
A NOTE ON A RESIDUAL SUBSET OF

LIPSCHITZ FUNCTIONS ON METRIC SPACES

FABIO CAVALLETTI

Abstract. Let (X, d) be a quasi-convex, complete and separable metric space with reference probability
measure m. We prove that the set of of real valued Lipschitz function with non zero point-wise Lipschitz
constant m-almost everywhere is residual, and hence dense, in the Banach space of Lipschitz and bounded
functions. The result is the metric analogous of a result proved for real valued Lipschitz maps defined
on R2 by Alberti, Bianchini and Crippa in [1].

Mathematics Subject Classification: 53C23, 30Lxx

1. Introduction

In the context of metric spaces, say (X, d), it is possible to look at the point-wise variation of a real
valued map considering

(1.1) Lip f(x) := lim sup
y→x,y 6=x

|f(x) − f(y)|

d(x, y)
,

that is called point-wise Lipschitz constant. In the smooth framework Lip f corresponds to the modulus
of ∇f : if (X, d) is an open subset of R

d endowed with the euclidean norm and f is locally Lipschitz, then
Lip f = |∇f | almost everywhere with respect to the Lebesgue measure. Or more in general if (X, d, m)
is a metric measure space admitting a differentiable structure in the sense of Cheeger, see [5], [6] for the
definitions, and f is Lipschitz, then Lip f = |df | m-a.e. where df is the Cheeger’s differential of f .

Once a point-wise information is given we are interested at looking at those points where the “differ-
ential” vanishes: define the singular set of f as follows

S(f) := {x ∈ X : Lip f(x) = 0}.

The classical Sard’s Theorem states that if f : R
n → R is sufficiently smooth then the Lebesgue

measure of f(S(f)) is 0. As soon as the regularity assumption on f is dropped, the conclusion of Sard’s
Theorem does not hold anymore and one may look for weaker properties to hold.

The question, inspired by a similar problem in [4], Section 6, is if it is possible to approximate any
Lipschitz function with functions having negligible S(f) with respect to a given reference measure.

For real valued Lipschitz functions defined on R
2, with Lebesgue measure playing the role of the

reference measure, a positive answer is contained in [1], see Proposition 4.10. We prove the following.

Theorem 1.1. Assume (X, d) is a quasi-convex, complete and separable metric space and let m be a

Borel probability measure over it. The set of those f ∈ D∞(X) so that m(S(f)) = 0 is residual, and

therefore dense, in D∞(X).

The Banach space D∞(X) will be the space of bounded functions with bounded point-wise Lipschitz
constant, endowed with the uniform norm. See below for a precise definition. Recall that a set in a
topological space is residual if it contains a countable intersection of open dense set. By Baire Theorem,
a residual set in a complete metric space is dense.

2. Setting

Let (X, d) be a metric space and m is a Borel probability measure over X so that X coincides with
its support. For f : X → R the Lipschitz constant of f is defined as usual by

LIP(f) := sup
x,y∈X,x 6=y

|f(x) − f(y)|

d(x, y)
,
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and we say that f is Lipschitz if LIP(f) is a finite number. Accordingly denote by LIP∞(X) the space
of bounded Lipschitz functions. The natural norm on LIP∞(X) is given by

‖f‖LIP∞(X) = ‖f‖∞ + LIP(f),

where ‖ · ‖∞ is the uniform norm. The space of bounded Lipschitz functions endowed with ‖f‖LIP∞(X)

turns out to be a Banach space. The point-wise version of LIP(f) is given by the point-wise Lipschitz
constant as defined in 1.1. The corresponding space of bounded functions with bounded point-wise
Lipschitz constant can be considered:

D∞(X) := {f : X → R : ‖f‖∞ + ‖Lip f‖∞ < ∞}.

A study of D∞(X) and LIP∞(X) can be found in [3]. The following results are taken from [3].
It is straightforward to note that LIP∞(X) ⊂ D∞(X) and for a general metric space this is the only

valid inclusion. Examples of metric spaces and functions in D∞(X) not satisfying a global Lipschitz bound
can be constructed, see [3]. If (X, d) is quasi-convex also the other inclusion holds and LIP∞(X) = D∞(X)
and the two semi-norms are comparable: there exists C ≥ 1 so that

‖Lip f‖∞ ≤ LIP(f) ≤ C‖Lip f‖∞.

