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Abstract. We consider the original strategy proposed by Sudakov for solving the Monge transportation
problem with norm cost | · |D∗

min

{∫
|T(x)− x|D∗dµ(x), T : Rd → Rd, ν = T#µ

}
,

with µ, ν probability measures in Rd and µ absolutely continuous w.r.t. Ld. The key idea in this approach
is to decompose (via disintegration of measures) the Kantorovich optimal transportation problem into

a family of transportation problems in Za × Rd, where {Za}a∈A ⊂ Rd are disjoint regions such that

the construction of an optimal map Ta : Za → Rd is simpler than in the original problem, and then to
obtain T by piecing together the maps Ta. When the norm | · |D∗ is strictly convex [25], the sets Za are

a family of 1-dimensional segments determined by the Kantorovich potential called optimal rays, while

the existence of the map Ta is straightforward provided one can show that the disintegration of Ld (and
thus of µ) on such segments is absolutely continuous w.r.t. the 1-dimensional Hausdorff measure [12].

When the norm | · |D∗ is not strictly convex, the main problems in this kind of approach are two: first, to

identify a suitable family of regions {Za}a∈A on which the transport problem decomposes into simpler
ones, and then to prove the existence of optimal maps.

In this paper we show how these difficulties can be overcome, and that the original idea of Sudakov

can be successfully implemented.
The results yield a complete characterization of the Kantorovich optimal transportation problem,

whose straightforward corollary is the solution of the Monge problem in each set Za and then in Rd.

The strategy is sufficiently powerful to be applied to other optimal transportation problems.
The analysis requires

(1) the study of the transportation problem on directed locally affine partitions {Zk
a , C

k
a }k,a of Rd,

i.e. sets Zk
a ⊂ Rd which are relatively open in their k-dimensional affine hull and on which the

transport occurs only along directions belonging to a cone Ck
a ;

(2) the proof of the absolute continuity w.r.t. the suitable k-dimensional Hausdorff measure of the

disintegration of Ld on these directed locally affine partitions;

(3) the definition of cyclically connected sets w.r.t. a family of transportation plans with finite cone
costs;

(4) the proof of the existence of cyclically connected directed locally affine partitions for transport

problems with cost functions which are indicator functions of cones and no potentials can be
constructed.
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1. Introduction

Let µ, ν ∈ P(Rd) with µ� Ld and consider the Monge optimal transportation problem

(1.1) min

{∫
|T(x)− x|D∗dµ(x), T : Rd → Rd, ν = T#µ

}
,

where |·|D∗ is a convex norm in Rd, namely a positively 1-homogeneous function whose unit ball {x ∈ Rd :
|x|D∗ ≤ 1} is a closed d-dimensional convex set D with 0 ∈ intD. The µ-measurable maps T : Rd → Rd
satisfying T#µ = ν are called transport maps. Well known examples show that if µ is not absolutely
continuous w.r.t. Ld, there may be no optimal transport maps (see Theorem 8.3 of [4]).

Due to the nonlinearity of the constraint T#µ, the classical approach to solve (1.1) is first to consider

the relaxed problem of finding optimal transference plans π ∈ Πopt
|·|D∗

(µ, ν) defined by

(1.2)

∫
|y − x|D∗dπ̄(x, y) = min

{∫
|y − x|D∗dπ(y, x), π ∈ Π(µ, ν)

}
,

where

(1.3) Π(µ, ν) :=
{
π ∈ P(Rd × Rd) : (p1)#π = µ, (p2)#π = ν

}
and pi :

∏
j

Xj → Xi is the projection on the i-coordinate in the product space
∏
j

Xj .

Assuming that

(1.4) inf
π∈Π(µ,ν)

∫
Rd×Rd

|y − x|D∗ dπ(x, y) < +∞,

by standard theorems in optimal transportation there always exists an optimal transference plan, without
being in the degenerate situation where every plan π ∈ Π(µ, ν) is optimal.

Then, if one can show that there exists at least an optimal transport plan π which is concentrated on
a graph of a µ-measurable map T, i.e. π := (I× T)#µ, then T is an optimal transport map solving (1.1).
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The first strategy to show the existence of such a transference plan was proposed by Sudakov in [25]
and consists in decomposing via disintegration of measures the optimal transportation problem (1.2) into
a family of transportation problems on Za × Rd, where {Za}a∈A ⊂ Rd are disjoint regions where the
construction of an optimal map Ta : Za → Rd is simpler than in the original problem, and then to obtain
T by piecing together the maps Ta.
With additional regularity properties on the densities of µ, ν or on the norm, such as uniform convexity,
an approach partially equal to the one proposed by Sudakov was successfully followed in [1], [4], [10] and
[26]. The most general case where up to now this approach has been successfully implemented (see [12])
is the case in which | · |D∗ is strictly convex, namely when the set D is strictly convex. Other approaches
have also been used. In [18], the problem (1.1) for strictly convex norms has been solved using PDE
methods under the assumption that the marginals µ, ν have Lipschitz continuous densities w.r.t. Ld.
The problem (1.1) was solved for crystalline norms in [3].

In [15, 16], the authors solved the Monge problem first with strictly convex and then with general
convex norms using a different method, which does not pass through a geometric/measure theoretic
decomposition of the optimal transportation problem (1.2) into simpler ones, but is based on the selection

among the optimal transference plans π ∈ Πopt
|·|D∗

(µ, ν) of a transference plan π̌ which is also minimizing

a secondary cost: more precisely, one selects the (unique) transference plan π̌ such that

π̌ is a minimizer of inf

{∫
|x− y|2dπ(x, y) : π ∈ Πopt

|·|D∗
(µ, ν)

}
.

and the main issue consists in proving that π̌ is actually induced by a transport map T, which clearly
satisfies (1.1).

However, the problem of whether Sudakov’s strategy could be successfully implemented also in the
case of general convex norms has remained open for a long time. The aim of this paper is to show how
this problem can be solved. In order to introduce the notation that we need to state our main results
and explain the new ideas and concepts in the case of general convex norms, we first resume briefly how
Sudakov’s strategy works for strictly convex norms.

The first step of Sudakov’s approach consists in finding a suitable partition in Rd on which the transport
occurs, namely s.t. the optimal plans move the initial mass inside the elements of the partition. By duality
(see e.g. [27]), there exists a function ψ : Rd → R, called Kantorovich potential, which satisfies

ψ(y)− ψ(x) ≤ |y − x|D∗ , ∀x, y ∈ Rd,(1.5)

ψ(y)− ψ(x) = |y − x|D∗ , for π-a.e. (x, y), ∀π ∈ Πopt
|·|D∗

(µ, ν).(1.6)

Observe that, by (1.5), for all (x, y) as in (1.6) and ∀ 0 ≤ s ≤ t ≤ 1

(1.7) ψ(zt)− ψ(zs) = |zt − zs|D∗ , zt := (1− t)x+ ty.

The open oriented segments Z1
a :=]x, y[⊂ Rd (where a ∈ A1 is a continuous parameter, 1 referring to the

dimension of the elements) whose extreme points satisfy (1.6) and which are maximal w.r.t. set inclusion
are called optimal rays. By strict convexity, if (x, y) and (y, z), with x, z 6= y, satisfy (1.6), then

(1.8) y ∈]x, z[.

In particular, if (x, y) and (x′, y′) satisfy (1.6) but R+(y − x) 6= R+(y′ − x′), then

(1.9) ]x, y[ ∩ ]x′, y′[= ∅.

Hence, the optimal rays {Z1
a}a∈A1 form a Borel partition of Rd into 1-dimensional open segments, up to

the set of their initial points ∪
a∈A1
I(Z1

a) ⊂ Rd and of their final points ∪
a∈A1
E(Z1

a) ⊂ Rd, defined for every

a ∈ A1 by

(1.10) Z1
a =

{
(1− t)I(Z1

a) + tE(Z1
a)
}
, E(Z1

a)− I(Z1
a) ∈ C1

a ,

being C1
a the half-line in Rd giving the direction on Z1

a along which the transport occurs, i.e.

ψ(y)− ψ(x) = |y − x|D∗ , x, y ∈ Z1
a ⇒ y − x ∈ C1

a .

The partition into optimal rays with directions of transport {Z1
a , C

1
a}a∈A1 is the simplest example of what

we will call directed locally affine partition. Moreover, the set of initial/final points of the optimal rays
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is Ld-negligible (and then also µ-negligible). Indeed, if (x, y) satisfies (1.6) and ψ is differentiable at x
–notice that this happens Ld-a.e. (and then µ-a.e.) since ψ is Lipschitz–, then

(1.11) y ∈ x+
(
∂| · |D∗

)−1
(∇ψ(x)),

where ∂|·|D∗ is the subdifferential of the convex norm, and, by strict convexity of |·|D∗ , (∂|·|D∗)−1(∇ψ(x))
is an half-line corresponding to a unique C1

a . We recall that the convex cones of the form (∂| · |D∗)−1(`)
for some ` ∈ D∗ are called exposed faces of | · |D∗ , while more generally the extremal faces of | · |D∗ are by
definition the projections on Rd of the extremal faces of the convex cone epi| · |D∗ ⊂ Rd+1. In the strictly
convex case, both concepts coincide and are given by half-lines.

Assume w.l.o.g. that µ ⊥ ν –hence π{(x, y) : y 6= x} = 1– and that, for the moment, also ν � Ld.
Then, this first step yields that the optimal rays {Z1

a}a∈A1 on which ψ is differentiable form a partition
in Rd –up to the Ld-negligible set (thus also (µ+ ν)-negligible) where ψ is not differentiable– s.t.

π
( ⋃
a∈A1

Z1
a × Z1

a

)
= 1, ∀π ∈ Πopt

|·|D∗
(µ, ν).

The second step of the strategy consists in decomposing the transport problem in the sets {Z1
a ×

Rd}a∈A1 . More precisely, for any given cone C ⊂ Rd, let us denote by cC the cost function

cC(x, y) := 1C(y − x),

where 1A is the indicator function of the set A (see (2.6)). For notational convenience, if c : Rd × Rd →
[0,∞] is a Borel cost function, we use the notation

Πf
c (µ, ν) :=

{
π ∈ Π(µ, ν) :

∫
c(x, y) dπ(x, y) <∞

}
.

Then, by (1.11) and (1.9) it follows that if π =
∫
π1
a dm(a), µ =

∫
µ1
a dm(a) and ν =

∫
ν1
a dm(a) denote

the strongly consistent disintegrations (see Definition 2.3) of π w.r.t. {Z1
a×Rd}a∈A1 and of µ and ν w.r.t.

{Z1
a}a∈A1 , one has

(1.12) π ∈ Πopt
|·|D∗

(µ, ν) ⇔ π =

∫
π1
a dm(a), π1

a ∈ Πf
cC1

a

(µ1
a, ν

1
a),

being Πf
cC1

a

(µa, νa) the plans of finite cC1
a
-cost between µa and νa.

In other words, the transport problem on Rd reduces to a family of independent 1-dimensional transport
problems with linear cost and prescribed direction. If µ1

a has no atoms, then the unique transference plan
concentrated on a monotone graph in Z1

a × Z1
a is actually concentrated on a map T1

a. In this setting,
monotone means monotone w.r.t. the order induced by C1

a on Z1
a , and the statement is a well known

and simple result for 1-dimensional problems, which can be seen as a particular case of a more general
structure result for optimal transportation problems with quadratic cost (see for example [9]).

Then, the main problem in [12] was to prove that the disintegration of Ld (and thus of µ) on the
optimal rays has non-atomic conditional measures. Indeed, for a general Borel partition into segments
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this might not be true, as discovered in a counterexample to the original Sudakov’s proof by Alberti,
Kirchheim and Preiss (see personal communication in [3]). The main issue was then to prove that the
optimal rays satisfy an additional regularity property which guarantees that the conditional measures of
Ld are not atomic. In [1], [4], [10] and [26], due to the additional regularity assumptions either on the
measures µ, ν or on the norm, the unit vector field giving at each point of an optimal ray the direction
of transport is locally Lipschitz. Then, via changes of variables using the classical Coarea Formula one
can reduce to study the disintegration of the Lebesgue measure on families of parallel segments, namely
Fubini theorem, which gives the absolute continuity of the conditional measures w.r.t. the 1-dimensional
Hausdorff measure H1 on the segments on which they are concentrated. The absolute continuity of the
conditional measures w.r.t. the 1-dimensional Hausdorff measure on the optimal rays –thus implying
the solvability of the Monge problem– for general strictly convex norms was proved in [12]. Since in
the general case no Lipschitz regularity is available, the author used a technique first introduced for a
partition into segments arising from a different variational problem in [7]. Such a technique is based on
the validity for the family of segments (in this case, the optimal rays) of an approximation property via
sequences of cone vector fields, that we call cone approximation property (with the same terminology
used in the first part of [17]).

We point out that, compared to the approach followed in [15, 16], Sudakov’s approach for the Monge
problem gives and relies upon a deeper geometric characterization of the transport via optimal plans,
namely the existence of a family of lower dimensional regions (in the strictly convex case, 1-dimensional)
on which the transport occurs and on which the existence of optimal maps becomes easier to prove.

It remained unclear if the original strategy of Sudakov can be successful not only in the case of strictly
convex norms, thus giving a complete geometric characterization of the optimal transport plans via
decomposition into lower dimensional transportation problems.

The aim of this paper is to show how Sudakov’s approach can be carried on also in the general convex
case. In the next section we define new concepts, which in the strictly convex case (i.e. when the extremal
faces of | · |D∗ are 1-dimensional) are trivially satisfied by the decomposition in optimal rays Z1

a , and state
our main results, giving an overall idea of the whole construction.

1.1. Sudakov’s strategy in the general convex case. Recall that, for all (x, y) as in (1.6), (1.7)
holds. In the strictly convex case, we have seen that (1.7) and (1.8) imply that whenever

(1.13) ∃ y′, y′′ 6= x s.t. ψ(y′)− ψ(x) = |y′ − x|D∗ and ψ(x)− ψ(y′′) = |x− y′′|D∗ ,

then x belongs to a segment Z1
a called optimal ray, which belongs to a partition on Rd on which the

transport occurs along the direction C1
a = R+(y′−x) = R+(x− y′′). However, for general convex norms,

the optimal rays do not satisfy (1.9) and then do not form a partition in Rd. Actually, ∀x ∈ Rd, the sets

(1.14) ∂+ψ(x) :=
{
y′ : ψ(y′)− ψ(x) = |y′ − x|D∗

}
, ∂−ψ(x) :=

{
y′′ : ψ(x)− ψ(y′′) = |x− y′′|D∗

}
,

called respectively superdifferential and subdifferential of ψ at x, may be contained in one or even more
higher dimensional cones corresponding to extremal faces of |·|D∗ . Now, unlike in the strictly convex case,
an extremal face is not in general a 1-dimensional half line but a k-dimensional cone, with k = 1, . . . , d.
Hence Sudakov claimed that the regions on which the transport occurs are relatively open subsets of
affine planes whose dimension is equal to k. However, even when considering the set of points in the
super/subdifferential of ψ at a certain point x which are contained in a single k-extremal cone of epi| · |D∗ ,
it may not be a convex k-dimensional set or more generally a set with a well defined affine dimension
(see Figure 1).

When we faced this problem for general convex norms, the first main issue was to find other conditions
which determine that a point x belongs to one of the desired k-dimensional regions, thus generalizing
the property that whenever y′ ∈ ∂+ψ(x) \ {x}, y′′ ∈ ∂−ψ(x) \ {x} then R+(y′ − x) = R+(x− y′′) and x
belongs to the optimal ray containing the segment ]y′′, y′[.

The natural generalization of the partition into optimal rays for strictly convex norms is to look for
a directed locally affine partition {Zka , Cka} k=1,...,d

a∈Ak
of Rd (see Definition 3.6), namely a Borel partition of

Rd into sets Zka which are locally affine and k-dimensional, i.e. relatively open in their affine hull whose
linear dimension is k, together with an extremal cone Cka of | · |D∗ that will correspond to the union of
directions of the optimal rays starting from x ∈ Zka .
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O(z, w)

∂+graphψ(z)

graphψ

| · |D∗

w

∂+graphψ(z)

∂−graphψ(z)

z

Rθψ

z

Figure 1. In the left picture a possible superdifferential ∂+graphψ at a point z of
graphψ is depicted in black and different blue colors. Notice that it is not convex, not
even inside extremal faces of the norm. We also underline in dark blue a set O(z, w) for
some w ∈ ∂+graphψ(z), in order to show the completeness property. In the right picture
we depict in red the super/subdifferential at a point z of the regular set (yellow region)
in graphψ. The cone z + epi| · |D∗ is also represented.

The first key idea is to observe that Kantorovich duality (1.5)-(1.6) can be rewritten as follows (see
Section 3.1). Let µ̂ = (I× ψ)#µ, ν̂ = (I× ψ)#ν and π̂ = ((I× ψ)× (I× ψ))#π. One has

π ∈ Πopt
|·|D∗

(µ, ν) ⇔ π̂ ∈ Πf
cepi|·|D∗

(µ̂, ν̂)(1.15)

⇔ π̂
(
∂+graphψ

)
= 1,(1.16)

where

∂+graphψ :=
(
graphψ × graphψ

)
∩
{
cepi|·|D∗ < +∞

}
= graphψ × graphψ ∩ p−1

Rd (∂+ψ).(1.17)

is the superdifferential of the set graphψ ⊂ Rd+1. In other words, (1.15) tells us that studying the optimal
transportation problem between µ and ν in Rd is equivalent to study the finite cost transportation problem
in Rd+1 for a convex cone cost (precisely cepi|·|D∗ ) between measures (µ̂, ν̂) concentrated on a | · |D∗ -
Lipschitz graph (namely graphψ) or, by (1.16), to study transport plans which are concentrated on the
superdifferential of the graph of the | · |D∗ -Lipschitz function ψ.

The advantage of this point of view is that the properties of the super/subdifferential of ψ which permit
to generalize (1.13), and then to find a locally affine directed partition, can be more naturally expressed in
terms of geometric properties of the super/subdifferential of graphψ –where the subdifferential of graphψ

is the set ∂−graphψ :=
(
∂+graphψ

)−1
.

First we will find a directed locally affine partition {Z̃ka , C̃ka} k=1,...,d

a∈Ak
in Rd+1 for this transportation

problem, whose direction cones C̃ka are extremal faces of epi| · |D∗ and on which the disintegration of the d-
dimensional Hausdorff measure Hd on graphψ has conditional measures which are absolutely continuous
w.r.t. HkxZ̃ka , and then we will find the desired locally affine partition {Zka , Cka} k=1,...,d

a∈Ak
simply projecting

it on Rd. Indeed, the extremal faces of | · |D∗ are by definition the projections on Rd of the extremal faces
of epi| · |D∗ and the “lifting map” I× ψ is bi-Lipschitz, thus mapping negligible sets into negligible sets.

The crucial properties of the super/subdifferential ∂±graphψ that we will use to find the partition are
the so-called transitivity property

(1.18) w′ ∈ ∂±graphψ(w) ⇒ ∂±graphψ(w′) ⊂ ∂±graphψ(w)

and the completeness property of the | · |D∗ -Lipschitz graph graphψ, that we define below. Let F be an
extremal face of the convex cone epi| · |D∗ and denote by intrelF its relative interior, namely its interior
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w.r.t. its affine hull. Moreover, for any z, w ∈ Rd+1 let

(1.19) O(z, w) := z + epi| · |D∗ ∩ w − epi| · |D∗ .
The completeness property of graphψ is the following:

w ∈ ∂+graphψ(z), w − z ∈ intrelF ⇒ O(z, w) = z + F ∩ w − F ⊂ ∂+graphψ(z),(1.20)

w ∈ ∂−graphψ(z), z − w ∈ intrelF ⇒ O(w, z) = w + F ∩ z − F ⊂ ∂−graphψ(z),(1.21)

where z + F ∩ w − F is convex and satisfies R+
(
(z + F ∩ w − F )− z

)
= R+

(
w − (z + F ∩ w − F )

)
= F

(see Proposition 4.6).
In the strictly convex case, the extremal faces F of epi| · |D∗ are half-lines. Moreover, whenever (1.20)

(resp. (1.21)) holds pRdF is the extremal face of | · |D∗ giving the direction of an optimal ray starting
(resp. arriving) at x = pRdz, and pRdO(z, w) =

[
pRdz, pRdw

]
.

In the general convex case, the completeness property (1.20)-(1.21) then implies that whenever the
directions of the optimal rays starting/arriving at a point z are contained in a certain face F and there
exists a direction in intrelF , then they are a cone of directions coinciding with F . Moreover, by the
transitivity property (1.18), whenever the same thing happens also for two points each belonging to one
of the sets B(x, δ) ∩ (z ± intrelF ), then z has a locally affine neighborhood, of the same dimension as F
and contained in z + affF , made of points for which the admissible directions of transport coincide with
the directions of F . Roughly speaking, the relative interior of the extremal face F plays the role of a
direction of an optimal ray and the set pRdO(z, w) the role of the segment [x, y] inside such optimal ray
in the strictly convex case (see Figure 1).

The suitable generalization of (1.13) and its implications can then be found in the concept of what we
call regular transport set Rθψ. The notation will be clear in Section 4 when we study the more general
transport problem for cC̃-Lipschitz foliations, namely a family of graphs of | · |D(a)∗ -Lipschitz functions
depending on a continuous parameter a (Section 4 and Proposition 4.11). The study of cC̃-Lipschitz
foliations will be one of the main issues to complete the construction of a suitable directed locally affine
partition (Theorem 1.3) on which to solve (1.1). The points in Rθψ are the points z such that

(1) the set of directions

D+θψ(z) =

{
w − z
|w − z|

: w ∈ ∂+graphψ(z) \ {z}
}
,

of the optimal rays starting in z is convex in Sd−1, and the same for the set of directions

D−θψ(z) =

{
z − w
|z − w|

: w ∈ ∂−graphψ(z) \ {z}
}
,

of the optimal rays arriving in z,
(2) the two sets D+θψ(z), D−θψ(z) coincide,
(3) there are points w′, w′′ such that

z − w′

|z − w′|
∈ intrelD−θψ(z),

w′′ − z
|w′′ − z|

∈ intrelD+θψ(z)

and Points (1-2) hold for w′, w′′ too.

Then the sets Z̃ka , C̃ka are now determined by

z ∈ Z̃ka =⇒

 Z̃ka = Rθψ ∩ aff∂+graphψ(z),

C̃ka = epi | · |D∗ ∩
(

aff∂+graphψ(z)− z
)
.

Such a directed locally affine partition will be called differential partition. One can see that the sets Z̃ka
are relatively open in their affine hull, and that C̃ka are extremal faces of epi| · |D∗ . Recall that the index

k denotes the affine dimension of Z̃ka , which coincides with the linear dimension of C̃ka , while a ∈ Ak is
an index of continuum cardinality.

The second step in the strategy is then to show that the transport problem Πf
cepi|·|D∗

(µ̂, ν̂) can be

decomposed, via disintegration of measures, into a family of finite cost transport problems on {Z̃ka ×
Rd+1} k=1,...,d

a∈Ak
with first marginals which are absolutely continuous w.r.t. the Hausdorff measure Hk on
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the k-dimensional set Z̃ka on which they are concentrated. Since the definition of “good points”, i.e.
of the regular transport set Rθψ, is definitely more complicated than in the strictly convex case, it is
perfectly understandable that the proof of the absolute continuity w.r.t. to the Hausdorff measure on
the k-dimensional sets {Z̃ka}k,a of the conditional probabilities of the disintegration of Hd (and then of
µ̂) are considerably more intricate. The main reference for the approach used in this part is [13], where
the so-called cone approximation property introduced in [7] (with the terminology used in [17]) was first
generalized to partitions into higher dimensional sets, showing the absolute continuity property for the
conditional probabilities of the disintegration of the surface measure on the graph of a convex function
w.r.t. the partition induced by the relative interior of the extremal faces. In particular, in Section 5 it
is shown that the differential partition satisfies both the forward and the backward cone approximation
property, namely the cone approximation property holds both for the optimal rays starting at a point z
and for the points arriving at z, thus giving that the conditional measures of Hd are indeed equivalent
to the k-dimensional Hausdorff measure on the set on which they are concentrated.

As for the proof of the Hd-negligibility of the set Rd+1 \ Rθψ, since for general convex norms the
extremal faces may be more than the exposed ones, it is not possible to use the same reasoning as in the
strictly convex case. However, we will show that the set Rd+1 \Rθψ is made of initial/final points for two
other partitions (the super/subdifferential partitions introduced in 4.3), which satisfy the (initial/final)
forward/backward cone approximation property. Hence, the same disintegration technique used in [13]
permits to show that they are Hdxgraphψ-negligible (see Theorem 5.21).

Denoting with {Zka , Cka} k=1,...,d

a∈Ak
the projection of the differential partition {Z̃ka , C̃ka} k=1,...,d

a∈Ak
on Rd, in

Section 6 we deduce the following theorem. The statement includes also the points which do not belong
to any optimal ray, and in that case the dimension k of the elements of the directed locally affine partition
they belong to, is k = 0, as well as C0

a = {0}. Since we will often write the graph of a directed locally
affine partition {Zka , Cka}k,a as

D :=
{

(k, a, z, Cka ) : k ∈ {0, . . . , d}, a ∈ Ak, z ∈ Zka
}
,

we will use also the notation

(1.22) cD(x, y) :=

{
1Cka

(y − x) if ∃ k, a s.t. x ∈ Zka ,
+∞ otherwise.

Notice that for costs c of the form (1.22), one has clearly Πopt
c (µ, ν) = Πf

c (µ, ν), since the only values of
c are 0, ∞.

Theorem 1.1. Let µ, ν ∈ P(Rd) with µ� Ld and let | · |D∗ be a convex norm in Rd. Then there exists
a locally affine directed partition {Zka , Cka}k=0,...,d

a∈Ak
in Rd with the following properties:

(1) for all a ∈ Ak the cone Cka is a k-dimensional extremal face of | · |D∗ ;

(2) Ld
(
Rd \

⋃
k,a

Zka

)
= 0;

(3) the disintegration of Ld w.r.t. the partition {Zka}k,a, Ldx ∪
k,a
Zka

=

∫
vka dη(k, a), satisfies

vka ' HkxZka ;

(4) for all π ∈ Πopt
|·|D∗

(µ, ν), the disintegration π =

∫
πka dm(k, a) w.r.t. the partition {Zka × Rd}k,a

satisfies

πka ∈ Πf
c
Cka

(
µka, (p2)#π

k
a

)
,

where µ =

∫
µka dm(k, a) is the disintegration w.r.t. the partition {Zka}k,a, and moreover

(p2)#π
k
a

(
Zka ∪

(
Rd \

⋃
(k′,a′)6=(k,a)

Zk
′

a′

))
= 1.
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If also ν � Ld, then for all π ∈ Πopt
|·|D∗

(µ, ν)

(p2)#π
k
a = νka

where ν =

∫
νka dm(k, a) is the disintegration w.r.t. the partition {Zka}k,a, and the converse of Point (4)

holds:

πka ∈ Πf
c
Cka

(µka, ν
k
a ) =⇒ π ∈ Πopt

|·|D∗
(µ, ν).

A locally affine directed partition satisfying Point (3) is called Lebesgue-regular (see Definition 3.10).
This concludes the first part of the paper.

A remark is in order here: in Point (4), the conditional second marginals (p2)#π
k
a are independent on

the potential ψ but depend on the particular transference plan π which we are decomposing. This can be
seen with elementary examples (see Example 3.12 in Section 3.2). From now on the analysis will be done
in a class of transference plans which have the same conditional second marginals: in fact, we will see
in a moment that the partition of Theorem 1.1 needs to be refined and by inspection one sees that such
refinement changes when changing the conditional marginals. We will consider then nonempty subsets
of the optimal plans of the form

Πf
cD

(µ, {ν̄a}) :=
{
π ∈ Πf

cD
(µ, ν) : (p2)#πa = ν̄a

}
,

that is equivalent to fix a transport plan of finite cD-cost π̌ and consider all transport plans π ∈
Πf

cD
(µ, {(p2)#π̌a}).

In the strictly convex case, Theorem 1.1 has been proven in [12]. There the dimensions of the sets
of the locally affine partition is equal to one, and it is classical and fairly easy to see that the optimal
transportation problems

Πopt
c1
a,2

(µ1
a, ν

1
a), µ1

a(Z1
a) = 1,

where

c1
a,2(x, y) =

{
|y − x|2 if x ∈ Z1

a , y − x ∈ C1
a ,

+∞ otherwise,

have a solution induced by a map T1
a : Z1

a → Rd. More precisely, one shows that any c1
a,2-cyclically

monotone transference plan is induced by a unique transport map T1
a. Since the dependence of the maps

T1
a on a is m-measurable, the map T(x) :=

∑
a∈A T1

a(x)χZ1
a
(x) is an optimal map for (1.1). Actually, T is

the unique optimal transport map relative to the cost

(1.23) c2(x, y) :=

{
|y − x|2 if cD(x, y) < +∞,
+∞ otherwise.

In the general convex case, the analogous way to solve (1.1) would be to prove that the optimal
transportation problems on the sets of the partition of Theorem 1.1

Πopt

cka,2
(µka, ν

k
a ), µka(Zka ) = 1,

where

cka,2(x, y) =

{
|y − x|2 if x ∈ Zka , y − x ∈ Cka ,
+∞ otherwise,

have a solution induced by a map Tka : Zka → Rd whose graph is the support of any cka,2-cyclically

monotone transference plan, and then to glue together the maps Tka.
This fact would be true, by classical results in optimal transportation, if there existed a pair of optimal

potentials φka, ψka for the cost cCka . Recall that, for a cost c : Rd×Rd → [0,∞], one calls optimal potentials
a pair of functions φ, ψ s.t.

φ, ψ : Rd → [−∞,+∞), φ µ-measurable and ψ ν-measurable,

φ(x) + ψ(y) ≤ c(x, y), ∀x, y ∈ Rd,
φ(x) + ψ(y) = c(x, y), π-a.e. for some π ∈ Π(µ, ν).
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Recall also that, if Γ ⊂ Rd × Rd is a carriage for π and (x0, y0) ∈ Γ, then

φ(x) := inf

{ I∑
i=0

c(xi+1, yi)− c(xi, yi) : I ∈ N, (xi, yi) ∈ Γ, xI+1 = x

}
,(1.24)

ψ(x) := c(x, y)− φ(x)(1.25)

yield a pair φ, ψ of optimal potentials provided φ is µ-a.e. finite. When c is a convex norm, then ψ = −φ
is a Kantorovich potential.

Indeed, by formula (1.24), if ∃φka, ψka optimal potentials w.r.t. cCka then there exist also φka,2, ψka,2
optimal potentials for cka,2 and it is then classical to show that any cka,2-cyclically monotone transference

plan is unique and induced by an optimal map T ka .
However, as shown in [11], in general the transport problem in Πf

c
Cka

(µka, {(p2)#π
k
a}) on Zka with cost

cCka does not have a potential φka (see the final example of [11]), thus the directed locally affine partition
of Theorem 1.1 is not refined enough to give immediately the existence of transport maps in each of the
sets Zka × Rd. Another approach that has been used at this point to show the existence of an optimal
map assuming the existence of a directed locally affine partition is the one adopted in [21], which though
uses techniques similar to [16], and then is not really simplifying the problem in the spirit of Sudakov’s
strategy.

What we show in the second part of the paper, more precisely in Section 7, is that the directed
locally affine partition of Theorem 1.1 can be refined into another directed locally affine partition

{Ž
′,`
b , Č

′,`
b } `=0,...,d

b∈B`
such that, given a carriage of any cka,2-cyclically monotone transference plan, a pair of

optimal potentials φ̌
′,`
b , ψ̌

′,`
b can be constructed on each of its elements Ž

′,`
b .

In order to explain what we mean by a “refinement” of the partition of Theorem 1.1, referring to Section
2.5 for wider motivations and more precise statements, let us consider formula (1.24). The sequence of
points

(x0, y0), (x1, y0), (x1, y1), (x2, y1), . . . , (xi, yi), (xi+1, yi), (xi+1, yi+1), . . . , (x, yI), (xi, yi) ∈ Γ,

is an axial path, and we say that the axial path is a (Γ, c)-axial path if c(x, y) < ∞ for all couples
(x, y) in the axial path: since we can assume that Γ ⊂ {c < ∞}, this condition is equivalent to
c(xi+1, yi), c(x, yI) < ∞. It is a well know fact that if µ-a.a. points belong to an axial path start-
ing from and ending in (x0, y0) (which will be called a (Γ, c)-cycle), then formula (1.24) yields a µ-a.e.
finite potential φ. Its dual ψ turns out then to be finite and independent on x for ν-a.e. y ∈ Rd.

It becomes then natural to ask for a directed locally affine partition {Zka , Cka}k,a that, in addition to
(1), (2), (3) and (4) of Theorem 1.1 for all π ∈ Πf

cD
(µ, {ν̄a}), it satisfies the following property. For all

carriages Γ ⊂ {cD < +∞} s.t. π(Γ) = 1 for some π ∈ Πf
cD

(µ, {ν̄a}), the sets Zka are contained in a

(Γ, cCka )-cycle up to a µka-negligible set (eventually depending on Γ): the cost in each Zka is the cone cost

given by cCka (x, y) = 1Cka
(y − x).

This cyclical connectedness condition is called in this paper Πf
cD

(µ, {ν̄a})-cyclical connectedness (see
Definition 2.10) and, as discussed above, when verified it guarantees the existence of optimal potentials.

The second main result of this paper claims the existence of such a partition. The fact that it is a
refinement of an already existing locally affine partition, such as the one of Theorem 1.1, namely that
each of its sets is contained in some Zka and the corresponding cone of directions is an extremal face of
the cone Cka , is expressed by saying that it is a subpartition of {Zka , Cka} (see Definition 3.9). Recall
Definition 3.10 of Lebesgue-regular partition.

Theorem 1.2. Let {Zka , Cka} k=0,...,d

a∈Ak
be a Lebesgue-regular directed locally affine partition in Rd and let

µ� Ld, ν ∈ P(Rd) such that Πf
cD

(µ, ν) 6= ∅.
Then, for all π̌ ∈ Πf

cD
(µ, ν) there exists a directed locally affine subpartition {Ž

′,`
b , Č

′,`
b } `=0,...,d

b∈B`
of

{Zka , Cka} k=0,...,d

a∈Ak
, up to a µ-negligible set N ′π̌, such that

{Ž
′,`
b , Č

′,`
b }`,b is Lebesgue-regular,
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and if ν̄
′,`
b := (p2)#π̌

′,`
b , where π̌

′,`
b is the conditional probability on the partition {Ž

′,`
b ×Rd}`,b, then each

set Ž
′,`
b is Πf

cD
(µ, {ν̄

′,`
b })-cyclically connected, for all `, b.

