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abstract. Given a 3-dimensional Riemannian manifold (M, g), we prove that if (Φk) is a sequence of
Willmore spheres (or more generally area-constrained Willmore spheres), having Willmore energy

bounded above uniformly strictly by 8π, and Hausdorff converging to a point p̄ ∈M , then Scal(p̄) = 0
and ∇ Scal(p̄) = 0 (resp. ∇ Scal(p̄) = 0). Moreover, a suitably rescaled sequence smoothly converges, up

to subsequences and reparametrizations, to a round sphere in the euclidean 3-dimensional space.
This generalizes previous results of Lamm and Metzger contained in [14]-[15].

An application to the Hawking mass is also established.
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1 Introduction

Let Σ be a closed two dimensional surface and (M, g) a 3-dimensional Riemannian manifold. Given a
smooth immersion Φ : Σ ↪→M , W (Φ) denotes the Willmore energy of Φ defined by

(1) W (Φ) :=

∫
Σ

H2 dvolḡ,

where ḡ := Φ∗(g) is the pullback metric on Σ (i.e. the metric induced by the immersion), dvolḡ is the
associated volume form, and H is the mean curvature of the immersion Φ (we adopt the convention that
H = 1

2 ḡ
ijAij where Aij is the second fundamental form; or, in other words, H is the arithmetic mean of

the two principal curvatures).

In case the ambient manifold is the euclidean 3-dimensional space, the topic is classical and goes back
to the works of Blaschke and Thomsen in 1920-’30 who were looking for a conformal invariant theory
which included minimal surfaces; the functional was later rediscovered by Willmore [36] in the 60’ies and
from that moment there have been a flourishing of results (let us mention the fundamental paper of Simon
[33], the work of Kuwert-Schätzle [11]-[12]-[13], the more recent approach by Rivière [29]-[30]-[31], etc.)
culminated with the recent proof of the Willmore Conjecture by Marques and Neves [19] by min-max
techniques (let us mention that partial results towards the Willmore conjecture were previously obtained
by Li and Yau [18], Montiel and Ros [26], Ros [32], Topping [34], etc., and that a crucial role in the proof
of the conjecture is played by a result of Urbano [35]).
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On the other hand, the investigation of the Willmore functional in non constantly curved Riemannian
manifolds is a much more recent topic started in [20] (see also [21] and the more recent joint work with
Carlotto [4]) where the second author studied existence and non existence of Willmore surfaces in a
perturbative setting.
Smooth minimizers of the L2 norm of the second fundamental form among spheres in compact Rieman-
nian three manifolds were obtained in collaboration with Kuwert and Schygulla in [10] where the full
regularity theory for minimizers was settled taking inspiration from the approach of Simon [33] (see also
[25] for minimization in non compact Riemannian manifolds).
Let us finally mention the work in collaboration with Rivière [23]-[24] where, using a “parametric ap-
proach” inspired by the Euclidean theory of [29]-[30]-[31], the necessary tools for studying the calculus
of variations of the Willmore functional in Riemannian manifolds (i.e. the definition of the weak objects
and related compactness and regularity issues) are settled together with applications; in particular the
existence and regularity of Willmore spheres in homotopy classes is established.

Since -as usual in the calculus of variations- the existence results are obtained by quite general tech-
niques and do not describe the minimizing object, the purpose of the present paper is to investigate the
geometric properties of the critical points of W .
More precisely we investigate the following natural questions: Let Φk : S2 ↪→M be a sequence of smooth
critical points of the Willmore functional W (or more generally we will also consider critical points under
area constraint) converging to a point p̄ ∈ M in Hausdorff distance sense; what can we say about Φk?
are they becoming more and more round? Has the limit point p̄ some special geometric property?

These questions have already been addressed in recent articles -below the main known results are
recalled by the reader’s convenience-, but in the present paper we are going to obtain the sharp answers.
Before passing to describe the known and the new results in this direction, let us recall that a critical
point of the Willmore functional is called Willmore surface and it satisfies:

(2) ∆ḡH +H|A◦|2 +H Ric(~n, ~n) = 0,

where ∆ḡ is the Laplace-Beltrami operator corresponding to the metric ḡ, (A◦)ij := Aij − Hḡij is the
trace-free second fundamental form, ~n is a normal unit vector to Φ, and Ric is the Ricci tensor of the
ambient manifold (M, g). Notice that (2) is a fourth-order nonlinear elliptic PDE in the parametrization
map Φ.
Throughout the paper we will consider more generally area-constrained Willmore surfaces, i.e. critical
points of the Willmore functional under area constraint; the immersion Φ is an area-constrained Willmore
surface if and only if it satisfies

(3) ∆ḡH +H|A◦|2 +H Ric(~n, ~n) = λH,

for some λ ∈ R playing the role of Lagrange multiplier.

The first result in the direction of the above questions was achieved in the master degree thesis of
the second author [20] where it was proved that if (Φk) is a sequence of Willmore surfaces obtained as
normal graphs over shrinking geodesic spheres centered at a point p̄, then the scalar curvature at p̄ must
vanish: Scal(p̄) = 0.

In the subsequent papers [14]-[15], Lamm and Metzger proved that if Φk : S2 ↪→ M is a sequence of
area-constrained Willmore surfaces converging to a point p̄ in Hausdorff distance sense and such that 1

(4) W (Φk) ≤ 4π + ε for some ε > 0 small enough,

then ∇ Scal(p̄) = 0 and, up to subsequences, Φk is W 2,2-asymptotic to a geodesic sphere centered at p̄.
Moreover in [15], using the regularity theory developed in [10], they showed that if (M, g) is any compact
Riemannian 3-manifold and ak is any sequence of positive real numbers such that ak ↓ 0 then there

1notice that the normalization of the Willmore functional used in [14]-[15] differ from our convention by a factor 2
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exists a smooth minimizer Φk of W under the area-constraint Area(Φk) = ak; moreover such sequence
(Φk) satisfies (4) and therefore it W 2,2-converges to a round critical point of the scalar curvature. Let us
mention that the existence of area-constrained Willmore spheres was generalized in [24] to any value of
the area.

The goal of this paper is multiple. The main achievement is the improvement of the perturbative
bound (4) above to the global bound

(5) lim sup
k

W (Φk) < 8π.

Secondly we improve the W 2,2-convergence above to smooth convergence towards a round critical point
of the scalar curvature, i.e. we show that if we rescale (M, g) around p̄ in such a way that the sequence of
surfaces has fixed area equal to one (for more details see Section 2), then the sequence converges smoothly,
up to subsequences, to a round sphere centered at p̄, and p̄ is a critical point of the scalar curvature of
(M, g).
Finally we give an application of these results to the Hawking mass.
We believe that the bound (5) is sharp in order to have smooth convergence to a round point (in the
sense specified above); indeed, if (5) is violated then the sequence (Φk) may degenerate to a couple of
bubbles, each one costing almost 4π in terms of Willmore energy.

