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Abstract. We consider a class of degenerate parabolic equations with linear growth Lagrangian.
Two prototypes within this class, sharing common features with nonlinear transport equations, are
the relativistic porous medium equation and the speed-limited (or flux-limited) porous medium
equation. In arbitrary space dimension, we prove that entropy solutions to the Cauchy problem
satisfy the finite speed of propagation property, with upper bounds that we expect to be sharp. For
the two aforementioned prototypes, we provide a condition on the growth of the initial datum which
guarantees the occurrence of a waiting-time phenomenon; we also present a heuristic argument in
favor of the optimality of such condition.
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1. Introduction. Generally speaking, degenerate parabolic equations with lin-
ear growth Lagrangian are a class of second-order diffusion equations of the form

ut = div a(u,∇u) (1.1)

(plus lower-order terms) which display both a degeneracy with respect to u, in the
sense that

lim
z→0+

a(z,v) = 0 for all v ∈ RN ,

and a linear growth of the associated Lagrangian, in the sense that

1

|v|
lim

t→+∞
a(z, tv) · v =: ϕ(z) for all z ≥ 0. (1.2)

While referring to [4, 9, 11, 12] for thorough referenced discussions on the models and
the theory for this class, here we just point out two prototypes: the relativistic porous
medium equation,

ut = ν div

(
um∇u√

u2 + ν2c−2|∇u|2

)
, m ∈ (1,+∞), (1.3)

which generalizes the so-called relativistic heat equation (m = 1), and the speed-
limited porous medium equation,

ut = ν div

(
u∇uM−1√

1 + ν2c−2|∇uM−1|2

)
, M ∈ (1,+∞), (1.4)

which has been recently proposed in [12] (under the name of “flux-limited porous
medium equation”). As c → +∞, both equation (1.3) and equation (1.4) (with
m = M and up to a factor M − 1) converge to the porous medium equation,

ut = ν div
(
um−1∇u

)
∗SBAI Department - Sapienza University of Rome - Via Scarpa, 16 - 00161 Roma - Italy -

lorenzo.giacomelli@sbai.uniroma1.it

1
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(see [13] for rigorous convergence results). Up to the scaling t̂ = ct, x̂ = c
νx, we

assume without losing generality that

ν = c = 1. (1.5)

A mathematical theory for suitable classes of equations of the form (1.1)-(1.2) has
been recently developed, based on the concept of entropy solutions (we refer to §2 for
a brief introduction to this concept and its precise definition). This note is concerned
with two qualitative properties of entropy solutions to the Cauchy problem for (1.1)
and (1.3)-(1.4), respectively: the finite speed of propagation property, which means
that the solutions’ support remains bounded for positive times provided it is initially
so, and the waiting time phenomenon, which means that a positive time exists during
which the solutions’ support locally does not expand.

The finite speed of propagation property was proved in [5] for entropy solutions
to (1.3) with m = 1, the speed being bounded above by 1 (recall (1.5)). For (1.3) and
(1.4), conjectures have been recently formulated in [8]. Here, by a generalization of
the arguments in [5], we confirm these conjectures: If u0 ∈ L∞(RN ) is nonnegative
with compact support, and u is the entropy solution to the Cauchy problem for (1.3)
or (1.4) with initial datum u0 (see Remark 2.3), then

supp(u(t)) ⊆ supp(u0)⊕B(0,m‖u0‖m−1
∞ t) if u solves (1.3), or (1.6)

supp(u(t)) ⊆ supp(u0)⊕B(0, t) if u solves (1.4) (1.7)

for all t > 0. As discussed in Remark 1.3, both (1.6) and (1.7) are immediate con-
sequences of a more general result, which extends [5, Theorem 4] and which we now
introduce (a related extension has been independently obtained in [7]). We assume:

Assumption 1.1. Let Q = (0,∞)×RN . The function a : Q→ RN is such that:

(i) (Lagrangian) there exists f ∈ C(Q) such that ∇vf = a ∈ C(Q), f(z, ·) is convex,
f(z, 0) = 0 for all z ∈ [0,∞), and

C0(z)|v| −D0(z) ≤ f(z,v) ≤M0(z)(1 + |v|) for all (z,v) ∈ Q

for non-negative continuous function M0, C0 ∈ C([0,∞)) and D0 ∈ C((0,∞)), with
C0(z) > 0 for z > 0;

(ii) (flux) Dva ∈ C(Q); a(z, 0) = a(0,v) = 0 and h(z,v) := a(z,v) · v = h(z,−v) for
all (z,v) ∈ Q; for any R > 0 there exists MR > 0 such that

|a(z,v)− a(ẑ,v)| ≤MR|z − ẑ| for all z, ẑ ∈ [0, R] and all v ∈ RN ;

(iii) (recession functions) the recession functions f0 and h0, defined by

f0(z,v) = lim
t→+∞

1

t
f(z, tv), h0(z,v) = lim

t→+∞

1

t
h(z, tv),

exist in Q and f0 ≡ h0; furthermore, a function ϕ ∈ Liploc([0,∞)), with ϕ(0) = 0
and ϕ > 0 in (0,∞), exists such that

f0(z,v) = h0(z,v) = ϕ(z)|v| for all (z,v) ∈ Q (1.8)

(cf. (1.2)), and a(z,w) · v ≤ ϕ(z)|v| for all (z,v) ∈ Q, w ∈ RN .