Applying Theorem 1.2 to the directed locally affine partition given by Theorem 1.1, one obtains
immediately the following result. As in the case of Theorem 1.1, the second part of Point (4) of the next
theorem is a consequence of the precise analysis of the regions where the mass transport occurs.

Theorem 1.3. Let µ, ν ∈ P(Rd) with µ � Ld and let | · |D∗ be a convex norm in Rd. Then, for all

π̌ ∈ Πopt
|·|D∗

(µ, ν) there exists a locally affine directed partition {Žka , Čka}k=0,...,d

a∈Ak
in Rd with the following

properties:

(1) for all a ∈ Ak the cone Čka is a k-dimensional extremal face of | · |D∗ ;

(2) µ

(
Rd \

⋃
k,a

Žka

)
= 0;

(3) the partition is Lebesgue-regular;

(4) the disintegration π̌ =

∫
π̌ka dm(k, a) w.r.t. the partition {Žka × Rd}k,a satisfies

π̌ka ∈ Πf
c
Cka

(
µ̌ka, (p2)#π̌

k
a

)
,

where µ =

∫
µ̌ka dm(k, a) is the disintegration w.r.t. the partition {Žka}k,a, and moreover

(p2)#π̌
k
a

(
Žka ∪

(
Rd \

⋃
(k′,a′)6=(k,a)

Žk
′

a′

))
= 1;

(5) the partition {Žka}k,a is Πf
cD̄

(µ, {(p2)#π̌
k
a})-cyclically connected.

Remark 1.4. We note that the elements of the locally affine partition {Žka , Čka} k=1,...,d

a∈Ak
given by the above

theorem have maximal linear dimension

max
{
k : Žka 6= ∅

}
≤ max

{
dimC : C extremal face of epi| · |D∗

}
.

In particular, if D is strictly convex, the locally affine decomposition is made only of directed rays, and
one recovers the results of [12] for strictly convex norms.

In the case ν � Ld, the decomposition does not depends on the transference plan, as in the strictly
convex case. In particular, we can say that it is universal, i.e. it is independent on the particular
transference plan π ∈ Πopt

|·|D∗
(µ, ν) used.

Theorem 1.5. Assume that ν � Ld. Then the directed locally affine partition of Theorem 1.3 satisfies
the following properties:

(1) for all a ∈ Ak the cone Čka is a k-dimensional extremal face of | · |D∗ ;

(2’) µ

(
Rd \

⋃
k,a

Žka

)
= ν

(
Rd \

⋃
k,a

Žka

)
= 0;

(2) the partition is Lebesgue-regular;

(4’) for all π̌ ∈ Πopt
|·|D∗

(µ, ν), the disintegration π̌ =

∫
π̌ka dm(k, a) w.r.t. the partition {Žka × Rd}k,a

satisfies
π̌ka ∈ Πf

c
Cka

(µ̌ka, ν̌
k
a ),

where µ =

∫
µ̌ka dm(k, a), ν =

∫
ν̌ka dm(k, a) are the disintegration of µ, ν w.r.t. the partition

{Žka}k,a;

(5’) {Žka}k,a is Πf
cD̄

(µ, ν)-cyclically connected.

In particular π̌

(⋃
k,a

Žka × Žka
)

= 1.

The main step in the proof of Theorem 1.2 is the following
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Theorem 1.6. Let {Zka , Cka} k=0,...,d

a∈Ak
be a Lebesgue-regular directed locally affine partition in Rd and let µ,

ν be probability measures in P(Rd) such that µ� Ld and Πf
cD

(µ, ν) 6= ∅. Then, for all fixed π̌ ∈ Πf
cD

(µ, ν),

there exists a directed locally affine subpartition {Ž`b, Č`b} `=0,...,d

b∈B`
of {Zka , Cka} k=0,...,d

a∈Ak
, up to a µ-negligible

set Nπ̌, such that {
Ž`b, Č

`
b

}
`,b

is Lebesgue-regular,

and setting ν̌`b := (p2)#π̌
`
b, where π̌`b is the conditional probability on the partition {Ž`b×Rd}`,b, then the

sets

(1.26)
{
Ž`b : Ž`b ⊂ Z`a for some a ∈ A`, ` = 1, . . . , d

}
form a Πf

cD
(µ, {ν̌`b})-cyclically connected partition.

Theorem 1.6 allows to construct a locally directed affine subpartition {Ž`b, Č`b} `=0,...,d

b∈B`
to a directed

locally affine partition {Zka , Cka} k=0,...,d

a∈Ak
such that the sets which do not lower their affine dimensions (i.e.

for which Ž`b ⊂ Zka and ` = k) are Πf
cD

(µ, {ν̌`b})-cyclically connected.
Since the subpartition{

Ž`b, Č
`
b

}
`=0,...,d−1

b∈B̄`
such that if Ž`b ⊂ Zka then ` < k (equivalently neglecting the sets of (1.26))

is a Lebesgue-regular directed locally affine partition, and as a subpartition of {Zka , Cka}k,a the index ` is
decreasing of at least 1 in each Zka , by a finite iterative argument one immediately obtains Theorem 1.2.

The proof of Theorem 1.6 relies on nonstandard tools in measure theory –namely, the sufficient con-
dition for uniqueness/optimality of transference plans based on the existence of suitable Borel linear
preorders given in [6]– and on the existence of Lebesgue-regular directed locally affine partitions for one
parameter families of graphs of Lipschitz functions w.r.t. convex norms (called cC̃-Lipschitz foliations),
whose construction generalizes the one of the differential partition of Theorem 1.1.

We give now a brief scheme of the main steps of the proof of Theorem 1.6. Then, we will go on stating
its consequences, ending with the solution of Monge’s problem in Theorem 1.8.

First of all, one can reduce to study the finite cost transportation problem on directed locally affine
partitions with fixed dimension k and whose cones of directions are close to a given one, called k-directed
sheaf sets (see Section 3.3, Definition 3.17). Moreover, by a change of variables which preserves the
characteristics of the optimal transportation problem Πf

c (µ, {ν̄ka}), one can assume that the sets Zka of
the sheaf set are contained in distinct parallel planes, thus studying the so called k-directed fibrations
with cones of directions C̃ ⊂ A × C(k,Rk) (see Definition 3.19). C̃(a) is the cone of directions of the
region Zka .

To give an idea of how the subpartition is constructed, in this introduction we assume that Ak = {a},
so that the finite cost transportation problem on such C̃-directed fibration is a finite transportation
problem for a single k-dimensional cone cost in Rk. In the paper, the variable a ∈ A plays the role
of a parameter and is kept in all the constructions and definitions in order to show that the sufficient
measurability conditions w.r.t. a, which are needed in order to define global objects, are satisfied.

By the discussion made before Theorem 1.2, it is natural to fix a carriage Γ ⊂
{
cCka < +∞

}
of some

πka ∈ Πf
c
Cka

(µka, ν
k
a ) and to see whether the partition of Rk into (Γ, cCka )-cycles satisfies our requirements.

It turns out that in general this is not true, the first main reason being that not all the other transport
plans are necessarily concentrated on its sets.

However –as proven for general cost functions c in [6] in order to give very general sufficient con-
ditions for uniqueness/optimality of transport plans– a partition on which all the transport plans π ∈
Πopt

c
Cka

(µka, ν
k
a ) are concentrated exists provided one can find a Borel linear preorder (i.e., a transitive

relation such that every two points can be compared) which contains the set
{
cCka < +∞

}
(i.e, it is

cCka -compatible according to Definition 2.14) and extends the linear preorder 4(Γ,c
Cka

) whose equivalence

classes are the (Γ, cCka )-cycles (i.e., x 4(Γ,c
Cka

) y if there is a (Γ, cCka )-axial path of finite cost connecting

y to x).
In Section 7.1, Theorem 7.2, we show how to construct such a preorder. The preorder will be denoted in

the following by 4Γ,WΓ , where WΓ is related to the countable procedure to construct the Borel preorder (see
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Section 7). Its equivalence classes turn out to be either families of graphs of | · |D(a)∗ -Lipschitz functions

{h±t (a)}t∈T –being epi | · |D(a)∗ = Cka– or k-dimensional equivalence classes. Such families of sets are
called cC̃-Lipschitz foliations and are studied in Section 4. In particular, the finite cost transportation

problem w.r.t. cCka in Rk reduces to a family of finite cost transportation problems w.r.t. cCka on the sets
of this cC̃(a)-Lipschitz foliation.

The equivalence classes {Žkb}b which do not lower the affine dimension of the Zka are connected by
(Γ, cCka )-cycles, up to a µ-negligible set, and then in principle they are candidate to be the k-dimensional

sets of Theorem 1.6. However, they are not necessarily connected by (Γ′, cCka )-cycles for the other carriages

Γ′ of plans in Πf
c
Cka

(µka, ν
k
a ). In fact, changing Γ, the Borel preorder 4Γ,WΓ also varies. Hence we need

to use an abstract result on measure theory [6] (recalled here in Appendix A), assuring that there is a
minimal Borel linear preorder among the ones of the type 4Γ,WΓ : for this one, the sets which do not

lower the dimension of the Zka and are of positive µka-measure are Πf
c
Cka

(µka, ν
k
a )-cyclically connected (see

Theorem 7.1). Notice that this Πf
c
Cka

(µka, ν
k
a )-cyclically connectedness property can be indeed interpreted

as a minimality or “indecomposability” property of the new k-dimensional sets.
As for the finite cost transportation problem for the cost cCka on the classes of the minimal equivalence

relation which are graphs of | · |D(a)∗ -Lipschitz functions {ht(a)}t∈T, one uses the same tools as in the

proof of Theorem 1.1 to show the existence of a differential locally affine partition {Ž`b, Č`b}`<k,b on
which the transportation problem decomposes (see Section 4). Indeed, the sets of such partition which
are contained in graph ht(a) are constructed as the sets of the differential partition for the Kantorovich
potential ψ: the only difference now is that one has to take care of the measurability of these sets w.r.t.
the parameters a, t.

The only missing point in the proof that the union of the differential partition and of the k-dimensional
equivalence classes {Ž`b, Č`b}`,b satisfies the conclusions of Theorem 1.6 is then the Lebesgue-regularity.
Notice that now the directed locally affine partition is obtained applying the same reasoning as in Theorem
1.1 but for a family of norm-Lipschitz graphs depending on a continuous parameter. Hence one would
be tempted to deduce the Lebesgue-regularity property first disintegrating the Lebesgue measure Lk on
such graphs and then using the cone approximation property (as for the Kantorovich potential) for each
conditional measure of Lk on a single graph. However, as we will show in a counterexample (see Remark
8.5), this is not possible because in general the conditional measures of Lk on a family of Lipschitz graphs
might to be absolutely continuous w.r.t. the (k − 1)-dimensional Hausdorff measure on the graphs on
which they are concentrated.

In fact, the Lebesgue-regularity property for the sets {Ž`b, Č`b}`,b follows by the fact that the Lipschitz
graphs of {ht(a)} are the equivalence classes of a cCka -compatible Borel linear preorder on which all the

transport plans in Πf
c
Cka

(µka, ν
k
a ) are concentrated. Indeed, by the uniqueness theorem stated in [6] one can

prove the cone approximation property for the subpartition. The procedure is similar to the procedure
followed in the case a single potential ψ is present: however, the convergence of the cone approximating
vector fields is now due to the uniqueness of a suitable transference plan (see Section 8).

As discussed before, Theorem 1.3 gives as an application the possibility to construct optimal potentials
w.r.t. secondary cost functions such as c2 (1.23) on each set of the partition Žka . In the case in which the
secondary cost function is obtained by minimizing the original transport problem w.r.t. another convex
norm | · |(D′)∗ , one obtains a refinement of the directed locally affine partition of Theorem 1.3 with cones
of directions given by intersections of extremal faces of | · |(D′)∗ and | · |D∗ .

More precisely, let |·|(D′)∗ be a convex norm with unit ball D′, and consider the secondary minimization
problem

(1.27) min

{∫
|y − x|(D′)∗ dπ(x, y) : π ∈ Πopt

|·|D∗
(µ, ν)

}
.

If π̌ is a minimizer of the above problem, by the fact that π̌ is also a minimizer of

∫
cD,D′(x, y) dπ(x, y), cD,D′(x, y) :=

{
|y − x|(D′)∗ x ∈ Žka , y − x ∈ Čka ,
+∞ otherwise,
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and that each Žka is Πf

Čka
(µka, ν

k
a )-cyclically connected, Proposition 2.11 yields that in each Žka there exists

a potential pair φka, ψka , and since cD,D′ satisfies the triangle inequality we can take φka = −ψka . By the

existence of such a potential, restricting then to a single set Žka one can prove as in the proof of Theorem

1.1 the existence of a directed locally affine partition {Žk,`a,b, Č
k,`
a,b} `=0,...,k

b∈Bk,`a

. In the resulting statement one

has to replace the ambient space Rd with Žka , the measure Ld with HkxŽka , the marginals µ, ν with µka,

νka and the cost | · |D∗ with

(1.28) cka := cD,D′xŽka×Rd=

{
|y − x|(D′)∗ y − x ∈ Čka ,
+∞ otherwise.

More precisely, we obtain the following theorem.

Theorem 1.7. Let µ, ν ∈ P(Rd) with µ � Ld and let π̌ be an optimal transport plan for the prob-

lem (1.27). Then there exists a locally affine directed partition {Žk,`a,b, Č
k,`
a,b} k=0,...,d,a∈Ak

`=0,...,k,b∈Bk,`a

in Rd with the

following properties:

(1) for all k, a ∈ Ak, the cone Čk,`a,b is an `-dimensional extremal face of the cost cka given by (1.28),

i.e. the intersection of a k-dimensional face of | · |D∗ with an extremal face of | · |(D′)∗ ;

(2) µ

(
Rd \

⋃
k,a,`,b

Žk,`a,b

)
= 0;

(3) the partition is Lebesgue-regular;

(4) the disintegration π̌ =

∫
π̌k,`a,b dm(k, a, `, b) w.r.t. the partition {Žk,`a,b × Rd}k,a,`,b satisfies

π̌k,`a,b ∈ Πf
c
C
k,`
a,b

(
µ̌k,`a,b,

{
(p2)#π̌

k,`
a,b

})
,

where µ =

∫
µ̌k,`a,b dm(k, a, `, b) is the disintegration w.r.t. the partition {Žk,`a,b}k,a,`,b, and more-

over

(p2)#π̌
k,`
a,b

(
Žk,`a,b ∪

(
Rd \

⋃
(k′,a′,`′,b′)6=(k,a,`,b)

Žk
′,`′

a′,b′

))
= 1;

(5) the partition {Žk,`a,b}k,a,`,b is Πf
cD̄

(µ, {(p2)#π̌
k,`
a,b})-cyclically connected.

A completely similar extension can be given to Theorem 1.5.
A particular case is when each extremal face of | · |(D′)∗ is contained in an extremal face of | · |D∗ : in

this case condition (1) becomes

(1’) for all k, a ∈ Ak, the cone Čk,`a,b is an `-dimensional extremal face of | · |(D′)∗ .
The only difference w.r.t. Theorem 1.3 is that now π̌ is a minimum for the secondary minimization
problem (1.27), not a transference plan in Πopt

|·|(D′)∗
(µ, ν).

The case (1’) above happens if for example | · |(D′)∗ is strictly convex, so that the Žk,`a,b are now directed
segments, i.e. ` = 1. By the standard analysis on transportation problems in 1-d, and the measurable
dependence on k, a, b, the existence of an optimal transport map T for the Monge problem (1.1) follows
as a simple corollary. In particular, the restriction TxŽk,1a,b

is a monotone increasing map in the direction

of Čk,1a,b on aff Žk,1a,b , for all k, a, b.

Theorem 1.8. Let µ, ν ∈ P(Rd), µ� Ld. Then, there exists an optimal transport map T for the Monge
problem (1.1).

1.2. Structure of the paper. The paper is organized as follows.
In Section 2 we collect the main notations, definitions and the basic tools we will need in the paper.

After recalling some standard definitions of commonly used sets and σ-algebras, we introduce some
notations for functions and multifunctions in Section 2.1. The basic tools in convex analysis as well as
the definitions of the Polish spaces A(k, V ) made of k-dimensional affine subspaces of the affine space
V ⊂ Rd and the Polish space C(k, V ) made of non degenerate k-dimensional cones of a vector space
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V ⊂ Rd are listed in Section 2.2.
The fundamental tools on measure theory and the disintegration theorem are recalled in Section 2.3,
while the definition of the optimal transportation problem with the classical sufficient conditions for
optimality of transference plans are listed in Section 2.4. The key analysis on transportation problems
for which no potential is available and the role of Borel linear preorders is presented in Section 2.5. In
particular, we define Πf

c (µ, ν)-cyclically connected partitions (see Definition 2.10), we state Proposition
2.11 yielding the existence of a family of potentials on the elements of a partition for secondary costs
under the assumption of Πf

c (µ, ν)-cyclical connectedness, and we show in Theorem 2.13 [6] that whenever
a Borel linear preorder is c-compatible and extends a 4(Γ,c)-preorder, then all the transport plans are
concentrated on its equivalence classes.

In Section 3 we analyze the optimal transportation for cone costs of the form (1.22). In Section 3.1
we show the equivalence between optimal transportation problems in Rd with cost | · |D∗ and marginals
µ, ν ∈ P(Rd) and optimal transportation problems in Rd+1 with cost cepi |·|D∗ and marginals µ̂, ν̂ ∈
P(Rd+1), where the measures µ̂, ν̂ are supported on a | · |D∗ -Lipschitz graph graphψ and µ = (pRd)#µ̂,
ν = (pRd)#µ̂.
In Section 3.2 we generalize the single cone cost transportation problem to the transportation problem
on a directed locally affine partition. Here we introduce also the notion of initial and final points of a
directed locally affine partition and the notion of conditional second marginals, as well as an example of
their dependence w.r.t. the transference plan (Example 3.12) and a special case where the conditional
second marginals correspond to the disintegration of ν (Proposition 3.14).
A standard covering argument allows to decompose a directed locally affine partition into k-directed
sheaf sets, i.e. directed locally affine partitions whose components Zka and cones Cka are close to a given
reference plane V k and cone Ck, and their projection on V k contains a given open k-dimensional cube,
Proposition 3.15 and Definition 3.17. This allows to map these sets into directed fibrations, where the Zka
are contained in the planes {a} × Rk, a ∈ Rd−k (Proposition 3.20). In this case the transport problem
splits into a family of transport problems, each one moving mass on a plane of the form {a} × Rk and
with cost

(1.29) cC̃(a)(w,w
′) := 1C̃(a)(w

′ − w),

where a 7→ C̃(a) a σ-compact map with values in C(k,Rk): since k is fixed on a fibration, we can skip it
in order to simplify the notation.
The final part of the section shows that the mapping of a sheaf set into a fibration preserves the key
structures of the optimal transportation problem needed in the proofs of Theorems 1.1 and 1.2, and thus
allows us to work from now onwards on fibrations.

In Section 4 we present a technique in order to find the so called differential directed locally affine
subpartition of a given cC̃-Lipschitz foliation of a C̃-directed fibration. The reason why we introduce
and study cC̃-Lipschitz foliations is that they are the natural generalization of the notions of graphs of
cone-Lipschitz functions –as the Kantorovich potential ψ– and equivalence classes of a cCka -compatible

Borel linear preorder (see Proposition 4.11). For the terminology used to briefly list the content of this
section we refer also to the discussion made in this introduction at the beginning of Section 1.1.
Due to the results of the previous section, when the differential subpartition is mapped back from the
cC̃-Lipschitz foliation to the k-directed sheaf set, one obtains subpartitions of the sheaf sets covering a
given directed locally affine partition, and thus we have a method which yields a subpartition of a given
directed locally affine partition.
In Section 4.1 we first analyze the simplest example of cC̃-Lipschitz foliation: a cC̃(a)-Lipschitz graph,

namely a graph of a | · |D(a)∗ -Lipschitz function (with C̃(a) = epi | · |D(a)∗) in a fibration consisting of a

single fiber {a} × Rk, whose super/subdifferential satisfy the completeness property (1.20)-(1.21) (as the
graph of the Kantorovich potential for the cost cepi |·|D∗ ).

In Section 4.2 we consider general cC̃-Lipschitz foliations, namely partitions of A × Rk whose sets are

contained in {a}×Rk as a varies in A and are given by collections of complete cC̃(a)-Lipschitz graphs (see

Proposition 4.9). We extend to these families of sets the notion of super/subdifferential (see Definition
4.12) and in Section 4.3 we show that its completeness and transitivity properties permit to select regions
called forward/backward regular set and regular set.
These regions are respectively partitioned in the so called super/subdifferential partition and differential
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partition in Section 4.4 (see Theorem 4.18 and Corollary 4.19).
In Section 4.5 we analyze the residual set, namely the complementary of the regular set, and characterize
it as the union of the initial/final points of the super/subdifferential partition (Theorem 4.22).
In Section 4.6 we give a descriptive characterization of the support of the optimal transportation problem
on a cC̃-Lipschitz foliation in terms of the forward/backward regular set and initial/final points.

Section 5 concerns the problem of Lebesgue-regularity of the disintegration on directed locally affine
partitions. The main property which allows to deduce the regularity is the cone approximation property.
First we consider 1-directed sheaf sets made of segments whose projection on the line generated by the
reference cone is a given interval. These particular sheaf sets are called model sets of directed segments
(see Section 5.1). In the case of strictly convex norms it is sufficient to analyze this special case.
The analysis is then extended to k-dimensional model sets, namely k-directed sheaf sets whose projection
on the k-dimensional plane generated by the reference cone is a given rhomboid (Section 5.2). In this case,
the cone approximation property refers to the cone approximation property of any of its 1-dimensional
slices, the latter being sections of a k-dimensional model set with (d−k+1)-dimensional planes transversal
to the reference plane (see Definition 5.16): by transversality, on each of these planes the k-dimensional
model set becomes a model set of directed segments.
Next the analysis is extended to k-dimensional sheaf sets (Section 5.3). The main observation is that one
can partition the sheaf set into countably many k-dimensional model sets (Theorem 5.18).
Finally, the property of approximation by cone vector fields also for initial/final points yields the Lebesgue-
negligibility of the initial/final points by means of a technique developed first in [14], and then extended
in [7, 12, 13] (see Section 5.4).

At this point all the techniques needed in order to prove Theorem 1.1 are presented, and its proof is
done in Section 6. Indeed, in Section 4 we develop a technique to find directed locally affine subpartitions
by means of cC̃-Lipschitz foliations, and the graph of the potential ψ is in particular a cC̃(a)-Lipschitz

graph. The only point which remains to be proved is that the disintegration of the Lebesgue measure is
regular, which is a consequence of the cone approximation property. The section is thus devoted to the
proof of the cone approximation property for cone-Lipschitz graphs (Theorem 6.1).

Let D̃ = {Zka , Cka} be a directed fibration with the associated transportation problem; as said before,
we assume that Πf

cD̃
(µ, ν) 6= ∅. In Section 7 we show how to further partition {Zka , Cka} into a cC̃-Lipschitz

foliation, whose k-dimensional sets satisfy the assumptions of Theorem 1.6 (see Theorem 7.1). The key
results are stated in Theorem 7.2 and Proposition 7.5. The sets of this cC̃-Lipschitz foliation are given by

the equivalence classes of a cC̃-compatible linear preorder on which all the transport plans in Πf
cD̃

(µ, ν)

are concentrated (called (cC̃, µ, ν)-compatible linear preorder in Definition 2.16), as anticipated after the
statement of Theorem 1.6.

In Section 8 we prove the cone approximation property for the differential partition of a cC̃-Lipschitz
foliation whose sets are given by equivalence classes of a Borel (cC̃, µ, ν)-compatible linear preorder. Since
we do not have a potential, we need to use the uniqueness theorem of the linear preorder (Theorem 8.1):
as a corollary, one immediately obtains the Lebesgue-regularity of the disintegration (Corollary 8.2).
The section is concluded which an example (Remark 8.5) which shows that this result cannot be deduced
as a consequence of the analysis of Section 6, even if the level sets of θ are Lipschitz graphs. In fact, the
disintegration of the Lebesgue measure on a Lipschitz foliation is in general not absolutely continuous
w.r.t. the natural Hausdorff measures on the level sets: we show an example where the level sets of the
function θ : [0, 1]2 → [0, 1] generating the foliation are C∞, nevertheless the disintegration of L2x[0,1]2 on
the level sets of θ have Dirac masses.

The proof of Theorems 1.6 and 1.5 are done in Section 9, and they are obtained as direct consequences
of the results proved so far.

Finally, in Appendix A we present one of the main result of [6] about the minimality of equivalence
relations and prove a key consequence used in our proof, Corollary A.5.

In Appendix B we collect the notations used in this paper.

2. General notations and definitions

As standard notation, we will write N for the natural numbers, N0 = N ∪ {0}, Q for the rational
numbers and R for the real numbers. The sets of positive rational and real numbers will be denoted by
Q+ and R+ respectively.
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The d-dimensional real vector space will be denoted by Rd. Bd(x, r) is the open unit ball in Rd with
center x and radius r > 0 and Sd−1 is the (d − 1)-dimensional unit sphere. The scalar product of two
vectors x, y ∈ Rd will be denoted by x · y, and the Euclidean norm of x ∈ Rd by |x| =

√
x · x. To avoid

the analysis of different cases when parameters are in Rk for k = 1, . . . , d or in N, we set R0 := N.
We denote the first infinite ordinal number by ω.
Given a set X, P(X) is the power set of X. The closure of a set A in a topological space X will be

denoted by closA, and its interior by intA. If A ⊂ Y ⊂ X, then the relative interior of A in Y is intrelA:
in general the space Y will be clear from the context. The topological boundary of a set A will be denoted
by ∂A, and the relative boundary is ∂relA.

If A, A′ are subsets of a real vector space, we will write

(2.1) A+A′ :=
{
x+ x′ : x ∈ A, x′ ∈ A′

}
.

If T ⊂ R, then we will write

(2.2) TA :=
{
tx : t ∈ T, x ∈ A

}
.

In particular A−A′ = A+ (−A′).
If
∏
iXi is the product space of the spaces Xi, we will denote the projection on the ī-component either

as pī or pxī or pXī : in general no ambiguity will occur.

2.1. Functions and multifunctions. A multifunction f will be considered either as a map f : X ⊂
dom f → P(Y ) or as a set f ⊂ X × Y . The set dom f is called the domain of f . For every x ∈ dom f we
will write

f(x) =
{
y ∈ Y : (x, y) ∈ f

}
.

The inverse of f will be denoted by

(2.3) f−1 =
{

(y, x) ∈ Y ×X : (x, y) ∈ f
}
.

Similarly, if A ⊂ X × Y , then A−1 := {(y, x) : (x, y) ∈ A}.
In the same spirit, we will often not distinguish between a single valued function f and its graph,

denoted by graph f. We say that the function f (or the multifunction f) is σ-continuous if the set graph f
(or f ⊂ X × Y ) is σ-compact. Note that we do not require its domain to be the entire space.

If f, g are two functions, their composition will be denoted by g ◦ f, with domain f−1(dom g). If
f : X → Y , g : X → Z, then the product map is denoted by f× g : X → Y × Z.

The epigraph of a function f : X → R is the set

(2.4) epi f :=
{

(x, t) ∈ X × R : f(x) ≤ t
}
.

The identity map will be written as I, the characteristic function of a set A will be denoted by

(2.5) χA(x) :=

{
1 x ∈ A,
0 x /∈ A,

and the indicator function of a set A is defined by

(2.6) 1A(x) :=

{
0 x ∈ A,
+∞ x /∈ A.

2.2. Affine subspaces, convex sets and norms. For k, k′, d ∈ N, k′ ≤ k ≤ d, define G(k,Rd) to be
the set of k-dimensional subspaces of Rd and let A(k,Rd) be the set of k-dimensional affine subspaces of
Rd. If V ∈ A(k,Rd), we define A(k′, V ) ⊂ A(k′,Rd) to be the set of k′-dimensional affine subspaces of
V . We also denote by pV : Rd → V the projection map.

If A ⊂ Rd, then define its affine span as

(2.7) aff A :=
⋂

V∈A(k,Rd)
k∈N, A⊂V

V,
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and its convex hull convA as the set given by the intersection of all convex sets of Rd containing A.
Given k vectors {e1, . . . , ek} ⊂ Rd, their linear span aff {e1, . . . , ek, 0} is denoted by 〈e1, . . . , ek〉, and the
orthogonal space to V ∈ G(k,Rd) is denoted by V ⊥. Notice that

aff A = convA+ R(convA− convA) and aff A ∈
⋃
k∈N
A(k,Rd),

unless A consists of a single point. If we set by convention A(0,Rd) = Rd, then the above formula holds
also when A is a singleton.

The linear dimension of an affine subspace V is denoted by dim V , and we set accordingly dim{x} = 0
for all x ∈ A(0,Rd).

If A is convex, then its relative interior in aff A, denoted by intrelA, is nonempty and A ⊂ clos intrelA.
Hence we define dim A := dim aff A.

An extremal face of a convex set A ⊂ Rd is by definition any convex set A′ ⊂ A such that

intrel [x, y] ∩A′ 6= ∅ ⇒ [x, y] ∈ A′, ∀x, y ∈ A.

A convex set C ⊂ Rd is a convex cone if

C = {0} ∪ R+C.

In particular, 0 is called the vertex of the convex cone. For all k ∈ {1, . . . , d}, we let C(k,Rd) to be the
set of closed k-dimensional convex cones in Rd which are nondegenerate, meaning that

C ∈ C(k,Rd) ⇒ C \ {0} ⊂ intrelHC

for some k-dimensional half-plane HC ⊂ Rd.
The extremal faces of a convex cone are still convex cones called extremal cones.
If D is a d-dimensional compact convex set in Rd and 0 ∈ intD, then one can define the (convex)

norm (or Minkowski functional) | · |D∗ generated by D as

(2.8) |x|D∗ = min
{
t ∈ R+ : x ∈ tD

}
= max

{
x′ · x : x′ ∈ D∗

}
,

where

D∗ :=
{
x′ ∈ Rd : x′ · x ≤ 1 for all x ∈ D

}
is the convex dual to D. Equivalently, | · |D∗ : Rd → R is identified by the following properties:

{x ∈ Rd : |x|D∗ ≤ 1} = D;

|tx|D∗ = t|x|D∗ , ∀ t ≥ 0 positively 1-homogeneous;

|x+ y|D∗ ≤ |x|D∗ + |y|D∗ subadditive.

In particular, since | · |D∗ is positively 1-homogeneous, subadditivity can be equivalently replaced by
convexity.

Remark 2.1. Notice that the set epi |·|D∗ belongs to C(d+1;Rd+1), with the identification Rd×R ∼= Rd+1.
Viceversa, given a convex cone C ∈ C(k,Rd), if we fix a system of coordinates (x1, . . . , xk, xk+1, . . . , xd) ∈
Rd such that HC = {xk ≥ 0, xk+1 = · · · = xd = 0}, then C is the epigraph of a convex norm on

Rk−1 ∼= {xk = · · · = xd = 0}.

We will call extremal cones of a convex norm | · |D∗ : Rd → R either the extremal cones of epi | · |D∗ in
Rd+1 or their projections on Rd, being the distinctions between the two cases clear from the context.

For C ∈ C(k,Rd) we call C ∩ Sd−1 the set of directions of C. For V ∈ G(k,Rd) we will also write

(2.9) C(k′, V ) :=
{
C ∈ C(k′,Rd) : C ⊂ V

}
.

If C ∈ C(k,Rd), r > 0, we also define the cone

(2.10) C̊(r) := {0} ∪ R+
((
C ∩ Sd−1 +Bd(0, r)

)
∩ aff C

)
.

Clearly C(r) := clos C̊(r) ∈ C(k,Rd) for 0 < r � 1 and C = ∩
n
C̊(2−n). For r > 0 we also define the cone

(2.11) C̊(−r) := {0} ∪ R+
{
x ∈ Sd−1 ∩ aff C : Bd(x, r) ∩ aff C ⊂ C

}
,
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so that {0} ∪ intrelC = ∪
n
C̊(−2−n): as before C(−r) := clos C̊(−r) ∈ C(k,Rd) for 0 < r � 1. More

generally, for C ∈ C(k,Rd) we will use the notation

(2.12) C̊ := {0} ∪ intrelC =
⋃
n∈N

C̊(−2−n).

By convention we set C(0,Rd) = Rd and we will often denote a convex cone C as Cdim C to emphasize
its dimension.

On G(k,Rd), A(k,Rd) and C(k,Rd) we consider the topology given by the Hausdorff distance dH in
every closed ball closBd(0, r) of Rd, i.e.

(2.13) d(A,A′) :=
∑
n

2−ndH

(
A ∩Bd(0, n), A′ ∩Bd(0, n)

)
.

for two generic elements A, A′.
If A ⊂ Sd−1, its spherical convex envelope is defined as

(2.14) convSd−1A := Sd−1 ∩
(
R+convA

)
.

2.3. Measures and disintegration. We will denote the Lebesgue measure on Rd by Ld, and the
k-dimensional Hausdorff measure on V ∈ A(k,Rd) as HkxV . In general, the restriction of a func-
tion/measure to a set A ∈ Rd will be denoted by the symbol xA (or sometimes xA) following the
function/measure. The product of two locally finite Borel measures $0, $1 will be denoted by $0 ⊗$1.

The Lebesgue points Leb(A) of a set A ⊂ Rd are the points z ∈ A such that

(2.15) lim
r→0

Ld(A ∩Bd(z, r))
Ld(Bd(z, r))

= 1.

If $ is a locally bounded Borel measure on Rd, we will write $ � Ld if $ is absolutely continuous (a.c.
for brevity) w.r.t. Ld.

For a generic Polish space X (i.e., a separable and complete metric space), the Borel sets and the set
of Borel probability measures will be respectively denoted by B(X) and P(X). The Souslin sets Σ1

1 of
a Polish space X are the projections on X of the Borel sets of X ×X. The σ-algebra generated by the
Souslin sets will be denoted by Θ.

Two Radon measures $0, $1 on X are equivalent if for all B ∈ B(X)

(2.16) $0(B) = 0 ⇐⇒ $1(B) = 0,

and we denote this property by $0 ' $1.
If $ is a measure on a measurable space X and f : X → Y is an $-measurable map, then the

push-forward of $ by f is the measure f#$ on Y defined by

(2.17) f#$(B) = $(f−1(B)), for all B in the σ-algebra of Y .

Finally we briefly recall the concept of disintegration of a measure over a partition.

Definition 2.2 (Partitions). A partition in Rd is a family {Za}a∈A of disjoint subsets of Rd. We say that
{Za}a∈A is a Borel partition if A is a Polish space, ∪

a∈A
Za is Borel and the quotient map h : ∪

a∈A
Za → A,

h : z 7→ h(z) = a such that z ∈ Za, is Borel-measurable. We say that {Za}a∈A is σ-compact if A ⊂ Rk
for some k ∈ N, ∪

a∈A
Za is σ-compact and h is σ-continuous.

