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Abstract

Using techniques both of non linear analysis and geometric measure theory, we prove existence of minimiz-
ers and more generally of critical points for the Willmore functional and other LP curvature functionals
for immersions in Riemannian manifolds. More precisely, given a 3-dimensional Riemannian manifold
(M, g) and an immersion of a sphere f : S? < (M, g) we study the following problems.

1) The Conformal Willmore functional in a perturbative setting: consider (M,g) = (R3, eucl +eh)
the euclidean 3-space endowed with a perturbed metric (h = h,,, is a smooth field of symmetric bilinear
forms); we prove, under assumptions on the trace free Ricci tensor and asymptotic flatness, existence
of critical points for the Conformal Willmore functional I(f) := 3 [|A°[? (where A° := A — 1H is the
trace free second fundamental form). The functional is conformally invariant in curved spaces. We also
establish a non existence result in general Riemannian manifolds. The technique is perturbative and

relies on a Lyapunov-Schmidt reduction.

2) The Willmore functional in a semi-perturbative setting: consider (M,g) = (R3, eucl +h) where

h = hy, is a C§°(R?) field of symmetric bilinear forms with compact support and small C* norm. Under

a general assumption on the scalar curvature we prove existence of a smooth immersion of S? minimizing
1

the Willmore functional W (f) := ; [ |H|? (where H is the mean curvature). The technique is more

global and relies on the direct method in the calculus of variations.

3) The functionals E := 3 [|A|? and Wy = [ (% + 1) in compact ambient manifolds: consider

(M, g) a 3-dimensional compact Riemannian manifold. We prove, under global conditions on the curva-
ture of (M, g), existence and regularity of an immersion of a sphere minimizing the functionals E or W.
The technique is global, uses geometric measure theory and regularity theory for higher order PDEs.

2 2
4) The functionals F; := f (% + 1) and Wy := f (% + 1) in noncompact ambient manifolds:
consider (M, g) a 3-dimensional asymptotically euclidean non compact Riemannian 3-manifold. We prove,
under general conditions on the curvature of (M, g), existence and regularity of an immersion of a sphere
minimizing the functionals F; or W;. The technique relies on the direct method in the calculus of varia-
tions.

5) The supercritical functionals [|H|P and [ |A[P in arbitrary dimension and codimension: consider
(N, g) a compact n-dimensional Riemannian manifold possibly with boundary. For any 2 < m < n
consider the functionals [ |H|[P and [ |A|P with p > m, defined on the m-dimensional submanifolds of N.
We prove, under assumptions on (N, g), existence and partial regularity of a minimizer of such functionals
in the framework of varifold theory. During the arguments we prove some new monotonicity formulas
and new Isoperimetric Inequalities which are interesting by themselves.



Chapter 1

Introduction

An important problem in geometric analysis concerning the intrinsic geometry of manifolds sounds
roughly as follows: given an n-dimensional smooth manifold find the ”best metrics” on it, where with
"best metric” we mean a metric whose curvature tensors satisfy special conditions (for example some
traces of the Riemann curvature tensor are null or constant or prescribed, or minimize some functional;
think of the Yamabe Problem, the Uniformization Theorem, etc. ).

The analogous problem concerning the extrinsic geometry of surfaces sounds roughly as follows: given
an abstract 2-dimensional surface ¥ (we will always consider ¥ closed: compact and without boundary)
and a Riemannian 3-dimensional manifold (M, g) find the ”best immersions” f : ¥ < M of ¥ into M.
Here with ”best immersion” we mean an immersion whose curvature, i.e. second fundamental form,
satisfies special conditions: for example if the second fundamental form is null the immersion is totally
geodesic, if the mean curvature is null the immersion is minimal, if the trace-free second fundamental
form is null the immersion is totally umbilical, etc.

Before proceeding let us introduce some notation. Given an immersion f : ¥ < (M, g) let us denote
by ¢ = f*g the pull back metric on ¥ (i.e. the metric on ¥ induced by the immersion f); the area form
v/det g is denoted with dp, or with d¥; the second fundamental form is denoted with A and its trace
H := §" A;; is called mean curvature (notice that we use the convention that the mean curvature is the
sum of the principal curvatures and not the arithmetic mean), finally A° := A — %H g is called trace-free
second fundamental form.

As written in the second paragraph, classically the ”"best immersions” are the ones for which the
quantities A, H, A° are null or constant (i.e. parallel) but in many cases such immersions do not exist
(for example if ¥ is a closed surface and (M, g) = (R3, eucl) is the euclidean three dimensional space,
by maximum principle there exist no minimal, and in particular totally geodesic, immersion of ¥ into
(R3, eucl); more references about the existence of these classical special submanifolds will be given in the
following more specific introductions, here we just want to motivate the problem).

If such classical special submanifolds do not exist it is interesting to study the minimization of natural
integral functionals associated to A, H, A° of the type

/E|A|i”dug7 /E|H|pdug, /E\A°|pdug, for some p > 1.

A global minimizer, if it exists, can be seen respectively as a generalized totally geodesic, minimal, or
totally umbilic immersion in a natural integral sense. The general integral functionals above have been
studied, among others, by Allard [Al], Anzellotti-Serapioni-Tamanini [AST], Delladio [Del], Hutchinson
[Hul], [Hu2], [Hu3], Mantegazza [MantCVB] and Moser [Mos].

An important example of such functionals is given by the Willmore functional i fz H?%dpg. The
topic is classical and goes back to the 1920-’30 when Blaschke [Bla] and Thomsen [Tho] discovered the
functional and observed that it is invariant under conformal transformations of R3.

The functional was later rediscovered in the 60’s by Willmore who proved that the standard spheres S
are the points of strict global minimum for i f H?. The proofs of the last facts can be found in [Will]
(pag. 271, 276-279).



The functional relative to immersions in R3 and S? has been deeply studied with remarkable results
(for a panoramic view up to the 80’s see [Will] Chap. 7, for immersions in R™ see [SiL], [BK], [Chen]
[KS], [Schy] and [Riv], for immersions in S* and space forms see [LY], [Wei], [ZG], [GLW], [LU], [WG]
[MW]). Finally, in the last years, the flow generated by the L2-differential of the functional has been
analyzed ([Sim], [KS1], [KS2]).

The Willmore functional has lots of applications in biology, general relativity, string theory and
elasticity theory: in the study of lipid bilayer membranes it is called “Hellfrich energy”, in general
relativity it is linked with the “Hawking mass”, in string theory it appears in the “Polyakov extrinsic
action” and in nonlinear elasticity theory it arises as I'-limit of some energy functionals (see [FJM]). We
also mention the classical fact that in the mean curvature flow analysis one has

—Vol(M H?dx
7 Vo /

where M is the evolving submanifold with respect to the parameter ¢ and Vol(M ) i= [y d¥ is its area.

While, as we remarked, there is an extensive literature for immersions into R™ or S", very little is
known for general ambient manifolds (apart from the case of minimal surfaces). The aim of this thesis is
to study the Willmore and other natural LP curvature functionals in curved spaces.

Before passing to more detailed introductions let us write which problems are analyzed in the present
thesis. In [Monl], the author studied the Willmore functional in a perturbative setting: considered
R? with the metric Oy, + €hy,, which is an infinitesimal perturbation of the euclidean metric d,,, under
generic conditions on the scalar curvature and a fast decreasing assumption at infinity on the perturbation
Ry, existence and multiplicity of immersions which are critical point for the functional § [ H?du, were
proven (for more details see [Monl]). The method was perturbative and the proof relied on a Lyapunov-
Schmidt reduction. Using a similar technique, in Chapter 2 we study the conformal Willmore functional
% Ik \A°|2d,ug, which is conformally invariant in Riemannian manifolds, in the same perturbative setting
(R3, duv + €hyy). Under generic conditions on the trace-free Ricci tensor S, := Ric,, — %Rg,w (where
Ric,,, is the Ricci tensor and R is the scalar curvature, see also Definition (1.5)) and a fast decreasing
assumption at infinity on the perturbation h,,, we prove existence and multiplicity of critical points;
with the same technique we prove also a non existence result in general Riemannian manifolds. For more
details see the corresponding Introduction 1.0.1 and Chapter 2; this work is the object of the paper [Mon2].

Using more global techniques coming from geometric measure theory, in the rest of the thesis we study
the Willmore and other LP curvature functionals in semi-perturbative and global settings. With this in
mind, in Appendix 6.6 we recall some basic notions about varifold theory which will be useful in the rest
of the thesis.

In Chapter 3 we study the Willmore functional i JH |2dug in a semiperturbative setting: while in
[Monl] the perturbation to the euclidean metric was infinitesimal, here the perturbation is small but
finite. More precisely we consider R* with the metric §,, + h,, where h,, is a C§°(R?) bilinear form
with compact support and small C* norm. If there exist a point p € R? where the scalar curvature
of this metric is strictly positive, R(p) > 0, then we prove the existence of an immersion of a sphere
f:8? = (R3, Ou,v + hy) minimizing the Willmore functional among immersed spheres. The technique
is the so called direct method in the calculus of variations: we consider a minimizing sequence of immer-
sions, we associate to it a sequence in an enlarged space where it is easier to prove compactness, then by
lower semicontinuity we prove the existence of a candidate minimizer weak object and finally we prove
its regularity. For more details see Introduction 1.0.2 and Chapter 3; this content is part of a joint work
with J. Schygulla, see [MS1].

In the rest of the thesis we study global problems: the ambient manifold will be a Riemannian
manifold under global curvature conditions. First, in Section 4.1 and Chapter 5, we study the case of a
closed (compact without boundary) ambient manifold (M, g) which as always is of dimension 3. In this
framework we consider immersions of 2 spheres f : S < M and the problem of the minimization of the

functionals E(f) := % [ |A|*du, and Wl(f) (hﬁ + 1) dyig. Notice that in (R3,eucl) it is equivalent
to minimize the Willmore functional W (f) := % [ |H|?dp, and the functional E(f) := 3 [ |A|?dp, among



immersions of 2-spheres, indeed by Gauss-Bonnet Theorem we have

1

E(f) 325

[ 1aPduy =5 [ 18P, - 2m8) = 2W(5) - 4.

Therefore E is a natural generalization of the Willmore functional W for immersions in manifolds. In-
stead, as it can be easily seen, the infimum of W is not attained for immersions of spheres in (R?, eucl).
Under global conditions on the ambient manifold (M, g) we will prove the existence of a smooth immer-
sion f : S? < M minimizing E (respectively W;) among immersions of 2-spheres. The technique is the
direct method in the calculus of variations, but here the hard part is to get geometric a priori estimates
on the minimizing sequences and even harder the regularity of the candidate minimizer. For more details
see Introduction 1.0.3, Section 4.1 and Chapter 5; this part is the object of a joint work with E. Kuwert
and J. Schygulla, see [MS2].

Next, in Section 4.2 we study the global problem of minimizing the Willmore type functionals
2 2
WAa(f) = [ (% + 1) dpg, EA(f) = [ (% + 1) dpg in non compact 3-dimensional ambient Rieman-

nian manifold (M, g) without boundary (as before f : S? < M is an immersion of 2-sphere in M). Also
in this case we prove, under the assumption that (M, g) is asymptotically euclidean and under curvature
conditions, that there exists a smooth immersion f : S? < M minimizing E; (respectively W;) among
immersions of spheres. As before the technique is the direct method in the calculus of variations, here
the difficulty is that the surfaces in the minimizing sequence can become larger and larger or can escape
to infinity so, using curvature assumptions on (M, g), we will prove a priori estimates which prevents
those bad behaviors. Once the existence of a weak candidate minimizer is settled, the regularity theory is
exactly the same as in the compact case (see Chapter 5); this part is contained in the joint paper [MS1]
with J. Schygulla.

In the last Chapter 6 we study supercritical LP-curvature functionals [ [H|P and [ |A[P for submani-
folds of any codimension in a Riemannian manifold of arbitrary dimension. Let us be more precise. Let
(N, g) be a compact (maybe with boundary) Riemannian manifold of dimension n € N and consider on
the m-dimensional submanifolds, 2 < m < n, the L? curvature functionals [ |H|? and [ |A[? with p > m.
Let us stress that here the exponent p > m is supercritical, in contrast with the preceding chapters where
we were dealing with 2-dimensional surfaces and the exponent was 2 (so before we were dealing with the
critical exponent). In this chapter we heavily use varifold theory and, using direct methods in the calcu-
lus of variations, we prove existence and partial regularity of integral rectifiable m-dimensional varifolds
(the non expert reader can think at them as generalized m-dimensional submanifolds) minimizing the
above functionals [ |H[? and [|A in a given Riemannian n-dimensional manifold (N,g), 2 < m < n
and p > m, under suitable assumptions on N (in the end of the chapter we give many examples of such
ambient manifolds). To this aim we introduce the following new tools: some monotonicity formulas for
varifolds in R® involving J |H|P, to avoid degeneracy of the minimizer, and a sort of isoperimetric in-
equality to bound the mass (the non expert reader can think of the mass as the volume of the generalized
m-dimensional submanifold) in terms of the mentioned functionals. For more details see Introduction
1.0.4 and Chapter 6; this part corresponds to the paper [MonVar].

1.0.1 Introduction and results about the Conformal Willmore Functional
2 [1A°] in a perturbative setting: Chapter 2

The aim of Chapter 2 is to study a (Riemannian) conformally invariant Willmore functional. The study
of Conformal Geometry was started by H. Weil and E. Cartan in the beginning of the 20" century and
since its foundation it has been playing ever more a central role in Riemannian Geometry; its task is to
analyze how geometric quantities change under conformal transformations (i.e. diffeomorphisms which
preserves angles) and possibly find out conformal invariants (i.e. quantities which remain unchanged
under conformal transformations).

Let us first recall the definition of “standard” Willmore functional for immersions in R? which is a
topic of great interest in the contemporary research as explained before. Given a compact orientable
Riemannian surface (M ,§) isometrically immersed in R® endowed with euclidean metric, the “standard”



Willmore functional of M is defined as

W (M) = /M Hsz (1.1)

where H is the mean curvature and d¥ is the area form of (M ,g) (we will always adopt the convention
that H is the sum of the principal curvatures: H := ki + k2).
As written above, this functional satisfies two crucial properties:

a) W is invariant under conformal transformations of R?; that is, given ¥ : R® — R?® a conformal
transformation, W (¥ (M)) = W (M).

b) W attains its strict global minimum on the standard spheres S of R3 (hence they form a critical
manifold - i.e. a manifold made of critical points):

2
W(M) = /M HTdE >4m; W(M)=4r & M = S). (1.2)

The proofs of the last facts can be found in [Will] (pag. 271 and pag. 276-279).

Clearly the “standard” Willmore functional W can be defined in the same way for compact oriented
surfaces immersed in a general Riemannian manifold (M, g) of dimension three. Although this functional
has several interesting applications, it turns out that W is not conformally invariant.

As proved by Bang-Yen Chen in [Chen] (see also [Wei] and for higher dimensional and codimensional
analogues [PW] ), the “correct” Willmore functional from the conformal point of view is defined as follows.
Given a compact orientable Riemannian surface (M, g) isometrically immersed in the three dimensional
Riemannian manifold (M, g), the conformal Willmore functional of M is

y 1 0|2 H2
I(M):=— |A°] dE:/ (D)dZ (1.3)

2 Jm m\ 4
where |A°2 = 1 (k;—k2)? is the norm of the traceless second fundamental form (recall that A° = A—1Hg),
D := ki1ko is the product of the principal curvatures and as before H and d¥ are respectively the mean
curvature and the area form of (M ,§). In the aforementioned papers it is proved that I is conformally
invariant (i.e. given W : (M, g) — (M, g) a conformal transformation, I(¥(M)) = I(M)) so in this sense
it is the “correct” generalization of the standard Willmore functional which, as pointed out, is conformally
invariant in R3. We say that I generalizes W because if R? is taken as ambient manifold, the quantity
D = ky ks is nothing but the Gaussian curvature which, fixed the topology of the immersed surface, gives
a constant when integrated (by the Gauss-Bonnet Theorem) hence it does not influence the variational

properties of the functional.

A surface which makes the conformal Willmore functional I stationary with respect to normal varia-
tions is called conformal Willmore surface and it is well known (the expression of the differential in full
generality is stated without proof in [PW] and the computations can be found in [HL], here we deal with
a particular case which will be computed in the proof of Proposition 2.2.9) that such a surface satisfies
the following PDE:

1 H? A — )\ . . . . .
L H<4 - D) + %[R(N,el,N,el) — R(N,e3,N,e2)] + > (Ve,R)(N,ej,¢j,€:) =0

ij

where A a7 is the Laplace Beltrami operator on M , R is the Riemann tensor of the ambient manifold
(M, g) (for details see “notations and conventions”), N is the inward unit normal vector, \; and Ay are
the principal curvatures and e, es are the normalized principal directions.
The goal of Chapter 1.0.1 is to study the existence of conformal Willmore surfaces.
The topic has been extensively studied in the last years: in [ZG] the author generalizes the conformal
Willmore functional to arbitrary dimension and codimension and studies the existence of critical points
in space forms; in [HL] the authors compute the differential of I in full generality and give examples of
conformal Willmore surfaces in the sphere and in complex space forms; other existence results in spheres
or in space forms are studied for instance in [GLW], [LU], [WG] and [MW].



The novelty of Chapter 1.0.1 is that the conformal Willmore functional is analyzed in an ambient
manifold with non constant sectional curvature: we will give existence (resp. non existence) results for
curved metrics in R3, close and asymptotic to the flat one (resp. in general Riemannian manifolds). More
precisely, taken h,, € C§°(R?) a smooth bilinear form with compact support (as we will remark later it
is sufficient that h,, decreases fast at infinity with its derivatives) we take as ambient manifold

(R, g.) with g.=06+eh (1.4)

where ¢ is the euclidean scalar product.
The candidate critical surfaces are perturbed standard spheres (resp. perturbed geodesic spheres), let
us define them. Let Sf be a standard sphere of R3 parametrized by

0€8?—p+pO

and let w € C**(5?) be a small function, then the perturbed standard sphere Sf(w) is the surface
parametrized as
©€S?p+p(l—w(O))O.

Analogously the perturbed geodesic sphere Sy ,(w) is the surface parametrized by
0 € 5? = Exp,[p(1 — w(O))6]

where S2 is the unit sphere of T, »M, Exp, is the exponential map centered at p and, as before, w is a
small function in C*+*(S?).

The main results of Chapter 1.0.1 are Theorem 1.0.1 and Theorem 1.0.2 below, which will be proved in
Subsection 2.3.3. Before stating them recall that given a three dimensional Riemannian manifold (M, g),
the traceless Ricci tensor S is defined as

1
S = Ry — gg,“,R (1.5)
where R,,, is the Ricci tensor and R is the scalar curvature. Its squared norm at a point p is defined as
1Spl12 = Ziuzl S, (p)? where S, (p) is the matrix of S at p in an orthonormal frame. Expanding in €
the curvature tensors (see for example [And-Mal] pages 23-24) it is easy to see that the traceless Ricci
tensor corresponding to (R?, g.) (defined in (1.4) )is

1Spl1* = €55 + o) (1.6)

where 5, is a nonnegative quadratic function in the second derivatives of h,, which does not depend on
e. In the following Theorem, 7 will denote an affine plane in R and H'(7) will be the Sobolev space
of the L? functions defined on 7 whose distributional gradient is a vector valued L? integrable function.
H'(r) is equipped with the norm

1 sy = 112y + IV F T2y VS € HY (7).
Now we can state the Theorems.

Theorem 1.0.1. Let h € C5°(R3) be a symmetric bilinear form with compact support and let ¢ be such
that
c:= sup{||hu || g1 () : ™ s an affine plane in R®, p,v=1,2,3}.

Then there exists a constant A. > 0 depending on ¢ with the following property: if there exists a point p
such that
55 > A

then, for € small enough, there exists a perturbed standard sphere Spe (we) which is a critical point of the
conformal Willmore functional I, converging to a standard sphere as € — 0.

It is well-known (see Remark 1.0.5 point 3) that if a three dimensional Riemannian Manifold has
non constant sectional curvature then the traceless Ricci tensor S cannot vanish everywhere. Clearly
(R3, g.) has non constant sectional curvature (the metric is asymptotically flat but not flat) hence it



cannot happen that ||S||? = 0; for the following existence result we ask that this non null quantity has
non degenerate expansion in e: we assume

M := max s, > 0. 1.7
ma 5, (L.7)
Actually it is a maximum and not only a supremum because the metric is asymptotically flat.
The following is like a mirror Theorem to the previous existence result: in the former we bounded ¢
and asked § to be large enough at one point, in the latter we assume that § is non null at one point (at
least) and we ask ¢ to be small enough.

Theorem 1.0.2. Let h, ¢ be as in Theorem 1.0.1 and M satisfying (1.7). There exists dp; > 0 depending
on M such that if c < dp then, for € small enough, there exists a perturbed standard sphere Spe (we) which
is a critical point of the conformal Willmore functional I, converging to a standard sphere as € — 0.

Remark 1.0.3. 1. As done in [Monl], the assumption h € C§°(R?) in Theorem 1.0.1 and Theorem
1.0.2 can be relaxed asking that h decreases fast enough at infinity with its derivatives.

2. The conditions of Theorem 1.0.1
sup{ ||~ || i1 (x) : 7 is an affine plane in R, p,v=1,2,3} <c

and
55 > Ac

are compatible. In fact the former involves only the first derivatives of h while the latter the second
derivatives (see for instance [And-Mal] page 24). Of course the same fact is true for the conditions
5p > M and c < dpr of Theorem 1.0.2.

3. If the perturbation h satisfies some symmetries (invariance under reflections or rotations with respect

to planes, lines or points of R3), it is possible to prove multiplicity results (see Subsection 5.2 of
[Mon1]).

4. If b is C* then a standard regularity argument (see the paper of Leon Simon [SiL] pag. 303 or
the book by Morrey [MCBJ) shows that a C*% conformal Willmore surface is actually C*°. It
follows that the conformal Willmore surfaces exhibited in the previous Theorems, which are C*< by
construction, are C°.

5. The critical points Sp<(we) of I. are of (maybe degenerate) saddle type. In fact from (1.2) the stan-
dard spheres SP are strict global minima in the direction of variations in C**(S?)*+ = Ker[If(S£)]*+N
C*(52), it is easy to see that for small € the surfaces S5 (we) are still minima in the C**(S?)+
direction; but, since they are obtained as maximum points of the reduced functional, in the direction
of Ker[Ig(Sp)] they are (maybe degenerate) mazimum points.

As we said before, the non existence result concerns perturbed geodesic spheres of small radius. Let
us state it:

Theorem 1.0.4. Let (M, g) be a Riemannian manifold. Assume that the traceless Ricci tensor of M at
the point p is not null:

1951l # 0.
Then there exist pg > 0 and v > 0 such that for radius p < po and perturbation w € C**(S?) with
|lw]|ct.a(s2y <7, the surfaces Sp ,(w) are not critical points of the conformal Willmore functional I.

Remark 1.0.5. 1. Observe the difference with the flat case: thanks to (1.2), in R® the spheres of
any radius are critical points of the conformal Willmore functional I (as we noticed, the term D
does not influence the differential properties of the functional by Gauss-Bonnet Theorem); on the
contrary, in the case of ambient metric with non null traceless Ricci curvature we have just shown
that the geodesic spheres of small radius are not critical points.

2. The condition ||S,|| # 0 is generic.



3. If (M, g) has not constant sectional curvature then there exists at least one point p such that || Sp|| #
0. In fact if ||S|| = 0 then (M,g) is Einstein, but Einstein manifolds of dimension three have
constant sectional curvature (for example see [Pet] pages 38-41).

The abstract method employed throughout Chapter 1.0.1 is the Lyapunov-Schmidt reduction (for
more details about the abstract method see Section 2.1). An analogous technique has been used in the
study of constant mean curvature surfaces (see [Ye], [Ye2], [PX], [CM1], [CM2], [FMa], [FMe] and [Fe]).

We discuss next the structure of the Chapter, but first let us explain (informally) the main idea (for

the details see Subsection 2.2.3 and Subsection 2.3.1).
As we remarked, (1.2) implies that the Willmore functional in the euclidean space R® possesses a critical
manifold Z made of standard spheres S). The tangent space to Z at S is composed of constant and
affine functions on S so, with a pull back via the parametrization, on S2. The second derivative of I
at Sf is

1
I(’)/(Sg)[w} = §A52(A32 =+ 2)w

(for explanations and details see Remark 2.3.1) which is a Fredholm operator of index zero and whose
Kernel is made of the constant and affine functions; exactly the tangent space to Z.
So, considered C*%(S?) as a subspace of L?(S5?) and called

Che(SHL = 0t (8H) N Ker[Ag (A g 4 2)]F,

it follows that I} |C4,o<( s2y+ is invertible on its image and one can apply the Lyapunov-Schmidt reduction.
Thanks to this reduction, the critical points of I, in a neighborhood of Z are exactly the stationary points
of a function (called reduced functional) ®. : Z — R of finitely many variables (we remark that in a
neighborhood of Z the condition is necessary and sufficient for the existence of critical points of I.).

In order to study the function ®., we will compute explicit formulas and estimates of the conformal
Willmore functional. More precisely for small radius p we will give an expansion of the functional on
small perturbed geodesic spheres, for large radius we will estimate the functional on perturbed standard
spheres and we will link the geodesic and standard spheres in a smooth way using a cut off function (for
details see Subsection 2.3.1).

The Chapter is organized as follows: in Section 2.2 we will start in the most general setting, the
conformal Willmore functional for small perturbed geodesic spheres in ambient manifold (M, g). Even
in this case the reduction method can be performed, using the small radius p as perturbation parameter
(see Lemma 2.2.10).

Employing the geometric expansions of Subsection 2.2.1 and the expression of the constrained w given in
Subsection 2.2.3, in Subsection 2.2.4 we will compute the expansion of the reduced functional on small
perturbed geodesic spheres of (M, g). Explicitly, in Proposition 2.2.11, we will get

™
D(p, p) = g|\5p||2p4+0p(ps) (1.8)

where ®(.,.) is the reduced functional and, as before, S, is the traceless Ricci tensor evaluated at p.
Using this formula we will show that if ||S5|| # 0 then ®(p, .) is strictly increasing for small radius. The
non existence result will follow from the necessary condition.

Section 2.3 will be devoted to the conformal Willmore functional in ambient manifold (R3,g.). In
Subsection 2.3.1 we will treat the applicability of the abstract method and in the last Subsection 2.3.3
we will bound the reduced functional @, for large radius p using the computations of Subsection 2.3.2.
We remark that the expansion of @, is degenerate in e (i.e. the first term in the expansion is null and
®, = O(€?)), clearly this feature complicates the problem. Using the estimates on the reduced functional
®, for large radius and the expansions for small radius (since for small radius we take geodesic spheres
it will be enough to specialize (1.8) in the setting (R3, g.)) we will force @, to have a global maximum,
sufficient condition to conclude with the existence results.

1.0.2 Introduction and results about the Willmore Functional ; [ |H|* in a
semiperturbative setting: Chapter 3

Let (Rg, 0uv + hyuw) be the Riemannian manifold associated to R3 with the perturbed metric O + hpw
where h,,, is a C§°(R3) compactly supported bilinear form with small C! norm. The framework is semi



perturbative in the following sense: while previously the perturbation eh,, was infinitesimal, now the
perturbation is small in C' norm but finite.

In this setting let us define the classical Willmore functional Wj,. Let ¥ C R?® be an embedded surface,
then we define

1 1
Wi (%) := Z/Z|Hh\2duh = Z/z: |H|*dpn

where H = Hj, is the mean curvature of the surface ¥ as submanifold of (R3, duv + hyuy) and duy, the
associated area form. The main result of Chapter 3 is the following theorem.

Theorem 1.0.6. Let (R3,(5W + hu) be R? with the perturbed metric 6, + huw where hy, is a C8°(R3)
compactly supported bilinear form with small C* norm. Assume there exists a point p € R3 where the
scalar curvature is strictly positive: R(p) > 0.
Then there exists an embedded 2-sphere ¥ C R3 which minimizes the Willmore functional Wj, among
embedded spheres:
Wi (2) = inf{W,(X) : ¥ is an embedded 2-sphere }.

The technique we adopt is the direct method in the calculus of variations. We consider a minimizing
sequence and associate to each surface a Radon measure, then for having compactness we have to prove
that the sequence does not shrink to a point, that there exist upper bound on the diameters and the
areas of the surfaces in the minimizing sequence, and that the sequence does not escape to infinity. With
this in mind we first link the euclidean and the perturbed quantities proving a monotonicity formula in
a semiperturbative setting, then using these estimates we prove the desired non degeneracy of the mini-
mizing sequence via blow up and blow down procedures which use the scale invariance of the functional
and the assumption on the scalar curvature. Once we have the existence of a candidate weak minimizer
then we prove C'* regularity following closely the theory developed by Simon in [SiL].

1.0.3 Introduction and results about the Willmore type functionals %f |A|%
J (% + 1) f <@ + 1) in a global setting: Chapters 4 and 5

The functionals } [|A|? and [ (% + 1) in COMPACT ambient manifold

Let f : ¥ — R? be an immersion of a compact 2-dimensional surface ¥ in R3. An important problem
in geometric analysis is to find immersions which minimize the L? norm of the second fundamental form

E(f) = 3 [|A]*. Using the Gauss Bonnet Theorem, one obtains

B(f) =5 [ AP =5 [1HP - 2mx(2) = 2W () - 2mx(5), (1.9)

where x(X) is the Euler characteristic of ¥ and W (f) = } [|H|* is the Willmore energy of f. Hence,
once the topological type of ¥ is fixed, it is equivalent to minimize the Willmore functional W and the
functional E. If 3 is a 2-sphere then Willmore proved (Theorem 7.2.2 in [Will]) that the minimizing
immersion is a round sphere, and this is actually a strict global minimum on all surfaces. If ¥ is a torus
then Simon, using the direct method of the calculus of variations and regularity theory for fourth order
PDEs, proved in [SiL] that there exists a smooth embedding f of a torus in R? minimizing the Willmore
functional W among immersed tori (the Willmore conjecture asserts that the minimizing torus is actually
the Clifford torus). The minimization problems for higher genuses were solved by Bauer and Kuwert in
[BK]. The variational problems related to the Willmore functional (which by (1.9) are equivalent to the
variational problems related to E) have become of interest for the community (see for example [KS], [LY],
[Riv] and [Schy]).

Although there is a quite extensive literature about the Willmore functional in euclidean space, the
analogous problems for immersions in a Riemannian manifold are almost unexplored. There are some
perturbative results (see [LM], [LMS], [Monl], [Mon2]) but the global problem has not been faced yet. In
this thesis we give the first existence and full regularity results for the global problem of finding minimizers
for the functional F in a compact manifold.