Hence D∞(X), or equivalently LIP∞(X), endowed with the norm ‖ · ‖∞ + ‖Lip (·)‖∞ is a Banach space.
We will denote this norm with ‖ · ‖D∞(X).

Recall that a metric space (X, d) is quasi-convex if there exists a constant C ≥ 1 such that for each
pair of points x, y ∈ X there exists a curve γ connecting the two points such that l(γ) ≤ Cd(x, y), where
l(γ) denotes the length of γ defined with the usual “affine” approximation: for γ : [a, b] → X its length
l(γ) is defined by

l(γ) := sup

{

n
∑

i=1

d(xi, xi+1) : a = x1 < x2 < · · · < xn+1 = b, n ∈ N

}

.

Associated to the length l(γ) there is the distance obtained minimizing it:

dL(x, y) = inf{l(γ) : γ0 = x, γ1 = y}.

The function dL is indeed a distance on each component of accessibility by rectifiable paths, i. e. those
paths having finite l. By quasi-convexity it follows that

d(x, y) ≤ dL(x, y) ≤ Cd(x, y),

with C > 1. Hence (X, dL) is a complete and separable metric space that is also a length space. Clearly
(X, dL) has the same open sets of (X, d). For a more detailed discussion on length spaces see [2].

We will use the following notation. For r > 0 and z ∈ X , we will denote with Br(z) the ball of radius
r centered in z. The complement in X of a set A will be denoted by Ac and ∂A denotes the topological
boundary of A. The closure of A is cl(A) and the interior part int(A). Associated to a set we can consider
the distance from it: for x ∈ X and A ⊂ X

d(x, A) := inf
w∈A

d(x, w).

3. The Result

Lemma 3.1. For any Borel function f : X → R, the function Lip f : X → R̄ is universally measurable.

Proof. In order to prove the claim we just have to show that the set {x ∈ X : Lip f(x) ≥ a} is Souslin
for any a ∈ R. Since f is a Borel map then

⋂

n∈N

{

(x, y) ∈ X × X : 0 < d(x, y) ≤
1

n
,
|f(x) − f(y)|

d(x, y)
≥ a

}

is a Borel set. Note that

{x ∈ X : Lip f(x) ≥ a} = P1

(

⋂

n∈N

{

(x, y) ∈ X × X : 0 < d(x, y) ≤
1

n
,
|f(x) − f(y)|

d(x, y)
≥ a

}

)

,

where P1 : X × X → X denotes the projection on the first element. It follows from the definition of
Souslin set that {x ∈ X : Lip f(x) ≥ a} is Souslin and the claim follows. �
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Then after Lemma 3.1 it makes sense to look at those functions f so that m(S(f)) = 0. We will need
the following

Lemma 3.2. Let K ⊂ X be a closed set and consider the length distance function from K that is

g(x) := dL(x, K). Then

1 ≤ Lip g(x) ≤ C, for x ∈ Kc,

Proof. Step 1. Assume that d = dL so that (X, d) is also a length space and g = d(x, K). Then fix
x ∈ Kc: for any z ∈ K and y ∈ Kc it holds

d(x, z) − d(y, z) ≤ d(x, y)

hence trivially Lip g(x) ≤ 1.
Consider now a minimizing sequence zn ∈ K for x, that is that g(x) ≥ d(x, zn)−1/n. From the length

structure it follows that for any n there exists γn : [0, 1] → X rectifiable curve starting in x and arriving
in zn so that d(x, zn) ≥ l(γn) − 1/n. So for any yn in the image of γn

g(x) − g(yn)

d(x, yn)
≥

l(γn) − d(yn, zn) − 2/n

d(x, yn)
.

Since l(γn) ≥ d(x, yn) + d(yn, zn) it follows that

g(x) − g(yn)

d(x, yn)
≥

d(x, yn) − 2/n

d(x, yn)
.

Since the only constrain on yn was to belong to the image of γn, we can choose yn so that the previous
ratio converges to 1. Hence Lip g(x) = 1.

