure p: let ¢ > 0 and

He ==+ ¢€ Hll_g.

1
H(Z)
The key advantage is that, for any ¢ > 0, ¥ is the minimal (w.r.t. set inclusion) minimizer of E;}E
i.e. every minimizer ¥’ € argmin Eﬁ‘a contains X. Indeed, as ¥ is already a minimizer of Eﬁ, given
an arbitrary element ' € A it holds that E}}(¥) < E,(X'). Hence if ¥’ is a minimizer of E;_then
fz 2,Y)dH'Ls=0and thus ¥ C %'

The strategy would be the following;:

o we first fix ¢, and consider a discrete approximation of the perturbed measure via a sequence
*
{Mn}éﬂe/

e then we apply the same argument used for discrete measures, which follow without modifi-
cations,

e finally we pass to the limit ¢ — 0, and prove that such estimates obtained at the second point
are kept.

Fix e > 0, and choose an approximating sequence { un}ius, where 11, is a discrete measure with
pn(RY) = p.(RY) = 1 + ¢. For any n choose ¥,, € argmin Eﬁn. Along a subsequence (which we can

assume to be the whole sequence), an—j’ﬁE* € argmin Eﬁ‘s. Thus X C X,.
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We know that ¥, is a union of Lipschitz curves {v,; : i = 1,..., N} such that endpoints of all
curves are either endpoints or triple junctions of 3. By Lemma 6.3.2 and the proof of Theorem 6.3.1
for each n large enough there exist curves, {y}* : i =1,..., N,n > ng}, with disjoint interiors in ¥,,
such that for each 7, 7]* — 7, ; in dy as n — oo. Note that Lemma 6.4.2 gives

N
n 1+e¢
DO v < —— (6.4.1)

i=1

Since the H!(%,,) are uniformly bounded Zf\il |(v")'|| Bv are also uniformly bounded. The es-
timates of Lemma 6.4.2 and fact (v) from the introduction (which relies on the fact that BV is com-
pactly embedded in L') imply that along a subsequence (v}")' — 7, ; in L' as n. — oc.

Since total variation is lower semicontinuous with respect to L! convergence we conclude that
foralli=1,...,N

liminf [| (") llzv = 172 llzv-
n—oo

Combining with (6.4.1), we obtain

N 1+¢

ZH(’Y*,UIHTVS .

=1

Since the curves that make up X are subsets of the curves that make up X, we conclude:

N 1+4+¢

S lew ey < =5

i=1

Taking ¢ — 0 yields the desired result.
O

Again by combining the estimate on the total variation above and the estimate (6.1.1) on H!(X)
one obtains

N

1 .
E vl BV < X(!u(Rdﬂ + diam suppp).
k=1



Chapter 7

Average distance minimization among
parameterized curves

This chapter (entirely based on [37]) is mainly aimed to discuss the average distance problem (in the
penalized formulation) considered among parameterized curves. This mainly arises from applied
fields, e.g. data parameterization, where working with parameterized curves is computationally
significantly more convenient than working with more general elements (as elements of A, which
can be very expensive computationally).

A widely used concept in some applied fields, e.g. data approximation and machine learning, is
the notion of “principal curves”, and it bears strong resemblance with the average distance problem.
The main difference is that for principal curves it is required for the curve to be “self-consistent”. For
further reference about the principal curves we refer to [22], [23], [19], [54], [20]. However almost
no connection between this and the average distance problem has been brought in literature.

The formulation is the following:

Problem 7.0.3. Given a probability measure p > 0 on R with compact support, A > 0, solve
A
min E;

where
C:={y:I— R%: T C Rcompact interval}.

Also the symbol E;) will denote (in Chapters 7 and 8) the sum between the average distance
functional and A times the length of the parameterized curve. A precise notation of length of pa-
rameterized curve will be introduced later. Note that here we have not specified which topology is
C endowed with. This, along with other basic issues concerning the formulation of Problem 7.0.3,
will be discussed in Section 7.1. Section 7.2 will be dedicated to this issue, and contains the main
results of this chapter, i.e. to prove that minimizers of Problem 7.0.3 are injective.

Note that the formulation of Problem 7.0.3 exhibits some similarity with the formulation of the
problem known as “lazy traveling salesman problem” (abbreviated LTSP in [45]). However there are
still significant differences, e.g. the minimizer of LTSP studied in [45] is imposed to be a closed
curve, and it is easily proven to be a convex polygon, while in our case this is not required.

151



152 CHAPTER 7. AVERAGE DISTANCE MINIMIZATION AMONG PARAMETERIZED CURVES

Moreover the techniques we use in this Chapter are quite different, and more based on tools
developed to study some geometric properties of solutions of the average distance problem.

In the following, we will consider only measures of R? which are nonnegative and compactly
supported. The choice to work in R? is dictated by the fact that Lemma 7.2.2 heavily relies on its
properties, and for higher dimensions there is too little geometric rigidity to achieve similar results
with our arguments. Moreover, we will often identify a curve with its parameterization function,
i.e. given a curve v : I — R? (with I being the domain), we will write H!(v), F,(v), E;}('y) instead

of H' (4(1)), Eu(+(1)), EL(v(1)).

Section 7.1 will present some basic facts concerning solutions, while Section 7.2 (work in collab-
oration with Slepcev) is mainly dedicated to prove injectivity of solutions.

7.1 Preliminaries

The main aim of this Section is to present some preliminary arguments concerning Problem 7.0.3.
The first step is to endow C with a suitable topology.