Now let us state the main results of the present article. The first theorem below concerns the case
of a sequence of Willmore immersions and it is a consequence of the second more general theorem about
area-constrained Willmore immersions.

Theorem 1.1. Let (M, g) be a 3-dimensional Riemannian manifold and let Φk : S2 ↪→M be a sequence
of Willmore surfaces satisfying the energy bound (5) and Hausdorff converging to a point p̄ ∈M .

Then Scal(p̄) = 0 and ∇ Scal(p̄) = 0; moreover, if we rescale (M, g) around p̄ in such a way that the
rescaled immersions Φ̃k have fixed area equal to one, then Φ̃k converges smoothly, up to subsequences and
up to reparametrizations, to a round sphere in the 3-dimensional euclidean space.

Actually we prove the following more general result about sequences of area-constrained Willmore
immersions.

Theorem 1.2. Let (M, g) be a 3-dimensional Riemannian manifold and let Φk : S2 ↪→M be a sequence
of area-constrained Willmore surfaces satisfying the energy bound (5) and Hausdorff converging to a point
p̄ ∈M .

Then ∇Scal(p̄) = 0; moreover, if we rescale (M, g) around p̄ in such a way that the rescaled im-
mersions Φ̃k have fixed area equal to one, then Φ̃k converges smoothly, up to subsequences and up to
reparametrizations, to a round sphere in the 3-dimensional euclidean space.

Of course Theorem 1.2 implies Theorem 1.1 except the property Scal(p̄) = 0. This fact follows by the
aforementioned [20, Theorem 1.3] holding for Willmore graphs over geodesic spheres, together with the
smooth convergence to a round point ensured by Theorem 1.2.

Now we pass to discuss an application to the Hawking mass mH , defined for an immersed sphere
Φ : S2 ↪→ (M, g) by

(6) mH(Φ) =
Areag(Φ)

16π3/2
(4π −W (Φ)) .

Of course, the critical points of the Hawking mass under area constraint are exactly the area-constrained
Willmore spheres (see [16] and the references therein for more material about the Hawking mass); more-
over it is clear that the inequality mH(Φ) ≥ 0 implies that W (Φ) ≤ 4π.
Therefore, combining this easy observations with Theorem 1.2, we obtain the following corollary.
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Corollary 1.3. Let (M, g) be a 3-dimensional Riemannian manifold and let Φk : S2 ↪→M be a sequence
of critical points of mH under area constraint having non negative Hawking mass and Hausdorff converging
to a point p̄ ∈M .

Then ∇Scal(p̄) = 0; moreover, if we rescale (M, g) around p̄ in such a way that the rescaled im-
mersions Φ̃k have fixed area equal to one, then Φ̃k converges smoothly, up to subsequences and up to
riparametrizations, to a round sphere in the 3-dimensional euclidean space.

Let us briefly comment on the relevance of Corollary 1.3 despite the triviality of its proof. Recall that,
from the note of Christodoulou and Yau [5], if (M, g) has non negative scalar curvature then isoperimetric
spheres (and more generally stable CMC spheres) have positive Hawking mass; on the other hand it is
known (see for instance [6] or [28]) that, if M is compact, then small isoperimetric regions converge to
geodesic spheres centered at a maximum point of the scalar curvature as the enclosed volume converges to
0 (see also [22] for the non-compact case). Therefore a link between regions with positive Hawking mass
and critical points of the scalar curvature was already present in literature, but Corollary 1.3 expresses
this link precisely.

We end the introduction by outlying the structure of the paper and the main ideas of the proof. First
of all, as already noticed, it is enough to prove Theorem 1.2 in order to get all the stated results. To
prove it, we adopt the blow up technique taking inspiration from [17] where the first author analyzed the
corresponding questions in the context of CMC-surfaces; such technique was introduced in the analysis
of the Yamabe problem which is a second order scalar problem (for an detailed overview of the method
including applications see [7]), the technical novelty of [17] was that that a second order vectorial problem
was considered; the technical originality of the present paper from the point of view of the blow up method
is that we study a fourth order vectorial problem.

More precisely, in Section 2 we consider normal coordinated centered at the limit point p̄ and we
rescale appropriately the metric g such that the rescaled surfaces have all diameter one (or, thanks to the
monotonicity formula, it is equivalent to fix the area of the rescaled surfaces equal to one); notice that
the rescaled ambient metrics gk are becoming more and more euclidean.
In Subsection 2.1, by exploiting the divergence form of the Willmore equation established in [24], we give
a decay estimate on the Lagrange multipliers as k goes to infinity.

Section 3 is devoted to the proof of Theorem 1.2; we start in Subsection 3.1 by establishing a funda-
mental technical result telling that, under the above working assumptions, the sequence (Φk) converges
smoothly to a round sphere, up to subsequences and reparametrizations. Let us remark that in the
proof we exploit in a crucial way the assumption (5), otherwise it may be possible for the sequence to
degenerate to a couple of bubbles. Once we have smooth convergence to a round sphere ω, we study the
remainder given by the difference between Φk and ω: in Subsection 3.3 we use the linearized Willmore
operator (recalled in Appendix A) in order to give precise asymptotics of such remainder term and in the
final Subsection 3.4 we refine these estimates and conclude the proof.

1.1 Acknowledgment
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2 Notation and preliminaries

Throuhout the paper (M, g) is a Riemannian 3-manifold and S2 is the round 2-sphere of unit radius in
R3. The greek indexes α, β, γ, µ, ν will run from 1 to 3 and will denote quantities in M , latin indexes will
run from 1 to 2 and will denote quantities on Φk(S2), we will always use Einstein notation on summation
over indexes. Given a smooth immersion Φ : S2 ↪→ (M, g) we call ḡ = Φ∗(g) the pullback metric, dvolḡ
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the induced area form, Hg,Φ the mean curvature and

Wg(Φ) :=

∫
S2

|Hg,Φ|2dvolḡ

is the Willmore functional.
Now let (Φk) be a sequence of smooth immersions from S2 into M . Under our working assumptions,

called diamg(Ω) the diameter of the subset Ω of M with respect to the metric g, we will always have

εk := diamg(Φk(S2))→ 0,(7)

Wg(Φk) :=

∫
S2

|Hg,Φk |2dvolḡk ≤ 8π − 2δ, for some δ > 0 independent of k(8)

where dvolḡk is the area form on S2 associated to the pullback metric ḡk = Φ∗k(g) and Hg,Φk is the mean
curvature of Φk.

Notice that in case M is compact then (7) is sufficient to ensure that, up to subsequences, Φk(S2)
converges to a point p̄ ∈ M in Hausdorff distance sense; but since there is no further reason to restrict
to a compact ambient manifold we assume the convergence to p̄ in the hyphotesis of our main results
instead of a compactness assumption on M .