Before writing precisely which are the problems we study let us introduce some notation. Let (M, g)
be a compact 3-dimensional Riemannian manifold without boundary; for any immersion of a 2-sphere



f :S? < M we consider the functional given by the L? norm of the second fundamental form A of the
immersion f:

B =g [ AR, (1.10)

where dpg is the area form induced by the pull back metric f*g on S2. We consider moreover the
Willmore-type functional

Wh(f) = /S2 (If—&-l) dug = W(f)+ Area(f) (1.11)

where H is the mean curvature (we adopt the convention that H is the sum of the principal curvatures),
W(f) := i Js2 H?dpsy is the Willmore functional of f and Area(f) is the area of S? endowed with the
pullback metric f*g as above. In this thesis we study the minimization problems relative to the functionals
E and Wi

inf  E(f):=inf{E(f)|f:S*— (M,g) is a C* immersion in (M, g)}, (1.12)
f:§2—=(M.,g)
inf  Wi(f) == inf{Wi(f)|f : S* = (M, g) is a C> immersion in (M, g)}, (1.13)
f:82—=(M,g)

and we prove that the minimization problems above have a smooth solution, as follows.

Theorem 1.0.7. Let (M,g) be a 3-dimensional Riemannian manifold whose sectional curvature K is
bounded below by a positive constant:

there exists a A >0  such that K > A > 0. (1.14)

Then the minimization problem (1.12) has a smooth solution, i.e. there exists a smooth immersion
f:S? < M such that

E(f) = inf{E(h)|h : S* — (M, g) is a C™ immersion in (M, g)}.

Notice that under the condition (1.14) the manifold M is forced to be compact. Observe moreover
that the theorem is not trivial in the sense that there are examples of compact 3-manifolds satisfying
the condition (1.14) which do not contain totally geodesic immersions (i.e. immersion whose second
fundamental form A vanish identically, A = 0 ); for instance in [ST] it is proved that the Berger Spheres
M?3(k,7) with k& > 0,7 # 0 do not contain totally geodesic surfaces (note that for k& > 372 the space
M3 (k, 7) has strictly positive sectional curvature, for the computation see [Dan]).

Theorem 1.0.8. Let (M, g) be a compact 3-dimensional Riemannian manifold which does not contain
non null 2-varifolds with null second fundamental form (for the definitions see Appendix 6.6 or for more
details [MonVar]) and such that the scalar curvature R is strictly positive in at least one point p: R(p) > 0.

Then the minimization problem (1.12) has a smooth solution, i.e. there exists a smooth immersion
f:S? < M such that

E(f) = inf{E(h)|h : §* — (M, g) is a C*> immersion in (M, g)}.

Notice that the condition on the non existence of non null 2-varifolds with null second fundamental
form should be generic and of course implies that there exists no totally geodesic surface in (M, g).

Theorem 1.0.9. Let (M, g) be a compact 3-dimensional Riemannian manifold whose curvature satisfies
the following conditions:

i) there exists a point p € M where the scalar curvature is strictly greater than 6: R(p) > 6,

it) the sectional curvature K is bounded above by 2: K <2.

Then the minimization problem (1.13) has a smooth solution, i.e. there exists a smooth immersion
f:S? — M such that

Wi (f) = inf{Wy(h)|h : S* — (M, g) is a C> immersion in (M, g)}.



Notice that the conditions 7) and i) of Theorem 1.0.9 are compatible since 6 is the scalar curvature
of the standard sphere S* C R* of radius 1 (whose sectional curvature is identically equal to 1) while 2
is the sectional curvature of the sphere %Sia C R* of radius %, so for instance (M,g) = %83 C R*
satisfies both ¢) and i) above.

The assumption on the scalar curvature in Theorem 1.0.9 is quite natural if one thinks at surfaces
which are critical points for W as generalized minimal surfaces, for example in [MN] Marquez and Neves
prove existence and rigidity results for min-max minimal spheres assuming that the scalar curvature of

the ambient manifold is greater or equal to 6 (plus other assumptions).

Remark 1.0.10. In the proceeding [SiProc], Simon claimed that the minimizers of 1 [ |H|* in a Rie-
mannian manifold are branched C*® immersions but a complete proof never appeared. This chapter is
the first attempt to fill in this gap in the comprehension of minimizers of integral curvature functionals
in Riemannian manifolds.

Remark 1.0.11. Let (M,g) be as in the assumptions of Theorem 1.0.7 or Theorem 1.0.8. The two
existence results imply that if (M, g) does not contain an immersed totally geodesic sphere then there is
the following gap:

there exists € > 0 such that for all smooth immersions h:S* < M we have E(h) > . (1.15)

Notice moreover that if (M, g) is a simply connected 3-dimensional manifold with strictly positive sectional
curvature in the sense of (1.14) then Theorem 0.5 in [FMR] implies that any totally geodesic immersed
surface is actually embedded. Hence the gap (1.15) is still true under the a priori weaker assumption that
(M, g) does not contain embedded totally geodesic spheres.

Remark 1.0.12. In this chapter we studied the minimization problem in compact manifolds without
boundary. 1If one studied the minimization problem in mon compact manifold (respectively in compact
manifold with boundary) and manages to show that a minimizing sequence is contained in a relatively
compact open subset (respectively in an open subset with strictly positive distance from the boundary) then
the existence and reqularity theory developed in this chapter can be analogously applied.

Now let us briefly sketch the technique of the proof and the structure of our argument.

As done in [SiL] we use the direct method of the calculus of variations: we take a minimizing sequence
of immersions, associate to them weak objects (Radon measures and varifolds) for which one has a
good compactness theory, prove a priori estimates which ensure compactness and non degeneracy of the
minimizing sequence, by lower semicontinuity of the functional get the existence of a candidate minimizer
and then prove the regularity.

We remark that in the euclidean case, from the conformal invariance of the functional, by rescaling it
is trivial to have an area bound on a minimizing sequence and it is not difficult to prove that the sequence
does not shrink to a point; in a Riemannian manifold the situation is different and we prove all the a
priori estimates in Section 4.1.1; in this part the curvature of the ambient manifold plays a central role.

Once the needed estimates are proved, we associate to each smooth immersion a weak object (a Radon
measure and a varifold) and in Section 4.1.2, using geometric measure theory, we prove compactness in
the enlarged space and lower semicontinuity of the functionals, and therefore the existence of a candidate
minimizer weak object. In the rest of the chapter we prove the regularity of the candidate minimizer.

We took inspiration from the work of Simon [SiL] where the regularity of the minimizers of W in
euclidean setting is performed, but there are some serious modifications to be done for immersions in
a Riemannian manifold. First of all, since in Euclidean setting one has an 87 bound on the Willmore
functional which turns out to be very useful, using an inequality of Li and Yau [LY] and a monotonicity
formula Simon manages to work with embedded surfaces; in Riemannian manifold instead we work with
immersions, hence there could be multiplicity and the technique is a bit more involved. Nevertheless
in Section 5.2, working locally in normal coordinates, we manage to enter into the assumptions of the
Graphical Decomposition Lemma of Simon and prove that near all points (except possibly finitely many
”bad points” where the curvature concentrates) of the candidate minimizer, the minimizing sequence can
be written locally as union of graphs and small ”pimples” with good estimates.

In Section 5.3 we prove that the candidate minimizer is locally given by graphs of CH* N W22
functions. For getting this partial regularity we first prove a local power decay on the L? norms of the
second fundamental forms of the minimizing sequence (see Lemma 5.3.1) away from the bad points; then,
still working locally away from the bad points, replacing the pimples by sort of biharmonic discs, by
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Ascoli-Arzeld theorem we get existence of Lipschitz limit functions; at this point, using a generalized
Poincaré inequality, the power decay of the second fundamental forms and Radon Nicodym Theorem,
we show in Lemma 5.3.2 that the candidate minimizer is associated to the limit Lipschitz graphs; finally
using that this candidate minimizer has weak mean curvature in L2, together with the aforementioned
power decay, a lemma, of Morrey implies the C1® N W22 regularity away from the bad points. Using a
topological argument involving degree theory and Gauss Bonnet theorem, in Subsection 5.3.2 we prove
that actually there are no bad points and therefore the candidate minimizer is C'** N W?22 everywhere.
This step is quite different (and simpler) from [SiL], indeed since we work with immersed spheres we
manage to exclude bad points while Simon works with surfaces of higher genus and he has to handle the
bad points without excluding them.

To complete the regularity we need to show that the candidate minimizer satisfies the Euler-Lagrange
equation, and for this step we need to prove that it can be parametrized on S?. At this point (see
Subsection 5.4.1) we use the notion of generalized (r, A)-immersions developed by Breuning in his Ph. D.
Thesis [BreuTh] taking inspiration by previous work of Langer [Lan]. Once the Euler Lagrange equation
is satisfied the C*° regularity follows (see Subsection 5.4.2)

For the reader’s convenience we end Chapter 5 with some appendices about maybe non standard basic
material used throughout the arguments.

The functionals [ (% + 1) and [ (# + 1) in NONCOMPACT asymptotically euclidean
ambient manifold
Once the existence in compact manifolds is settled we move to noncompact ones.

Let (M, g) be a 3-dimensional non compact asymptotically euclidean Riemannian manifold without

boundary and with bounded geometry. By asymptotically euclidean we mean that there exist compact
subsets K1 CC M and Ks CC R3 such that

(M\K;) is isometric to (R*\ Ka, eucl +0;(1)) (1.16)

where (R3, eucl +0;(1)) denotes the “Riemannian manifold” R? endowed with the euclidean metric d,,, +
01(1) and 01(1) denotes a symmetric bilinear form which goes to 0 with its first derivatives at infinity:

Jim (o (V@) + [Vor (V(@)]) = 0.

We also assume that the Riemannian manifold (M, ¢g) has bounded geometry: the sectional curvature is
bounded and the injectivity radius is uniformly bounded below by a strictly positive constant, i.e. there
exists A € R such that |K| < A? and <z < Inj(M).

For any immersion of a 2-sphere f : S? < M we consider the following Willmore-type functionals:

Wi (f) := /S (If + 1) dpg (1.17)

BEi(f) = /S (’f + 1) dyu, (1.18)

where as before A is the second fundamental form, H is the mean curvature and du, is the area form
induced on S? by the immersion f. We consider the minimization problems of W; and E; among smooth
immersions of S?

isclf Wi(f) := inf{Wy(f): f:S? < (M,g) is a smooth immersion in (M, g)}, (1.19)

ir}f Eyi(f) :=inf{Ey(f): f:S* < (M, g) is a smooth immersion in (M, g)}, (1.20)

and prove the following theorems.

Theorem 1.0.13. Let (M, g) be a 3-dimensional non compact Riemannian manifold with bounded ge-
ometry such that:

i) (M, g) is asymptotically euclidean in the sense of Definition (1.16),

it) there exists a point p where the scalar curvature is strictly greater than 6, R(p) > 6,
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iii) the sectional curvature K of (M, g) is bounded above by 2: K < 2.
Then the minimization problem (1.19) has a smooth solution, i.e. there exists a smooth immersion
f:S? — M such that

Wi (f) = inf{Wi(h)|h: S* — (M, g) is a C> immersion in (M, g)}.

Theorem 1.0.14. Let (M, g) be a 3-dimensional non compact Riemannian manifold with bounded ge-
ometry such that:

i) (M, g) is asymptotically euclidean in the sense of Definition (1.16),

i) there exists a point p where the scalar curvature is strictly greater than 6, R(p) > 6.
Then the minimization problem (1.20) has a smooth solution, i.e. there exists a smooth immersion
f:S? < M such that

Ey(f) = inf{Ey(h)|h : S* — (M, g) is a C* immersion in (M,g)}.

The technique of the proof is analogous to the one described in the introduction of the global problems
in compact ambient manifolds. Here there is the major difficulty that the minimizing sequence can
become larger and larger or it could escape to infinity. Using the bounded geometry condition, the scalar
curvature assumption, and the asymptotic flatness we prove the geometric a priori estimates that give
compactness of the minimizing sequence and hence the existence of a weak candidate minimizer. The
further assumption on the sectional curvature in the case of Wy is useful for having a small bound on
i |A]? for the minimizing sequence and this is crucial in the regularity theory in order to exclude bad
points (such a bound is automatic for E7). Once we have that the minimizing sequence is contained in
a compact subset of (M, g) and we show the existence of a weak candidate minimizer then we enter into
the framework of the regularity theory discussed in Chapter 5 and we conclude with the existence of a
smooth minimizer.

1.0.4 Introduction and results about the supercritical functionals [ |H|[? and
[ JAJP in Riemannian manifolds, arbitrary dimension and codimension:
Chapter 6

Given an ambient Riemannian manifold (N, g) of dimension n > 3 (with or without boundary), a classical
problem in differential geometry is to find smooth immersed m-dimensional submanifolds, 2 < m < n—1,
with null mean curvature vector, H = 0, or with null second fundamental form, A = 0, namely the
minimal (respectively, the totally geodesic) submanifolds of N (for more details about the existence see
Example 6.5.1, Example 6.5.2, Theorem 6.5.4, Theorem 6.5.5, Remark 6.5.6 and Remark 6.5.7).

In more generality, it is interesting to study the minimization problems associated to integral func-
tionals depending on the curvatures of the type

E;},m(M) = |HP or Ef‘,m(M) ::/ AP, p>1 (1.21)
M M

where M is a smooth immersed m-dimensional submanifold with mean curvature H and second funda-
mental form A; of course the integrals are computed with respect to the m-dimensional measure of N
induced on M. A global minimizer of E¥,  (respectively of EY ), if it exists, can be seen as a generalized
minimal (respectively totally geodesic) m-dimensional submanifold in a natural integral sense.

An important example of such functionals is given by the Willmore functional for surfaces EIQLI,2
introduced by Willmore (see [Will]) and studied in the euclidean space (see for instance the works of
Simon [SiL], Kuwert and Shétzle [KS], Riviére [Riv]) or in Riemannian manifolds (see, for example, [LM],
[Monl] and [Mon2]).

The general integral functionals (1.21) depending on the curvatures of immersed submanifolds have
been studied, among others, by Allard [Al], Anzellotti-Serapioni-Tamanini [AST], Delladio [Del], Hutchin-
son [Hul], [Hu2], [Hu3], Mantegazza [MantCVB] and Moser [Mos].

In order to get the existence of a minimizer, the technique adopted in the present chapter (as well
as in most of the aforementioned papers) is the so called direct method in the calculus of variations. As
usual, it is necessary to enlarge the space where the functional is defined and to work out a compactness-
lowersemicontinuity theory in the enlarged domain.
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In the present chapter, the enlarged domain is made of generalized m-dimensional submanifolds of
the fixed ambient Riemannian manifold (N, g): the integral rectifiable m-varifolds introduced by Alm-
gren in [Alm] and by Allard in [Al]. Using integration by parts formulas, Allard [Al] and Hutchinson
[Hul]-Mantegazza [MantCVB| defined a weak notion of mean curvature and of second fundamental form
respectively (for more details about this part see Appendix 6.6). Moreover these objects have good com-
pactness and lower semicontinuity properties with respect to the integral functionals above.

The goal of this chapter is to prove existence and partial regularity of an m-dimensional minimizer
(in the enlarged class of the rectifiable integral m-varifolds with weak mean curvature or with generalized
second fundamental form in the sense explained above) of functionals of the type (1.21). Actually we will
consider more general functionals modeled on this example, see Definition 6.6.2 for the expression of the
considered integrand F'.

More precisely, given a compact subset N CC N of an n-dimensional Riemannian manifold (N, g)
(which, by Nash Embedding Theorem, can be assumed isometrically embedded in some R®) we will
denote

HV,,(N) := {V integral rectifiable m-varifold of N with weak mean curvature H” relative to N}
CV,(N) = {V integral rectifiable m-varifold of N with generalized second fundamental form A};

for more details see Appendix 6.6; in any case, as written above, the non expert reader can think about
the elements of HV,,,(N) (respectively of C'V,,,(IN)) as generalized m-dimensional submanifolds with mean
curvature HY (respectively with second fundamental form A). Precisely, we consider the following two
minimization problems

BN F = inf {/ F(xz,P,HN)dV : V € HV,,(N),V # 0 with weak mean curvature H relative to N}
Gm(N)

(1.22)
and

ay p = inf {/ F(z,P,A)dV : V € CV,,(N),V # 0 with generalized second fundamental form A
Gm(N)

(1.23)
where F' is as in Definition 6.6.2 and satisfies (6.33) ( respectively (6.27)). As the reader may see, the
expressions me(N) F(z,P,HV)dV (respectively me(N) F(x, P, A)dV) are the natural generalizations of
the functionals E; , (respectively £ ) in (1.21) with p > m in the context of varifolds.

Before stating the two main theorems, let us recall that an integral rectifiable m-varifold V on N is
associated with a “generalized m-dimensional subset” spt uy of N together with an integer valued density
function #(x) > 0 which carries the “multiplicity” of each point (for the precise definitions, as usual, see
Appendix 6.6).

At this point we can state the two main theorems of this chapter. Let us start with the mean curvature.

Theorem 1.0.15. Let N CC N be a compact subset with non empty interior, int(N) # 0, of the
n-dimensional Riemannian manifold (N, g) isometrically embedded in some RS (by Nash Embedding
Theorem), fit m < n — 1 and consider a function F : G,(N) x RS — RT satisfying (6.6.2) and (6.33),
namely

F(z,P,H) > C|H|P

for some C' >0 and p > m.

Then, at least one of the following two statement is true:

a) the space (N, g) contains a non zero m-varifold with null weak mean curvature HN relative to N
(in other words, N contains a stationary m-varifold; see Remark 6.6.13 for the details),

b) the minimization problem (6.33) corresponding to F has a solution i.e. there exists a non null
integral m-varifold V€ HV,,(N) with weak mean curvature H™ relative to N such that

/ F(x,P,H™)dV = % . = inf / F(x,P,HN)dV : V € HV,,,(N),V #0 .
G (N) ’ G (N)
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Moreover, in case b) is true, we have BN ¢ > 0 and the minimizer V' has the following properties:
b1) the support spt vy of the spatial measure py associated to 'V is connected,
b2) the diameter of spt uy as a subset of the Riemannian manifold (N, g) is strictly positive

diam g (spt py) > 0.

Remark 1.0.16. It could be interesting to study the reqularity of the minimizer V. Notice that if
x € spt py, under the hypothesis that the density in x satisfies 0(x) = 1 plus other technical assumptions
(see Theorem 8.19 in [Al]), Allard proved that spt vy is locally around x a graph of a C*'~% function
since H € LP(V), p > m given by (6.33). Moreover, under similar assumptions, Duggan proved local W 2P
regqularity in [Dug]. In the multiple density case the reqularity problem is more difficult. For instance,
in [Brak/, is given an example of a varifold V with bounded weak mean curvature whose spatial support
contains a set C of strictly positive measure such that if x € C then spt uy does not correspond to the
graph of even a multiple-valued function in any neighborhood of x.

Now let us state the second main Theorem about the second fundamental form A.

Theorem 1.0.17. Let N CC N be a compact subset with non empty interior, int(N) # 0, of the
n-dimensional Riemannian manifold (N,g) isometrically embedded in some RS (by Nash Embedding
Theorem), fit m <n —1 and consider a function F : G (N) x RS® 5 R+ satisfying (6.6.2) and (6.27),
namely

F(z,P,A) > C|APP

for some C >0 and p > m.

Then, at least one of the following two statements is true:

a) the space (N, g) contains a non zero m-varifold with null generalized second fundamental form,

b) the minimization problem (6.27) corresponding to F has a solution i.e. there exists a non null
curvature m-varifold V€ CV,,(N) with generalized second fundamental form A such that

/ F(x,P,A)dV = o = inf / F(z,P,A)dV : V € CV;y(N),V #0 .
G (N) ’ Gm(N)

Moreover, in case b) is true, we have ay g > 0 and the minimizer V- has the following properties:
b1)the support spt vy of the spatial measure py associated to V is connected,
b2) the diameter of spt py as a subset of the Riemannian manifold (N, g) is strictly positive

diam 5 (spt py) > 0,

b3) For every x € spt py, V' has a unique tangent cone at x and this tangent cone is a finite union of
m-dimensional subspaces P; with integer multiplicities m;; moreover, in some neighborhood of r we can

express V. has a finite union of graphs of C*'™% | m;-valued functions defined on the respective affine
spaces © + P; (p given in (6.27)).

Remark 1.0.18. For the precise definitions and results concerning b3), the interested reader can look at
the original paper [Hu2] of Hutchinson. Notice that the boundary of N does not create problems since, by
our definitions, the minimizer V is a fortiori an integral m-varifold with generalized second fundamental
form A € LP(V),p > m, in the n-dimensional Riemannian manifold (N,g) which has no boundary.
Moreover, by Nash Embedding Theorem, we can assume N C R¥; therefore V can be seen as an integral
m-varifold with generalized second fundamental form A € LP(V), p > m, in RS and the regularity theorem
of Hutchinson can be applied.

It could be interesting to prove higher regularity of the minimizer V.. About this point, notice that it is
not trivially true that V is locally a union of graphs of W2? (Sobolev) functions. Indeed in [AGP] there
is an example of a curvature m-varifold Ve CV(R%), S>3, 2<m <S8 —1, with second fundamental
form in LP, p > m, which is not a union of graphs of WP functions.

In the spirit of proving higher regularity of the minimizer of such functionals we mention the preprint
of Moser [Mos] where the author proves smoothness of the minimizer of [ |A|?* in the particular case of
codimension 1 Lipschitz graphs in RS.
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In both theorems, a delicate point is whether or not a) is satisfied (fact which trivializes the result);
we will study this problem in Section 6.5: we will recall two general classes of examples (given by White
in [Whi]) of Riemannian manifolds with boundary where a) is not satisfied in codimension 1, we will
give two new examples for higher codimensions (namely Theorem 6.5.4 and Theorem 6.5.5) and we will
propose a related open problem in Remark 6.5.7. Here, let us just remark that every compact subset
N cC R for s > 1 does not satisfy a) (see Theorem 6.5.5).

The idea for proving the results is to consider a minimizing sequence {Vj }ren of varifolds, show that
it is compact (i.e. there exists a varifold V' and a subsequence {Vj-} converging to V' in an appropriate
sense) and it is non degenerating: if the masses decrease to 0 the limit would be the null varifold so
not a minimizer, and if the diameters decrease to 0 the limit would be a point which has no geometric
relevance.

In order to perform the analysis of the minimizing sequences, in Section 6.1 we prove monotonicity
formulas for integral rectifiable m-varifolds in R® with weak mean curvature in LP, p > m. These
formulas are similar in spirit to the ones obtained by Simon in [SiL] for smooth surfaces in R® involving
the Willmore functional. These estimates are a fundamental tool for proving the non degeneracy of the
minimizing sequences and we think they might have other applications.

To show the compactness of the minimizing sequences it is crucial to have a uniform upper bound
on the masses (for the non expert reader: on the volumes of the generalized submanifolds). Inspired by
the paper of White [Whi], in Section 6.2 we prove some isoperimetric inequalities involving our integral
functionals which give the mass bound on the minimizing sequences in case a) in the main theorems is
not satisfied. The compactness follows and is proved in the same Section. Also in this case, we think
that the results may have other interesting applications.

The proofs of the two main theorems is contained in Section 6.3 and 6.4. Finally, as written above,
Section 6.5 is devoted to examples and remarks: we will notice that a large class of manifold with
boundary can be seen as compact subset of manifold without boundary, we will give examples where the
assumption for the isoperimetric inequalities are satisfied and we will end with a related open problem.

The new features of the present chapter relies, besides the main theorems, in the new tools introduced
in Section 6.1 and Section 6.2, and in the new examples presented in Section 6.5.

15



Chapter 2

The conformal Willmore functional
in a perturbative setting: existence
of saddle type critical points

In this Chapter we study the conformal Willmore functional (which is conformal invariant in general
Riemannian manifold (M, g)) with a perturbative method: the Lyapunov-Schmidt reduction. We show
existence of critical points in ambient manifolds (R?, g.) -where g, is a metric close and asymptotic to the
euclidean one. With the same technique we prove a non existence result in general Riemannian manifolds
(M, g) of dimension three.

Notations and conventions

1) R denotes the set of strictly positive real numbers.

2) As mentioned before, the perturbed spheres will play a central role throughout this Chapter.
First, let us define the perturbed standard sphere S (w) € R3 we will use to prove the existence
results. We denote by S? the standard unit sphere in the euclidean 3-dimensional space , © € S? is the
radial versor with components ©* parametrized by the polar coordinates 0 < ' < 7 and 0 < 62 < 27
chosen in order to satisfy
O! =sin#! cos H?
©? = sin 0! sin 62
63 = cosf'.

We call ©; the coordinate vector fields on S?

00 00

O =Ger O o

and ; or ©; the corresponding normalized ones

b—0 = L =@, = 2

1= ) ) = Oy = .
[©1]] 02|

The standard sphere in R® with center p and radius p > 0 is denoted by SP; we parametrize it as
(6%,6%) — p+ pO(A*,0%) and call 0; the coordinate vector fields

00 00
91 = pﬁ’ 92 = pﬁ

The perturbed spheres will be normal graphs on standard spheres by a function w which belongs to a
suitable function space. Let us introduce the function space which has been chosen by technical reasons
(to apply Schauder estimates in Lemma 2.3.3).

Denote C*2(S?) (or simply C*%) the set of the C* functions on S? whose fourth derivatives, with respect
to the tangent vector fields, are a-Hélder (0 < a < 1). The Laplace-Beltrami operator on S? is denoted
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by Agz or, if there is no confusion, as A. The fourth order elliptic operator A(A + 2) induces a splitting
of L?(S?):
L*(S?) = Ker[A(A 4 2)] @ Ker[A(A +2)]*
(the splitting makes sense because the kernel is finite dimensional, so it is closed).
If we consider C**(S?) as a subspace of L?(S?), we can define

Cche(SHL = ct(SH) N Ker[A(A + 2)]*

Of course C"l’a(Sz)L is a Banach space with respect to the C*® norm:; it is the space from which we will

get the perturbations w. If there is no confusion C*%(5%)+ will be called simply oot
Now we can define the perturbed spheres we will use to prove existence of critical points: fix p > 0 and

a small C4*" function w; the perturbed sphere Sf(w) is the surface parametrized by
0ecS?—p+ p(l — w(@))@.

Now let us define the perturbed geodesic spheres S, ,(w) in the three dimensional Riemannian man-
ifold (M, g); we will use them to prove the non-existence result.
Once a point p € M is fixed we can consider the exponential map Exp, with center p. For p > 0 small
enough, the sphere pS? C T),M is contained in the radius of injectivity of the exponential. We call S, ,
the geodesic sphere of center p and radius p. This hypersurface can be parametrized by

0 € S C T,M + Exp,[p0)].

Analogously to the previous case, fix p € M, p > 0 and a small C*®(S?) function w; the perturbed
geodesic sphere S, ,(w) is the surface parametrized by

© € S = Exp,[p(1 — w(©))6].
The tangent vector fields on S, ,(w) induced by the canonical polar coordinates on S? are denoted by

7.

3) Let (M, g) be a 3-dimensional Riemannian manifold.

First we make the following convention: the Greek index letters, such as pu, v, ¢, ..., range from 1 to
3 while the Latin index letters, such as i, j, k, ..., will run from 1 to 2.

About the Riemann curvature tensor we adopt the convention of [Will]: denoting X(M) the set of the
vector fields on M, VXY, Z € X(M)

R(X7Y)Z = Vvaz — VYVXZ — V[X’y]Z
R(X,Y,Z, W) = g(R(Z, W)Y, X);

chosen in p an orthonormal frame E,, the Ricci curvature tensor is

3 3
Ricy(vi,v2) = Z R(E,,v1, Ey,v2) = Zg(Rp(Eﬂ,vg)vl,Eﬂ)
p=1 1
3
= = 9(Rp(va, E)v1, E) Vor,va € T, M. (2.1)
p=1

In order to keep formulas not too long, we introduce the following notation:

R(0i0j) := g(Ry(0,0,)0,0;)
VoR(0i05) = ¢g(VeR,(0,0,)0,0;)
Voo R(0i0j) = g(VeVeR,(0,6,)0,0;)
R(0i0p) = g(Rp(©,0:)0, Ey).
In the following ambiguous cases we will mean:
R(0101) := ¢(R,(0,01)0,04)
R(0202) = g(R,(0,02)0,0,)
R(0102) = g(R,(0,01)0,03)
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Recall the definitions of the Hessian and the Laplace-Beltrami operator on a function w:
Hess(w),, =V, V,w
N = g’“’VMV,,w.

4) Let (M, §) < (M, g) be an isometrically immersed surface. Recall the notion of second fundamental
form h: fix a point p and an orthonormal base Z;, Z5 of TpM ; the (inward) normal unit vector is denoted
as N. By the Weingarten equation h” = —g(VZiN, Zj).

Call ky and ko the principal curvatures (the eigenvalues of the second fundamental form with respect to

the first fundamental form of M, i.e. the roots of det(fnzij —kg;;) = 0). We adopt the convention that the
mean curvature is defined as H := ki + k».
The product of the principal curvatures will be denoted with D:

o

det(h)

D = kiky = .
HE det(g)

(2.2)

5) Following the notation of [PX], given a € N, any expression of the form Ll(ja)(w) denotes a linear
combination of the function w together with its derivatives with respect to the tangent vector fields ©;
up to order a. The coefficients of L,(,a) might depend on p and p but, for all £ € N, there exists a constant

C > 0 independent of p € (0,1) and p € M such that
L ()| oo (s2) < Cllwllgnran(s2).-

Similarly, given b € N, any expression of the form Qz(,b)(a) (w) denotes a nonlinear operator in the
function w together with its derivatives with respect to the tangent vector fields ©; up to order a such
that, for all p € M, Qéb)(a) (0) = 0. The coefficients of the Taylor expansion of Ql(yb)(a)(w) in powers of
w and its partial derivatives might depend on p and p but, for all k € N, there exists a constant C > 0
independent of p € (0,1) and p € M such that

b—1
QM (wg) — QW™ (w1 )| ora(s2) < c(l|wallorraa(sey+ lwillortaaiszy) X [lwe —wil|ortaa(sz), (2.3)

provided [|w||ca(s2y < 1, 1 = 1,2. If the numbers a or b are not specified, we intend that their value is 2.
We also agree that any term denoted by Op(pd) is a smooth function on S? that might depend on p
but which is bounded by a constant (independent of p) times p? in C* topology, for all k € N.

6) Large positive constants are always denoted by C, and the value of C is allowed to vary from formula
to formula and also within the same line. When we want to stress the dependence of the constants on
some parameter (or parameters), we add subscripts to C, as Cj, etc.. Also constants with subscripts are
allowed to vary.

2.1 A Preliminary result: the Lyapunov-Schmidt reduction

The technique used throughout this Chapter relies on an abstract perturbation method which first ap-
peared in [AB1], [AB2] and is extensively treated with proofs and examples in [AM]. Let us briefly
summarize it. Actually we present the abstract method in a form which permits to deal with degenerate
expansions (as the ones we will have to handle).

Given an Hilbert space H, let I. : H — R be a C? functional of the form

I (u) = Ip(u) + eG1(u) + 62G2(u) + 0(62),

where Iy € C?(H,R) plays the role of the unperturbed functional and Gy,Gy € C?(H,R) are the
perturbations.

We first assume that there exists a finite dimensional smooth manifold Z made of critical points of
Iy: I)(2) = 0 for all z € Z. The set Z will be called critical manifold (of Iy). The critical manifold is
supposed to satisfy the following non degeneracy conditions:

(ND) for all z € Z, T, Z = Ker[I](z)],
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(Fr) for all z € Z, I/(2) is a Fredholm operator of index zero.
Under these assumptions it is known that near Z there exists a perturbed manifold Z¢ such that the
critical points of I constrained on Z€ give rise to stationary points of I..
More precisely, the key result is the following Theorem.