First we recall that given a parameterized curve, there is a natural way to define its length using
total variation. Note that in this chapter, the length of the curve can be different from the 7! measure
of its graphs. We will endow C with the uniform convergence of parameterizations (upon time
inversion), i.e. a sequence {v, : [0,1,] — R?} C C, parameterized by arclength, converges to an
element v : [0,1] — R?if

o [, —1,

e upon time inversion, i.e. replacing ,, with ¥,, defined as 4, (t) := 7, (l,, — t), the sequence {~, }
converges to v uniformly.

The first problem is existence of minimizers: note that if given a minimizing sequence {, :
[0,1,] — R?}, the union Unsno 7([0;12]) are contained in a compact set (for some ng € N), then it
is possible to apply Ascoli-Arzela theorem to get existence of an accumulation point v, which is
clearly a minimizer.

Lemma 7.1.1. Given a measure p, a parameter \ > 0, then for any minimizing sequence {~y, : [0,1,] — R?}
there exists a compact set K C R? such that ~([0,1,]) C K for any n sufficiently large.

Proof. 1t suffices to prove that given a minimizing sequence {v, : [0,1,] — R?}, parameterized
by arclength, then limsup,,_,. I, < oo. Note that the opposite, i.e. there exists a subsequence
{Yn, © [0, 1n,,] = R?} with I,,, — oo, would imply

Eﬁ(%lk) 1= Fu(n,) + Ay, — 00,

contradicting the fact that {7, : [0,1,] — R?} is a minimizing sequence.

Then using the fact that 1 is compactly supported, such curves cannot escape to infinity, due to
the uniformly bounded length, as the opposite would imply sup,,{F,.(7,)} = oo contradicting the
fact that {7, } is a minimizing sequence. O
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Thus we have proven:

Theorem 7.1.2. Given a measure j and a parameter X\ > 0, then Problem 7.0.3 admits minimizers.

7.2 Injectivity

The main aim of this section is to prove that minimizers of Problem 7.0.3 are injective curves, in two
dimension case. For convenience, given a parameterized curve v : I — R?, the notation N (v) will
be used to denote the set of non injectivity of v, i.e.

t e N(vy) <= 3ds#t:79(s) =7(t).

For convenience the image (through ) of any subset A C N(v) will be called “double part”. Our
goal is to prove that it is empty whenever v € argmin El;\

Lemma 7.2.1. Given a measure (i, a parameter X > 0 and a minimizer y € argmin E;}, assume there exists
a point p = y(t) = ~(s), for some t < s. Then for any sequence {s;;} — s, {s}} — s, the angle
Zy(s,)v(8)v(s)F) converges to 0 as n — oo.

Proof. Suppose by contradiction that there exist sequences {s, } — s~, {s;/} — sT, such that the
angle Zv(s;, )v(s)v(s;) converges to a # 0 as n — oo.

Figure 7.2.1: This is a schematic representation of the variation. The black lines belong to the (graph
of) v, while the red dotted line belong to the (graph of) competitor 7,,. Time increases along the
direction of those arrows.

Consider the competitor ¥, obtained from v by replacing ~([s;,, s;]) with a straight segment
between v(s;,) and v(s;}). The fact that Zv(s;, )v(s)7(s;}) converges to a # 0 as n — oo implies that
denoting with d,, := |v(s;;) — v(s;})|, it holds

|55 = sl = 0n > Klsy — 5,1,
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for some k > 0 independent of n, or equivalently
H' (v) = H () + ks — s, |- (7.2.1)
Notice that if a point z verifies

d('z? ’7) < d(27 :%L)
then argmin, . o . )|z = ¥l € ¥((sy,, s7)\{s}), which yields

Fuin) = Fu() < p({z - argming o ;12 = ol € 9((sms\sHDsE — s,

Since pu({z : argmin, .1 Lm\z—y| Cv((sy,,s5)\{s})}) = 0asn — oo, combining with (7.2.2) gives
that the minimality of v is contradicted by 7, for n sufficiently large. O

Thus the tangent line in any such point p € v(N(y)) must be well defined. The next result deals
with this case.

Lemma 7.2.2. Given a measure i, a parameter A > 0 and a curve ~y, assume N (v) contains a point p =
v(t) = ~(s), for some t < s. Assume moreover that the tangent line is well defined in p. Then ~ is not a
minimizer of Problem 7.0.3.

Before proving the Lemma 7.2.2, we recall an auxiliary result, which is a similar from [52] but
applied to parameterized curves:

Lemma 7.2.3. Given a measure ji, a parameter \, and an arbitrary minimizer ¥ € argmin A Eﬁ, consider
an arbitrary a curve y : [0, 1] — X such that ([0, 1]) does not contain points with order at least 3. Then it
holds:

1. if for a time s the tangent line is not well defined at ~(s), i.e. 7y(s) is a corner point, then denoting with
6 the angle between the left and right tangent direction, it holds

m—0 < CP({v(s)})
where (A) denotes the mass projecting on the set A, and C'is a positive constant.

2. For any times 0 < s < t < 1 such that the tangent lines at ~(s) and ~(t) are well defined, then
denoting with 6 the angle between these two tangent lines it holds

T -0 < Coly([s,1).

Notice that as X is finite union (see for instance [38]) of curves each of which not containing
points with order at least 3, the first point of Lemma 7.2.3 implies that the number of corner points
is at most countable.