In order to efficiently handle the geometric quantities we need good coordinates; let us now introduce
them. Take coordinates (xµ), µ = 1, 2, 3 around p̄ and let pk = (p1

k, p
2
k, p

3
k) be the center of mass of

Φk(S2):

pµk =
1

Areag(Φk)

∫
S2

Φµkdvolḡk , µ = 1, 2, 3,

where Areag(Φk) =
∫
S2 dvolḡk is the area of Φk(S2). Clearly, up to subsequences, pk → p̄.

For every k ∈ N consider the exponential normal coordinates centered in pk and rescale this chart by a
factor 1

εk
with respect to the center of these coordinates. Hence we get a new sequence of immersions

Φ̃k : S2 ↪→ (R3, gεk), in the sequel simply denoted by Φk, where the metric gεk is defined by

(9) gεk(y)(u, v) := g(εky)(ε−1
k u, ε−1

k v).

Notice that now we have

(10) Wgεk
(Φk) ≤ 8π − 2δ, diamgεk

(Φk(S2)) = 1 and Φk(S2) ⊂ Bgεk (0, 3/2),

where the first inequality is a consequence of the invariance under rescaling of the Willmore functional,
and Bgεk (0, 3/2) is the metric ball in (R3, gεk) of center 0 and radius 3/2. By the classical expression of
the metric in normal coordinates, we get that (see Appendix B in [17])

(11) (gεk)µν(y) = δµν +
ε2
k

3
Rαµνβ(pk) yαyβ +

ε3
k

6
Rαµνβ,γ(pk) yαyβyγ + o(ε3

k),

the inverse metric is

(12) (gεk)µν(y) = δµν −
ε2
k

3
Rαµνβ(pk) yαyβ − ε3

k

6
Rαµνβ,γ(pk) yαyβyγ + o(ε3

k),

the volume form of gεk on can be written as

(13)
√
|gεk |(y) = 1− ε2

k

6
Ricαβ(pk)yαyβ − ε3

k

12
Ricαβ,γ(pk)yαyβyγ + o(ε3

k),

and the Christoffel symbols of gεk can be expanded as

(14) (Γεk)γαβ(y) = Aαβγµ(pk)yµε2
k +Bαβγµνy

µyνε3
k + o(ε3

k)

where Aαβγµ(pk) = 1
3 (Rβµαγ(pk) +Rαµβγ(pk)) and

Bαβγµν(pk) = 1
12 (2Rβµαγ,ν(pk) + 2Rαµβγ,ν(pk) +Rβµνγ,α +Rαµνγ,β(pk)−Rαµνβ,γ(pk)).

Since by (11) the metric gεk is close to the euclidean metric in C∞ norm on Bg0(0, 2), where Bg0(0, 2)
is the euclidean ball in R3 of center 0 and radius 2, recalling (10) we get the following lemma.
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Lemma 2.1. Let gεk be the metric defined in (9) having the form (11); let Φk : S2 ↪→ (R3, gεk) be smooth
immersions with Φk(S2) ⊂ Bgεk (0, 2) satisfying

Wgεk
(Φk) ≤ 8π − 2δ, for some δ > 0.

Then, for k large enough, we have

(15) Wg0(Φk) ≤ 8π − δ, 1

2
≤ diamg0(Φk(S2)) ≤ 2 and Φk(S2) ⊂ Bg0(0, 2),

where g0 is the euclidean metric on R3, Wg0
is the euclidean Willmore functional and Bg0

(0, 2) is the
euclidean ball of center 0 and radius 2 in R3. It follows that, for large k, Φk : S2 ↪→ (R3, gεk) is a smooth
embedding and that there exist constants C1, C2 > 0 such that

(16) 0 <
1

C1
≤ 1

C2
Areag0

(Φk) ≤ Areagεk (Φk) ≤ C2 Areag0
(Φk) ≤ C1 <∞.

Proof. The properties expressed in (15) follow from (10) by a direct estimate of the remainders given by
the curvature terms of the metric gεk ; for such estimates we refer to Lemma 2.1, Lemma 2.2, Lemma 2.3
and Lemma 2.4 in [25].
It is classically known that if the Willmore functional of an immersed closed surface in (R3, g0) is strictly
below 8π then the immersion is actually an embedding (see [18] or [33]), so our second statement follows.
In order to prove (16) let us recall Lemma 1.1 in [33] stating that√

Areag0
(Φk)

Wg0
(Φk)

≤ diamg0
Φk(S2) ≤ C

√
Areag0

(Φk)Wg0
(Φk) for some universal C > 0,

which, combined with the bound on diamg0(Φk(S2)) and Wg0(Φk) expressed in (15), gives that there
exists a constant C0 > 0 such that

0 <
1

C0
≤ Areag0(Φk) ≤ C0 <∞;

the desired chain of inequalities (16) follows then by estimating the remainders as in Lemma 2.2 in
[25].

2.1 The area-constrained Willmore equation and an estimate of the Lagrange
multiplier

In the rest of the paper we will work with area-constrained Willmore immersions, i.e. critical points of
the Willmore functional under the constraint that the area is fixed. If Φ : S2 ↪→ (M, g) is a smooth
area-constraint Willmore immersion, then it satisfies the following PDE (see for instance Section 3 in [16]
for the derivation of the equation)

(17) 4ḡHg,Φ +Hg,Φ|A◦g,Φ|2ḡ +Hg,Φ Ricg(~ng,Φ, ~ng,Φ) = λHg,Φ

for some λ ∈ R, where ~ng,Φ is a normal unit vector to Φ(S2) ⊂ (M, g), (A◦g,Φ)ij is the traceless second
fundamental form (A◦g,Φ)ij = (Ag,Φ)ij − ḡijHg,Φ (of course (Ag,Φ)ij is the second fundamental form of Φ

in (M, g)) and |A◦g,Φ|2ḡ = ḡikḡjl(A◦g,Φ)ij(A
◦
g,Φ)kl is its norm with respect to the metric ḡ = Φ∗g.

Now let (Φk) be a sequence of smooth area-constrained Willmore immersions of S2 into (M, g) satis-
fying (7)-(8); perform the rescaling procedure described above and obtain the immersions (Φ̃k) of S2 into
(R3, gεk) (for simplicity denoted again with Φk from now on), where gεk is defined in (9), satisfying (10).
Since the Willmore functional is scale invariant, the rescaled surfaces are still area-constrained Willmore
surfaces so they satisfy the following equation

(18) 4ḡεkHgεk ,Φk
+Hgεk ,Φk

|A◦gεk ,Φk |
2
ḡεk

+Hgεk ,Φk
Ricgεk (~ngεk ,Φk , ~ngεk ,Φk) = λkHgεk ,Φk

.
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The first step in our arguments is to show that the Lagrange multipliers λk are controlled by ε2
k. The idea

for obtaining informations on the Lagrange multipliers, as in [15], is to use the invariance under rescaling
of the Willmore functional.