Theorem 2.1.1. Suppose Iy possesses a non degenerate (satisfying (ND) and (Fr)) critical manifold Z
of dimension d.
Given a compact subset Z. of Z, there exists eg > 0 such that for all |e| < g there is a smooth function

we(z): Z. > H

such that
(i) for e =0 it results w.(z) =0, Vz € Z,;
(i) we(z) is orthogonal to T,Z, Nz € Z.;
(i) the manifold
Z¢={z+wz):z € Z.}

is a natural constraint for I'. Namely, denoting
D (2) =I(z+we(2)): Z. > R
the constriction of I, to Z¢, if z is a critical point of ®. then u. = z. + we(z.) is a critical point of I.

Thanks to this fundamental tool, in order to find critical points of I, we can reduce ourselves to study
®. which is a function of finitely many variables.

If we are slightly more accurate, it can be shown that the function we(z) is of order O(e) as ¢ — 0
uniformly in z varying in the compact Z.. In our application, the expansion is degenerate in the sense
that

Gi(z)=0 VzeZ

Using the previous facts, by a Taylor expansion it is easy to see that (we will prove it in full detail in

Lemma 2.3.7)

2.(2) = 2[Ga(2) — 3 (GLAN(2) G4 ()] +ole).

In Section 2.3 we will give sense to this formula, which will be crucial for the estimates involved in the
existence result.

2.2 The conformal Willmore functional on perturbed geodesic
spheres S, ,(w) of a general Riemannian Manifold (), g)

2.2.1 Geometric expansions

In this subsection we give accurate expansions of the geometric quantities appearing in the conformal
Willmore functional. First we recall and refine the well-known expansions of the first and second fun-
damental form and the mean curvature for the geodesic perturbed spheres S, ,(w) introduced in the
previous “notations and conventions”. Recall that ©; are the coordinate vector fields on S? (induced by
polar coordinates) and Z; are the corresponding coordinate vector fields on S, ,(w). The derivatives of
w with respect to ©; are denoted by w;.

Let g denote the first fundamental form on S, ,(w) induced by the immersion in (M, g). The next
Lemma, whose proof can be found in [PX] (Lemma 2.1), gives an expansion of the components §;; :=
9p(Zi, Z;):

Lemma 2.2.1. The first fundamental form on S, ,(w) has the following expansion:
1 1
(1—w)"2p7%5; = 9(0:,0;)+ (1 —w) 2ww; + gR(Oin)pZ(l —w)? + 6V0R(010j)p3(1 —w)?
1 2 5 5 5
- [Q—OVOOR(Oz‘Oﬁ + 45 R0 R(0j0p) | p* (1 = w)* + Op(p”) + p” Lp(w) + p° Q) (w)

where all curvature terms and scalar products are evaluated at p (since we are in normal coordinates, at
p the metric is euclidean).
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Let h denote the second fundamental form on Sp,p(w) induced by the immersion in (M, g) and N the
inward normal unit vector to S, ,(w); by the Weingarten equation hij = —g(Vz, N, Z;).

Lemma 2.2.2. The second fundamental form on Sy ,(w) has the following expansion:
. 2 5
hij = p(l—w)g(0;,0;)+ p(Hessszw)i; + gR(Oz’()j),ﬁ(l —w)® + —2V0R(Oi0j)p4(l —w)*
3 S 2 . .
+| 55 Voo Bp(0i07) + 1= R(0i01) R(0j0p) | p° (1 = w)° = pBjwi + Op(p°) + p° Lp(w) + p* Q7 (w)

where ij are functions on S? of the form ij =0(p*) + Ly(w) + Q(Q)( ) and, as usual, all curvature
terms and scalar products are evaluated at p.

Proof In [PX] the authors consider N such that the normal unit vector N has the form N = N(1 —
P24 wiw;)~ 1/2 They set

and they derive the following formula

2 1 B 1
hij = 201 — w)apg 1z wpdw ® dw + pHessgw
Using Lemma 2.2.1 the first summand is:
! ; p 2 5 N
mﬁpg = 9(64,0,)p(1 — w) + T—wiw; + gR(OZO])pB(l —w)® + EVOR(OZOJ),ﬂu — w)*

o 2 . .
55 | Voo R(007) + BR(OZOM)R(OJOM)]PF’@ —w)® + Oy(p°) + p°Lyy(w) + p° QP (w)
The third summand is:

p(Hesszw);; = p(w;; — Ffjwk).
With a direct computation it is easy to check that

nk ok k
i =13+ B (2.4)

where Ffj are the Christoffel symbols of S? in polar coordinates and ij are functions on S? of the
form

B = 0(p*) + Ly(w) + QP (w).

Hence
p(Hessgw);; = p(Hessg2w);; pB

Observing that the second summand simplifies with an adding of the first summand and that
hij = ~9(V 2N, Z3) = ~g(V 7N (1 = 2" wiw;) ™2, Z;) = hij + p*QP (w)
we get the desired formula. O

Recall that the mean curvature H is the trace of i with respect to the metric g: H = hlj G%. Collecting
the two previous Lemmas we obtain the following

Lemma 2.2.3. The mean curvature of the hypersurface Sy ,(w) can be expanded as
2 1 1 ij 1 k
H = ;+;(2+Asz)w+;[2w(w+Aszw)—gszwiw]} pgSQB Wy,

1 1
-3 (922 R(0I0k) g (Hess s2w)ij + Ricy(©,0)(1 — )}p+ =g, VoR(0i05)p*(1 — w)?

1 4 1 ‘
+[10952V00R(0103) ngzR(OZON)R(OJON) - fg 2 R(0I0K) g8 R(0n0i) [ p*(1 — w)?

+0,(0") + 7P Lyw) + Q) () + ~Ly ()@ 1)

where Ric, is the Ricci tensor computed at p.
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Proof. First let us find an expansion of §*/. Given an invertible matrix A,

(A+Bp*+Cp*+Dp*) ' = A —AT'BA™ 2 —AT1CAT P — AT DA p L AT BATIBAT 0t O (p°)

so we get
1 ii , _ , 1 .
g = m{gsﬁ — g4 (1 — w)Pwwrg e — 39523(010k)g§%p2(1 —w)® = 298 VoR(0I0k)gghp* (1 — w)?
—g [iv R(OlOk)JrgR(OZO YR(0KOR) | g%3 p* (1 — w)* + R(010K) g2 R(0n0¢) g% p* (1 — w)*
952 | 55 Voo I I 1) |9g2P gsz 952 R(0n0q)g gz p w
1
+0,(p%) + P Ly(w) + p* Q) (w) + E(Dw)‘*.

(2.5)

Where (Dw)?* is an homogeneous polynomial in the first derivatives w; of order four. Putting together
(2.5) and Lemma 2.2.2 it is easy to evaluate H = h;;¢* just using the following observations:

opi (Hessgow)i; = (%(1 +2w)gd: — fgszR(OZOk)gsz + Q( ) +0(p*) + pL(w)) (Hesss2w);;
= 1+ 20) 80w — Sl ROWGH (Hessseu)y; + 7L (w) + pQu) + ~L(w)Q(w)
e with a Taylor expansion ) o1 ) )
P —w) : +i+w | eet
1

. 1 .. 1
=AY . — Za% oo _
p(1 — w)3 9521 pg“w”w] " pr(w)

o finally, recalling our notations, (2.1) and that {© o) form an orthonormal base of T, M

) ||eluv Hez
9(0:,0;)g4%: R(0I0k) g = 8 g(R,(0,0,)0,01)dck = g(R,(0,0,)0,0,)g%, = —Ric,(0,0).  (2.6)
O

Now we compute H?:

Lemma 2.2.4. The square of the mean curvature H? on Sp.p(w) can be expanded as

H? = % + ;1 (24 Ag2)w + (12w + 12w Age w + (Agew)? — 4gg2wiwj) ;gsgBk w
% gL R(0L0K)g: (Hessszw) gRic,,(@, 0)(2 + Agaw) + [ Vo R(0i05)]p
+ [%g?QVOOR(Oin) + ZlggyR(OzOu)R(OjOp) — gg > R(010Kk)gEn R(0n07) + %Ric,,(@7 ©)Ric,(0, @)} 0>
+0,(p°) + pLy(w) + ;Ql()z)(w) + pﬁLp(w)Qf)(w)-

Proof. Just compute the square of H expressed as in Lemma 2.2.3. O

Lemma 2.2.5. The determinant of the first fundamental form of Sy ,(w) can be expanded as

. ii 1. 1 4 .
det[g] = \\@2||204{(1 —w)* + (gwiw;) — 3 Ricy(©, 0)p*(1—w)® + 695]2VOR(0l0J)P3(1 —w)’
1 2 , 1 - _
T {20952%0}%(010]) 4—59323(010#)1%(030#) + §R(0101)R(0202) - R(0102)2]p4(1 _ w)g}

+0,(p°) + P Ly(w) + p°QP (w) + p* L, (w) QP (w)

where recall that R(0101) = g(R,(0,01)0,01), R(0202) = g(R,(0,©02)0,0,), R(0102) = —g(R,(0,01)0, 0,)

and B4 is Oy normalized: Oy := %.
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Proof. Just compute det[g] using Lemma 2.2.1, formula (2.6) and observing that ggjz = diag(1,1/]|02]?)
O

Lemma 2.2.6. The determinant of the second fundamental form of Sy, ,(w) has the following expansion:

detlh] = p*(1—w)*[O2]* + p?[Oa]*Agew(l — w) + p? [(Hessgow)r1 (Hesssow)as — (Hessgw)3o]
2
—|—§p4 [R(0101)(Hessgzw)as + R(0202)(Hessgzw)11 — 2R(0102)(Hessgzw)12 — Ricy(0,0)(1 — w)*(|0]?]

3 2 .
595 Voo R(0i07)p° (1 = w)° + g, R(0i0n) R(0j00)p* (1 — w)°|

4 _ _
+50°(1 = w)°) 0 [RO101) R(0202) — R(O0102)?] — |00 By + Op(67) + p° Ly (w) + p°Q2) ().

1O [HgSQvoR(oZoy) (1—w) +

Proof. Just compute the determinant of ;Lij expressed as in Lemma 2.2.2 using the same tricks of the
previous Lemmas. [

Lemma 2.2.7. The product of the principal curvatures of Sy ,(w)

det(h)
D = =
= )
has the following expansion:
1 2y L g5 1 2
D = ﬁ(l + 2w + Ag2w + 3wAg2w + 3w*) — ?gywiwj + N [(Hessg2w)11(Hessgzw)ag — (Hessgzw)7s]
2
+3”@ B [R(0101)(H68832w)22 + R(0202)(Hessgzw)11 — 2R(0102)(Hessgzw)12
1 4 1

+§Rz‘c,,(@, 0)(Agw — 1) + ZggﬂzvoR(oZ‘Oj)p(l —w) — p — 9 BEwy,

1 4 . 1 - - 1_.
+[10g52v00R(010g) —gSzR(OZO,u)R(OjOu) + g[R((nol)R(ozoz) — R(0102)?] — §Ru:p(@, @)2} P21 —w)?
+0,(p%) + pLy(w) + ;Q;(;z (w) + ;Lp(w)fo)(w)-

Proof. Recalling the expansion -— =1—z + 2 + O(z*®) and Lemma 2.2.5 we get
! = L {1 - (gL ww,;) + 1Ric (0,0)p*(1 —w)?* — 1gij VoR(0i05)p*(1 — w)3
detlg] €21~ w)ip? ST 67"
L i oy, 2 . 1 _ _
- Q—Og;QVOOR(OZOJ) ZgSQR(OzO/L)R(OJOu) + §R(0101)R(0202) — R(0102)%| p* (1 — w)®
1.
+5Ricy (0,051 (1 — w)' + 0y(7) + PP Ly(w) + QP (w) + Ly(w)QP (w)}:
Gathering together this formula and the expansion of det( ) of Lemma 2.2.6 we can conclude. O

The quantity we have to integrate is HTz — D; collecting the previous Lemmas we finally get the
following

Proposition 2.2.8. The integrand of the conformal Willmore functional has the following expansion:

H? 171 , 1 1 )
T~ D = — {Z(Aszw) — W(H@SSs@W)ll(HGSSSew)QQ + W(Hesssﬂu)m}
1 _
+W {2R(0102)(Hesssaw)12 — R(0101)(Hessg2w)a2 — R(OZOZ)(Hesssgw)u}
2
1 1 I _ 1
+§p2 sz'cp(Q 0)? — R(0101)R(0202) + R(0102)2} - 6Ricp(e), 0) Agz w

+O0,(77) + pLy(0) + Q) (1) + 5L, () QP (w)
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Proof. Putting together the formulas of Lemma 2.2.4 and Lemma 2.2.7, we get

_
©2]]2p?
—%gSQR(OZOk)gSm(Hessszw) %Ricp(e), 0) Agz w
L2
3[|©2?

—%p (g% g2l R(0i01) R(050k)] — %pQ [R(0101)R(0202) — R(0102)]
Ly ()P (w)

H? 1
Z _D = —(Agw)+

1 1 [(Hessgzw)iy, — (Hessgzw) 11 (Hessg2w)os)

[2R(0102)(Hessgzw)12 — R(0101)(Hessg2w)22 — R(0202)(Hessg2w)11 |

1
36R“p(@ 0)°0* + Op(p®) + pLy(w) + ~ Q37 (w) +

Let us simplify the second and the third lines; they can be rewritten as

1 1 1 2
—-R(0101)(H = R(0202 H ——=R(0102)(H
5 1(0101)(Hesssaw)11 — 2 R( )||92H2( €5552W)22 + ICNE (0102)(Hesss2w)12
2 1 2 — 1
3R(OlOl) TENE (Hessg2w)ag — gR(OQOQ)(HessSzw)u - §Ricp(®7 0) Agz w
2 1
= —— 102)(H —Ri A
3”@2”21’%(0 02)(Hessg2w)12 + 3chp(@, 0) Ag2 w
1 1 1 - 1.
R(OIOI) ENE (Hessgaw)ag — gR(0202)(H65352w)11 - §chp(@, 0) Agzw

_gRicp(@, ©) Agz w + [2R(0102)(Hessgzw)12 — R(0101)(Hessg2w)2e — R(0202)(Hessg2w)11 |

1
3[1©2*

Finally we have to simplify the fourth and the fifth lines; they can be rewritten as

—_

1y 2 - 1 _ 1 _
{ —R(0101)% — §R(o202)2 - §1{(0102)2 + %Ricp(@, 0)? — gR((nol)R(oz()Q) + gR(OlOQ)Z}p2

- (-

1p > 1 502) + L R(0102)2) 2
{36chp(@,@) 5 R(0101)R(0202) + = R(0102) }p

@M—‘@

[R(0101) + R(0202)]? — éR(OlOl)R(OiO?) + éR(OlOi)z + %Ricp(G, @)2}p2

where, in the last equality, we used the usual identity R(0101) + R(0202) = —Ric,(0, ©).
Collecting the formulas we get the desired expansion. O

2.2.2 The differential of the conformal Willmore functional on perturbed
geodesic spheres S, ,(w)

Proposition 2.2.9. On the perturbed geodesic sphere S, ,(w) the differential of the conformal Willmore
functional has the following form:

1 1
I'(Sp,p(w)) = 5 3ASZ(A52 + 2)w — —Asszcp(@ ©) + Op(p ) + /TQL’(’LL)(W) + EQéz)(zx)(w)

Proof. Let us recall the general expression of the differential of the conformal Willmore functional com-
puted in [HL] (Theorem 3.1 plus an easy computation using Codazzi equation).

Given a compact Riemannian surface (M, g) isometrically immersed in the three dimensional Rie-
mannian manifold (M, g) and called N the inward normal unit vector, the differential of the conformal

Willmore functional 72
I(M) = / ( - D)dZ
ar \ 4
2

(0T = A H+H<H_D>+ZRNe“Ne] i ZHRNeZ,NeZ +> (Ve,R)(N,ej, €5, €:)

) j

is
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where eq, es is a local orthonormal frame of TpM which diagonalizes the second fundamental form ;Lij.
Since eq, e are principal directions we get
(A1 —A2)

o o ° 1 o o o o o o
E R(N,@i,N,ej)hij—§ E HR(N,ei,N,ei):72 [R(N,el,N,el)—R(N,eg,N,eg)]
iJ A

where A1, Ay are the principal curvatures. So in this frame the differential is

I'(M) = ;AMFH—H(HQ—D) +w

1 [R(N,e1,N,e1)=R(N,e2, N, e2)|+ > (Ve,R)(N, ej,¢;,¢:).

j
(2.7)
Now we want to compute the differential on the perturbed geodesic sphere S, ,(w).
Recall that

Ngu = §9(uij — Ffjuk)
1 . 1 1
= 59 (i fju) + O(p°) L(u) + 2 Lo(w)L(w) + ;Q,@(w)L(u)
1 1 1
= Slsu+ O(p")L(u) + 2 Le(w)L(w) + ;Q%)L(u)

where L(u) is a linear function depending on u and on its derivatives up to order two. From the above
computation of H we have

2 1 1 1
H = p + ;(2 + ANg2)w — gRicp(@, 0)p+ O(p?) + pLy(w) + ;QI()Q) (w),
hence
1 1 . 1 1
AéH = EASQ (A52 + 2)U) — %AszRZCp(("l 9) + Op(po) + ELI(JLL) (’(U) -+ EQ%Q)(AL) (U))

Now let us show that the other summands are negligible.
First we find an expansion for the principal directions A\; and A. From the definitions, they are the roots
of the polynomial equation
22— Hz+D=0
SO
H +H?—-4D 1

1 1
=21 = -L —Q®
M= G g = 2 00) + L)+ QY (w)

and the third summand is negligible:
5 5 . 5 1 1
()‘1 - AQ)[R(N) 617Na 61) - R(N? 627N7 62)] = O<p) + ;Lp(w) + ;QI()Q) (UJ)

From the above computation of HTZ — D, we have

H? 5 L )
T D= 000"+ Lyw) + QP w)

hence we get

1( 5 -D) = 0,0 + S Luw) + 50 (w).

Therefore also this term is negligible and we can conclude observing that (Ve,R)(N,e;,e;,e;) = O(p).
O
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2.2.3 The finite dimensional reduction

NOTATION. In this subsection, the functional space will be C*%(52)+: the perturbation w will be an
element of C*%(52)1 and B(0,r) will denote the ball of center 0 and radius 7 in C*(S2)~+.

Lemma 2.2.10. Fized a compact subset Z. C M, there exist po > 0, 7 > 0 and a map w .y : Ze% [0, po] —
CH(SHL, (p, p) — wp,, such that if S, ,(w) is a critical point of the conformal Willmore functional I
with (p, p,w) € Z. x [0, po] x B(0,7) then w = wy ,.

Moreover the map w .y satisfies the following properties:

(i) the map (p,p) — wp,, is C*,

(@) |lwp,pllcaa(szy = O(p?) as p — 0 uniformly for p € Z.,

(4i7) || apwp,p||L2(S2) = O(p) as p — 0 uniformly for p € Z,,

(iv) we have the following explicit expansion of wy, ,:

Wp,p = p ?Ricy(©,0) + =p*R(p) + O(p°) (2.8)

36
where the remainder O(p®) has to be intended in C*H*(S?) norm.

Proof. For the proof of (i), (i) and (iii) we refer to Lemma 4.4 of [Monl], here we only give a sketch of
the idea. Fixed a compact subset Z. C M and p € Z., if

I'(Sp,(w)) =0 (equality in L?(S?)),
then, setting P : L?(S?) — Ker[Ag:2(Ag2 + 2)]* the orthogonal projection, a fortiori we have
PI'(S,,,(w)) = 0;
that is, using the expansion of Proposition 2.2.9,
P|Bga(Dsz + 2w+ 0p(p?) + pLY (w) + QW (w)| = o0. (2.9)

Since A g2 (A g2+2) is invertible on the space orthogonal to the Kernel and w € C*%(S?)1 := Ker[Ag:(Ag2+
2)]t N C*(S?), setting

K = [A52(A32 + 2)]71 . KET[A52(A52 + 2)]J_ Q LQ(S2) — KBT[Ase (As@ + 2)]J'
the equation (2.9) is equivalent to the fixed point problem
w = K[0p(p*) + pLY (w) + QP (w)] = F, ,(w). (2.10)

The projection in the right hand side is intended. In the aforementioned paper (using Schauder estimates)
it is proved that once the compact Z, C M is fixed, there exist pg > 0 and r > 0 such that for all p € Z,
and p < po the map

F,,:B(0,r) c C**(§%)* — o+ (S?*)*

is a contraction. In the same paper the regularity and the decay properties are shown.

Now let us prove the expansion (iv).
Using the formula of Proposition 2.2.9, the unique solution w € B(0,r) to the fixed point problem will
have to satisfy the following fourth order elliptic PDE:

1 .
Ag2(Dge + 2w = gpmsmwp(@, 0) + 0,(p®) + pL (w) + QD™ (w).

Clearly the unique solution w has the form w = p?w + O(p®) where the remainder has to be intended in
C**(S?) norm and w € C*%(S?) is independent of p. Now we want to find an explicit formula for .

Writing the radial unit vector in normal coordinates on T, M, we have © = z° a?gi and the Ricci tensor

can be written as
Ric,(©,0) Z Rz’ ‘e 4 ZR“
i#£]
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Recall that the eigenfunctions of Ag2 relative to the second eigenvalue Ay = —6 are z'z?,i # j and
(x9)? — (27)2,i # j and notice that

SO

1 1
@2 - 3 = {2 - P @ - )
is an element of the eigenspace relative to Ay = —6 (analogously for the others (x%)?). So
" : 1 1
; _ i i\2
Ricy(©,0) = ZRij(p)-T a) + Z Rii(p)l(=")” = 51+ 3 ZRM(IJ)

i#] 7 i

o X 1 1
= YRy + Y Rl - 3]+ 5 RO)
iy i

and Ric,(0,0) — $R(p) is an element of the second eigenspace of Age.
Recalling that w = p?w + O(p?), then w has to solve the following linear elliptic PDE

1 . 1
Br (B2 + 2 = 30 [ch,,(@, o) — gR(p)]

Since the right hand side is an eigenfunction of Ag2 with eigenvalue —6 the equation is easily solved as

_ 1 1
W= fﬁch(G), 0) + %R(p).

2.2.4 The expansion of the reduced functional (S, ,(wp,))

In this subsection we want to evaluate the reduced functional (.S, ,(wp ,)), that is the conformal Willmore
functional on perturbed geodesic spheres with perturbation w in the constraint given by Proposition
2.2.10.

Proposition 2.2.11. The conformal Willmore functional on perturbed geodesic spheres Sy ,(wp, ,) with
perturbation wy, , lying in the constraint given by Proposition 2.2.10 can be expanded in p as follows

™

I(Sp.p(wpp)) = 5 19,112p* + Op (%),

where S, is the Traceless Ricci tensor defined in (1.5).

Proof. In the sequel we fix a point p € M and we want to evaluate (S, ,(w, ,)) for small p. For simplicity
of notation, let us denote w = wy, ,; from Proposition 2.2.10 we know that w = p*w+ O(p?). Notice that
the leading part of H?/4 — D is homogeneous of degree two in p, so in order to evaluate I(S, ,(w, ,)) it
is sufficient to multiply H?/4 — D by the first term of /det[g] (that is p?||©2]|). Using the expansion of
Proposition 2.2.8 we get

1 1 1 1. _
I(Spp(w)) = p4/ [4(Aszm)2 _ W(HGSSsQID)ll(HGSszlD)QQ + W(HGSSS@E))%Q - échp(@,G) Ng2 W
52 102 102
2 1 _
+——-—-R(0102)(Hessg2w)12 — ———=R(0101)(Hessg2w)22 — = R(0202)(Hessg2w
3”@2”2 ( )( S )12 3H62||2 ( )( S )22 3 ( )( S )11

1/1 — _
+5 (chp(@, 0)2 — R(0101)R(0202) + R(0102)2)} dSy  +0,(p°).
From (iv) of Proposition 2.2.10 it follows that

Aget = —6 = %Rz’cp((% o) — éR(p)
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so, after some easy computation, one can write
1

1 1 1 1 1
2 (Ag®)? — ~Ri Ags @ + —Ri 2_ L p 2_ LR —_R(p).
4( 520) GRZCP(@,@) g2 W+ 36chp(®,@) 144chp(@,@) 72chp(®,®)R(p) + 144]?2(171)2)

In order to simplify the other integrands of (2.11) we compute (Hessg2w);;. The nonvanishing Christoffel
symbols of S? in polar coordinates 8',6?% are

I'2, = T2, = cotand’
I3, = —sinf' cosf'.

Hence, recalling that (Hessw);; = wi; — I'};wy, and the expression of w given in (iv), we get

(Hessg) = o = —éael (Ric,(©,01))
_ —éRicp(@l,Gl) _ émcp(@,@n) but Oy = —0
- —éRicp(@l, 0. + émc,,(@, o)
(Hessga)1a = Wig — D2ty = —éagl(mcp(@, 02)) + %F%ZRic,,(@, 0,)
= %Rz'cp(el, ;) — %Ricp(@, O12) + érfgmcp(@, O3) but ©15 = cotand' O,
_ %Rz‘cp(el,eg)
(Hessg2)ag = ap — a1y

1 1 1

= —éRicp(Gg, Os) — éRicp(@, O92) + 6F§2Ricp(@, ©1) but Ogy = —sinf' cos#1O; —sin? 'O
1. 1 .

= —échp(Gg, ©2) + gH@gHQchp(@, 0).

Therefore the other part of the integrand can be written as

1 1
————(Hessg2w) 11 (Hessg21) g9 + ———= (Hessg2)2y + ————R(0102)(Hessg210)12
B ( 2 o, 12+ 3, F010?) :
1 1 1 _ 1 - 1 _
~ g RO101) 15 (Hessgrw)zn — 3 R(0202) (Hesss: ) — g ROI01)R(0202) + 5 R(0102)”

_ —%Ric(@, 0) + 37161%@'(:(@, 0)[Ric(Os,03) + Ric(©1,0,)] — %Rw(é% o) Ric(61,0,)
+%Ric(@1, 02)2 — éR(OlO?)Ric(@l, 02) + %83(0101)(32'0(@2, B2) — Ric(0,0))
+%R(O?O§)(Ric(@1, 01) — Ric(©,0)) — 53(0101)3(0202) + éR(Oloi)? (2.13)

Using the following three identities (which follow from the orthogonality of {©, 01,05}, from the defini-
tions and the symmetries of the curvature tensors)

1 N 1 ,
—E(R(Olol)+R(O2O2))chp(®,@) = 5 Ric(0,0)

Ricy(©1,01) + Ricy(©2,05) = R(p) — Ric,(0,0) (2.14)
R(0102) = —Ric,(01,03),

after some easy computations we can say that (2.13) equals

1 1 - 1 _
= %RZC(@, @)R(p) — %RiC(@Q, GQ)RiC(@l, @1) + ZRiC(@l, @2)2

1 o 1 1 -
+1g R0101)Ric(2,02) + 75 R(0202) Ric(O1, ©1) — £ R(0101) R(0202). (2.15)
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Let us try to simplify the last line using that R(0101) + R(2121) = —Ric(©1,©1) and identity (2.14):

1 o 1 1 _
g R(O0101)Ric(2,02) + < R(0202)Ric(®1,01) — £ R(0101)R(0202)
1

1 - L _ o
T [Ricy(©1,01) + R(1212)] Ricy (O3, ©2) — s [Ric(O2,03) + R(1212)| Ric,(O1,©1)

—é [Ric,(©1,01) + R(1212)] [Ric(©2, 62) + R(1212)]
= —ng‘c,,(@l,el)Rz‘cp(ég, Os) + éR(lQl?)Ricp(G), Q) — éR(l?l?)R(p) - %R(mé)? (2.16)

Since {6,017, 05} is an orthonormal base of T, M we have the following useful identity
R(1212) = R(1212) — Ricy(©,0) + Ric,(©,0)
= [R(1212) + R(0202) + R(0101)] + Ric,(©,0©)

1 _
= 3 [Ricp(@l, ©1) + Ricy(©2,032) + Ric, (O, @)] + Ric, (0, 0)
1
= —iR(p) + Ricy(0, 0). (2.17)
Plugging the last identity (2.17) into formula (2.16), we get that (2.16) equals
= 2 Ricy(1,01)Ric,(63,0) — - Ricy(0, O)R(p) + 1 Ricy(6,0)" + 7 R(p)". (2.18)

Therefore the last line of (2.13) equals (2.18) and the integrands (2.13) become

= S Ric(6,0)? — S Ric(,0)R(p) + < R(p)? + { Ric(©1,0,)? — {Ricy(01,01)Ricy(02,02):

hence the conformal Willmore functional expressed as in (2.11), using the last formula and (2.12), becomes

1 1

ISpnw) = o [ [mmcp(@,@)? SRic,(0,0)R(p) + 1o R(p)? + { Ric(©1,65)" +
S2

16

1. . A A
_ZRZCp(@h@l)RZCp(@%@Q) dXo + Op(p5). (219)

The integral of the first three summands is well-known (see for example the appendix of [PX]), let us
compute the integral of the last two summands.
Claim. 5
. = . . A A ’77 .
/2 [RZCP(Gl, @2)2 — RZCP(@l, @1)chp(@2, @2)] dzo = ? (”RZCPHZ - R(p)z)
s

Proof of the Claim:
As before let us denote by F,, u = 1,2,3 an orthonormal base of T),M and with z* the induced coordi-
nates. Under this notation the radial unit vector is

S?250 = B,

Recall that the polar coordinates 0 < #' < m, 0 < #? < 27 have been chosen such that S? is
parametrized as follows
2! = sin 6! cos 62

2% = sin ' sin H2
3 = cos 9.
The normalized tangent vectors ©; := ”g—;u have coordinates
©; = ©O;=(cos 0" cos 02, cos 0! sin %, — sin 01)
xlad 2223
_ ’  —/(#1)2 + (22)2 2.20
(\/(fﬂl)2 + (@22 /(@h)? + (a2)? () ) (220
O, = (—sinf? cosh?0)
2 1
_ [ _ r 7 r 0. (2.21)
V()2 + (@) /(21)? + (22)?



Using this expressions for ©; we get the following formulas for Ric,(6;, (:)j):

(z1)2(2%)? wla?(2?)? R (22)2(2%)?
(21)? + (22)2 @)+ (@22 T T (@) + (22)
+R3[(z1)? + (%)%

Ricp(G)l, @1) = Rll

R 2R13$1$3 — 2R23$2.’I}3

L (22)? 1,.2 1)2
Riey(©2.02) = Bn gy — 2R e P2 e
1,.2,.3 2)\2,.3 1,.2,.3

Ricp(gl,éz) = *Rll rry 5 2R12M +R Ty 2 +R121’3 +R13(E2 7R23.T1.

(x1)? + (2?) @2+ (@22 " @2 + (2?)

Notice that the summands which contain a term of the type (z°)?™*! (m € N) have vanishing integral
on SZ%; then, calling “Remainder” all these summands, we get

Ric(©1,05)> = (R}, —2Ri1R + R}, — 4R3,) + R1,(2°)* + Rig(2?)? + R3s(a')?