Proof. The proof is based on a (local) perturbation argument: given a corner 7(s) in first order
approximation the behavior of v near this point can be approximated by its left and right tangent
lines. Thus upon scaling (of an arbitrarily small neighborhood of v(s)) it suffices to compare the
following configurations:
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1. Xo :={(1—-1t)(—a,0) +¢(0,1) : t € [0,1]} U{(1 —t)(a,0) +¢(0,1) : ¢t € [0,1]} where a > 0 is
clearly depending on 6 (this is how the configuration near ~(s), say v([s — €1, s + €2]) for some
1,2 > 0, looks in first order approximation after scaling, with +(s) being mapped into (0, 1)),

2. Xp:={(1—-1t)(—a,0)+t(0,1—h):te[0,1]} U{(1—-1t)(a,0)+t0,1—nh):tec][0,1]}, where
h > 0 is a free (small) parameter.

If Xy is replaced by X}, the mass projecting on (0, 1), which we call M, can go on (0,1 — &), thus
the loss for the average distance functional is at most M h. On the other side by directly computing
(using cosine theorem) the difference between the length of the configuration X}, and the length of
Xy, using the minimality of -, one obtains the desired lower bound on M. O

Proof. (of Lemma 7.2.2) Upon scaling and translation, the configuration can be mapped into that in
Figure 7.2.2.

Yy
A
!
P = v Dy)
............. 7r/2
0[0) >
p o> Dly)
Y2

Figure 7.2.2: This is a schematic representation of the configuration.

The point p' is the intersection between the graph of the curve 72 the the orthogonal line to (the
graph of) 71 at p. Using Lemma 7.2.3 it follows that a necessary condition is

Py < cppllp -1,
Dx
ie. [py| < |p,|, where C is the (positive, but whose precise value is not influent) constant arising
from the proof of Lemma 7.2.3. Using the same construction, i.e. denoting with p” the intersection
between the orthogonal line to (the graph of) v, at p" and (the graph of) 1, it follows [p | < |py|. But
as the tangent line at (0, 0) is well defined, and coincides with the z-axis, p, and p’y’ tend to coincide
as the point p goes to (0, 0), i.e.
p— (0,0) = [p /16l > 1.
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Thus the proof is complete. ]

The key idea behind this result is quite simple: if such configuration arises, then morally “there is
not enough mass to pull it to compensate for the penalization from the additional length”. Note that
even if there exists a segment visited on two disjoint time intervals, on which no mass is projected
(i.e. its function is merely to preserve the parameterization), we can apply the previous two lemmas
on its endpoints (of the segment, not of the whole graph, if the minimizer is itself a straight segment,
then it is clearly injective) and achieve a similar contradiction. Thus injectivity has been proven.

Now we investigate some more geometric properties. The next result proves some geometric
properties on the graph of the curves. In particular it will prove that any minimizer v maps end-
points of the set of times into endpoints of its graph, and the number of endpoints of its graph is
finite.

Lemma 7.2.4. Given a minimizer -y € argmin E-, assume wlog 7 : [0, 1] — R? parameterized by constant
speed, then (0) and (1) are endpoints of the graph I".,.

Proof. Assume for the sake of contradiction that v(0) is not an endpoint. Thus there exists a sequence
{tn} C [e, 1] for some ¢ > 0 such that y(t,,) — 7(0). Fix ¢ > 0 and consider the competitor defined as

7. : [0,1 — ] — R?, Ye(t) == y(t + ).

By construction it holds
[ 2 T \y((0,€))-
Note that the only points z € R? which can potentially satisfy

d(z,I'y,) > d(2,T';)
are those satisfying
argmin, ;. |z — y| € 7((0,)),
in view of the contradiction assumption. Clearly for any such z it holds
d(z,Ts,) < d(z,T5) + [le,
with || denoting the speed of the parameterization, and
H () =1 () = [ile. (722)
Note that the set v((0,£)) — @ as ¢ — 0, thus
tim u({= - argmin, .p. |2 — ] €1((0,2)),}) =0,
and integrating w.r.t. ;1 gives
Fu(ve) = Fu() < ep({z - argmin, . |z —y[ S ~((0,€))}),

which combined with (7.2.2) gives that 7. contradicts the minimality of ~ for ¢ sufficiently small.
The proof for v(1) is completely analogous. O
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The next result proves that for any minimizer, its graph may have only finitely many endpoints,
and (independently of the parameterization) each of those endpoints is visited only finitely many
times.

Lemma 7.2.5. Given a minimizer y € argmin Eﬁ‘, the graph I, has at most 1/ endpoints. Moreover, for
any such endpoint v the set y~1(v) is finite.

Proof. First we prove that for any endpoint v, the set v~!(v) is finite. As « is parameterized by
constant speed, there exist no intervals (a, b) such that v((a, b)) = v. Assume for the sake of contra-
diction that there exists a sequence {t,,} such that v(¢,,) = v for any n. As v is an endpoint, for each
time t¢,, with v(¢,) = v, it must hold

lim (s) = lim 4(s),

sty 't}

i.e. the velocity vector reverts its direction in t,,, thus increasing |¥|ry by 7. Thus having infinitely
many times ¢,, such that v(¢,,) = v yields

¥y = oo,

while in [38] it has been proven that for any minimizer the quantity |||y is bounded from above
by a constant depending only on x and A, which is a contradiction.

To prove that the set of endpoints is finite, it suffices to find a lower bound for the mass projecting
on each endpoint.

Consider an arbitrary endpoint v of I';, and choose an arbitrary time ¢t € y~!(v). Fixe > 0, as v
is an endpoint there exist times ¢, < t < tI such that

th—t; <e, A5 =(t0).

Consider the competitor . defined as
— t
) - -] >R = { 1

Denote with ¢(v) the mass projecting on v, it holds

Fu(’)/e) < F,u(ﬁ)/) + 51/}(”)7
and Eﬁ‘(y) < Eli‘(%-) yields ¢(v) > A. Thus the number of endpoints is at most 1/\. O

This result has a very important consequence: as the number of endpoints is finite, the number
of points with order at least 3 is also finite.
Recall that we have already proven

1. Lemma 7.2.4: the graph I', contains at least 2 endpoints,

2. Lemma 7.2.5: the graph I, has a finite number of endpoints,
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The last result of this chapter would be
1. there exists a neighborhood of the form [0, €) such that [0,e) € N(v).