Lemma 2.2. Let (Φk) be a sequence of smooth area-constrained Willmore immersions of S2 into (R3, gεk)
where gεk has the form (11) with εk → 0, and Φk(S2) ⊂ Bg0

(0, 2), the euclidean ball of center 0 and radius
2.

Then the Lagrange multipliers λk appearing in (18) satisfies:

(19) sup
k∈N

|λk|
ε2
k

<∞.

Proof. Since (Φk) are area-constrained Willmore immersions, for every variation vector field ~X on R3 we
have that

(20) δ ~XWgεk
(Φk) = λkδ ~X Areagεk (Φk),

where δ ~XW and δ ~X Area are the first variations of the Willmore and the Area functionals corresponding

to the vector field ~X. Observe that the vector field corresponding to the dilations in R3 is the position
vector field ~x, so the first variation of the euclidean Willmore functional in R3 with respect to ~x is null:
δ~xWg0 = 0; on the other hand the first variation of euclidean area with respect to the ~x variation is easy
to compute using the tangential divergence formula:

δ~x Areag0(Φ) = −2

∫
S2

< ~H, ~x >g0 dvolḡ0 =

∫
S2

divΦ,g0~x dvolḡ0 = 2 Areag0(Φ),

where divΦ,g0
is the tangential divergence on Φ(S2) with respect to the euclidean metric. The two

euclidean formulas give the well known fact that every area-constraint Willmore surface is actually a
Willmore surface.

In the present framework, the ambient metric gεk is a perturbation of order ε2
k of the euclidean metric

g0, so it is natural to expect that the Lagrange multiplier maybe does not vanish but at least is of order
ε2
k. Let us prove it. First of all, by the expansion of the Christoffel symbols (14) it follows that the

covariant derivative in metric gεk of the position vector field ~x has the form

(21) ∇gεk~x = Id +O(ε2
k).

It follows that the tangential divergence of ~x on Φk(S2) with respect of the metric ḡk is divΦ,gεk
~x =

2 +O(ε2
k) and by the tangential divergence formula we obtain as before

δ~x Areagεk (Φ) = −2

∫
S2

< ~HΦk,gεk
, ~x >gεk dvol ¯gεk

=

∫
S2

divΦk,gεk
~x dvol ¯gεk

= [2 +O(ε2
k)] Areagεk (Φk);

recalling the uniform area bound given in (16) we get that there exists C > 0 such that

(22) 0 ≤ 1

C
≤ δ~x Areagεk (Φ) ≤ C <∞.

Now let us compute the variation of the Willmore functional with respect to the variation ~x:

(23) δ~xWgεk
(Φk) =

∫
S2

< ~x,~n >gεk

(
4ḡεkH +H|A◦|2 +H Ric(~n, ~n)

)
dvolḡεk

where, of course, all the quantities are computed on Φk and with respect to the metric gεk . In order
to continue the computations, it is useful to rewrite the first variation of W in divergence form. Up
to a reparametrization we can assume that Φk are conformal, so that the following identity holds (see
Theorem 2.1 in [24])

(24)
[
4 ¯gεk

H ~n+ ~H|A◦|2 −R⊥Φ(TΦ)
]
dvolḡεk = D∗

[
∇H~n− H

2
D~n+

H

2
?gεk (~n ∧D⊥~n)

]
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where ~H = H~n is the mean curvature vector of the immersion Φk, ?gεk is the Hodge operator associated

to metric gεk , D· := (∇∂x1
Φk ·,∇∂x2

Φk ·) and D⊥· := (−∇∂x2
Φk ·,∇∂x1

Φk ·) and D∗ is an operator acting

on couples of vector fields (~V1, ~V2) along (Φk)∗(TS2) defined as

D∗(~V1, ~V2) := ∇∂x1
Φk
~V1 +∇∂x2

Φk
~V2.

Finally R⊥Φk(TΦk) := (Riem(~e1, ~e2) ~H)⊥ = ?gεk

(
~n ∧Riemh(~e1, ~e2) ~H

)
, where ~ei =

∂xiΦ

|∂xiΦ|
for i = 1, 2.

Plugging (24) into (23) and integrating by parts we obtain

δ~xWgεk
(Φk) =

∫
S2

< −D~x,∇H~n− H

2
D~n+

H

2
?gεk (~n ∧D⊥~n) >gεk dvolS2

+

∫
S2

< ~x,R⊥Φ(TΦk) + ~H Ric(~n, ~n) >gεk dvolḡεk .(25)

Since the Riemannian curvature tensor of the metric gεk is of order O(ε2
k) and both the curvature terms

are linear in H, using Schwartz inequality the integral in the second line can be estimated as

(26)

∫
S2

< ~x,R⊥Φk(TΦk) + ~H Ric(~n, ~n) >gεk dvolḡεk = O(ε2
k)
(
Wgεk

(Φk) Areagεk (Φk)
)1/2

= O(ε2
k).

The first line of the right hand side of (23) can be written explicitely as∫
S2

< −∂x1Φk − ~Γ
gεk
αβ (∂x1Φαk )Φβ , (∂x1H)~n+

H

2
Aj1(∂xjΦk) +

H

2
Aj2 ?gεk (~n ∧ ∂xjΦk) >gεk dvolS2

+

∫
S2

< −∂x2Φk − ~Γ
gεk
αβ (∂x2Φαk )Φβ , (∂x2H)~n+

H

2
Aj2(∂xjΦk)− H

2
Aj1 ?gεk (~n ∧ ∂xjΦk) >gεk dvolS2 .(27)

Recalling that ?gεk (~n∧∂x1Φk) = ∂x2Φk and ?gεk (~n∧∂x2Φk) = −∂x1Φk we obtain that all terms obtained
doing the scalar product with −∂x1Φk in the first line, and with −∂x2Φk in the second line simplify
and just the terms containing the Christoffel symbols remain; since Φk ⊂ Bγεk (0, 2) and the Christoffel

symbols are of order O(ε2
k) by (14), (27) can be written as

(28)

∫
S2

−
2∑
i=1

< ~Γ
gεk
αβ (∂xiΦ

α
k )Φβ , (∂xiH)~n > dvolS2 +O(ε2

k)

∫
S2

|HΦk,gεk
| |AΦk,gεk

| dvolḡεk ;

using Schwartz inequality of course the second summand can be bounded by

(29) O(ε2
k)

(∫
S2

|HΦk,gεk
|2dvolḡεk

)1/2(∫
S2

|AΦk,gεk
|2dvolḡεk

)1/2

= O(ε2
k),

where we used the Gauss equations, Gauss-Bonnet Theorem and the area bound (16) to infer that∫
S2

|AΦk,gεk
|2dvolḡεk ≤ C(Wgek

(Φk) + 1) ≤ C1.