The sets in the σ-algebra {h−1(F ) : F ∈ B(A)} are also called in the literature saturated sets. Notice
that we do not require {Za}a∈A to be a covering of Rd.

Definition 2.3 (Disintegration). Given a Borel partition in Rd into sets {Za}a∈A with quotient map
h : ∪

a∈A
Za → A and a probability measure $ ∈ P(Rd) s.t. $

(
∪

a∈A
Za

)
= 1, a disintegration of $ w.r.t.

{Za}a∈A is a family of probability measures {$a}a∈A ⊂ P(Rd) such that

A 3 a 7→ $a(B) is an h#$-measurable map ∀B ∈ B(Rd),(2.18)

$
(
B ∩ h−1(F )

)
=

∫
F

$a(B) dh#$(a), ∀B ∈ B(Rd), F ∈ B(A).(2.19)
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As proven in Appendix A of [6] (for a more comprehensive analysis see [19]), we have the following
theorem.

Theorem 2.4. Under the assumptions of Definition 2.3, the disintegration {$a}a∈A is unique and
strongly consistent, namely

if a 7→ $1
a, a 7→ $2

a satisfy (2.18)-(2.19) =⇒ $1
a = $2

a for h#$-a.e. a ∈ A;

$a(Za) = 1 for h#$-a.e. a ∈ A.(2.20)

The measures {$a}a∈A are also called conditional probabilities.
To denote the (strongly consistent) disintegration {$a}a∈A of a probability measure $ ∈ P(Rd) on a

Borel partition {Za}a∈A we will often use the formal notation

(2.21) $ =

∫
A

$a dm(a), $a(Za) = 1,

with m = h#$, h being the quotient map.
Since the conditional probabilities $a are defined m-a.e., many properties (such as $a(Za) = 1) should

be considered as valid only for m-a.e. a ∈ A: for shortness, we will often consider the $a redefined on
m-negligible sets in order to have statements valid ∀a ∈ A.

We also point out the fact that, according to Definition 2.3, in order that a disintegration of $ over a
partition can be defined, $ has to be concentrated on the union of the sets of the partition (which do not
necessarily cover the whole Rd). In general, if we remove this assumption, since the formulas (2.18)-(2.19)
make sense nonetheless for B ⊂ ∪

a∈A
Za, by means of formula (2.21) we “reconstruct” only $x ∪

a∈A
Za

.

Let m′ ∈ P(A), {$′a}a∈A ⊂ P(Rd) such that

A 3 a 7→ $′a(B) is m′-measurable, ∀B ∈ B(Rd).

Then, one can define the probability measure $′ on Rd by

(2.22) $′(B) =

∫
A

$′a(B) dm′(a), ∀B ∈ B(Rd).

The measure defined in (2.22) will be denoted as

$′ =

∫
A

$′a dm
′.

Notice that, despite the notation is the same as in (2.21), the family {$′a}a∈A in the above definition is not
necessarily a disintegration of $′, both because the measure m′ is not necessarily a quotient measure of a
Borel partition and because the measures $′a are not necessarily concentrated on the sets of a partition.
In the rest of the paper, such an ambiguity will not occur, since we will always point out whether a
measurable family of probability measures is generated by a disintegration or not.

Remark 2.5. If instead of $ ∈ P(Rd) we consider the Lebesgue measure Ld (more generally, a Radon
measure) a disintegration {υa}a∈A is to be considered in the following sense. First choose a partition
{Ai}i∈N of Rd into sets with unit Lebesgue measure, then let

LdxAi=
∫
υa,idηi(a), ηi := h#LdxAi ,

be the standard disintegration of the probability measure LdxAi , and finally

υa :=
∑
i

2iυa,i, η :=
∑
i

2−iηi.

Clearly, in this definition the “conditional probabilities” υa and the “image measure” η depend on the
choice of the sets {Ai}i∈N.
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2.4. Optimal transportation problems. For a generic Polish space X, measures µ, ν ∈ P(X) and
Borel cost function c : X ×X → [0,∞], we will consider the sets of probability measures

(2.23) Π(µ, ν) :=
{
π ∈ P(X ×X) : (p1)#π = µ, (p2)#π = ν

}
,

(2.24) Πf
c (µ, ν) :=

{
π ∈ Π(µ, ν) :

∫
X×X

c dπ < +∞
}
,

(2.25) Πopt
c (µ, ν) :=

{
π ∈ Π(µ, ν) :

∫
X×X

c dπ = inf
π′∈Π(µ,ν)

∫
X×X

c dπ′
}
.

The elements of the set defined in (2.23) are called transference or transport plans between µ and ν, those
in (2.24) transference or transport plans with finite cost and the set defined in (2.25) is the set of optimal
plans. The quantity

(2.26) C(µ, ν) := inf
π∈Π(µ,ν)

∫
X×X

c dπ

is the transportation cost.
In the following we will always consider costs and measures s.t. C(µ, ν) < +∞, thus Πf

c (µ, ν) 6= ∅.
The problem of showing that Πopt

c (µ, ν) 6= ∅ is called Monge-Kantorovich problem.
We recall (see e.g. [6, 22]) that any optimal plan π ∈ Πopt

c (µ, ν) is c-cyclically monotone, i.e. there
exists a σ-compact carriage Γ ⊂ X ×X such that π(Γ) = 1 and for all I ∈ N, {(xi, yi)}Ii=1 ⊂ Γ,

I∑
i=1

c(xi, yi) ≤
I∑
i=1

c(xi+1, yi),

where we set xI+1 := x1. Any such Γ is called c-cyclically monotone carriage. However, in order to
deduce the optimality of a transference plan the c-cyclical monotonicity condition itself is not sufficient
and one has to impose additional conditions. Most of the conditions in the literature exploit the dual
formulation of Monge-Kantorovich problem (see [27]), namely

C(µ, ν) = sup
φ, ψ:X→[−∞,+∞)
φ µ-meas. and ψ ν-meas.

{∫
φ(x) dµ(x) +

∫
ψ(y) dν(y) : φ(x) + ψ(y) ≤ c(x, y)

}
.

For example (see Lemma 5.3 of [6]) if there exists a pair of functions

φ, ψ : X → [−∞,+∞), φ µ-measurable and ψ ν-measurable,(2.27)

φ(x) + ψ(y) ≤ c(x, y), ∀x, y ∈ X,(2.28)

φ(x) + ψ(y) = c(x, y), π-a.e. for some π ∈ Π(µ, ν),(2.29)

then φ, ψ are optimizers for the dual problem and π ∈ Πopt
c (µ, ν). Conditions on the cost guaranteeing

the existence of such potentials (and indeed of more regular ones) are e.g. the following ones:

(1) c is l.s.c. and satisfies c(x, y) ≤ f(x) + g(y) for some f ∈ L1(µ), g ∈ L1(ν) ([23]);
(2) c is real-valued and satisfies the following assumption ([4])

ν
({
y :

∫
c(x, y) dµ(x) < +∞

})
> 0, µ

({
x :

∫
c(x, y) dν(y) < +∞

})
> 0;

(3) {c < +∞} is an open set O minus a µ⊗ ν-negligible set N ([5]).

The weakest sufficient condition for optimality, which does not rely on the existence of global potentials
and implies the results recalled above, has been given in [6]. Since such condition will be needed and
of fundamental importance for the proofs of our main results (in particular, Theorem 1.6), in the next
section we give a brief explanation of the approach followed in [6] and we state it in a form which will be
more convenient for our purposes.
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2.5. Linear preorders, uniqueness and optimality. Let c : X × X → [0,+∞] be a Borel cost
function on a Polish space X such that c(x, x) = 0 for all x ∈ X, let µ, ν ∈ P(X) be such that
Πf

c (µ, ν) 6= ∅ and let Γ ⊂ X × X be a c-cyclically monotone carriage of some π ∈ Πf
c (µ, ν) satisfying

w.l.o.g. {(x, x) : x ∈ X} ⊂ Γ. A standard formula for constructing a pair of optimal potentials is the
following: for fixed (x0, y0) ∈ Γ and (x, y) ∈ Γ, define

φ(x) := inf

{ I∑
i=0

c(xi+1, yi)− c(xi, yi) : (xi, yi) ∈ Γ, I ∈ N, xI+1 = x

}
,(2.30)

ψ(y) := c(x, y)− φ(x).

If one of the assumptions (1)-(3) holds, then this φ, ψ satisfy (2.27)-(2.29). However, for general Borel
costs c, the assumptions (1)-(3) are not satisfied. In particular, for any choice of (x0, y0), there may be a
set of positive µ-measure on which φ is not well defined (namely, the infimum in (2.30) is taken over an
empty set) or takes the value −∞ (see the examples in [6]).

To explain why this can happen and briefly recall the strategy adopted in [6] to overcome this problem
in a more general setting, we need the following definition.

Definition 2.6 (Axial paths and cycles). An axial path with base points {(xi, yi)}Ii=1 ⊂ Γ, I ∈ N, starting
at x = x1 and ending at x′ is the sequence of points

(x, y1) = (x1, y1), (x2, y1), . . . , (xi, yi−1), (xi, yi), (xi+1, yi), . . . , (xI , yI), (x
′, yI).

We will say that the axial path goes from x to x′: note that x ∈ p1Γ. A closed axial path or cycle is an
axial path with base points in Γ such that x = x′. A (Γ, c)-axial path is an axial path with base points
in Γ whose points are contained in {c <∞} and a (Γ, c)-cycle is a closed (Γ, c)-axial path.

Notice that, in order that (2.30) is well defined, for µ-a.e. point x ∈ p1Γ there must be a (Γ, c)-axial
path going from x0 to x. Moreover, being Γ c-cyclically monotone, φ is surely finite valued in the case in
which for µ-a.e. point x ∈ p1Γ there exists also a (Γ, c)-axial path going from x to x0 (and thus to a.a.
any other point in Γ). In particular, x and x0 are connected by a (Γ, c)-cycle.

The first idea in [6] is then to partition X into the equivalence classes {Za}a∈A induced by the (Γ, c)-
cycle equivalence relation and disintegrate µ, ν over {Za}a∈A and π over {Za × Zb}a,b∈A.

Since c(x, x) = 0 ∀x ∈ X and Γ ⊃ graph I, then (x, y) ∈ Γ implies that x and y belong to the same
(Γ, c)-cycle (consider the path (x, y), (y, y), (y, y), (x, y)) and in particular that

(2.31) π

(⋃
a∈A

Za × Za

)
= 1.

If the disintegration is strongly consistent (see Theorem 2.4), we get

µ =

∫
µa dm(a), µa(Za) = 1,(2.32)

ν =

∫
νa dm(a), νa(Za) = 1,(2.33)

π =

∫
πaa d(I× I)#m(a), πa(Za × Za) = 1,(2.34)

where m = h#µ = h#ν because there exists at least a plan in Πf
c (µ, ν) –in this case π– such that (2.31)

is satisfied.
Notice that the fact that π is concentrated on the diagonal equivalence classes {Za × Za}a∈A, i.e.

formula (2.31), is equivalent to say that the quotient measure (h× h)#π satisfies

(h× h)#π = (I× I)#m,

i.e. it is concentrated on the diagonal of A× A (see (2.34)).
Now, as a consequence of the fact that µa-a.a. points in Za can be connected to µa-a.a. other points

in Za by a (Γ ∩ Za × Za, c)-cycle and ∃πaa ∈ Πf
c (µa, νa) c-cyclically monotone which is concentrated on

Γ ∩ Za × Za, using (2.30) we are able to construct optimal potentials φa, ψa : Za → [−∞,+∞) for the
transportation problem in Π(µa, νa) and conclude that

πaa ∈ Πopt
c (µa, νa), for m-a.e. a.
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Let us then consider another π′ ∈ Πf
c (µ, ν). After the disintegration w.r.t. {Za × Zb}a,b∈A we get

π′ =

∫
π′abdm

′(a, b), π′ab(Za × Zb) = 1,

with

(2.35) m′ ∈ Πf
(h×h)#c

(m,m), where (h× h)#c(a, b) = inf
Za×Zb

c(x, y).

Hence one has the following theorem, which gives a sufficient condition for optimality based on behavior
of optimal transport plans w.r.t. disintegration on (Γ, c)-cycle equivalence relations.

Theorem 2.7. Let Γ be a c-cyclically monotone carriage of a transference plan π ∈ Πf
c (µ, ν). If the

partition {Za}a∈A w.r.t. the (Γ, c)-cycle equivalence relation satisfies

the disintegration on {Za}a∈A is strongly consistent,(2.36)

π′
(⋃

a

Za × Za

)
= 1, ∀π′ ∈ Πf

c (µ, ν),(2.37)

then π is an optimal transference plan.

Indeed, if (2.36) and (2.37) are satisfied, then π′ =
∫
π′aa d(I× I)#m(a) with π′aa ∈ Πf

c (µa, νa) and one
obtains the conclusion by integrating w.r.t. m the optimality of the conditional plans πaa, namely∫

c(x, y) dπaa(x, y) ≤
∫

c(x, y) dπ′aa(x, y).

The second crucial point in [6] is then to find weak sufficient conditions such that the assumptions of
Theorem 2.7 are satisfied.

Before introducing them, we show how the request that the sets of a Borel partition satisfying (2.37)
coincide with the equivalence classes of the (Γ, c)-cycle relation can be weakened, yet yielding the possi-
bility of constructing optimal potentials on each class –and then, as a corollary, to prove the optimality
of a c-cyclically monotone plan π. First, we need the following

Definition 2.8. A set E ⊂ p1Γ is (Γ, c)-cyclically connected if ∀x, y ∈ E there exists a (Γ, c)-cycle
connecting x to y.

According to the above definition, the equivalence classes of 4(Γ,c) are maximal (Γ, c)-cyclically con-
nected sets, namely (Γ, c)-cyclically connected sets which are maximal w.r.t. set inclusion.

Then notice that, given a Borel partition {Z ′b}b∈B ⊂ Rd such that

π

(⋃
b

Z ′b × Z ′b
)

= 1, ∀π ∈ Πf
c (µ, ν)

and whose sets are (Γ, c)-cyclically connected but not necessarily maximal, then it is still possible to
define on each of them a pair of optimal potentials and prove the optimality of π such that π(Γ) = 1.

Moreover, one can weaken this condition by removing a µ-negligible set in the following way. Let
µ =

∫
µ′b dm

′(b), µ′b(Zb) = 1.

Definition 2.9. The partition {Z ′b}b∈B is (µ,Γ, c)-cyclically connected if ∃F ⊂ X µ-conegligible s.t.
Z ′b∩F is (Γ, c)-cyclically connected ∀ b ∈ B. Equivalently, ∃ an m′-conegligible set B′ ⊂ B s.t. ∀ b′ ∈ B′

∃N ′b ⊂ Z ′b, with‘ µ′b(N ′b) = 0, s.t. Z ′b \N ′b is (Γ, c)-cyclically connected.

When the (µ,Γ, c)-cyclically connectedness property holds for all c-cyclically monotone carriages of
all transport plans of finite cost –hence it is possible to construct optimal potentials starting from any
c-cyclically monotone Γ– we have the following

Definition 2.10. We say that {Z ′b} is Πf
c (µ, ν)-cyclically connected if it is (µ,Γ, c)-cyclically connected

∀Γ c-cyclically monotone s.t. π(Γ) = 1 for some π ∈ Πf
c (µ, ν).

Notice that the µ-conegligible set F in the definition of (µ,Γ, c)-cyclically connected partition depends
on the set Γ.

In this paper, in particular for the proof of Theorems 1.7 and 1.8, the importance of Πf
c (µ, ν)-cyclically

connected partitions is given by the following proposition.
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Proposition 2.11. Let {Z ′b}b∈B be a Πf
c (µ, ν)-cyclically connected Borel partition satisfying

(2.38) π

(⋃
b

Z ′b × Z ′b
)

= 1, ∀π ∈ Πf
c (µ, ν)

for a cost function of the form

(2.39) c(x, y) = 1M (x, y), M ⊃
{

(x, x) : x ∈ X
}
.

Let cm : X ×X → [0,+∞] be any secondary cost of the form

(2.40) cm(x, y) =

{
m(x, y) c(x, y) < +∞,
+∞ otherwise,

where m is l.s.c. and there exist f ∈ L1(µ), g ∈ L1(ν) s.t. m(x, y) ≤ f(x) + g(y). Then, any cm-cyclically
monotone plan πm ∈ Πf

cm
(µ, ν) is optimal for cm. More precisely, for any cm-cyclically monotone set Γm

with πm(Γm) = 1, there exist Borel functions φm, ψm such that the restrictions

(2.41) φmb := φmxZ′b , ψm
b := ψmxZ′b

are Borel optimal potentials for Πopt
cm

(µ′b, ν
′
b), for all b in an m′-conegligible set B′ ⊂ B.

Proof. Notice that Πf
cm

(µ, ν) ⊂ Πf
c (µ, ν). Let Γm ⊂ ∪

b
Z ′b × Z ′b be a cm-cyclically monotone carriage

for πm ∈ Πf
cm

(µ, ν). Then, there exists a conegligible set F ⊂ X such that Z ′b ∩ F is (Γm, c)-cyclically
connected for all b ∈ B. Hence, formula (2.30), together with the validity of the Point (1) at page
21, yields potentials φmb, ψm

b for the transport problem in Πf
cm

(µb, νb) with cost cm. In particular, the

conditional probability πm,bb is optimal in Πf
cm

(µb, νb), and thus by (2.38) it follows as in Theorem 2.7

that πm is optimal in Πf
cm

(µ, ν).
The fact that one can find Borel functions φm, ψm such that (2.41) holds is an application of standard

selection principles, and it can be found in [6]. �

In order to state the main result of [6] which is at the core of their sufficient condition concerning
optimality, we need the concept of (linear) preorder.

Definition 2.12 ((Linear) Preorder). A preorder on X is a set A ⊂ X ×X s.t.

(x, x) ∈ A, ∀x ∈ X
(x, y) ∈ A ∧ (y, z) ∈ A =⇒ (x, z) ∈ A.

A preorder A ⊂ X ×X is linear if

X ×X = A ∪A−1.

The statement (x, y) ∈ A will also be denoted by x 4A y and A is also called the graph of the (linear)
preorder 4A. Any preorder 4A induces the equivalence relation 'A on X

x 'A y ⇐⇒ x 4A y and y 4A x.

We also denote the graph of the equivalence relation 'A by

A ∩A−1 or 4A ∩ (4A)−1.

Going back to our problem, one can see that the (Γ, c)-axial relation gives a Borel preorder on X,
namely

(2.42) x 4(Γ,c) y if there exists a (Γ, c)-axial path going from y to x.

The reason for introducing (linear) preorders in this context is given by the following theorem [6].

Theorem 2.13. Let A ⊂ X × X be a Borel graph of a linear preorder on X with equivalence classes
{ZAc }c∈C satisfying

{c < +∞} ⊂ A,(2.43)

4(Γ,c)⊂ A, for some c-cyclically monotone set Γ s.t. π(Γ) = 1, π ∈ Πf
c (µ, ν).(2.44)
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4A

c(x, y)

'A

Figure 2. The graph of the cost c is given by the indicator function of the region inside
the blue curve. The graph of a c-compatible linear preorder 4A is given by the union of
the pink and of the red region. The red region corresponds to the graph of the induced
equivalence relation 'A. We draw also an axial path connecting x5 to x3 with base
points (x5, y5), (x4, y4), and a (Γ, c)-cycle connecting (x1, y1) to (x2, y2).

Then, the disintegration w.r.t. the partition {ZAc }c∈C is strongly consistent and

(2.45) π′
(⋃

c

ZAc × ZAc
)

= 1, ∀π′ ∈ Πf
c (µ, ν).

For future convenience we give the following definition.

Definition 2.14. A preorder 4A on X is c-compatible if (2.43) holds.

Remark 2.15. Let A be a c-compatible linear preorder. Whenever a carriage Γ satisfies (2.44) the 4(Γ,c)-
equivalence classes are contained in the equivalence classes of 'A and then, as noticed before, since
Γ ⊃ graph I and c(x, x) = 0 for all x,

Γ ⊂
⋃
c

ZAc × ZAc , π

(⋃
c

ZAc × ZAc
)

= 1.

Viceversa, if π′
(
∪
c
ZAc × ZAc

)
= 1 for some π′ ∈ Πf

c (µ, ν) and π′(Γ′) = 1, then by the c-compatibility of A

4(Γ′∩∪
c
ZAc ×ZAc ,c)⊂ A
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and then also its equivalence classes are contained in the equivalence classes of 'A. In particular, (2.44)
could also be rewritten as π

(
∪
c
ZAc × ZAc

)
= 1.

We point out that, while a c-compatible linear preorder satisfying (2.44) for some Γ can always be
constructed using the axiom of choice, (2.45) may not hold if the linear preorder is not Borel (see [6]):
hence, the main assumption of the theorem is the Borel regularity. Finally, notice that the partition into
equivalence classes of 4(Γ′∩∪

c
ZAc ×ZAc ,c) with Γ′ as above is (µ,Γ′, c)-cyclically connected in the sense of

Definition 2.9.

In order to prove Theorem 1.6, in Section 7 we will look –for a particular class of cost functions of the
form (2.39) called cone-Lipschitz costs associated to a directed fibration– for Πf

c (µ, ν)-cyclically connected
partitions satisfying (2.38). Therefore, by Theorem 2.13 and Remark 2.15, we will construct a Borel
c-compatible linear preorder A such that, for any carriage of finite cost Γ′, the equivalence classes of
4(Γ′∩∪

c
ZAc ×ZAc ,c) coincide up to a µ-negligible set with those of 'A.

For convenience we give also the following

Definition 2.16. If 4A is c-compatible and (2.44) holds for every π ∈ Πf
c (µ, ν), then A is called (c, µ, ν)-

compatible.

Hence, Theorem 2.13 can also be restated saying that whenever A is a Borel c-compatible linear
preorder satisfying (2.44) for some Γ of finite cost, then it is (c, µ, ν)-compatible.

According to the terminology used in [6], (c, µ, ν)-compatibility can also be restated saying that the
diagonal in the quotient space

(2.46) (I× I) ◦ h ◦ p1(A)

is a set of uniqueness for Πf
(h×h)#c

(m,m), where h is the quotient map associated to the partition 'A:

this means that there exists a unique transference plan in Πf
(h×h)#c

(m,m), namely (I× I)#m.

3. Optimal transportation problems with convex norm and cone costs

Let | · |D∗ : Rd → R be a convex norm as defined in (2.8) and µ, ν ∈ P(Rd). The transport plans with

finite | · |D∗ -cost Πf
|·|D∗

(µ, ν) and the optimal plans w.r.t. | · |D∗ Πopt
|·|D∗

(µ, ν) are respectively given by the

transference plans with finite cost and the optimal plans w.r.t. the cost function

(3.1) c(x, y) = |y − x|D∗ .

Since the cost is a norm, we have the following well known results [2]: if Πf
|·|D∗

(µ, ν) 6= ∅, then

(1) there exists at least one optimal transference plan π̄;
(2) if Γ is a | · |D∗ -cyclically monotone carriage of π̄, then for (x0, y0) ∈ Γ the function given by (2.30),

φ(x) := inf

{ I∑
i=0

∣∣yi − xi+1

∣∣
D∗
−
∣∣yi − xi∣∣D∗ : I ∈ N, (xi, yi) ∈ Γ, xI+1 = x

}
,

is Lipschitz continuous on Rd and

(3.2) φ(x)− φ(y) ≤ |y − x|D∗ , ∀x, y ∈ Rd,

(3.3)

∫
Rd×Rd

|y − x|D∗ dπ̄(x, y) =

∫
Rd
φ(x) dµ(x)−

∫
Rd
φ(y) dν(x).

In particular, π is an optimal plan if and only if

π
({

(x, y) : φ(x)− φ(y) = |y − x|D∗
})

= 1.

In the following we will denote by ψ the dual potential

(3.4) ψ(x) := −φ(x),

which will be called Kantorovich potential. Clearly

(3.5) ψ(y)− ψ(x) ≤ |y − x|D∗ , π ∈ Πopt
|·|D∗

(µ, ν) ⇔ π
({

(x, y) : ψ(y)− ψ(x) = |y − x|D∗
})

= 1.
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Definition 3.1. A function ϕ : domϕ ⊂ Rd → R is | · |D∗-Lipschitz if it satisfies

ϕ(y)− ϕ(x) ≤ |y − x|D∗ , ∀x, y ∈ domϕ.

The superdifferential of ϕ is the set

∂+ϕ :=
{

(x, y) : ϕ(y)− ϕ(x) = |y − x|D∗
}
,

while its subdifferential is the set

∂−ϕ :=
(
∂+ϕ

)−1
.

Hence, (3.5) can be rephrased as

(3.6) ∃ψ : Rd → R | · |D∗ -Lipschitz s.t. π ∈ Πopt
|·|D∗

(µ, ν) ⇔ π
(
∂+ψ

)
= 1.

Let now Ck ∈ C(k;Rk).

Definition 3.2. We define the convex cone cost associated to Ck as the function cCk : Rk×Rk → [0,+∞]
given by

(3.7) cCk(x, y) =

{
0 y − x ∈ Ck,
+∞ otherwise.

Given µ, ν ∈ P(Rk), let Πf
c
Ck

(µ, ν) be the set of transport plans of finite cone cost. Notice that

Πf
c
Ck

(µ, ν) = Πopt
c
Ck

(µ, ν) =
{
π ∈ Πf

c
Ck

(µ, ν) : π is cCk -cyclically monotone
}
.

3.1. Transportation problems with convex norms and cone costs on Lipschitz graphs. The
optimal transport problem w.r.t. | · |D∗ can be casted as a convex cone optimal transportation problem
on Rd+1 ' Rd × R w.r.t. the convex cone cost cepi |·|D∗ associated to

epi | · |D∗ ∈ C(d+ 1;Rd+1)

(see Definition 3.2 and Remark 2.1). Define in fact the measures in P(graphψ)

(3.8) µ̂ := (I× ψ)#µ, ν̂ := (I× ψ)#ν,

where ψ is the Kantorovich potential of Πopt
|·|D∗

(µ, ν), formula (3.4), and for π ∈ Π(µ, ν) consider the plan

in P(graphψ × graphψ)

(3.9) π̂ :=
(
(I× ψ)× (I× ψ)

)
#
π.

The fundamental observations are (3.6) and the following: if ϕ is | · |D∗ -Lipschitz, then

(3.10) ∂+ϕ = pRd×Rd
(

graphϕ× graphϕ ∩
{
cepi |·|D∗ < +∞

})
.

Definition 3.3. If graphϕ ⊂ Rd+1 is the graph of a | · |D∗ -Lipschitz function, define its superdifferential
and subdifferential respectively as

(3.11) ∂+graphϕ = graphϕ× graphϕ ∩
{
cepi |·|D∗ < +∞

}
, ∂−graphϕ =

(
∂+graphϕ

)−1
.

Then (3.10) can be rewritten as

∂±ϕ = pRd×Rd
(
∂±graphϕ

)
.

Hence the following proposition holds true.

Proposition 3.4. The following statements are equiveridical:

(1) π ∈ Πopt
|·|D∗

(µ, ν);

(2) π̂ :=
(
(I× ψ)× (I× ψ)

)
#
π ∈ Πf

cepi |·|D∗
(µ̂, ν̂), with µ̂, ν̂ given by (3.8);

(3) π =
(
pRd×Rd

)
#
π̂ for some π̂ ∈ Πf

cepi |·|D∗
(µ̂, ν̂), with µ̂, ν̂ given by (3.8);

(4) π̂ :=
(
(I× ψ)× (I× ψ)

)
#
π satisfies π̂(∂+graphψ) = 1.

Observe that, since (I× ψ) : Rd → graphψ is bi-Lipschitz, then if $ ∈ P(X) and $̂ := (I× ψ)#$,

(3.12) $(B) = 0 ⇐⇒ $̂
(
(I× ψ)(B)

)
= 0, ∀B ∈ B(Rd).
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Rd

epi| · |D∗

ψ µ̂

(x, ψ(x))

(x, ψ(x)) + epi| · |D∗

ν̂

(y, ψ(y))

x

µ ν

y

R

Figure 3. The equivalence of Proposition 3.4.

3.2. Optimal transportation problems on directed locally affine partitions. We first give the
definition of directed locally affine partition.

Definition 3.5. We say that a nonempty subset Z ⊂ Rd is locally affine if there exist k ∈ {0, . . . , d} and
V ∈ A(k,Rd) such that Z ⊂ V and Z is relatively open in V , i.e. Z = intrelZ 6= ∅.

Notice that, in the above definition, V = aff Z. Whenever Z is a locally affine set of dimension k we
will often denote it as Zk to emphasize its dimension.

Definition 3.6. A directed locally affine partition in Rd is a partition into locally affine sets {Zka} k=0,...,d

a∈Ak
,

endowed with a family of closed nondegenerate convex cones {Cka} k=0,...,d

a∈Ak
such that

(1) the set

(3.13) D :=
{

(k, a, z, Cka ) : k ∈ {0, . . . , d}, a ∈ Ak, z ∈ Zka
}
⊂

d⋃
k=0

{k} × Ak × Rd × C(k,Rd)

is σ-compact;
(2) aff (z + Cka ) = aff(Zka ) for all z ∈ Zka .

For shortness we will use the notation

Zk := pzD(k) =
⋃

a∈Ak
Zka , Z := pzD =

⋃
k

Zk =

d⋃
k=0

⋃
a∈Ak

Zka , Z̄k :=
⋃

a∈Ak
closZka .(3.14)

For the conditional probabilities of a measure µ over a locally affine partition we will use the notation
{µka} k=0,...,d

a∈Ak
, with µka(Zka ) = 1: the fact that the disintegration is strongly consistent is a consequence of

the fact that the function Z 3 z 7→ (k, a) has σ-compact graph p(z,k,a)D. Notice that the quotient space
of the partition is given by

(3.15) A :=
⊔
k

Ak,

where t denotes the disjoint union of sets.
Given a locally affine directed partition {Zka , Cka}k,a one can define the sets of initial and final points

as follows.
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C3
a

C2
a

A2

A1

aI(Z2
a)

I(Z1
a)

{a}

Figure 4. A directed locally affine partition in R3 into three 2-dimensional sets with
quotient space A2, five 1-dimensional sets with quotient space A1 and a 3-dimensional set
with quotient space A3. In each k-dimensional subpartition, for k = 1, . . . , 3, we denote
a locally affine set as Zka with cone of directions Cka (colored in blue), initial points I(Zka )
(colored in green), final points E(Zka ) (colored in red) and quotient point a (colored in
purple), chosen as in (3.32).

Definition 3.7. Define for k = 1, . . . , d, a ∈ Ak the initial points of Zka as

I(Zka ) :=
{
z ∈ Rd \ Z : ∃ r > 0 s.t. z + intrelC

k
a ∩Bd(z, r) ⊂ Zka

}
,

and the final points of Zka as

E(Zka ) :=
{
z ∈ Rd \ Z : ∃ r > 0 s.t. z − intrelC

k
a ∩Bd(z, r) ⊂ Zka

}
.

Finally, we call sets of initial points and sets of final points of the locally affine directed partition
{Zka , Cka}k,a the sets given respectively by

(3.16) I :=
⋃
k,a

I(Zka ), E :=
⋃
k,a

E(Zka ).

Notice that the sets I(Zka ), I(Zk
′

a′ ) do not need to be disjoint even if k 6= k′ and a 6= a′, and the same

for E(Zka ), E(Zk
′

a′ ). Moreover,

(3.17) I(Zka ) ∪ E(Zka ) ⊂ ∂relZ
k
a ,

but the inclusion (3.17) may be strict (see Figure 4 and Figure 9). The measurability of the sets of
initial/final points is proven in the Lemma 3.18. In the proof we use the concept of completeness of a
directed locally affine partition, whose meaning will be clear in Section 4 and whose definition is given
below. Since up to that section, when it will become crucial for our analysis of the super/subdifferential
partitions, such a property will be used only in order to prove measurability issues, more precisely in the
proofs of Lemma 3.18 and of Proposition 3.15, a deeper understanding of its meaning is up to then not
necessary and can be for the moment neglected.

Definition 3.8. A directed locally affine partition {Zka , Cka}k,a is complete if

(3.18) x+ Cka ∩ y − Cka ⊂ Zka , ∀x, y ∈ Zka .
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In the proof of Proposition 4.6, we will see that the set defined in (3.18) is a convex set satisfying

R+
(
(x+ Cka ∩ y − Cka )− x

)
= R+

(
y − (x+ Cka ∩ y − Cka )

)
= Cka .

Definition 3.9. We will say that a directed locally affine partition {Z
′,`
b , C

′,`
b } `=0,...,d

b∈B`
in Rd is a directed

locally affine subpartition of {Zka , Cka} k=0,...,d

a∈Ak
if the following holds:

(1) Z = Z′, where Z′ is the set given by (3.14) for {Z
′,`
b , C

′,`
b }`,b;

(2) ∀ `, b there exists k, a s.t. Z
′,`
b ⊂ Zka and C

′,`
b is an extremal face of Cka .

Definition 3.10. We say that a locally affine (σ-compact) partition {Zka} k=0,...,d

a∈Ak
is Lebesgue-regular if

the conditional probabilities {υka}k,a of the disintegration of Ld on the partition {Zka}k,a (see Remark
2.5) satisfy

(3.19) υka ' HkxZka , for η-a.e. (k, a) ∈ A.

From the definition of disintegration of a Radon measure given in Remark 2.5, it is not difficult to check
that the validity of (3.19) is independent on the partition into unit measure sets {Ai}, hence Definition
3.10 is consistent.

To a directed locally affine partition {Zka , Cka} k=0,...,d

a∈Ak
in Rd, we associate the cost function

(3.20) cD(x, y) :=

{
0 x ∈ Zka , cCka (x, y) < +∞ for some (k, a) ∈ A,

+∞ otherwise.

Notice that, since D is σ-compact, cD is σ-continuous. Indeed,

{cD < +∞} = px,y
({

(k, a, x, y), (k, a, x, y − x) ∈ D
})
.

Let us consider µ, ν ∈ P(Rd) satisfying

Πf
cD

(µ, ν) 6= ∅.

By definition of cD, one can easily see that µ(Z) = 1 and

Πopt
cD

(µ, ν) = Πf
cD

(µ, ν) =
{
π ∈ Πf

cD
(µ, ν) : π is cD-cyclically monotone

}
.

Let

µ =

∫
µka dm(k, a), µka(Zka ) = 1,

be the disintegration of µ w.r.t. the partition {Zka}k,a.
We have the following characterization.