Lemma 7.2.6. Given a measure j1, and a parameter X\ > 0, then for any minimizer ~ € argmin,Ez, the set
N () does not coincide with the domain of .

Proof. 1t suffices to prove that N () does not coincide with the whole set of times, i.e. there exists a
time ¢ such that y(¢) # v(s) for any s # t. Assume by contradiction that the opposite holds, i.e. N(7)
coincides with the whole set of times, or equivalently, each point of the graph of  is visited at least
twice. Then choose an interval of the form [0, ) with & arbitrary. By (contradiction) assumption
0,6) € N(3).

Using Lemma 7.2.5 gives that there exist only finitely many points with order at least 3, i.e. if £
is chosen sufficiently small, the set v([0,{)) is homeomorphic to [0, £). Thus it is possible to choose
a parameterization v* : [0, H!(7([0,€)))) — ([0, £)). Define the competitor ¢ as follows:

{ V() ift <€

€= e

As [0,£) € N(v), it follows H'(y¢) < H'(7), and since I, = I, by construction, the minimality of
~ is contradicted. O



Chapter 8

A relaxed and penalized formulation

As mentioned before, the formulation of Problem 7.0.3 could be potentially used in data parameter-
ization, but there are several issues:

e as proven in [52], even with very regular measures 1 (such that the Radon-Nykodim deriva-
d
tive ﬁ is C*°), there may exist minimizers which are not C'! regular,

e the formulation of Problem 7.0.3 imposes strong geometric rigidity on the minimizers.

More details about such issues will be described in the next section, where additional penalization
terms will be introduced to take account for such issues.

Finally, even if we have proven injectivity for minimizers for Problem 7.0.3 in the previous chap-
ter, by adding such additional terms, injectivity is not guaranteed anymore (as relaxing the problem
would impose less geometric rigidity, making the arguments used in the previous chapter unus-
able). Nonetheless it is heavily desired, as we will discuss in the following, thus a penalization term
will be added to penalize lack of injectivity.

The main aim of this chapter (entirely based on [36], within a broader research project in data
approximation by Slepcev) is to introduce appropriate penalization terms, and to analyze some
regularity properties of densities of mass distribution on minimizers.

Some word about notations: in this chapter we will work with parameterized injective curves.
Thus given a curve v : [0,/] — R, where [0, [] is a suitable domain, it is natural to identify a point of
the graph of v with its counterimage through v~!. So even if v will be a measure concentrated on the
graph of v, when no risk of confusion arises (and v < Hllv([O, 7)) we can identify it with the function

v :[0,1] — [0, 00) such that the value of () coincides with the value of the density dv/ dH|1v([0 ) in

~v(t). With further abuse of notation, we will write v < £! (as we will assume sufficient regularity
such that 7 < £|1[0 I ), and use the notation dv/dL".

Section 8.1 provides a background and some motivations leading to the introduction of penal-
ization terms, while Section 8.2 presents some regularity results. The main results are fro a work by
the author.

159
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8.1 Penalization terms

As described in the Introduction, an undesirable property of solutions of Problem 7.0.3 is that its
minimizers can be injective but not C! regular, even if y is sufficiently regular: indeed it has been
proven in [52] that there exist measures ;1 < L% (with dp/dL? € C™) for which there exists a curve
Yopt € argmin, Eli‘ which is not C'-regular, and the measure opt contains a Dirac mass with
positive measure. In this case a set with positive ; measure is projected on a single point, which is

not desirable in data approximation, as this corresponds to some loss of information.

’Yopt (graph Of)

Figure 8.1.1: In this example from [52], the set B with positive 1 measure is projected on the single point p.
Thus ’y(’)’pt(fyo_p{ (p)) is an atom of positive measure. The dashed lines denote the orthogonal lines to the left and
right tangent line to 7opt in p. Notice that in the original example from [52] there was mass projecting on the
endpoints of v,pt, but we omitted representing these as not influent to our argument.

The above configuration is an extreme case of a more general issue: indeed in the formulation
of Problem 7.0.3 there is no penalization for high data concentration on the graph of .
Denote with

C:={y:[0,L,] — R?: v parameterized arc-length and injective},

endowed with the convergence inherited from C,q;-.

Notice also that in Problem 7.0.3 the very definition of F}, forces any point to project to (one of)
the closest points on the graph of v, imposing strong geometric rigidity. A relaxed formulation will
be used.
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Problem 8.1.1. Given a probability measure p on RY with compact support, and parameters A\, e > 0,q > 1,
solve

L'Y
min/ |z — yldII(x,y) + ALy + e/ vids,
R7x~([0,L]) 0

among triples (v, v, 1), where vy : [0, L,] — R? varies in C, v among probability measures on ([0, L,]),
and 11 among transport plans between v and v.

L’Y
The term / v1(s)ds is to be interpreted as
0

o +ooif vl Ll #£0,

L, dv q )
./0 <d£1(5)> ds otherwise.

This choice is justified in view of Proposition 8.1.3.

Notice that in this case, differently from Problem 7.0.3, it is not required that each z is projected
to (one of) the nearest point on the graph of .

However there is another undesirable issue, mainly arising from lack of injectivity. Given a
data cloud (represented by ), and a triple (v, v, II) solving Problem 8.1.1, there are essentially two
notions of distances:

e for data points of j, the Euclidean distance is the natural choice,

e for the projections on the parameterization v, however the natural distance to consider is the
path distance on v, i.e. the distance between 7(s) and () is |s — t| as 7y is parameterized by
arc-length.