We prove:
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Theorem 1.2. Let a be such that Assumption 1.1 holds. Let u0 ∈ L∞(RN )
be nonnegative with compact support and let u be an entropy solution to the Cauchy
problem for (1.1) with initial datum u0 in the sense of Definition 2.1. Then

supp(u(t)) ⊆ supp(u0)⊕B(0, V t), V := ess sup
z∈(0,‖u0‖∞)

ϕ′(z) (1.9)

for all t > 0, where ϕ is defined in Assumption 1.1 (iii).

We conjecture that, as for the relativistic heat equation, the bound in (1.9) is sharp.

Remark 1.3. It is not difficult to check that, in the particular cases of equation
(1.3) and equation (1.4), the corresponding fluxes,

a1(z,v) =

{
zmv√
z2+|v|2

if (z,v) 6= (0, 0)

0 if (z,v) = (0, 0)
(1.10)

and

a2(z,v) =

{
(M−1)zM−1v√

1+(M−1)2z2M−4|v|2
if z > 0

0 if z = 0,
(1.11)

satisfy Assumption 1.1 with

f1(z,v) = zm
(√

z2 + |v|2 − z
)
, (1.12)

respectively

f2(z,v) =

{
z3−M

M−1

(√
1 + (M − 1)2z2M−4|v|2 − 1

)
if z > 0

0 if z = 0.
(1.13)

Therefore, (1.6) and (1.7) follow immediately from

ϕ(z) =
1

|v|
lim

t→+∞
a(z, tv) · v =

{
zm for (1.3)
z for (1.4).

(1.14)

The waiting time phenomenon for equation (1.3) has been recently discussed in
[6, §5] and [9, §4.2.1] via numerical and formal arguments. In the present note we
give sufficient conditions for the occurrence of a waiting time phenomenon:

Theorem 1.4. Let u0 ∈ L∞(RN ) be nonnegative with compact support, x0 ∈ RN ,
and let u be the entropy solution to the Cauchy problem for (1.3) or (1.4) with initial
datum u0 in the sense of Definition 2.1. Positive constants Am (resp. AM ), depending
only on N and m (resp. M), exists such that if

ess sup
x∈RN

|x− x0|−
1

m−1u0(x) = C < +∞ if u solves (1.3), or (1.15)

ess sup
x∈RN

|x− x0|−
2

M−1u0(x) = C < +∞ if u solves (1.4), (1.16)

then

ess sup
x∈RN

|x− x0|−
1

m−1u(t, x) ≤ C
(
τ∗ − t
τ∗

)− 1
m−1

for all t < τ∗ := (C/Am)1−m
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if u solves (1.3), or

ess sup
x∈RN

|x− x0|−
2

M−1u(t, x) ≤ C
(
τ∗ − t
τ∗

)− 1
M−1

for all t < τ∗ := (C/AM )1−M

if u solves (1.4).

Generally speaking, Theorem 1.4 says that if u0 decays sufficiently fast to zero
at x0, then u(t, x0) = 0 for all t < τ∗. A slightly different formulation of the waiting
time phenomenon, involving an exterior cone property of supp(u0) at x0, has been
adopted in [15, 18, 19] for a rather general class of degenerate parabolic equations
(see [17] for a recent referenced discussion on this subject). The next result shows
that such formulation is implied by Theorem 1.4:

Corollary 1.5. Under the assumptions of Thoerem 1.4, assume in addition
that supp(u0) has the exterior cone property at x0 ∈ ∂ supp(u0), i.e. B0 ≥ 0 and
w ∈ RN , |w| = 1, exist such that supp(u0) ∩ CB0

= ∅, where

CB0 :=
{
x ∈ RN : (x0 − x) · w > B0|(x0 − x)− ((x0 − x) · w)w|

}
.

Then positive constants Am,1 (resp. AM,1), depending on N , B0, and m (resp.

M), exist such that x0 ∈ RN \ supp(u(t, ·)) for all t < (C/Am,1)1−m (resp. t <
(C/AM,1)1−M ).

The exponents 1/(m− 1) and 2/(M − 1) in (1.15)-(1.16) are critical in our argu-
ment. A natural question is whether this is a technical or a substantial constrain. In
one space dimension we present a heuristic argument, based on the hyperbolic char-
acter of the equation near x0, which in fact suggests that the critical exponents are
optimal, in the sense that no waiting time phenomenon occurs if supp(u0) ⊂ [x0,∞)
and

lim
x→x+

0

(x− x0)−
1

m−1u0(x) = +∞ if u solves (1.3), or (1.17)

lim
x→x+

0

(x− x0)−
2

M−1u0(x) = +∞ if u solves (1.4). (1.18)

For (1.3), our heuristic argument also suggests that, when (1.17) is violated, a jump
instantaneously starts developing at the left boundary of the support, s−(t) (s−(0) =
x0), causing its expansion. Scaling laws for both s−(t) and the height of the jump at
that point may then be obtained using the method of characteristics and the Rankine-
Hugoniot condition: if u0(x) ∼ (x−x0)α+ as x→ x0, then (see (5.9) and (5.10) below)

s−(t)− x0 ∼ −t
1

1−α(m−1) and u+(t, s−(t)) ∼ t
α

1−α(m−1) for t� 1.

Our heuristic seems to lead to different conclusions with respect to the numerical
and formal arguments in [9, §4.2.1], where another critical exponent, 1/m, is predicted
for equation (1.3) (see Remark 5.1). Such discrepancy points toward the necessity of
sharp results on the non-occurrence of a waiting time phenomenon, possibly through
the construction of suitable classes of subsolutions whose support instantaneously
expands.