In order to estimate the first integral of (28) we integrate by parts the derivative on H and we recall
(14), obtaining∫

S2

−
2∑
i=1

< ~Γ
gεk
αβ (∂xiΦ

α
k )Φβ , (∂xiH)~n > dvolS2 = O(ε2

k)

∫
S2

(|HΦk,gεk
|+ |HΦk,gεk

| |AΦk,gεk
|)dvolḡεk

= O(ε2
k)
(
Wgεk

(Φk)
)1/2

[(
Areagεk (Φk)

)1/2

+

(∫
S2

|AΦk,gεk
|2dvolḡεk

)1/2
]

= O(ε2
k).(30)

Collecting (25), (26), (27), (28), (29) and (30) we obtain that

δ~xWgεk
(Φk) = O(ε2

k).

Combining the last equation with (22) and (20) we obtain that λk = O(ε2
k) as desired.
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3 The blow up analysis and the proof of the main theorem

3.1 Existence of just one bubble and convergence

Lemma 3.1. Let gεk be the metrics on R3 defined in (9) having the expression (11) and let (Φk) be
area-constrained Willmore immersions of S2 into (R3, gεk) satisfying (10); without loss of generality we
can assume Φk to be conformal with respect to the euclidean metric g0. Up to a rotation in the domain
we can also assume that, for every k ∈ N, the north pole N ∈ S2 is the maximum point of the quantity
|∇Φk|2 + |∇2Φk|:

µk := |∇Φk|2h(N) + |∇2Φk|h(N) = max
S2
|∇Φk|2h + |∇2Φk|h,

where h is the standard round metric of S2 of constant Gauss curvature equal to one and |∇Φk|h, |∇2Φk|h
are the norms evaluated in the h metric.

Called S ∈ S2 the south pole and P : S2 \ {S} → R2 the stereographic projection, consider the new
parametrizations Φ̃k, in the sequel simply denoted with Φk, defined by

Φ̃k
(
P−1(z)

)
:= Φk

(
P−1

(
z

µ
1/2
k

))
, ∀z ∈ R2.

Then Φ̃k, a priori just defined on S2 \ {S}, extend to smooth conformal immersions of S2 into (R3, g0)
and converge to a conformal parametrization of a round sphere in Cl(S2, h)-norm, for every l ∈ N.

Proof. Step a: there exists a smooth conformal parametrization Φ∞ : S2 → (R3, g0) of a round sphere in
R3 endowed with the euclidean metric g0 such that, up to subsequences, Φ̃k → Φ∞ in Clloc(S2\{S})-norm,
for every l ∈ N.

Denote by uk the conformal factor associated to Φ̃k, i.e.

Φ̃∗k(g0) = e2ukh ,

where g0 is the euclidean metric in R3. Observe that, by construction, for any compact subset of the
form

K := S2 \Bhδ (S) for some δ > 0 ,

there holds

(31) sup
k∈N

sup
K

(
|∇Φ̃k|2h + |∇2Φ̃k|h

)
<∞ .

Then, for every compact there exists a constant CK depending just on K such that for every x0 ∈ K and

every ρ ∈
(

0, dist(K,S)
2

)
it holds

sup
k∈N

sup
Bhρ (x0)

|∇2Φ̃k|2 ≤ CK ,

where Bhρ (x0) is the ball of center x0 and radius ρ in the metric h. By the conformal invariance of the

Dirichlet energy, called π~̃nk the projection on the normal space to Φ̃k, we infer that for every ε0 > 0 there
exists ρε0,K > 0 (small enough) depending just on K and on ε0 but not on k ∈ N such that for every
ρ ∈ (0, ρε0,K) and x0 ∈ K it holds∫

Bhρ (x0)

|∇~̃nk|2Φ̃∗k(g0)
dvolΦ̃∗k(g0) =

∫
Bhρ (x0)

|∇~̃nk|2hdvolh =

∫
Bhρ (x0)

|π~̃nk(∇2Φ̃k)|2h dvolh

≤
∫
Bhρ (x0)

|∇2Φ̃k|2hdvolh ≤ CKρ2 ≤ ε0 .(32)
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Taking ε0 ≤ 8π
3 , for any x0 ∈ K and ρ < ρε0,K we can apply the Hélein moving frame method based on

Chern construction of conformal coordinates (for more details see [31], Section 3) and infer that, up to a
reparametrization of Φ̃k on Bρ(x0), called ūk the mean value of uk on Bhρ (x0), it holds

‖uk − ūk‖L∞(Bhρ (x0)) ≤ C̃,

for some C̃ > 0 independent of k ∈ N. Covering K by finitely many balls as above, the connectedness of
K implies that any two balls of the finite covering are connected by a chain of balls of the same covering
and therefore there exists constants ck,K ∈ R, k ∈ N, such that

(33) sup
k∈N
‖uk − ck,K‖L∞(K) <∞.

Observe that supk∈N ck,K < +∞; indeed, if lim supk ck,K = +∞ then lim supk Area(Φ̃k(K)) = +∞ con-
tradicting the area bound (16) (here we use that K has positive h-volume). Now let us consider separately
the case supk |ck,K | <∞ and lim infk ck,K = −∞ starting from the former.

Case 1 : supk |ck,K | < ∞. Estimate (33) yields a uniform bound on the conformal factors uk on the

subset K. Since by assumption the immersions Φ̃k are area-constrained Willmore immersions satisfying
(32), then by ε-regularity (ε-regularity for Willmore immersions was first proved by Kuwert and Schätzle
in [11]. Here we use the ε-regularity theorem proved by Rivière (see Theorem I.5 in [29]; see also Theorem
I.1 in [1]); to this aim observe that the ε-regularity theorem was stated for Willmore immersions, but
the proof can be repeated verbatim to area-constrained Willmore immersions in metric gεk : indeed the

Lagrange multiplier λ ~H and the Riemannian terms are lower order terms that can be absorbed in the
already present error terms ~g1, ~g2 in the proof of Theorem I.5 at pp. 24-26 in [29]. Of course ε-regularity
is a consequence of the ellipticity of the equation.) we infer that for every l ∈ N there exists Cl such that

|e−l uk∇lΦ̃k|L∞
(
Bh
ρ/2

(x0)
) ≤ Cl

(∫
Bhρ (x0)

|∇~̃nk|2hdvolh + 1

) 1
2

≤ Ĉl

and therefore, by the assumed uniform bound on |uk| and by covering K by finitely many balls we get
that

(34) sup
k∈N
|∇lΦ̃k|L∞(K) <∞ ∀l ∈ N .