Clearly, if v is not injective, then there exist s < t with y(s) = 7(t), and these two distances
are non equivalent. This means that data points that are “close” (w.r.t. Euclidean distance) can be
projected on points which are “far away” w.r.t. path distance on v (although “close” w.r.t. Euclidean
distance). Figure 8.1.2 is a possible example of this situation. This is not desirable.

. dv dv . .
Moreover, if y(s) = 7(t), then d—ﬁl(s) (and d—ﬁl(t)) is not well defined.

This undesirable issue is strongly related to non injectivity. To overcome this issue, a term pe-
nalizing non injectivity will be introduced. Define

) = /OLW /OLW (mg - i|<s>)2 auds.

Problem 8.1.2. Given probability measure i on RY with compact support, and parameters \,e,e' > 0,
q > 1, solve

and consider the problem

L'Y
min/ |z — yldII(x,y) + AL + 6/ vids + en(y).
Rex~([0,L]) 0
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time increases in this direction

-

(graph of)

o
“““
o
||||
'
o
----
o
----
....
o
----
S
‘‘‘‘
.....

Figure 8.1.2: In this configuration, assuming ¢ < s, points belonging to the red part are projected on (),
while points belonging to the green part of the ball B are projected on 7(/;). The dashed line separates the
two parts of B. The sets v(I,) and (I;) not close in the intrinsic distance of the parameterization. The colored

area is part of supp(u).

To simplify notations, denote with

L
By (v,v,10) 1= / @ — yldI(x, y) + AL + ¢ / " V(s)ds + ().
0

RExy([0,L4])
The dependence on g will be omitted if no risk of confusion arises. The set C endowed with the

convergence from C,q, is not sequentially compact, thus the first problem is existence of minimizers
for Problem 8.1.2. A preliminary result is required.

Lemma 8.1.3. Given p and parameters \, e, > 0, ¢ > 1 if a triple (~y, v, II) satisfies E,’)’E’El (v, v, 1) < o0,
then v < L1,
Notice that the set {E,;\ e < oo} is clearly non empty for any choice of p, \, £, €', ¢: indeed choose

x € supp(u), y with |z — y| = 1, and the element

v :[0,1] — R, y(t) == (1 — t)z + ty, V= £|1[0,1}

and IT an optimal plan between 1 and ~;v. The element (1, v, IT) belongs to {E,))’e’s/ < 00}
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Proof. Decompose v = v, + vs where v, < L ovs L. Suppose by contradiction v, # 0, i.e. there
exists a £1- negligible set A C [0, L,] such that v4(A) = a > 0.
Let A, be a sequence of open sets satisfying A4,, | 4, and £*(A,,) = 1/n. Then it holds:

q q
/ vlds > / 2 ) as=2
An An 1/Tl 1/n‘1

and passing to the limit n — oo concludes the proof. O

1/n=afn??

Now it is possible to prove existence.
Proposition 8.1.4. For any choice of u, A\, e,€’, q, Problem 8.1.2 admits minimizers.

Proof. Consider a minimizing sequence (7, p, I1,,). Upon subsequence ~,, — 7 (the convergence is
intended in the topology of C,,,, and notice that a priori is not guaranteed v € C, but only v € Cpq,),
and {1, } is tight in view of Lemma 8.2.2. It is not restrictive to assume II,, is an optimal plan
between p and 7,41y, as otherwise replacing II,, with II;, optimal plan between x and .3, would
yield a sequence (Y, vn, I1,) with ENSF (v, v, I1,) < ENF (Yn, v, 1), ie.(n, v, IT,) is also a
minimizing sequence.

Using Prokorov theorem gives the existence of v such that upon subsequence (which will not be
relabeled) v, — v narrowly, and endow ([0, L,]) with probability measure y;v. It is straightforward
to check vy,3, — 3 narrowly. Choose an optimal transport plan Il between i and y4v. Denoting
with IT a narrow limit of {II,,} (again we do not relabel subsequences), it holds

lim |z — y|dI,(x,y) = / |z — y|dIl(z,y)
" JRE x4, ([0,1]) Rdx([0,1])

> / ‘.%’ - y‘dnopt(xa y)'
R x~([0,1])

Being a minimizing sequence, it holds sup,, [, vids < co; thus the convergence v, —v implies

v < LY and
L'Y L"/n
/ vids < lim inf/ vids,
0 " 0

L, <liminf L, .

n—o0

and recall that

Thus it remains to consider the term &'7(+). First, being a minimizing sequence it must hold

sup 7(yn) < oo. (8.1.1)

Convergence in C,, implies
() = 7(8)] < lim inf |5, (£) — n(s)]

for any ¢, s € [0, 1], thus n(v,) — n(7). The final step is to prove that  is effectively injective.
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Suppose the opposite holds, i.e. there exist ¢, s € [0, 1] with 7(¢) = ~(s). Notice that in this case

2

the integrand of 7(7y), (M) , would have an asymptote comparable with z=2 in 0, thus
v(s) =7

not integrable, and the proof is complete. O

The next result imposes a very weak connection between Problem 8.1.2 and the classic average
distance problem.