(1.1)2 Z2)2(Z3)2
[(z1)? + (£2)?]?
+ Remainder,

(z1)?(2?)*(2?)?
[(z1)? + (22)?]?
+R11R33 (.132)2 + RooR33 (1‘1)2 + Remainder.

RiC(@l, @1)Ri€(é2, 62) = (R%l —2R11Ros + R§2 — 4R§2) + R11R22(l’3)2

Therefore the integral of the left hand side of the Claim becomes
N / {Rﬂ(ﬂ?g‘)? + Ri3(2?)” 4+ Ri3(x')? — Ri1Roa(2°)? — Ri1Ra(2”)? — RaaRaa(x)? | d%0.
52

Recalling that [, (z#)%dS = 4, we can continue the equalities

47

= 3 [R3, + Ris + R35 — Ri1Ray — Ry Ras — Rao Ry
2T
= 5 [(R}, 4+ R3, + R35 + 2R3, + 2R3 + 2R33) — (BT + R3, + R3s + 2R11 Ros + 2R11 Ras + 2R Ra3)|

= (I Ricy | - R)?).

Now we are in position to conclude the computation of the integral (2.19).
It is known that [g, Ric,(0,0)dSo = 4T R(p) and [g,[Ric,(0,0)]2dS = 1% (2| Ricy||* + R(p)?) (see the
appendix of [PX]) thus, grouping together this formulas and the claim, we can say that the conformal
Willmore functional on constrained small geodesic spheres can be expanded as

1(5p.p(w)) = £ (IRicy|? = SRE))0* + 0p(6°).

A simple computation in the orthonormal basis that diagonalizes Ric, shows that the first term in the
expansion is the squared norm of the Traceless Ricci tensor:

1
29 R@)I* = 15,1

. 1 ,
<||chp||2 - gR(p)2) = || Ric, — 3

2.2.5 Proof of the non existence result

We start with a Lemma, which asserts that for small perturbation u € C*%(S?) and small radius p, the
perturbed geodesic sphere Sy, ,(u) can be obtained as a normal graph on an other geodesic sphere S; ;

with perturbation @ € C4o: Sp.p(u) = Sp,5(w); for the proof see [Monl] Lemma 5.3.

Lemma 2.2.12. Let (M, g) be a Riemannian manifold of dimension three and fix p € M. Then there
exist B(0,r1) C C**(S?), py > 0, a compact neighborhood U of p and three continuous functions
p(.): B(0,m) = U C M,
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p(.,.) 2 (0,p1) x B(0,71) — RT,
w(.,.): U x B(0,r1) = CH*(S2)*,
such that for all p < p1 and v € B(0,71), all the perturbed geodesic spheres Sp 5(u) can be realized as

Sp.a(1) = Sp(w),p(p,u) [W(p(w), u)].

Now we are in position to prove the non existence result.

Proof of Theorem 1.0.4.

Since ||S5|| # 0, there exists > 0 and a compact neighborhood Z, of p such that ||.S,|| > n for all p € Z..
From Lemma 2.2.10 there exist pg > 0 and a ball B(0,r) C C*®(S?) such that- for w € C‘LalﬂB(O, r),

p € Z. and p < po- if the perturbed geodesic sphere S, ,(w) is a critical point of I then w = w,, , with

good decay properties as p — 0. Moreover, for p € Z, and p < py we can consider the C! function

®(p, p) = 1(Sp,p(wp,p))-

Observe that if S; 5(wp,5) is a critical point for I then a fortiori (p, p) is a critical point of the constricted
functional ®(.,.).

Proposition 2.2.11 gives an expansion for ®(p, p); differentiating it with respect to p and recalling (from
Lemma 2.2.10) that as p — 0 one has ||wp ,||c1.e = O(p?) and ||a%wp,p||L2 = O(p) uniformly for p € Z,,
we get

0 4
—_® _ 7 3 4
55200 = T S,116" + 0y
and 5 A
‘8—[)@(]), p)‘ > gnﬁ +O(pY) forallpe Z., (2.22)

where the remainder O(p*) is uniform on Z..

From this equation we can say that there exist ps €]0, po[ such that for all p € Z. and p < pa, (p,p) is
not a critical point of ®.

Hence

Yw e C+(SHL N B(0,7), p< py and p € Z, (2.23)
= Sp,p(w) is NOT a critical point of I.

Now from Lemma 2.2.12, if u € B(0,r1) C C**(S?) and p < p;, any perturbed sphere Sj ;(u) can be

realized as
Sp.5(1) = Spw),p(p,u) [W(p(u),u)], w(p(uw),u) € C4’a(52)L.

From the continuity of the functions p(.), p(.,.) and w(.,.), there exist ps €]0, min(p1, p2)[ and rq €
10, min(r, r1)[ such that for all u € B(0,72) C C*%(S?) and p < p3 we have:

: p('LL) € Zm

- p(p,u) < pa and

cw(p(u),u) € CH*(S?)+ N B(0,r).

It follows that if u € B(0,72) and p < p3, the sphere Sp 5(u) can be realized as Spy(u),p(5,u) [W(P(), u)]
which satisfies the assumptions (2.23); so it is not a critical point of I. ®

2.3 The conformal Willmore functional on perturbed standard
spheres S/(w) in (R?, g.)

Throughout this section IE(M ) = [ IV [HT2 - D] d¥. will be the conformal Willmore functional of the

surface M embedded in the ambient manifold (R3,g.), where g. = & + eh is a perturbation of the
euclidean metric (h is a bilinear form with good decay properties at infinity, for simplicity we will treat
in detail the case when h has compact support but as one can see from the estimates it is enough to take
h fast decreasing. See for example [Monl] Theorem 1.1).

The problem will be studied through a perturbation method relying on the Lyapunov-Schmidt reduc-
tion: In Subsection 2.3.1 we will perform the abstract reduction, in Subsection 2.3.2 we will compute an
expansion of the reduced functional and in the last Subsection 2.3.3 we will prove the main Theorems of
this Chapter, that is the existence of conformal Willmore surfaces.
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2.3.1 The finite dimensional reduction

We already know from Theorem 1.2 that Iy possesses a critical manifold made up of the standard spheres
Sp of R3, we want to study the perturbed functional I, near this critical manifold. First of all let us point
out a clarification about 15(S%) and Ij(Sf), that are the first and second variations of the unperturbed
functional on the standard spheres, which will be useful throughout this Section.

Remark 2.3.1. In the previous paper [Monl], (remark 3.3, notice the factor difference in the definition
of the Willmore functional) we observed that

1 1
I5(Sp(w)) = ﬁASQ(ASQ + 2w + EQZ()Q)M) (w)

and

B(SPlul = gz Ae(Ae +Dul

The sense of the two formulas were the following.

By definition S§(w) is a normal graph on S§ with perturbation pw (we chose the inward normal N for
all the computations), hence

Io(Spw) = (s + [ (15(SpeuN)aso+ 5 [ (15 (Spul(u))aso + offu)

P
P

If we want to bring the expression to the standard sphere we get

Io(Sg)) = 1o(S5)+ [ (o' Ty(spyw)aso+ 5 [ (0TS wlw)azo + ofju)

Now we denote .
I5(S8(w)) = p*I5(S8(w)) = 5082 (Agz +2)w] + QR (w)

p

and
TS0 = P I(S)lu] = 3 Asr (Do +2)u]

then we get the more familiar formula
- 1 -
h(Spw) = 1S5 + [ (Faisp) +5 [ Fsplutw) + of wf).
52 52

This was about the functional [ HT2 but the same argument can be repeated for the functional [ (HT2 — D)
(since the ambient is euclidean, D = K the Gaussian curvature which by the Gauss Bonnet Theorem does
not influence the differential). Since S are critical points for Iy we can say that the conformal Willmore
functional on perturbed standard spheres is

1(sg) = 1 [ (B2 +2fulw) + ol P

In the following we will always denote

T5(S) ] = 5 A (Ao + 2)[u] + QP (w)

1
I (SPlw] = 5As2(As2 +2)[w]
since, as we saw, it is more natural.

Since from Proposition 2.2.11 we have an expansion of I, on small geodesic spheres and on the other
hand the critical manifold of I is made up of standard spheres, let us link the two objects. The geodesic
sphere in (R3, g.) of center p and radius p will be denoted by Sp.p-
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Lemma 2.3.2. For small € the geodesic spheres Sy , are normal graphs on the standard spheres Sj) with
a perturbation v, € C°(RT x R3 x §2):

S;,p = Sz(vﬁ(p’pv ))

Moreover the perturbation v. satisfies the following decreasing properties:
1) pve = O(€) in CF norm on compact subsets of Rt x R® x S2 for all k > 0;
2) ve(p,.,.) = O(p) as p — 0 uniformly for © € S? and p in a compact subset of R3.

Proof. The geodesic spheres S, , are parametrized by © — Exp, (p©). So one is interested in the solution
of the geodesic equation
§' + Dl = 0

y'(0) =p"
J'(0) =©"

evaluated at p. We look for y* of the form
y'=p' +pO' +eu' + o(e)
where ) )
u RT xR x 52 5 R, (p,p,0) —~ u'(p,p,O)
is C>°(R* x R? x §?) and have to be determined. A straightforward computation ( setting T, = efék )
shows that u* must solve the following non linear second order ODE:

i' +T7,076F = 0

u'(0) =0
ii(0) = 0
where we have denoted 4 = gpui and ' = g—;ui and the equation has to be considered at (p, ©) fixed.

Since h is compactly supported (more generally it is enough to assume that h and its first derivatives
vanish at infinity), the Christoffel symbols f;k vanish at infinity and the ODE admits unique solution
defined for all p > 0. From differentiable dependence on parameters, u’ is of class C>°(RT x R3 x $2),
observe also that u’ = O(p?) as p — 0 uniformly for © € S? and p in a compact subset of R3.

It follows that the geodesic sphere S, , can be obtained from the standard sphere S with the small
variation eu’(p, p, ©). Now it is easy to see that for e small enough there exists v, € C°(RT x R3 x §?)
such that

. S;p = 5°(v,)

P

e pv. = O(e) in C* norm on compact subsets of RT x R3 x 2 for all k > 0

e v.(p,0) = O(p) as p — 0, uniformly for © € S? and p in a compact subset of R3.
O

Now we define the manifold of approximate solutions that will play the role of the “critical manifold”
Z. Let Ry and Ry be positive real numbers to be determined and x a C*°(R™) cut off function such that

x(p)=1for 0<p <Ry
0<x(p) <lfor Ry <p< Ry
x(p) =0 for p > Rs.

We denote by ¥ ) the perturbed standard sphere

35 0 = Sh(xve) (2.24)
and we consider it as parametrized on S2; observe that for p < R; one gets the geodesic spheres X, =55,
and for p > Ry one has the standard spheres X}, , = 5/.
Denoted by N the inward normal unit vector, given a function w on 52, 2 p(w) will be the surface

parametrized by ¥}  + pr (notice that we are consistent with the previous notations since © points
outward).

At this point we can state the two Lemmas which allow us to perform the Finite Dimensional Reduc-
tion. Recall that, as always, P : L?(S?) — Ker[Ag:(Ag2 + 2)]* is the orthogonal projection.

32



Lemma 2.3.3. For each compact subset Z, C R® ® R*, there exist g > 0 and r > 0 with the following
property: for all le| < ey and (p,p) € Z, the aumiliary equation PI (X (w)) = 0 has unique solution
w = we(p,p) € B(0,r) C C+*(S?)L such that:

1) the map we(.,.) : Z. — C*H*(S?)* is of class C*;

2) lwe(p, p)llca.a(s2) = O for € = 0 uniformly with respect to (p, p) € Ze;

8) more precisely ||we(p, p)||c.«(s52) = O(€) for € = 0 uniformly in (p, p) € Z;

4) llwe(p, p)|lcr.a = O(p?) uniformly for p in the compact set.

Proof. The proof will be rather sketchy, for more details we refer to Section 4 of [Monl].

e p < R;: Recall Lemma 2.2.10 and choose Ry = po; for p < Ry, the surface ¥ , coincides with the
geodesic sphere S, ,, so thanks to Lemma 2.2.10 there exists a unique we(p, p) € C**(S?)L which solves
the auxiliary equation. During the proof of Proposition 2.2.9 we wrote I’ as in equation (2.7); observing
that all the curvature tensors of (R?, g.) are of order O(e) (in C* norm Vk € N on each fixed compact set
of R?), it follows that

€ 1 : «
PL(Sg (we(p.0) = 5055w oo H + QP D (we(p,p) + 0(e) =0 in €O (52);

from this formula and the expansions of i?,, §~! and H, we have that
Ag2(Dge + 2)[we(p, p)] + QPP (we(p, p)) = O(e)  in C¥*(5?)

uniformly for (p,p) € Z.; first observe that ||we|/c4.a(g2) — 0 as € — 0 uniformly in Z. so the second
summand is negligible, then conclude that [|w||c4.2(s2) = O(e) uniformly on Z.. The other properties
follow from Lemma 2.2.10.

® p > Ry: in this case the surface X7, | coincides with the standard sphere S for which the discussion
has already been done in Lemma 4.1 of [Monl].

o R < p < Ry: with a Taylor expansion the auxiliary equation becomes

0= PI[(%} ,(w.)) = PI[(Z; ) + PI/ (3} )[we] + o([[wellca.es2))-
But by definition ¥ = Sf(xve), so
IH(E5,,) = 1Sy (xve)) = Io(SP) + 15 (Sp) [xve] + O(e).
Since 1;(S5) = 0 and [[vc[|ca.« = O(e) we get
11225 )l co.a(s2y = Ofe).

Now PI§(Sf) = Ng2(As2 +2) which is an invertible map chat 5 goat uniformly on Z.; since the
set of invertible operators is open, for e small also PI/(SJ) is uniformly invertible. From the fact that
[[vellor 52y = O(e) for all k it follows that also PI'(Xf, ) = PI/(Sf(xv.)) is uniformly invertible on Z..
With a fixed point argument analogous to the proof of Lemma 4.1 in [Monl] it is possible to show that
there exist r > 0 and a unique solution w, € B(0,7) C Cctat of

we = =PI/(35,) " (PIL(Z,) + olwelose o))
with the desired properties. O

Now we are in position to define the reduced functional ®.(p, p) = (35, ,(we(p,p))) and to state the
following fundamental Lemma:

Lemma 2.3.4. Fized a compact set Z. C R? @ RT, for le] < e consider the functional ®. : Z. — R.
Assume that, for € small enough, ®. has a critical point (pe, pe) € Z.. Then X5, , (we(pe, pe)) is a critical
point of I.

Proof. The proof is a slight modification of the proof of Lemma 4.2 in [Monl] just using the good decay
properties of v, w, and their derivatives as ¢ — 0. O

Remark 2.3.5. The reduced functional ®. is defined for small € once a compact Z, C R3®GRY is fized. In
the following discussion we will study the behavior of ®. for large p; this makes sense since the compact
Z. can be chosen arbitrarily large and the solution of the auxiliary equation we(p,p) given in Lemma
2.8.3 is unique in a small ball of C**(S?)L. However the compact Z. will be chosen in a rigorous and
appropriate way in the proofs of Theorem 1.0.1 and Theorem 1.0.2.
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2.3.2 [Expansion of the reduced functional I.(¥ (w.(p,p)))

Since Lemma 2.3.3 applies, we can perform the Finite Dimensional Reduction. In this Subsection we
will study the reduced functional ®.(p,p) = I.(X (we(p,p))). For p < Ry, X5 = S5, so for small
radius p we have the explicit expansion of ®.(p, p) = I(S}, ,(we(p, p))) given by Proposition 2.2.11. More
generally, for all the radius we can write the conformal Willmore functional on our surfaces ¥, ,(w) as

I(3;, ,(w)) = Io(%;, ,(w)) + eG1(3, ,(w)) + eZGQ(E;p(w)) + o(€?). (2.25)
Now let us study the case p > Ry, when X}, | = SP: in this circumstance we get the formula

I.(S)(w)) = Io(Sh(w)) + €G1(Sh(w)) + eng(Sg(w)) + o(€?). (2.26)
Lemma 2.3.6. For all standard spheres S one has
10(85) = G (85) = 0.

Proof. As above, we write the functional as I.(Sf) = Io(Sf) + €G1(Sf) + o(e). First let us expand in e

the geometric quantities of interest starting from the area form d%. := \/E.G. — F2.
Ec. = gc(01,01) = (01,01) + €h(01,01) = Eo + eh(01,061)

F, F0+eh(91792) :eh(91,92)
Ge GO + Gh(eg, 92),

where (.,.) denotes the euclidean scalar product and Ey, Fy, G are the coefficients of the first fundamental
form in euclidean metric. The area form can be expanded as

ds. = +/E.G.— F?

= \/EGo + e(Eoh(62.62) + Goh(61,6,)) + o(c).

where the remainder o(e) is uniform fixed the compact set in the variables (p, p), p > 0.
Using the standard Taylor expansion va + bz + cz? = y/a + %%x + o(x), we get

E th(92, 92) + GOh(917 91)
2 VE Gy

where the remainder o(e) is uniform fixed the compact set in the variables (p, p).

Now let us expand the second fundamental form.
First of all we have to find an expression of the inward normal unit vector v on Sf in metric g..
We look for v, of the form

VE.G. — F2 = \/EyGy +

+ole), (2.27)

Ve =10+ €N + o(e)

where vy = —© is the inward normal unit vector on S in euclidean metric and the remainder is o(e)
uniformly fixed the compact in (p, p). From the orthogonality conditions g.(61,v.) = 0 and g.(62,v.) = 0,
we get

0 = ge(01,v) = (01,v0) + €(01,N) + eh(b1,v09) + o(e)
0 = ge(O2,v) = (02,19) + €(02, N) + eh(b2,19) + o(e)

from which, being vy the euclidean normal vector to Sf,

(N,01) = —h(vo,01) (2.28)
(N,02) = —h(vg,02). (2.29)

Imposing the normalization condition on v, we obtain
1= ge(ve,ve) = (vo,0) + 2€(vg, N) + €h(vo, 1) + o(€)

from which, being (vg, 1) =1

(N, 1) = *%h(l/oﬂ/o)- (2.30)
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Denote by 0; = |Z?| the normalized tangent vectors; since (§1,§27V0) are an orthonormal base, the
expressions (2.28),(2.29),(2.30) characterize univocally N, which can be written in this base as

~ = |
N = —h(Vo, 91)91 - h(l/()7 02)02 — ih(ljo, l/o)Vo. (231)
Knowing the normal vector we can evaluate the coefficients of the second fundamental form

;Leij = —0c (Ve, Ve, ej)a

where V is the connection on R? endowed with the metric g.. By linearity, denoting with 8% the standard
euclidean frame of R3

0 v
A (3
veiljf = efvﬂ(ye @) = 897’

where I'}, are the Christoffel symbols of (R3, g0).
Let us find an expansion in € of I\ By definition

Mo AT
+0z Veru)\ax,/

v 1 vo
A 59 [Dug)\a + D)\gau - Daguz\]-

Noticing that g"” = §#7 — €h,o + 0(€) and D, gro = €D, h)s, we obtain

1
IVM = §€5VJ[DHh)\U + D,\hgﬂ — Dghu)\] + 0(6)
1
= 56(51/0-14”0-)\
(2.32)
where we set
A,u,l/)\ = [Duh/\l/ + D)\hup, - Duhp)\]~ (233)
Hence 9 ) 5
Ve vo
vgil/e = W + 569;“1/6\5 A#U)\@ + 0(6)
and the second fundamental form becomes
° aVO 8y0 ON 1 v

In order to simplify the expressions let us recall the values of the coefficients of the unperturbed first
fundamental form

Ey = p’
Frb = 0
Go = p*sin?6!,

those of the unperturbed second fundamental form (following the classical notation of the theory of
surfaces, we denote by lg, mg, no the quantities hg,,, ho,,, Ro,,)

lo = »p
mo = 0
ng = psinZ6!

and the unperturbed mean curvature and Gaussian curvature

2
Hy==
p
1
Do = —.
02
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From formula (22) in the proof of Lemma 3.4 in [Mon1] and the above expressions of the unperturbed
quantities we have immediately that

1 _ o 1 _ R
/ 5 A, = dm— fe/ [h(ehel) n h(92,92)}d20 - fep/ [( BOY + 018Y )10 Ay | 45
S 2 Sz 2 52

_ 6u0 ~ ON 1 312
ooy M5 22) = (52 )J o
81/0 ~ 15)
_6‘/52 |: <601791> <691 791>:|d20 —|—O(6). (235)

Now we have to compute [ gr Ded¥. Knowing the first and the second fundamental forms we can evaluate
p

D, = dethe i fact observing that

det g ?
o . vy, ON 1 »
deth, = dethg— 67’L()|: <302,91> + ((w791>:| — 56’”09;{91 V(S\AMVA +
oy, ON 1 y
—EZO|: <8eg79 > + (892792):| - 561095921/8\14#1,)\ + 0(6) (236)

and that
det .&e = det _&0 + 6E0h(02, 92) + €G0h(01, 91),

1 =1
atebto(e) — a

ng {h<§§?791> + (%\{791)] + 3100y 05 vg Aur + lo {h<§§8,02) + (%,92)] + 21065053 Ay
D. = Dy-

using the Taylor expansion — el + o(e), we get

¢ EyGy
[Eoh(B2,02) + Goh(61,61)] det ho
—e€ + o(e).

(EoGo)?
Recalling (2.27) we obtain

D.dY, = Dodzo + f/ Do{ Eyh(63,02) + Goh(61,61) }d91d6‘2
sE 2 (0,7r)><(0 2m) VExGo
691’ + <8é\{’91):| + %Tloe?glfl/&/llw)\ -
df-do
07r)>< 0,27) { VEqGy }
lO 892a92 <29]\£792>:|
do*do?
07r)>< 0,27) VEGo
L100L05 10 A, (2, 05) + Goh(61,61)] det h
,6/ 3l 0500 Ay [Eoh(62,60) + 0?521 )] et ho d0'd6? + o(e).
(0,7)x (0,27) VEGo (EoGo)?/

(2.37)

Plugging the unperturbed quantities into (2.37), after some easy computations we get

1 . - 81/0 ~ ON
Dd¥. = 47r—f€/ h(6s,05) + h(61,601)|dX —6/ |:h<,9>+< 79):|d91d92
S8 2 Js2 (82, 62) + h(61, 01)] %o (0,7) % (0,27) a2 " a2 "

vy = ION - P —
_6/5-2 { |:h<89?’01> + (891,91>:| + 5[9?01 VS\A/W/\ + GQGQV(S\AW,\]}dEO +O(€)(238)

Comparing the integrals (2.35) and (2.38) we see that all terms cancel out and we can conclude that

J, L5 - p ez =ot0
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In the following Lemma we find the expansion of the reduced functional ®. in terms of Iy, G1, G2 and
their derivatives. Recall the notation introduced in Remark 2.3.1 about I and I} and the definition of
Ry given in the Subsection 2.3.1 after Lemma 2.3.2.

Lemma 2.3.7. For p > Ry the reduced functional has the following expression:

B, = 2 (GQ(sg) _ % /S 2 {Gg(sg)(fg(sg)l [Gg(sg)])}dz()) +o(e).

Proof. With a Taylor expansion in €, w and recalling that ||w||cs.« = O(e) (see Lemma 2.3.3), we have

IS (w)) = Io(Sp(w)) + eGr(Sp(w)) + o(€)
= I{(88) + I} (SE)[w] + €G(SE) + ofe).

Since I;(S5) = 0 and w satisfies the auxiliary equation PI/(Sf(w)) = 0, we must have
w = —ely (S7) 7 [PGL(SD)).

Observe that from G1(S%) = 0 Vp, p it follows that G (S5) € Ker[Ag2(Ag242)]*+, so PG} (S8) = G1(S5).
Hence, recalling that Io(S) = 0, [5(S5) = 0, G1(Sf) = 0 we have

I(S8(w)) = Io(S5(w)) + €G1(SE(w)) + €Ga (S5 (w)) + o(€?)
= % /S 18 [w] w]dso+e /S [GAS) w]dS+ EGa(SP) + o)

—3¢ [ o) 1 ienspl)asa + @Ga(sp) + ol

O

Now we want to estimate the quantities G’ (Sf) and G(SJ) appearing in the expression of the reduced
functional.

Lemma 2.3.8. Writing the conformal Willmore functional on perturbed standard spheres as in (2.26),
we get the following expressions for the differential of G and for G evaluated on Sf:

G1(S) = L(h) + (1 + p)[L(DR) + L(D?h) + L(D*h)]

1 1 1 1
Ga(SE) = /S | L(L(DR) + LWL(DR) + 5 (Q(R) + QD)) + ~Q(DR) +Q(Dh)|
where L(.) and Q(.) denote a generic linear (respectively quadratic) function in the entries of the matriz
argument with smooth coefficients on S% which can change from formula to formula and also in the same

formula.

P
p

Proof. To get the expression of the desired quantities we compute the expansion of [, E(S][’f ) at second order
in € and first order in w. In the intention of simplifying the notation, we will omit the remainder terms in
the expansions. During the proof we use L(.) and Q(.) to denote a generic linear (respectively quadratic)
in the components real, vector or matrix-valued function, with real, vector or matrix argument and with
smooth coefficients on S2. The letter a will denote a smooth real, vector or matrix-valued function on
S2. L,Q and a can change from formula to formula and also in the same formula.

Let us start with the expansion. Observe that Sf is parametrized by p + p(1 — w)O so the tangent
vectors are

Z; = p(1 —w)O; — pw;©® = p(a + L(w) + L(Dw)).

The first fundamental form on Sg is
Gij = 9e(Zi, Z5) = (Zi, Z;) + €h( Zi, Z;) = p* |a+ L(w) + L(Dw) + eL(h)(a + L(w) + L(Dw))]

and
det § = p*|a+ L(w) + L(Dw) + eL(h)(a + L(w) + L(Dw)) + e2Q<h)}
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Jdet g = p? [a + L(w) + L(Dw) + eL(h)(a + L(w) + L(Dw)) + eQQ(h)] ;
it is easy to see that the inverse of metric is
4 = % [+ L(w) + L(Dw) + eL(h)(a + L(w) + L(Dw)) + EQ(n)].
The normal versor v, has to satisfy the three following equations:
0=9c(Ve, Z;) = (Ve, Z;) + €h(ve, Z;) = ve(1 + eL(h))(a + L(w) + L(Dw))

1= ge(Vea Ve)~
Hence, just solving the linear system given by the first two conditions and plugging in the third one, we
realize that

ve = a+ L(w) + L(Dw) + eL(h)(a + L(w) + L(Dw)) + €2Q(h).

In order to compute the second fundamental form 1016 = —ge(Vz,Ve, Z;) recall that
v, woarw O
Vzve= 90 + Z; v, Fuz\axu
and that

rv, = %eaw [Dyphxe + Dahoy — Dohyn] = eL(Dh),
so the covariant derivative of v, can be written as
Vzve = a+ L(w)+ L(Dw)+ L(D*w) + eL(Dh)(a + L(w) + L(Dw)) + eL(h)(a + L(w) + L(Dw) + L(D*w))
+epL(Dh)(a+ L(w) + L(Dw)) + €(1 + p)L(h)L(Dh)
and the second fundamental form becomes
he = p {a + L(w) + L(Dw) 4+ L(D*w) + eL(Dh)(a + L(w) + L(Dw)) + eL(h)(a + L(w) + L(Dw) + L(DQw))}
+ep>L(Dh)(a + L(w) + L(Dw)) + €2p(1 + p)L(h)L(Dh) + €*pQ(h).

Using the previous formulas now we are in position to estimate H, H? and D. With some easy compu-
tations one gets

H = % [a + L(w) + L(Dw) + L(D*w) + eL(Dh)(a + L(w) + L(Dw)) + eL(h)(a + L(w) + L(Dw) + L(Dzw))]

+eL(Dh)(a+ L(w) + L(Dw)) + 62%(1 + p)L(h)L(Dh) + EQ%Q(h).

H? = % [a + L(w) + L(Dw) + L(D*w) + e(L(h) + L(Dh) + pL(Dh))(a + L(w) + L(Dw) + L(D“"w))}

62 2

+62%(1 + p)L(h)L(Dh) + ?(Q(h) + Q(Dh)) + %L(Dh)(L(h) + L(Dh)) + €Q(Dh)

deth = p? [a + L(w) + L(Dw) + L(D*w) + €(L(h) + L(Dh) + pL(Dh))(a + L(w) + L(Dw) + L(DQw))]
+€2€2(1 + p)L(R)L(Dh) + €p*(Q(h) + Q(Dh)) + €*p*(1 + p)Q(Dh)
D = % - % [a+ L(w) + L(Dw) + LD w) + e(L(h) + L(DR) + pL(DA))(a + L(w) + L(Dw) + L(D*w)]
62 62
+?(1 + p)L(h)L(Dh) + ;(Q(h) + Q(Dh)) + 62%(1 + p)Q(Dh)

Now we can compute I.(S%(w)) = Io(S8(w)) + €G1(SE(w)) + €2G2(SE(w)) at the second order in e and
first order in w:

I(Sp) = /s;; [Fi — D} ¥y = /S [a+ L(w) + L(Dw) + L(D*w)]d%y
te / [(L(h) + L(DR) + pL(DR)) (a + L(w) + L(Dw) + L(D*w)) ] d,
S2

e [S 2 [(1 + p)L(R)L(Dh) + pL(Dh)(L(R) + L(Dh)) + Q(h) + Q(Dh) + pQ(Dh) + p2Q(Dh)] .
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So G1(S8(w)) = [ [(L(k) + L(Dh) + pL(Dh)) (a + L(w) + L(Dw) + L(D?w))], but also
G(Sy(w) = Ga(57) + [ G (Spywasi;

with an integration by parts we get the first variation

Gi(spu = [

5 [(L(h) + (14 p)(L(Dh) + L(D*h) + L(D%)))w} %,

SZ
then the differential of G at Sf is
Gh(S0) = L(h) + (1 + p)[L(DR) + L(D?h) + L(D*h)).

Finally observe that

Ga(sp) = |

) E :2 P L(h)L(Dh)+ %L(Dh)(L(h) +L(Dh)) + %(Q(h) +Q(Dh))+ %Q(Dh) +Q(Dh)] dz,
O

2.3.3 Proof of the existence Theorems

In order to get existence of critical points we study the reduced functional ®, : R3 @ Rt — R. Since for
small radius p, the reduced functional coincides with the conformal Willmore functional evaluated on the
perturbed geodesic spheres Sy (w.(p, p)) obtained in Lemma 2.2.10, then we know the expansion of ®,
for small radius from Proposition 2.2.11. Now, using the expression of the reduced functional for large
radius given in Lemma 2.3.7 and the estimates of Lemma 2.3.8, we are able to bound ®.(p, p) for large
radius. This is done in the following Lemma:

Lemma 2.3.9. Let h,, € C5°(R®) a symmetric bilinear form with compact support (it is enough that h
and its first derivatives decrease fast at infinity) and let ¢ € R such that

c:= sup{ || || g1 () : ™ s an affine plane in R3, u,v=1,2,3}.
Then there exists a constant C. > 0 depending on ¢ and Rs > 0 such that for all p > Rs
@c(p, p)| < ECe.