By Arzelá-Ascoli Theorem and by the estimate on the Lagrange multipliers given in Lemma 2.2, up to
subsequences, the maps Φ̃k converge in Cl(K) norm, for every l ∈ N, to a limit Willmore immersion
Φ̃∞ of K into (R3, g0); repeating the above argument to K = S2 \ Bhδ (S), for every δ > 0, we get that,

up to subsequences, the maps Φ̃k converge in Clloc(S2 \ {S}) norm, for every l ∈ N, to a limit Willmore
immersion Φ∞ : S2 \ {S} → R3 is a smooth Willmore conformal immersion with finite area and L2-
bounded second fundamental form, therefore by Lemma A.5 in [30] (let us mention that this result was
already present in [27]; see also [9]) the map Φ∞ can be extended up to the south pole S to a possibly
branched immersion; i.e. the south pole S is a possible branch point for Φ∞ and the following expansion
around S holds

(35) (C − o(1))|z|n−1 ≤
∣∣∣∣∂Φ∞
∂z

∣∣∣∣ ≤ (C + o(1))|z|n−1

where z is a complex coordinate around the south pole and n− 1 is the branching order. We claim that
the branching order is 0, or in other words that Φ∞ is unbranched; indeed, by the strong convergence of
Φ̃k to Φ∞ and the smooth convergence of gεk to the euclidean metric g0 we have that

(36) Wg0
(Φ∞) ≤ lim inf

k
Wgεk

(Φ̃k) < 8π;
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therefore, by the Li-Yau inequality [18], we get that n − 1 = 0, i.e. Φ∞ is an immersion also at the
south pole S. Since Φ∞ is a smooth Willmore immersion of S2 into R3 with energy less than 8π, by the
classification of Willmore spheres by Bryant [3], Φ∞ is a smooth conformal parametrization of a round
sphere in R3.

Case 2 : lim infk ck,K = −∞, can not happen. In this case, up to subsequences, we have that

Φ̃k(K)→ x̄ ∈M in Hausdorff distance sense. Consider then the rescaled immersions

(37) Φ̂k := e−ck,K Φ̃k

of K and observe that by construction supk |ûk,K | < ∞, where ûk,K is the conformal factor of Φ̂k.

Moreover, since the integrals appearing in (32) are invariant under rescaling, estimate (32) holds for Φ̂k
as well. Therefore, up to a diagonal extraction, Φ̂k → Φ∞ in Clloc(S2 \ {S})-norm. In particular Φ̃k → 0
in C2

loc(S2 \ {S})-norm, which contradicts the fact that

|∇Φ̃k|2h(N) + |∇2Φ̃k|h(N) = 1.

Step b: Φ̃k → Φ∞ in Cl(S2), for every l ∈ N; namely the convergence of Step a is on the whole S2.
Observe that if there exists ρ̄ > 0 such that supk supBhρ̄ (S) |∇Φ̃k|2 + |∇2Φ̃k| <∞, then in Step a we can

choose as compact subset K the whole S2 and the claim of Step b follows by the same arguments of Step
a. So assume by contradiction that there exists a sequence ρk ↓ 0 such that, called

µ̄k := sup
Bhρk

(x̄)

|∇Φ̃k|2 + |∇2Φ̃k|,

one has
lim sup

k
µ̄k = +∞.

By a small rotation in the domain S2 we can assume that, for every k ∈ N, the maximum of |∇Φ̃k|2 +
|∇2Φ̃k| on Bhρk(S) is attained at the south pole S and that, up to subsequences in k, it holds

(38) lim
k
µ̄k := lim

k
|∇Φ̃k|2(S) + |∇2Φ̃k|(S) = +∞.

Analogously to above, called PN : S2 \ {N} → R2 the stereographic projection centered at the north pole
N , we consider the reparametrized immersions

Φ̄k
(
P−1
N (z)

)
:= Φ̃k

(
P−1
N

(
z

µ̄
1/2
k

))
.

Observe that, in this way, the compact subsets K’s considered above are shrinking towards the north
pole N and, by the arguments above, their Φ̄k-images are converging to a round sphere; repeating the
arguments above to compact subsets this time containing the south pole S and avoiding the north pole
N we infer that, up to subsequences, Φ̄k (or a further rescaled of it) converges smoothly, away the north
pole N , to a round sphere; namely a second bubble. Combining the bubble formed in Step a and this
second bubble, since each bubble contributes 4π of Willmore energy, we infer that

(39) lim sup
k

Wgεk
(Φk) ≥ 8π ,

contradicting the assumption (10). This concludes the proof of the Step b and of the lemma .
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3.2 Expansion of the equation

Recalling that Φk : S2 ↪→ (R3, gεk) is a smooth immersion satisfying the area-constrained Willmore
equation in metric gεk , and that gεk smoothly converge to the euclidean metric g0, in the present section
we expand this differential equation with respect to εk. Without loss of generality we can assume that
Φk is conformal with respect to the metric gεk . We will see that curvature terms appear at ε2

k order while
the derivatives of the curvature appear at ε3

k order.
From now on, in order to make the notation a bit lighter, we replace εk by ε.
Recall that the area-constrained Willmore equation in metric gε has the following form

(40) 4ḡεHε +Hε|A◦ε|2ḡε + Ricgε(~nε, ~nε)Hε = λεHε .

Since 4ḡε = 2
|∇Φε|2gε

∆, where ∆ is the flat laplaciain in R2, multiplying equation (40) by
|∇Φε|2gε

2 , we get

(41) ∆Hε +
|∇Φε|2gε

2
Hε|A◦ε|2ḡε +

|∇Φε|2gε
2

Hε Ricgε(~nε, ~nε) = λε
|∇Φε|2gε

2
Hε .

First of all, recalling that Hε =
gε(4ḡεΦε,~nε)

2 , we expand Hε as

(42) Hε =
1

|∇Φε|2gε
(gε)αβ4Φαε

√
|gε|gβγε (~νε)γ =

√
|gε|

|∇Φε|2gε
4Φαε ~νεα

where ~νε is the inward pointing unit normal with respect to g0. Using (11) and (13), we get

|∇Φε|2gε = |∇Φε|2 +
ε2

3
Rαβγη(pk)ΦβεΦγε 〈∇Φαε ,∇Φηε〉

+
ε3

6
Rαβγη,µ(pk)ΦβεΦγεΦµε 〈∇Φαε ,∇Φηε〉+O(ε4) ,

so that

1

|∇Φε|2gε
=

1

|∇Φε|2
(

1− ε2

3|∇Φε|2
Rαβγη(pk)ΦβεΦγε 〈∇Φαε ,∇Φηε〉

− ε3

6|∇Φε|2
Rαβγη,µ(pk)ΦβεΦγεΦµε 〈∇Φαε ,∇Φηε〉+O(ε4)

)
,(43)

moreover

(44)
√
|gε| = 1− ε2

6
Ricαβ(pk)ΦαεΦβε −

ε3

6
Ricαβ,γ(pk)ΦαεΦβεΦγε +O(ε4).

Combining (42) with (43) and (44) we can write

(45) Hε =
4Φαε ~νεα
|∇Φε|2

(
1 + ε2Sε + ε3Tε +O(ε4)