Lemma 8.1.5. Given i, A, q as in the formulation of Problem 8.1.2, and an arbitrary sequences {e,,},{e],} |
0, then it holds:

e for any (v, v,1I), for any sequence { vy, vy, I, }, with v, — ~, vp—v and I, 11, then

lim inf E;)thn’e% (Vs U, I1) > Eﬁ’O’O(Va v, 10);

n—oo

Proof. Consider an arbitrary triple (v, v, II), and an arbitrary sequence { (v, v, I1,,) } satisfying {7, } —
7, vn—v and II,I1. It holds

L’Yn
linrgioréf/ |z — y|d,(z,y) + AL, + sn/o vids + epn(m)
> lim inf/ & — yldL (2, y) + AL,
n—0o0
> [l = sldlla,y) + AL,
0

The next goal is to analyze some regularity properties of densities v when (v, v, II) is a minimizer
of Problem 8.1.2. This will be the main objective of the next section.

8.2 Regularity of densities

In Proposition 8.1.3 it has been proven that whenever (v, v, II) is a minimizer of Problem 8.1.2 then
the measure v < £!. In this section some further regularity of such measure will be analyzed.
Notice that as the term 7(y) depends only on geometric properties of the curve, and any construction
not modifying the curve v (but alters v and IT) does not change the value of 7(v).

The main result is:

Theorem 8.2.1. Given a measure i, parameters \,e,e’ > 0, and a minimizer (v, v,II) of Problem 8.1.2,
then it holds:

dv

art is essentially bounded (Proposition 8.2.3),

dv

*act

satisfies a very weak form of continuity (Proposition 8.2.4),
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o if d—ﬁyl is continuous, then it is Lipschitz continuous (Proposition 8.2.5).

The proof of Theorem 8.2.1 will be split into several passages, and with the arguments used in
this chapter, the results must be proven in this order.
We prove first some easy (but nevertheless useful) estimates.

Lemma 8.2.2. Given a measure y, parameters \,e,’ > 0, and a minimizer (v, v,1I), then the following
properties hold:

e there exist c1, co > 0 such that

with ¢y, cp independent of ,

e there exist z € supp(u) and constant Q) such that supp(p) U~y([0, L4]) is contained in a ball B(z, Q).

Proof. Choose an arbitrary such z € supp(u), and an arbitrary 2’ with |z — 2/| = 1. Consider the
triple (', v/, I") where

v 0,1] — RY, A/ (t) := (1 — )z + t2/, Vo= ['|1[0,1]
and II' is an optimal transport plan between y and ;. Clearly it holds

|z — z| < diam supp(u) Vo € supp(p),

thus
/ & — yldIl(z, y) < diam supp(x).
Réx~/([0,1])
1 dV’
Moreover by construction L., = 1, and / (d/ﬂ) dH' =1, n(+') = 1. Using the minimality of
0
(v, v, II) against (v, v/, II') gives
L dv \* 1 /
/ |z — y|dII(x,y) + ALy + 6/ (1> AL +e'n(v)
R ([0, L) o \dL
< diam supp(p) + A +¢e+ ¢, (8.2.1)
ie.
AL, < diam supp(p) + A +¢e+ €, (8.2.2)
and
Ly dv \? | . ,
e/ (dﬁl) dC" < diam supp(p) + A +¢e + €. (8.2.3)
0

Inequality (8.2.2) is an upper bound on the length of 7. Combining the easy fact

L, dl/ )q L~ 1 q
— ) dct > / <) dct
/0 (dﬁ 0 L,
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with (8.2.3) gives
L1 < diam supp(p) + A + e+ ¢,
which in view of hypothesis ¢ > 1, represents a lower bound on the length of ~.

Combining (8.2.2) with diam supp(y) < oo, as by hypothesis i is compactly supported, and
using the estimate

inf T — g/ x —yldll(z,y) < oo
xEsupp(,u),yEv([O,Lw])‘ y‘ R x([0,L-]) ’ y’ ( 3/)

gives that supp(p) U v([0, L,]) is contained in the ball B(z, Q) for some ) > 0, concluding the
proof. O

The first result deals with essential boundedness.

. L d
Proposition 8.2.3. Given a measure y, parameters \, e, > 0, and a minimizer (-, v, II), then d—gl € L™,

Proof. Notice first that as the term 7(y) depends only on the geometric properties of the curve, and

not on v or II. As the following construction does not alter the curve, 7(7) does not change.

Choose an arbitrary M >> 1, and denote with A; := {M < j—; < M*/3}. Clearly L1 (Ay )M <

1. Assume first
° ﬁl(AM) > 0.

The goal is to find a suitable competitor (v, 7/, II') (notice that the curve « has not been modified),
with ¢/ and II' eventually depending on M, and use the minimality of (v, v, II) (compared against
(v, V,II')) to retrieve a necessary condition.

Using Lemma 8.2.2 there exists ¢, C' > 0 such that C' > L, > c. Thus the set B := {dd% <2/c} C
[0, L,] has £! measure at least ¢/2. Consider / defined as

v(Am)
Vi=v— YAy T L1(B) EllB'

Choose an optimal plan II' between p and ~42/: thus the mass transported by II on v(Ajs) is now
transported on v(B) by IT'. Thus

Wi(v,v') < HY(L)v(y(Axr))

with W, denoting the 1-Wasserstein distance and consequently

/ & — yldI(z, y) / & — yldI (z,y)| < Lw(+(Ax))
R x~([0,L+]) Rxy([0,L+])

< CMYBLY(Ay). (8.2.4)
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Moreover it holds

/' \? v \? , , dv  v(Aw)\? ., dv \? |
/B<dcl> i ‘/B<dm> i —/B<d.c1+.c1<3>> ac ‘/B<dm) i
2

LY(B) LY(B)
QV(B) 4 MS/Bﬁl(A]\/[)2
M3l A 2.
. % .
Recalling that by construction arl = 0 on Ay, it holds
dv \ 2 dv' \ 2
— ) act - / ( > det > M2 LY (Ay). (8.2.6)
/AM (dcl) 4y, \dLT (Aar)

Combining (8.2.4), (8.2.6) and the minimality of (v, v, II) (compared against (v, 2/, II')) gives a nec-
essary condition

2v(B)
4/3 p1 VD) 5 1473 p1
CM*°L (AM)+€£1(B)M L (Apn) +

M8/3£1 (AM)2

B > eM?LY(Ay). (8.2.7)

Notice that for M sufficiently large, CM*/3£(Ayy) is negligible w.r.t. M2L(Ayy). Similarly, recall
that H1(B) > ¢/2, thus the term iI;EIIZ’; M*3LY(Apr) has order M4/3H1(Ayy), again negligible w.r.t.
M2HY(Ap).