Moreover one has that V' > 0 there exist § > 0 small enough and Ry > 0 large enough such that for ¢ < 6
and p > Ry

|e(p, p)| < ne”.

Proof. For simplicity the proof of the Lemma is done in the case h € C§°. Using the notations established
in Remark 2.3.1, from Lemma 2.3.7 and Lemma 2.3.8 we can write the reduced functional as

v = @ (Gasp - [ s ensh) ) + o)
_ / p [%L(h)L(Dh) + %L(h)L(Dh) + pl—Q(Q(h) +Q(DR)) + %Q(Dh) +Q(D)|dsy

+62/ 12[L(h)+(1+p)(L(Dh)+L(D2h)+L(D3h)) X
se P

P

x(Ag2(Ag2 +2)) " [L(h) + (14 p)(L(Dh) + L(D*h) + L(D%))]} d¥p.

Now denote K = supp(h) which is a compact subset of R?; of course in the formula above the domain of
integration can be replaced with Sf N K.

Observe that for all o > 0 there exists R > 0 with the following property:
for all standard spheres Sf with radius p > R there exists an affine plane m C R? such that

1A% (sormey < IhllEr sy + 0 (2.39)
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This is simply because one can approximate (in C* norm for all £ € N ) the portion of standard sphere
SP N K with a portion of an affine plane 7 provided that the radius p is large enough.

So the first integral can be bounded by a constant times HhH%ﬂ(me) + 0. Using the standard elliptic
regularity estimates and integration by parts also the second integral can be bounded with a constant
times ”h”%ﬁ(me) +o.

Hence for all o > 0 there exists R > 0 and C' > 0 such that for all (p, p) with p > R, there exists an affine
plane 7 such that ~
|e(p, p)| < ECURNT (rrse) + 0)-

Notice that C' depends on the structure of the functions L(.) and Q(.) but is uniform in (p, p), R and &
as above. Recalling the definition of ¢ we get:
For all o > 0 there exists R > 0 such that for all (p, p) with p > R,

c(p, p)| < €C(? +0).

Clearly setting 0 = 1, R3 = R and C, = C(c® 4 1) one obtains the first part of the thesis. For the second
part we have to show that for all n > 0 there exist § > 0 and R4 > 0 such that if ¢ < ¢ then for all (p, p)
with p > R4 one has ®.(p,p) < €2n; but this is true setting above 62 = o = 75 and Ry = R associated
to o as before (observe that the estimate is uniform in p). O

Now we are in position to prove the main results of the Chapter.

Proof of Theorem 1.0.1 In order to show the Theorem, by Lemma 2.3.4, it is enough to prove that ®.
has a critical point.
Observe that for p < Ry

Dc(p, p) = 1c(Sy, ,(we)) = O(p*),

so @, can be extended to a C* function up to p = 0 just putting ®.(p,0) = 0 for all p € R3.
Let R3 and C. be as in Lemma 2.3.9. Since h has compact support, there exists a R > 0 such that for
lp| > R and p < R3, S5 N supp(h) = 0.

In order to apply the Finite Dimensional Reduction, we have to fix a compact Z, C R3 @ RT. Let us
choose it as

Ze:=A{(p,p) : Ip| < R,0 < p < Rs}.

Apply Lemma 2.3.3 to the compact Z. and observe that on the boundary 07, we have:
-p=0: &, =0.
- |p| = R: ®c = 0. In fact for [p| = R the standard sphere Sf does not intersect the support of h, so
¥y, , = Sp for all the radius 0 < p < Rg; since the solution of the auxiliary equation PI{(%5 (we)) = 0
is unique for w, small enough and since S¥ is already a critical point for I.(= Iy since Sf N supp(h) = 0)
it follows that X5  (w.) = Sf, hence

. (p, p) = IE(E;,/)(U)G)) = IE(SS) = IO(SE) = 0.

-p = R3: from Lemma 2.3.9 we have that |®.| < €2C..
Now observe that ®, = O(e?) uniformly on Z..:
from the definition of reduced functional, with a Taylor expansion one gets

Ce(p, p) = 1e(3] ,(we)) = IL(35, ) [we] + O([lwel*),
but [|wel|ca.a(s2) = O(€) and |[ve||ca.a(g2) = O(€) uniformly for (p,p) € Z, so
1(S5,) = 1S500) = ISP v + G (S5) + ofe) = O(¢)

hence ®. = O(€?) uniformly on Z,.

At this moment we know that @, is of order O(e?) uniformly on Z. and we know its behavior on the
boundary 0Z..
Now we are going to use the expansion for small radius computed in Proposition 2.2.11. Recall that for
p < Ry, ®c(p, p) = 1(Sy, ,(we(p, p))) and from Proposition 2.2.11 we have the expansion:

™
De(p,p) = g||5p”2p4 +0(e1)0,(p°).
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Recalling (1.6), the first term can be written as ||S,[|? = €23, + o(e?), so

™
Ce(p, p) = £ €*5pp" + plo(¢?) + O(2)0p(p”).

Choose p < R; such that for small e the remainder |p*o(e?) + O(p°)O(€?)| < € and choose A, > 2 CpH

If there exists a point p such that 55 > A, then

D (p,p) > €*Ce

so ®. attains its global maximum on Z. at an interior point (p., pe) for all e small enough and applying
Lemma 2.3.4 we can say that 3¢ (we(p, p)) is a critical point of I, for € small enough.

Since for € — 0 we have [[vc[|ca.a(s2y — 0 and ||we||c4.2(s2) — 0 (see Lemma 2.3.2 and Lemma 2.3.3),
then the critical point ¥ (we(p, p)), for small €, can be realized as normal graph on a standard sphere
and it converges to a standard sphere as ¢ — 0. B

Proof of Theorem 1.0.2 Recall (1.6) and let p € R® be a maximum point of the first term in the
expansion of the squared norm of the Traceless Ricci tensor: 55 = M. Observe that from Proposition
2.2.11 and from the proof of the last Theorem, for small radius p the reduced functional ®.(p, p) expands
as

_ ™ 9.
Pe(p, p) = £ €%3pp" + plo(¢?) + O(2)Op(p").

Let p and e small enough such that the remainder |p*o(e?) + O(e?)O5(p°)| < 75 Me?p*; in this way

s 2~
®(p,p) > 10M6 p.

From the second part of Lemma 2.3.9 there exist dp; > 0 and R4 > 0 such that, if ¢ < dps

ZMEp' Y(p,p):p> Ra

O (p,
|®c(p, p)| < 1

(Recall that h has compact support and if 3 ,(w.(p, p)) does not intersect supp(h) then ®.(p,p) = 0.
As in the proof of Theorem 1.0.1, let R > 0 be such that for |[p| > R and p < R4, S5 N supp(h) =
now we apply the Finite Dimensional Reduction to the compact subset Z, C R3 @ R+ defined as

)
0;

Ze:={(p,p) : Ip| < R,0 < p < Ry}.

If we apply Lemma 2.3.3 to the compact Z,, from the previous discussion and from the proof of Theorem
1.0.1, on the boundary 0Z. we have:
-p=0: &, =0.
-|p| = R: ®.=0.
-p = Ry: |Pc(p,p)| < FMe?p
Observe that (p p) is an mterior point of 07, and that

_ ™ _
o (p, p) > T0M62p4 > sup  [Pc(p,p)|
(p,p)€OZ,

so @, attains its global maximum on Z. at an interior point (p,pe) for all € small enough. Applying
Lemma 2.3.4 we can say that 3, (w(p,p)) is a critical point of I for e small enough and we conclude
as in the previous Theorem. B
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Chapter 3

Existence of a smooth embedded
sphere minimizing the Willmore
functional in a semi perturbative
setting

3.1 Preliminaries and notations of the chapter

1) We use the following notation: Greek index letters, such as p, v, t,..., range from 1 to 3 while Latin
index letters, such as i, 7, k, ..., will run from 1 to 2.

2) Let h = hy,(z) be a symmetric bilinear form with compact support in R? and small C* norm; the
support of h will be called spt h. With C° and C! norm we mean

[Allco := sup sup [h(z)(u,v)]
z€R3 u,veS?

IDHleo = sup sup _[Du(la)(u, )
TER3 u,v,wES?

where D,, is just the directional derivative and of course ||h||c1 = ||h||co + ||Dh]co.
In all the chapter R? will be just the “manifold” without metric, (R3,§) will be the “Riemannian mani-
fold” of the three dimensional euclidean space and (R3, 6 + h) will denote the manifold R?® endowed with
the Riemannian metric §,, + hy. ().
We will call By (z) (and B[j(w)) the euclidean ball (respectively the geodesic ball in (R3, 6 + h)) of center
z and radius p.

3) We will denote by ¥ < R3 an immersed smooth closed (i.e. compact without boundary) orientable
surface of genus g (for simplicity we will assume g = 0 but most of the results remain true only with a
uniform bound on the genus).

The surface 3 can be seen as immersed in two different Riemannian manifolds: (R?,§) and (R3,§+h). It
follows that all the geometric quantities can be computed with respect the two different spaces and will
have two values: the euclidean and the perturbed ones. We use the convention that all the quantities

computed with respect to the euclidean metric will have a subscript “e” and the corresponding ones
evaluated in perturbed metric will have a subscript “h”:

|E|87 (Ae)ij7 Hey We(z) e

are the euclidean area of X, euclidean second fundamental form, euclidean mean curvature, euclidean
Willmore functional while
|Z1hy (An)ij, Hn, Wh(X) ...

are the corresponding quantities in metric § + h. The first fundamental form induced on ¥ by the two
different metrics will be denoted respectively by 6;; and (6 + h);; or simply by ¢ and ¢ + h.
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We will call ¥, , := ¥ N By ().

4) Let X be as above. Recall that the euclidean Willmore functional of ¥ is defined as

1 5
W.(3) ::Z/ |HL|2V det §
b

where H, = k1 + ko is the sum of the principal curvatures and V det d is the area form induced by the
euclidean metric. Analogously, just taking the corresponding quantities in metric § 4+ h, one defines W,.
Let us denote

of = inf{W;,(2) : ¥ — R®is an immersed smooth closed orientable surface of genus < g} (3.1)

and when ¢ is not written we mean genus= 0:

Qp = a%.

3.2 Geometric estimates and a monotonicity formula in a per-
turbed setting

The goal of this Section is to prove monotonicity formulas which link the area, the diameter and the
Willmore functional of a surface 3 < (R3,§ + h); in order to obtain it we get estimates from above and
below of the perturbed geometric quantities in terms of the corresponding euclidean ones.

Let us start with a straightforward but useful Lemma.

Lemma 3.2.1. Let (R3 6+h) be the euclidean space with compactly supported perturbation h and assume
that ||h||CU(R3) <n<l
Then
i) (R3,6 + h) is a complete Riemannian manifold
ii) for every pair of points p1,pe € R® we have

1 1
———di(p1,p2) < de(p1,p2) < dn(p1,p2)
Vv1i+n Vv1—n

where d.(p1,p2) (respectively dy,(p1,p2)) is the distance in (R3,8) (respectively in (R3, 8+ h)) between the
points pi, pa.

PROOF. To get i) it is sufficient to prove that all the geodesics of (R? 3 + h) are defined globally; but
this is a simple exercise of ODE just considering the geodesic differential equation Z* 4 I') A:'U”a'cA =0 and
observing that the Christoffel symbols I', of (R3,6 + h) are bounded. Indeed, since the the geodesics
of (R3,8 + h) can be parametrized by arclength, the geodesic differential equation can be interpreted as
a dynamical system on the Spherical bundle S(R3 6§ + h) of (R3,§ + k) (the bundle of the unit tangent
vectors) generated by the vector field Xj(z#,y*) = (y*,-T",y"y*) where € R3,y € T,R® with
lyln = 1. But X is a bounded vector field on S(R?,§ + h) which implies by standard and simple ODE
arguments (see for instance Lemma 7.2 and Lemma 7.3 of [AMNonLin]) that the integral curves are
defined on the whole R.

ii) Consider the segment of straight line [p1, p2] connecting p; and py. Then by definition of distance
as inf of the lengths of the curves connecting p; and ps

dn(p1,p2) < lengthp([p1,p2]) == /0 V(@ +h)(p2 —p1,p2 — p1) < V1+nde(p1,p2)

where of course lengthy([p1,p2]) is the length of the segment [p1, po] in the metric 6 + h.
Let us prove the other inequality; let v, : [0,1] — R?® be the minimizing geodesic in (R®,§ + h)
connecting p; and py (it exists since (R3,d + h) is complete by part i) ). Then

1 1
dh(pl,pz):/o V(0 +h)(YnsVn) 2/0 VL =) 6(n,7n) = V1 =1 lengthe(y) = /1 =1 de(p1, p2)

where of course lengthe(vy) is the length of the curve ~;, in euclidean metric. B
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Lemma 3.2.2. Let ¥ < R? be an immersed smooth closed orientable surface and let ||h||co < n < 1/4.
Then the following pointwise estimate on the area form holds:

(1 — 4m)y/(det §) < y/det(s + ) < (1+ )1/ (det d). (3.2)

Denoted with Bj(z) the euclidean ball of radius p and center x, we will call ¥, , := XN By (z). Then just
integrating one gets
(1= 4n)[Xe ple < Bz pln < (1+49)[Xe pe

for all x € R® and p > 0.

PROOF. Let us call f: Q C R? — R3? a coordinate patch for the surface ¥ (Q is a regular open subset
of R?); of course it is enough to do all the computation for a general patch, moreover we can assume
that the patch is conformal with respect to the euclidean metric (i.e. we are using isothermal coordinates
w.r.t. the euclidean structure). Recall that

%0 ple ;:/Z \/det(4)
1S oln ::/ \/det (8 + h)
Zz-,p

where & and § + h are the first fundamental forms induced by euclidean and perturbed metric.
Let f;,i = 1,2 be the derivatives of f with respect to the two coordinates (i.e. the two tangent vectors
of the coordinate frame), then by definition:

and

(6+h)ij = (6 +h)(fir f5) = 0ij + h(fir £)
where (52] is diagonal. We can evaluate the determinant:

det (6 + ) = det(8) + dr1h(fa, fo) + S22h(f1, 1) + det(h(fi, f;))- (3:3)
From the assumptions we have )
\h(fi, fi)| < moi;
h(f1, f2)? < 12011022 < 1 det d.

Putting the last two estimates in (3.3) and observing that n? < n we get
(1 — 4n)(det §) < det(d + h) < (1 + 4n)(det d). (3.4)

Since in our range 1 — 4n < /1 — 45 and /1 + 4n < 1 + 45, we have the thesis just taking the square
root of (3.4) and integrating on the desired domain.

In the following Lemma we derive a pointwise estimate from above and below of the mean curvature
squared in a perturbed setting in terms of the corresponding euclidean quantities.

Lemma 3.2.3. Let ¥ be as in Lemma 3.2.2 and assume that ||h]|co <, [|[Dh|co < 8 (n is supposed to
be small while no assumption is made on 0). Then the following pointwise estimate holds:

(1= Oy = )H.? = (Cp+ AL = 6> < [HE < (L+ Cn+ )| H[> + (Cnp+7) A + C, 0

where v > 0 can be chosen arbitrarily small and C is a constant depending on v such that Cy — oo if
v — 0 but which can be bounded by Cy, < C(1+ %) for C large enough independent of .

PrOOF. Let us fix a point p € 3 and use the same notation of Lemma 3.2.2; all the computations
will be done at the point p. Choose the parametrization f given by the normal coordinates at p (with
respect to the metric 5) such that the coordinate vectors f; are euclidean-orthonormal and diagonalize
the euclidean second fundamental form A, at p (the first condition is trivial, the second can be achieved
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by a rotation). With this choice of coordinates, the euclidean-Christoffel symbols f‘fj of ¥ vanish at p
and one can say that
0% f
ox'oxI
at the point p; this will be useful later. In the formula above and in what follows, v, denotes the euclidean
normal vector to X:

= (Ae)ijve + T3 fr = (Ac)ijve (3.5)

Ve 1= fl X f2~

The normal vector to ¥ in the perturbed metric is denoted with v, and it has the form
vpb=Ve+ N

where the correction N is small since ||h||co is small. More precisely from the orthogonality conditions
(64 h)(f1,vn) =0 and (6 4+ h)(f2,vn) = 0 we get

O0(N, f1) = —h(ve, f1)+ higher order terms
O0(N, fa) = —h(ve, f2) + higher order terms.

Imposing the normalization condition (6 + h)(vp, ) = 1 we obtain
1 .
O(N,v.) = —Eh(ue, Ve) + higher order terms.

Collecting the formulas above, being (f1, f2, Ve) an orthonormal frame in euclidean metric, we can repre-
sent N as

1
N = —h(ve, f1) 1 — h(Ve, f2) f2 — ih(ye, Ve)Ve + higher order terms. (3.6)

Observe that the higher order terms can be computed in an inductive way using the orthonormality
conditions above and that for 7 small

[N|e :=+/0(N,N) < Cn. (3.7

Now let us compute the perturbed second fundamental form
(An)ij = (8+ ) (wn, 'V, f5)
where °+"V is the covariant derivative in (R3,6 + h); by definition
0% f
0xtoxI

where °*"T are the Christoffel symbols of (R*, 6+h) and °T'T f; f; := °T'T%, f¥ fre, ({e,} is the standard

v

= T

euclidean orthonormal basis of (R3,4) and f; = f!'e,,).
Using (3.5), the perturbed second fundamental form becomes

(An)ij = (8 4+ h) (Ve + N, (Ae)ijve + *T"Tfif;).
Observing that |**"T'| < C# and recalling (3.7) one gets
(Ae)ij — Cn(Ae)iz — OO < (An)ij < (Ac)ij + Cn(Ac)ij + CF. (3.8)

Just squaring and using y-Cauchy inequality we get that for any small v > 0 there exists a C;, > 0 such
that the following estimate holds

(1 =2y = Cn)|Acf = CL0?(1+ 1) < |AR* < (1+2y + C)| Al + C,02(1 + 7). (3.9)
Taking the trace of (3.8) with respect to 8 + h,

Hy, == (64 k)7 (An)ij;
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and since L . o ..
)7 —Cn<(6+h)" <(0)Y+Chp

we get
H,—CnlAele — CO < H, < H. + Cn|A.|l. + CO (3.10)

where |A.|. (in the sequel called just |A.|) is the euclidean norm of the euclidean second fundamental
form. At this point we can compute the estimate of |Hj|?, let us do the one from above (the other one
is analogous). Using the Cauchy inequality we can write

|H, |2 |H,|* + Cn|H,||Ac| + COIH,| + Cn?| A + CO|A.| + CH?

<
< (14Cn+9)|He|* + (Cn + )| Ae|* + C,62

where C; — 0o as v — 0 but can be bounded by C, < C(1+ %) for C large enough. m

Lemma 3.2.4. Let spth C Bf, (20) for some xg € R® and rg > 0. As before ||h|]co < n, || Dh||co < 0
(n is supposed to be small while no assumption is made on 0) and ¥ — R3 is a closed smooth orientable
surface of genus 0 (it is enough to ask the uniform bound genus(Xy) < g) immersed in R3. Then

(1= Cn—Cy = Cyrgb )We(B) = Cy(n + ) < Wi (%) (3.11)

where Cy — 00 as g — 00, v > 0 can be chosen arbitrarily small and C is a constant depending on -y
such that C, — oo if v = 0 but which can be bounded by C.,, < C(1+ %) for C large enough independent
of v. It follows that for v,n and rof small enough

WL(n) < gwh(z) +1. (3.12)

PrROOF. Recalling the estimate of the area form (3.2), just integrating the formula of Lemma 3.2.3 one
gets

W)= 1 [ Pyaen@+0) = [ [(5=Co=a) IR = Co+ IR = €00 (1~ am) Vaerd

where xj, is the characteristic function of spth (i.e xp(x) = 1 if z € spth and xp(r) = 0 otherwise).
From the Gauss-Bonnet Theorem

/|Ae\2\/det5:/ |H[>V det § — 4y (%)
b)) >

where xg(X) = 2 — 2genus(X) is the Euler Characteristic of 3. In the case genus(X) = 0 of course
Xe(X) = 2 but more generally if genus(X) is uniformly bounded also —47xg(X) will be uniformly
bounded from above. Hence

Wi(8) > (1 — Cn—7)We(E) — Cy(n +7) — C,0?|S Nspthe
where Cy — 00 as g — co. From formula (1.3) in [SiL],
X Nspthle <30 By (x0)le < CrgWe(X). (3.13)
We can conclude that
Wh(2) > (1= Cnp—v = C0*r5)We(S) = Co(n+1).

We get the thesis by first fixing v small enough and then choosing sufficiently small n,6. m

Using the estimates of the previous Lemmas, we get the desired monotonicity formulas in the following
proposition.
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Proposition 3.2.5. As before let spt h C BE (o) for some xg € R?, 79 > 0 and [[h|co < n, | Dh|co < 0;
recall that ¥ < R3 is a closed smooth orientable surface of genus g > 0 immersed in R3. Then for n and
100 small enough the following inequality holds

28 ol < C0 2Bl + Wa(Sa) + [y +7) + Crd0?J(Wi(2) +1)] 0<0 < p<oo

where v > 0 can be chosen arbitrarily small and C,Cy are constants depending on «y (respectively on g)
such that C, — oo if v — 0 (respectively Cy — oo if g — 00). It follows the more simple estimate

02| 0ln < Cylp 2 Supln + Wi(D) + 1} 0<o<p<oo (3.14)
and just taking the limit p — oo,
1%]h < Cg(Wi(2) + 1)(diam, X)? (3.15)

where diam, X is the euclidean diameter of X.

PROOF. Let us recall the euclidean monotonicity formula proved by Simon (formula (1.3) in [SiL]):
0 Bs0le < C(p72[Za,ple + We(Za,p)). (3.16)

We just have to estimate from above and below the area part and from above the Willmore term.

From Lemma 3.2.2 L
1 + 4n‘2$70|h S |23370'|67

1
e S T
1—4n

and integrating the formula of Lemma 3.2.3 one gets

Wi (Sap) > / (5= O =) B = (€04 7)IAP] (0~ 4m)Vaets — €67 / xn\/det (6 + 1)

PP

a0

‘Zm,p|h

where yp, is the characteristic function of spt h.
From the Gauss Bonnet Theorem and the estimate (3.12),

/ 4.2V det § < / A2V detd < Cy(Wo(2) +1) < Cy(Wi(S) +1)
Ye,p »

where Cy is a constant depending on genus(X) such that Cy — oo if genus(X) — oo. Hence
Wi(Ea,) =2 (1= Cn—Cy)We(Ea,0) — Cy(n +7)(Wa(E) +1) — 0792|Ew,p N spt hlp
and for 7, small enough (v will be small but fixed while 1 can vary and be arbitrarily closed to 0)
We(Ea,) < CWi(Zap) + Co(n+7)(Wa(2) + 1) + C,0%[S, , Nspt Al
From the previous inequalities (3.2)-(3.13) and (3.12)
|32, Nspt bl < C|S N BE (z0)|e < CriWe(S) < Crg(Wi(2) + 1),

hence
We(Xz,) < CWh(Ez,p) + Co(n+7)(Wh(X) + 1) + C.y'rgez(Wh(Z) +1)

and we can conclude that

0 %00l < C[p 20 gl + Wa(Zap) + [Cyn +7) + Cord0?](Wa(E) +1)].
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3.3 Global a priori estimates on the minimizing sequence X,

Under a very general assumption on the metric (we just ask that the scalar curvature of the ambient
manifold is strictly positive at one point) we will show global a priori estimates on the minimizing sequence
of the Willmore functional: more precisely we will get a uniform upper area bound and uniform upper
and lower bounds on the diameters.

Proposition 3.3.1. Following the previous notation, let (R®,§ + h) be the ambient manifold and aj =
inf(W},) over the surfaces of genus less or equal than g (for the precise definition see equation (3.1)). If
there exists a point p € R® such that the scalar curvature Ry of (R3,8 + h) is strictly positive

Rh(ﬁ) >0

then there exists € > 0 such that
aZ < 47 — 2e.

ProOOF. From Proposition 3.1 of [Monl], on geodesic spheres S5 , of center p and small radius p one has
2 -\ 2 3
Wh(Sp,p) = 4m — = Ru(p)p” + O(p°).
Since the genus of these surfaces is 0 and Ry (p) > 0 the conclusion follows.

Corollary 3.3.2. Let ¥, with genus Xy < g, be a minimizing sequence for Wy, of bounded genus
Wih(Zx) L o,

and assume there exists a point p € R® such that the scalar curvature Ry (p) > 0.
Then there exists € > 0 such that for large k

Wh(Ek) < 4mw —e.

Now let us state and prove uniform a priori upper bounds on the minimizing sequence Y. The idea
is to use just that W}, (Xg) < 47 — € and then perform a blow down procedure making use of the rescaling
invariance of the Willmore functional (see equation (3.24) below).

Proposition 3.3.3. Let (R3,6 + h) be as before with small ||h||cr and let ¥ — R? be a sequence of
immersed smooth closed orientable surfaces of genus 0 (more generally one can ask the uniform bound
genus(Xy) < g, but in this case the required smallness of ||h||c1 depends on g and goes to 0 as g — o).
Assume that
lim sup W, () < 4,
k

then
i)there exists a compact subset K C R® such that

e CK VkeN,

i1) there exists a uniform area bound

[Xkln < C.
for some large C' > 0.

PROOF. We can assume that each surface ¥y, is connected, otherwise just replace the sequence {X }ren
with the sequence of the connected components and observe that it satisfies the same assumptions.

As before call i := ||h]|co and 6 := || Dhl|co. Since h has compact support then spt h C By, (0) for some
ro > 0 and from Wj(2,) < 4 it follows that

YN By (0) #0  for k large.

In fact if Xy N By, (0) = 0 then Wy, (X) = We(Xk) and We(Xx) > 4m from Theorem 7.2.2 in [Will].
If we prove that lim sup, (diam, X) < oo then of course we get i) and statement i) follows in virtue of
estimate (3.15). Let us prove it by contradiction and assume that up to subsequences

diam, X, 1 oo.
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For each k rescale both, ¥y and the perturbation h, by 1/diam, X, in the following sense:

ik = ﬁzk (317)
(hi)uw (@) = hy((diam, y) z) (3.18)

where the right hand side of (3.17) denotes the multiplication in R3 (as vector space) of each point of ¥y
by 1/(diam, 3). It follows that

diam. ¥, = 1 (3.19)
1
= - C B¢ .
spt Ay e spt h C B¢, (0) (3.20)
where 1
e 10. (3.21)

" diam, X ro
Called 7y := ||hg|lco and 0y := ||Dhg]||co, observe that

e = 1= |hlco (3.22)
1 .
Tk-ek- = m'f“o . dlame Ek 0= 7'09. (323)
The second equality follows simply from the chain rule

0 0
@(hk)w\z Y

Moreover, just from the definitions, it is easy to check the scale invariance of the Willmore functional

[hw(diame Z;C )Hw = diame Ek whul/hiame S x-

Wi, (k) = Wi (k) (3.24)

Now for each k consider ¥, < (R?, 8 + hy,). Since 7, = 1 and 71,0, = o8, for small ||h]|c1, we can apply
equation (3.15) at each step k to get )
|Zkln, <C (3.25)

where we used the uniform diameter and Willmore bound on the 3.
Applying for each k the inequality (3.12) and Lemma 3.2.2, we have a bound on the global euclidean
quantities ~

[Zkle < C (3.26)

W () < C. (3.27)
Let us denote by Vi = the associated Allard varifold in (R3,8) (i.e. integral varifold with finite first
variation 5V§k = fik |H|v/det ((5)7 for the definition and properties see the book of Simon [SIGMT], the

original paper of Allard [Al], or the thesis of Mantegazza [Mant]). Observe that ng are Allard varifolds

without boundary in (R3,§) which have uniform bound on the mass (inequality (3.26)) and on the first
variation (from Schwartz inequality and equation (3.27))

0 1. = [ IHVaerd < oy Vg <c.

Then, from Allard Compactness Theorem (see for example [SIGMT] Remark 42.8 or the original paper
of Allard [Al]), the varifolds V¢, converge (in the sense of Allard varifolds) up to subsequences to a

limit Allard varifold V in (R3,§). Moreover, from lower semicontinuity of the Willmore functional under
Allard-varifold convergence, we have

W.(V) < limkinf W.(Z:) < C.

Of course the Willmore functional of the integral 2-varifold V'

1
Wev) = [P
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is just, up to a factor, the L? norm of the weak mean curvature Hy with respect to the mass measure
V]| of V. In particular the limit integral 2-varifold V has square integrable mean curvature Hy € L%(V)
in the whole (R3,§). Now let us prove that actually V' # 0 is not the null varifold and it does not shrink
to 0.

Claim. The mass of V in (R3,0) is strictly positive and, the spatial support of V, spt ||[V]| # {0}.
Proof of the Claim: we will prove that there exists 5 > 0 such that
12 N (R*\Bf 5(0))]c > 3 for large k. (3.28)

Since the varifold convergence implies the weak convergence of measures of the associated mass measures,
we will have for the converging subsequence

IVIRN\BY j5.(0)) = lim [Sy 0 (R\BY /5 _(0))] > hmsup|2k N (RA\BY /5(0))le > B (3.29)

for some & > 0 such that |[V|(9Bf,,_.(0)) = 0 (it exists since [|[V| is a finite measure); observe we

denoted with |[V[|(R*\Bf ,(0)) the measure of R\ B ,(0) with respect to the mass measure ||V| of the
varifold V. This will prove the Claim.
Now let us prove (3.28). Since Xy, is connected, diam, Xy = 1, %) N By, (0) # 0 and i, — 0 it follows
that
spt hy C Byjp for k large and (3.30)

SN Sz4#0 for k large

where S5/, := {x € R*: |z]. = 3/4} is the euclidean sphere of center 0 and radius 3/4.
Let us consider a partition of Bf,(0)\Bf ,(0) with N annuli at distance 75z one each other, i.e. the i"®
annulus is of the type

A B(f/2+1 (0)\Bf/2+%(0) Zzl,,N

We can assume that each %) N (R3\B¢ /2(0)) is connected, otherwise just take a connected component of
SN (R3\Bl/2( )) which intersects S5 4.

From the connection property, for each annulus and for each S, there is a point ;v € 3 N A; such that
BY ) sn) (@3 k) c A;. From Simon’s monotonicity formula (formula (1.4) page 285 of [SlL])

m < C(64N?|55 N BY gy (27)]e + We(Sk N B sn (27))-

It follows that

1 T = e
|2k 0V B gy ()] > GIN? (C We (g N Bl/(8N)(x§))' (3.31)

Now it is enough to prove that IN large enough: Vk large 3z% (notation above) such that

3 e k m
We (S 0 BY sy (77)) < bYek

If it is not true, VN > 0 there exists a large k such that fo i=1,...,N,
S e k ™
We(Ek 0 BY sy (7)) = 20
But, for k fixed, the balls By gy (x x¥)i=1,..., N are disjoint; hence

N

T

W (2, N (R3\B .(Xp N B¢ M >N—.

( k \ 1/2 z:: k 1/( 8N)( ))— 20

Since N is arbitrarily large, this contradicts the boundness of We(ik) > We(ik N (R3\Bl/2)).
This concludes the proof of the claim.

