A NOTE ON A RESIDUAL SUBSET OF
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ABSTRACT. Let (X, d) be a quasi-convex, complete and separable metric space with reference probability
measure m. We prove that the set of of real valued Lipschitz function with non zero point-wise Lipschitz
constant m-almost everywhere is residual, and hence dense, in the Banach space of Lipschitz and bounded
functions. The result is the metric analogous of a result proved for real valued Lipschitz maps defined
on R? by Alberti, Bianchini and Crippa in [I].
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1. INTRODUCTION

In the context of metric spaces, say (X, d), it is possible to look at the point-wise variation of a real
valued map considering

(1.1) Lip f(x) := limsup M,
Yy—T,Y#T d(l‘, y)

that is called point-wise Lipschitz constant. In the smooth framework Lip f corresponds to the modulus
of Vf: if (X, d) is an open subset of R? endowed with the euclidean norm and f is locally Lipschitz, then
Lip f = |V f] almost everywhere with respect to the Lebesgue measure. Or more in general if (X, d, m)
is a metric measure space admitting a differentiable structure in the sense of Cheeger, see [5], [6] for the
definitions, and f is Lipschitz, then Lip f = |df| m-a.e. where df is the Cheeger’s differential of f.

Once a point-wise information is given we are interested at looking at those points where the “differ-
ential” vanishes: define the singular set of f as follows

S(f):={xr e X :Lip f(z) = 0}.

The classical Sard’s Theorem states that if f : R™ — R is sufficiently smooth then the Lebesgue
measure of f(S(f)) is 0. As soon as the regularity assumption on f is dropped, the conclusion of Sard’s
Theorem does not hold anymore and one may look for weaker properties to hold.

The question, inspired by a similar problem in [4], Section 6, is if it is possible to approximate any
Lipschitz function with functions having negligible S(f) with respect to a given reference measure.

For real valued Lipschitz functions defined on R2?, with Lebesgue measure playing the role of the
reference measure, a positive answer is contained in [I], see Proposition 4.10. We prove the following.

Theorem 1.1. Assume (X,d) is a quasi-convex, complete and separable metric space and let m be a
Borel probability measure over it. The set of those f € D>®(X) so that m(S(f)) = 0 is residual, and
therefore dense, in D™ (X).

The Banach space D*°(X) will be the space of bounded functions with bounded point-wise Lipschitz
constant, endowed with the uniform norm. See below for a precise definition. Recall that a set in a
topological space is residual if it contains a countable intersection of open dense set. By Baire Theorem,
a residual set in a complete metric space is dense.

2. SETTING

Let (X, d) be a metric space and m is a Borel probability measure over X so that X coincides with
its support. For f: X — R the Lipschitz constant of f is defined as usual by
eyeXazy d@y)
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and we say that f is Lipschitz if LIP(f) is a finite number. Accordingly denote by LIP*°(X) the space
of bounded Lipschitz functions. The natural norm on LIP*(X) is given by

||f||LIP°°(X) = ||flle + LIP(f),

where || - ||oo is the uniform norm. The space of bounded Lipschitz functions endowed with || f[|rrpee (x)
turns out to be a Banach space. The point-wise version of LIP(f) is given by the point-wise Lipschitz
constant as defined in [[LJl The corresponding space of bounded functions with bounded point-wise
Lipschitz constant can be considered:

D¥(X) :={f: X = R:|[flloc + [[Lip flloc < o0}
A study of D*°(X) and LIP*(X) can be found in [3]. The following results are taken from [3].
It is straightforward to note that LIP*(X) C D>°(X) and for a general metric space this is the only
valid inclusion. Examples of metric spaces and functions in D*°(X) not satisfying a global Lipschitz bound

can be constructed, see [3]. If (X, d) is quasi-convex also the other inclusion holds and LIP*(X) = D> (X)
and the two semi-norms are comparable: there exists C' > 1 so that

[|Lip flloo < LIP(f) < C||Lip f||oo-

Hence D> (X)), or equivalently LIP*(X), endowed with the norm || - ||oc + ||Lip (+)|| s is & Banach space.
We will denote this norm with || - || p (X).

Recall that a metric space (X, d) is quasi-convex if there exists a constant C' > 1 such that for each
pair of points x,y € X there exists a curve v connecting the two points such that I(y) < Cd(x,y), where
I(7) denotes the length of v defined with the usual “affine” approximation: for v : [a,b] — X its length
I(7) is defined by

() ::sup{Zd(xi,xiH):a:xl <xp <o < Tpg =b,n€N}.

i=1

Associated to the length [() there is the distance obtained minimizing it:
dr(z,y) = mf{l(7) 170 = 2,1 = y}.

The function dj, is indeed a distance on each component of accessibility by rectifiable paths, i. e. those
paths having finite [. By quasi-convexity it follows that

d(z,y) < dr(z,y) < Cd(z,y),

with C' > 1. Hence (X, d}) is a complete and separable metric space that is also a length space. Clearly
(X,d1) has the same open sets of (X, d). For a more detailed discussion on length spaces see [2].