M8/3£1 (AM)2

The term (B

has order M®/3H'(Ayr)?: clearly

M3/3 1 ( AM)2 )
S = MR A < MR <L
M2£1(AM) L(Ap) < <
Thus for M sufficiently large, condition (8.2.7) cannot hold, and the minimality of (v, v, II) is con-
tradicted by (v, v/, IT').

All this argument has been done under the assumption £!(A4;;) > 0. But if j—gl ¢ L*°, then itis

always possible to find a sequence M; — +oo such that LA Mj) > 0and Ay, NA M, = () whenever
J # j'. Thus the construction described above would give a competitor (v, v/, II') contradicting the

minimality of (v, v, II). The only possibility is thus % € L°°, and the proof is complete. O

The next result proves a weaker variant of continuity for such densities v. In the following
L

,
assume that the exponent ¢ appearing in the term / v1dL" will be assumed ¢ = 2. This mainly

0
due to a technical fact, as noted in Remark I in the following.
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Proposition 8.2.4. Given a measure p, parameters A\, e, > 0, and a minimizer (v,v,II), with ~ :
[0,L,] — R? parameterized by arc-length, then for any t € [0, L.] there exist no sequences of Borel
sets {An} | {t}, {Bn} | {t} (the convergence is intended as set convergence), and cy,co > 0 such that
dv dv
LY(A,) >0, LY(B,) > 0and dﬁl‘An >c1>c > it for any n.
Proof. Suppose by contradiction there exist such {A,} | {t}, {B.} | {t} and ¢1,¢2 > 0 such that
dv dv
E A'VL m n
be assumed L(A,) = LY(B,) (simply, if £1(A4,) > L£1(B,), replace A, with A}, C A, satisfying
LY(Al) = L£Y(B,)),and t € A, N B,; denote with d,, := max{diam A4,,, diam B,,}, and ¢ := ¢1 — ca.
Denote with [, := £}(4,) = £L(B,); the goal is to construct © such that (3, 7,1I) (with IT an
optimal plan between 1 and ;) contradicts the minimality of (X, v, II).
Denote with

n

> > g > for any n. Clearly such {4,}, {B,} are disjoint for any n, and it can

o dv 1 o dfy 1
V(A4,) = LT ac:, V(By) == 5 AL ac
the total mass transported (by II) on v(A,,) and v(B,,) respectively.
Consider the following modifications:

1. choose C' C A,, such that v(C) = (V(A,) + V(By))/2, and an arbitrary z € B,,. Define the
measure

Vi=v—yo+ %(V(An) —V(By))d..

Direct computation gives Wi (v,v') < d,,(V(A4,) — V(By)).

2. Define the measure

S L _ V(An) = V(Bn)
vi=v 2(V(An) V(Bpn))o, + 2L1(B,) Ly .
1
Direct computation gives W;(0,1") < Q(V(An) — V(Bp))d,, and Wi (v,v) < g(V(An) -

V(Bp))dn.
Choose a new optimal transport plan T between y and ;7. The dependence on n has been omitted

for the sake of brevity. Using W1 (7, v) < g(V(An) — V(B,))dy, it holds

/ |z — y|dII(z,y) — / |z — y|dI(z,y)
R x([0,L4]) REx~([0,L4])

By direct computation it holds

dv \2 di \?
— ) dct - / () dact
/AnuBn (dU) A,uB, \dL

L V(A2 +V(Ba)?  (V(An) +V(Bn))
- ln 21,

20,

< S(V(A) = V(By)dn.

v

(8.2.8)
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Combining the above inequality with the minimality of (7, v, IT) against (v, , IT) gives the necessary

condition
(V(An) — V(Bn))2

€ 5 <2d,V(A,), (8.2.9)
ie.
(V(An) = V(Bn))? _ 4dnV(An)
I, - € ’
and recalling that
dv dv
An) =V (By) = ac' act > cly,
V(A4,) —V(By) Adﬁlﬁ Bd£1£ clp,
this gives
4
Al < 7ng(An).
£
o dv
From Proposition 8.2.3 it is known that —~ 7 El € L, thus V(4,) < H praa ln, and
2 < 4d,V (Ay) < Adyly, || dv
- € - e ||dct|,
which finally yields
2 < % ﬂ
~ e |ldct||,
which is false for n sufficiently large, as by hypothesis {4,} | {t},{B,} | {t}, thus d,, | 0. This
concludes the proof. O

Remark I. The choice ¢ = 2 is dictated by technical reasons, as the passage (8.2.8) involves comput-
ing the difference

V(A)? + V(Ba)? (V(An) + V(Bn)>q. (8.2.10)

2 2

However, we are unable to prove that for any ¢ > 1 there exists a constant M/, > 0 depending only
on ¢ such that

V(A4,)? ; V(B! (V(An) ; V(Bn)>" > M, (V(An) ; V(Bn)>q.

