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Abstract

We give an example of a ferromagnetic spin system with uniformly almost-periodic
coefficients whose ground states may not be confined in any finite strip, in contrast to
what previously proved in the case of periodic coefficients by Caffarelli and de la Llave.

1 Introduction

This paper stems from a previous work by Caffarelli and de la Llave [8], where the
authors studied properties of ground states for periodic ferromagnetic lattice spin sys-
tems. In that paper they proved that the energy of such ground states can be confined
on a strip of finite width around a plane (plane-like minimizers). That property, in
turn, gives the existence of a limit surface tension, and implies that the related scaled
energies can be homogenized; i.e., that they can be approximated by properly defined
macroscopic energies when the lattice spacing is scaled and tends to 0 (see Remark
4 below). Such macroscopic energies can be defined using the formalization of Γ-
convergence, in analogy with the homogenization of surface energies in a continuous
setting [2]. We note that the properties of ground states are a subtler issue than the
computation of the limit energies, in that they may be important to determine the
scale of the corrections in this limit passage. We refer to the paper by Caffarelli and
de la Llave for a wider introduction to the subject.

Beyond the periodic context, homogenization results for ferromagnetic lattice spin
energies have also been obtained for almost-periodic or random environments [4] (see
[5] for dilute spin systems), as well as in some aperiodic settings [6]. In this paper we
show that if the coefficients of the ferromagnetic system are uniformly almost periodic
then there can be no ground state confined on a strip, in contrast to the periodic case.
To that end, we provide an explicit two-dimensional example, where the coefficients
are the uniform limit of periodic coefficients (with increasing period).
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2 Setting of the problem

We consider a discrete system of nearest-neighbour interactions in dimension two with
coefficients cij ≥ c > 0, i, j ∈ Z2. The corresponding ferromagnetic spin energy is

F (u) =
∑
ij

cij(ui − uj)2, (1)

where u : Z2 → {−1, 1}, ui = u(i), and the sum runs over the set of nearest neighbours
or bonds in Z2, which is denoted by

Z = {(i, j) ∈ Z2 × Z2 : |i− j| = 1}.

Such energies correspond to inhomogeneous surface energies on the continuum [1, 4].

Definition 1 We say that u is a ground state if we have∑
ij

cij

(
(ui − uj)2 − (vi − vj)2

)
≤ 0 (2)

for all v such that vi = ui except for a finite number of indices (so that actually the
sum runs over a finite set of nearest neighbours).

Definition 2 We say that u is a plane-like ground state or a plane-like minimizer for
F in the direction ν if u is a ground state and there exists a number M such that (up
to a change of sign of all values of u) we have

ui =
{

1 if 〈i, ν〉 ≥M
−1 if 〈i, ν〉 ≤ −M . (3)

The relevance of this definition lies in a result by Caffarelli and de la Llave, who
proved that if cij is periodic then for all directions ν there exists a plane-like minimizer
of F in the direction ν [8], in analogy to what previously shown for continuous interfaces
[7]. Related results and applications can be found, e.g., in [9, 10, 11, 12].

If we identify the function u with its piecewise-constant interpolation, then being
a plane-like minimizer can be interpreted as the property that the interface ∂{u = 1}
lies in a strip around a line (or a hyperplane, in higher dimension, whence the name
plane-like minimizer). Note that this interface cannot be periodic if ν is an ‘irrational’
direction (i.e., it is not a multiple of a vector in Z2).

3 The example

This section is devoted to an example of uniformly almost-periodic coefficients cij such
that there exist no plane-like minimizer for the corresponding F for all directions ν.

We consider the following nested sets of bonds: for n ≥ 1 we define

Bn =
{

(i, j) ∈ Z :
i1 + j1

2
or

i2 + j2
2

∈ 1
2

+ 2 · 3n + 4 · 3nZ
}
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Since 2 · 3n+1 + 4 · 3n+1Z ⊂ 2 · 3n + 4 · 3nZ we have Bn+1 ⊂ Bn. We set B0 = Z.
Let an be a strictly decreasing sequence of real numbers with

a := inf
n
an > 0. (4)

For all i, j ∈ Z2 with |i− j| = 1 we set

cij = an if (i, j) ∈ Bn \Bn+1, n = 0, 1, . . .