)
,

where

Sε := − 1

3|∇Φε|2
Rαβγη(pk)ΦβεΦγε 〈∇Φαε ,∇Φηε〉 −

1

6
Ricαβ(pk)ΦαεΦβε

and

Tε := − 1

6|∇Φε|2
Rαβγη,µ(pk)ΦβεΦγεΦµε 〈∇Φαε ,∇Φηε〉 −

1

6
Ricαβ,γ(pk)ΦαεΦβεΦγε .

The combination of (44) and (45) gives

(46) Ricgε(~nε, ~nε)Hε = ε24Φαε ~νεα
|∇Φε|2

Ricg(pk)(~νε, ~νε) +O(ε4).
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Finally, using (45), (46) and (19), we expand (41) up to ε2-order (the term Hε|A◦ε|2ḡε will be expanded in
the next subsection) as follows

∆Hε +
|∇Φε|2gε

2
Hε|A◦ε|2ḡε +

|∇Φε|2gε
2

Hε Ricgε(~nε, ~nε)− λεHε

|∇Φε|2gε
2

=

∆

(
∆Φαε ~νεα
|∇Φε|2

)
+ ε2

(
∆

(
∆Φαε ~νεα
|∇Φε|2

)
Sε + 2

〈
∇
(

∆Φαε ~νεα
|∇Φε|2

)
,∇Sε

〉
+

∆Φαε ~νεα
|∇Φε|2

∆Sε

)
+
|∇Φε|2gε

2
Hε|A◦ε|2ḡε +

ε2

2
∆Φαε ~νεα Ricg(p)(~νε, ~νε)−

λε
2

∆Φαε ~νεα + o(ε2).

(47)

3.3 Approximated solutions to the area-constrained Willmore equation

In this section we solve (47) up to the ε2 order. For this let ω be the inverse of the stereographic projection
with respect to the north pole and notice that ω is a solution of the equation when ε = 0. We make
the ansatz of looking for a solution up to the order ε2 of the form ω + ε2ρ, for some function ρ. Since
|A◦|2 = 0 for ω, it is clear that

(48) Hε|A◦ε|2ḡε = O(ε4);

in particular, since for our arguments it is enough to expand the equation up to ε3 order, this term will
never play a role and therefore it will be neglected.
Observing that ∆ωαωα

|∇ω|2 ≡ −1, equation (47) implies that ρ must solve

Lω(ρ) = ∆

(
1

3|∇ω|2
Rαβγµ(pk)ωβωγ〈∇ωα,∇ωµ〉+

1

6
Ricαβ(pk)ωαωβ

)
− |∇ω|

2

2
Ricαβ(pk)ωαωβ +

λε
2ε2
|∇ω|2 ,

(49)

where Lω is the linearized Willmore operator at ω, see Appendix A for more details. Using the identity

(50) 〈∇ωα,∇ωβ〉 = (δαβ − ωαωβ)
|∇ω|2

2
,

equation (49) reduces to

Lω(ρ) =
1

3
∆
(
Ricαβ(pk)ωαωβ

)
− |∇ω|

2

2
Ricαβ(pk)ωαωβ +

λε
2ε2
|∇ω|2

=

(
−Ricαβ(pk)ωαωβ +

(
λε
2ε2

+
Scal(pk)

3

))
|∇ω|2.

(51)

Hence, we easily check that

(52) ρε =
1

3
Ricαβ(pk)ωβ +

λε
ε2
f(r)ω

with

f(r) =
r2 ln

(
r2

1+r2

)
− 1− ln

(
1 + r2

)
1 + r2

.

where r2 = x2 + y2, is the desired function. Moreover it is not difficult to check that this perturbed ω
satisfies the conformal conditions up to ε2 order, that is to say

(53)

{
gε((ω + ε2ρε)x, (ω + ε2ρε)x)− gε((ω + ε2ρε)y, (ω + ε2ρε)y) = O(ε3)
gε((ω + ε2ρε)x, (ω + ε2ρε)y) = O(ε3)

;

a way to prove it is to use the expansion of the metric with the fact that in dimension 3 one has

Rαβγµ = (gαγRicβµ − gαµRicβγ + gβµRicαγ − gβγRicαµ) +
Scal

2
(gαµgβγ − gαγgβµ).
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3.4 Proof of Theorem 1.2

Let us briefly recall the setting. Let Φk : S2 ↪→ (M, g) be conformal Willmore immersions satisfying

ε := diamg(Φk(S2))→ 0,(54)

Wg(Φk) :=

∫
S2

|Hg,Φk |2dvolḡk ≤ 8π − 2δ, for some δ > 0 independent of k.(55)

Thanks to Lemma 2.2, we associate to Φk the new immersion Φε : S2 ↪→ (R3, gε), where gε(y)(u, v) :=
g(εy)(ε−1u, ε−1v), which satisfies the area-constrained Willmore equation

(56) 4ḡεHgε,Φε +Hgε,Φε |A◦gε,Φε |
2
ḡε +Hgε,Φε Ricgε(~ngε,Φε , ~ngε,Φε) = λεHgε,Φε

with λε = O(ε2). Moreover by Lemma 3.1 we know that, up to conformal reparametrizations and up to
subsequences, we have

Φε → Φ in C2(S2)

where Φ is a conformal diffeomorphism of S2. Clearly, up to reparametrizing our sequence, we can assume
that Φ = Id. In the following we perform all the computations in the chart given by the stereographic
projection (which is conformal); we denote by ω the inverse of the stereographic projection.

Before proceeding with the proof, we need to make a small adjustment to the immersions. We claim
that there exist aε ∈ R2, bε ∈ R2, Rε ∈ SO(3) and zε ∈ C satisfying

(57) aε = o(1), bε = o(1), |Id−Rε| = o(1), zε = o(1) ,

such that, up to replacing Φε by Φε(aε + zε . ), and Ωε = ωε + ε2ρε, where ρε is given by (52), by
Rε[ω(·+ bε) + ε2ρε(·+ bε)] we get

|∇Φε| and |∇Ωε| are maximal at 0, V ect{Φεx(0),Φεy(0)} = V ect{Ωεx(0),Ωεy(0)},
and Φεx(0) = Ωεx(0).

(58)

This is a simple consequence of the C2
loc(R2) convergence of Φε to ω. Indeed, we choose first aε and

bε such that |∇Φε| and |∇Ωε| are maximal at 0, then Rε such that the tangent plane of Φε and RεΩε

coincide at 0 and finally we find zε in order to adjust the first derivatives.
Therefore from now on we will assume that (58) is satisfied.

Now we prove Theorem 1.2. We set
Φε = Ωε + rε

for some function rε and, thanks to the computations of Section 3.3, we see that rε satisfies

(59) Lω(rε) = O
(
ε3
)

+ o
(
|∇rε|+ |∇2rε|+ |∇3rε|+ |∇4rε|

)
.