Proposition 3.11. π ∈ Πf
cD

(µ, ν) if and only if the strongly consistent disintegration {πka}k,a ⊂ P(Rd ×
Rd) of π w.r.t. the partition {Zka × Rd}k,a satisfies the following properties:

(3.21a) πka ∈ Πf
c
Cka

(µka, (p2)#π
k
a) for m-a.e. (k, a),

(3.21b)

∫
(p2)#π

k
a dm(k, a) = ν,

where the measure on the l.h.s. of (3.21b) is defined as in (2.22).

Proof. If π ∈ Πf
cD

(µ, ν), then up to an m-negligible set one has πka ∈ Πf
cD

(µka, (p2)#π
k
a), and since

cDxZka×Rd= cCka one deduces (3.21a). The equality (3.21b) is a fairly easy consequence of (p2)#π = ν.

Conversely, if π satisfies (3.21), then the two formulas

(p2)#π =

∫
(p2)#π

k
adm(k, a),

∫
cDdπ =

∫ (∫
cDdπ

k
a

)
dm(k, a) =

∫ (∫
cCkadπ

k
a

)
dm(k, a)

yield π ∈ Πf
cD

(µ, ν). �
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Figure 5. The transport problem on the directed locally affine partition described in
Example 3.12.

In other words any optimal transference plan w.r.t. the cost associated to a directed locally affine
partition can be decomposed as a family of transference plans on the k-dimensional affine hulls of the
k-dimensional sets of the partition, moving the mass along the cones of directions, and viceversa it can
be reconstructed given a family {πka}k,a satisfying (3.21a)-(3.21b).

In general (3.21b) is not a disintegration (see Section 2.3 before Remark 2.5), as the following example
shows.

Example 3.12. For d = 3 let

µ := H1x{−1}×[0,1/2]×{0}∪{1}×[0,1/2]×{0}, ν := 2H1x{0}×[0,1/2]×{1},

and consider the directed locally affine partition

Z2
1 :=

{
(z1, z2, z3), z1 < 0, z1 = z3 − 1

}
, C2

1 :=
{

(z1, z2, z3) : |z2| ≤ z1, z1 = z3

}
,

Z2
2 :=

{
(z1, z2, z3), z1 > 0, z1 = −z3 + 1

}
, C2

2 :=
{

(z1, z2, z3) : |z2| ≤ −z1, z1 = −z3

}
.

Then, for every decomposition 2ν = ν1 + ν2 with ν1, ν2 ∈ P(R2),

Π(µ, {ν1, ν2}) :=
{
π ∈ Πf

cD
(µ, ν) : (p2)#π

2
1 = ν1, (p2)#π

2
2 = ν2

}
6= ∅,

and clearly Π(µ, {ν1, ν2}) ⊂ Πf
cD

(µ, ν).

Example 3.12 motivates the following definition.

Definition 3.13. Given a transference plan π̄ ∈ Πf
cD

(µ, ν), we define the conditional second marginals

of π̄ w.r.t. {Zka , Cka}k,a as

ν̄ka := (p2)#π̄
k
a , for (k, a) ∈ A.

We also set

(3.22) Πf
cD

(µ, {ν̄ka}) =
{
π ∈ Πf

cD
(µ, ν) : (p2)#π

k
a = ν̄ka for m-a.e. (k, a)

}
,

and we call (3.22) the set of optimal transport plans on the directed locally affine partition D w.r.t. µ and
{ν̄ka}.
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Therefore, in the following by optimal transportation problem on a directed locally affine partition D
we mean an optimal transportation problem w.r.t. the cost cD between measures µ and {ν̄ka}k,a, being
the latter admissible second marginals, namely conditional second marginals of at least one transference
plan π ∈ Πf

cD
(µ, ν).

Notice that in Example 3.12 the existence of more than one family of admissible second marginals for
the given optimal transportation problem would be avoided provided

(3.23) ν(Z) = 1.

What (3.23) implies in general is that any family of admissible second marginals {ν̄ka} is given by a
relabeling of the disintegration of ν on Zka , but it may not necessarily occur that

(3.24) ν̄ka (Zka ) = 1

(see Figure 5). In the next proposition we give a criterion –namely, condition (3.25)– in order that
condition (3.24) is satisfied and then there exists just one family of admissible second marginals. Condition
(3.25) will be indeed satisfied by directed locally affine partitions called fibrations and cC̃-foliations given
by single Lipschitz graphs (see Corollary 3.23 and Proposition 4.26).

Proposition 3.14. Assume that

(3.25) z ∈ Zka , z′ ∈ Zk
′

a′ for (k, a) 6= (k′, a′) =⇒ Z ∩ (z + Cka ) ∩ (z′ + Ck
′

a′ ) = ∅.

Hence,

(3.26) (p2)#π
k
a

(
Zka ∪ Rd \

⋃
(a′,k′)6=(a,k)

Zk
′

a′

)
= 1, for all π ∈ Πf

cD
(µ, ν), m-a.e. (k, a) ∈ A.

Moreover, if ν(Z) = 1, one has that

(p2)#π
k
a = νka , being ν =

∫
νka dm(k, a), νka (Zka ) = 1 the disintegration of ν w.r.t. D.

Hence the conditional second marginals of π ∈ Πf
cD

(µ, ν) are equal to the conditional probabilities of

ν, computed via disintegration on Zka . Notice that part of the statement is that the quotient measure m
of ν is the same as for µ.

Proof. It is fairly easy to see that (3.25) implies that

Z× Rd ∩
{
cD < +∞

}
⊂
⋃
a,k

Zka ×
(
Zka ∪ Rd \ Z

)
,

so that each π ∈ Πf
cD

(µ, ν) is concentrated on⋃
a,k

Zka ×
(
Zka ∪ Rd \ Z

)
,

and this concludes the proof. �

3.3. From directed partitions to directed fibrations. In the first part of this section we show
that a directed locally affine partition is a countable union of directed locally affine partitions whose
elements are locally affine sets having the same dimension and whose direction cones are “close” to a
fixed reference cone. This kind of partitions will be called sheaf sets. Then, we will see that the optimal
transportation problem on a k-directed sheaf set –with k denoting the dimension of its locally affine sets–
can be equivalently reformulated as an optimal transportation problem on a k-directed sheaf set whose
sets are contained in distinct parallel k-dimensional planes, called k-directed fibration. The advantage of
this reformulation is that on a k-directed fibration all the supports of the second marginals are disjoint,
condition (3.25) holds and then (by Corollary 3.23) one can consider the quotient variables of the partition
as parameters for a family of independent convex-cone optimal transportation problems in Rk.

Since 0-dimensional sets, i.e. single points in Rd, are obviously not further partitionable, from now on
we will consider partitions into sets of dimension k ≥ 1.
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Let {Zka , Cka} k=1,...,d

a∈Ak
be a locally affine directed partition in Rd. If {eki }ki=1 are vectors in Rd, define

the sets

(3.27) C({eki }) :=

{ k∑
i=1

tie
k
i : ti ∈ R+ ∪ {0}

}
and

(3.28) U({eki }) :=

{ k∑
i=1

tie
k
i : ti ∈ [0, 1]

}
.

Recalling the definitions given in Sections 2.2 and 3.2, and the completeness property of Definition
3.8, we have the following result.

Proposition 3.15. There exists a countable covering of D into disjoint directed locally affine partitions
{Dk

n} k=1,...,d
n∈N

, with the following properties: ∀n ∈ N., set

Akn := paD
k
n, Cka = pC(k,Rd)D

k
n(a), Zka = pRdD

k
n(a).

Then, p{1,...,k}D
k
n = {k} for all n ∈ N, i.e. the elements Zka , Cka have linear dimension k, for a ∈ Akn,

and there exist

• linearly independent vectors {eki (n)}ki=1 ⊂ Sd−1, with linear span

V kn = 〈ek1(n), . . . , ekk(n)〉,
• a given point zkn ∈ V kn ,
• constants rkn, λ

k
n ∈ R+,

• a non degenerate cone Ck ∈ C(k,Rd), with C({eki }) ⊂ C̊k,

such that it holds:

(1) the enlargement of the cone Ck by a factor 2rkn is non-degenerate

Ck(2rkn) ∈ C(k, V kn );

(2) the projections on V kn of the cones Cka , a ∈ Akn, have a uniform opening containing Ck

Ck(rkn) ⊂ pV kn C̊
k
a ;

(3) the projections on V kn of the cones Cka , a ∈ Akn, are strictly contained in the given cone Ck(2rkn)

pV kn C
k
a ⊂ Ck(2rkn);

(4) the projection map on V kn is nondegenerate

|pV kn z| ≥ 1/
√

2 for all z ∈ Cka ∩ Sd−1, a ∈ Akn;

(5) the projection of Zka on V kn contains a given cube

zkn + λkn U({eki (n)}) ⊂ pV kn Z
k
a .

Moreover, if D is complete, then the sets {Dk
n} are Borel.

Observe that from Point (2) and Point (4) above it follows that there exists ρ > 0 such that

|pV kn (z − z′)| ≥ ρ|z − z′|, ∀ z, z′ ∈ aff Zka , ∀a ∈ Akn.

Proof. If V ∈ G(k,Rd), C ∈ C(k, V ) and given two real numbers 0 < δ, r < 1 such that C(2r) ∈ C(k,Rd),
consider the subset L(k,C, r, δ) of C(k,Rd) defined by

L(k,C, r, δ) :=
{
C ′ ∈ C(k,Rd) : (i) C(r) ⊂ pV C̊

′,

(ii) pV C
′ ⊂ C(2r),

(iii) inf
{
|pV z| : z ∈ C ′ ∩ Sd−1

}
> 1− δ

}
.(3.29)

If is fairly easy to see that for all 0 < δ < 1 as above the family

(3.30) L(k, δ) :=
{
L(k,C, r′, δ) : C ∈ C(k,Rd), 0 < r′ < 1 s.t. C(2r′) ∈ C(k,Rd)

}
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generates a base of neighborhoods of C(k,Rd). In particular, we can find a countable family of sets

{L(k,Ckn, r
k
n, 1/
√

2)}n∈N, covering C(k,Rd) –being the latter separable. Notice that

closL(k,C, r, δ) =

{
C ′ ∈ C(k,Rd) : C(r) ⊂ pV C

′, pV C
′ ⊂ C(2r), inf

{
|pV z| : z ∈ C ′ ∩ Sd−1

}
≥ 1− δ

}
is compact.

Then, define

Dk
n :=

{(
a, z, Cka

)
∈ D(k) : Cka ∈ closL

(
k,Ckn, r

k
n, 1/
√

2
)
\
⋃
n′<n

closL
(
k,Ckn′ , r

k
n′ , 1/

√
2
)}
.

Clearly {Dk
n}n∈N is a covering of D(k) into disjoint sets, and it is fairly straightforward to prove that

these sets are σ-compact, because the sets closL(k,C, r, δ) are compact.
For each k, Ckn, rkn, consider a family of k linearly independent unit vectors {eki (n)}ki=1 in Rd such that

C({eki (n)}) ⊂ C̊kn.
Being the family of sets

{
{z+λ intrelU({eki (n)})}

}
z∈V kn , λ∈R+ a base of the topology of V kn , let

{
{zm+

λm intrelU({eki (n)})}
}
m∈N be a countable base. Define thus

Dk
n,m :=

{
(a, z, Cka ) ∈ Dk

n : zm + λmU({eki (n)}) ⊂ pV kn Z
k
a

}
\
⋃

m′<m

Dk
n,m′ .

Since the directed partition is complete (see Definition 3.8) and Point (2) holds then

zm + λmU({eki (n)}) ⊂ pV kn Z
k
a ⇔

{
zm, zm + λm

k∑
i=1

eki (n)
}
⊂ pV kn Z

k
a .

Let fkn : pA×RdD
k
n → pV kn

(
pA×RdD

k
n

)
be the σ-continuous map

fkn(a, z) = pV kn (Zka ).

One has that

{
(a, z) ∈ pA×RdD

k
n :

{
zm, zm + λm

k∑
i=1

eki (n)

}
⊂ pV kn Z

k
a

}
= p12

(
graph fkn ∩

{
(a, z, zm) : a ∈ A, z ∈ Rd

})
∩ p12

(
graph fkn ∩

{(
a, z, zm + λm

k∑
i=1

eki (n)

)
: a ∈ A, z ∈ Rd

})
,

(3.31)

is a σ-compact set, thus Dk
n,m is Borel. Relabeling the sets Dk

n,m as Dk
n, the proof is completed. �

Remark 3.16. In the rest of this section, without further comments, we will assume that the directed
locally affine partitions are complete, according to Definition 3.8. Indeed, this will be always the case for
the partitions we analyze in the paper. Since we will be interested into directed locally affine partitions
up to sets which are $-negligible w.r.t. some fixed measure $, we will also consider the sets of the
countable partition {Dk

n} as σ-compact, which is always the case provided we remove an $-negligible
set.

Definition 3.17. For k = 1, . . . , d, we call k-(dimensional) directed sheaf set a σ-compact directed locally
affine partition into k-dimensional sets Dk which satisfy the same properties of the sets Dk

n in Proposition
3.15: there exist

• linearly independent vectors {eki }ki=1 ⊂ Sd−1, with linear span

V k = 〈ek1 , . . . , ekk〉,
• a given point zk ∈ V k,
• constants rk, λk ∈ R+,
• a non degenerate cone Ck ∈ C(k,Rd), with C({eki })(rk) ⊂ C̊k,
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Figure 6. The locally affine sets Z2
1 , Z2

2 , Z2
3 with cones of directions C2

1 , C2
2 , C2

3 (given
by the union of the cyan and the yellow triangles) form a 2-dimensional directed sheaf set
with reference plane V 2, base vectors e2

1, e
2
2, reference rectangle z2 + λ2U({e2

1, e
2
2}) and

base cones of directions C({e2
1, e

2
2})(r2) ⊂ V 2 (colored in cyan) and C({e2

1, e
2
2})(2r2) ⊂

V 2 (colored in blue). In the picture, we underline with the corresponding color the
counterimages of the reference cones on the affine spans of the locally affine sets. The
remaining locally affine set of the partition does not belong to the sheaf set since the
projection of its cone of directions (colored in yellow) on the reference plane does not
contain/is contained in the reference cone.

such that, denoting Ak := paD
k, Cka = pC(k,Rd)D

k(a), Zka = pRdD
k(a), it holds:

(1) Ck(rk) ∈ C(k, V k);

(2) Ck ⊂ pV k C̊
k
a ;

(3) pV kC
k
a ⊂ Ck(rk) for all a ∈ Ak

(4) |pV kz| ≥ 1/
√

2 for all z ∈ Cka ∩ Sd−1, a ∈ Ak;
(5) zk + λk U({eki }) ⊂ pV kZ

k
a .

The k-dimensional plane V k = 〈ek1 , . . . ekk〉 will be called reference plane, the cones Ck ⊂ Ck(rk) =: C
′,k

base cones of directions, zk base point and zk + λk U({eki }) base rectangle of the sheaf set.

Moreover, we can choose

(3.32) Ak := Zk ∩
(
zk + (V k)⊥

)
.

In this way the quotient space Ak is a subset of a (d − k)-dimensional affine space. This will be our
default choice for the quotient space Ak of Dk.

Before going on, we prove the following lemma, announced in Section 3.2.

Lemma 3.18. If the directed locally affine partition is σ-compact and complete, then the sets I, E are
Souslin.

Proof. We prove the statement only for I, since the proof for E is analogous. Moreover, we can consider
w.l.o.g. a directed locally affine partition given by a σ-compact directed sheaf set as in Definition 3.17.
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Figure 7. The mapping of a 2-dimensional sheaf set into a fibration, Proposition 3.20.
The pink region denotes the support of the conditional measures µ2

a (resp. µ̃2
q), the

yellow one the support of the conditional measures ν2
a (resp. ν̃2

q), and the blue cones C2
a

(resp. C̃2(q)) are the cones of directions of the locally affine sets Z2
a (in gray color). The

reference cones C2 ⊂ C ′,2 and C̄2 ⊂ C̄ ′,2 are also depicted.

Let A = ∪
l∈N

Al such that the sets pAl×C(k,Rd)D(k) are compact, and for n ∈ N define

Ikn,l :=
{

(a, z) ∈ Al × Rd : z ∈ closZka , z + intrelC
k
a,l ∩Bd(z, 2−n) ⊂ Zka

}
.

By the completeness property of the sheaf set, there exists n′ such that

(3.33) Ikn,l :=
{

(a, z) ∈ Al × Rd : z ∈ closZka , z + intrelC
k
a,l ∩ ∂Bd(z, 2−n

′
) ∩ Zka 6= ∅

}
.

Since the set {(a, z) : z ∈ closZka} is Borel, then by (3.33), reasoning as in (3.31) the sets Ikn,l are
Borel too and finally

I = pRd
( ⋃
k,n,l

Ikn,l
)
\ Z

is Souslin. �

Now we show that the graph Dk of a k-directed sheaf set in Rd can be mapped injectively into a subset
of Rd−k × Rk called fibration, consisting of a family of parallel k-dimensional locally affine sets. In this
section, points in Rd−k × Rk will be denoted as (q, w).
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Definition 3.19. A k-(dimensional) directed fibration is a σ-compact set D̃k ⊂ Rd−k×Rk endowed with

a σ-continuous map C̃k : pRd−k(D̃k)→ C(k,Rk), q 7→ C̃k(q), such that

D̃k(q) is open in Rk,

∃ C̄k ⊂ C̄
′,k, with C̄k, C̄

′,k ∈ C(k,Rk), s.t. C̄k ⊂ ˚̃Ck(q) ⊂ C̃k(q) ⊂ ˚̄C
′,k,(3.34)

for all q ∈ pRd−k(D̃k).

To a directed fibration D̃k we associate the cost

(3.35) cD̃k(q, w, q′, w′) =

{
0 q = q′, w′ − w ∈ C̃k(q),

+∞ otherwise.

Recalling the definition given in (3.7), notice that

cD̃k(q, w, q′, w′) =

{
cC̃k(q)(w,w

′) if q = q′,

+∞ otherwise.

Proposition 3.20. Let Dk be a k-dimensional directed sheaf set with base cones Ck ⊂ C
′,k ∈ C(k,Rd),

reference plane V k, base point zk and quotient space Ak = Zk ∩ (zk + (V k)⊥) and define the map

(3.36) r : Ak × Rd 3 (a, z) 7→
(
id−k(a), ik ◦ pV k(z)

)
∈ Rd−k × Rk,

where

(3.37) id−k : zk + (V k)⊥ → Rd−k, ik : V k → Rk

are the identification maps.
Then, r| ∪

a∈Ak
{a}×affZka

is a bijection onto ∪
q∈id−k(Ak)

{q} × Rk and r| ∪
a∈Ak

{a}×Zka
= r|

p
Ak×Rd (Dk)

maps the

sheaf set pAk×Rd(Dk) into the elements of the fibration D̃k := r(pAk×Rd(Dk)) endowed with the direction
map

C̃k : id−k(Ak) 3 q 7→ ik ◦ pV k ◦ pC(k,Rd)

(
Dk(i−1

d−k(q))
)
.

Moreover,

(3.38) (r× r)#Πf
c
Dk

(µ, {νka}) = Πf
c
D̃k

(µ̂, ν̂),

where

µ̃ =

∫
(ik ◦ pV k)#µ

k
i−1
d−k(q)

did−k#m(q), ν̃ =

∫
(ik ◦ pV k)#ν

k
i−1
d−k(q)

did−k#m(q).(3.39)

Finally

(ik ◦ pV k)#µ
k
i−1
d−k(q)

(
ik ◦ (r(B) ∩ Rd−k × {q})

)
= 0 ⇐⇒ µk

i−1
d−k(q)

(B) = 0, ∀B ∈ B(Rd) ∩ affZka ,

(ik ◦ pV k)#ν
k
i−1
d−k(q)

(
ik ◦ ()r(B) ∩ Rd−k × {q})

)
= 0 ⇐⇒ νk

i−1
d−k(q)

(B) = 0, ∀B ∈ B(Rd) ∩ affZka .

Proof. The functions r and C̃k are σ-continuous, because their graphs are projections of σ-compact sets.
The facts that r is a bijection and that r(pAk×RdD

k) is a fibration are straightforward, observing that

(3.34) is satisfied by the cones C̄k = ik(Ck), C̄
′,k = ik(C

′,k), thanks to (2), (3) and (4) of Definition
3.17.

As for the last statements, it is sufficient to observe that

cDk((a, z), (a′, z′)) = cD̃k(r(a, z), r(a′, z′)) · 1D̃k×Rd−k×Rk(r(a, z), r(a′, z′)),

and that r|{a}×affZka

is bi-Lipschitz, ∀ a ∈ Ak. �

In the following, we set

(3.40) µ̃kq = (ik ◦ pV k)#µ
k
i−1
d−k(q)

, ν̃kq = (ik ◦ pV k)#ν
k
i−1
d−k(q)

, π̃kq = (ik ◦ pV k × ik ◦ pV k)#π
k
i−1
d−k(q)

.
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Remark 3.21. Notice that, once we fix an orthogonal basis {ei}di=1 ⊂ Rd and identify Rd−k × Rk '
〈e1, . . . , ed−k〉 × 〈ed−k+1, . . . , ed〉 = Rd, a k-directed fibration is the image through the map id−k × ik
of a k-directed sheaf set whose reference k-plane is {0} × 〈ed−k+1, . . . , ed〉. Therefore, we can think of
a k-directed fibration as a k-directed sheaf set whose sets are contained in disjoint parallel k-planes. In
particular, when we speak about directed locally affine subpartitions of a fibration (as e.g. in Proposition
3.22) we mean the image through the map id−k × ik of directed locally affine subpartitions of the
corresponding k-directed sheaf set.

Proposition 3.22. Let {Z`a,b, C`a,b} `=0,...,k

a∈Ak,b∈B`
be a locally affine directed subpartition of the sheaf set

{Zka , Cka}k,a. Then the sets

Z̃`q,b = r(a, Z`a,b), C̃`q,b = ik ◦ pV k(C`a,b)

form a directed locally affine subpartition of the fibration D̃k = r(pAk×Rd(Dk)), and viceversa.

If moreover the subpartition {Z`a,b, C`a,b}`,a,b is regular, then also the subpartition {Z̃`q,b, C̃`q,b}`,q,b is
regular, and viceversa.

Proof. Since r|{a}×aff Zka

is an invertible projection, the first part of the statement is obvious.

The same reasoning holds for the regularity of the measures. �

Recalling Propositions 3.11 and 3.14, it is fairly easy to prove the following

Corollary 3.23. Let D̃k be a k-directed fibration and µ̃, ν̃ ∈ P(Rd−k × Rk) s.t. Πf
c
D̃k

(µ̃, ν̃) 6= ∅. Then,

(3.41) π̃ ∈ Πf
c
D̃k

(µ̃, ν̃) ⇔ π̃kq ∈ Πf
c
C̃k(q)

(µ̃kq, ν̃
k
q ),

being µ̃ =
∫
µ̃kq dm̃(q), ν̃ =

∫
ν̃kq dm̃(q) and π̃ =

∫
π̃kq dm̃(q) be respectively the disintegrations of µ̃, ν̃ w.r.t.

the partition {{q} × Rk}q∈id−k(Ak) and the disintegration of π̃ w.r.t. {{q} × Rk × {q} × Rk}q∈id−k(Ak).

4. Directed locally affine partitions on cone-Lipschitz foliations

In the first part of this section we generalize the notion of graph of a | · |D∗ -Lipschitz function up to the

definition of a cC̃-Lipschitz foliation, where C̃ is the family of cones of directions associated to a given

k-dimensional fibration D̃ ⊂ Rd−k × Rk. From now on we fix k and we drop the superscript k in the
notation for a k-directed fibration or k-dimensional cone. Moreover we will replace the variable q with a,
since it is clear from Proposition 3.20 and Remark 3.21 that the quotient spaces of a sheaf set and of the
corresponding fibration can be identified.
In particular, for any fixed a ∈ A = pRd−k(D̃), the intersection of a cC̃-Lipschitz foliation with {a} × Rk
will be a suitable collection of disjoint (complete) cC̃(a)-Lipschitz graphs –namely, graphs of | · |D̃(a)∗ -

Lipschitz functions where D̃(a) is convex set s.t. C̃(a) = epi | · |D̃(a)∗ (see Definition 4.1)– and at most

countably many sets with nonempty interior.
Next, we generalize the notion of super/subdifferentials given in Definition 3.3 for single graphs of

| · |D∗ -Lipschitz functions to this new class of objects: at each point w ∈ D̃(a), the superdifferential will

be the intersection of the cone w + C̃(a) with the cC̃(a)-Lipschitz graph to which w belongs.

Our main result is Theorem 4.18, in which we prove that, up to a residual set, a cC̃-Lipschitz foliation
can be decomposed into a directed locally affine partition whose cone of directions at each point is given
by the super/subdifferential.

Moreover, in Theorem 4.22 we characterize the residual set as the set of initial/final points of the
super/subdifferential partitions (see Definition 3.7).

4.1. Convex cone-Lipschitz graphs. Let C̃ be the epigraph of a convex norm | · |D̃∗ : Rk−1 → R: by

Remark 2.1, as a subset of Rk = Rk−1 × R, C̃ ∈ C(k,Rk). We denote variables in Rk as w = (x, y) ∈
Rk−1 × R and we let cC̃ : Rk × Rk → [0,+∞] be the related convex cone cost (see Definition (3.2)).

Now we introduce a class of subsets of Rk which includes the graphs of | · |D̃∗ -Lipschitz functions

ϕ : Rk−1 → R. In particular, when k = d + 1 and C̃ = epi | · |D∗ , this class contains the graphs of the
Kantorovich potentials ψ for the transport problem with cost (3.1) (see Section 3.1).
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Definition 4.1. A set G ⊂ Rk is a cC̃-Lipschitz graph if

(4.1a) G×G ∩
{
cC̃ < +∞

}
⊂
{

(w,w′) : w′ − w ∈ ∂C̃
}
.

Moreover, a cC̃-Lipschitz graph G ⊂ Rk is complete if

(4.1b) O(w,w′) :=
{
cC̃(w, ·) < +∞

}
∩
{
cC̃(·, w′) < +∞

}
⊂ G, ∀w,w′ ∈ G.

Notice that (4.1a) is equivalent to

w′ /∈ w ± int C̃, ∀w,w′ ∈ G,
which can be rephrased as

(4.2) G = graphϕG for some ϕG : domϕG ⊂ Rk−1 → R, ϕG | · |D∗ -Lipschitz.

The second condition (4.1b) yields

G ⊃ O(G×G) :=
⋃

w,w′∈G
O(w,w′).

Remark 4.2. If G = graphϕG with ϕG | · |D̃∗ -Lipschitz and domϕG = Rk−1, then G is a complete
cC̃-Lipschitz graph. The analysis of this particular case will be sufficient for the proof of Theorem 1.1. If

domϕG 6= Rk−1, we anticipate that the “completeness” property (4.1b) is what we need to construct sets
which preserve the properties of the | · |D̃∗ -super/subdifferentials of Lipschitz functions on Rk−1: these
properties are fundamental for our later purposes, culminating with the proof of Theorem 4.18.

Recalling Definition 3.3 of super/subdifferential of the graph of a | · |D∗ -Lipschitz function ϕ we give
the following definition.

Definition 4.3. Given a set G ⊂ Rk, define the cC̃-superdifferential and the cC̃-subdifferential of G
respectively as

∂+G := G×G ∩
{
cC̃ < +∞

}
, ∂−G := G×G ∩

({
cC̃ < +∞

})−1
.

Notice that ∂−G = (∂+G)−1 and since

(4.3) (w + C) + C ⊂ w + C, ∀w ∈ Rk, C ∈
k⋃
`=1

C(`,Rk),

one deduces the transitivity property

w′ ∈ ∂±G(w) =⇒ ∂±G(w′) ⊂ ∂±G(w).

The property of a set of being a complete cC̃-Lipschitz graph can be equivalently restated in terms of
its cC̃-super/subdifferentials as follows.

Proposition 4.4. G ⊂ Rk is a complete cC̃-Lipschitz graph if and only if

(4.4a) ∂±G ⊂ graph
(
I± ∂C̃

)
,

(4.4b) O(w,w′) ⊂ ∂+G(w) ∩ ∂−G(w′), ∀(w,w′) ∈ G×G.

Proof. By Definition 4.3, property (4.4a) is a rephrasing of (4.1a), and (4.4b) is a rephrasing of (4.1b). �

Recalling (3.10) and (3.11), we notice that if G is a cC̃-Lipschitz graph and ϕG is the function satisfying
(4.2), then

∂±G = ∂±graphϕG = I× ϕG
(
∂±ϕG

)
.

Now we state a simple geometric characterization of the set O(w,w′) which will be fundamental in
our study of the cC̃-super/subdifferentials of complete cC̃-Lipschitz graphs. First we give the following
definition.

Definition 4.5. For w, w′ ∈ Rk, we let C(w,w′) be the extremal cone of C̃ satisfying

(4.5) w′ − w ∈ intrelC(w,w′).

Equivalently, C(w,w′) is the minimal cone w.r.t. set inclusion among the extremal cones of C̃ containing
w′ − w.
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Notice that, by (4.1a), if w,w′ ∈ G and cC̃(w,w′) <∞ then C(w,w′) ⊂ ∂C̃, i.e. C(w,w′) is a proper

extremal cone of C̃.

Proposition 4.6. O(w,w′) is the convex set given by

O(w,w′) = w + C(w,w′) ∩ w′ − C(w,w′)

and there exists δ > 0 such that

(4.6) Bk(w, δ) ∩
(
w + C(w,w′)

)
⊂ O(w,w′) and Bk(w′, δ) ∩

(
w′ − C(w,w′)

)
⊂ O(w,w′).

In particular,
R+(O(w,w′)− w) = R+(w′ − O(w,w′)) = C(w,w′).

Proof. By Definition, O(w,w′) ⊃ w + C(w,w′) ∩ w′ − C(w,w′) and since w′ − w ∈ intrelC(w,w′), (4.6)
follows.

Let us assume that ∃ z ∈ O(w,w′) \ w + C(w,w′) and let F be the smallest face of C̃ such that
z − w, w′ − w ∈ F . Notice that w′ − w ∈ ∂F . W.l.o.g. we set w = 0 and z = (z1, z2) ∈ R`−1 × R,
w′ = (w′1, w

′
2) ∈ R`−1 × R w.r.t. coordinates s.t. F is the epigraph of a convex norm | · |E∗ : R`−1 → R.

Hence, w′2 = |w′1|E∗ and either z2 > |z1|E∗ , or z2 = |z1|E∗ and w′2 − z2 > |w′1 − z1|E∗ . In the first case,

w′2− z2 < |w′1|E∗ − |z1|E∗ ≤ |w′1− z1|E∗ , which implies w′− z ∈ affF \F ⊂ Rk \ C̃, contradicting the fact
that z ∈ O(w,w′). In the second case, we get w′2 − z2 > |w′1 − z1|E∗ ≥ |w′1|E∗ − |z1|E∗ = w′2 − z2, thus
leading again to a contradiction. �

Observe that, with the characterization of Proposition 4.6 and by projecting on Rk−1, (4.4b) can be
equivalently restated in terms of the super/subdifferentials of ϕG saying that, for all x, x′ ∈ domϕG, the
set ∂+ϕG(x) ∩ ∂−ϕG(x′) contains the convex set OpRk−1

(x, x′) such that

OpRk−1
(x, x′) = x+ CpRk−1

(x, x′) ∩ x′ − CpRk−1
(x, x′)

and

(4.7) R+
(
OpRk−1

(x, x′)− x
)

= R+
(
x′ − OpRk−1

(x, x′)
)

= CpRk−1
(x, x′),

being CpRk−1
(x, x′) the minimal extremal cone of | · |D̃∗ containing x′−x (see Section 2.2 for the definition

of extremal cone).

4.2. Convex cone-Lipschitz foliations. Let C̃ : A × Rk → C(k;Rk), A ⊂ Rd−k, be the convex cone
direction map of a k-directed fibration satisfying (3.34) and let cC̃ be the cost function defined in (3.35).
Recall that, by (3.35)

(4.8) cC̃(a, w, a′, w′) < +∞ =⇒ a = a′,

and

(4.9) cC̃(a, w, a, w) = cC̃(a)(w,w
′).

Moreover, set

(4.10) C̃(a) = epi | · |D(a)∗ ,

where D(a) ⊂ Rk−1 for some suitable orthonormal coordinates independent of a.

Definition 4.7. A cC̃-Lipschitz foliation is a σ-compact partition in A × Rk with quotient map θ :

dom θ ⊂ A× Rk → T such that

(4.11a) (a, w), (a′, w′) ∈ {θ = t} =⇒
{
cC̃(a, w, ·, ·) < +∞

}
∩
{
cC̃(·, ·, a′, w′) < +∞

}
⊂ {θ = t},

(4.11b) θ(a, w) = θ(a′, w′) =⇒ a = a′.

By (4.8), (4.11a) and recalling (4.1b), we set

(4.12) O(a)(w,w′) :=
{
cC̃(a)(w, ·) < +∞

}
∩
{
cC̃(a)(·, w

′) < +∞
}

= (w + C̃(a)) ∩ (w′ − C̃(a)).

We note moreover that from (4.11b) one has pA{θ = t} = {a} for some a ∈ A, thus in general T = A×S
for some Polish space S and pA ◦ θ ◦ p−1

A = IA. Hence, for simplicity of notation, from now onwards we
will write –when not leading to confusion– a = pA{θ = t}.

The following definition is given to simplify the notation in Proposition 4.9 (see Remark 4.10).
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Definition 4.8. We call non-degeneracy set of a cC̃-Lipschitz foliation the set{
t ∈ T : ∃w,w′ ∈ pRk{θ = t} s.t.

int
{
cC̃(a)(·, w

′) < +∞
}
∪ int

{
cC̃(a)(w, ·) < +∞

}
⊂
(
Rk \ pRk{θ = t}

)}
.

(4.13)

We say that the partition {θ−1(t)}t∈T is non-degenerate if the set {t : {θ = t} 6= ∅} coincides with its
non-degeneracy set.

In other words, the set {θ = t} is non-degenerate if there are two points w, w′ in pRk{θ = t} such that

(w′ − C̃(a)) ∩ {θ = t} ⊂ w′ − ∂C̃(a), (w + C̃(a)) ∩ {θ = t} ⊂ w + ∂C̃(a).

Proposition 4.9. Let {θ−1(t)}t∈T be a non-degenerate cC̃-Lipschitz foliation. Then, there exist two
Borel functions

h−, h+ :
{

(t, x) ∈ T× Rk−1 : x ∈ pRk−1({θ = t})
}
→ R

such that

(1) x 7→ h+(t, x), h−(t, x) are | · |D(a)∗-Lipschitz functions for all t, where {a} = pA{θ = t} and D(a)∗

is given by (4.10);

(2) clos {θ = t}(a) ⊂
{

(x, y) ∈ Rk−1 × R : h−(t, x) ≤ y ≤ h+(t, x)
}

;

(3) intrel{θ = t}(a) =
{

(x, y) ∈ ×Rk−1 × R : h−(t, x) < y < h+(t, x)
}

.