Step 2. We now drop the assumption on the length structure of the space. Let (X, d) be quasi-convex
and g(x) = dL(x, K). Since (X, dL) is a length space for any x ∈ Kc

lim sup
y→x,y 6=x

|g(x) − g(y)|

dL(x, y)
= 1.

Having (X, dL) and (X, d) the same open set, Kc does not depend on the metric. Since d ≤ dL ≤ Cd the
claim follows. �

We can now prove Theorem 1.1. The proof uses now the ideas contained in Proposition 4.10 in [1].

Theorem 3.3. Assume (X, d) is a quasi-convex, complete and separable space and let m be a Borel

probability measure over it. The set of those f ∈ D∞(X) so that m(S(f)) = 0 is residual in D∞(X) and

therefore dense.

Proof. Consider the following sets

G := {f ∈ D∞(X) : m(S(f)) = 0}, Gr := {f ∈ D∞(X) : m(S(f)) < r}.

The claim is then to prove that G is a residual set. Since G = ∩Gr , where the intersection runs over a
sequence of r converging to 0, the claim is proved once it is proved that each Gr is open and dense in
D∞(X).

Step 1. The set Gr is open in D∞(X). Fix f ∈ Gr. Then there exists δ > 0 so that

m ({x ∈ X : Lip f(x) ≤ δ}) < r.

Since for any g ∈ D∞(X) it holds that

Lip f(x) ≤ Lip g(x) + Lip (f − g)(x),

for any g ∈ D∞(X) so that ‖g − f‖D∞(X) ≤ δ it holds that

S(g) ⊂ {x ∈ X : Lip f(x) ≤ δ},

and therefore m(S(g)) < r and consequently g ∈ Gr.
Step 2. The set Gr is dense in D∞(X). Given f ∈ D∞(X) and δ > 0 we have to find g ∈ Gr so that

‖f − g‖D∞(X) ≤ δ. Without loss of generality we can assume m(S(f)) ≥ r.
For every ε > 0 denote with S(f)ε the ε-neighborhood of the set of singular points of f , i.e.

S(f)ε = {z ∈ X : d(z, S(f)) < ε}.
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The set S(f)ε is open and denote by K its complementary in X . Associated to K we consider the distance
function ĝ as defined in Lemma 3.2 that is ĝ(x) := dL(x, K). A rough bound on ĝ(x) can be given in
terms of the “diameter” of S(f):

ĝ(x) ≤ C sup{d(x, z) : cl(S(f)ε)},

where cl(S(f)ε) stands for the closure of S(f)ε. Since to approximate with functions in Gr we can make
an error in measure strictly less than r and since m is a probability measure, we can assume S(f) to have
finite diameter and by inner regularity we can even assume it to be closed. Therefore

‖ĝ‖∞ ≤ M, M > 0.

From Lemma 3.2 we have Lip ĝ(x) > 0 for x ∈ S(f)ε and clearly Lip ĝ(x) = 0 for x ∈ int(K), where
int(K) stands for the interior part of K.

Note that the boundary of S(f)ε is contained in the set {z : d(z, S(f)) = ε}. Indeed z ∈ ∂S(f)ε if and
only if d(z, S(f)) ≥ ε and for every η > 0 there exists a point w ∈ X so that

d(z, w) ≤ η, d(w, S(f)) < ε.

Let ηn be a sequence converging to 0 and wn the corresponding sequence converging to z. To each wn

associate xn ∈ S(f) so that d(wn, xn) < ε. Then

d(z, xn) ≤ d(z, wn) + d(wn, xn) < ηn + ε.

Passing to the limit d(z, S(f)) ≤ ε and therefore necessarily d(z, S(f)) = ε.
Moreover for ε 6= ε′

{z : d(z, S(f)) = ε} ∩ {z : d(z, S(f)) = ε′} = ∅,

hence there exists at most countably many ε so that m({z : d(z, S(f)) = ε}) > 0. Hence for any r > 0
there exists ε > 0 so that

m({z : d(z, S(f)) = ε}) = 0, m(S(f)ε \ S(f)) < r,

where the second expression holds because S(f) is closed. From what said so far, denoting g := f +
(δ/2M)ĝ is such that

‖f − g‖D∞(X) ≤ δ.

To conclude the proof observe that S(g) ⊂ S(f)ε \ S(f), hence by construction g ∈ Gr. �
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