Note that Bn ∩ [−3n, 3n] = ∅. Hence, we deduce that
⋂
nBn = ∅ and the coefficients

cij are well defined for all (i, j) ∈ Z. Note moreover that we can write

cij = a0 +
∞∑
n=1

(an − an−1)χBn(i, j),

where χBn
is the characteristic function of Bn.

Remark 3 (almost-periodicity) Note that the coefficients ckij defined by

ckij = max
{
cij , ak

}
are 4 · 3k-periodic both in i and j; i.e., ck(i+4·3k) j = cki (j+4·3k) = ckij . Indeed,

ckij = a0 +
k∑

n=1

(an − an−1)χBn(i, j),

and each Bn is a 4 · 3k-periodic (i.e., Bn + 4 · 3kZ2 = Bn) if n ≤ k. Note also that
ckij converge uniformly to cij on Z. Hence, the system of coefficients cij is uniformly
almost periodic; more precisely, it is the uniform limit of a family of periodic coefficients
of increasing periods. This is somewhat the strongest notion of almost periodicity,
implying all other types of almost periodicity (see, e.g., [3]). The coefficients are not
quasiperiodic (i.e., diagonal functions of periodic functions in more variables) for which
the existence of a counterexample is open. Related questions for that type of coefficients
can be found in [13].

Remark 4 (homogenizability) Note that the set of coefficients cij is homogenizable
(in the terminology of [4]): if we define the family of energies

Fε(u) =
∑
ij

εcij(ui − uj)2 if u : εZ2 → {−1, 1},

where ui = u(εi), then, upon identifying each u with its piecewise-constant interpola-
tion as a L1-function, Fε Γ-converge to the energy

F0(u) = 8a
∫
∂{u=1}

(|ν1|+ |ν2|) dH1 if u ∈ BV (R2; {−1, 1})

(a given by (4)), where ∂{u = 1} is understood as the reduced boundary of the set
{u = 1} and ν is its measure-theoretical normal. This can be proved using the results
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in [4] Section 2.1.2, or directly by comparison, on one hand remarking that, using that
cij ≥ a for all i and j, we have

Fε(u) ≥ a
∑
ij

ε(ui − uj)2 if u : εZ2 → {−1, 1}

and the Γ-limit of the energies of this right-hand side is F0 by [1]. On the other hand,
by Remark 3, for all u we can find a sequences of functions {uε} converging to u and
such that

Fε(uε) ≤ an
∑
ij

ε((uε)i − (uε)j)2 ≤ 8 anH1(∂{u = 1})

(the factor 8 comes from the fact that each nearest-neighbour pair is accounted for
twice, and that ((uε)i − (uε)j)2 = 4 for non-zero interactions).

We now show that there exists no plane-like minimizer for the energy F in any
direction ν. The argument we will follow will be to compare the energy of a competi-
tor u lying in a strip with a function v suggested by the remark above, obtained by
modifying u in a finite set and with the modified interface lying in Bn for n sufficently
large.

We first consider the ‘oblique’ case; i.e., when ν is not a coordinate direction. By
symmetry it is sufficient to consider the case

ν1 < 0, 0 < ν2 ≤ −ν1;

i.e., the direction of the strip

SMν := {x ∈ R2 : |〈x, ν〉| < M}

is increasing and at an angle not less than 45 degrees (see the one in Fig. 1).
Suppose that such a plane-like minimizer u existed, and let ν, M be given by its

definition. Up to changing the sign to u we may suppose that (3) holds.
With fixed n, let kn be the minimal integer k such that the horizontal line

x2 =
1
2

+ 2 · 3n + 4 · 3nk

intersects
SMν ∩

{
(x1, x2) : x1 >

1
2

+ 2 · 3n
}

;

i.e., the intersection of the strip with the half-plane on the right-hand side of the first
vertical line of Bn in the half-plane x1 > 0.