The argument for Theorem 1.4 is based on comparison. Therefore, another nat-
ural question is whether known energy methods, developed in recent years to study
the waiting time phenomenon for degenerate parabolic equations and systems (also
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of higher order, see [15, 17, 18, 19]), may be adapted to cover the present class. This
would lead to general results for equation (1.1) rather than for specific models such
as (1.3) and (1.4), as well as to weaker, integral-type conditions on the initial datum,
in the spirit of those obtained in [1] for the porous medium equation: e.g., we expect

that (1.15) may be replaced supr>0 r
− 1
m−1−N

∫
Br(x0)

u0(x) dx < +∞.

The note is organized as follows. In Section 2 we review the concept of entropy
(super)solution and (slight generalizations of) basic known results; in Section 3 we
prove Theorem 1.2; in Section 4 we prove Theorem 1.4 and Corollary 1.5; finally, in
Section 5 we present the heuristic argument in favor of the optimality of the exponents
in (1.15) and (1.16).

2. Entropy (super)solutions. The concept of entropy solutions to the Cauchy
problem for (1.1) has been introduced in [3] and later extended in [10, 12]. At the
core of this concept is an entropy inequality (cf. (2.8) below) that we now introduce.

For a, b, ` ∈ R we let

T `a,b(r) = max{min{b, r}, a} − `,
T + = {T `a,b : 0 < a < b, ` ≤ a}, T − = {T `a,b : 0 < a < b, ` ≥ b}.

We also use the following notation:

T 0 := T 0
a,b, where T = T `a,b ∈ T + ∪ T −.

For f ∈ L1
loc(R) we let

Jf (r) :=

∫ r

0

f(s) ds. (2.1)

Let S, T ∈ T +∪T −. Formally testing (1.1) by T (u)S(u)φ, with φ ∈ C∞c ((0,∞)×RN ),
after integrations by parts we see that∫ +∞

0

∫
RN

JTS(u)φt dxdt =

∫ +∞

0

∫
RN

T (u)S(u)a(u,∇u) · ∇φ dx dt

+

∫ +∞

0

∫
RN

φ (S(u)a(u,∇u) · ∇T (u) + T (u)a(u,∇u) · ∇S(u)) dxdt. (2.2)

Since ∇S(u) = ∇S0(u) and u = S0(u) on supp(∇S0(u)), we have

T (u)a(u,∇u) · ∇S(u) = T (u) a(u,∇u) · ∇S0(u)

= T (S0(u)) a(S0(u),∇S0(u)) · ∇S0(u)

= T (S0(u))h(S0(u),∇S0(u)), (2.3)

where h is defined in Assumption 1.1 (ii). Analogously,

S(u)a(u,∇u) · ∇T (u) = S(T 0(u))h(T 0(u),∇T 0(u)). (2.4)

In view of (2.3)-(2.4), (2.2) may be rewritten as∫ +∞

0

∫
RN

φ
(
S(T 0(u))h(T 0(u),∇T 0(u)) + T (S0(u))h(S0(u),∇S0(u))

)
dxdt

=

∫ +∞

0

∫
RN

(JTS(u)φt − T (u)S(u)a(u,∇u) · ∇φ) dxdt. (2.5)
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On passing from formal to rigorous arguments, one needs to argue by lower semi-
continuity on the left-hand side of (2.5). It turns out ([16]; see the discussion in [3,
§2.2 and 3.2]) that, for any nonnegative φ ∈ Cc(RN ), any T ∈ T + ∪ T − and any
S ∈Lip(R; [0,∞)) with S′ compactly supported (in particular, any S ∈ T +),

R(φSh, T )(u) :=

∫
RN

φS(T 0(u))h(T 0(u),∇T 0(u)) dx+

∫
RN

φd|DsJSϕ(T 0(u))|

≤ lim inf
n→∞

∫
RN

φS(T 0(un))h(T 0(un),∇T 0(un)) dx (2.6)

for any u ∈ BV (RN ) and any {un} ⊂W 1,1(RN ) such that un → u in L1(RN ), where
ϕ is given by (1.8) (we use standard notations and concepts for BV functions [2]; in
particular, for u ∈ BV (RN ), ∇uLN , resp. Dsu, denote the the absolutely continuous,
resp. singular, parts of Du with respect to the Lebesgue measure LN ). Note that,
under standard continuity and coercivity assumptions, when Ω ⊂ RN is a bounded
open set R(χΩSh, T )(u) coincides with the relaxation of the left-hand side of (2.6),
i.e.,

R(χΩSh, T )(u) = inf

{
lim inf
n→∞

∫
Ω

S(T 0(un))h(T 0(un),∇T 0(un)) dx

}
for any u ∈ BV (Ω), where the infimum is taken among all {un} ⊂W 1,1(Ω) such that
un → u in L1(Ω) (see e.g. [14]).