In particular,

intrel{θ = t}(a) = ∅ ⇐⇒ h−(t, x) = h+(t, x) for x ∈ pRk−1{θ = t}(a)

⇐⇒ {θ = t}(a) is a complete cC̃(a)-Lipschitz graph

⇐⇒ {θ = t}(a) = graph h±(t)xpRk−1{θ=t}(a)×R.

(4.14)

Proof. By (4.11a), {θ = t}(a) satisfies (4.1b). In particular, for all x ∈ pRk−1({θ = t}(a)) the set{
y ∈ R : (x, y) ∈ {θ = t}(a)

}
is a segment. Thus define for x ∈ pRk−1({θ = t}(a))

(4.15a) h−(t, x) := inf
{
y : cC̃(a)(x

′, y′, x, y) < +∞ for some (x′, y′) ∈ {θ = t}(a)
}
,

(4.15b) h+(t, x) := sup
{
y : cC̃(a)(x, y, x

′, y′) < +∞ for some (x′, y′) ∈ {θ = t}(a)
}
.

Since {θ−1(t)}t∈T is non degenerate, then for all x ∈ pRk−1({θ = t}(a)) it follows that

(x, h−(t, x)) ∩ int
{
cC̃(a)(·, w

′) < +∞
}

= (x, h+(t, x)) ∩ int
{
cC̃(a)(w, ·) < +∞

}
= ∅,

where w, w′ are the points of non-degeneracy (4.13), so that h+, h− are real valued functions.
Using again property (4.1b), one has also

h−(t, x) = inf
{
y′ + |x− x′|D(a)∗ : (x′, y′) ∈ {θ = t}(a)}

}
,

h+(t, x) = sup
{
y′ − |x′ − x|D(a)∗ : (x′, y′) ∈ {θ = t}(a)}

}
,

which show that h+, h− are | · |D(a)∗ -Lipschitz, proving Point (1). Points (2) and (3) of the statement
are an immediate corollary of the definitions (4.15) and property (4.1b).

Finally (4.14) is a straightforward consequence of the first part of the statement. �

Remark 4.10. From the proof of Proposition 4.9 it is clear that out of the non-degeneracy set there are
three possibilities: either the function defined in (4.15a) is identically −∞ or the function in (4.15b)
is identically +∞ or both things happen. Hence, for all a ∈ A there exist at most countably many
{tan}n∈N ⊂ T s.t.

intrel{θ = tan}(a) 6= ∅.
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In the following proposition we give the two examples of cC̃-Lipschitz foliations we will deal with in
the rest of the paper.

Proposition 4.11. (1) Let G = graphϕ ⊂ Rk be a complete cC̃-Lipschitz graph. Then, the trivial
equivalence relation on {a0} × G given by the constant quotient map θϕ({a0} × G) = a0 determines a

cC̃-Lipschitz foliation in {a0}×G ⊂ {a0}×Rk, being C̃ the constant cone direction map C̃ : {a0}×G 3
(a0, w) 7→ C̃ ∈ C(k,Rk), which satisfies (4.14).

(2) Let {θ−1(t)}t∈T be the equivalence classes of a cC̃-compatible linear preorder 4 on A × Rk with
σ-compact graph (see Definition 2.14). Then they form a cC̃-Lipschitz foliation.

Proof. To prove the first part of the proposition, it is sufficient to notice that property (4.11a) corresponds
to (4.1b) and (4.14) is a consequence of (4.1a).

As for the second example, by (2.43) observe that if w,w′ ∈ {θ = t}(a) then{
cC̃(a)(w, ·) < +∞

}
∩
{
cC̃(a)(·, w

′) < +∞
}
⊂
{
w′′ : w 4 w′′ and w′′ 4 w′

}
⊂ {θ = t}(a).

�

In view of (4.14), we extend Definition 4.3 to cC̃-Lipschitz foliations.

Definition 4.12. We define the superdifferential of a cC̃-Lipschitz foliation {θ−1(t)}t∈T as the set ∂+θ ⊂
A× Rk × A× Rk defined by

∂+θ(a, a′) =
{

(w,w′) : θ(a, w) = θ(a′, w′) and cC̃(a, w, a′, w′) < +∞
}
.

Analogously, we define its subdifferential as the set ∂−θ ⊂ A× Rk × A× Rk given by

∂−θ(a, a′) =
{

(w,w′) : θ(a, w) = θ(a′, w′) and cC̃(a′, w′, a, w) < +∞
}
.

Clearly

∂−θ = (∂+θ)−1

and since by (4.8)

(4.16) ∂±θ(a, a′) 6= ∅ =⇒ a = a′,

then for simplicity we will use the notation

∂±θ(a) = ∂±θ(a, a).

Remark 4.13. Recalling Definition 4.3, notice that

∂±θ(a) =
⋃
t∈T

pA{θ=t}=a

pRk×Rk∂
±({θ = t}(a)),

and, in particular, as for cC̃-Lipschitz graphs, we have the transitivity property

(4.17) w′ ∈ ∂±θ(a, w) ⇒ ∂±θ(a, w′) ⊂ ∂±θ(a, w).

4.3. Regular transport sets and residual set. In this section we consider only the elements of a
cC̃-foliation whose {a}-sections are partitions into complete cC̃(a)-Lipschitz graphs, namely level sets of

θ which satisfy (4.14).
We go through a careful analysis of the geometric properties of the super/subdifferentials of cC̃-

Lipschitz foliations, which finally leads to partition them into forward/backward regular sets and a residual
set.

By (4.16), in the following definitions the variable {a} simply plays the role of a parameter. Then, to
understand the geometric structure of the problem one can also think from now onwards that A = {a0}.
The dependence on a is kept in order to show that all the sets and functions constructed below depend
measurably (resp. Borel or σ-continuously) on the parameter a. We will define the following sets through
their {a}-sections.
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Forward/backward transport set: the forward/backward transport sets are respectively defined
by

(4.18a) T +θ(a) :=
{
w : ∂+θ(a, w) 6= {w}

}
= p1

(
∂+θ(a) \ I

)
,

(4.18b) T −θ(a) :=
{
w : ∂−θ(a, w) 6= {w}

}
= p1

(
∂−θ(a) \ I

)
.

Set of fixed points: the set of fixed points is given by

(4.19) Fθ(a) := Rk \
(
T −θ(a) ∪ T +θ(a)

)
.

Forward/backward direction multifunction: The forward/backward direction multifunction are
respectively given by

(4.20a) D+θ(a) :=

{(
w,

w′ − w
|w′ − w|

)
: w ∈ T +θ(a), w′ ∈ ∂+θ(a, w) \ {w}

}
,

(4.20b) D−θ(a) :=

{(
w,

w − w′

|w − w′|

)
: w ∈ T −θ(a), w′ ∈ ∂−θ(a, w) \ {w}

}
.

The following proposition collects the fundamental properties of the super/subdifferentials of cC̃-
Lipschitz foliations. The most striking feature is that, due to the completeness property (4.1b) of its
cC̃(a)-Lipschitz graphs, the forward/backward direction multifunctions at a point of {θ = t}(a) contain

all the information about the super/subdifferential at that point and also in a “neighborhood” of it (see
Remark 4.16). Whenever w,w′ ∈ {θ = t}(a), we will define C(a)(w,w′) and O(a)(w,w′) as in Definitions

4.5 and (4.1b) for the convex cone C̃ = C̃(a).

Proposition 4.14. Let F ⊂ C̃(a) be an extremal cone, w ∈ T +θ(a). The following conditions are
equivalent:

(1) F ∩ Sk−1 ⊂ D+θ(a, w);
(2) there exists w′ ∈ ∂+θ(a, w) such that F = C(a)(w,w′);
(3) O(a)(w,w′) ⊂ ∂+θ(a, w) for some w′ such that F = C(a)(w,w′);
(4) there exists δ = δ(w,F ) > 0 such that

Bk(w, 2δ) ∩ w + F ⊂ ∂+θ(a, w).

In particular, if F satisfies one of the above conditions, then for all w′ as in (2-3)

(4.21) F ∩ Sk−1 ⊂ D+θ(a, w̄) ∀ w̄ ∈ intrelO(a)(w,w′).

Finally, if F is maximal w.r.t. set inclusion among the extremal cones of C̃(a) satisfying (1-4), then

(4.22) F ∩ Sk−1 = D+θ(a, w̄) = convSk−1D+θ(a, w̄) ∀ w̄ ∈ intrelO(a)(w,w′),

where w′ is chosen as in (2-3).

Proof. (1)⇒ (2). It is sufficient to take w′ ∈ ∂+θ(a, w) \ {w} s.t.

w′ − w
|w′ − w|

∈ intrelF ∩ Sk−1

and recall Definition 4.5.
(2)⇒ (3). If w′ satisfies (2), then (3) follows from the completeness assumption (4.11a) in the definition

of cC̃-Lipschitz foliation.
(3)⇒ (4). It follows immediately from (4.6).
(4)⇒ (1). It is a direct consequence of the definition of D+θ(a).
Proof of (4.21). Let w̄ ∈ intrelO(a)(w,w′). Then, by the geometric properties of O(a)(w,w′) given in

Proposition 4.6, it is fairly easy to see that w′ ∈ ∂+θ(a, w̄), and C(a)(w̄, w′) ∩ Sk−1 ⊂ D+θ(a, w̄). Since
w̄ ∈ intrelO(a)(w,w′), C(a)(w̄, w′) = F .

Proof of (4.22). Let now F be maximal and w̄ ∈ intrelO(a)(w,w′). By (4.21) we already know that
F ∩ Sk−1 ⊂ D+θ(a, w̄). Let us assume that there exists ŵ ∈ ∂+θ(a, w̄) such that ŵ − w̄ ∈ Rk \ F :
being F an extremal cone, then one has also ŵ − w̄ ∈ Rk \ aff F . By the transitivity property (4.17),
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ŵ ∈ ∂+θ(a, w) \ (w + F ) and, by simple geometrical considerations similar to those made in the proof of
Proposition 4.6,

F ( R+(O(a)(w, ŵ)− w)

with strict inclusion. Hence, by the completeness assumption (4.11a), this contradicts the maximality of
F . �

A completely similar proposition can be proved for ∂−θ: we state it without proof.

Proposition 4.15. Let F ⊂ C̃(a) be an extremal cone, w ∈ T −θ(a). The following conditions are
equivalent:

(1) F ∩ Sk−1 ⊂ D−θ(a, w);
(2) there exists w′′ ∈ ∂−θ(a, w) such that F = C(a)(w′′, w);
(3) O(a)(w′′, w) ⊂ ∂−θ(a, w) for some w′′ such that F = C(a)(w′′, w);
(4) there exists δ = δ(w,F ) > 0 such that

Bk(w, 2δ) ∩ w − F ⊂ ∂−θ(a, w).

In particular, if F satisfies one of the above conditions, then for all w′′ as in (2-3)

F ∩ Sk−1 ⊂ D−θ(a, w̄) ∀ w̄ ∈ intrelO(a)(w′′, w).

Finally, if F be maximal w.r.t. set inclusion among the extremal cones of C̃(a) satisfying (1-4), then

(4.23) F ∩ Sk−1 = D−θ(a, w̄) = convSk−1D−θ(a, w̄) ∀ w̄ ∈ intrelO(a)(w′′, w),

where w′′ is chosen as in (2-3).

Remark 4.16. The radii of the balls δ = δ(F,w) satisfying Point (4) in Propositions 4.14-4.15 for a fixed
w ∈ T ±θ(a) might actually change as F varies in the set of extremal cones satisfying Point (1) and even
tend to zero for some sequence of distinct {Fn}n∈N.

Finally, we define the (`-dimensional) forward/backward transport sets and the residual sets: they
are defined in terms of properties of the forward/backward direction multifunctions, i.e. of “local” (see
Remark 4.16) properties of their super/subdifferentials.

`-dimensional forward/backward regular transport set: for ` = 1, . . . , k−1, the `-dimensional
forward/backward regular transport sets are defined respectively as

R+,`θ(a) :=

{
w ∈ T +θ(a) : (i) D+θ(a, w) = convSk−1D+θ(a, w)

(ii) dim
(
convSk−1D+θ(a, w)

)
= `− 1

(iii) ∃w′′ ∈ T +θ(a) ∩
(
w − intrel

(
R+convSk−1D+θ(a, w)

))
such that θ(a, w′′) = θ(a, w) and (i), (ii) hold for w′′

}
.

(4.24a)

R−,`θ(a) :=

{
w ∈ T −θ(a) : (i) D−θ(a, w) = convSk−1D−θ(a, w)

(ii) dim
(
convSk−1D−θ(a, w)

)
= `− 1

(iii) ∃w′′ ∈ T −θ(a) ∩
(
w + intrel

(
R+convSk−1D−θ(a, w)

))
such that θ(a, w′′) = θ(a, w) and (i), (ii) hold for w′′

}
.

(4.24b)

Forward/backward regular transport sets: the forward/backward regular transport sets are
defined respectively by

(4.25) R+θ(a) :=

k−1⋃
`=1

R+,`θ(a), R−θ(a) :=

k−1⋃
`=1

R−,`θ(a).

Regular transport set: the regular transport set is defined by

(4.26) Rθ(a) := R−θ(a) ∩R+θ(a).
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w

D−θ(a, w)
R+,2θ(a) ∩R−,2θ(a) R−,1θ(a)

R+,1θ(a)

Eθ(a) \ I+θ(a)

Iθ(a) \ T −θ(a)

R+,1θ(a) ∩R−,1θ(a)

C̃(a)

D+θ(a, w)

Figure 8. A possible decomposition of a level set of θ (or equivalently of a complete
cC̃(a)-Lipschitz graph), with the various sets introduced in Section 4.3. More precisely,

given the 3-dimensional cone of directions C̃(a), the yellow region represents the set
of regular points R+,2(a) ∩ R−,2(a) with 2-dimensional forward/backward cones of di-
rections D+θ(a) = D−θ(a), the black line the set of regular points R+,1(a) ∩ R−,1(a)
with 1-dimensional forward/backward cones of directions, the blue line the set R−,1θ(a)
of points with 1-dimensional backward cone D−θ(a) and 2-dimensional forward cone
D+θ(a) and the purple line the set R+,1θ(a) of points with 1-dimensional forward cone
D+θ(a) and 2-dimensional backward cone D−θ(a). The brown region represents a set
O(a)(w′, w′′) as in (4.12). As we will see in Section 4.5, the red curve represents the set
of final points Eθ(a)\T +θ(a), the green curve the set of initial points Iθ(a)\T −(a), and
also the blue line is contained in Iθ(a) and the purple line in Eθ(a).

Residual set: the residual set is defined by

(4.27) N θ(a) :=
(
T +θ(a) ∪ T −θ(a)

)
\ Rθ(a).

Property (4.24a) (iii) ((4.24b) (iii)) will be crucial in Theorem 4.18 in order to prove that the sets
of points in R+,`θ(a) (R−,`θ(a)) which belong to the same level set of θ and whose superdifferentials
(subdifferentials) have the same affine span are `-dimensional locally affine sets (see Definition 3.5).

We now prove that all the above sets, except Fθ and N θ, are σ-compact.

Proposition 4.17. The sets ∂±θ, T ±θ, D±θ, R±,`θ, R±θ, Rθ are σ-compact.
The sets Fθ, N θ are Borel.

Proof. For every set in the first statement of the proposition, we will construct σ-compact subsets of a
Polish space whose projection corresponds to that particular set.

Subdifferential: consider the following sets:

(1) {(a, w, a′, w′) : cC̃(a, w, a′, w′) < ∞}: since the function cC̃ is σ-continuous, it follows that this
set is σ-compact;

(2) {(a, w, a′, w′) : θ(a, w) = θ(a′, w′)}: the same reasoning of the previous point applies here, being
θ a σ-continuous function in Definition 4.7 of cC̃-Lipschitz foliation.

It follows that the set

∂−θ =
{

(a, w, a′, w′) ∈ A× Rk × A× Rk : cC̃(a′, w′, a, w) < +∞, θ(a, w) = θ(a, w′)
}

=
{

(a, w, a′, w′) : cC̃(a′, w′, a, w) <∞
}
∩
{

(a, w, a′, w′) : θ(a, w) = θ(a′, w′)
}

is σ-compact.
Backward transport set: the set T −θ is the projection of the σ-compact set⋃

n∈N
∂−θ ∩

{
(a, w, a′, w′) : |w − w′| ≥ 2−n

}
,
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and thus it is σ-compact.
Backward directions: since

{w 6= w′} 3 (w,w′) 7→ w − w′

|w − w′|
∈ Sk−1

is continuous, it follows that D−θ is σ-compact, being the image of a σ-compact set by a continuous
function.

Backward regular transport sets: first notice that the map A 7→ convA is continuous w.r.t. the
Hausdorff topology and that the sets

(4.28) Cm(`,Rk) :=

{
C ∈ C(`;Rk) : C̊(−1/m) ⊃

(
Bk(wm, 1/(2m))∩ aff C

)
, dist

(
wm, aff C) ≤ 1/(4m)

}
are closed w.r.t. the Hausdorff topology, for all ` = 1, . . . , k − 1, wm ∈ Qk, m ∈ N. Since the function
C(`,Rk) 3 C 7→ dimC is constant on these sets, then it is σ-continuous.

Let us now prove that the set{
(w,w′, C) ∈ Rk × Rk × C(`,Rk) : w′ ∈ w − intrelC

}
is σ-compact. This follows by considering the closed sets C(−r) \Bk(0, r), observing that

Cn → C =⇒ Cn(−r) \Bk(0, r)→ C(−r) \Bk(0, r),

and writing the previous set as the union of countably many σ-compact sets in the following way:⋃
n∈N

{
(w,w′, C) ∈ Rk × Rk × C(`,Rk) : w′ ∈ w −

(
C(−2−n) \Bk(0, 2−n)

)}
.

From Proposition 4.15, we have moreover that

D−θ(a, w) = convSk−1 D−θ(a, w) ⇔ D−θ(a, w) ∩ intrelconvSk−1 D−θ(a, w) 6= ∅.

Hence the set{
(a, w, a′, w′, C) : (i) (a, w), (a′, w′) ∈ T −θ

(ii) θ(a, w) = θ(a′, w′)

(iii) C = R+convSk−1D±θ(a, w)

(iv) w′ ∈ w − intrel C

(v) dim
(
convSk−1 D−θ(a, w)

)
= dim

(
convSk−1 D−θ(a′, w′)

)
= `− 1

(vi) D−θ(a, w) = convSk−1 D−θ(a, w),D−θ(a, w′) = convSk−1 D−θ(a, w′)
}

is σ-compact, being the finite intersection of σ-compact sets, and thus R−,`θ is σ-compact too.
The proof for ∂+θ, T +θ, D+θ and R+,`θ is analogous, and hence the σ-compactness of R+θ, R−θ and

Rθ follows.
Being the difference of two σ-compact sets a Borel set, the Borel measurability of Fθ and N θ is

proved. �

4.4. Super/subdifferential directed partitions of regular sets. In this section we construct di-
rected locally affine partitions of the forward regular sets and backward regular sets of a cC̃-Lipschitz
foliation, which will be respectively called superdifferential directed partitions and subdifferential directed
partitions. As we will see, these partitions coincide on the regular set, thus giving a directed locally affine
partition which will be called cC̃-differential directed partition.

Define the maps

(4.29a)
v+ : R+θ → T×

k−1
∪
`=1
A(`,Rk)

(a, w) 7→ v+(a, w) :=
(
θ(a, w), aff ∂+θ(a, w)

)
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(4.29b)
v− : R−θ → T×

k−1
∪
`=1
A(`,Rk)

(a, w) 7→ v−(a, w) :=
(
θ(a, w), aff ∂−θ(a, w)

)
In the following, when clear from the context, we identify sets Ea ⊂ {a} × Rk with pRkEa.

Theorem 4.18. The map v+ induces a (complete) directed locally affine partition on R+θ into sets{
Z`,+a,b

}
`=1,...,k−1

a∈A,b∈B`,+(a)
, Z`,+a,b ⊂ {a} × Rk

with direction cones {
C`,+a,b

}
`=1,...,k−1

a∈A,b∈B`,+(a)
, C`,+a,b ⊂ {a} × C(`,R

k)

such that the following holds:

C`,+a,b is the extremal face of C̃(a) s.t. D+θ(a)(w) = C`,+a,b ∩ Sk−1, ∀w ∈ Z`,+a,b .(4.30)

Analogously, the map v− induces a (complete) directed locally affine partition of R−θ into sets{
Z`,−a,b

}
`=1,...,k−1

a∈A,b∈B`,−(a)
, Z`,−a,b ⊂ {a} × Rk

with direction cones {
C`,−a,b

}
`=1,...,k−1

a∈A,b∈B`,−(a)
, C`,−a,b ⊂ {a} × C(`,R

k)

such that the following holds:

C`,−a,b is the extremal face of C̃(a) s.t. D−θ(a)(w) = C`,−a,b ∩ Sk−1, ∀w ∈ Z`,−a,b .(4.31)

As a corollary one obtains the following decomposition of Rθ.

Corollary 4.19. The two maps v+, v− coincide on Rθ, i.e.

(4.32) v := v+
|Rθ = v−|Rθ ,

and the map v : Rθ → T ×
k−1
∪
`=1
A(`,Rk) defined above induces on Rθ a (complete) directed locally affine

partition {Z`a,b, C`a,b} `=1,...,k−1
a∈A,b∈B`(a)

, where, for all b ∈ B`(a) and ` = 1, . . . , k − 1,

Z`a,b = Z`,+a,b ∩ Z
`,−
a,b , C`a,b = C`,+a,b = C`,−a,b .

In particular, both (4.30) and (4.31) are satisfied.

In the following we will use the following definitions.

Definition 4.20. Given a cC̃-Lipschitz foliation θ, the directed locally affine partition induced on R+θ
by v+ is called the superdifferential directed partition, while the directed locally affine partition induced
on R− by v− is called the subdifferential directed partition.

The partition induced by v on the regular points Rθ is called cC̃-differential directed partition.

We prove the part of Theorem 4.18 which regards R+θ and v+, being the one about R−θ and v−

completely symmetric. Notice that in the proof is also shown that the map a 7→ B`,±(a) is σ-continuous.

Proof of Theorem 4.18. Being a single-valued map, v+ clearly induces a partition of R+θ. Moreover, v+

is σ-continuous by Proposition 4.17 and the fact that the affine envelope of compact sets is σ-continuous
w.r.t. Hausdorff topology. Since, by (4.11b)

v+(a, w) = v+(a′, w′) ⇔ a = a′,

let
B`,+(a) := v+({a} ×R+θ(a)) ∩ T×A(`,Rk)

and ∀ b ∈ B`,+(a) let

Z`,+a,b :=
{
w ∈ R+θ(a) : v+(a, w) = b

}
.

By (4.24a) (i), for all w ∈ Z`,+a,b

R+D+θ(a, w) = aff ∂+θ(a, w)− w ∩ C̃(a) = p2b− w ∩ C̃(a) ∈ C(`,Rk).
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Thus, by (4.24a) (iii), Z`,+a,b ⊂ R+,`θ and

C`,+a,b := p2b− w ∩ C̃(a)

satisfies (4.30).

Let us now show that Z`,+a,b is relatively open in R+,`θ ∩ p2b. More precisely, we prove the following

Claim 4.21. For all w ∈ Z`,+a,b , there exist

w′ ∈ ∂+θ(a, w) ∩ w + intrelC
`,+
a,b and w′′ ∈ ∂−θ(a, w) ∩ w − intrelC

`,+
a,b

such that

intrelO(a)(w′′, w′) ⊂ Z`,+a,b .

By (4.24a) (i) and (4.22) there exists w′ ∈ ∂+θ(a, w) ∩ w + intrelC
`,+
a,b s.t. w′ ∈ Z`,+a,b and by (4.24a)

(iii) there exists w′′ ∈ ∂−θ(a, w) ∩ w − intrelC
`,+
a,b s.t. w′′ ∈ Z`,+a,b . By Proposition 4.6, intrelO(a)(w′′, w′)

is a relatively open neighborhood of w in p2b.
Let now w̄ ∈ intrelO(a)(w′′, w′). By the completeness of the superdifferential (4.11a),

w̄ ∈ ∂+θ(a, w′′) and w′ ∈ ∂+θ(a, w̄).

Hence,

C`,+a,b = R+D+θ(a, w′) ⊂ R+D+θ(a, w̄) ⊂ R+D+θ(a, w′′) = C`,+a,b ,

thus implying that w̄ ∈ Z`,+a,b . �

The proof of Corollary 4.19 follows easily from the proof of Theorem 4.18.

Proof of Corollary 4.19. If w ∈ Rθ(a), then

w ∈ Z`,+a,b ∩ Z
`′,−
a,b′ ⊂ R

+,`θ(a) ∩R−,`
′
θ(a).

By the transitivity property (4.17) one has that

` = `′, D+θ(a, w) = D−θ(a, w).

Hence, as in the proof of Claim 4.21,

w ∈ intrelO(a)(w′′, w′) ⊂ Z`,+a,b ∩ Z
`,−
a,b , C`,+a,b = C`,−a,b ,

yielding the conclusion. �

In the following we will use the notation D̂+, D̂− and D̂ to denote the σ-compact graphs of the
directed locally affine partitions induced respectively by v+, v− and v, namely

D̂+ :=
{(
`, a, b, w, C

)
: v+(a, w) = b, C = p2b− w ∩ C̃(a), w ∈ Z`,+a,b

}
,(4.33a)

D̂− :=
{(
`, a, b, w, C

)
: v−(a, w) = b, C = p2b− w ∩ C̃(a), w ∈ Z`,−a,b

}
,(4.33b)

D̂ :=
{(
`, a, b, w, C

)
: v(a, w) = b, C = p2b− w ∩ C̃(a), w ∈ Z`a,b

}
.(4.33c)

We will also use the notations c = (a, b), Z`,+c , C`,+c . Recalling that A ⊂ Rd−k and observing that,
after the partition into sheaf sets as in Proposition 3.15 and the injection into a fibration, we can take as
in (3.32)

B`,+ =
⋃
a∈A

B`,+(a) ⊂ Rk−`,

we let c ∈ C`,+ ⊂ Rd−`, ` = 1, . . . , k − 1.
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Ck
a

z
z′

Figure 9. The yellow region is made of points in the regular set Rθ. The points z and
z′ in the figure belong to I+θ \ (Iθ∪Eθ). The points on the red segments belong instead
to Eθ and the points on the green segments to Iθ.

4.5. Analysis of the residual set. Now we give a characterization of the residual set as the union
of initial and final points respectively for the superdifferential partition and the subdifferential parti-
tion. Moreover, we fully characterize the super/subdifferentials at each point of the super/subdifferential
partitions in terms of the regular and initial/final points.

Recalling Definition 3.7 of initial and final points of a directed locally affine partition, let

(4.34) I+θ :=
⋃
`,a,b

I
(
Z`,+a,b

)
be the sets of initial points of the superdifferential partition {Z`,+a,b , C

`,+
a,b }`,a,b and let

(4.35) E−θ :=
⋃
`,a,b

E
(
Z`,−a,b

)
be the set of final points of the subdifferential partition {Z`,−a,b , C

`,−
a,b }`,a,b.

Theorem 4.22. The following holds:

(4.36) N θ = I+θ ∪ E−θ,
and moreover

(4.37a) ∂+θ(a, w) =
(
w + C`,+a,b

)
∩
(
Z`,+a,b ∪ E

−θ(a)
)
, ∀w ∈ Z`,+a,b ,

(4.37b) ∂−θ(a, w) =
(
w − C`,−a,b

)
∩
(
Z`,−a,b ∪ I

+θ(a)
)
, ∀w ∈ Z`,−a,b .

Remark 4.23. Notice that in general the points of the set N θ, i.e. the complement of the set of regular
points Rθ, may not belong to the set Iθ∪Eθ, i.e. the set of initial and final points for the directed locally
affine partition {Z`a,b, C`a,b}`,a,b induced by v on Rθ (see Figure 9).

The main observation in the proof of Theorem 4.22 is contained in the following

Remark 4.24. We observe the following properties of T +θ, T −θ:
w ∈ T +θ(a) =⇒ ∃ r > 0, Z`,+a,b such that Bk(w, r) ∩

(
w + intrelC

`,+
a,b

)
⊂ Z`,+a,b ;

w ∈ T −θ(a) =⇒ ∃ r > 0, Z`,−a,b such that Bk(w, r) ∩
(
w − intrelC

`,−
a,b

)
⊂ Z`,−a,b .

The statements follow respectively from (4.22) and (4.23), taking C`,±a,b equal to any maximal extremal

cone of R+D±θ(a, w).
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Proof of Theorem 4.22. Let w ∈ N θ(a): then from definition (4.27),

w ∈ T +θ(a) \ Rθ(a) or w ∈ T −θ(a) \ Rθ(a).

If w ∈ T +θ(a) \ R+θ(a), then by Remark 4.24 and Definition 3.7 it follows that w ∈ I+θ(a). If
w ∈

(
T +θ(a) ∩ R+θ(a)

)
\ R−θ(a), w ∈ T −θ(a) by (4.24a) (iii) and then again by Remark 4.24 we

conclude that w ∈ E−θ(a).
Analogously, T −θ(a) \R−θ(a) ⊂ E−θ(a) and

(
T −θ(a)∩R−θ(a)

)
\R+θ(a) ⊂ I+θ(a). This concludes the

proof of (4.36).
We prove (4.37a), being the proof of (4.37b) analogous. We already know by (4.30) that

∂+θ(a, w) ⊂ w + C`,+a,b for all w ∈ Z`,+a,b .

Let now w ∈ Z`,+a,b and w′′ ∈ ∂−θ(a, w) ∩ w − intrelC
`,+
a,b as in (4.25) (iii). Then, as in Claim 4.21, for all

w′ ∈ ∂+θ(a, w) one has

intrelO(a)(w′′, w′) ⊂ Z`,+a,b .

Notice that now we do not need to specify that w′ −w ∈ intrelC
`,+
a,b because we already know Z`,+a,b to be

open in aff(w + C`,+a,b ). Then there are two possibilities: either

(4.38) D+θ(a, w′) = C`,+a,b ∩ Sk−1,

or by transitivity

(4.39) D+θ(a, w′) ( C`,+a,b ∩ Sk−1.

In case (4.38) holds, it follows that w′ ∈ Z`,+a,b . Otherwise, one has

(4.40) w′ ∈ T −θ(a) \ R−θ(a),

and then as seen before w′ ∈ E−θ(a).
To prove (4.40), it is sufficient to take a maximal backward extremal cone F for w′ as in (4.23) containing

C`,+a,b : by (4.39),

∂+θ(a, w′) ∩
(
w′ + intrelF

)
= ∅,

and then w′ cannot be a backward regular point. �

4.6. Optimal transportation on cC̃-Lipschitz foliations. Let {θ−1(t)}t∈T be a cC̃-Lipschitz foliation

on A×Rk ⊂ Rd−k ×Rk and consider two probability measures in P(A×Rk) which can be disintegrated
as

µ̃ =

∫
µ̃adm̃(a), ν̃ =

∫
ν̃adm̃(a), m̃ = (pRd−k)#µ̃ = (pRd−k)#ν̃,

and satisfying

(4.41a) µ̃
(
θ−1(T)

)
= ν̃

(
θ−1(T)

)
= 1,

(4.41b) ∅ 6= Πf
cC̃,θ

(µ̃, ν̃) :=

{
π ∈ Πf

cC̃
(µ̃, ν̃) : π

( ⋃
t∈T

{θ = t} × {θ = t}
)

= 1

}
.

Notice that, by Definition 4.12 of superdifferential of θ,

(4.42) Πf
cC̃,θ

(µ̃, ν̃) = Π(µ̃, ν̃) ∩
{
π : π(∂+θ) = 1

}
.

By Theorem 4.22, ⋃
t∈T

{θ = t} = I+θ ∪ E−θ ∪Rθ ∪ Fθ,

hence π ∈ Πf
cC̃,θ

(µ̃, ν̃) if and only if it has µ̃ and ν̃ as first and second marginal respectively and it is

concentrated on the set

(4.43) ∂+θ ∩
[(
I+θ ∪ E−θ ∪Rθ ∪ Fθ

)
×
(
I+θ ∪ E−θ ∪Rθ ∪ Fθ

)]
.

First notice that

(4.44a) ∂+θ ∩
(
Fθ × (A× Rk)

)
= ∂+θ ∩

(
(A× Rk)×Fθ

)
= graph I xFθ,
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(4.44b) ∂+θ ∩
(
(A× Rk)× (T +θ \ T −θ)

)
= graph I x(T +θ\T −θ),

(4.44c) ∂+θ ∩
(
(T −θ \ T +θ)× (A× Rk)

)
= graph I x(T −θ\T +θ),

and thus the restrictions of all the transport plans in (4.42) to the sets (4.44) are concentrated on the
diagonal {(a, w, a, w) : (a, w) ∈ A× Rk}. Hence, we will assume w.l.o.g. that

(4.45) µ̃(Fθ) = ν̃(Fθ) = 0, µ̃(T −θ \ T +θ) = 0, ν̃(T +θ \ T −θ) = 0.

This is true e.g. if µ̃ ⊥ ν̃.
Now we give, in the same spirit of Theorem 4.22, a more accurate description of the set (4.43) (we

will neglect the subsets (4.44) by the above observation), independently of the measures µ̃, ν̃. As a
consequence (see Proposition 4.25 below) we will get that if µ̃(I+θ) = 0, then the class of transport plans
(4.42) coincides with the class of transport plans of finite cost on the directed locally affine partition of
R+θ with quotient map v+ defined in Theorem 4.18 and, if ν̃(E−θ) = 0, they are moreover of finite cost
on the directed partition on Rθ induced by the map v.

In Table 1 we put on the horizontal and vertical line the sets of a partition of I+θ ∪Rθ ∪E−θ. If A is
a set belonging to the horizontal line and B belongs to the vertical, in the square (A,B) we write Y in
case possibly ∂+θ∩ (A×B) 6= ∅, and N in case always ∂+θ∩ (A×B) = ∅. Recall that Rθ = R+θ∩R−θ,
R+θ ∩ E−θ = R+θ \ R−θ, R−θ ∩ I+θ = R−θ \ R+θ, I−θ \ T +θ = T −θ \ T +θ,

I+θ = (I+θ \ T −θ) ∪ (I+θ ∩ E−θ) ∪ (R−θ ∩ I+θ),

E−θ = (E−θ \ T +θ) ∪ (I+θ ∩ E−θ) ∪ (R+θ ∩ E−θ),

are disjoint unions.