We consider the function v defined as

vi =
{

1 if i1 < 1
2 + 2 · 3n and i2 >

1
2 + 2 · 3n + 4 · 3n(kn − 2)

ui otherwise.
(5)

If we identify the discrete function u with its piecewise-constant interpolation

u(x) = u
(⌊
x1 −

1
2

⌋
,
⌊
x2 −

1
2

⌋)
(6)
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Figure 1: construction of a competitor v (oblique case).

then u can be pictured through the interface ∂{u = 1} of this interpolation, and likewise
v. In Fig. 1 the solid line represents the interface ∂{v = 1} and the dotted line the
part of the interface ∂{u = 1} not included in ∂{v = 1}. The vertical and horizontal
lines represent the bonds in Bn.

We now estimate the variation of the energy∑
ij

cij

(
(ui − uj)2 − (vi − vj)2

)
,

where the sum can be limited to nearest neighbours i, j such that i1 < 1
2 + 2 · 3n and

i2 >
1
2 + 2 ·3n+ 4 ·3n(kn−2) or the same holds for j1 and j2, since ui = vi and ui = vi

otherwise. We note that on for such pairs we have vi 6= vj only on (i, j) satisfying
either of the two

(a) i1 = j1 and i2+j2
2 = 1

2 + 2 · 3n + 4 · 3n(kn − 2);
(b) i2 = j2 and i1+j1

2 = 1
2 + 2 · 3n.

In case (a) there exists at least a pair of nearest neighbours (i′, j′) such that
(a’) i′1 = j′1 = i1(= j1), i2+j2

2 ≥ 1
2 + 2 · 3n + 4 · 3n(kn − 2), and ui′ 6= uj′ .

This follows from the fact that (assuming j2 = i2 + 1) we have ui(= vi) = −1 and
u(i1,m) = 1 for m large enough so that (m, i2) lies above the strip SMν . Note that we
may assume, up to taking a slightly larger M , that both i′ and j′ lie in SMν .

Similarly, in case (b) there exists at least a pair of nearest neighbours (i′, j′) such
that

(b’) i′2 = j′2 = i2(= j2), i1+j1
2 ≤ 1

2 + 2 · 3n, and ui′ 6= uj′ .
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We subdivide further our analysis by considering the sets of indices defined as
follows:
• I1 is the set of all i1 such that there exist a pair (i′, j′) with i′1 = j′1 = i1,

i2+j2
2 ≥ 1

2 + 2 · 3n + 4 · 3n(kn − 2), and (i′, j′) ∈ Bn ∩ SMν ;
• I2 is the set of all i2 such that there exists (i′, j′) with i′2 = j′2 = i2, i1+j1

2 ≤
1
2 + 2 · 3n, and (i, j) ∈ Bn ∩ SMν .

The interfaces of v corresponding to such sets are highlighted in Fig. 1. These are
the sets such that the coefficients ci′j′ corresponding, respectively, to pairs satisfying
(a’) and (b’) may have a lower value than the corresponding cij .

In order to finally estimate the variation of the energy, we note that if (i, j) is such
that vi 6= vj and (a) is satisfied then
• if i1 ∈ I1 and (i′, j′) satisfies (a’) then we have

ci′j′ − cij ≥ a− an (7)

• if i1 6∈ I1 and (i′, j′) satisfies (a’) then we have

ci′j′ − cij ≥ an−1 − an (8)

(here we have used that when i1 6∈ I1 all such (i′, j′) do not belong to Bn).
Analogously, if (i, j) is such that vi 6= vj and (b) is satisfied then
• if i2 ∈ I2 and (i′, j′) satisfies (b’) then we have

ci′j′ − cij ≥ a− an (9)

• if i2 6∈ I2 and (i′, j′) satisfies (b’) then we have

ci′j′ − cij ≥ an−1 − an. (10)

It remains to note that

#{(i, j) satisfying (b) with vi 6= vj} ≥ 8 · 3n (11)

(the factor 8 instead of 4 comes from double counting). and that

#I1 ≤
2M
|ν1|

, #I2 ≤
4M
|ν2|

(12)

In (12) we used that 2M/|ν1| (respectively, 2M/|ν2|) is the length of the intersection of
an horizontal (respectively, vertical) line with SMν . The factor 2 in the second estimate
in (12) comes from the fact that the strip can intersect two lines in Bn if the slope is
close to 45 degrees.