Moreover, combining (53) and (58), we get that

(60) gε(∇rε,∇rε)(0) = O(ε6).

Indeed the error terms of rεx(0) and rεy(0) lie in the plane generated by Ωεx(0) and Ωεy(0). So it suffices
to estimate their projection against Ωεx(0) and Ωεy(0). But this one vanish up to the ε3 order thanks to
(53). Observe that we also have

(61) gε(∇2rε,∇ωε)(0) = O(ε3).

Claim : supR2 |∇rε|+ |∇2rε|+ |∇3rε|+ |∇4rε| = O(ε3).
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Proof of the Claim: let us denote µε := |∇rε|+ |∇2rε|+ |∇3rε|+ |∇4rε| and assume by contradiction

that lim ε3

µε
= 0. Up to a reparametrization we can assume that this sup is achieved at some point zε

which is confined in a fixed compact subset of R2. In fact, we can do a reparametrization in order to
make this requirement satisfied before performing the adjustments of the previous page. Then we set

r̃ε =
rε − rε(0)

µε
.

By construction, r̃ε is bounded in C4-norm on every compact subset of R2 and therefore, by Arzelá-
Ascoli’s Theorem, it converges up to subsequences to a limit function r̃ in C3

loc-topology. Thanks to (59),
r̃ is a solution of the linearized equation (62) and, recalling (60)-(61), it satisfies (63) with ∇r̃(0) = 0 and
〈∇2r̃,∇ω〉(0) = 0. Then, applying Lemma A.1, we get that ∇r̃ ≡ 0, which is in contradiction with the
fact that |∇r̃|+ |∇2r̃|+ |∇3r̃|+ |∇4r̃| = 1 at some point at finite distance. This proves the claim. �

Mimicking the proof of the claim above, one can prove that setting

r̃ε =
rε − rε(0)

ε3
,

then, up to subsequences, r̃ε converges to a function r̃ in C3
loc(R2) which, using (41), (45) and (46),

satisfies the linearized Willmore equation

Lω(r̃) = ∆

(
1

6|∇ω|2
Rαβγµ,ν(pk)ωβωγων〈∇ωα,∇ωµ〉+

1

6
Ricαβ,γ(pk)ωαωβωγ

)
.

Recalling identity (50), the last equation can be rewritten as follows

Lω(r̃) = ∆

(
1

12
Ricαβ,γ(pk)ωαωβωγ

)
.

Finally, integrating this relation against the ωα, for α = 1, . . . , 3, which are solutions of the linearized
equation, we get ∫

R2

∆ω

(
1

12
Ricαβ,γ(pk)ωαωβωγ

)
dz = 0.

Let us note that the integration by parts above has been possible thanks to the decay of ω and its
derivatives at infinity. The last identity gives∫

R2

(
Ricαβ,γ(pk)ωαωβωγ

)
ω
|∇ω|2

2
dz = 0.

Then, by a change of variable, we get∫
S2

(
Ricαβ,γ(pk)(pk)yαyβyγ

)
y dvolh = 0,

where h is the standard metric on S2 and yα are the position coordinates of S2 in R3. Finally, using the
following relation ∫

S2

yαyβyγyµdvolh =
4π

15
(δαβδµγ + δαµδβγ + δαγδβµ),

and the second Bianchi identity, we obtain

∇Scal(p̄) = 0,

Which proves the theorem. �
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A The linearized Willmore operator

The aim of this appendix is to derive the linearized Willmore equation and to classify its solution.
The Willmore equation for a conformal immersion Φ into R3 can be written as

W ′(Φ) = ∆ḡ (H) +H|A◦|2ḡ = 0,

where ∆ḡ = 2
|∇Φ|2 ∆, H is the mean curvature and A◦ is the trace-less second fundamental form.

Equivalently one has

H =
1

2
〈∆ḡΦ, ~ν〉

where ~ν is the inward pointing unit normal of the immersion Φ. Hence, by multiplying the first equation

by |∇Φ|2
2 , we can consider the equivalent equation

W̃ ′(Φ) = ∆H + 〈∆Φ, ~ν〉
|A◦|2ḡ

2
= 0.

Of course any conformal parametrization, ω, of a round sphere is a solution. Then, expanding W̃ ′(ω+ tρ)
for some function ρ and using the fact that A◦ ≡ 0 for a round sphere, we get

(62) Lω(ρ) := δW̃ω(ρ) = −∆

(
〈∆ρ, ω〉+ 2〈∇ω,∇ρ〉

|∇ω|2

)
= 0.

Let also consider the linearization of the conformality condition, which gives

(63)

{
〈ωx, ρx〉 − 〈ωy, ρy〉 = 0
〈ωx, ρy〉+ 〈ωy, ρx〉 = 0

In the following lemma we classify the solutions of the linearized operator following the previous work
[17] of the first author concerning the linearized operator for the constant mean curvature equation.

Lemma A.1. Let ρ ∈ H̊2(R2,R3)2 be a solution of the linearized equation (62) which satisfies (63) and
the additional normalizing conditions

∇ρ(0) = 0 and 〈∇2ρ,∇ω〉(0) = 0 .

Then ∇ρ ≡ 0.

Proof. First we remark that thanks to the definition of H̊2(R2,R3), we have

〈∆ρ, ω〉+ 2〈∇ω,∇ρ〉
|∇ω|2

∈ L2(R2).

Hence, using Liouville’s theorem, we get that

(64) 〈∆ρ, ω〉+ 2〈∇ω,∇ρ〉 = 0.

Then, thanks to the fact that (ωx, ωy, ω) is a basis of R3 and (63), there exists a, b, c, d : R2 → R such
that

(65)

{
ρx = aωx + bωy + cω
ρy = −bωx + aωy + dω .

2the pushforword of H2(S2) on R2 via the stereographic projection.
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Then, plugging (65) into (64) and using the relation ρxy = ρyx, we see that a, b, c, d satisfy the
following equations

ay + bx = d(66)

by − ax = −c(67)

cy − dx = b|∇ω|2

cx + dy = −a|∇ω|2 .

These equations imply that a and b satisfy

∆a = −a|∇ω|2, ∆b = −b|∇ω|2.

Since ρ ∈ H̊1(R2,R3), then a and b can be seen as functions in H1(S2) satisfying ∆α = 2α , therefore
a and b are linear combinations of the first non vanishing eigenfunctions of ∆S2 (see also Lemma C.1 of
[17]), that is to say

a =

2∑
i=0

aiψi and b =

2∑
i=0

biψi

where

ψi(x) =
xi

(1 + |x|2)
for i = 1, 2 and ψ0(x) =

1− |x|2

1 + |x|2
.

Finally using the fact that ∇ρ(0) = 0 and 〈∇2ρ,∇ω〉(0) = 0, (66) and (67), we can conclude that
a ≡ b ≡ c ≡ d ≡ 0, which proves the lemma.
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