Table 1. The possible intersection of ∂+θ with a partition of T θ

Rθ R+θ ∩ E−θ R−θ ∩ I+θ I+θ \ T −θ E−θ \ T +θ I+θ ∩ E−θ
Rθ Y Y N N Y Y

R+θ ∩ E−θ N Y N N Y Y
R−θ ∩ I+θ Y Y Y N Y Y
I+θ \ T −θ Y Y Y Y (graph I) Y Y
E−θ \ T +θ N N N N Y (graph I) N
I+θ ∩ E−θ Y Y Y N Y Y

Proof of Table 1. First of all, (4.44b) and (4.44c) yield immediately the row of E−θ\T +θ and the column
of I+θ \ T −θ, that we write just for symmetry. Moreover, by Remark 4.24, also the row of I+θ \ T −θ
and the column of E−θ \ T +θ easily follow.

In order to prove the other squares we will use the following facts, which have already been proven
and used in Sections 4.4 and 4.5 and are a consequence of (4.17) and definitions (4.24a) and (4.24b):

w ∈ Rθ(a) ⇒ D+θ(a, w) = D−θ(a, w);(4.46)

w ∈ R−θ(a) ∩ I+θ(a) ⇒ D+θ(a, w) ) D−θ(a, w);(4.47)

w ∈ R+θ(a) ∩ E−θ(a) ⇒ D−θ(a, w) ) D+θ(a, w).(4.48)

Let us first prove the relations given by the squares containing the letter N . Let w ∈ R+θ(a) and
w′ ∈ ∂+θ(a, w). Then,

D+θ(a, w′)
(4.17)
⊂ D+θ(a, w)

(4.46),(4.48)
⊂ D−θ(a, w)

(4.17)
⊂ D−θ(a, w′).

By (4.46) and (4.47) we then conclude that ∂+θ ∩ (Rθ × R−θ ∩ I+θ) = ∅ and by (4.46)-(4.48) that
∂+θ ∩ (R+θ ∩ E−θ ×Rθ) = ∅, ∂+θ ∩ (R+θ ∩ E−θ ×R−θ ∩ I+θ) = ∅.

Let us now deal with the relations given by the squares containing the letter Y . We refer to Figure 10.
First we claim that

(4.49) ∂+θ ∩ (R+θ ∩ E−θ × I+θ ∩ E−θ) 6= ∅.
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(4.52)

(4.49) (4.50)

w
w′

(4.51)

D−θ(a, z)

D+θ(a, z)

w

w′

D−θ(a, z)

D+θ(a, w)

D−θ(a, w)

D+θ(a, z)

w

w′

D+θ(a, w)

D−θ(a, w)

w

w′D+θ(a, z)

D−θ(a, z)

D−θ(a, w)

D+θ(a, w)

Figure 10. The relations given by the letter Y .

Indeed, let e.g. w ∈ R+θ(a) ∩ E−θ(a) such that

dim(R+D+θ(a, w)) = 2,

D+θ(a, w) ( D−θ(a, w) ( convSk−1D−θ(a, w),

dim(R+convSk−1D−θ(a, w)) = 3,

and w′ ∈ ∂+θ(a, w) s.t.

D−θ(a, w′) = convSk−1D−θ(a, w) but D+θ(a, w′) ( convSk−1D+θ(a, w′) = D+θ(a, w).

Next we claim that

(4.50) ∂+θ ∩ (Rθ ×R+θ ∩ E−θ) 6= ∅.

Indeed, it is sufficient to take e.g. w ∈ Rθ(a) with dim(R+D+θ(a, w)) = 2 and w′ ∈ ∂+θ(a, w) s.t.

D−θ(a, w′) = D+θ(a, w) but D+θ(a, w′) = convSk−1D+θ(a, w′) ( D−θ(a, w′).

Now let us prove that

(4.51) ∂+θ ∩ (R−θ ∩ I+θ ×Rθ) 6= ∅.

Take for example w ∈ R−θ(a) ∩ I+θ(a) and w̄ ∈ ∂+θ(a, w) ∩ w + intrelF as in (4.22) with F maximal
face in R+D+θ(a, w) containing R+D−θ(a, w).

Finally we claim that

(4.52) ∂+θ ∩ (I+θ ∩ E−θ ×R−θ ∩ I+θ) 6= ∅.

Hence, by the transitivity property (4.17), (4.49)-(4.52) immediately give all the remaining Y squares in
the table.
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In order to show (4.52), let w ∈ I+θ(a) ∩ E−θ(a) with

D+θ(a, w) = convSk−1D+θ(a, w),

dimR+D+θ(a, w) = 3 and

D−θ(a, w) ( convSk−1D−θ(a, w) ( D+θ(a, w).

Then, let w′ ∈ ∂+θ(a, w) ∩ w + intrel(R+convSk−1D−θ(a, w)) s.t.

D+θ(a, w′) = D+θ(a, w) and D−θ(a, w′) = convSk−1D−θ(a, w).

�

Neglecting (4.44), we conclude that

∂+θ ∩
[(
I+θ ∪Rθ ∪ E−θ

)
×
(
I+θ ∪Rθ ∪ E−θ

)]
=
[
∂+θ ∩

(
Rθ × (Rθ ∪ E−θ)

)]
(4.53)

∪
[
∂+θ ∩

(
(R+θ ∩ E−θ)× E−θ

)]
∪
[
∂+θ ∩ (I+θ × T −θ)

]
.

Using (4.53), Theorem 4.18 and Corollary 4.19 we have the following.

Proposition 4.25. Let {θ−1(t)}t∈T ⊂ P(A×Rk) be a cC̃-Lipschitz foliation and µ̃, ν̃ ∈ P(A×Rk) such
that (4.41) and (4.45) hold.

If µ̃(I+θ) = 0, then

π̃ ∈ Πf
cC̃,θ

(µ̃, ν̃) ⇐⇒ π̃ ∈ Πf
cD̂+

(µ̃, ν̃),

where D̂+ is the locally affine partition induced by v+ on R+θ and cD̂+ the related cost, as defined in
(3.20).

Moreover, if µ̃(I+θ) = 0 and µ̃(R+θ ∩ E−θ) = 0 then

π̃ ∈ Πf
cC̃,θ

(µ̃, ν̃) ⇐⇒ π̃ ∈ Πf
cD̂

(µ̃, ν̃),

where D̂ is the locally affine partition induced by v = v+
|Rθ on Rθ and cD̂ the related cost.

We end this section with the following special case.

Proposition 4.26. Let t ∈ T, a = pA({θ = t}). Then (3.25) holds for the differential directed locally
affine partition of the regular set of {θ = t}

{Z`a,b, C`a,b}`=1,...,k−1

b∈B`(a)
.

Proof. For (`, b) 6= (`′, b′), let

z̄ ∈ (Z`a,b + C`a,b) ∩ (Z`
′

a,b′ + C`
′

a,b′) ∩ pRkD̂(t),

where {Z`a,b, C`a,b}`,b is the directed locally affine partition of D̂(t). Hence, z̄ ∈ w +C`a,b ∩w′ +C`
′

a,b′ for

some w ∈ Z`a,b, w′ ∈ Z`′a,b′ and, since by assumption θ is constant (namely, equal to t) on pRkD̂(t), then
by definition of superdifferential

z̄ ∈ ∂+θ(a, w) ∩ ∂+θ(a, w′).

By the transitivity property and the fact that z̄ is regular

C`a,b ∪ C`
′

a,b′ ⊂ R+D−θ(a, z̄) = R+D+θ(a, z̄) ⊂ C`a,b ∩ C`
′

a,b′ ,

which implies that C`a,b = C`
′

a,b′ , thus ` = `′ and affZ`a,b = affZ`
′

a,b′ . Hence, by definition of v, Z`a,b = Z`
′

a,b′

contradicting our initial assumption. �

Remark 4.27. By Proposition 4.26, the differential partition of a single complete cC̃-Lipschitz graph
satisfies (3.25).

From Proposition 4.26 and Proposition 3.14, one obtains immediately the following
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Corollary 4.28. If µ̃, ν̃ are as in Proposition 4.25 and µ̃(I+θ) = 0, ν̃(E−θ) = 0, then

π̃ ∈ Πf
cC̃,θ

(µ̃, ν̃) ⇔ π̃ =

∫
π̃`c dm̃(c), π̃`c ∈ Πf

c
C`c

(µ̃`c, ν̃
`
c),

where {π̃`c}, {µ̃`c} and {ν̃`c} are respectively the disintegrations of π̃, µ̃, ν̃ w.r.t. the partition induced by
v.

5. Dimensional reduction on directed partitions via cone approximation property

In this section we recall, in an abstract and more general setting, the main steps of the disintegration
technique first introduced in [8] for partitions into segments and then extended to locally affine partitions
of any dimension in [13]. This technique allows to prove the absolute continuity of the conditional
probabilities of the Lebesgue measure and to deduce that the initial and final points of a directed
locally affine partition are Lebesgue negligible, provided the direction map satisfies a suitable regularity
assumption that we call (initial/final) forward/backward cone approximation property. For more details
on the proofs of the results contained in this section, we refer to [13], Section 4.

5.1. Model sets of directed segments. We first deal with model sets of directed segments, namely
1-dimensional sheaf sets whose projection on their reference line is a given segment. At the end of the
paragraph, the forward/backward cone approximation property for these model sets will be introduced
as a sufficient condition in order to have absolutely continuous disintegrations.

Definition 5.1. A model set of directed segments or 1-dimensional model set is a 1-dimensional directed
sheaf set {Z1

a , C
1
a}a∈A1 with σ-continuous direction vector field

(5.1) d :
⋃

a∈A1

Z1
a → Sd−1, d : Z1

a 3 z 7→ C1
a ∩ Sd−1,

and reference line 〈e〉 for which there exist h−, h+ ∈ R, h− < h+, such that

p〈e〉(Z
1
a) = (h−, h+)e ∀ a ∈ A1.

We will also call model set the set Z1 = ∪
a∈A1

Z1
a , and we say that the triple (e, h−, h+) is a reference

configuration. Moreover we assume that

Ld(Z1) < +∞.
For shortness we will sometimes use the notation Z1(d,A1, e, h−, h+).

We also set Z
1

= Z1 as in (3.14)

(5.2) Z
1

:=
⋃

a∈A1

closZ1
a .

Notice that

Z
1 ∩ p−1

〈e〉
(
(h−, h+)e

)
= Z1.

Given a 1-dimensional model set {Z1
a , C

1
a}a∈A1 with reference configuration (e, h−, h+), define the

perpendicular sections

(5.3) Pt := Z
1 ∩ p−1

〈e〉(te), t ∈ [h−, h+].

Clearly from Definition 3.7 one has

Ph− = I(Z1), Ph+ = E(Z1),

where I(Z1), E(Z1) are the initial/final points of {Z1
a , C

1
a}a∈A1 .

For all t ∈ [h−, h+], denote also

(5.4) dt := dxPt ,

where dh
−

: Ph− → Sd−1, dh
+

: Ph+ → Sd−1 are the multivalued extensions of d defined by

(5.5) dh
−

(z) =
{
C1

a ∩ Sd−1 : z ∈ I(Z1
a)
}
, dh

+

(z) =
{
C1

a ∩ Sd−1 : z ∈ E(Z1
a)
}
.
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Lemma 5.2. The sets graph dh
−

, graph dh
+

are σ-compact, and hence there exist Borel sections

I(Z1) 3 z 7→ d̃h
−

+ (z) ∈ dh
−

(z), E(Z1) 3 z 7→ d̃h
+

− (z) ∈ dh
+

(z).

Proof. W.l.o.g., we prove the result only for graph dh
−

.
Since d is σ-compact, let Z1 = ∪

l
Z1
l such that Z1

l are compact and dxZ1
l

is continuous. Then it is fairly

easy to see that the multivalued maps

p−1
〈e〉(h

−e) ∩
(
z + Rd(z)

)
7→ d(z), z ∈ Z1

l ,

are compact, and thus the regularity of graph dh
−

follows.

The existence of sections d̃h
−

+ , d̃h
+

− with Borel regularity is standard for compact multifunctions (see
for example Theorem 5.2.1, page 189 of [24]) and an easy argument yields the conclusion. �

We will define the vector fields

(5.6a) d̃+(z) := d̃h
−

+ (z′) if z ∈ (z′ + Rd̃h
−

+ (z′)) ∩ p−1
〈e〉([h

−, h+]), z′ ∈ dom d̃h
−

+ ,

(5.6b) d̃−(z) := d̃h
+

− (z′) if z ∈ (z′ + Rd̃h
+

− (z′)) ∩ p−1
〈e〉([h

−, h+]), z′ ∈ dom d̃h
+

− .

In particular,

d̃+xPh−= d̃h
−

+ , d̃−xPh+ = d̃h
+

− ,

and

d̃±xp−1
〈e〉((h

−,h+)e)= dxdom d̃±∩p−1
〈e〉((h

−,h+)e).

Define for s ∈ (h−, h+), t ∈ [h−, h+] the map

(5.7) σs,t : Ps → Pt, z 7→ z + (t− s) d(z)

d(z) · e
,

which sends each point of the section Ps in the unique point of Pt which belongs to the same segment of
the model set. It is a bijection for t ∈ (h−, h+), with inverse σt,s.

Given Borel measurable selections d̃±, as in (5.6a) and (5.6b), one defines for s ∈ [h−, h+) (s ∈
(h−, h+]), t ∈ [h−, h+] the map

(5.8) σ̃s,t± : Ps ∩ dom d̃± → Pt, z 7→ z + (t− s) d̃±(z)

d̃±(z) · e
.

Notice that σ̃s,t± coincides with σs,t± xdom d̃±∩p−1
〈e〉((h

−,h+)e) for s 6= h∓.

5.1.1. Cone approximation property and absolute continuity. We recall that our problem is the following:
if

LdxZ1=

∫
υa dη(a)

is the disintegration of LdxZ1 w.r.t. the partition {Z1
a}a∈A1 , then we ask whether

υa � H1xZ1
a

and/or υa ' H1xZ1
a
.

By the next lemma, the absolute continuity problem along the segments {Z1
a}a can be reduced to an

absolute continuity problem for the push-forward of Hd−1 on the sections through the maps σs,t.

Lemma 5.3. Let us fix a section Pt of Z1, t ∈ (h−, h+). Then, the following two statements are
equivalent:

(5.9) σs,t#

(
Hd−1xPs

)
� Hd−1xPt , for L1-a.e. s ∈ (h−, h+);

(5.10) η � Hd−1xPt and υa � H1xZ1
a
, for η-a.e. a.

Moreover, also the following two statements are equivalent:

(5.11) σt,s#

(
Hd−1xPt

)
� Hd−1xPs and formula (5.9) hold for L1-a.e. s ∈ (h−, h+);

(5.12) η ' Hd−1xPt and υa ' H1xZ1
a
, for η-a.e. a.
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e
h− h+

Z1
a

Ph−
Pt

z̄1

z̄2

d

d2

Ed2

Ed1

d1

I(Z1) E(Z1)

Ph+

Figure 11. A model set of directed segments and a union of two cone vector fields.

In particular, whenever (5.12) holds, Z1 is a regular partition according to Definition 3.10.
The proof of Lemma 5.3 is an application of Fubini-Tonelli theorem w.r.t. the projection on 〈e〉 and

the change of variables formula for the maps σs,t. We give a short proof for completeness.

Proof. By (5.9)

σs,t#

(
Hd−1xPs

)
= f(s, t, ·)Hd−1xPt

for some Borel non-negative function f, for a.e. s ∈ (h−, h+) and thus by Fubini-Tonelli theorem we can
write for a compactly supported function φ : Rd → R∫

φLdxZ1=

∫ h+

h−

[ ∫
Ps

φ(z)dHd−1(z)

]
ds =

∫ h+

h−

[ ∫
Pt

φ(σt,s(z))d
(
σs,t# H

d−1xPs
)
(z)

]
ds

=

∫ h+

h−

[ ∫
Pt

φ(σt,s(z))f(s, t, z)dHd−1(z)

]
ds =

∫
Pt

[ ∫ h+

h−
φ(σt,s(z))f(s, t, z)ds

]
dHd−1(z).

By the uniqueness of the disintegration (see Theorem 2.4), this shows that (5.10) is true. Repeating the
argument starting from the end, one can prove the equivalence of (5.9) and (5.10).

By using the additional assumption (5.11), f(s, t, ·) is Hd−1-a.e. strictly positive on Pt, for a.e. s ∈
(h−, h+) and the equivalence of (5.11) with (5.12) follows immediately. �

Now we are ready to introduce the forward/backward cone approximation properties, which will imply
the assumptions of Lemma 5.3. For notational convenience, we will state the definition of cone vector
field.

Definition 5.4. The cone vector field with base in E1 ⊂ Rd, and vertex z̄ ∈ E2 ⊂ Rd \ E1 is defined as

d : E1 ⊃ dom d → Sd−1

z 7→ d(z) := z̄−z
‖z̄−z‖

We say that d is a finite union of cone vector fields with base in E1 and vertices in E2 if there exist
finitely many cone vector fields {di}Ii=1 with bases in E1 and vertices {z̄i}Ii=1 in E2 ⊂ Rd \ E1 such that
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the sets
Edi :=

{
(1− t)z̄i + tz, t ∈ [0, 1], z ∈ dom di

}
, i = 1, . . . , I,

satisfy Edi ∩ Edj = ∅, for all i 6= j.

Definition 5.5. We say that the model set of directed segments Z1(d,A1, e, h−, h+) has the forward
cone approximation property if there exists ε > 0 such that for all t ∈ (h−, h+) there exists {dtj}j∈N finite

union of cone vector fields with base in p−1
〈e〉(te) and vertices in p−1

〈e〉((h
+ + ε)e) such that

Hd−1(Pt \ dom dtj) = 0

and dtj → dt Hd−1xPt-a.e..

Analogously, we say that the model set of directed segments Z1(d,A1, e, h−, h+) has the backward cone
approximation property if there exists ε > 0 such that for all t ∈ (h−, h+) there exists {dtj}j∈N finite union

of cone vector fields with base in p−1
〈e〉(te) and vertices in p−1

〈e〉((h
− − ε)e) such that

Hd−1(Pt \ dom dtj) = 0

and dtj → −dt Hd−1xPt-a.e..

Lemma 5.6. If Z1(d,A1, e, h−, h+) has the forward cone approximation property, then for h− < s ≤ t ≤
h+

(5.13) σs,t# H
d−1xPs≤

(
h+ + ε− s
h+ + ε− t

)d−1

Hd−1xPt .

Analogously, if Z1(d,A1, e, h−, h+) has the backward cone approximation property, then for h− ≤ t <
s < h+

(5.14) σs,t# H
d−1xPs≤

(
s− h− + ε

t− h− + ε

)d−1

Hd−1xPt .

Proof. We prove only the first estimate, since the proof of the second is completely similar.
It is fairly easy to see that the estimates hold for the map σs,t associated to a cone vector field with

bases in Ps and vertices in Ph++ε as in Definition 5.4 by similitude criteria for triangles or equivalently
by the polar change of coordinates in Rd. Hence, the same estimate holds also for the finite unions of
cone vector fields approximating ds as in Definition 5.5.

Restricting by Egorov’s Theorem to continuous and uniformly convergent sequences {dsj}j∈N on com-

pact subsets of Ps, by the u.s.c. of Hd−1 on the hyperplanes perpendicular to (h−, h+)e w.r.t. the
Hausdorff convergence of compact sets, the inequality immediately passes to the limit. �

It is straightforward to observe that (5.13) implies (5.9) and (5.14) implies the first part of (5.11).
Hence we have the following

Corollary 5.7. If Z1(d,A1, e, h−, h+) has either the forward cone approximation property or the backward
cone approximation property, then

η � Hd−1xA1 and υa � H1xZ1
a

for η-a.e. a ∈ A1.

If both the forward cone approximation and the backward cone approximation properties hold, then Z1

is a regular partition, i.e.

η ' Hd−1xA1 and υa ' H1xZ1
a

for η-a.e. a ∈ A1.

We can extend the forward/backward cone approximation properties to Borel sections of initial/final
points. This will be useful later (see Theorem 5.21), when we will give conditions ensuring that Ld(I(Z)) =
0/Ld(E(Z)) = 0 for a directed locally affine partition Z.

Definition 5.8. We say that Z1(d,A1, e, h−, h+) satisfies the initial forward cone approximation property
if there exists a Borel section d̃+ which satisfies the assumptions of the forward cone approximation
property of Definition 5.5 for all t ∈ [h−, h+).

Similarly, Z1(d,A1, e, h−, h+) satisfies the final backward cone approximation property if there exists
a Borel section d̃− which satisfies the assumptions of the backward cone approximation property of
Definition 5.5 for all t ∈ (h−, h+].
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The next lemma is the analogue of Lemma 5.6 for the Borel sections d̃±.

Lemma 5.9. If Z1(d,A1, e, h−, h+) satisfies the initial (final) forward (backward) cone approximation

property, then (5.13) (resp. (5.14)) holds for σ̃s,t+ (σ̃s,t− ), for all h− ≤ s ≤ t ≤ h+ (resp. h− ≤ t ≤ s ≤ h+).

5.2. k-dimensional model sets. In this section we extend the results for 1-dimensional model sets to
the k-dimensional model sets defined below.

Definition 5.10. A k-dimensional model set is a k-dimensional directed sheaf set {Zka , Cka}a∈Ak with
reference plane V k = 〈ek1 , . . . , ekk〉, for which there exist h− = (h−1 , . . . , h

−
k ), h+ = (h+

1 , . . . , h
+
k ) ∈ Rk,

with h−j < h+
j for all j = 1, . . . , k, such that

(5.15) pV kZ
k
a = intrelU

(
{eki },h−,h+

)
:=

{ k∑
j=1

tje
k
j : tj ∈ (h−j , h

+
j )

}
.

We will also call k-dimensional model set the set Zk = ∪
a∈Ak

Zka . Setting

D : Zk → C(k,Rd) ∩ Sd−1, D : Zka 3 z 7→ D(z) := Cka ∩ Sd−1

for the direction map, sometimes we will use the more precise notation Zk(D,Ak, ek1 , . . . , ekk,h−,h+) and
we say that the 3k-tuple (ek1 , . . . , e

k
k,h
−,h+) is a reference configuration for the model set.

The absolute continuity problem for the disintegration of the Lebesgue measure on a k-dimensional
model set Zk can be reduced to the absolute continuity problem for 1-dimensional model sets obtained
cutting Zk with suitable (d− k + 1)-dimensional planes, called slices.

Indeed, for all e ∈ C({eki }) ∩ Sd−1 and w ∈ intrelU({eki },h−,h+), set

h−(w, e) := inf
{
t ∈ R : w + te ∈ U

(
{eki },h−,h+

)}
,

h+(w, e) := sup
{
t ∈ R : w + te ∈ U

(
{eki },h−,h+

)}
.

Definition 5.11. Given a k-dimensional model set Zk(D,Ak, ek1 , . . . , ekk,h−,h+) we define 1-dimensional
slice of Zk in the direction e ∈ C({eki }) ∩ Sd−1 any set of the form

(5.17) Zk ∩ p−1
V k

(
w +

(
h−(w, e), h+(w, e)

)
e
)
, w ∈ U

(
{eki },h−,h+

)
.

The important observation is the following:

Remark 5.12. By (5.15) and Point (3) of Definition 3.17, the 1-dimensional slice (5.17) is a model set of
directed segments in the (d+ 1− k)-dimensional space p−1

V k
(w + 〈e〉) with direction vector field

(5.18) de := D ∩ p−1
V k

(〈e〉),

quotient space Ak and reference configuration (e, h−(w, e), h+(w, e)).

As a consequence we obtain the following k-dimensional version of Lemma 5.6.

Lemma 5.13. If the forward (or backward) cone approximation property holds for all the 1-dimensional
slices of a k-dimensional model set Zk in the directions ek1 , . . . e

k
k, then

LdxZk=

∫
υka dη(k, a), with υka � HkxZka and η(k)� Hd−kxAk .

If both the forward and the backward properties hold for all the above slices, then Zk is regular, namely

(5.19) η(k) ' Hd−kxAk and υka ' HkxZka for η-a.e. (k, a).

Proof. W.l.o.g. we assume eki to be the first k unit vectors of a standard orthonormal base in Rd,
h−j < 0 < h+

j ∀ j = 1, . . . , k, and Ak = Z ∩ p−1
V k

(0).

For x ∈ U({eki }, h−, h+) ∩ p−1
〈ek1〉

(0), consider the 1-dimensional slice

Z1
x := Zk ∩ p−1

V k

(
x+ (h−1 , h

+
1 )ek1

)
=
⋃

a∈Ak
Zka ∩ p−1

V k

(
x+ (h−1 , h

+
1 )ek1

)
.
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By Fubini-Tonelli theorem

LdxZk=

∫
Zk∩p−1

〈ek1 〉
(0)

Ld−k+1xZ1
x
Lk−1(dx)

and applying Lemma 5.6 in the case of forward (or backward) approximation property, we obtain the
disintegration

LdxZk=

∫
υ1
a,xdη1(x, a), with υ1

a,x � H1xZka∩p−1

V k
(x+(h−1 ,h

+
1 )ek1 ), η1 � Hd−1xZk∩ p−1

〈ek1 〉
(0).

Now one repeats the procedure starting with the measure Ld−1 restricted to the (k − 1)-dimensional
model set in Rd−1 given by

Zk−1 = Zk ∩ p−1
〈ek1〉

(0)

and considering directions along ek2 , which allows to write

η1 =

∫
Zk∩p−1

〈ek1 ,e
k
2 〉

(0)

η1,a,ydη2(y, a), with η1,a,y � H1xZka∩p−1

V k
(y+(h−2 ,h

+
2 )ek2 ), η2 � Hd−2xZk∩p−1

〈ek1 ,e
k
2 〉

(0)

Hence by composing the two disintegrations one obtains

LdxZk=

∫
υ2
a,ydη2(y, a), with υ2

a,y � H2xZka∩p−1

V k
(y+(h−1 ,h

+
1 )ek1+(h−2 ,h

+
2 )ek2 ).

Iterating the process k-times, one obtains the result.
In case both approximation properties holds, the same analysis shows (5.19). �

5.3. k-dimensional sheaf sets and D-cylinders. Now we apply the cone approximation property
technique also to general k-directed sheaf sets.

Let {Zka , Cka}a∈Ak be a k-directed sheaf set with reference plane V k = 〈ek1 , · · · , ekk〉, base rectangle
U({eki }, h−, h+) and direction map

(5.20) Dk(a) := Cka ∩ Sd−1.

For Ak,
′ ⊂ Ak σ-compact, set

(5.21) Zk,
′

:=
⋃

a∈Ak,′
Zka .

Definition 5.14. Any k-dimensional model set Zk(D,Ak,′ , ek1 , . . . , ekk,h−,h+) of the form

Zk
(
D,Ak,

′
, ek1 , . . . , e

k
k,h
−,h+

)
= Zk,

′
∩ p−1

V k

(
intrelU({eki },h−,h+)

)
for which there exists ε > 0 such that

Zk
(
D,Ak,

′
, ek1 , . . . , e

k
k,h
− − (ε, . . . , ε),h+ + (ε, . . . , ε)

)
= Zk,

′
∩ p−1

V k

(
intrelU

(
{eki },h− − (ε, . . . , ε),h+ + (ε, . . . , ε)

))
is also a k-dimensional model set, will be called k-dimensional D-cylinder.

In particular, by the above definition and Definition 5.10

pV kZ
k
a ⊃ intrelU

(
{eki },h− − (ε, . . . ε),h+ + (ε, . . . ε)

)
∀ a ∈ Ak,

′
.

Remark 5.15. Notice that, since any Zka is a relatively open set, then the sheaf set can be covered by a
countable disjoint collection of k-dimensional D-cylinders

(5.22) Zk,
′

n = Zk
(
D,Ak,

′

n , ek1 , . . . , e
k
k,h
−
n ,h

+
n

)
, n ∈ N,

up to the points which belong to the perpendicular sections

Zk,
′

n ∩ p−1
V k

(
∂U({eki },h−n ,h+

n )
)
.

In particular, the k-dimensional D-cylinders as in (5.22) define a partition of the sheaf set Zk,
′

up to an
Ld-negligible set.
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Definition 5.16. Define 1-dimensional slices of a directed locally affine partition {Zka , Cka}k=1,...,d
a∈Ak

the

1-dimensional slices of any of the k-dimensional D-cylinders given by (5.22), for any of the countably
many k-directed sheaf sets Zk given by Proposition (3.15).

Remark 5.17. Notice that, for any 1-dimensional slice of a D-cylinder

Zk,
′

n ∩ p−1
V k

(
wn +

(
h−(wn, en), h+(wn, en)

)
en

)
, wn ∈ intrelU

(
{eki },h−n ,h+

n

)
, en ∈ C({eki }),

as in (5.17), there exists ε = εn > 0 such that the set

Zk,
′

n ∩ p−1
V k

(
wn +

(
h−(wn, en)− εn, h+(wn, en) + εn

)
en

)
is still a 1-dimensional model set. This assures that the extreme points of the segments of the slice do
not contain relative boundary points of the sets of the partition, and in particular the vector field den is

single-valued up to the boundary of Zk,
′

n,a.

The main result of this section is then the following theorem.

Theorem 5.18. If either the forward cone approximation property or the backward cone approximation
property holds for the 1-dimensional slices of a directed locally affine partition {Zka , Cka}k,a∈Ak , then

LdxZk=

∫
υkadη(k, a) with η(k)� Hd−kxAk and υka � HkxZka for η(k)-a.e. a ∈ Ak.

If both properties hold, then Zk is regular, i.e.

η(k) ' Hd−kxAk and υka ' HkxZka for η(k)-a.e. a ∈ Ak.

Proof. By Proposition 3.15 and Remark 5.15, using a simple covering argument and σ-additivity of
measures one can reduce to study the absolute continuity of the disintegrations on D-cylinders. Then,
by Definition 5.16, one concludes using Lemma 5.13 . �

5.4. Negligibility of initial/final points. Now we deal with the other measure-theoretic problem
connected to directed locally affine partitions, namely to establish whether

Ld(I) = 0 and/or Ld(E) = 0.

It turns out that these properties are implied by the validity of the initial/final cone approximation
properties for initial/final 1-dimensional slices.

Definition 5.19. An initial 1-dimensional slice of a directed locally affine partition {Zka , Cka}k=1,...,d
a∈Ak

is

a 1-dimensional model set of the form

Zk ∩ p−1
V k

(
w + (h−, h+)e

)
for a k-directed sheaf set Zk with reference plane V k = 〈e1, . . . , ek〉, e ∈ C({eki })∩ Sd−1, for which there
exists ε > 0 such that the set

Zk ∩ p−1
V k

(
w + (h−, h+ + ε)e

)
is still a 1-dimensional model set.

Similarly, a final 1-dimensional slice of a directed locally affine partition {Zka , Cka}k=1,...,d
a∈Ak

is a 1-

dimensional model set of the form

Zk ∩ p−1
V k

(
w + (h−, h+)e

)
for which there exists ε > 0 such that the set

Zk ∩ p−1
V k

(
w + (h− − ε, h+)e

)
is still a 1-dimensional model set.

By Remark 5.17, the vector field de of an initial slice can be multivalued only at the points of the
section Ph− , while for a final slice it can be multivalued only on Ph+ .
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Remark 5.20. Notice that a 1-dimensional slice of a directed locally affine partition according to Definition
5.16 is both an initial/final 1-dimensional slice. In particular, since the direction vector field of a 1-
dimensional slice is single-valued, its Borel-measurable sections coincide trivially with itself and then the
initial/final forward/backward cone approximation properties (see Definition 5.8) are simply an extension
of the forward/backward cone approximation property (see Definition 5.5) to the initial/final points of
the slice. Hence, saying that the initial/final 1-dimensional slices of a directed locally affine partition
satisfy the initial forward/final backward cone approximation property implies that the 1-dimensional
slices of that directed locally affine partition satisfy the forward/backward cone approximation property.

The following theorem follows from Corollary 5.9, as in the density Lemma 4.19 proved in [13] for the
relative boundary points of the locally affine partition into the faces of a convex function.

Theorem 5.21. If the initial 1-dimensional slices of a directed locally affine partition satisfy the initial
forward cone approximation property, then

Ld(I) = 0.

Similarly, if the final 1-dimensional slices of a directed locally affine partition satisfy the final backward
cone approximation property, then

Ld(E) = 0.

We give only a sketch of the proof, since the details have already been given in Lemma 4.19 of [13].

Proof. W.l.o.g. we can restrict to a k-directed sheaf set Zk with reference k-plane V k = 〈ek1 , . . . , ekk〉. Let
us then consider the map

(5.23) I 3 z 7→ l(z) := sup
{
r : z +

(
intrel C

k
a ∩Bd(0, r)

)
⊂ Zka , for some a ∈ Ak

}
.

By Definition 3.7, l(z) > 0 for all z ∈ I, and then by a countable covering argument we need only to
prove the negligibility of the set

(5.24) I r̄ := I ∩ l−1(r̄),

with r̄ > 0 fixed.
Assume that Ld(I r̄) > 0 and that z̄ ∈ Z̄k is a Lebesgue point of I r̄. Then if e ∈ C({eki }) ∩ Sd−1, at

least one of the sets
Pw+te = I r̄ ∩ p−1

V k
(w + te), w ∈ 〈e〉⊥ ∩ V k,

has Hd−k-positive measure, and we can assume that z̄ is also a Lebesgue point for Hd−kxPw+te
. For

definiteness, we will assume that Pw+te = Pw̄+h−(w̄,e)e = Z
k,′ ∩ p−1

V k
(w̄ + h−(w̄, e)e) for some w̄ in the

relative interior of the base rectangle of Zk,
′ ⊂ Zk, and let

Pw̄+h−(w̄,e)e 3 z 7→ dh
−

(z) :=
{
Cka ∩ p−1

V k
〈e〉 : z ∈ I(Zka )

}
be the multivalued maps defined in (5.5) for the 1-dimensional slice Zk,

′

w̄,e defined by

Zk,
′

w̄,e :=
{
Zka ∩ p−1

V k

(
w̄ + (h−, h+)e

)
, Cka ∩ p−1

V k
〈e〉
}
a∈Ak,′

, h+ := h− +
r̄

2
,

where Ak,
′

is the sets of a such that Zka has an initial point z on Pw̄+h−(w̄,e)e and

z + intrel C
k
a ∩Bd(0, r̄/2) ⊂ Zka .