Taking (7)–(11) into account we infer the estimate∑
ij

cij

(
(ui − uj)2 − (vi − vj)2

)
≥ 2
(2M
|ν1|

+
4M
|ν2|

)
(a− an) + 8 · 3n(an−1 − an). (13)

In order to conclude, it suffices to show that the right-hand side in this formula is
strictly positive for n large enough. This holds, provided that

an−1 − an >> 3−n(an − a).
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To check this, we write bn = an− a, which is a sequence decreasing to 0, and argue by
contradiction, supposing that there exists C such that for all n we have

bn−1 − bn ≤ C3−nbn.

Summing up, we obtain

bn−1 =
∞∑
k=n

(bk−1 − bk) ≤ C3−n
∞∑
j=0

3−jbn+j ≤ C3−n
3
2
bn.

By choosing n large enough so that C3−n 3
2 < 1 we obtain bn−1 < bn, which is a

contradiction, since bn is decreasing.

It remains the case when ν1ν2 = 0. By symmetry, it suffices to consider the case
ν1 = 0; i.e., when we suppose that u is a ground state such that there exists M such
that

ui = 1 if i2 > M, ui = −1 if i2 < −M.

Let SM = {x : |x2| ≤M}, and let n be such that

2 · 3n > M + 2. (14)

In this case there is no pair (i, j) ∈ Bn ∩ SM with i2 = j2 (i.e., there is no ‘horizontal’
bond in Bn lying in the strip SM ).

With fixed k ∈ N we define a test function v as follows:

vi =
{
−1 if 2 · 3n < i1 ≤ 2(1 + 2k)3n, i2 < 2 · 3n
ui otherwise.

We can picture the functions u and v through the interfaces related to their piecewise-
constant interpolations as done in the oblique case above. In Fig. 2 the boldface solid
line represents the interface related to v, the boldface dotted line represents the part
of the interface related to u not included in that of v, the other solid lines represent
the location of the bonds in Bn.

Let
I1 =

{
(i, j) ∈ Z ∩Bn :

i1 + j1
2

=
1
2

+ 2 · 3n
}

I2 =
{

(i, j) ∈ Z ∩Bn :
i1 + j1

2
=

1
2

+ 2(1 + 2k)3n
}

I3 =
{

(i, j) ∈ Z ∩Bn :
i2 + j2

2
=

1
2

+ 2 · 3n
}

Iu =
{

(i, j) ∈ Z ∩Bn : i, j ∈ SM , 2 · 3n < min{i1, j1}, max{i1, j1} ≤ 2(1 + 2k)3n
}

We can then estimate∑
ij

cij

(
(ui − uj)2 − (vi − vj)2

)
=

∑
(i,j)∈I1∪I2∪I3∪Iu

cij

(
(ui − uj)2 − (vi − vj)2

)
≥ −

∑
(i,j)∈I1∪I2∪I3

an(vi − vj)2 +
∑

(i,j)∈Iu\Bn

an−1(ui − uj)2.
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x
1
= 1
2 +

2 3n. x
1
= 1
2 +

2 (1+2k)3n.

x
2
= 1
2 +

2 3n.

Figure 2: Construction of a competitor v (horizontal case)

Estimating the sum on Iu \ Bn with only horizontal bonds where ui 6= uj (whose
number is greater than #I3), we then have∑

ij

cij

(
(ui − uj)2 − (vi − vj)2

)
≥ −8an(8 · 3n + 4k 3n) + 8an−14k 3n

= 32k(an−1 − an)− 64an3n.

By taking k large enough (recall that now n is fixed by (14)) the last expression is
positive, since an−1 > an, again contradicting (2).
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