We denote by hS(u,DT (u)) the Radon measure defined by

〈hS(u,DT (u)), φ〉 := R(φSh, T )(u) for all φ ∈ Cc(RN ). (2.7)

Combining (2.5)-(2.7) yields the following entropy inequality:∫ +∞

0

〈hS(u,DT (u)) + hT (u,DS(u)), φ〉dt

≤
∫ +∞

0

∫
RN

(JTS(u)φt − T (u)S(u)a(u,∇u) · ∇φ) dxdt. (2.8)

This motivates the crucial part, (iv), of the definition of entropy solutions:

Definition 2.1. Let u0 ∈ L∞(RN ) ∩ L1(RN ) nonnegative. A nonnegative func-
tion u ∈ C([0,+∞);L1(RN ))∩L∞((0,∞)×RN ) is an entropy solution to the Cauchy
problem for (1.1) with initial datum u0 if u(0) = u0 and:

(i) T aa,b(u) ∈ L1
loc((0,+∞);BV (RN )) for all 0 < a < b;

(ii) a(u,∇u) ∈ L∞loc([0,∞)× RN );
(iii) ut = div(a(u,∇u)) in the sense of distributions;
(iv) inequality (2.8) holds for any S, T ∈ T + and any nonnegative smooth function

φ with compact support in (0,+∞)× RN .

The following holds:

Theorem 2.2. Let a be such that Assumption 1.1 holds. For any nonnegative
u0 ∈ L∞(RN ) ∩ L1(RN ) there exists at most one entropy solution to the Cauchy
problem for equation (1.1) with initial datum u0. In addition, if either

(H1) D0 ∈ C([0,∞)) and A,B ≥ 0, α, β ≥ 1 exist such that D0(z) ≤ Azα + Bzβ

for all z ≥ 0,
or
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(H2) for any R > 0 there exists cR > 0 such that C0(z) ≥ cRz and ϕ(z) ≥ cRz for
all z ∈ [0, R],

then the entropy solution exists.

Remark 2.3. Theorem 2.2 is contained in, or follows from, earlier results in
[3, 12]: we refer to the Appendix for details. We note that the flux a1 in (1.10)
satisfies (H1) with D0(z) = zm+1 (cf. (1.12)) and that the flux a2 in (1.11) satisfies
(H2) with C0(z) = z (cf. (1.13)-(1.14)). Hence Theorem 2.2 applies in particular to
equation (1.3) and equation (1.4).

The formal arguments behind the concept of supersolutions [5, Definition 5] are
analogous to the ones above, except that S ∈ T −: on defining hS(u,DT (u)) =
−h(−S)(u,DT (u)) for S ∈ T − and T ∈ T + ∪ T −, they lead to the same inequality,
(2.8). In fact, in dealing with the waiting time phenomenon we need a slight extension
of [5, Definition 5], which does not require uniform boundedness in RN :

Definition 2.4. Let τ > 0. A nonnegative function u ∈ C([0, τ);L1
loc(RN ))∩

L∞loc([0, τ ]× RN ) is an entropy supersolution to equation (1.1) in (0, τ)× RN if:

(i) T aa,b(u) ∈ L1
loc((0, τ);BVloc(RN )) for all 0 < a < b;

(ii) a(u(t),∇u(t)) ∈ L∞loc(RN ) for a.e. t ∈ (0, τ);
(iii) (2.8) holds for any S ∈ T −, T ∈ T +, and any nonnegative smooth function

φ with compact support in (0, τ)× RN .

The following result generalizes [5, Theorem 2]:

Theorem 2.5. Let a be such that Assumption 1.1 holds. Let u be an entropy
solution to the Cauchy problem for (1.1) with initial datum u0 ∈ L∞(RN ) ∩ L1(RN )
and u be an entropy supersolution to equation (1.1) in (0, τ) with u(0) ∈ L∞loc(RN ). If
u(0) ≥ u0 and either

(a) u(t) ∈ BV (RN ) for a.e. t ∈ (0, τ), u ∈ C([0, τ);L1(RN )), T aa,b(u) ∈ L1((0, τ);BV (RN ))

for all 0 < a < b, and a(u(t),∇u(t)) ∈ L∞(RN ) for a.e. t ∈ (0, τ)

or

(b) u(t) ∈ BVloc(RN ) for a.e. t ∈ (0, τ) and suppu ∩ ([0, τ ]× RN ) is compact,

then u(t) ≥ u(t) for all t ∈ (0, τ).

Proof. Case (a) is proved in [5]. Indeed, it is easy to check that, up to re-
defining a(z,v) = a(−z,v) for z < 0, Assumption 1.1 implies all the assump-
tions of [5, Theorem 2] except for (H1) (cf. Theorem 2.2 above) and for two reg-
ularity properties of u (namely, div a(u(t),∇u(t)) ∈ (BV (RN ))∗ for a.e. t and
ut ∈ (L1

loc([0,+∞);BV2(RN )))∗). However, following the proof one sees that the
properties of D0 are only used for |z| ∈ [a, b] with 0 < a < b < ∞, hence (H1) is not
used, and that the two additional regularity properties of u are not used at all. Hence
the same proof applies under Assumption 1.1.

For case (b), we note that the proof of [5, Theorem 2] applies Kruzkhov’s doubling
argument, using (2.8) for both u (in (s, y)-variables) and u (in (t, x)-variables), with
testing functions

ηm,n(t, x, s, y) = ρm(x− y)ρ̃n(t− s)φ
(
t+ s

2

)
,

where ρm, ρn are standard mollifiers and φ is a nonnegative smooth function with
compact support in (0, τ). The proof of (b) follows very closely this argument, hence
we only highlight the main changes. We add a cut-off in space, i.e. we use testing
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functions

ηm,n(t, x, s, y) = ρm(x− y)ρ̃n(t− s)φ
(
t+ s

2

)
ψ

(
x+ y

2

)
,

where ψ is a non-negative smooth function with compact support in RN . In this
way, the arguments in [5, proof of Theorem 2] may be redone assuming only local
integrability of u. Passing to the limit as m,n→ +∞, one finds that

−
∫ τ

0

∫
RN

(u− u)+ψφt dxdt ≤ −
∫ τ

0

∫
RN

φχ{u>u}(a(u,∇u)− a(u,∇u)) · ∇ψ dxdt.