If d̃h
−

+ is a Borel section of dh
−

chosen accordingly to Definition 5.8, then consider the 1-dimensional

slice Zk,
′′

w̄,e ⊂ Zk,
′

w̄,e defined by

Zk,
′′

w̄,e :=
{
Zka ∩ p−1

V k

(
w̄ + (h−, h+)e

)
, Cka ∩ p−1

V k
(〈e〉)

}
a∈Ak,′′

, h+ := h− +
r̄

4
,

where Ak,
′′ ⊂ Ak,

′
is the set of a satisfying

z ∈ Pw̄+h−(w̄,e)e =⇒ d̃h
−

+ (z) = Cka ∩ p−1
V k
〈e〉 ∩ Sd−1.

In other words, Zk,
′′

w̄,e is the 1-dimensional slice whose initial points belong to Pw̄+h−(w̄,e)e and whose

segments are given by dom d̃+ ∩ p−1
V k

(
w̄ +

(
h−(w̄, e), h−(w̄, e) + r̄

4

))
e, where d̃+ was defined in (5.6a).
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Clearly, by restricting to a σ-compactHd−k-conegligible subset of Pw̄+h−(w̄,e)e so that d̃h−+ is σ-continuous,
this procedure defines an initial 1-dimensional slice.

By the initial forward cone approximation property, Lemma 5.9 implies that if z̄ ∈ I(Zk,
′′

w̄,e) is a

Lebesgue point of Hd−kxPw̄+h−(w̄,e)e
, then

lim
r→0

[
lim
t↘h−

Hd−k
(
Zk,

′′

w̄,e ∩ Pw̄+te ∩Bd(z̄, r)
)]

= 1.

Since Zk,
′′ ∩ I r̄ = ∅, this clearly contradicts the fact that z̄ is a Lebesgue point of I r̄.

�

In view of Theorems 5.18 and 5.21 and recalling Remark 5.20, for future convenience we give the
following

Definition 5.22. A directed locally affine partition satisfies the (initial/final) forward/backward cone ap-
proximation property if its (initial/final) 1-dimensional slices satisfy the (initial/final) forward/backward
cone approximation property.

6. Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1, which we recall below.

Theorem 1.1. Let µ, ν ∈ P(Rd) with µ� Ld and let | · |D∗ be a convex norm in Rd. Then there exists
a locally affine directed partition {Zka , Cka}k=0,...,d

a∈Ak
in Rd with the following properties:

(1) for all a ∈ Ak the cone Cka is a k-dimensional extremal face of | · |D∗ ;
(2) Ld

(
Rd \

⋃
k,a

Zka

)
= 0;

(3) {Zka}k,a is regular, namely the disintegration of the measure Ld w.r.t. the partition {Zka}k,a,

Ldx ∪
k,a
Zka

=

∫
vka dη(k, a), satisfies

vka ' HkxZka for η(k)-a.e. a ∈ Ak.

(4) for all π ∈ Πopt
|·|D∗

(µ, ν), the disintegration π =

∫
πka dm(k, a) w.r.t. the partition {Zka × Rd}k,a

satisfies
πka ∈ Πf

c
Cka

(µka, (p2)#π
k
a),

where µ =

∫
µka dm(k, a) is the disintegration w.r.t. the partition {Zka}k,a, and moreover

(p2)#π
k
a

(
Zka ∪

(
Rd \

⋃
(k′,a′)6=(k,a)

Zk
′

a′

))
= 1.

If also ν � Ld, then for all π ∈ Πopt
|·|D∗

(µ, ν)

(p2)#π
k
a = νka

where ν =

∫
νka dm(k, a) is the disintegration w.r.t. the partition {Zka}k,a, and the converse of Point (4)

holds:
πka ∈ Πf

c
Cka

(µka, ν
k
a ) =⇒ π ∈ Πopt

|·|D∗
(µ, ν).

We start the proof by recalling that, by Proposition 3.4,

(6.1) π ∈ Πopt
|·|D∗

(µ, ν) ⇐⇒ π̂ ∈ Π(µ̂, ν̂), π̂(∂+graphψ) = 1,

where ψ : Rd → R is the | · |D∗ -Lipschitz function given by a Kantorovich potential and µ̂, ν̂, π̂ are the
push-forwards of µ, ν, π on Rd+1 through the map (I× ψ).

By Remark 4.2, graphψ ⊂ Rd+1 is a complete cepi|·|D∗ -Lipschitz graph, according to Definition 4.1.

Then, by Proposition 4.11, call θψ the trivial cC̃-Lipschitz foliation on Rd+1 associated to graphψ.
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We now show that Theorem 1.1 follows from (6.1) , thanks to the results of Sections 4 and 5 and the
following theorem.

Theorem 6.1. Let graphϕ ⊂ Rd+1 be a complete cepi|·|D∗ -Lipschitz graph. Then, the superdifferential
partition satisfies the initial forward cone approximation property and the subdifferential partition satisfies
the final backward approximation property.

Indeed, recalling Definition 5.22, first notice that if Theorem 6.1 holds, then by Theorem 5.21

(6.2) Hd(I+θϕ) = Hd(E−θϕ) = 0.

Moreover, by Remark 5.20 and the fact that D̂ = D̂+ ∩ D̂− (see (4.33)), Theorem 5.18 implies that the

disintegration of the d-dimensional Hausdorff measure on the differential partition D̂ of θϕ is regular,
namely has conditional probabilities equivalent to the Hausdorff measures on the locally affine sets on
which they are concentrated. Therefore, denoting the locally affine partition D̂ as{

Ẑka , Ĉ
k
a

}
k=1,... d

a∈Ak
⊂ P

(
Rd+1 ×

d⋃
k=1

C(k,Rd+1)

)
,

and setting {Ẑ0
a}a∈A0 for the 0-dimensional partition of the fixed points A0 = Fθϕ, by (3.12) the sets{

Zka = pRdẐ
k
a , C

k
a = pRdĈ

k
a

}
k=0,... d

a∈Ak
⊂ P

(
Rd ×

d⋃
k=0

C(k,Rd)
)
,

define a locally affine directed partition of Rd satisfying (1), (2) and (3).

Let us now use the fact that ϕ = ψ is a Kantorovich potential for Πopt
|·|D∗

(µ, ν) and that µ � Ld. By

(3.12) and (6.2),

µ� Ld =⇒ µ̂� Hdxgraphψ =⇒ µ̂(I+θψ) = µ̂(E−θψ) = 0,(6.3)

Then, by Remark 4.27, Proposition 4.25 applies to the locally affine partition
{
Ẑka , Ĉ

k
a

}
k=1,... d

a∈Ak
, giving

that any transport plan π̂ as in (6.1) satisfies π̂ ∈ Πf
cD̂

(µ̂, ν̂). In particular, by Proposition 3.11, the

disintegration π̂ =

∫
π̂ka dm(k, a) w.r.t. the partition {Ẑka × Rd+1}k,a satisfies

π̂ka ∈ Πf
c
Ĉka

(µ̂ka, (p2)#π̂
k
a),

where µ̂ =

∫
µ̂ka dm(k, a) is the disintegration w.r.t. the partition {Ẑka}k,a. Moreover, by Proposition

4.26, the partition {Ẑka}k,a satisfies condition (3.25), which gives

(p2)#π̂
k
a

(
Ẑka ∪

(
graphψ \

⋃
(k′,a′)6=(k,a)

Ẑk
′

a′

))
= 1.

Then it is not difficult to see that the directed locally affine partition of Rd given by
{
Zka , C

k
a

}
k=0,... d

a∈Ak

satisfies also Point (4) of Theorem 1.1. Finally, if ν � Ld, by (6.2) and (3.12) we have also

(6.4) ν � Ld =⇒ ν̂ � Hdxgraphψ =⇒ ν̂(E−θψ) = 0.

Then ν̂(pRd+1(D̂)) = 1 and Corollary 4.28 gives, when projected on Rd, the last part of Theorem 1.1.

Remark 6.2. Observe that the characterization given by Proposition 4.25 of the optimal transport plans
for the cepi|·|D∗ -Lipschitz set graphψ seems more natural than the one given by Theorem 1.1 for their

projections on Rd, namely the optimal transport plans for the original convex norm problem. Indeed,
in the first case we have a complete (namely, if and only if) geometric characterization of the transport
plans by disintegrations into transport plans of finite cone cost w.r.t. their conditional marginals, even
in the case in which ν is not absolutely continuous. This is due to the geometric condition (3.25), which

is satisfied by the partition {Ẑka , Ĉka}k,a and not by its projection on Rd.
In particular, there might be decompositions {νka} of ν which are not obtained by projections of second

marginals of disintegrations of π̂ ∈ Π(µ̂, ν̂), π̂(∂+graphψ) = 1 and such that Πf
c
pRd D̂

(µ, {νka}) 6= ∅.
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Proof of Theorem 6.1. The proof will be given in two steps. We prove the initial forward cone approxi-
mation property for the superdifferential partition of the forward regular set, being the proof of the final
backward cone approximation property for the subdifferential partition analogous.

By Definition 5.22, let us consider an initial 1-dimensional slice

Zk,+ ∩ p−1
V k

(
(h−, h+)e

)
=
⋃
k,a

Zk,+a ∩ p−1
V k

(
(h−, h+)e

)
where

(1) V k = 〈ek1 , . . . , ekk〉 ∈ G(k,Rd+1) reference plane of the sheaf set Zk,+,
(2) e ∈ Sd ∩ C({eki }),
(3) there exists ε > 0 for which

Zk,+ ∩ p−1
V k

(
(h−, h+ + ε)e

)
is still a 1-dimensional model set. Let de be the direction vector field.

Step 1. Assume dh
−

e is injective.
Then, it is sufficient to prove the forward cone approximation property for the vector field de on a

fixed perpendicular section, say e.g. Ph− .
First recall that, by the general properties of sheaf sets, i.e. Point (3) of Definition 3.17,

{0} ∪ R+e ⊂ C({eki }) ⊂ pV k(Ck,+a ), ∀ a ∈ Ak.

By definition of 1-dimensional slice, for all wa,h− = (xa,h− , ϕ(xa,h−)) ∈ Ph− one has

(6.5) de(wa,h−) =
σh
−,h++ε(wa,h−)− wa,h−

|σh−,h++ε(wa,h−)− wa,h− |
,

being

σh
−,h++ε(wa,h−) = wa,h++ε =

(
ya,h++ε, ϕ(ya,h++ε)

)
the unique point s.t.

Ph++ε ∩
(
wa,h− + Ck,+a

)
= {wa,h++ε}.

Since now we are dealing with the superdifferential partition, (see Theorems 4.18 and 4.22) for all wa ∈
Zk,+a

Ck,+a = R+D+θϕ(a, wa) and ∂+θϕ(a, wa) ∩R+,kθϕ =
(
wa + Ck,+a

)
∩ Zk,+a .

Then we conclude that

ya,h++ε = pRd(wa,h++ε)

is the unique point of pRd(Ph++ε) s.t.

ϕ(ya,h++ε)− ϕ(xa,h−) =
∣∣ya,h++ε − xa,h−

∣∣
D∗
,

namely ya,h++ε is the unique maximizer of

(6.6) ϕ(xa,h−) = max
y∈pRd (Ph++ε)

{
ϕ(y)− |y − xa,h− |D∗

}
.

Hence one can construct the finite cone approximations of pRdde as in [11], namely discretizing the
set pRd(Ph++ε) and taking the cones given by the differential partition of an optimal potential w.r.t. a
strictly convex cost obtained by perturbating the norm cost | · |D∗ and whose second marginals are Dirac
deltas centered at the points of the discretization (see [11]). The convergence of the approximations to
pRdde at a.e. point xa,h− as the cost perturbation goes to 0 and the points of the discretization become
dense is given by the uniqueness of the ya,h++ε ∈ pRd(Ph++ε) satisfying (6.6).

Lifting the approximating cones with the map I × ϕ, one gets finite cones approximations of de as
required.

Step 2. Let now dh
−

e be possibly multivalued. In order to prove the initial forward cone approximation
property, we build as in Step 1 finite cone approximations given by the differential partition of optimal
potentials w.r.t. strictly convex approximating costs and second marginals given by Dirac deltas in

pRd(Ph++ε). These will converge to a Borel section d̃h
−

+,e of the direction vector field dh
−

e which by
construction satisfies the cone approximation property. �
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Remark 6.3. The above theorem can also be proved as a particular case of the analysis done in Section 8:
in this case we have a single cone-Lipschitz graph, and the uniqueness role of the linear order is trivial.

7. From C̃k-fibrations to linearly ordered C̃k-Lipschitz foliations

This section is devoted to the proof of Theorem 7.1 stated below, that will be the building block for
proving of Theorem 1.6.

Let C̃k : Rd−k×Rk ⊃ A×Rk → C(k,Rk) be the σ-compact direction map of a k-dimensional fibration

D̃k and cC̃k be the associated cost function (3.35). Let

µ̃ =

∫
µ̃adm̃(a), ν̃ =

∫
ν̃adm̃(a)

be probability measures on Rd such that

(7.1) Πf
c
C̃k

(µ̃, ν̃) 6= ∅

and

(7.2) µ̃a � HkxZ̃ka for m̃-a.e. a ∈ A.

Recall Definition 2.14 of (c, µ, ν)-compatible preorder, Definition 2.10 of Πf
c (µ, ν)-cyclically connected

partition and let {0, 1}N be the Polish space of sequences in {0, 1} endowed with the product topology.
Our main result is the following theorem. Recall that ω is the first countable ordinal.

Theorem 7.1. If (7.1) and (7.2) hold, then there exists a (cC̃k , µ̃, ν̃)-compatible linear preorder 4̄ with

Borel graph on A× Rk

(7.3) 4̄ = (θ̄ × θ̄)−1(Eω), θ̄ : A× Rk → A× {0, 1}N, Eω linear order,

and equivalence classes {θ̄−1(a, t)} a∈A
t∈{0,1}N

such that the subcollection of sets {Z̄ka,t} a∈A
t∈Tk(a)

defined by

(7.4) Z̄ka,t = intrel θ̄
−1(a, t) and µ̃a(θ̄−1(a, t)) > 0

is Πf
c
C̃k

(µ̃, ν̃)-cyclically connected.

As noticed in Proposition 4.11, the equivalence classes of a cC̃k -compatible linear preorder on A ×
Rk with σ-compact graph form a cC̃k -Lipschitz foliation. Then, by definition of (cC̃k , µ̃, ν̃)-compatible
linear preorder and by disintegration of measures, Theorem 7.1 claims that we can reduce the optimal
transportation problem on a C̃k-fibration to a family of optimal transportation problems on the level sets
of a cC̃k -Lipschitz foliation, whose k-dimensional classes of positive µ̃a measure (see the characterization
of cC̃k -Lipschitz foliations given in Proposition 4.9) satisfy the cyclically connectedness property w.r.t.

Πf
c
C̃k

(µ̃, ν̃).

As noticed in the Proposition 4.11, since

cC̃k(a, w, a′, w′) < +∞ ⇒ a = a′,

the equivalence classes of the preorder 4̄ constructed in Theorem 7.1 will be contained in sections {a}×Rk.
At a first reading, the geometry which lies behind the construction of 4̄ will be clear to the reader even
assuming that A = {a0} for some point a0, and thus cC̃k is equal to a single convex cone cost. The
variable a ∈ A plays in fact the role of a parameter on which the maps used to define the preorder have
to depend in a suitably measurable way.

As a preliminary, let us define the sets of σ-compact carriages as follows: for π̃ ∈ Πf
c
C̃k

(µ̃, ν̃) set

(7.5) Γ (π̃) :=
{

Γ̃ ⊂ (A× Rk)× (A× Rk) : Γ̃ ⊂ {cC̃k <∞}, Γ̃ σ-compact, π̃(Γ̃) = 1
}
,

and define

(7.6) Γ :=
⋃

π̃∈Πfc
C̃k

(µ̃,ν̃)

Γ (π̃).

The section of a carriage Γ̃(a, a) will be also denoted as Γ̃(a) ⊂ Rk × Rk.
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7.1. Construction of a (cC̃k , µ̃, ν̃)-compatible linear preorder. The main result of this section,
which is the first step of the proof of Theorem 7.1, is the following theorem.

Theorem 7.2. For any Γ̃ ∈ Γ there exists a (cC̃k , µ̃, ν̃)-compatible linear preorder 4Γ̃,WΓ̃ with Borel graph

(7.7) 4Γ̃,WΓ̃=
(
θΓ̃,WΓ̃ × θΓ̃,WΓ̃

)−1
(Eω), θΓ̃,WΓ̃ : A× Rd−k → A× {0, 1}N, Eω linear order,

whose equivalence classes {θ−1

Γ̃,WΓ̃
(a, t)} a∈A

t∈{0,1}N
satisfy

(7.8) Leb
(
p1(Γ̃(a)) ∩ {θΓ̃,WΓ̃(a, ·) = (a, t)}

)
is (Γ̃(a), cC̃k(a))-cyclically connected.

By the characterization of cC̃k -Lipschitz foliations given in Proposition 4.9, (7.8) must refer to k-
dimensional equivalence classes. Moreover, by Remark 2.15, 4Γ̃∩∪θ−1(a,t)×θ−1(a,t)⊂4Γ̃,WΓ̃ and then ∀x, y ∈
Leb

(
p1(Γ̃(a)) ∩ {θΓ̃,WΓ̃(a, ·) = (a, t)}

)
the (Γ̃(a), cC̃k(a))-cycle connecting x to y must be contained in

θ−1(a, t)× θ−1(a, t).

The first step to prove Theorem 7.2 is to select an m̃-conegligible set Ã′ ⊂ A and a σ-compact subset
of

p1Γ̃ ∩ Ã′ × Rk

with a-sections countable and dense in p1Γ̃(a).

Lemma 7.3. There exist an m̃-conegligible σ-compact set Ã′ ⊂ A ⊂ Rd−k and a countable family WΓ̃ of

σ-continuous functions wΓ̃
n : Ã′ → Rk, n ∈ N, such that for all a ∈ Ã′

(7.9)
{
wΓ̃
n(a)

}
n∈N ⊂ p1Γ̃(a) ⊂ clos {wΓ̃

n(a)}n∈N.

Proof. For shortness we use the notation

Λ := p1Γ̃ =
{

(a, w) : ∃ a′, w′ s.t. (a, w, a′, w′) ∈ Γ̃
}
⊂ Rd−k × Rk.

Step 1. Let Q := pa(Λ) ⊂ Rd−k and fix ε > 0. By standard selection theorems (for example, Theorem
5.2.1 of [24] is sufficient in this setting), there exists wε0 : Q 7→ Rk Borel such that graph wε0 ⊂ Λ. By Lusin
Theorem (134Yd of [20]) we obtain an m̃-conegligible set Qε

0 such that wε0xQε0 is σ-continuous.
Define

Λε0 := Λ ∩ (pa)−1(Qε
0), (Λε1)′ := Λε0 \

{
(a, w) :

∣∣w − wε0(a)
∣∣ < ε

}
.

These are clearly Borel sets.
Let (Qε

1)′ := pa((Λε1)′), and define (Qε
0)′′ ⊂ Qε

0 \ (Qε
1)′ as a σ-compact set with the same m̃-measure

of Qε
0 \ (Qε

1)′.

Step 2. If the Borel set (Λεn)′ ⊂ Rd−k × Rk and Souslin set (Qε
n)′ := pa((Λεn)′) ⊂ Ã′ are given, let

wεn : (Qε
n)′ → Rk be a Θ-measurable selection s.t. graph wεn ⊂ (Λεn)′, where Θ is the σ-algebra generated

by Souslin sets: its existence is guaranteed by Theorem 5.5.2 of [24]. As in Step 1, find an m̃-conegligible
set Qε

n ⊂ (Qε
n)′ such that wεnxQεn is σ-continuous.

Define the Borel sets

Λεn+1 := (Λεn)′ ∩ (pa)−1(Qε
n), (Λεn+1)′ := Λεn+1 \

{
(a, w) :

∣∣w − wεn(a)
∣∣ < ε

}
.

If (Qε
n+1)′ := pa((Λεn+1)′), let (Qε

n)′′ ⊂ Qε
n \ (Qε

n+1)′ be a σ-compact set with the same measure of
Qε
n \ (Qε

n+1)′.
Extend also the σ-compact function wεn to an m̃-conegligible set by

wεn(a) :=

{
wεn(a) a ∈ Qε

n,

wεm(a) a ∈ (Qε
m)′′, m = 0, . . . , n− 1.

Step 3. By repeating the above procedure countably many times, we obtain a countable family of

σ-continuous functions wεn :
∞
∪
m=0

(Qε
m)′′ → Rk, n ∈ N0, such that

Λ ∩ (pa)−1

( ∞⋃
m=0

(Qε
m)′′

)
⊂
{

(a, w) : dist
(
w, {wεn(a)}n∈N0

})
< ε
}
.
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Λ
HΓ̃,n

wwΓ̃
nC̃k

a

Ã′

Figure 12. The construction of the set HΓ̃,n.

Taking a countable sequence εi ↘ 0 as i → ∞, the functions {wεin }i,n∈N0
satisfy clearly the statement

when restricted to an m̃-conegligible σ-compact subset Ã′ of ∩
i∈N

∪
n∈N0

(Qεi
n )′′. �

Now we associate to each (a, wΓ̃
n(a)) the subset of {a} ×Rk of all the points (a, w) s.t. ∃ an axial path

of finite cC̃k -cost in Γ̃ going from (a, wΓ̃
n(a)) to (a, w) (see Definition 2.6).

Define

(7.10) HΓ̃,n :=

{
(a, w) : ∃ (w̄, w̄′) ∈ Γ̃ s.t. cC̃k(a)(w, w̄

′) <∞ and (a, w̄) 4(Γ̃,c
C̃k

) (a, wΓ̃
n(a))

}
,

where 4(Γ̃,c
C̃k

) is the (Γ̃, cC̃k)-axial preorder relation defined in (2.42). Notice that

(7.11) HΓ̃,n ∩ p1Γ̃ =

{
(a, w) : (a, w) 4(Γ̃,c

C̃k
) (a, wΓ̃

n(a))

}
.

Observe that, despite the notation, HΓ̃,n does not depend only on Γ̃ but also on the sections {wΓ̃
n}n∈N

selected in Lemma 7.3.

Proposition 7.4. The set HΓ̃,n is σ-compact in Ã′ × Rk and the set Ã :=
{
a ∈ Ã′ : HΓ̃,n(a) 6= ∅

}
is

Borel. Moreover

(7.12) w′ ∈ HΓ̃,n(a) =⇒
{
cC̃k(a)(·, w

′) < +∞
}
⊂ HΓ̃,n(a).

Proof. We prove the σ-compactness of HΓ̃,n, since (7.12) is clear from the definition (7.10). Observing
that

HΓ̃,n =
{

(a, w) : ∃ I ∈ N,
{

(wi, w
′
i)
}I
i=1
⊂ Γ̃(a) s.t.

w1 = wΓ̃
n(a) and cC̃k(a)(wi+1, w

′
i), cC̃k(a)(w,w

′
I) <∞

}
,

write

HΓ̃,n =
⋃
I∈N

HI
Γ̃,n

where HI
Γ̃,n

= p(aI+1,wI+1)(H̃
I
Γ̃,n

)
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and H̃I
Γ̃,n
⊂ (Rd−k × Rk)2I+1 is given by

H̃I
Γ̃,n

:=
{
w1 = wΓ̃

n(a1)
}
∩
[ I⋂
i=1

{
(ai, wi, a

′
i, w
′
i) ∈ Γ̃

}]
∩
[ I⋂
i=1

{
cC̃k(ai+1, wi+1, a

′
i, w
′
i) <∞

}]
.

Since a 7→ C̃k(a) is σ-continuous, it follows that the set {cC̃k < ∞} is σ-compact in (Rd−k × Rk) ×
(Rd−k×Rk). Hence, being wΓ̃

n σ-continuous and Γ̃ σ-compact, the set H̃I
Γ̃,n

is σ-compact, thus also HI
Γ̃,n

,

and finally HΓ̃,n too. �

We are now ready to define the Borel linear preorder of Theorem 7.2. If WΓ̃ = {wΓ̃
n}n ∈ N is the

countable family of sections constructed in Lemma 7.3, define the function

θΓ̃,WΓ̃ : Ã′ × Rk → Ã′ × {0, 1}N
(a, w) 7→ θΓ̃,WΓ̃(a, w) :=

(
a, {χRk\HΓ̃,n(a)(w)}n∈N

)
Since each component pi ◦ θΓ̃,WΓ̃ of θΓ̃,WΓ̃ is Borel, also θΓ̃,WΓ̃ is Borel in the product topology.

On the space Rd−k × {0, 1}α, α ordinal number, let us consider the natural linear order given by the
lexicographic order. Namely, for a = (a1, . . . , ad−k) ∈ Rd−k set

(7.13) a <lexiRd−k
a′ ⇐⇒ ∃ i ∈ {1, . . . , d− k} s.t. ∀j < i, aj = a′j and ai < a′i,

and define(
a, {sβ}β<α

)
Cα

(
a′, {s′β}β<α

)
⇐⇒ either a <lexiRd−k

a′ or

a = a′ and ∃β̄ < α : sβ = s′β ∀β < β̄, sβ̄ = 0 and s′β̄ = 1.
(7.14)

Let then Eω be the lexicographic linear order on Rd−k×{0, 1}N and define the linear preorder on Ã′×Rk
as

(7.15) 4Γ̃,WΓ̃ :=
(
θΓ̃,WΓ̃ ⊗ θΓ̃,WΓ̃

)−1
(Eω).

The induced equivalence relation on Ã′ × Rk is given by

4Γ̃,WΓ̃ ∩ 4−1

Γ̃,WΓ̃
=
{
θ−1

Γ̃,WΓ̃
(a, t)

}
(a,t)∈Ã′×{0,1}N .

Proof of Theorem 7.2. The proof is given in two steps.
Step 1. In this step we prove that the relation 4Γ̃,WΓ̃ defined in (7.15) is a (cC̃k , µ̃, ν̃)-compatible linear

preorder with Borel graph. By Remark 2.15, this amounts to prove that 4Γ̃,WΓ̃ is Borel, cC̃k -compatible

and (2.44) holds for the carriage Γ̃.
First of all, 4Γ̃,WΓ̃ is Borel because it is the preimage under θΓ̃,WΓ̃ , which is a Borel map, of the

lexicographic order Eω.
Moreover

cC̃k(a)(w,w
′) < +∞ (7.12)

=⇒ if w ∈ Rk \HΓ̃,n(a), then w′ ∈ Rk \HΓ̃,n(a)

=⇒ θΓ̃,WΓ̃(a, w) Eω θΓ̃,WΓ̃(a, w′),

i.e. 4Γ̃,WΓ̃ is cC̃k -compatible. Formula (2.44) follows directly from (7.11).

Step 2. Now we prove (7.8). Let

w,w′ ∈ Leb
(
p1(Γ̃(a)) ∩

{
θΓ̃,WΓ̃(a, ·) = (a, t)

})
.

Since 4Γ̃,WΓ̃ is cC̃k -compatible, by Proposition 4.11 its equivalence classes form a cC̃k -Lipschitz foliation

and then, from Point (3) of Proposition 4.9, there exists r > 0 such that

Bk(w, r), Bk(w′, r) ⊂
{
θΓ̃,WΓ̃(a, ·) = (a, t)

}
.

Hence, by the density of {wΓ̃
n(a)}n∈N stated in Lemma 7.3, there exist wΓ̃

n̄, wΓ̃
n̄′ such that

(7.16) θΓ̃,WΓ̃(a, wΓ̃
n̄(a)) = θΓ̃,WΓ̃(a, wΓ̃

n̄′(a)) = (a, t) and cC̃k(a)(w, w
Γ̃
n̄(a)), cC̃k(a)(w

Γ̃
n̄′(a), w′) <∞.
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x

y

−C̃k
a

θΓ̃,WΓ̃(a) = s

p1(Γ̃(a))

w1

w′1

w′2
w′3

w4

h+(a, s′)

h−(a, s′)
w2

h−(a, s) = h+(a, s)

C̃k
a

θΓ̃,WΓ̃(a) = s′′

θΓ̃,WΓ̃(a) = s′
w3

w′4

w

Figure 13. The function θΓ̃,WΓ̃ and the cyclical connectedness of the Lebesgue points

of p1(Γ̃(a)).

The first condition in (7.16) implies that

wΓ̃
n̄(a) ∈ HΓ̃,n′(a), i.e. wΓ̃

n̄(a) 4(Γ̃,c
C̃k(a)

) w
Γ̃
n̄′(a).

The second condition implies that

w 4(Γ̃,c
C̃k

) w
Γ̃
n̄(a) and wΓ̃

n̄′(a) 4(Γ̃,c
C̃k(a)

) w
′.

Hence, composing the three axial paths, w 4 w, and exchanging their roles we obtain a (Γ̃, cC̃k(a))-cycle,

thus concluding the proof. �

Notice that actually the subset of a k-dimensional class {θΓ̃,WΓ̃(a, ·) = (a, t)} which is contained in the

(Γ, cC̃k(a))-cycle above is{
w ∈ p1Γ̃(a) ∩ {θΓ̃,WΓ̃(a, ·) = (a, t)} :

(
w − intrelC̃

k(a)
)
∩ p1Γ̃(a) ∩ {θΓ̃,WΓ̃(a, ·) = (a, t)} 6= ∅

and
(
w + intrelC̃

k(a)
)
∩ p1Γ̃(a) ∩ {θΓ̃,WΓ̃(a, ·) = (a, t)} 6= ∅

}
.

In fact, by (7.9) every couple of points w, w′ in the above set satisfy (7.16) for some wΓ̃
n̄, wΓ̃

n̄′ .

7.2. Minimal (cC̃k , µ̃, ν̃)-compatible linear preorder. Now we apply Theorem A.2 to the class of
linear preorders {θΓ̃,WΓ̃}Γ̃,WΓ̃ constructed in Theorem 7.2, in order to find a Borel (cC̃k , µ̃, ν̃)-compatible

linear preorder as in Theorem 7.1.
Recall the definition of lexicographic order Eα on Rd−k × {0, 1}α, α ordinal number, given in (7.14),

and recall also the definition of closure under countable intersection of a family of equivalence relations,
Definition A.1 and Remark A.3.
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Proposition 7.5. The class of equivalence relations{
4Γ̃,WΓ̃ ∩ 4−1

Γ̃,WΓ̃
:4Γ̃,WΓ̃ as in Theorem 7.2 for some Γ̃ ∈ Γ

}
(7.17)

is closed under countable intersections.

Proof. Let {Γ̃n}n∈N ⊂ Γ and
{
4Γ̃n,WΓ̃n= (θΓ̃n,WΓ̃n × θΓ̃n,WΓ̃n )−1(Eω)

}
n∈N be a countable family of

(cC̃k , µ̃, ν̃)-compatible Borel linear preorders as in Theorem 7.2. Fix Γ̃i ⊂ Γ (π̃i) for some i ∈ N. By
Definition 2.16 of (cC̃k , µ̃, ν̃)-compatibility,

π̃i

(
Γ̃i
⋂
n∈N
4Γ̃n,WΓ̃n ∩(4Γ̃n,WΓ̃n )−1

)
= 1

and by Remark 2.15

(7.18) 4Γ̃i
⋂
n∈N

4
Γ̃n,W

Γ̃n
∩(4

Γ̃n,W
Γ̃n

)−1,c
C̃k
⊂
⋂
n∈N
4Γ̃n,WΓ̃n .

Let then W̄Γ̃i be a countable family of σ-compact sections of p1

(
Γ̃i
⋂
n∈N

4Γ̃n,WΓ̃n ∩(4Γ̃n,WΓ̃n )−1
)

as in

Lemma 7.3. Then, by (7.18), it follows immediately that the (cC̃k , µ̃, ν̃)-compatible Borel linear preorder
4

Γ̃i ∩
n∈N

4
Γ̃n,W

Γ̃n
∩(4

Γ̃n,W
Γ̃n

)−1,W̄Γ̃i
constructed as in the proof of Theorem 7.2 satisfies

4
Γ̃i ∩
n∈N

4
Γ̃n,W

Γ̃n
∩(4

Γ̃n,W
Γ̃n

)−1,W̄Γ̃i
⊂
⋂
n∈N
4Γ̃n,WΓ̃n .

�

We now have all the tools to prove Theorem 7.1.

Proof of Theorem 7.1. Let 4̄∩ 4̄−1
= ∪a,t′

{
θ̄−1(a, t′)

}
×
{
θ̄−1(a, t′)

}
be the minimal equivalence relation

in the class (7.17) w.r.t. the measure µ̃, whose existence is guaranteed by Theorem A.2.
We claim that it satisfies the conclusions of Theorem 7.1. Thanks to Theorem 7.2, we only have to

prove (7.4). Recalling Definitions 2.10 and 2.9, let π̃ ∈ Πf
c
C̃k

(µ̃, ν̃), Γ̃ ∈ Γ (π̃). By Remark 2.15, we can

consider the carriage

(7.19) Γ̌ := Γ̃ ∩
⋃
a,t′

{θ̄−1(a, t′)} × {θ̄−1(a, t′)} ⊂ Γ̃

and prove that the subcollection {Z̄ka,t} a∈A
t∈Tk(a)

of the equivalence classes of 4̄ defined by

(7.20) Z̄ka,t = intrel θ̄
−1(a, t) and µ̃a(θ̄−1(a, t)) > 0

is (µ̃, Γ̌, cC̃k)-cyclically connected.

Let WΓ̌ be a countable family of σ-compact sections of p1Γ̌ as in Lemma 7.3. Hence, by (7.19),
reasoning as in the proof of Proposition 7.5, the equivalence classes of 4Γ̌,WΓ̌ are contained in those of 4̄.

By minimality of {θ̄−1(a, t)} and Corollary A.5, there exists a µ̃-conegligible σ-compact set B̌ ⊂ Rd−k×Rk
and a Borel function

s : Rd−k × {0, 1}N → Rd−k × {0, 1}N

such that
θΓ̌,WΓ̌ = s ◦ θ̄ on B̌.

The set B̌ depends on θΓ̌,WΓ̌ .

In particular, using this result for the equivalence classes of positive µ̃a-measure of θ̄, we deduce that
there exists a set

A′′ ⊂
{
a : ∃ t s.t. µ̃a

(
θ̄−1(a, t)

)
> 0
}

such that

m
({

a : ∃ t s.t. µ̃a

(
θ̄−1(a, t)

)
> 0
}
\ A′′

)
= 0

and for all a ∈ A′′, for all t such that µ̃a(θ̄−1(a, t)) > 0, the function θΓ̌,WΓ̌ is µ̃a-a.e. constant on

{θ̄−1(a, t)}.
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Hence, using the assumption (7.2) and condition (7.8) for 4Γ̌,WΓ̌ , the sets {θ̄−1(a, t)} with a ∈ A′′ and

of positive µ̃a measure are open (see Proposition 4.9) and their set of Lebesgue points is of full µ̃a-measure
and (Γ̌, cC̃(a))-cyclically connected.