This would allow to extend the result for any ¢ > 1 (or for any ¢ > 1 for which a similar estimate
holds), by using the same argument found in the proof of Proposition 8.2.4. The next result proves

that continuity of — 1mplies Lipschitz continuity.

e

Proposition 8.2.5. Given a measure y, parameters \, e, 5’ > 0, a minimizer (y,v,1II), with v : [0, L] —

2
RY parameterized by arc-length. Assume the function is continuous, then it is —-Lipschitz continuous,
€

dﬁl

!/
thus L'-a.e. differentiable with < dzl) € L.
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Proof. Consider an arbitrary ¢, and two sequences {t,} — ¢, {s,} — t with empty mutual intersec-

tion; from Proposition 8.2.4 it can be assumed d—ﬁyl continuous. For any n choose a sufficiently small
dpn, and define I, := (t, — dn, tn + Opn), Jn := (Sp — On, Sn, + 0y), and clearly choosing 9, sufficiently
small it can be assumed I,, N J,, = () for any n. To simplify notations, in the following we will write
0 instead of ¢,,.

Denote with V(I,) := / v

1, dL!

dc' and V(J,) = / j—gldﬁl the mass transported (by II) on
JIn

v(I,) and v(J,,) respectively. Assume (by symmetry, and the case j—ﬁyl(t) = j—gl
%(t) > %(s), which implies V' (1,,) > V(J,,) for ¢ sufficiently

small. Consider the following modifications:

(s) is trivial for

the purposes of this proposition)

1. choose C C I, such that v(C) = (V(I,) + V(J,))/2, and an arbitrary z € J,. Define the
measure

Vi=v—ye+ %(V(In) —V(Jn))os.

Direct computation gives Wi(v, ') < $(V(IL,) — V(J))(|tn — sn| + 20.

2. Define the measure
V() = V(Jn)

(V) = V() + 5oL,

1
Direct computation gives W (7, 1') < i(V(In)—V(Jn))dn, thus Wi (7, v) < g(V(In)—V(Jn))dn.
Choose new optimal transport plan IT between  and ;7. Thus it holds
/ o~ yldfi(e.y) - [ o~ yldTi(z, ) 8210
Rex~([0,L]) REx~([0,L4])
1
< §(V(In) - V(Jn))(|tn - Sn‘ + 25) + (V(In) + V(Jn))5 (8~2-12)
Moreover, the term ,
2 2
InUJn dﬁ 6
decreases to
2 (Vo) + V()
4] 2 ’

thus the difference satisfies

[ (Y g2 (V)Y
Inujn d£1 5 2

(8.2.13)
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Combining (8.2.11), (8.2.13) and the minimality of (X, v, TI) against (X, #,1I) gives the necessary
condition

2
S (V) = V)t — 5nl +20) + (V{I) + V(J))5 > e (W“;V“)) (8.2.14)

for any choice of ¢ sufficiently small. Using the arbitrariness of J, and passing to the limit § | 0,
(8.2.14) becomes

dv dv dv dv 2
—(tn) — = —sn| > e oar (tn) — —ar 2.
which implies
21t = sul = (1) = 2 (s,)
glm T ol =g T g )

The other case s) is solved using the same argument, as the role of ¢t and s are

dv dv
act®) < gzl

symmetric. This proves —-Lipschitz continuity along curves. Using Rademacher’s theorem gives
£

N 2
act

<-. O
L~ €

Remark II. In all the discussion, including the main result in Theorem 8.2.1, the average distance

term was imposed to be

v

h
tatdﬁl

is £1-a.e. differentiable, and

[ o= ylatz.y)

In general one can consider a slightly more general case, in which the average distance term is
replaced by

/a: —y|*dll(z,y), a> 1.

All the arguments, and the proofs, can be adapted straightforwardly: indeed in all the proofs we
had to estimate the change for the average distance term when some mass is moved by some 9,
with §,, — 0. More precisely, for d,, sufficiently small we have constructed a competitor (v, 7, ﬁ)
where the Wasserstein-1 distance between IT and IT was bounded from above by

mass moved x distance.

The latter was estimated to be §,, using triangular inequality. If the integrand becomes |z — y|*
(instead of |x — y|), then a very similar argument follows: indeed if « is integer, then for any [, > 0
it holds

[l 4 ¢e|® = 1% = ale + ofe).

Notice that the proof of Lemma 8.2.2 follows straightforwardly with the same arguments. For
generic « it suffices to notice that the map

«

a— [l4+¢e]* =1
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is nondecreasing. This shows that for any o > 1, using the same constructions, the change for
|z — y|“dII(z, y) has (at most) the same order as for [ |z — y|dII(x,y). Thus the same arguments
from the proofs can be repeated straightforwardly, and the properties from Theorem 8.2.1 are proven

true even if the average distance term is replaced by / | — y|*dII(z,y). Thus it holds:

Theorem 8.2.6. Given a measure yi, parameters A, e, > 0, « > 1 and a solution (~y, v, II) of

. Ly /dv \? ;
mm/ |z — y|*dIl(z,y) +AL7+6/ <d£1) ds +en(y),
Rxy([0,L+]) 0

with v, v and 11 varying in the same sets as in Problem 8.1.2, then it holds:

v
act
dv
[ ]
act
— forany t € [0, L, there exist no sequences of Borel sets {A,} | {t}, {Bn} | {t} (the conver-
gence is intended as set convergence), and c1,co > 0 such that L' (A,) > 0, LY(B,) > 0 and
dv dv

—_— >CI>C2> —_—
1 — - 1
|, dct |,

is essentially bounded (Proposition 8.2.3),

satisfies a very weak form of continuity i.e.

forany n.,
n

o if d—gl is continuous, then it is Lipschitz continuous.
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