Since supp(u)∩([0, τ ]×RN ) is compact, (u−u)+ = 0 and χ{u>u} = 0 in [0, τ ]×{|x| ≥
R} for R sufficiently large. Hence, for any ψ such that ψ ≡ 1 for |x| ≤ R, we obtain

−
∫ τ

0

∫
RN

(u− u)+ψφt dx dt ≤ 0,

and the conclusion follows from the arbitrariness of φ and ψ.

3. The finite speed of propagation property. In this section we prove The-
orem 1.2 by a generalization of techniques from [5].

Proof of Theorem 1.2. Let C = supp(u0) and C(s) := C ⊕B(0, s). We will argue
below that

u(t, x) = βχC(vt), v := ess sup
z∈(0,β)

ϕ′(z) (3.1)

is a supersolution to equation (1.1) in (0, τ) × RN for all τ > 0 and all β > 0.
Choosing β = ‖u0‖∞ we also have u(0) ≥ u0: hence Theorem 1.2 follows from part
(a) of Theorem 2.5.

We note that

ut = vHN−1x∂C(vt) (3.2)

and that

a(u,∇u) ≡ 0. (3.3)

Take any τ > 0, S ∈ T −, T ∈ T +, and any nonnegative smooth function φ with
compact support in (0, τ)×RN . Arguing exactly as in the proof of [5, Proposition 1,
§5.1], we obtain for the measure on the left-hand side of (2.8) that

hS(u(t), DT (u(t))) + hT (u(t), DS(u(t))) = J(TS)′ϕ(β)HN−1x∂C(vt). (3.4)

Now,

J(TS)′ϕ(β)
(2.1)
= (TSϕ) (β)− (TSϕ) (0)−

∫ β

0

T (r)S(r)ϕ′(r) dr.

Since ϕ(0) = 0, ϕ ≥ 0, S ∈ T −, and T ∈ T +, we have (TSϕ)(β) ≤ 0, (TSϕ)(0) = 0,
and, recalling (3.1), −T (r)S(r)ϕ′(r) ≤ −T (r)S(r)v for any r ∈ (0, β). Therefore

J(TS)′ϕ(β) ≤ −v
∫ β

0

T (r)S(r) dr
(2.1)
= −vJTS(β). (3.5)
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Combining (3.4) and (3.5), we obtain for the left-hand side of (2.8):∫ +∞

0

〈hS(u,DT (u)) + hT (u,DS(u)), φ〉dt

≤ −vJTS(β)

∫ +∞

0

∫
∂C(vt)

φdHN−1 dt. (3.6)

On the other hand, the right-hand side of (2.8) is given by∫ +∞

0

∫
RN

(JTS(u)φt − T (u)S(u)a(u,∇u) · ∇φ) dx dt

(3.3)
=

∫ +∞

0

∫
RN

JTS(u)φt dxdt
(3.1)
= JTS(β)

∫ +∞

0

∫
RN

χC(vt)φt dx dt

(3.2)
= −vJTS(β)

∫ +∞

0

∫
∂C(vt)

φdHN−1 dt. (3.7)

Combining (3.6) and (3.7), we see that (2.8) holds. Hence u is a supersolution.

4. The waiting time phenomenon. In this Section we prove Theorem 1.4 and
Corollary 1.5. We split the proof of Theorem 1.4 for the two equations.

Proof of Theorem 1.4, equation (1.3). We recall (1.3) and (1.10):

ut − div a1(u,∇u) = 0, a1(z,v) =

{
zmv√
z2+|v|2

if (z,v) 6= (0,0)

0 if (z,v) = (0,0).

Up to a translation in space, we may assume without losing generality that x0 = 0.
For A,α, β ∈ (0,∞), let

u(t, x) := A(τ − t)−βrα, r := |x|.

We will choose A, α, and β such that

F [u] := ut − div a1(u,∇u) ≥ 0 for all t ∈ (0, τ), r > 0. (4.1)

We note that

F [u] = Aβ(τ − t)−β−1rα −Am(τ − t)−mβ div a1(rα,∇rα).

Hence, choosing β = 1/(m− 1),

F [u] =
A

m− 1
(τ − t)−

m
m−1

(
rα − (m− 1)Am−1 div a1(rα,∇rα)

)
. (4.2)

Using

∇rα = αrα−2x, |∇rα|2 = α2r2α−2, ∇r · x = r, div x = N, (4.3)

we compute:

a1(rα,∇rα) =
rαm∇rα√
r2α + |∇rα|2

=
rαm−1x√

1 + r2

α2

,

div a1(rα,∇rα) =
d

dr

 rαm−1√
1 + r2

α2

∇r · x+
rαm−1√
1 + r2

α2

div x

=
rαm−1(

1 + r2

α2

)3/2 (αm+N − 1 + (αm+N − 2)
r2

α2

)
. (4.4)
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Inserting (4.4) into (4.2) and choosing α = 1/(m− 1), we see that

F [u] =
A

m− 1
(τ − t)−

m
m−1 r

1
m−1

(
1−Am−1f

(
(m− 1)2r2

))
,

f(s) :=
m+ (N − 1)(m− 1) + (m+ (N − 2)(m− 1))|s|

(1 + |s|)3/2
.