50



From the Claim and the discussion above, we can say that V is a non null integral 2-varifold with
square integrable weak mean curvature H € L?(V) in the whole (R3,§) such that spt ||V|| # {0}. Kuwert
and Shétzle proved that the euclidean monotonicity formula of Simon generalizes to non null integral
2-varifolds with square integrable weak mean curvature (see the Appendix A of [KS]; in particular we
use formula (A.18) at page 355) so

We(V) > 4. (3.32)

In order to reach a contradiction we want to prove that from the assumptions it also follows W (V) < 4.
Let us denote by Vih’“ the Allard varifold in the Riemannian manifold (R3,6 + hy,) associated to X
k

(i.e. integral varifold with finite first variation 6V, := [5 [Hp,[4/det (0 T hi)). Consider the sequence
of closed shrinking balls By /,, := B (0) and the restriction of the varifolds to the open subsets R?\ B; /n

h
Xk [(R3\B1/,)

Actually, to be precise, Vih’c (BB ) denotes the restriction of V' to the Grassmannian of the 2-planes
k 1/n
based on the points of R3\ B, /n (by definition of varifold, V' is a measure on the Grassmannian). Observe

that for each fixed n and for varying large k, spt hy C By, then

h e
ng (BNBy ) VEk (®\B,) for large k. (3.33)

Recall that up to subsequences ng — V in (R3,4) in varifold sense; since varifold convergence is a local
property (one perform tests with C¥ functions) it follows that Ve Vi®3\B,,,) and using

equation (3.33)

%
k [(R3\B1/7)

hy k—o00

Sk |(B\B1/0) VL(R3\B1/n) in varifold sense.

Now from the lower semicontinuity of Willmore functional under varifold convergence

. e EERTI i . S _
We(VL(W\Bun)) < hmklnf We( 5, L(R3\51/n,)) hmklnf th(VEk L(W\Bl/n)) < hmkmf Wh, (Z) < 4m —e€
(3.34)

for some ¢ > 0 independent of n (the last inequality comes directly from the statement assumption
on Wy(X)) and the invariance under rescaling (3.24)). Using Simon’s euclidean monotonicity formula
(formula (1.3) in [SiL] recalled before in equation (3.16)) |X, N B5(0)|. < Cp?, so we have the local area
bound

IVII(B5(0)) < Cp®. (3.35)

Since Hy € L?(V), the local area bound (3.35) and the inequality (3.34) imply

We(V) = n]i}n;o We(VL(R3\Bl/n)) S 4T — €
which contradicts (3.32).

As remarked in the beginning of the proof, the contradiction proves a uniform bound on diam. X
and the existence of the compact set K; the uniform area bound follows from equation (3.15).

|

We also would like to say that the minimizing sequence does not shrink to a point. This is proved
in the following proposition in the more general framework of a Riemannian manifold as ambient space.
The idea is the following: if a sequence of surfaces shrinks to a point and we use normal coordinates
in that point, we are reduced to the previous framework of perturbed metric. Hence we can use all the
estimates computed in Section 6.1.

Proposition 3.3.4. Let (M, g) be a (maybe non compact) 3 dimensional Riemannian manifold without
boundary: OM = 0. Let {X}ren be a sequence of immersed smooth closed oriented surfaces of genus
< @G. Assume that

i) there exists a compact subset K CC M such that

Y C K forallk €N,
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ii)

limsup Wy(Xg) < 4m — €
k

for some € > 0; where W,y (Zy) := %fzk |H,|?\/det g is the Willmore functional of ¥ < (M, g).
Then
limkinf(diamg k) >0

where diamg Xy, is the diameter of £y, in the Riemannian manifold (M, g).

ProoF. Let us prove it by contradiction and assume that up to subsequences diamg 3, | 0.
For each surface take a point y; € Xj; from assumption ), (yx)ken iS a sequence in the compact
subset K CC M and up to subsequences
Y — T

for some € K. Since diamy ¥y | 0 then
Yr — T in Hausdorff distance sense.

Consider geodesic normal coordinates centered at Z (the coordinates of Z are 0); in these coordinates the
metric can be written as (see for example [LP] formula (5.4) page 61)

1
Gu(T) = b4+ ng,\l,nc"JcA +O(|z|*) (3.36)
= O+ hu(x) (3.37)
where
huy(0) =0 and Dyh,(0)=0 VA puv=123 (3.38)

9
ball of center Z and radius inj(Z)). In this ball we have the geodesic normal coordilja(ates so, using (5.4)
and (5.5), we can argue as if the ambient manifold was a euclidean ball centered at 0 in the perturbed
manifold (R34 + h) as before (since the X are inside a euclidean ball, one can use cutoff functions to
make h,, with compact support in R3).
Now let us perform the following

Blow up procedure: Recall that in our coordinates ¥, — 0 in Hausdorff distance sense (in (R3, 4 +
h)). Since the Hausdorff convergence is a topological notion and of course the topology of (R3,§) and of
(R3,8 + h) is the same, we have that ¥, — 0 in Hausdorff distance sense in (R3,4) so

Call inj(Z) > 0 the injectivity radius at Z; for k large, up to subsequences, ¥ C B )(96) (the geodesic

Sy C BS,(0) and 74 )0 (3.39)

where, as in the previous notation, By, (0) denotes the ball of center 0 and radius 7 in (R3,6). As
done in Proposition 3.3.3 using the vector space structure of R?, let us rescale everything (the surfaces
and the metric) by 1/r getting

- 1
Y o= X (3.40)
Tk
(hk)ul/(x) = hﬂl/(rk .’L‘) (341)
It follows that
) C B(0) (3.42)
Ihellcr (g + 0 (3.43)

where equation (3.43) just expresses the uniform convergence in B$§(0) of hy and Dhy given by the
continuity of h, Dh and by the property (5.5). Observe that we can assume that spt hy C BS(0); indeed if
we multiply each hy by a fixed cutoff function identically 1 in B§(0), 0 outside BZ(0) and with bounded
gradient, nothing changes on X, and (3.43) remains true. So summarizing we can assume that

spt hy C BS(0) and ||hk||Cl(B§(0)) 4 0. (3.44)
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As in the Proof of Proposition 3.3.3, from the definitions it is easy to check the scale invariance of
the Willmore functional given in (3.24); the fact implies that Wy (X) :=: W, (Eg) = Wh, (ik), so from
assumption ii)

lim sup Wi, (Xx) = limsup W, (%) < 47 — e. (3.45)
k k

Now, from the properties of hy stated in (3.44), for large k we are in position to apply the inequality
(3.11) of Lemma 3.2.4 to ¥j < (R?,§ + hy). In the present case we get

(1= Cllhkllerss0)) = C7 = CollhllEa (as (0)) We (k) = Calllhillcrss o)) +7) < Wai (Ex)  (3.46)

where all the constants are independent of k£, v > 0 can be chosen arbitrarily small and C,, Cg are
constants depending on +y (respectively on the genus bound G) such that C, — oo if v — 0 (respectively
Cg — o0 if G — 00) but which can be bounded by C, < C(1+ %) for C large enough independent of ~.

Now for each k choose i := [|hkllc1(Bg(0)); then using the bound on C, and the boundness of W, (Sk)
given by (3.12), taking the lim sup of both sides we obtain

lim sup W;Lk(ik) > lim sup We(ik) > 47

k—o0 k—o0

where the last inequality comes from Theorem 7.2.2 in [Will]. The inequality clearly contradicts (3.45).
|

Putting together Corollary 3.3.2, Proposition 3.3.3 and Proposition 3.3.4 we have the following useful
Corollary:

Corollary 3.3.5. Let (R3,§ + h) be, as before, the euclidean space with a small in C' norm compactly
supported perturbation h and assume that there exists a point p where the scalar curvature Ry, is positive:

Rh(ﬁ) > 0.

Let {Zk }ken be a sequence of immersed, smooth, closed, oriented surfaces of genus < g and assume they
are minimizing for o, (see (3.1) for the definition).

Then, for ||h||c1(rsy small enough,

i)there exists a compact subset K C R?® such that

¥ CK VkeN,

ii) there exists a uniform area bound
[Zkln < C.

iii) there exists a lower diameter bound

limkinf(diame Yg) >0

where diam, Xy, is the diameter of ¥y in (R3,9).
iv) the 8w bound on the euclidean Willmore functional of the minimizing sequence holds asymptotically:

lim sup W, () < 8.
k

1t follows by Theorem 6 in [LY] that the surfaces Xy are embedded for large k.

PROOF. i) and ii) follow directly from Corollary 3.3.2 and Proposition 3.3.3. From Corollary 3.3.2 and
Proposition 3.3.4 it follows that liminfy(diam Xg) > 0 where diamy, ¥y is the diameter of Xy in the
Riemannian manifold (R3,§ + h). We can end the proof of iii) using part ii) of Lemma 3.2.1. Finally,
putting together Corollary 3.3.2 and estimate (3.12) we obtain iv). B

3.4 (™ regularity of an embedded 2-sphere minimizing W),
In this section we work with a minimizing sequence Y; of embedded surfaces of genus 0. Using the a

priori estimates on the minimizing sequence X of Section 4.1.1, adapting the regularity theory developed
in [SiL], we will get the existence of a minimizer for the Willmore functional among embedded 2-spheres.
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3.4.1 Existence of a minimizer, definitions of good/bad points and graphical
decomposition Lemma

Thanks to the Allard compactness Theorem and the a priori estimates on the minimizing sequence of
Section 4.1.1 we can state and prove the following compactness and lower semi continuity result.

Proposition 3.4.1. Let (R3,8 + h) be as above, ||h|cr(rs) be small enough and assume there exists a
point p such that the scalar curvature
Rh(ﬁ) > 0.

Consider {3y }ren a minimizing sequence for Wy, of smooth embedded 2-spheres:

1i,£n Wh(Zk) 4 an

where ay, is defined in (3.1).
Then there exists a non null integral 2-varifold V" (associated to a 2-rectifiable set of R®) with square
integrable weak mean curvature Hy, € L*(V") such that
i) up to subsequences
Vzhk — V" in varifold sense

where Vi is the Allard varifold associated to Xy, — (R?,6 + h).
i1) from the lower semi continuity of the Willmore functional under varifold convergence

1 . .
W,(V") == 1 /}R3 |Hh|2duh < hmklnf Wi(Zk) = ap

where p" := ||V"|| is the mass measure associated to the varifold V".
i11) up to subsequences
g, — u®  weak convergence of Radon measures

where, for every B C R® Borel set, us(B) := |S N Ble are the euclidean Radon measures naturally
associated to Xy, and p® is a Radon measure on R3 which satisfies spt u® = spt u”.
) the Radon measures converging subsequence also converges in Hausdorff distance sense:

spt ,uz = spt uy, — spt u° = spt p =% in Hausdorff distance sense in R3.

In particular from the lower diameter bound on the minimizing sequence ( see i) of Corollary 3.3.5) we
have diam, (spt u°) > 0.

ProOF. From Corollary 3.3.5 there exists a compact subset K CC R? such that ¥, C K for all k& and
there exists C' such that |X|n, < C. Since the surfaces have no boundary, using Schwartz inequality, we
have the uniform bound on the first variation

6V | :/ |Huly/det(5 4 1) < 2/ (En)/[Sxln < C.
P

From Allard compactness Theorem (see [Al], [SiGMT] or [Mant]), there exists an integral 2-varifold V"
(associated to a 2-rectifiable set of R?®) with finite first variation (i.e. V& has integrable weak mean
curvature Hj) such that, up to subsequences,

V{fk — V" in varifold sense.
Since ||h]|c1(rs) is small, from Lemma 3.2.4, we have
We(Zk) <C VkeN
for some C' > 0; using that (see Corollary 3.3.5)

0< limkinf diam, (3y) < supdiam. () < C
k

and Lemma 1.1 of [SiL] we have
1

ol < |Zgle £ C  for large k (3.47)
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and, thanks to Lemma 3.2.2,

1

ol < |kl < C  for large k. (3.48)
Since the varifold convergence implies the weak convergence of the mass measures, on the converging
subsequence we have

3y _ 1 , 1
IV I(R?) = Tim [ V33, [|(R?) := Tim [ S| > =,

Q

hence V" is non null.
From the lower semi continuity of the Willmore functional under varifold convergence it follows that
the weak mean curvature Hj, of the limit varifold V4 is square integrable and, denoted pu" := ||[V"|],

1
Wh(Vh) =7 /g ‘Hh|2d:“h = 1imkinf Wa(Zk) = an.
R<

To get iii) observe that (from Corollary 3.3.5) all the Radon measures uf have support in the same
compact subset K CC R? and (from inequality (3.47)) p$(K) = |Xgle < C. From Banach-Alaoglu
Theorem (see for example [SiGMT] page 22), u$ converge up to subsequences to a limit Radon measure
ue with spt u¢ C K. But recalling that the mass measures of Vzhk weak converge to the mass measure of
V" namely ", and using Lemma 3.2.2 it is easy to see that spt u¢ = spt u”* previously defined.

In order to prove iv) recall that, from iii), uf — p° weak as Radon measures; moreover we have the
uniform bound on the euclidean Willmore functional W, (X)) < C. These conditions imply the Hausdorff
distance convergence of spt uf, — spt p° (see [SiL] page 311).

|

Remark 3.4.2. From Proposition 3.4.1 we have existence of a candidate minimizer V" with spatial
support ¥ in metric 6 + h. Observe that up to now V" is not a minimizer since it could be not smooth
and a priori it may happen that Wy, (V") < «aj,. Hence we have to study the regularity of ¥ := spt u";
to this aim it is useful to comsider both the euclidean geometric quantities of the minimizing sequence
and the perturbed ones. The perturbed ones have been analyzed in Corollary 3.5.5, Proposition 3.4.1 and
estimate (3.48).

About the euclidean quantities we have estimate (3.47); from Corollary 3.3.5 we know that for small
lhllcr sy we have We(Ey) < 87 for large k. Moreover from the Gauss Bonnet Theorem

/ A 2V/det § = AW, () — drx(Si) < C
P

Now we define the so called bad points with respect to a given € > 0 in the following way: define the
Radon measures aj on R3 by
af = ,LLZL|A]€|2.

From Remark 3.4.2 we know ax(R3) < C, by compactness there exists a Radon measure o on R? such
that (after passing to a subsequence) ay, — a weak as Radon measures. It follows that spt o C ¥ = spt "
and a(R?) < C. Now we define the bad points with respect to € > 0 by

B.={¢ex|a({¢}) >} (3.49)

Since a(R3) < ¢, there exist only finitely many bad points. Moreover for & € X\ B. there exists a
0 < po = po(€o. ) < 1 such that a(B,,(&)) < 32, and since ay — o weakly as measures we get

3
/ |AM? dH} < = for k sufficiently large (3.50)
ZNBg, (o) 2

where, as before, AZ and H? denote the second fundamental form of X, and the 2-dimensional Hausdorff
measure in (R3,§ + h). Consider geodesic normal coordinates of the Riemannian manifold (R3,§ + h)
centered at & (the coordinates of & are 0); in these coordinates the metric can be written as (see for
example [LP] formula (5.4) page 61)

1
(0 + D) (@) = O + 3 Rporva”a™ + O(|2]*) = 8 + 01 (1) (@)
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where, as before if x — 0 we have |o1(1)(x)| + |Do1(1)(z)| — 0. Called inj(&) > 0 the injectivity
radius at &, for pg < inj(&) we can put on B, (§y) the normal coordinates just introduced and work on
%1 N B,, (&) as it was immersed in the manifold (R?,d + h) where ||h||c1 can be taken arbitrarily small
(for po small enough). Then taking v > 0 sufficiently small in estimate (3.9), using (3.2) and (3.14) we
conclude that for py small enough

/ |AS|? dH? < 2¢®  for k sufficiently large. (3.51)
ZrNBg, (§0)
PO

Now fix £y € X\ B. and let pg as in (5.2). Let £ € ¥ N B (&0). We want to apply Simon’s graphical
decomposition lemma to show that the surfaces ¥j can be written as a graph with small Lipschitz norm
together with some ”pimples” with small diameter in a neighborhood around the point £&. This is done in
exactly the same way Simon did in [SiL]. We just sketch this procedure. By the Hausdorff convergence
there exists a sequence &, € 3, such that & — £. In view of (5.2) and the Monotonicity formula applied
to ¥j and &, the assumptions of Simon’s graphical decomposition lemma are satisfied for p < 22 and
infinitely many k& € N. Since W, (Xg) < 87 — g, we can apply Lemma 1.4 in [SiL] to deduce that for
S (O, %) small enough, 7 € (%, g) and infinitely many k& € N only one of the discs D’j’l appearing in the
graphical decomposition lemma can intersect the ball ng({k). Moreover, by a slight perturbation from
& to &, we may assume that & € Ly for all k € N. Now Ly — L in & + G2(R?), and therefore we may
furthermore assume that the planes, on which the graph functions are defined, do not depend on k € N.
After all we get a graphical decomposition in the following way.

Lemma 3.4.3. Fore <¢eg, p <2 and infinitely many k € N there exist pairwise disjoint closed subsets
PE,..., P]’f,k of Xk such that

Ex N Bz (§) = D N Bpe (§) = <gfaphuk U UR’f) N By (€),

where Dy, is a topological disc and where the following holds:

1. The sets P¥ are topological discs disjoint from graphuy.

2. up € C®°(Q, LY), where L C R? is a 2-dim. plane such that £ € L, and Q = (Bx, (&) N L)\
U,n dkm- Here Ay > 4 and the sets dy ,, C L are pairwise disjoint closed discs.

3. The following inequalities hold:

1
1

Zdiam digm + Zdiam PF<c (/ |AS|? d’Hg) p< cgép, (3.52)
m n ZrNBS,(8)
Huk”Lm(Qk) < Cé“ép + 0 where § — 0, (353)
|| Dug|| L ) < e + 0y, where 8 — 0. (3.54)

3.4.2 (C* regularity of X

Since this semiperturbative setting is closely related with the setting in [SiL], we just sketch the procedure
for proving regularity pointing out the main differences with [SiL] and referring to the mentioned paper
for more details (for details see also Chapter 5 or [Schy]).

Now we prove a power decay for the L2-norm of the second fundamental form on small balls around
the good points £ € ¥\ B.. This will help us to show that ¥ is actually C1* N W22 away from the bad
points.

Lemma 3.4.4. Let & € X\ B.. There exists a pg = po(&o,€) > 0 such that for all £ € XN B%o(&)) and
all p < 2 we have

lim inf Al dHE < cp®,
oo JsunByg (€)

where a € (0,1) and ¢ < 0o are universal constants.
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The proof of this Lemma is the same as in [SiL] (pages 299-300) noticing that in view of the expansion
of the metric in normal coordinates as above one can pass from the setting (R3,6 + h) to the standard
euclidean setting up to an error bounded by cp? ( for more details see also the proof Lemma 5.3.1 where
the proof is carried in an general Riemannian manifold).

Next we show that our candidate minimizer limit measure p” is given locally by a Lipschitz graph

with small Lipschitz norm away from the bad points. Again we briefly sketch the construction referring
to the aforementioned references for more details.
First of all one can replace the pimples of the Graphical Decomposition Lemma 3.4.3 with appropriate
graph extensions with small C'' norm, thus they converge to a Lipschitz function with small Lipschitz
norm. Then, using a generalized Poincaré inequality proved in Lemma A.1 in [SiL], together with the
previous Lemma 3.4.4 one proves that for all £ € ¥ N B%TO (&o) and all sufficiently small p

p"LBE(€) = My (graphu N BE(€)), (3.55)

where u € C%Y(B% (&) N L,L*Y). For more details see the proof of Lemma 5.3.2 carried in general
Riemannian manifold.

Since the limit measure p* has weak mean curvature in L2, it follows that u € W?22; moreover using
Lemma, 3.4.4 one has that the L? norm of the Hessian of u satisfies the following power decay

/ |D?u|? < cp®. (3.56)
B,NL

From Morrey’s lemma (see [GT], Theorem 7.19) it follows that u € C1:* N W?2:2. Thus our limit varifold
V" can be written as a C® N W?22-graph away from the bad points.

Now one excludes the bad points B. by proving a similar power decay as in Lemma 3.4.4 for balls
around the bad points (notice that at this point we use that we are minimizing among spheres, because
for higher bad points might appear), for details see Subsection 5.3.2. Therefore our candidate minimizer
limit varifold V" is given locally by a C1'* N W?22-graph everywhere.

Let us point out that by [SiL], genus(X) < liminfy genus(Xy) = 0 (for a different proof see Lemma
5.4.2). Via a standard approximation argument one can check that

inf{W,(X)|2 is a smooth embedded 2-sphere} = inf{I¥},(X)|¥ is a C* N W*? embedded 2-sphere}

Then by lower semicontinuity (Proposition 3.4.1 ) the limit embedded surface 3 is an embedded 2-
sphere which minimizes W} among C' N W?22-embedded 2-spheres, in particular it satisfies the Euler
Lagrange equation

1
wWi(%) = %AH - ZH(H2 —2|A|? = 2Ricy, (v, v))

where A is the Laplace Beltrami of the surface ¥ and Ricy, (v, v) is the Ricci tensor of (R3, 6+ h) evaluated
on the unit normal v to 3. It is a long and tedious computation but it is possible to check that the Euler
Lagrange equation of W}, fits in Lemma 3.2 in [SiL].

It follows that the function u locally representing p” is actually C%* N W32 and the L? norm of the
374 derivatives satisfies the power decay J B, |D3u|? < ¢p®. Now using the difference quotients method

one proves that the function u is actually C*® N W42 and the L? norm of the 4" derivatives satisfies

the power decay [ B |D*u|? < ¢p®; continuing this bootstrap argument one shows the smoothness of u
P

and thus of X.
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Chapter 4

Willmore type functionals in global
setting: existence of a weak
minimizing surface

4.1 Existence of a weak minimizer for 1 [ |A]” and [ (@ + 1)

in COMPACT Riemannian manifolds under curvature as-
sumptions

Throughout this section (M, g) will be a closed (compact without boundary) Riemannian 3-dimensional
manifold.

4.1.1 Global a priori estimates on the minimizing sequence

Under geometric assumptions on the ambient manifold we will show global a priori estimates on the
minimizing sequences of the functionals £ and Wj: more precisely we will get uniform upper area
bounds, uniform upper and lower bounds on the diameters and lower 2-density bounds.

Upper Area bounds

Proposition 4.1.1. Let (M, g) be a closed 3-dimensional manifold with positive sectional curvature K :

I\ such that K > A? > 0. (4.1)
Then, for every smooth immersion f :S? < (M, g), the following area estimate holds:
1 .
8y < 35 (47 + B() (4:2)

where | f(S?)], == Jsz dug is the area of S? equipped with the pull back metric f*g given by the immersion.

PROOF. Recall that by the Gauss equation

- 1 1

K(T,f) = Kg — kiks = Kg — ZH2 - §\A°|2
where K (T, f) is the sectional curvature of the ambient manifold evaluated on the plane T, f C T, M
with x € f(S?), K¢ is the Gaussian curvature of (S2, f*g) (also called sectional curvature of the surface)
and k1, ko are the principal curvatures.
Integrating the assumption (4.1) and using Gauss Bonnet theorem we get

WUEN, < [ Ry =2mxs(S) = W)+ Wel)
< Am+ We(f) (4.3)
< Am+ E(f)
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where, in the last two inequalities, we used that W(f) > 0 and E(X) < W.(f). m

The next condition for the area bound is a very special case of the Isoperimetric Inequality given in
Theorem 6.2.1 which holds for more general functionals in the contest of varifolds. For the basic concepts
about varifolds see Appendix 6.6 (for more material the interested reader is referred to the paper of
Hutchinson [Hul] or to the book of Simon [SiGMT]).

Proposition 4.1.2. Let (M,g) be a closed (compact, without boundary) Riemannian 3-manifold and
assume that there are no nonzero 2-varifolds with null generalized second fundamental form.

Then there exists a constant C such that for every smooth immersion f : S* < (M, g), the following
area estimate s true

£69), <C [ 1APdu, (1.4
PrROOF. In Section 5 of [Hul] is proved that to an immersed closed smooth k-submanifold one can
associate a k-varifold with generalized curvature; moreover the function F(x, P, q) := |¢|?, ¢ € RP? trivially

satisfies the condition (6.6.2). Hence it is enough to apply Theorem 6.2.1 to the 2-varifold with curvature
associated to f(S?) and the specified function F. m

Remark 4.1.3. Let (M,g) be a Riemannian 3-manifold and fi, : S*> — (M, g) be a sequence of smooth

immersions such that e
Wi (fx) == / <4| + 1) dpgy < C
S2

for some C > 0 independent of k. Then, of course, the area |fi(S?)|, is uniformly bounded.

Diameter bounds on the minimizing sequences

First of all, since the ambient manifold is closed, we have a trivial upper bound on the diameter of the
immersed surfaces. In this section we want to establish a lower bound on the diameters.

Lower diameter bounds for minimizing sequences of F

First let us prove that under quite general assumptions on the ambient manifold (namely we assume that
the scalar curvature is strictly positive at a point) the infimum of the functional E is strictly less then
the one of the corresponding functional in the euclidean space R3.

Lemma 4.1.4. Let (M, g) be a (not necessarily compact) Riemannian 3-manifold and assume that there
exists a point p € M where the scalar curvature is strictly positive

R,(p) > 0.

Then there exist € > 0 and small p > 0 such that the geodesic sphere Sp , of center p and radius p satisfies

1 1 .
E(Sp,p) = 1/ |H|2d:u'g =+ 5/ |A |2dug < 47 — 2e.

SPv SP,P

PRrROOF. From Proposition 3.1 of [Monl], on geodesic spheres S , of center p and small radius p one has

1 2m _
W(Sp) =7 [ 1HPduy = dm = SR 005" + 0.

PP
Moreover, the quantity

Ll ey, L o [ P
;. M|m@—4éwrwam@—éw(4 ~ kiks)dp,

p,p D,p

is what we called Conformal Willmore functional and studied in Chapter 2. In that chapter the expan-
sion of the functional on geodesic spheres of small radius is computed. Considering w = 0 (w is the
perturbation of the geodesic sphere) in Lemma 2.2.5 and in Proposition 2.2.8, it is easy to check that

1 0|2 _ |H|2 _ 4
5/5 |A°Pdpg _/S— (74 —klk‘z)dug =0(p").

PP Dp
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It follows that, since Ry(p) > 0,
2T 1y oy 2 3
E(Sp,p) = 4m — ?Rg(p)f) +O0(p°) < 4dr —2¢
for p > 0 and € > 0 small enough. B

Remark 4.1.5. Observe that if the ambient manifold (M, g) is the euclidean space (R3,5), for every
smooth closed immersed surface X, the functional E(X) > W(X) > 4x (the last inequality is a famous
Theorem of Willmore which can be found in [Will], Theorem 7.2.2); moreover the equality E(X) = 47 is
reached if and only if 3 is a round sphere.

Thanks to Lemma 4.1.4 and Remark 4.1.5, using a blow up procedure it is possible to prove a lower
diameter bound on the minimizing sequences of E:

Proposition 4.1.6. Let (M,g) be a closed Riemannian 3-manifold whose scalar curvature is strictly
positive at a point:
dpeM: Ry(p) >0.

Consider a sequence of immersions {fi : S* — M }ren minimizing E (i.e a minimizing sequence of the
problem (1.12))
Then
limkinf(diamg fe(S*) >0

where diam,, fi(S?) is the diameter of fi(S*) in the Riemannian manifold (M, g).

PROOF. From the assumption on the scalar curvature and since { fi }ren is a minimizing sequence of E,
Lemma 4.1.4 implies that
hlgnE(fk) <Adr — 2e.

Since M is compact and W (fx) < E(fi), the minimizing sequence satisfies the assumptions of Proposition
3.3.4 and the conclusion follows. H

Lower diameter and E bounds for the minimizing sequences of W,

In this subsection we want to prove a bound from below on the diameters of minimizing sequences of
Wi. In order to get this bound it is useful to prove that the inf W7 in the manifold is less then the
corresponding inf in euclidean space; so let us compute the expansion of W; on small geodesic spheres.

Lemma 4.1.7. Let (M, g) be a (not necessarily compact) Riemannian 3-manifold and assume that there
exists a point p € M where the scalar curvature is greater than 6

R,(p) > 6
Then there exists € > 0 and small p > 0 such that the geodesic sphere Sp, of center p and radius p
satisfies

H2
Td,ug + |Sﬁ,p|g < 471' — 29

Wi(Sp) = [

Sp.p
ProoOF. From Proposition 3.1 of [Monl], on geodesic spheres S, of center p and small radius p one has

1 2T _
W(Spa)i=g [ 1HPduy = tn = TRy (5 + O6°)

PP

From equation (8) in the Proof of Proposition 3.1 in [Mon1], we have the following expansion of the area
of small geodesic spheres:
|Sp.plg = Arp® + O(p4).

Hence the expansion of W; on small geodesic spheres is

Wi(Sp,) = dm — @Rg(ﬁ) - 4)7Tp2 +O(p°).

We can conclude that, if Ry(p) > 6, for p > 0 and € > 0 small enough we have the thesis. ®
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Remark 4.1.8. Observe that if the ambient manifold (M, g) is the euclidean space (R3,5), for every
smooth closed immersed surface %, the functional W1(X) > W(X) > 4w. Moreover taking the sequence

of round spheres Szl,/n of center p and radius 1/n, Wl(S;/n) =4m + 75 | 4m. Therefore in the euclidean
space the infimum of W1 is 4w and it is never achieved, so the condition on the scalar curvature is not
purely technical but is somehow necessary to prevent the shrinking of the minimizing sequences.

Using Lemma 4.2.1 one can repeat the proof of Proposition 4.1.6 and obtain the desired lower bound
on the diameters:

Proposition 4.1.9. Let (M, g) be a closed Riemannian 3-manifold whose scalar curvature is greater than
6 at one point:
dpeM: Ry(p) > 6.

Consider a sequence of immersions {fi : S* < M }ren minimizing Wy (i.e a minimizing sequence of the
problem (1.13))
Then
limksup Wi(fx) < 4m  and limkinf(diamg fe(S*) >0

where diam,, fi(S?) is the diameter of fi,(S?) in the Riemannian manifold (M, g).

A local area bound for surfaces in Riemannian manifolds

In this subsection we will prove a quadratic area decay for immersions with equibounded area and
Willmore functional, and lying in a fixed compact subset of a Riemannian 3-manifold (M, g).

Lemma 4.1.10. Let (M, g) be a (maybe non compact) Riemannian 3-manifold and K CC M a compact
subset. Consider a smooth immersion f :S? — K C M with bounded area:

f(§*)]g < a1
and whose Willmore functional is bounded by a constant cs:

1
W(f):= 1 /52 |H,y|?dpy < co.

Then there exists a constant Ck ¢, c, > 0 depending only on K, c1 and co such that for every £ € M
and every p > 0

/j‘f(Bg(g)) S CK701762 p2v
where (17(BY(§)) = fffl(Bg(g)) dpg is the area of the intersection f(S*) N BY(E).