By Definition 2.9, we thus conclude that these sets are (µ̃, Γ̃, cC̃)-cyclically connected, and then ap-

plying the same reasoning to any transference plan π̃, we get that the subcollection of sets {Z̄ka,t} a∈A
t∈Tk(a)

defined by

Z̄ka,t = intZ̄ka,t, with µ̃a(θ̄−1(a, t)) > 0,

is Πf
c
C̃k

(µ̃, ν̃)-cyclically connected, thus concluding the proof. �

Remark 7.6. We observe here that, being the equivalence relation 4̄ ∩ (4̄)−1 constructed in Theorem
7.1 minimal in the family (7.17), by Theorem A.2 the equivalence classes cannot be further decomposed
by equivalence relations of the form (7.17). However, the information on cyclical connectedness of the
equivalence classes can be deduced only for the equivalence classes with positive µ̃a-measure, because of
the particular choice of the family (7.17) satisfying Theorem 7.2.

8. Cone approximation property for linearly ordered cC̃-Lipschitz foliations

In this section we prove the following result.

Theorem 8.1. Let {θ−1(a, t)}a,t ⊂ P(A × Rk), A ⊂ Rd−k, be a cC̃-Lipschitz foliation given by the

equivalence classes of a Borel cC̃-compatible linear preorder 4 on Rd−k × Rk as in (7.3). Then for all
a ∈ A, the subdifferential partition of R+θ(a) satisfies the initial forward cone approximation property
and the subdifferential partition of R−θ(a) satisfies the final backward cone approximation property.

In particular, we conclude from Theorem 5.21 that the initial and final points I+θ(a), E−θ(a) are
Hk-negligible and, by integration w.r.t. Hd−k on A, the sets I+θ, E−θ are also Ld-negligible. Moreover,
by Theorem 5.18, the disintegration of Ld w.r.t. the differential partition of the regular set Rθ is regular,
i.e. it satisfies (3.19) of Definition 3.10.

Since the disintegration of Hk on equivalence classes of θ with positive Hk-measure is clearly regular,
we thus have the following corollary.

Corollary 8.2. If {Z`a,b}`=1,...,k
a∈A,b∈B

is the partition of a cC̃-Lipschitz foliation given by the equivalence

classes of a Borel cC̃-compatible linear preorder obtained as the union of the differential partition and of

the classes of positive Hk-measure, then the disintegration of the Lebesgue measure Ld restricted on the
cC̃-Lipschitz foliation

LdxZ=

∫
υ`a,bdη(`, a, b), Z =

⋃
`,a,b

Z`a,b,

satisfies

υ`a,b ' H`xZ`a,b , for η-a.e. (`, a, b).

Remark 8.3. If the quotient set {1, . . . , k}×A×B is chosen to be a countable union of sets as in (3.32),
then the quotient measure

η =

k∑
`=1

η`, η`({`} × A×B) = 1

satisfies

η` ' Hd−`x ∪
i∈N

C`i

for some C`i ⊂ V
d−`
i ∈ A(d− `,Rd).

Proof. In the following we identify {a}×Rk with Rk and omit the variable a when clear from the context.
Unless explicitly stated, for the notions and notations used in the proof we refer to Section 5.

Since the proof of the initial forward cone approximation property is the same as the forward cone
approximation property up to the Borel selection given by Lemma 5.2, for simplicity we prove the forward
cone approximation property.
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The proof will be given in three steps, and we will restrict to the case of ` < k, due to the structure
of equivalence classes of positive Hk-measure given in Proposition 4.9 and the existence of at most two
degenerate equivalence classes (see Definition 4.8), which are clearly of positive measure, as observed in
Remark 4.10.

Step 1. By Definitions 5.22 and 5.16, we have to prove the forward cone approximation property
for the 1-dimensional slices D-cylinder (see Definition 5.14) of the superdifferential partition of R+θ(a)
(` ∈ {1, . . . , k − 1}) given by{

Z`,+b , C`,+b

}
b∈B`,+(a)

, Z`,+ =
⋃

b∈B`,+(a)

Z`,+b ⊂ Rk,

with reference plane V ` = 〈e`1, . . . , e``〉 ∈ G(`,Rk) and base rectangle U({e`i},h−,h+). By (3.32), the set
B`,+(a) is a subset of (z + (V `)⊥) ∈ A(k − l,Rk) for some z ∈ intrelU({e`i},h−,h+).

Let us fix a 1-dimensional slice of Z`,+ with reference configuration (e, w+ h−(w, e)e, w+ h+(w, e)e),
w ∈ intrelU({e`i},h−,h+), e ∈ C({e`i}) (see Definition 5.11), i.e.

(8.1) Z`,+e = Z`,+ ∩ p−1
V `

(
w +

(
h−(w, e), h+(w, e)

)
e
)

with ε > 0 such that the set

Z`,+ ∩ p−1
V `

(
w +

(
h−(w, e)− ε, h+(w, e) + ε

)
e
)

is still a 1-dimensional model set. Let

(8.2) d+
e = D ∩ p−1

V `
〈e〉

be its direction vector field as in (5.18).
As in (6.5), by definition of 1-dimensional slice and since the cones of directions are given by the

directions of the superdifferential, for all

zb,h− ∈ Pw+h−(w,e)e = Z`,+b ∩ p−1
V `

(w + h−(w, e)e), b ∈ B`,+(a)

we have

d+
e (zb,h−) =

σh
−,h++ε(zb,h−)− zb,h−∣∣σh−,h++ε(zb,h−)− zb,h−

∣∣ ,
where

σh
−,h++ε(zb,h−) = zb,h++ε

is the unique point of Pw+(h+(w,e)+ε)e satisfying{
zb,h++ε

}
=
(
zb,h− + C`,+b

)
∩ Z`,+b ∩ p−1

V `

(
w + (h+(w, e) + ε)e

)
(4.37a)

= ∂+θ(zb,h−) ∩ p−1
V `

(
w + (h+(w, e) + ε)e

)
.

(8.3)

Step 2. Let

µ̄ ' Hk−`xPw+h−(w,e)e
, µ̄

(
Pw+h−(w,e)e

)
= 1,

and set ν̄ = σh
−,h++ε

# µ̄. Then clearly

π̄ :=
(
I× σh

−,h++ε
)

#
µ̄ ∈ Πf

cC̃(a)
(µ̄, ν̄).

In this step we prove that (8.3) and the fact that {θ−1(a, t)}t∈T is induced by a Borel cC̃-compatible
linear preorder 4 imply that

π̄ is the unique transport plan in Πf
cC̃(a)

(µ̄, ν̄).

First of all observe that, by transversality of p−1
V `
〈e〉 w.r.t. C̃(a),

(8.4) Πf
cC̃(a)

(µ̄, ν̄) = Πf
c
C̃(a)∩p−1

V `
〈e〉

(µ̄, ν̄).

Then, consider the Borel linear preorder

4̄ =4 ∩ Z̄`,+e × Z̄`,+e , Z̄`,+e := Z`,+ ∩ p−1
V `

(
w +

[
h−(w, e), h+(w, e)

]
e
)
.
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Its equivalence classes are given by the (closed) segments

Z̄`,+b,e = Z`,+b ∩ p−1
V `

(
w +

[
h−(w, e), h+(w, e)

]
e
)
,

from the transversality of p−1
V `

(w+ [h−(w, e), h+(w, e)]e) w.r.t. Z`,+b . Moreover, it is clearly cC̃(a)∩p−1

V `
〈e〉-

compatible and, since a carriage of π̄ is given by

Γ̄ = graphσh
−,h++ε ∪ graph IxZ̄`,+e

,

then

π̄

(⋃
b

Z̄`,+b,e × Z̄
`,+
b,e

)
= 1.

By Remark 2.15 and Theorem 2.13, we conclude that 4̄ is a Borel (cC̃(a)∩p−1

V `
(〈e〉), µ̄, ν̄)-compatible linear

preorder. In particular, by (8.4), any transport plan π ∈ Πf
cC̃(a)

(µ̄, ν̄) must satisfy

π

(⋃
b

Z̄`,+b,e × Z̄
`,+
b,e

)
= 1,

and then since µ̄ and ν̄ are supported only on the sections Pw+h−(w,e)e and Pw+(h+(w,e)+ε)e, (8.3) implies
that π = π̄.

Step 3. In this step we prove the cone approximation property for the 1-dimensional slice Z`,+e . The
sequence of approximating finite union of cone vector fields (see Definition 5.4) will be given by the
transport rays of transport plans which are optimal w.r.t. the secondary cost

(8.5) c′′
C̃(a)

(w,w′) =

{
|w − w′| if cC̃(a)(w,w

′) < +∞,
+∞ otherwise,

and whose first marginal is µ̄ and second marginal is given by finite sums of Dirac deltas which are weakly
converging to ν̄, as given by the next lemma.

Lemma 8.4. There exists a sequence{
ν̄n
}
n∈N ∈ P

(
Pw+(h+(w,e)+ε)e

)
such that

(1) ν̄n is locally finitely atomic, ν̄n =
∑
i∈N

αniδz′ni
,

(2) Πf
cC̃(a)

(µ̄, ν̄n) 6= ∅,
(3) ν̄n weakly converges to ν̄ in P(Rk).

Once the lemma is assumed to be valid, the proof of the theorem is concluded as follows.
Let π̄n ∈ Πf

cC̃(a)
(µ̄, ν̄n) be optimal for c′′

C̃(a)
and let Γ̄′′n be a c′′

C̃(a)
-cyclically monotone carriage. A

standard argument based on | · |-cyclical monotonicity (see e.g. [12]) implies the interiors of the segments
[z, z′], with [z, z′] ∈ Γ̄′′n, do not intersect. Since Γ̄′′n can be decomposed as

(8.6) Γ̄′′n =
⋃
i∈N

Bi × {z′ni}, Bi ⊂ Pw+h−(w,e)e Borel and disjoint,

up to a µ̄-negligible set, then the approximating sequence of finite unions of cone vector fields (see
Definition 5.4) is given by

Edi :=
{

(1− t)z + tz′ni : t ∈ [0, 1], z ∈ Bi
}
.

Let
σh
−,h++ε
n : Pw+h−(w,e)e → Pw+h+(w,e)e, σh

−,h++ε
n (Bi) = z′ni ,

be the Borel function such that π̄n = (I × σh−,h++ε
n )#µ̄, as it follows from (8.6). The uniqueness result

proved in Step 2 implies that the measure π̄n converges weakly to the measure π̄, which equivalently
means that

σh
−,h++ε
n → σh

−,h++ε Hk−`-a.e..

Then, the last condition for the forward cone approximation property required in Definition 5.5 is satisfied
and the theorem is proved. �
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We are left with the proof of Lemma 8.4.

Proof of Lemma 8.4. W.l.o.g. assume that ∃C ′ ∈ C(k − `,Rk−`) such that, for all zb,h− ∈ Pw+h−(w,e)e,{
cC̃(a)(zb,h− , ·) < +∞

}
∩ p−1

V `

(
w + (h+(w, e) + ε)e

)
⊃ zb,h++ε + C ′

and

C ′ ⊃
k−⋂̀
i=1

{
w : w · e′i ≥ 0

}
for some fixed system of coordinates {e′1, . . . , e′k−`} ⊂ Rk−`

Let

Q̄ =

k−∏̀
i=1

[
− 1

2
,

1

2

]
e′j , Q̄(z′, r) := z′ + rQ̄.

For n ∈ N, choose rn > 0 sufficiently small such that

Q̄

(
z′ +

1

n

k−∑̀
i=1

e′i, 2rn

)
⊂ z′ + C ′,

for all z′ ∈ p−1
V `

(w + (h+(w, e) + ε)e) (clearly any rn ≤ 1
n suffices). Let{

Q̄(z′ni , rn)
}
i∈N

be a locally finite covering of p−1
V `

(w + (h+(w, e) + ε)e). Then, define the map

Tn : p−1
V `

(
w + (h+(w, e) + ε)e

)
→ p−1

V `

(
w + (h+(w, e) + ε)e

)
by

(8.7) Tn(z′) := z′ni where i = min

{
j : z′nj ∈ Q̄

(
z′ +

1

n

k−∑̀
i=1

e′i, 2rn

)}
.

The measures

ν̄n := Tn#ν̄, π̄n := (I× Tn ◦ σh
−,h++ε)#µ̄.

satisfy

π̄n ∈ Πf
cC̃(a)

(µ̄, ν̄n) and ν̄n ⇀ ν ∈ P(Rk),

proving the lemma. �

Remark 8.5. Since the level sets of the function θ form a cC̃(a)-Lipschitz foliation, then from Proposition

4.9 the equivalence classes of negligible Hk-measure are complete cC̃(a)-Lipschitz graph. One could then

suspect that the proof of Theorem 8.1 can be deduced from the proof of Theorem 6.1.
This would be the case if the disintegration of the Hk-measure on the level sets of negligible Hk-

measure of the generating θ were absolutely continuous w.r.t. Hk−1. Here we show that in general this
is not the case. In fact, we will construct a Borel function Θ : [0, 1]2 → [0, 1] whose level sets are subsets
of C∞-functions on [0, 1] such that there exists a Cantor set C of positive L2-measure on which Θ is
injective. This clearly implies that the disintegration of L2xC w.r.t. Θ has conditional probabilities made
of a single Dirac δ-mass.

Let % : [0, 1]→ [0, 1] be a strictly increasing C∞ function such that

%(0) = 0, %(1) = 1, %(x) = 1− %(1− x),
dk%

dxk
(0) =

dk%

dxk
(1) = 0 ∀k ∈ N.

Consider the sequence of numbers

ck = 2−2k−1, a0 = 1, ak =
ak−1 − ck

2
= 3 · 2−2−k + 2−2−2k, bk = 2−2k2

.

Step 1. If

Q1 = [0, a1]× [0, b1] =

[
0,

7

16

]
×
[
0,

1

4

]
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x

y

Q1
02

Q1
01

Q1
12

Q1
11

Q1
10

Figure 14. The first steps of the construction done in Remark 8.5.

and having fixed the points

x0 = 0, x1 = a1 + c1 =
9

16
, y0 = 0, y1 = b1 +

b1
3

=
1

3
, y2 = 2

(
b1 +

b1
3

)
=

2

3
,

consider the squares

Q1
0,j =

(
x0, yj +

1

24

)
+Q1, Q1

1,j = (x1, yj) +Q1, j = 0, 1, 2.

We define the level sets of Θ outside the squares Q1
i,j as follows. First, in the strips

[0, 1]×
[

7

24
,

1

3

]
, [0, 1]×

[
15

24
,

2

3

]
, [0, 1]×

[
23

24
, 1

]
the level sets are horizontal segments y = constant. In the remaining strips, the construction is completely
similar so that we show only the case [0, 1]× [0, 7/24].

In the strip [9/16, 1] × [1/4, 7/24] the level lines are again y = constant. In the remaining strip
[7/16, 9/16] × [0, 7/24] we show how to use the function % to connect the points of the vertical segment
{7/16}× [0, 1/24] to the points of the vertical segment {9/16}× [0, 1/4]: the construction in the remaining
part is symmetrical. In this case, define the level set of Θ as the curves{

y + 5y%
(
8(x− 7/16)

)
, x ∈ [7/16, 9/16]

}
, y ∈ [0, 1/24].

Due to the regularity of %, these curves are C∞ in the set of definition.
Step 2. In this step we show how to repeat the above construction in a square of the form [0, ak]×[0, bk],

in order to define the level sets of Θ outside finitely many squares of size [0, ak+1]× [0, bk+1].
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Define the points

x0 = 0, x1 = ak+1 + ck+1 =
3

8
· 2−k +

3

16
· 2−2k, yj = j ·

(
bk+1 +

bk+1

bk
bk+1
− 1

)
, j = 0, . . . ,

bk
bk+1

− 2.

The new squares which will be used in the next step are given by

Qk0,j =

(
x0, yj +

1

2
· bk+1

bk
bk+1
− 1

)
+ [0, ak+1]× [0, bk+1], Qk1,j = (x1, yj) + [0, ak+1]× [0, bk+1],

with j = 0, . . . , bk
bk+1
− 2.

As before, in the strips

[0, ak]×
[
yj −

1

2
· bk+1

bk
bk+1
− 1

, yj

]
, j = 1, . . . ,

bk
bk+1

− 2,

the level sets of Θ are straight lines y = constant, and the same for the strips

[0, ak+1]×
[
yj , yj +

1

2
· bk+1

bk
bk+1
− 1

]
, j = 0, . . . ,

bk
bk+1

− 2,

[ak+1 + ck+1, ak]×
[
yj −

bk+1

bk
bk+1
− 1

, yj −
1

2
· (bk+1)2

bk
bk+1
− 1

]
, j = 1, . . . ,

bk
bk+1

− 1.

Similarly as done in Step 1, we just show how to define the level sets connecting the segments

{ak+1} ×
[
0,

1

2
· bk+1

bk
bk+1
− 1

]
and {ak+1 + ck+1} × [0, bk+1].

One just defines the level sets of Θ to be{
y +

(
2
bk
bk+1

− 3

)
y%

(
x− ak+1

ck+1

)
, x ∈ [ak+1, ak+1 + ck+1]

}
, y ∈

[
0,

1

2
· bk+1

bk
bk+1
− 1

]
.

Step 3. We show that the level sets are C∞. In fact, by the estimate

d`

dx`
(
bk%(x/ck)

)
= O(1)

bk
c`k

= O(1)2−k
2+2k`,

it follows that the curves have a uniform bound in C`, for every fixed `, and thus they belongs to C∞.
Moreover, it is fairly easy to see that the intersection of each level set with the line {1/2} × [0, 1]

determines completely the curve, so that the function Θ can be defined as the y-coordinate of this
intersection. With a slight variation of this construction one can obtain Θ to be regular.

Step 4. Let C be the compact Cantor set obtained by intersecting all the squares Qki,j :

C =
⋂
k∈N

⋃
i,j

Qki,j .

It is standard to see that the function Θ is single valued on C. Moreover, a simple area estimate yields

L2

(⋃
i,j

Qki,j

)
= 2kak ·

(
1−

k∑
`=1

bk

)
≥ 3

4
· 2

3
=

1

2
,

and this concludes the example.

9. Proof of Theorems 1.2-1.8.

In this final section we collect the proofs of the remaining main theorems stated in Section 1.1.
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9.1. Proof of Theorems 1.6 and 1.5. In this section we prove Theorem 1.6, that we recall below.

Theorem 1.6. Let {Zka , Cka} k=0,...,d

a∈Ak
be a Lebesgue-regular directed locally affine partition in Rd and let µ,

ν be probability measures in P(Rd) such that µ� Ld and Πf
cD

(µ, ν) 6= ∅. Then, for all fixed π̌ ∈ Πf
cD

(µ, ν),

there exists a directed locally affine subpartition {Ž`b, Č`b} `=0,...,d

b∈B`
of {Zka , Cka}k,a, up to a µ-negligible set

Nπ̌, such that {
Ž`b, Č

`
b

}
`,b

is Lebesgue-regular,

and setting ν̌`b := (p2)#π̌
`
b, where π̌`b is the conditional probability on the partition {Ž`b×Rd}`,b, then the

sets

(9.1)
{
Ž`b : Ž`b ⊂ Z`a for some a ∈ A`, ` = 1, . . . , d

}
form a Πf

cD
(µ, {ν̌`b})-cyclically connected partition.

Proof. Let {Zka , Cka} k=0,...,d

a∈Ak
be a Lebesgue-regular directed locally affine partition in Rd and let µ� Ld,

ν be probability measures such that Πf
cD

(µ, ν) 6= ∅.
Step 1. By Proposition 3.15, we can restrict the proof of the theorem to a fixed `-directed sheaf set,

which we will denote again by {Z`a, C`a}a∈A` .
Moreover, by Proposition 3.22 it is enough to prove the existence of subpartitions as in Theorem

1.6 for the fibration {Z̃`a, C̃`a}a∈A` , C̃`(a) = C`a, given by Proposition 3.20. It is indeed clear that

(µ, Γ̌, cD)-cyclically connected sets, where π̌(Γ̌) = 1 are mapped into (µ̃, Γ̃, cC̃)-cyclically connected sets
and viceversa, being µ̃ obtained through (3.38). Since the map r defined in (3.36) is not a bijection of

Rd into A` × R`, then the transport problem on the fibration {Z̃`a, C̃`a}a∈A` depends on the conditional
second marginals {ν̌`a} of π̌ w.r.t. the partition {Z`a}`,a. Let ν̃ =

∫
ν̌`a dm(`, a).

Step 2. Let θ̄ be the equivalence relation given by Theorem 7.1 for the transport problem Πf
cC̃

(µ̃, ν̃).

In particular, (7.4) gives the sets that, when mapped back through the map r on the sheaf set, satisfy
(9.1) and are Πf

cD
(µ, {ν̌`b})-cyclically connected.

By Propositions 4.11 and 4.9, the remaining sets form a cC̃-foliation into graphs of cone-Lipschitz

functions. Let {Ž`a,b}`′<` be the cC̃-differential partition given by Corollary 4.19. By Theorems 8.1 and
5.21 its complementary Nπ̌ is µ-negligible, and by Corollary 8.2 the partition is Lebesgue-regular. �

9.2. Proof of Theorem 1.5. The only missing point is to prove that the conditional second marginals
{ν̌`b}`,b are independent of the particular transference plan π̌ ∈ Πopt

|·|D∗
(µ, ν) chosen.

From Corollary 8.2 and Theorem 5.21 it follows that

ν =

∫
ν̌`b dm(`, b)

is a disintegration, and Corollary 4.28 implies that (p2)#π̌
`
b(Ž`b) = 1. Hence, from the uniqueness of

strongly consistent disintegrations, it follows that

ν̌`b = (p2)#π̌
`
b m-a.e. `, b,

yielding the improved version of Conditions (4’)-(5’) in Theorem 1.5.
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Appendix A. Minimality of equivalence relations

Consider a family of Borel equivalence relations on X,

(A.1) E =
{
Ee ⊂ X ×X, e ∈ E

}
,

and let µ ∈ P(X). By Theorem 2.4, we can construct the family of disintegrations

(A.2) µ =

∫
Ae

µe,a dme(a), e ∈ E,

where Ae, µe,a, me are respectively the quotient space, the conditional probabilities and image measure
w.r.t. Ee ∈ E.

Definition A.1. A family of equivalence relations E is closed under countable intersections if

{Eei}i∈N ⊂ E =⇒ ∃ e ∈ E s.t. Ee ⊂
⋂
i∈N

Eei ∈ E.

In [6], a family of equivalence relations is said to be closed under countable intersections if {Eei} ⊂
E ⇒ ∩

i
Eei ⊂ E. However, by direct inspection, also with Definition A.1 the following Theorem holds

(see Theorem A.11 in [6]):

Theorem A.2. If E is closed under countable intersections, there exists Eē ∈ E such that for all Ee ∈ E,
the following holds:

(1) if Ae, Aē are the σ-subalgebras of the Borel sets of X made of the saturated sets for Ee, Eē

respectively, then for all A ∈ Ae there is A′ ∈ Aē s.t. µ(A M A′) = 0;
(2) if me, mē are the restrictions of µ to Ae, Aē respectively, then Ae can be embedded (as measure

algebra) in Aē by Point (1): let

(A.3) mē =

∫
mē,adme(a)

be the disintegration of mē consistent with the equivalence classes of Ae in Aē.
(3) If

µ =

∫
µe,adme(a), µ =

∫
µē,bdmē(b)

are the disintegrations consistent with Ee, Eē respectively, then

µe,a =

∫
µē,bdmē,a(b).

for me-a.e. a.

Remark A.3. From the proof of the above theorem one can observe that it is enough to require that for
all {ei}i∈N ⊂ E there exists e ∈ E such that Ee ⊂ ∩

i
Eei .

Definition A.4. The equivalence relation Eē satisfying the assumptions of Theorem A.2 is called the
minimal equivalence relation in E w.r.t. µ.

In particular, assume that each Ee is given by

Ee =
⋃

x′∈X′

{
θe = x′

}
× {θe = x′

}
, θe : X → X ′, X ′ Polish, θe Borel.

Corollary A.5. ∀ e ∈ E, there exists a µ-conegligible set F ⊂ X such that θe is constant on F ∩ θ−1
ē (x′),

for all x′ ∈ X ′.

Proof. Consider the function ϑ := (θe, θē): by the minimality of θē, it follows that

mē =

∫
mē,(x′,x′′)dmϑ(x′, x′′), mϑ := ϑ#µ.

Since (p2)#mϑ = mē, then also

mϑ =

∫
mϑ,x′′dmē(x

′′),
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and thus

mē =

∫ [ ∫
mē,(x′,x′′)dmϑ,t′′(x

′, x′′)

]
dmē(t

′′).

This implies that for mē-a.e. t′′ ∫
mē,(x′,x′′)dmϑ,t′′(x

′, x′′) = δt′′ ,

or equivalently that
mϑ,x′′′ = δx′(x′′′),x′′(x′′′), mē,(x′(x′′′),x′′(x′′′)) = δx′′′ .

Hence mϑ is concentrated on a graph: by choosing x′′ = x′′′, there exists s = s(x′′) Borel such that
mϑ = (I, s)#mē. This is equivalent to say that there exists a µ-conegligible set F such that θe = s ◦ θē
on F . �
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Appendix B. Notation

N, N0, Q, R natural numbers, natural numbers with 0, rational numbers, real numbers
Q+, R+ positive rational and real numbers
Rd, Sd−1 d-dimensional real vector space and (d− 1)-dimensional unit sphere
| · |, · norm, scalar product in Rd
Bd(x, r) open unit ball in Rd centered in x with radius r
P(X) power set of X
ω first countable ordinal number
closA, intA, intrelA closure, interior, relative interior of a set A
∂A, ∂relA topological boundary, relative boundary of a set A
A+A′ vector sum of two sets A, A′ (2.1)
TA scalar product of T ⊂ R with A (2.2)∏
i

Xi product space of the spaces Xi

pīA, pxīA, pXīA projection of A ⊂
∏
i

Xi on the ī-coordinate

Σ1
1 class of Souslin sets

Θ σ-algebra generated by Souslin sets
f−1, A−1 inverse of the multifunction f or the set A ⊂ X × Y (2.3)
dom f , dom f domain of the multifunction f or the function f

graph f graph of the function f

g ◦ f composition of the functions f and g

epi f epigraph of the function f (2.4)
I identity map or its graph
χA(x) characteristic function of A (2.5)
1A indicator function (2.6)
(X, d) Polish space
G(k,Rd) family of linear subspaces of Rd of dimension k
A(k′, V ) family of affine subspaces of V ∈ A(k,Rd) of dimension k′ ≤ k
pV orthogonal projection on the affine space V ∈ A(k,Rd)
aff A affine space generated by A (2.7)
convA convex envelope of A ⊂ Rd
V ⊥ orthogonal space to V
dim A linear dimension of aff A
C(k,Rd) family of closed non degenerate cones in Rd of dimension k
D compact convex neighborhood of 0
| · |D∗ convex norm with unit ball D (2.8)
C(k′, V ) cones in the affine space V (2.9)

C̊(±r) cones defined in (2.10), (2.11)

C(±r) closure of the cone C̊(±r)
convSd−1A spherical convex envelope of A ⊂ Sd−1 (2.14)
Ld Lebesgue measure on Rd
Hk k-dimensional Hausdorff measure
$0 ⊗$1 product of the two measures $0 and $1

$xA restriction of the measure $ to the set A
fxA restriction of the function f to the set A
Leb(A) Lebesgue points of a set A (2.15)
B(X) Borel σ-algebra on the topological space X
P(X) space of Borel probability measures over X Polish
$0 ' $1 equivalence of measures (2.16)
f#$ push-forward of the measure $ by the function f (2.17)∫
A
µadm(a) disintegration of a measure µ on a partition {Za}a∈A, Definition 2.3∫

A
νadm(a) integration formula (2.22)∫

A
υadη(a) disintegration of Ld on a partition {Za}a∈A, Remark 2.5
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c : X ×X → [0,∞] Borel cost function
Π(µ, ν) transference plans with marginals µ, ν (2.23)
Πf

c (µ, ν) transference plans with finite c cost (2.24)
Πopt

c (µ, ν) c-optimal transference plans (2.25)
Γ ⊂ X ×X σ-compact c-cyclically monotone carriage of π
4A preorder on X whose graph is A
'A equivalence relation whose graph is E =4A ∩ (4A)−1

4(Γ,c) preorder induced by (Γ, c)-axial paths (2.42)
∂+ϕ, ∂−ϕ superdifferential, subdifferential of the function ϕ, Definition 3.1
cCk convex cone cost (3.7)
µ̂, ν̂ push forward of µ, ν on the graph of ψ (3.8)
π̂ push forward of π on the set graphψ × graphψ ⊂ Rd+1 × Rd+1 (3.9)
∂+graphϕ, ∂−graphϕ super/subdifferential of graphϕ (3.11)
Zka directed locally affine partition of Rd, Definition 3.6
Cka cone of directions for the partition Zka , Definition 3.6
D, {Zka , Cka}k,a graph of a directed locally affine partition (3.13)
Z, Zk base of the partition Zka (3.14)
A quotient space of the directed locally affine partition (3.15)⊔
k A

k disjoint union of the sets Ak (3.15)
I(Zka ), E(Zka ) initial, final points of the set Zka , Definition 3.7
I, E initial, final points of a directed locally affine partition (3.16)
cD cost function associated to a directed locally affine partition (3.20)∫
πkadm(k, a) disintegration of the transference plan π on {Zka , Cka}k,a, Proposition 3.11

Πf
cD

(µ, {ν̄ka}) optimal transport plans with finite cD-cost w.r.t. the marginals µ and {ν̄ka}, Definition 3.13
C({eki }) cone generated by {eki } (3.27)
U({ek2}) unit cube generated by the family of vectors {eki } (3.28)
Dk
n countable decomposition of D into sheaf sets, Proposition 3.15

Dk sheaf set, Definition 3.17
Ak ⊂ Rd−k quotient space of the sheaf set Dk (3.32)

D̃k, C̃k σ-compact fibration, Definition 3.19
r bi-Lipschitz map of a sheaf set into a fibration (3.36)
ik identification map (3.37)
µ̂, ν̂, µ̃kq, ν̃kq push forward of µ, ν, µka, νka by r (3.39)-(3.40)

{Z̃`q,b, C̃`q,b} subpartition of a directed fibration, Proposition 3.22

G complete cC̃-Lipschitz graph, Definition 4.1
ϕG | · |D∗ -Lipschitz function whose graph is G (4.2)
∂+G, ∂−G super/subdifferential of G, Definition 4.3

C(w,w′) extremal cone of C̃ satisfying (4.5)
cC̃-Lipschitz foliation Definition 4.7

D(a), | · |D∗(a) convex set and its corresponding norm whose epigraph is C̃(a), Section 4.2
θ : dom θ → T quotient map of a cC̃-Lipschitz foliation, Definition 4.7
O(a)(w,w′) convex set defined in (4.12)
h+(t, x), h−(t, x) | · |D∗(a)-Lipschitz functions, Proposition 4.9
∂+θ, ∂−θ super/subdifferential of the cC̃-Lipschitz foliation {θ−1(t)}t∈T, Definition 4.12
T +θ, T −θ forward, backward transport sets (4.18)
Fθ set of fixed points (4.19)
D+θ, D−θ forward/backward direction multifunction (4.20)
R+,`θ, R−,`θ `-dimensional forward/backward regular transport set (4.24)
R+θ, R−θ forward/backward regular transport set (4.25)
Rθ regular transport set (4.26)
N θ residual set (4.27)
v±, v quotient maps defined in (4.29) and (4.32)

{Z`,±a,b , C
`,±
a,b }`,a,b super/subdifferential directed partition defined in Theorem 4.18

{Z`a,b, C`a,b}`,a,b cC̃-differential locally affine partition defined in Corollary 4.19
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D̂±, D̂ σ-compact graphs of the partitions {Z`,±a,b , C
`,±
a,b }, {Z`a,b, C`a,b} (4.33)

I+θ initial points of the superdifferential partition {Z`,+a,b , C
`,+
a,b } (4.34)

E−θ final points of the subdifferential partition {Z`,−a,b , C
`,−
a,b } (4.35)

Πf
cC̃,θ

(µ̃, ν̃) set of transference plans concentrated on the superdifferential of θ (4.41b)

d directional vector field for a 1-dimensional model set (5.1)
Z1(d,A, e, h−, h+) short notation for 1-dimensional model set {Z1

a , C
1
a}a, Definition 5.1

Z̄1 union of the closure of the segments of Z1 (5.2)
Pt, d

t section of Z1, d (5.3), (5.4)

dh
−

, dh
+

multivalued extensions of d to the initial, final points (5.5)

d̃h
−

+ , d̃h
+

− Borel section of dh
−

, dh
+

, Lemma 5.2

d̃+, d̃− extension of d̃h
−

+ , d̃h
+

− to the set Z̄1 (5.6)

σs,t, σ̃s,t± maps from Ps to Pt defined by d, d̃± (5.7), (5.8)
d, E1, z̄ ∈ E2 cone vector field with base E1 and vertex z̄ ∈ E2 ⊂ Rd \ E1, Definition 5.4
{di}Ii=1, Edi , z̄i finite union of cone vector fields with bases Edi , vertices z̄i, Definition 5.4
U({eki },h−,h+) reference set defined in (5.15)
Zk(D,Ak, {eki },h−,h+) k-dimensional model set Zk with direction map D,

reference set U({eki },h−,h+), Definition 5.10
(e, h−(w, e), h+(w, e)) reference configuration for a 1-dimensional slice of Zk, Definition 5.11
de direction map of a 1-dimensional slice (5.18)
Dk direction map of a sheaf set Zk (5.20)

Zk,
′

subset of a k-dimensional sheaf set (5.21)

Zk(D,Ak,′ , {eki },h−,h+) k-dimensional D-cylinder, Definition 5.14

Zk,
′

n countable family of k-dimensional D-cylinders covering a sheaf set (5.22)
4̄ linear preorder with minimality properties, Theorem 7.1
θ̄ Borel function generating 4̄ (7.3)
Γ (π̃) family of σ-compact carriages of π̃ (7.5)
Γ family of σ-compact carriages of transference plans (7.6)
{0, 1}N Polish space of sequences with product topology
4Γ̃,WΓ̃ linear preorder constructed for π̃, Theorem 7.2

θΓ̃,WΓ̃ Borel function generating 4Γ̃,WΓ̃ (7.7)

WΓ̃ = {wΓ̃
n}n countable family of sections, Lemma 7.3

HΓ̃,n sets defined in (7.10)

≤lexi lexicographic ordering on Rd−k (7.13)
Eα lexicographic ordering on {0, 1}α (7.14)
Z`,+e 1-dimensional slice of a D-cylinder Z`,+ (8.1)
d+
e vector direction map for the 1-dimensional slice Z`,+e (8.2)
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