Note that ‖f‖∞ = f(0) = m + (N − 1)(m − 1). Hence, choosing A = Am :=
(m+ (N − 1)(m− 1))−1/(m−1), we conclude that

u(t, x) := Am(τ − t)−
1

m−1 |x|
1

m−1 (4.5)

is such that (4.1) holds.

We now show that the function u in (4.5) is a supersolution to equation (1.3) in
(0, τ)×RN for all τ > 0 in the sense of Definition 2.4. Since u ∈ C((0, τ);W 1,1

loc (RN )),
u satisfies (i) in Definition 2.4. Since

a1(u,∇u)
(4.4)
= Am(τ − t)−

1
m−1

|x|
1

m−1x√
1 + (m− 1)2|x|2

∈ L∞loc([0, τ)× RN ), (4.6)

u satisfies (ii) in Definition 2.4. Hence, it remains to show that u fulfills inequality
(2.8) for any T ∈ T +, S ∈ T −, and φ ∈ C∞c ((0, τ)×RN ). Since u(t) ∈W 1,1(RN ) for
all t ∈ (0, τ), (2.4)-(2.7) imply that

〈hS(u,DT (u)) + hT (u,DS(u)), φ〉 =

∫
RN

φa1(u,∇u) · ∇(S(u)T (u)) dx,

hence inequality (2.8) reduces to∫ ∞
0

∫
RN

φa1(u,∇u) · ∇(T (u)S(u)) dxdt

≤
∫ ∞

0

∫
RN

(JTS(u)φt − T (u)S(u)a1(u,∇u) · ∇φ) dx dt. (4.7)

In order to prove (4.7), we start from (4.1): since T ≥ 0, φ ≥ 0, and S ≤ 0,

0 ≥
∫ ∞

0

∫
RN\Bε(0)

φT (u)S(u) (ut − div a1(u,∇u)) dxdt (4.8)

for all ε > 0, where Bε(0) = {x ∈ RN : |x| < ε}. Integrating by parts in (4.8), we
obtain ∫ ∞

0

∫
RN\Bε(0)

φa1(u,∇u) · ∇(T (u)S(u)) dx dt

≤
∫ ∞

0

∫
∂(RN\Bε(0))

φT (u)S(u)a1(u,∇u) · n dHN−1 dt

+

∫ ∞
0

∫
RN\Bε(0)

(JTS(u)φt − T (u)S(u)a1(u,∇u) · ∇φ) dxdt. (4.9)

The passage to the limit as ε → 0 in (4.9) is straightforward: in view of (4.6) and
dominated convergence, the bulk integrals converge to their counterpart in RN and
the boundary integral vanishes. Therefore (2.8) holds and u is a supersolution.
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The statement now follows immediately from part (b) of Theorem 2.5. Indeed, in
view of (1.15), C > 0 exists such that u0(x) ≤ C|x|1/(m−1) for a.e. x ∈ RN . Choosing
τ = τ∗ := (C/Am)1−m in (4.5), we see that

u0(x) ≤ C|x|
1

m−1 = Amτ
− 1
m−1 |x|

1
m−1 = u(0, x) for a.e. x ∈ RN ,

hence u ≤ u in (0, τ)× RN : since Am = Cτ
1/(m−1)
∗ , we obtain (1.15).

Proof of Theorem 1.4, equation (1.4). We recall (1.4) and (1.11):

ut − div a2(u,∇u) = 0, a2(z,v) =

{
(M−1)zM−1v√

1+(M−1)2z2M−4|v|2
if z > 0

0 if z = 0.

Up to a translation in space, we may assume without losing generality that x0 = 0.
For A,α, β ∈ (0,∞), let

u(t, x) := A(τ − t)−βrα, r := |x|.

As above, choosing β = 1/(M − 1), for r > 0 we obtain

F [u] := ut − div a2(u,∇u)

=
A

M − 1
(τ − t)−

M
M−1

(
rα − (M − 1)AM−1 div a2(rα,∇rα)

)
. (4.10)

Using (4.3) and letting

K2(r) := (M − 1)2r2α(M−2)|∇rα|2 = α2(M − 1)2r2(α(M−1)−1),

we compute:

a2(rα,∇rα) =
(M − 1)rα(M−1)∇rα√

1 +K2(r)
= α(M − 1)

rαM−2x√
1 +K2(r)

,

div a2(rα,∇rα) = α(M − 1)rαM−2αM +N − 2 + (α+N − 1)K2(r)

(1 +K2(r))3/2
. (4.11)

Inserting (4.11) into (4.10) and choosing α = 2/(M − 1), we obtain

F [u] =
A

(M − 1)
(τ − t)−

M
M−1 r

2
M−1

(
1− 2AM−1g(K2(r))

)
,

g(s) :=
N(M − 1) + 2 + ((N − 1)(M − 1) + 2)|s|

(1 + |s|)3/2
.

Note that ‖g‖∞ = g(0) = N(M − 1) + 2. Hence, choosing A = AM := (2N(M − 1) +
4)−1/(M−1), we conclude that F [u] ≥ 0 for all t ∈ (0, τ) and all r > 0. From here on,
the proof is completely analogous to the one for equation (1.3) and therefore we omit
it.