PROOF. By Nash Theorem we can assume that M < R is isometrically embedded for some p > 4;
hence f(S?) € M C R® can be seen both as a surface in M and as a surfaces in R®. We call Hgo,gs and
Hgs>,; the mean curvature of f(S?) as immersed surface in RS (respectively in M); Ay ,ps denotes
the second fundamental form of M as submanifold of R®. The following estimate holds:

|Hgeo s> < |Hseosm|? + ClApsps |

where C is universal constant depending only on the dimensions. Integrating over S? we obtain
[ Hoscss P < 4w (5) 4 € [ Aysoms Pt (4.5)
S2 S2

where H2 is the area form induced by the immersion in R (observe that the area measure dp, of S
as surface in M is the same as dHZs from the Nash isometric embedding). Since f(S?) C K and K is a
compact set, then [q, [Ay s [?dHps < maxg [Aprs|?|f(S?)|g < Ck.c,. Using the assumed estimate
on the Willmore functional we obtain

/S2 |HS2r_)]RS|2dH]§S S CK761702' (46)
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Let us denote by B;RS (€¢) the ball in R® of center ¢ and radius p. From Simon’s Monotonicity formula
for immersed surfaces in R (see formula (1.3) in [SiL])

u@wm?wmscﬁ/u@w#ﬂ@scmWw%
SZ

where |f(S?) N BES (&)|rs is the area of f_l(B}fS (€)) with respect to the area form induced by the
immersion in R and the constant C in the first inequality depends only on the dimensions.
Now observe that the metric ball B3() in the Riemannian manifold (M, g) with center { and radius p

is always contained in BE?S (): By(&) C B}fs (€); moreover, as remarked above, dug coincide with dHH%S.
We can conclude that

ps(BI(€)) = [£(S?) N BL(E)|gs < |F(S) N BE (€)rs < Crer,en 17

4.1.2 Properties of the functionals and compactness of the minimizing se-
quences

Compactness and lower semicontinuity of the functional F

Before stating the fundamental theorem, let us recall some notation. If fi, : S — M is a sequence of
smooth immersions, as explained in Appendix 6.6, to each fj we can associate a 2-varifold with curvature
(V. Ag) also denoted for simplicity with (V, Ay). The spatial measure ||Vi| will be also called p, and
is simply pr(B) := ffk—l(B) dpg, VB C M Borel set, i.e. the area of fx(5?) N B counted with multiplicity.

Theorem 4.1.11. Let (M, g) be a closed Riemannian 3-manifold which satisfies at least one of the two
conditions below:
- (M, g) has uniformly strictly positive sectional curvature in the sense of (4.1); or
- there is no nonzero 2-varifold of M with null generalized second fundamental form and there is a point
P where the scalar curvature is strictly positive: Rq(p) > 0.

Let {fr.}ren be a minimizing sequence of smooth immersions fi, : S*> < M for E, i.e. a minimizing
sequence for problem (1.12).Then the following properties hold:
i) there exists an integral 2-varifold V' of M such that, up to subsequences, Vi, — V in varifold sense,
it) V is an integral varifold with generalized second fundamental form A (so we write (V, A) € CVo(M)),
iii) called {(Vi, Ag) tren the measure-function pairs associated to the immersions fr with second funda-
mental forms Ag,

(Vi, Ag) — (V, A)  weak converge of measure-function pairs,
i) called p:= ||V|| the mass measure of the limit varifold V' then up to subsequences
wie — 1 weak as Radon measures and
spt ux — sptu in Hausdorff distance sense,
v) E(p) := E(V):= %sz(M) |A(z, P)|?dV < liminfy E(fy) < 4,
vi) spt p is compact, connected and
diamg (spt p) > limkinf(diamg spt p) > 0.

Proor.
i): First, by Lemma 4.1.4, since {fx}ren is a minimizing sequence of E, we have

limkinf E(fx) = lilgnE(fk) < 4.

From Proposition 4.1.1 and Corollary 4.1.2 it follows a uniform bound on the areas of f;(S?):

30 >0:VkeN |f(S?)], < C.
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Using Cauchy-Schwartz we can estimate the first variation of the varifolds V}, associated to the immersions

fr:
1Vill = [ 1y <€ [ 1adaug < ([ 1aau,)”ifs), < c

Now applying Allard compactness Theorem (Theorem 6.4 in [Al]) to the sequence of varifolds V, we can
say that there exists an integral 2-varifold V' such that

Vi, — V  in varifold sense.

i), iii) and v): Of course the integrand of the functional E satisfies the condition (6.6.2). Using
the previous point i), we can apply the Theorem 6.6.7 of Hutchinson and say that V' € CVo(M) with
generalized second fundamental form A. Hence we can define the functional E also on V:

= T 2 .
B(V) = /G PPy

Properties iii) and v) follow again from Theorem 6.6.7.

iv): Of course, since the Grassmannian of the 2-planes in R?® is compact, the varifold convergence
of a sequence of varifolds implies the measure theoretic convergence of the spatial supports; so up to
subsequences

wr — 1 weak as Radon measures.

In order to get the Hausdorff convergence recall that M C R¥ is isometrically embedded by Nash Theorem,
so we can see the surfaces f;(S?) as immersed in R®.

Exactly as in the proof of Lemma 4.1.10, it is possible to prove that f;(S?) C R¥ is a sequence of
surfaces with uniformly bounded Willmore functional. Moreover we know that the associated measures
pr — p; under this conditions Leon Simon proved (see [SiL] pages 310-311) that actually

spt ur — spt u in Hausdorff distance sense

as subsets of R¥; but since M is isometrically embedded in R it clearly implies that spt p, — spt p in
Hausdorff distance as subsets of M.

vi): The inequality liminf(diamg spt ui) > 0 follows from Proposition 4.1.6. Called &’ the subse-
quence converging in Hausdorff distance sense, from the definition of Hausdorff convergence it is easy to
see that diamg spt g = limy/ (diamg spt /). Hence

diam spt = likI/n(diamg spb pir) > 1imkinf(diamg spt pg) > 0.

About the topological properties of spt i1 observe that by definitions it is a closed subset of the compact
manifold M so it is compact. Moreover f;(S?) is connected and the Hausdorff distance limit of a sequence
of connected subsets must be connected. B

Remark 4.1.12. The limit varifold with curvature (V,A) is the candidate to be the minimizer of E
among the immersions of S?. We remark that V, up to now, is only a candidate minimizer since it may
not be smooth (so the value of the functional could be a priori strictly less than the inf on the smooth
immersions) and it may even vanish as measure since we have not yet proved a lower bound on the areas
of fx(S?). In the following we will prove the desired lower bound and the regularity.

Compactness and lower semicontinuity of the functional W;

In this subsection we prove a counterpart of the compactness lower semicontinuity Theorem 4.2.6 for the
functional W;. Before stating it let us recall that the theory of the varifolds with weak mean curvature
can be seen as a part of the theory of the measure-function pairs of Hutchinson [Hul] (see Appendix 6.6).
We mean that a varifold with weak mean curvature can be seen as a measure function pair (V, H) with
H vector valued L} (V) function which satisfies an integration by parts formula (the corresponding of

the tangential divergence theorem for smooth surfaces fg divs Xdu, = — fz H - Xdug where X is any
CL(M) vector field tangent to the ambient manifold M and divs; is the tangential divergence on X).
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Theorem 4.1.13. Let (M, g) be a compact Riemannian 3-manifold with scalar curvature strictly greater
than 6 at a point:
dpeM: Ryp) > 6.

Let {fx}ren be a sequence of smooth immersions fi, : S* < M minimizing Wy, i.e. a minimizing
sequence for problem (1.13).

Then the following compactness and lower semicontinuity properties hold:
1) there exists an integral 2-varifold V' of M such that, up to subsequences, Vi, — V in varifold sense,
ii) V is an integral varifold with weak mean curvature H € L*(V),
i11) called {(Vi, Hy) }ren the measure-function pairs associated to the immersions fi, with mean curvatures
Hk;

(Vie, H,) = (V,H) weak converge of measure-function pairs,

i) called p := ||V|| the mass measure of the limit varifold V then up to subsequences
wr — 1 weak as Radon measures and

spt ux — sptu in Hausdorff distance sense,

v) We can define

H(z, P)|?
Whp) = Wi (V) = / (Hx)' + 1) AV < liminf Wy (f) < 4,
G2(M) 4 k

vi) spt p is compact, connected and

diamg (spt 1) > limkinf(diamg spt pg) > 0.

PROOF. 1i): since Wi(fx) is uniformly bounded on k, by the very definition on W; it follows a uniform
bound on the areas and on the Willmore functionals of f:

3C>0 : VkeN |fi(SH, <C, (4.7)
3C >0 : VkeN / |Hy|?dp, < C. (4.8)
S?

Using Schwartz inequality we can estimate the first variation of the varifold V}; associated to the immersion

fr:
DA / \Hildp < / 1) I8, < €

Now applying Allard compactness Theorem (Theorem 6.4 in [Al]) to the sequence of varifolds Vi, we can
say that there exists an integral 2-varifold V such that

Vi, — V' in varifold sense.

iv) and vi): the proof is analogous to the corresponding statements in Theorem 4.2.6.
i), iil) and v): first of all let us observe that, since from %) up to subsequences V;, — V in varifold
sense, then we have the convergence of the masses

IViell (M) = 1£(8*)]g — VII(M).

Hence the second adding of the functional W; is continuous under varifold convergence and we are
left to consider the Willmore functional i /. G (M) |Hy|?dVi. Recall the uniform bound on the Willmore

functionals (4.8) and observe that the function F(z,p,q) := |q|? satisfies the condition 6.6.2. Then we
can apply the compactness-lower semicontinuity Theorem 6.2.7 for integral varifolds with weak mean
curvatures (observe that now we don’t need the hypothesis on the non existence of a stationary varifold
since we already have the uniform mass bound (4.7)). ii), iii) and v) follow. m

For the regularity theory it will be useful the following Lemma.
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Lemma 4.1.14. Let (M, g) be a (maybe non compact) manifold with sectional curvature bounded above
by 2, K <2, and let f : S — M be a smooth immersion. Then one has the following bound:

E(f) <2Wi(f) —4r

PRrROOF. For a general immersion f : S? < M, by Gauss equation we can write

1 1 1 _ H? H?
5|A|2 = §H2 —kiky = 5H2 —Kg+K(T,f) = (4 + 1) + (4 + K(T,f) — 1) — K¢

where K (T, f) is the sectional curvature of the ambient manifold evaluated on the plane T, f C T, M
with 2 € f(S?), K¢ is the Gaussian curvature of (S2, f*g) and ki, kg are the principal curvatures.
Integrating, by Gauss Bonnet theorem and the bound K < 2, we get

E(f) <2Wi(f) = 2nxB(S?) = 2Wi(f) — 47

Remark 4.1.15. The limit varifold V is the candidate minimizer of W1 among smooth immersions of
S? in M but it is not trivially a minimizer since, up to now, it may not be smooth and its measure may
even vanish since we have not yet proved a lower bound on the areas of fi(S?).

4.2 Existence of a weak minimizer for [ < + 1> and [ (A| + 1)

in NONCOMPACT asymptotically euclidean Riemannian
manifolds under curvature assumptions

4.2.1 A priori bounds on the minimizing sequences of W; and F;

In this subsection we want to prove a bound from below on the diameters of minimizing sequences of
W1 and E;. In order to get this bound it is useful to prove that the infimum of Wj in the manifold is
less than the corresponding infimum in euclidean space; so let us compute the expansion of W; on small
geodesic spheres.

Lemma 4.2.1. Let (M,g) be a (maybe non compact) Riemannian 3-manifold and assume that there
exists a point p € M where the scalar curvature is greater than 6

Ry(p) > 6.

Then there exists € > 0 and small p > 0 such that the geodesic sphere Sp, of center p and radius p
satisfies

/ —dug+|5pp|q < Am —

&%wzéi

p,p

\A|2
——dpg + |Spplg < 4w — 2e.

PrROOF. From Proposition 3.1 of [Monl], on geodesic spheres S , of center p and small radius p one has

1

W(Sp)i= g [ 1HPduy = in = Ry(5) + O6°)

PP

From equation (8) in the Proof of Proposition 3.1 in [Monl], we have the following expansion of the area
of small geodesic spheres:
|Sp.0lg = 4mp” + O(p").
Hence the expansion of W; on small geodesic spheres is
2
Wi(S;.,) = dm — (gRg(p) - 4)7Tp2 +0(p?).
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We conclude that, if R,(p) > 6, for p > 0 and € > 0 small enough we have the first inequality.
For the second inequality, observe that 1|A%| = 1H? 4 £|A°|%. Moreover, the quantity

1 o2 _1 2 _ |H|2
2/5 |A°] dug_4/57 (ky — k») dug_/spyp( : — kuks ) dig

PP p,p

is what we called Conformal Willmore functional and studied in Chapter 2. In that chapter the expan-
sion of the functional on geodesic spheres of small radius is computed. Considering w = 0 (w is the
perturbation of the geodesic sphere) in Lemma 2.2.5 and in Proposition 2.2.8, it is easy to check that

1 H?
5 A°Pdpg = — kika ) dpg = O(p*).
Q/SYP P /S( 1 haks )y = 00"

p

It follows that Ey(S5,) = Wi(Sp,) + O(p*) and we conclude as above. B

Remark 4.2.2. Observe that if the ambient manifold (M, g) is the euclidean space (R3,6), for every
smooth closed immersed surface ¥, the functional W1(X) > W(X) > 4w. Moreover taking the sequence
of round spheres S;/n of center p and radius 1/n, Wl(S;/") =4 + i—g 4 4m. So in the euclidean space

the infimum of W1 is 4w and it is never achieved.

Proposition 4.2.3. Let (M,g) be a Riemannian 3-manifold whose scalar curvature is strictly greater
than 6 at one point:
dpeM: Ryp) > 6.

Consider a sequence of immersions { fi : S* < M }ren minimizing Wy ,respectively Ey (i.e a minimizing
sequence of the problem (1.19), respectively (1.20))
Then
lim inf (diam, fe(S*) >0

where diam,, fi(S?) is the diameter of fi,(S?) in the Riemannian manifold (M, g).

PROOF. From the assumption on the scalar curvature, if {fi}ren is a minimizing sequence of Wy,
Lemma 4.2.1 implies that
lilgn W (fr) < 4m — 2e. (4.9)

Observe that if instead {fi}ren is a minimizing sequence of Ej, Lemma 4.2.1 implies limg F1(fx) <
47 — 2¢, but as shown in the proof of the previously cited Lemma, E(fr) > Wi(fk), so inequality (4.9)
also holds for minimizing sequences of Fj.
Let us assume by contradiction that lim infy (diam, f(S?)) = 0, so up to subsequences diam, f5(S*) — 0.
First, using inequality (4.9) and that (M, g) is asymptotically euclidean let us show that there exists
a compact subset K CC M such that fi(S?) C K. If it in not the case than, up to subsequence, for every
k € N we can take a point & € f(S?) C R3 (recall that outside a compact subset (M, g) is isometric to
(R3,6 4 01(1)) such that |&| — oo. Since we are assuming that diam, fi(S?) — 0, for k large enough all
of the surface fi(S?) is contained in a region where 01(1) is arbitrarily small in C! norm:

limkinf ||01(1)||Cl(fk(52) = 0.

Now for every fixed k € N we can put v = ro = diam,(fx(S?)) "2£° 0 in estimate (3.11) (repeat the proof
of Lemma 3.2.4 with such quantities), since for k large also  and 6 are arbitrarily small, passing to the
liminf in estimate (3.11) we can conclude that

lim inf Wi (fx) > liminf W (fy) > liminf W (fx) > 47

contradicting (4.9); so there exists a compact subset K CC M such that f(S?) C K for all k € N.
Since Wi(fx) > W(fr), the estimate (4.9) and the argument above put us in position to apply
Proposition 3.3.4 and the conclusion follows. ®

Since the ambient manifold is non compact, it is not trivial a priori that the minimizing sequence of
surfaces has a uniform upper diameter bound. But this is true, using a monotonicity formula of Link (see
his Ph.D. Thesis [FL]).
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Proposition 4.2.4. Let (M, g) be a (maybe non compact) Riemannian 3-manifold such that

1) the sectional curvature is uniformly bounded
|K| < A?  for some A € R,

i1) the injectivity radius is uniformly bounded below away from 0
Inj(M,g) > 5> 0.

Then there exists a constant C = C(p,A) > 0 such that for every ¥ — (M, g) connected smooth closed

immersed oriented surface we have
diam, 3 < max{1,C(|Z|, + W(X))}.

Proor. If diam, ¥ <1 we have finished, so we can assume that diamg, ¥ > 1
Under the assumptions i) and ii), Link proved (see [FL]) that there exists a constant C = C(p, A) such

that for 0 < o < p < po = ¢ min(Inj(M), §)

B 05 < o(E0 B | yy(s 0 5, a).

o2
From the smoothness and the compactness of ¥, sending 0 — 0 in the formula above, for every p < pg
and x € ¥ one has
1< C(W—FW(EHBP(@)). (4.10)
diamy ¥. Let us divide the

Since X is compact there exists a pair of points z,y € X such that dy(z,y)
interval [0, diam, X] in N > 1 (N € N to be determined from p) subintervals, of the same length p with

1 . .
3 min(1, pg) < p < min(1, po).
Consider the corresponding partition of the metric ball Bagiam, »(x) into N spherical (metric) annuli at
distance p one to each other
Ai = Blp(x)\B(’Lfl)p(‘r) ’L = 17...,N

P

where B;,(x) is the metric ball.
Since the surface ¥ is connected, for each annulus A; there exists a metric ball Be(z;) C A; all
§. For each ball Be (z;) we can apply the

contained in the annulus with center x; € ¥ and radius
estimate (5.11) and summing on i we get

Ngcz

< c (ilg +W ()

(|Z N By (wi)lg +W (XN Be (xi)))
(4.11)

where the last inequality comes from the disjointness of the balls Bg (z;). Now multiplying both sides by

p2 we get
p diam, X = Np?* < C(|S|, + p*W(D)) < C(IZ], + W()),
) and A.

where the last mequahty comes from the condition p < 1. Now, from the estimate 5 L min(1, pg) < p we
have the bound % < 2max(1,1/pg) < Cj5a where Cj 5 is a constant depending on p < Inj(M

We can conclude that
diamy 3 < Cs a4 (|E]y + W(X)).

|
Called {fi}ren a minimizing sequence of Wy (respectively Fj), thanks to Proposition 4.2.4, Lemma
4.2.1 and Remark 4.2.2; it is possible to prove that the immersions { fx }ren are all valued in a compact

subset of M.
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Proposition 4.2.5. Let (M,g) be a non compact asymptotically euclidean Riemannian 3-manifold (in
the sense of (1.16)) with bounded geometry (i.e. with bounded sectional curvature |K| < A2 for some
A € R, and strictly positive injectivity radius Inj(M, g) > p > 0) whose scalar curvature is strictly greater
than 6 at a point:

IPpeM: Ryp) >6.

Consider a minimizing sequence {fx : S* < M}ren of smooth immersions of Wy (respectively of Ey)
among immersions of the same kind.
Then there exists a compact subset K CC M such that fx(S?) C K for all k € N.

PROOF. As in the proof of Lemma 4.2.3, since {fi}ren is & minimizing sequence of W; (respectively
Ey) we know that estimate (4.9) holds, namely Wi (fx) < 4w — 2e.

From (4.9), we have a uniform bound on W (fx) and on |f5(S?)|,; since the ambient manifold (M, g)
is of bounded geometry, the conditions i) and ii) of Proposition 4.2.4 are satisfied and we can say that

diamg (f(S*)) < C(W (fr) + [ fe(S?)]y) < C

for some C' > 0 independent of k.

If by contradiction there exists no compact subset K CC M such that f;(S?) C K then, up to
subsequences, for every k € N we can take a point & € fix(S?) C R? (recall that outside a compact subset
(M, g) is isometric to (R3,8 + 01(1)) such that |¢| — oo. Since diam,, fx(S?) < C, for k large enough all
the surface fi(S?) is contained in a region where 01 (1) is arbitrarily small in C'! norm:

limkinf lor(D)lcr (£, (s2) = 0.

Now consider estimate (3.11) and apply it to fi(S?) for k large; observe that in proof of that estimate one
can consider ry = diam, f5(S?) < C, moreover the quantities 7 and ¢ converge to 0 as k — co. Choosing
~ small enough (depending on the € of (4.9)) it follows that for k sufficiently large we have the Euclidean
Willmore functional W, (f) < 47 contradicting Theorem 7.2.2 in [Will]. m

4.2.2 Existence of a smooth immersion of S? minimizing W, respectively E;

Let us start by summarizing the estimates and properties of a minimizing sequence f, : S? < M for W
(respectively E).

Theorem 4.2.6. Let (M, g) be an asymptotically flat Riemannian 3-manifold (in the sense of (1.16))
of bounded geometry which satisfies:
- For the minimization problems of W1 and Ey: there exists a point p € M such that R(p) > 6,
- For the minimization problems of Wi : the sectional curvature K is bounded by 2, K < 2.

Let {fx}ren be a minimizing sequence of smooth immersions fi, : S*> < M for Wy (respectively E1 ),
i.e. a minimizing sequence for problem (1.19) (resp. problem (1.20)).

Then, called Vi, the varifolds associated to fi, and px := ||Vi| the associated spatial measures, the
following holds:
i) there exists a compact subset K CC M such that f(S*) C K,
ii) there exists a constant C' such that & < diamy(f,(S?)) < C,
iii) limsupy, 3 [ |Ag|?dpy < 4, where Ay, is the second fundamental form of fi,
iv) there exists an integral 2-varifold V of M such that, up to subsequences, Vi, — V in varifold sense,
v) V' is an integral varifold with weak mean curvature H ( resp. generalized second fundamental form A),
vi) called i := ||V|| the mass measure of the limit varifold V then spt u is compact, connected and up to
subsequences

pe — i weak as Radon measures and

spt ur — spt u in Hausdorff distance sense,
vii)
H(z,P)|?
Wi(p) =Wy (V) := / (%)' + 1) dv < limkinf Wi(fx) < 4w, and respectively
Ga(M)

2
Ei(p) = E\(V) = /G - ('A(xép)' + 1) dV < liminf B1(fi,) < 4,
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PROOF. i) follows from Proposition 4.2.5, ii) follows from Proposition 4.2.3 and Proposition 4.2.4.

iii): by Lemma 4.2.1 we know that if f; is a minimizing sequence for E; (respectively W7) then for
large k we have 3 [|Ap|?duy < E1(fi) < 4w — € for some € > 0 (respectively Wi(fi) < 47 —€). In the
first case we conclude; in the second case by Gauss equation, for an immersion f : S? < M, we get

1 1 1 _ H? H?

5|A|2 = 5H2 — kyko = 5H2 — Ko+ K(T,f) = (4 + 1> + (4 + K(T,f) — 1> - K¢
where K (T, f) is the sectional curvature of the ambient manifold evaluated on the plane T, f C T, M
with z € f(S?), K¢ is the Gaussian curvature of (S?, [*g) and ki, ko are the principal curvatures.
Integrating, by Gauss Bonnet theorem and the bound K < 2, we get

%/|A|2) <2Wi(f) — 2nxp(S?) = 2Wy(f) — 4.

Since for k large we know that Wi (fx) < 47 — ¢ we conclude that % f | Ag|2duy < 47 —e.

iv) For the minimizing sequences fj of both E; and Wi, from part iii) we have the uniform bound
on the L? norms of the second fundamental forms % [ |Ax|2du, < 47 — €; moreover by definition of the
functionals it is clear the uniform bound on the areas of fi(S?): 3C > 0 such that Vk € N | f(S?)], < C.

Using the Cauchy-Schwartz inequality we can estimate the first variation of the varifolds Vj, associated
to the immersions fy:

I8Vill = [ 1taldn. < € [ 1acldin < O [ 14uPdin) " fin(e0l, < .

Now applying Allard compactness Theorem (Theorem 6.4 in [Al]) to the sequence of varifolds Vj, we can
say that there exists an integral 2-varifold V such that

Vi, — V  in varifold sense.

v) and vii): from the uniform bound 3 [|Ay|?dur < 47 — €, using the previous point i), we can
apply Theorem 5.3.2 in [Hul] and say that V' € CV5(M) is a curvature 2-varifold with generalized second
fundamental form A (hence in particular with weak mean curvature H, see Remark 5.2.3 in [Hul]). By
the lower semicontinuity of the functionals proved in the aforementioned paper by Hutchinson (notice
that the functionals are sum of a lower semicontinuous and a continuous part under varifold convergence),
we can define W7 and E; on the limit varifold V' and vii) follows.

vi): Of course, since the Grassmannian of the 2-planes is compact, the varifold convergence of a
sequence of varifolds implies the measure theoretic convergence of the spatial supports; so up to subse-
quences

we — 1 weak as Radon measures.

In order to get the Hausdorff convergence recall that K cC M C R? is isometrically embedded by
Nash Theorem, so we can see the surfaces fi(S?) as immersed in R®. Since fi as immersions in K have
uniformly bounded Willmore energy and area, and since K is compact and isometrically embedded in R
it follows that f; as immersions in R® have uniformly bounded Willmore energy (for more details see the
proof of Lemma 4.1.10). Moreover we know that the associated measures pp — p; under this conditions
Leon Simon proved (see [SiL] pages 310-311) that actually

spt ur — spt u in Hausdorff distance sense

as subsets of R¥; but since M is isometrically embedded in R it clearly implies that spt p, — spt p in
Hausdorff distance as subsets of M. B

At this point we proved the existence of a candidate minimizer varifold V for the functional Fjy,
respectively W7i; moreover we showed that the minimizing sequence is contained in a compact subset
K CC M. Henceforth we are in the setting of Chapter 5, for convenience the regularity theory in that
chapter is stated for closed ambient manifold and for the functionals analyzed in Section 4.1 but can
be repeated analogously for the functionals F; and Wj since the we just proved that the minimizing
sequences stay in a compact subset (see Remark 1.0.12). It follows that the candidate minimizer V is a
non null 2-varifold associated to a smooth immersion f : S < M which therefore is a minimizer for Ej,
respectively Wj.
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Chapter 5

Regularity theory for minimizers of
Willmore type functionals in
Riemannian manifolds

In this chapter we prove the regularity of the candidate minimizer given in Chapter 4, the content of the
chapter is a joint work with E. Kuwert and J. Schygulla from Freiburg (see [MS2])

5.1 Introduction to the chapter

For the regularity theory we took inspiration from the work of Simon [SiL] where the regularity of the
minimizers of W in euclidean setting is performed, but there are some non trivial modifications to be done
for immersions in a Riemannian manifold. First of all, since in Euclidean setting one has an 87 bound
on the Willmore functional which turns out to be very useful, using an inequality of Li and Yau [LY]
and a monotonicity formula Simon manages to work with embedded surfaces; in Riemannian manifold
instead we work with immersions, hence there could be multiplicity and the technique is a bit more
involved. Nevertheless in Section 5.2, working locally in normal coordinates, we manage to enter into the
assumptions of the Graphical Decomposition Lemma of Simon and prove that near all the points (except
possibly finitely many ”bad points” where the curvature concentrates) of the candidate minimizer, the
minimizing sequence can be written locally as union of graphs and small ”pimples” with good estimates.

In Section 5.3 we prove that the candidate minimizer is locally given by graphs of C1* N W22
functions. For getting this partial regularity we first prove a local power decay on the L? norms of the
second fundamental forms of the minimizing sequence (see Lemma 5.3.1) away from the bad points; then,
still working locally away from the bad points, replacing the pimples by sort of biharmonic discs, by
Ascoli-Arzeld theorem we get existence of Lipschitz limit functions; at this point, using a generalized
Poincaré inequality, the power decay of the second fundamental forms and Radon Nicodym Theorem,
we show in Lemma 5.3.2 that the candidate minimizer is associated to the limit Lipschitz graphs; finally
using that this candidate minimizer has weak mean curvature in L2, together with the aforementioned
power decay, a lemma of Morrey implies the C1® N W22 regularity away from the bad points. Using a
topological argument involving degree theory and Gauss Bonnet theorem, in Subsection 5.3.2 we prove
that actually there are no bad points and therefore the candidate minimizer is of class Ot N W22
everywhere. This step is quite different (and simpler) from [SiL], indeed since we work with immersed
spheres we manage to exclude bad points while Simon works with surfaces of higher genus and he has to
handle the bad points without excluding them.

To complete the regularity we need to show that the candidate minimizer satisfies the Euler-Lagrange
equation, and for this step we need to prove that it can be parametrized on S?. At this point (see
Subsection 5.4.1) we use the notion of generalized (r, A)-immersions developed by Breuning in his Ph. D.
Thesis [BreuTh] taking inspiration by previous work of Langer [Lan]. Once the Euler Lagrange equation
is satisfied the C'*° regularity follows (see Subsection 5.4.2)
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5.2 Good/Bad Points and the Graphical Decomposition Lemma

In the present section we will define the good and bad points, we will state the Graphical Decomposition
Lemma of Leon Simon and we will show that it can be applied in our settings. This is the starting point
for the regularity theory of the candidate minimizer varifold V.

5.2.1 Definition and first properties of the good/bad points

Let us start introducing some notation: since we will work in normal coordinates we will see our surfaces
immersed locally either in R? with euclidean metric §,,,, or with the Riemannian metric g,,,,. The quantities
in ”euclidean” setting will be denoted with an ”e” (ex. uf, Hf, A7, ...) and the Riemannian quantities
will be denoted with a ”¢” (ex. uf, HY, A7, ...).

This subsection is common to the two functionals E and W; since we use properties that both the
functionals satisfy. First we define the so called bad points with respect to a given € > 0 in the following
way: define the Radon measures ay, on M by

g

o = | A2

From the definition of E and for Lemma 4.1.14 we know that ay (M) < C. By compactness there exists
a Radon measure o on M such that (after passing to a subsequence) o, — a weak as Radon measures.
It follows that spta C spt p and a(M) < C.

Definition 5.2.1. We define the bad points with respect to € > 0 by

B. = {¢ esptp|a({E}) > e’} (5.1)
The points of spt u\ Be are called e-good points.

Remark 5.2.2. Since a(M) < C, there exist only finitely many bad points. Moreover if & is an e-good
point there exists a 0 < pg = po(§o,€) < 1 such that a(BY (&)) < 2¢2, and since a — a weakly as
measures we get

/ |A{ |2 dud < 2e®  for k sufficiently large, (5.2)
ng (50)

where By (&) is the metric ball in (M, g) of center & and radius po.

5.2.2 Some geometric estimates in normal coordinates

Throughout this subsection, let (M, g) be our closed Riemannian 3-manifold and {fy : S? < M }xen a
sequence of smooth immersions.

Fix £ € sptp an e—good point for some ¢ > 0 and consider z#, p = 1,2,3, normal coordinates of
(M, g) centered at £ (i.e the coordinates of  are 0). Recall that, in this coordinates, the metric g,,,, takes
the following shape (see for example [LP] formula (5.4) page 61):

1
Guv(®) = O + gRme"aﬂ +0(|z]?) (5.3)
S+ (@) (54)
where
huw(0) =0 and Dyh,, (0) =0 VA p,v=1,23. (5.5)

Called inj(£) > 0 the injectivity radius at &, observe that inside the geodesic ball Bfnj ( é)(g ) we have two
metrics: the metric g, = 0,, + h,, of the Riemannian manifold (M, g) and the euclidean metric d,,.
Denoted with |z| the norm of z as a vector in R3, observe that (5.3) (or (5.5) ) implies

[y ()] = O(|2*)  |Dahyu (@) = O(Jz)  for small |z, (5.6)
where the notation O(t),t > 0 of course means that there exists C' > 0 such that lim;_,+ % < C.