We will use the following notation. For r > 0 and z € X, we will denote with B,.(z) the ball of radius
r centered in z. The complement in X of a set A will be denoted by A¢ and 0A denotes the topological
boundary of A. The closure of A is cl(A) and the interior part int(A). Associated to a set we can consider
the distance from it: for v € X and A C X

d(z, A) = uiIelgld(z’w)'

3. THE REsuLT
Lemma 3.1. For any Borel function f : X — R, the function Lip f : X — R is universally measurable.

Proof. In order to prove the claim we just have to show that the set {x € X : Lip f(z) > a} is Souslin
for any a € R. Since f is a Borel map then

. 1 [f(z) = F()l

neN
is a Borel set. Note that

1 _

{re X :Lipf(z)>a} =P ﬂ (r,y) e X x X : 0 < d(z,y) < —, MZ& ,
neN n d(,ﬁE, y)

where P; : X x X — X denotes the projection on the first element. It follows from the definition of

Souslin set that {z € X : Lip f(z) > a} is Souslin and the claim follows. O
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Then after Lemma [B1] it makes sense to look at those functions f so that m(S(f)) = 0. We will need
the following

Lemma 3.2. Let K C X be a closed set and consider the length distance function from K that is
g(z) :==dp(z,K). Then

1 < Lipg(x) < C, for x e K¢,
Proof. Step 1. Assume that d = dj, so that (X,d) is also a length space and g = d(z, K). Then fix
x € K¢ for any z € K and y € K° it holds

hence trivially Lip g(z) < 1.

Consider now a minimizing sequence z,, € K for x, that is that g(z) > d(x, z,,) — 1/n. From the length
structure it follows that for any n there exists 4™ : [0, 1] — X rectifiable curve starting in = and arriving
in z, so that d(x, z,) > 1(y™) — 1/n. So for any y, in the image of 4"

9(x) — g(yn) > l(yn) = d(Yn, 2n) — 2/1
dlz,yn) — d(x,yn) '
Since [(y™) > d(x, yn) + d(Yn, zn) it follows that
o) ~ 9(0) _ d(z..) 2/
d(z,yn) —  dlz,yn)

Since the only constrain on ¥, was to belong to the image of v", we can choose y,, so that the previous
ratio converges to 1. Hence Lip g(z) = 1.

Step 2. We now drop the assumption on the length structure of the space. Let (X, d) be quasi-convex
and g(x) = dp(x, K). Since (X,dr) is a length space for any x € K¢

Jimn sup lg(z) — g(y)|
Yy—x, YF£T dL (55; y)

Having (X, dy) and (X, d) the same open set, K¢ does not depend on the metric. Since d < dj, < Cd the
claim follows. O

=1

We can now prove Theorem [Tl The proof uses now the ideas contained in Proposition 4.10 in [IJ.

Theorem 3.3. Assume (X,d) is a quasi-convex, complete and separable space and let m be a Borel
probability measure over it. The set of those f € D>®(X) so that m(S(f)) = 0 is residual in D> (X) and
therefore dense.

Proof. Consider the following sets
G:={f e D>*X):m(S(f)) =0}, G, :={feD>®X):m(S(f)) <r}.
The claim is then to prove that G is a residual set. Since G = NG,., where the intersection runs over a
sequence of r converging to 0, the claim is proved once it is proved that each G, is open and dense in
D> (X).
Step 1. The set G, is open in D*°(X). Fix f € G,. Then there exists ¢ > 0 so that

m({x e X :Lip f(z) <d}) <

Since for any g € D*°(X) it holds that
Lip f(z) < Lipg(z) + Lip (f — g)(2),

for any g € D*°(X) so that ||g — f]|p=(X) < ¢ it holds that

S(g) C {w € X : Lip f(x) < 5},

and therefore m(S(g)) < r and consequently g € G,.

Step 2. The set G, is dense in D> (X). Given f € D>(X) and 6 > 0 we have to find g € G, so that
Ilf = gllpe(xy < 8. Without loss of generality we can assume m(S(f)) > r.

For every € > 0 denote with S(f)¢ the e-neighborhood of the set of singular points of f, i.e.

S(f)f={z€ X :d(z, 5(f)) < e}



4 FABIO CAVALLETTI

The set S(f)¢ is open and denote by K its complementary in X. Associated to K we consider the distance
function § as defined in Lemma that is g(z) := dr(z, K). A rough bound on §(z) can be given in
terms of the “diameter” of S(f):

g(x) < Csup{d(z, 2) : cl(S(f)7)},
where cl(S(f)?) stands for the closure of S(f)¢. Since to approximate with functions in G, we can make

an error in measure strictly less than r and since m is a probability measure, we can assume S(f) to have
finite diameter and by inner regularity we can even assume it to be closed. Therefore

[|9]]c0 < M, M > 0.

From Lemma we have Lip g(x) > 0 for x € S(f)¢ and clearly Lip g(z) = 0 for « € int(K), where
int(K) stands for the interior part of K.

Note that the boundary of S(f)¢ is contained in the set {z : d(z, S(f)) = ¢}. Indeed z € 9S(f)° if and
only if d(z,S(f)) > € and for every n > 0 there exists a point w € X so that

d(z,w) <, d(w,S(f)) <e.

Let 7, be a sequence converging to 0 and w,, the corresponding sequence converging to z. To each w,
associate x, € S(f) so that d(wy,z,) < e. Then

d(z,xn) < d(z,wp) + d(wn, 2n) < Np + €.
Passing to the limit d(z, S(f)) < € and therefore necessarily d(z, S(f)) = e.
Moreover for ¢ # &’
{z:d(z,9(f) =e}n{z:d(z,8(f)) =} =0,
hence there exists at most countably many e so that m({z : d(z,S(f)) = £}) > 0. Hence for any r > 0
there exists € > 0 so that

m({z:d(z,5(f)) =€}) =0, m(S(f)"\S(f)) <,
where the second expression holds because S(f) is closed. From what said so far, denoting g := f +
(6/2M)g is such that
1f = gllp=(x) < 6.
To conclude the proof observe that S(g) C S(f)° \ S(f), hence by construction g € G,. O
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