We conclude with the proof of Corollary 1.5.

Proof of Corollary 1.5. We look only at equation (1.3), the proof for equation
(1.4) being completely analogous. We denote by {e1, . . . , eN} the canonical basis of
RN and we let xi = x ·ei. Up to a translation and a rotation in space, we may assume
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without losing generality that 0 = x0 ∈ ∂ supp(u0) and that w = e1, so that the
exterior cone property becomes

supp(u0) ∩ CB0
= ∅, CB0

:=
{
x ∈ RN : x1 < −B0|x|

}
, x := x− x1e1. (4.12)

If N = 1 the proof is straightforward: we have CB0
= (−∞, 0) (for any B0) and

u0(x)
(1.15),(4.12)

≤ Cx
1

m−1

+ ≤ C|x− z|
1

m−1 for all z ≤ 0 and a.e. x ∈ R.

Hence Theorem 1.4 may be applied with x0 = z for all z ≤ 0, leading to supp(u(t, ·)) ⊆
[0,∞) for all t < (C/Am)1/(m−1).

If N > 1, an elementary constrained minimization shows, for any B > 0, that

dist(x, CB) =

{
|x| if x1 ≥ |x|/B
x1+B|x|√

1+B2
if x1 < |x|/B

for all x ∈ RN \ CB . (4.13)

On the other hand, a simple computation shows that

|x| ≤ x1 +B|x| for all x ∈ RN \ CB0
(4.14)

for all B such that B2 − 2B0B − 1 ≥ 0; in particular, for B = B1 := B0 +
√

1 +B2
0 .

Therefore, for all x ∈ RN \ CB0 we have

|x| (4.13)
= dist(x, CB1

) if x1 ≥ |x|/B1

|x|
(4.14)

≤ x1 +B1|x|
(4.13)

=
√

1 +B2
1 dist(x, CB1

) if x1 < |x|/B1,

i.e.,

|x| ≤
√

1 +B2
1 |x− z| for all x ∈ RN \ CB0

, z ∈ CB1
. (4.15)

Taking into account (4.12), (1.15) and (4.15) imply that

u0(x) ≤ C
√

1 +B2
1 |x− z|

1
m−1 for all z ∈ CB1 and a.e. x ∈ RN .

Applying Theorem 1.4 with x0 = z for all z ∈ CB1 , we conclude that

supp(u(t, ·)) ∩ CB1 = ∅ for all t < τ∗ = (C
√

1 +B2
1/Am)1−m,

hence 0 ∈ RN \ supp(u(t, ·)) for all t < (C
√

1 +B2
1/Am)1−m.

5. Heuristics. We present a heuristic argument, based on the hyperbolic char-
acter of the equations, in favor of the optimality of the exponents obtained in Theorem
1.4. Throughout the section we assume that

u0(x) ∼ Axα+ in a neighborhood of x = 0 (5.1)

and that the waiting time, denoted by τ∗, is positive:

τ∗ := sup {τ ≥ 0 : supp(u) ∩ ([0, τ ]× (−∞, 0)) = ∅} > 0. (5.2)

As proved in [11, 12], as soon as a jump discontinuity forms at x = 0, the front s−(t)
(i.e., the left endpoint of supp(u(t, ·))) will start moving with a velocity given by a
Rankine-Hugoniot relation:

ds−(t)

dt
= −(u+(t, s−(t)))m−1 if u solves (1.3),

ds−(t)

dt
= −1 if u solves (1.4).

(5.3)
Therefore u(t, ·) must be continuous at x = 0 for t ∈ [0, τ∗). We also assume that
u(t, ·) is monotone and continuously differentiable in an open right-neighborhood of
x = 0.
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5.1. Equation (1.3). We argue for t ∈ [0, τ∗). Since u(t, ·) is monotone and
continuously differentiable in an open right-neighborhood of x = 0, we have u(t, ·)�
ux(t, ·) in a right-neighborhood of x = 0. Therefore

√
u2 + u2

x ∼ ux, and we have

ut ∼ (um)x = mum−1ux (5.4)

in a right-neighborhood of x = 0. Let us now use the method of characteristics. For
η ≥ 0, let Xη(t) be such that U(t) := u(t,Xη(t)) = η. We have

0 =
dU

dt
= ut + ux

dXη

dt
∼ ux

(
mum−1 +

dXη

dt

)
, i.e.

dXη

dt
∼ −mηm−1. (5.5)

The initial condition (5.1) yields

AXη(0)α ∼ u(0, Xη(0)) = η, i.e. Xη(0) = (η/A)1/α. (5.6)

It follows from (5.5)-(5.6) that the characteristics are (at leading order) given by

Xη(t) ∼ (η/A)1/α −mηm−1t.

Now, two characteristics with values η and ξ intersect if and only if

(η/A)1/α −mηm−1t = (ξ/A)1/α −mξm−1t, i.e. mA1/αt =
η1/α − ξ1/α

ηm−1 − ξm−1
, (5.7)

and we have

lim
(ξ,η)→(0,0)

η1/α − ξ1/α

ηm−1 − ξm−1
=


0 if α < 1

m−1

1 if α = 1
m−1

+∞ if α > 1
m−1 .

(5.8)

For α ≥ 1/(m− 1), (5.7)-(5.8) show that, for short times, the characteristics emanat-
ing from a right-neighborhood of x = 0 do not intersect; in particular, no discontinuity
forms and no information travels through the characteristic X0(t) = 0, which is con-
sistent with a positive waiting time. Viceversa, for α < 1/(m− 1) the characteristics
emanating from a right-neighborhood of x = 0 instantaneously intersect, in contra-
diction with the continuity of u (hence, with a positive waiting time).

In the case α < 1/(m−1), the instantaneous intersection of characteristics implies
that a shock instantaneously forms at x = s−(0) = 0. As proved in [11, §8], the graph
of u has vertical contact angle at the shock: ux(t, x) → +∞ as x → s−(t)+. Hence
(5.4) remains valid in a right-neighborhood of x = s−(t), and we may compute the
short-time evolution of the front, x = s−(t), by solving the caustic system

0 = F (t, x, η) := x− ((η/A)1/α −mηm−1t)

0 =
∂F

∂η
= − 1

αA1/α
η1/α−1 +m(m− 1)ηm−2t.

Letting a := 1− α(m− 1) > 0, the solution is given by

η =
(
m(m− 1)αA1/αt

)α
a

, x = −a
(
mAm−1(1− a)1−at

) 1
a .
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Hence we recover the shock’s position at leading order for t� 1:

s−(t) ∼ −a
(
mAm−1(1− a)1−at

) 1
a for t� 1. (5.9)

The height of the shock, u+(t, s−(t)), can be recovered through (5.3):

u+(t, s−(t)) =

(
− ds−(t)

dt

) 1
m−1

=
(
mAm−1

) 1
a(m−1) ((1− a)t)

1−a
a(m−1) . (5.10)

Remark 5.1. Rather than using the method of characteristics, the heuristic
in [9] fixes the domain, passing to Lagrangian coordinates. It is argued that the
waiting time τ∗ is characterized by: u+(τ∗, s−(τ∗)) = 0 and u+(t, s−(t)) > 0 for
t > τ∗. This characterization, which is fully consistent with our argument above, is
then translated into the condition d

dtu+(t, s−(t))|t=τ∗ > 0, leading to α ≤ 1/m: such
translation does not seem to be optimal, since u+(t, s−(t)) may become positive after
τ∗ even if d

dtu+(t, s−(t))|t=τ∗ = 0. Note that the two arguments are consistent, in the

sense that (5.10) also yields d
dtu+(t, s−(t))|t=τ∗ > 0 if and only if α ≤ 1/m.

5.2. Equation (1.4). We argue for t ∈ [0, τ∗) (see (5.2)). We distinguish to
cases:

(1). If ((uM−1(t, x))x)2 � 1 in a right-neighborhood of x = 0, at leading order (1.4)
reads as

ut ∼ −ux,

whose characteristics have slope −1, thus violating the assumption of a positive wait-
ing time.

(2). If ((uM−1(t, x))x)2 � 1 in a right-neighborhood of x = 0, at leading order (1.4)
reads as

ut ∼ (M − 1)
(
uM−1ux

)
x

;

hence the solutions to (1.4) locally behave as the ones of the porous medium equation,
for which a waiting time phenomenon is known to occur if and only if α ≥ 2/(M −1).

Therefore a waiting time phenomenon can occur only if α ≥ 2/(M − 1) (and
((uM−1)x)2 � 1 as x→ 0+, which in this case is automatically satisfied).

Appendix. In this Section we give details concerning the existence and unique-
ness statements in Theorem 2.2.

The uniqueness part of Theorem 2.2 is proved in [3]. The argument is identical
to that given in the proof of Theorem 2.5 (a).

When (H1) holds, the existence part of Theorem 2.2 is proved in [3]. Indeed,
it is easy to check that, up to redefining a(z,v) = a(−z,v) for z < 0, Assumption
1.1 and (H1) imply all the assumptions in [3, Theorem 4.5]. Note that the bounds
u ∈ L∞((0,∞) × RN ) and a(u,∇u) ∈ L∞loc([0,∞) × RN ) are not explicitly stated in
[3, Theorem 4.5]; however, they are proved (see formulas (4.6), (4.10), and (4.22) in
[3]).

When (H2) holds, the existence part of Theorem 2.2 follows from [12, Theorem
5.3], applied with m = 1 and Φ ≡ 1. Indeed, given u0 ∈ L∞(RN ) ∩ L1(RN ) and
a = ∇vf satisfying Assumption 1.1, let R0 > ‖u0‖∞ and define

f̃(z,v) :=

{
f(z,v) if 0 ≤ z ≤ R0

f(R0,v) if z > R0.
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One readily sees that ã(z,v) := ∇vf̃(z,v) satisfies Assumption 1.1 and (H2) with
constants independent of R. This implies that the assumptions of [12, Theorem 5.3]
are satisfied: hence there exists an entropy solution ũ of

ut = div ã(u,∇u), u(0, x) = u0(x) (5.11)

in the sense of [12, Definition 5.1]. Now, in [12, Theorem 5.3] the bound ‖ũ‖∞ ≤
‖u0‖∞ < R0 is proved, though not explicitly stated (see formulas (3.24) and (4.5)
in [12]); in addition, the class of truncatures in [12, Definition 5.1] contains T +.
Therefore ũ is also an entropy solution of (5.11) in the sense of Definition 2.1. Since
a(z,v) ≡ ã(z,v) for z ∈ [0, R0], this yields the result.
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