Moreover, since M is compact, all the curvatures of g are bounded on M and the remainders O(|z|?),
O(Jz|) (which clearly depend on the base point &) are uniform in M; i.e. there exist a constant Cpy
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depending on M which can be used in the definition of O for the remainders in (5.6) for all the base
points £ € M.

Since we have two metrics, all the geometric quantities associated to a surface have two values: the
euclidean and the Riemannian one. The euclidean quantities are labeled with an "e” (d.(x,y) is the
euclidean distance between z and y,duc is the euclidean area form, |.|. is the euclidean area, H€ is the
euclidean mean curvature, A€ is the euclidean second fundamental form, ... ) and the Riemannian ones
with a ”¢” (dg4(z,y),dn?, |.|g, H?, A9... are the corresponding Riemannian ones). We also adopt the
conventlon that |A°|? ( respectively |A9]?) is the squared euclidean (respectively Riemannian) norm of
the euclidean (respectively Riemannian) second fundamental form; analogous notation is used for |H¢|?
and |HY|?.

For the regularity theory it is important to relate the euclidean and the Riemannian quantities; let
us do it.

Proposition 5.2.3. Let (M, g) be a Riemannian 3-manifold, consider a point & € M and normal coor-
dinates x* u = 1,2,3, centered in £. Let X — M be an immersed smooth surface, as explained above we
have couples of geometric quantities: the euclidean and the Riemannian ones.

Then the following relations between the two of them hold:

i) de(z,y) = (1+0(p?))dg(z,y) for |z, |y| < p
i) dp(z) ~ (1 + O(af®)du? ()

i) pf(BL(©)) = [E N BLE)]e = (14 O(p2)IE N B, o0 (E)lg = (1+ O (B, o))
i) (A9);5(2) ~ [L+ O(aP)(A%)y () + O(le)
v) |A9|2 (L+ O(Je~2))|A°P () + O(2**) V0<a<1

)+
vi)  HY(x) = H(z) + O(|2|*)|A°|(2) + O(|z])
vit)  |H*(z) = (14 O(Ja[***)[H[*(2) + O(J«*)|A°]* + O(Ja**]) VO<a<1

where x € X is a small vector of R? and with the symbol ~ we mean that we have an upper and lower
bound of the left hand side with the right hand side.

ProoOF. In Chapter 3, we considered the "manifold” R® with two metrics: the standard euclidean
one and a perturbed one. We denoted the euclidean scalar product by d,,, and the perturbed metric as
Ouv + Py (x) where hy,, (.) was a compactly supported field of smooth symmetric bilinear forms. We called
n:= ||h|lcomsy and € := || Dh||co(grs) and we worked out estimates of the geometric quantities (distance,
area, second fundamental form, mean curvature,...) in perturbed metric in terms of the euclidean ones
and the remainders depended on 7 and 6.

Now, as remarked above, near the point £ the Riemannian metric in normal coordinates is a perturba-
tion of the euclidean metric, moreover |h,,, (z)| = O(|z?|) and |Dyh,,(z)| = O(|z|). Since the estimates
of Chapter 3 are punctual then, in their proof adapted to the present contest, it does not matter if A has
not compact support; moreover one can estimate |k, ()| with O(|z|?) instead of 7 and Dyh,, (z) with
O(Jz|) instead of 6.

i) follows from statement éi) of Lemma 3.2.1;

ii) follows from Lemma 3.2.2; about the notation observe that now dpu. is what we called /det(5)

and dy, is what we called 4/det(d + h);
iii) from statement i) above we have that By (&) ~ B§(1+0(p2))(5) where we mean that the left hand
side is contained in and contains a set in the form of the right hand side. Now we apply statement i)

above to get
S0 B &[S0 B, 0 ()l = (L+ O(0PDIE N B, ) (6]

iv) follows from estimate (3.8) in the proof of Lemma 3.2.3;
v) at the point z € X take a g-orthonormal base of the tangent space T,% which diagonalizes A,.
Then |A4,]? = (A,)%; + (4y)3,. Plugging statement iv) above into the last equality we get

[1+0(jz")][(Ae)T1 + (Ae)3o] + O(|a]) He(w) + O(|zl?)
~ [+ 0(l2P)[(Ae)7) + (Ae)da] + O(z])|Ael(x) + O(l]?) (5.7)

Q

|4, * A |
A |
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Notice that the chosen g-orthonormal frame of 7,3 may not be euclidean-orthonormal and it can also
happen that in this base A, is not diagonal. Nevertheless, using statement iv) we have (A.)12(x) = O(|z|),
moreover the inverse of the euclidean first fundamental form is &;; + O(|z|?), then

[Ac? () = [ + O(|2*)]85 + O(|2*)](Ae)sj (2)(Ae)a () = [1 + Oz *)][(Ae)iy + (Ae)3a] + O(|2[)
it follows that [(A.)?,(z) + (Ae)35(2)] = [1+ O(|z]?)]|Ac]?(z) + O(|z|?) and plugging into (5.7) we obtain
[Ag|* = (1 + O(|z*)|Ac[* () + O(|z])| Ac| () + O(|z?).
Using the estimate 2ab < a? + b? observe that, for any 0 < a < 1,
O(|z])|Ael(z) = O(|z|*)O(|z]'~*)| Ae|(z) = O(|z[**) + O(|z[*~>*)| Ae[* ()
hence we can conclude that
[Agl? = (1+ O(|2[*72))|Ae*(z) + O(Jz]**) V0 <a <1

vi) follows from estimate (3.10) in the proof of Lemma 3.2.3;
vit) from statement vi), just taking the norm with respect with the two metrics, recalling that g, (z) =
8. + O(|z|?) and that |H.| < C|As|we have

[Hyl*(2) = (1 + O(2*)) [ He[* () + O(|z*)|Ac* () + O(|z])| He| + O(|zf).

With the same trick of statement v), O(|z|)|He| = O(|2]|*)O(|z|'~%)|H,|(x) =~ O(|z|?**)+O(|x[*~2*)|H,|*(z)
for all 0 < a <1 ; we can conclude that

[Hy* (@) = (14 O(Ja* M) He[* () + O(|2*) | Ac[*(2) + O(|2**) VO <o <1

Using Proposition 5.2.3, in the next Lemma we will get easy but fundamental estimates in order to
apply the Graphical Decomposition Lemma of Leon Simon.

Lemma 5.2.4. Let (M,g), fr and p as before and assume a uniform bound on the L? norms of the
second fundamental forms of fi

3C > 0 such that /|AZ|2d,ui <CVkeN

and on the areas
3 C > 0 such that | fx(S?)|, < C.

Fiz ¢ > 0, take a good point & € spt u\ B: ( by Remark 5.2.2, see also Remark 5.2.6, we know that
the set of the good points spt u\ Be is non empty).

Then there exist po = po(&o,€) > 0 (maybe smaller than the py of Remark 5.2.2), 8 > 0 (B depending
only on M and on the assumed two uniform bounds) and infinitely many k such that the following is
true:

Jor all & € spt N Bf, (&o) there exist & € fu(S?) such that & — & and for all 0 < p < 22 we have

2

that

i) up(Bs(&)) = [fx(S*) N Bs(&)le < B2,
i) (0fr(S%) N Bs(&) =0,

iii) / |AS|2dug < 3e%.
Be (&)

PROOF. Let us call ¥ := sptp and Xp := sptug. Let £ € XN B, (&) and 3y, 3 & — £ € X, with

2
po and & to be determined during the proof (of course since ¥y — ¥ in Hausdorff distance sense, then

there exists a sequence & € 3y, such that & — &).
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i) Statement i) of Proposition 5.2.3, tells us that for small p > 0 we have Bg (&) ~ Bg+0(p3)(§k) (for

the notation see the proof of Proposition 5.2.3); then, using the estimate on the area form (statement i7)
of Proposition 5.2.3)

|Zk N Bg(gk)‘e ~ |Zk N BZ+o(ps)(€k)|e ~ (1 + O(Pz))‘zk N Bg+o(p3)(§k)|g-

Since we can estimate |Hy|*> < 2|A4[?, the assumed uniform bounds permit us to apply Lemma 4.1.10
and say that |y N Bj(&k)]y < Cp? (we get the estimate with the closed ball with a limit process on

decreasing open balls containing it). Thus

SN BEEe & (14 OISk N B o) (€0l < L1+ O()]o + O(")]* < B

for small p; let us say V 0 < p < pop, for some py > 0 (notice that we used that the remainders O(.)
are uniform in the compact set K, moreover the last estimate holds with the same 3 for every choice of
&k € Xi).

11) is trivial since by assumption the surfaces have no boundary

iii) Let po = po(&o, ) be as in Remark 5.2.2 (or smaller in a way that statement ¢) above is satisfied);
then

/ |AY|? duf < 2e*  for infinitely many k. (5.8)
B;g)o (EO)
Using statements i), i) and v) of Proposition 5.2.3 we get
[ mpag ~ [(1+ 0)IALI” + O()][1 + O df
B (o) BT s, (60)
~ [L+0(p)] |77 dp + O(p) =k N B (&o)le
oot (0)
< [1+0(p)2e® + 0(p?)
< 3¢% for infinitely many k (5.9)

for small p; let us say V 0 < p < pg, for an even smaller pg > 0. Notice that we used the local
area estimate we got in statement i) and the property (5.8). Then, for & € B$, (&) we have that
2

B, (§) C By, (&) Since X — ¥ in Hausdorff distance sense, for k large enough (uniformly on &) we
2
can choose &, € Bf, (§) N Xg; it follows that Bf, (§x) C B% (§) C By, (§o) and, using (5.9),
4 4 2

[P dug <
Bg(&x)

for 0 < p < 2 as desired. ®

5.2.3 A lower 2-density bound near the good points

In this subsection we prove that for both the functionals £ and W; we have a lower 2-density bound on
the minimizing sequence of immersions f; near the good points. The result is crucial since it avoids the
trivial case when the candidate minimizer limit measure is null.

Proposition 5.2.5. Let (M,g), fr and p be as before. Then there exists g > 0, po > 0 small enough

and C > 0 such that the following is true: fir a €9-good point &y and take § € By, (&0); thus there exists a

sequence & € fir(S?) (where k' is a subsequence of the ks ) which satisfies the following two properties
i) & — €

9 (BI(& S N BI(E
Mk(pp2(€k)):| k p;(fk)|g20>0, Y0 < p < po.

It follows a 2-density lower bound on the limit measure p at the point § € By, (&o):

n(B5(8))

57— >2C V0<p<po.
p
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PROOF. As before let us call ¥y := spt ug and X := spt u. Since by assumption X — ¥ in Hausdorff
distance sense, for each ¢ € X there exists a sequence & € ¥ such that § — &.

The numbers g > 0 and py will be chosen later in the proof. Since £, is a good point, then by Remark
5.2.2, for pg > 0 small enough

/Bg o |A?|?> du < 2e3  for infinitely many k.
po \SO

From statement ¢) of Proposition 5.2.3 and from the assumption £ € B (&) (p small to be determined),

it follows that B (&) C B5(&o) C B§+O(ﬁ3)(fo) C Bj, (§o) for p small enough. Analogously, since & — &,
2

for k large enough and p small enough we have that BJ(¢x) C B3, (§) € B(§) C BY (§o). Recalling
2

that the norm of the mean curvature can be estimated with the norm of the second fundamental form,

|HY|? < 2|AY)?, we get for infinitely many k

1
APdt <y [ AlPag < G0

1 |
W (S N B (&) = 1/ HY dpd < 5/
BJ (&) B, (£0)

BJ(&k)

Let us recall a monotonicity formula proved by Florian Link in his Ph. D. Thesis [FL]. Under the
assumptions on the ambient manifold (M, g) of strictly positive lower bound on the injectivity radius and
bounded sectional curvature (which now are of course satisfied since our M is compact) he proves that
there exists a constant C' = C(M) such that for 0 < o < p < py = ¢(M) and every smooth immersed

surface X

m < O(f]ﬂBg(z)b +WEN Bg(x)))-

o2 02
From the smoothness of ¥, sending o — 0 in the formula above, for every p<poandzx € % one has
|2 N BY(z)] -
1< C( At +W(szg(az))). (5.11)

Using estimate (5.11) for the subsequence k' for which the inequality (5.10) holds, we obtain that for
every 0 < p < po (taking py even smaller in a way that Link’s monotonicity formula can be applied)

1<C ('Ek'm;g(gk/)b + W(Ek/ ﬂBﬁ(f;ﬁ)) <C ('Zk'mff(&“')'g +5%> .

Chosen &3 < -5 we get

36
|Ek’ N Bg(&c’”g
2
for the subsequence of the &/, for some C > 0 and for 0 < p < pg, pp maybe smaller. Now let us show
the lower 2-density bound on g, the limit of the measures uj associated to Y.
Since y is a finite Radon measure, for almost every 0 < p < pg we have p(0B3,(£)) = 0 then the weak
convergence of measures implies

(B8, () = lim{ur (B, (€))] = lim s (B3, (€).

Since & — &, for k' large enough & € BJ(€) and BJ(&) C B3, (€); it follows that

>C>0 (5.12)

lim[pg (BS, (€))] > lim sup g (BJ (€+))] = lim sup [ 0 BE (§)g > Cp* > 0
K K
where in the last step we used inequality (5.12). Collecting the last two chains of inequalities we get

n(B3,(£))

for almost every 0 < p < pg. Now fix an arbitrary p € (0,2p0), then there exists a sequence p, T p such
that the last inequality is satisfied: p(BY, (€)) > Cp;. Passing to the limit in n we get

'M(Bp’g;(g))zc>0 YV pe(0,2p).
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We can conclude using statement 7) of Proposition 5.2.3 and the smallness of pg; indeed, for small p we
have BS (&) O BY (&) then

p+0(p?)
M(B;(f)) > M(Bz+o(ps)(£)) > C[PQ + 0(176)] > Cp2

for all p € (0, po), po small enough. W

Remark 5.2.6. Proposition 5.2.5 is crucial for our minimization problems since it avoids the trivial
case when the candidate minimizer limit measure p is null. Indeed in the case {fi}tren is a minimizing
sequence for either E or W1, we know from Theorem 4.2.6 ( respectively Theorem 4.1.13) that the support
spt i of the limit measure pu is compact, connected and with positive diameter; hence it contains infinitely
many points. Since for both the functionals the L? norms of the second fundamental forms of fi are
uniformly bounded (for E it is trivial, see Lemma 4.1.14 for W1 ), by Remark 5.2.2, for every e > 0 there
are infinitely many €-good points. Thus, applying Proposition 5.2.5, we have that there exists a small
po > 0 such that u(BS, (£)) > Cpg > 0.

5.2.4 The Graphical Decomposition Lemma

Thanks to Lemma 5.2.4 we are in position to apply the Graphical Decomposition Lemma of Leon Simon
(Lemma 2.1 in [SiL]).

Lemma 5.2.7. Let (M, g),fr and p be as in the assumptions of Lemma 5.2.4. Let 8 be given by Lemma
5.2.4 and g9 = 0(B) the associated one by Lemma 2.1 in [SiL]. Let € < €, fix a good point point &y with
respect to e and consider py = po(&o,€0) given by Lemma 5.2.4.

Then for any & € spt u N B%TO (o), for all p < 2 and for infinitely many k € N the following holds:

There exist 2-dimensional planes L; containing £ and functions ufc e C*> (@, Lf) such that

My, My, Ny,
f(S)NBy(©) = JDinB5(©) = | [Jeraphuj U | P | N B5(©)
=1

=1 =1

where 67 67
Qb — (B¢ L : oo =2t
(BX(&)nN )\L;ankm (A < (1284’ 128 2

and where the dfﬁ,m C L' are pairwise disjoint closed discs disjoint from 0B5(§).

Furthermore each DL 1s a topological disc with graph ui NBg (&) C Df§ and Dé \ graph uﬁc 18 G union
4

of a subcollection of the PJZC C fu(S?), and each Pf is diffeomorphically a closed disc.
We have the following estimates:

M, < ¢B, (M= the number of slices for a fized k)

1

M}, i
Z diam d?m < ¢ / |AS)2dus | p < ceip, (5.13)
m=1 Bsp(fk)
1
Ny 1
Z diam Pf < ¢ / |AS)2dus | p < ce?p, (5.14)
=1 B3, (&k)
1 )
;Hu§c||Loo(Qk) < ces + ;k where 6 — 0, (5.15)
|Dul || (0p) < ceS + 0, where 5 — 0. (5.16)

5.3 CL*NW?? regularity of the limit measure

5.3.1 Regularity in the good points

In the next step we estimate the squared integral of the second fundamental form on small balls around
the ”good points”. This estimate will help us to show that the candidate minimizer (for Wi or F) u is
actually the measure associated to C® N W22 graphs in a neighborhood around the good points.
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Lemma 5.3.1. Consider the following two cases:

i)Let (M,g) be a closed Riemannian 3-manifold which satisfies at least one of the two conditions
below:
- (M, g) has uniformly strictly positive sectional curvature in the sense of (4.1); or
- there is no nonzero 2-varifold of M with null generalized second fundamental form and there is a point
D where the scalar curvature is strictly positive: Rgy(p) > 0.
Let {f1. : S* — M}en be a minimizing sequence of smooth immersions for E among the immersions of
the same type.

11) Let (M, g) be a closed Riemannian 3-manifold whose scalar curvature is strictly greater than 6 at
a point:

PeM: Ryp) >6.

Let {fy : S* — M}ren be a minimizing sequence of smooth immersions for Wi among the immersions
of the same type.

Let p be the limit measure given by the corresponding compactness Theorems (Theorem 4.2.6 and
Theorem 4.1.13) and consider €9 > 0, & € sptu\ Be for € < g9, po = po(&o,€0) as in Lemma 5.2.7
(actually €9 > 0 can be chosen smaller during the proof).

Then we have for all & € spt N B%TO (o) and all p < 2 that

liminf/ |AS|? dp§ < cp®  where ¢ = c(pg) and o € (0,1).
k—oo  Jpe Q)
PROOF. First of all observe that from Proposition 4.1.1, Corollary 4.1.2, Remark 4.1.3 (which give the
area bounds), Lemma 4.1.14 (which give the L? bound on A), and the compactness results of Theorem
4.2.6 and Theorem 4.1.13, then we are in the assumptions of Definition 5.2.1, Lemma 5.2.4 and Lemma
5.2.7.

For infinitely many k € N apply the Graphical Decomposition given by Lemma 5.2.7 and for those
k € N (surface index), I € {1,..., M} (slice index) and v € (&, 22) define the set

16 32
L ={a+ylzeBJ(O)NL,ycLi}.
From the estimates on the diameters of the pimples and the C' estimates on the graph functions uﬁf, it
follows that
DLNCLE) = DLnCLE) N B (©) Mngmﬂ%gg. (5.17)
4

To see this, let z € D! N C’,ly(f), then z = x1 + y1 with 21 € B,(£) N Ly, y1 € Li-. Since D} is disjoint
union of a graph and a pimple part, there are two possible cases:

1) z € graphuf, N CL(£): thus |y1| = |uf (z1)] < et p + 0p and

3
e=¢l < lm—gl4lnl <ytetpra <Ltetpra
< g +d,  for € < g, g maybe smaller
< g for 0 < g (5.18)

2) z € D}, N PFNCLE) for some j € N: Since diam P < cezp it follows that |y1| < cedp + 0p +

diam PJIC < ced p + 0. Now the claim follows in the same way as above in 1).

Next define the set A} by

3
A =17¢ (1"6 3’2’> o nJpf =0
J

For e < g (9 maybe smaller) it follows that

L£rAL (e 7——Zd1amPk ce?p26—p4.
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From Lemma 5.5.2 it follows that there exists a set T} C (£, g—g) with £1(T;) > £ such that for all
v e,
804(5) N U Pf = for infinitely many k € N.
J
Now let v € T} be arbitrary (it will be chosen later); we apply the Extension Lemma given in the Appendix

(see Lemma 5.5.1, for the proof see [Schy]) to get a function w} € C> (Bff(f) N Ll7LlJ-> for infinitely
many k such that

wp =up aa—uj“:% on OB (&) N Ly,
%Hwiﬂmwg(g)m,) < eet 4 % where &), — 0,
|\Dw§c||Loo(aBg(g)mL,) < cet 40y, where & — 0,

/| I / AL dL.

i
raph uk|63,€y(g)le

where dH! is the 1 dimensional euclidean Hausdorff measure.
Observe that, with an analogous argument as above using the estimates on wfw we get

graphw!, C BS(§) for e < &gy (g0 maybe smaller) and d; < g (5.19)
4

Now we consider the immersed surfaces

Sp = <fk(82) \ (U Din C’f{(é“))) U Ugraphwfc. (5.20)
1 1

Let us check that £ can be parametrized on S? by a C1! immersion f, : S? < M: Since the pimples
are diffeomorphic to discs and since we have chosen a good radius «y for the cylinder C’,ly (£), it is possible
to show that D} N CL () is diffeomorphic to graph w!, for all k.l By the boundary properties of wl one
can define a C™! immersion fj, : S? < M which parametrizes ¥j.

From the definition of v we have that

[ apags<e] pruip<e [
graph wfc B'ey (&)NLy g

Until now, v € T} C (&, 22) was arbitrary and £!(7}) > &. Therefore, with a Fubini-type argument,
we get that the set

e|2 1 e|2 1
l |Aj|“dH, zcy/ l L |Aj|7dH,.
raphuklaB%(é)le oC! (§)nDj,

128

si=dvemn| [ A Pdg, < 2 A2 dp
aCL (&)nD}, P

(panct g, @0\ @)U, P

has measure £!(S}) > 53. Indeed otherwise we would have that

/ AP due > / / Af?
(Déﬂci,%<£)\ci,%(5))\UjPf T\S} JOC, (OND;,

128
- El(Tl\S’l“)i/, l , A dpae
P J(pinct 000 L ©)U, P
128
(G- 15) % A du.
P J(binct ,, @nct , @)U, P
132

k5
/Dlmcl
( k ks

3p
32

|Ac|? dyte,
1 K
O\, @)U, P}
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a contradiction.
Until now, v € T C (ﬁ 3—”) was arbitrary and £1(T}) > £. Therefore, with a simple Fubini-type

16° 32 64
argument as done in [SiL], it is easy to see that we can choose v such that for every I, k (fixed)

/ [Ac|? dH? < c/ |AS|? dH2.
graph wl (pincy, @\t ©)\U, P
32

Now notice that (this follows from the estimates on ul, and Dul for e < gy, &g maybe smaller)

By (€) € Cly(©)
(DLHC%(@“))\UP}“ c (DLHB%@))\UP}“.

We get that
/ |Ac|? dH? < c/ |AR|? a2,
graph w}, DLOB% (f)\Bel%(f)

It follows that (using the uniform bound on Mjy),

My, My,
S apaesey [ Agpan: = AGPdus. (5.21)
1= Y graph w}, -1 DLFTB% (5)\361% (€3] B% (5)\361% (€3]

Under the assumptions of the present Lemma, there are two cases:
1) fr is a minimizing sequence for the functional F, then

E(frx) > E(fx) —er where g, — 0,

which implies, since B (§) C C,ly ),

16

My,
Z/ |Ag|? dH? > / | A9 12 dpd — ey,. (5.22)
1=1 7 sraphwj B, (€)
16
Using statements i) and v) of Proposition 5.2.3,
|A? =~ (1+0(p%)|Ay* +C (5.23)
dpe  ~ [1+0(p)*)dpg, (5.24)

we can compare the L?-norm of the second fundamental form in metric ¢ and in euclidean metric.
On the one hand we have

2 2
/ |Ag| ng
graph wfe

Q

/ (1 +0() A+ C) (140 (%)) dH2
g;raphwfC

~ / |Ae|2d7{g+cHg(grapth)+O(p2)/ A2 dH2.
graph w}, graph w},
The bounds on the gradient of w!, imply #2(graphwl,) < ¢p?. Using (5.21) we also have Y"1 araphwt [Ae? dHZ <
k

c. It follows that

My, M;,

A |2 dH? < Ac)? dH? + cp®. 5.25
g g e
=1 graph wL =1 graph w;'c

On the other hand, with analogous estimates,

J

AP [ AP+ Cui B ©)+0 () [ AP dug.
fl%(f) B;%(E) fl%(ﬁ)
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P
16

From statement 7) in Lemma 5.2.4, we know that uf (B% (£)) < 8p?; since as above [5. © |AS|? dus <
¢, it follows that °

s
16

[oopdat= [ AP dug - o, (5.26)
B"%(E) B<, (§)

Therefore, putting estimates (5.25) and (5.26) into the inequality (5.22), we get

My,

S [ apaeze] P - e o (527
1=1 “ graphwy %(5)

1) fi is a minimizing sequence for the functional W7y, then
Wl(fk) > Wl(fk) — &k where Er — 0. (528)

Integrating the Gauss equation

1 1 1
Z|H9|2 = Z'AQF + iKG — s K(Tf)

1
2
(K¢ is the Gauss curvature and K (7' f;) is the sectional curvature of the ambient manifold evaluated on
the tangent space to fi) and applying Gauss-Bonnet Theorem, we get

9|2 g2
Wih) = | ('Hj' +1> il = [ (A;;' +1) il +mxn(®) — 3 [ KOs

Since both fi and fj, are immersions of a sphere,the last inequality and (5.28) imply

|Ai|2 ~9 1 7 r ~9 |Ai|2 g 1 7 g
L tl)dia—35 K(T fi)dpi, > Lt dug—5 K(T fi)dug, — ey

where, of course, flz and 1 are respectively the second fundamental form and the area measure associate
to the immersion fi. Since from the definition of ¥, and inclusions (5.17), (5.19) outside the ball B (€)

the surfaces fi(S?) and % coincide at k fixed, then

My, My, My,
S APz e ay Hylerahul) -2
grapth =1

1=1 1=1
2 /
B°, (

£
6

/ K dH? (5.29)
graphw}'C g

IAi\QduiJr‘l“Z( ‘%(f))—?/ Xdui—sk.
€) B% ]

Using that the sectional curvature K is bounded since M is compact, the local area bounds written for
case i), and estimates (5.25), (5.26), we get

My,

Z/ A 2dH2 > / CIE T — (5.30)
1=1 /eraphwj B (9)
In both cases i) and ), plugging (5.21) into (5.27) or in (5.30) we obtain

/ |AS|? dus Sc/ |AS | dug + ex + cp®.

Bel%(é) B%(E)\B%(E)

By adding c¢ times the left hand side of this inequality to both sides ("hole filling”) we deduce the
following: for all p < £2 we have for infinitely many k € N that

/ |AS)? dus SO/ |AG|? dus, + ek + cp?,
B%(E) B%(E)
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where 6 = _t5 € (0,1) is a fixed universal constant. Now if we let g(p) = lim infy fBS © |AS|? dus we
get that
9(p) < 09(2p) +cp? for all p < g—z.
In view of Lemma 5.5.3 in the Appendix, the present Lemma is proved.
|

Now we are able to show that, in a neighborhood of the good points, the limit measure pu is the
Radon measure associated to C1* N W?22-graphs. First we recall the setting shortly: let 0 < ¢ < &y,
&o € spt p\ B be an e-good point and let pg = po(&p, €) > 0 be as in Lemma 5.2.4. Let & € spt uNB%, (&),

2

p < 2 and recall Lemma 5.2.7.
We had that u} : Q) — Li* where the set Q! was given by

o, = (B3 N L)\ Jdim
where \ € (f, g) and where the sets dfmm C L; are pairwise disjoint closed discs which do not intersect
IB5(£)-

Define the quantity ay(p) by
awlo)= [ |43 dug

2,(&)
and notice that by Lemma 5.3.1 we have
P a Po
< < —. .
hknﬁlggf ap(p) < cp® forall p < 198 (5.31)

Since & — § and therefore B3 (§x) C Bf,(€) for k sufficiently large we have that

Zdiam dfam < cak(p)%p < ce3p. (5.32)

Therefore for € < gy we may apply Lemma 5.5.4 to the functions f]l = D;ul, and § = cay, (p)%p in order
to get a constant vector 775« with |77i| < ceb + 0r < ¢ and 0 — 0, such that

2 2 1 2
/ | Duj, — 772‘ < ep? / |D?ul|” + cak(p)}lp2 sup ’DuH .
Q4 @ @

Now we have that

J

Since |Duf€| < cand ag(p) <1 for e < g, it follows that

pruif e [ agpani<e [ AP dug < canlo)
graph u!, Bs,(¢)

1
k

2 1
/l |Duj =y |” < car(p)tp®. (5.33)
Qk

Now let @}, € CV1(B$(€) N Ly, Lit) be an extension of ul, to all of B§(£) N L; as in Lemma 5.5.1, i.e.

wo o= o, i BSE N Li\Jdi
_ oat,  oul
a, =l a—yk = a—yk on Enjadfc’m,
||ﬂ§€\|Lm(d§€,m) < ceSp+6; where 6 — 0,
||Dﬂ§€\|Lm(d§c )y < ceS + 0, where 0 — 0.
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It follows that ||EL\|L00(B§(5)QL” + ||Dﬂ§€”Loo(Bi(E)ﬁLl) < ¢ where ¢ is independent of k. From the gradient
estimates for the function w}, since |nk| < ¢ and because of (5.32) we get that

Dﬂl—UIQ /Dul—nlz—F / Dﬂl—nl2

A AL

con(pte? +e3 [ (P ey [ il
m Vi m Vi

IN

IN

2
car(p)ip + ¢ L2 (d},,) < car(p)ip? +c <Z diam dk,m>

1 1 1
< cag(p)1p? + ca(p)2p? < car(p)ip?,

SO
- 2 1
/ | D, = |” < car(p)tp®.
BS.(§)NL,

Thus, in view of (5.31), we conclude that

lim inf |Dﬂ§C — 77§C|2 < cp®™™ forall p < Po (5.34)
k—o0 Bi(f)ml‘l 128

Moreover, it trivially follows that HHLHWLQ (B< < ¢p? < c. Therefore it follows that the sequence
A

(O)NL1)
., is equicontinuous and uniformly bounded in C*(B(€) N Ly, L) and W12(B$(€) N Ly, L) and we get
the existence of a function u} € C%'(B5(€) N Ly, L") N W12(B5(€) N Ly, Lj) such that (after passing to
a subsequence)

W, — ubin COBS(E) N L, L),
ﬂé N ué weakly in Wl’z(Bi(g)leleL)

and such that the following estimates hold for the function ulg:

1 1
;HulgHLOC(Bg(g)ﬂLZ) + ||Dul§||L°°(B§(§)le) < ces.

We notice that, a priori, the limit function might depend on the point £; indeed, the sequence u%c depends
on £ since it comes from the graphical decomposition lemma which is a local statement.

Observe that, up to subsequences, 7%, — n' with |n'| < ces. Since Dl — Dulg weakly in L?(B$(£) N
L;), then Dﬂ%€ — né - Dué — ! weakly in L?(BS$(€) N Ly); therefore, by lower-semicontinuity, estimate
(5.34) implies that

/ |Dul5 — nl|2 < ¢p?™™ forall p < %08' (5.35)
B (6)NL;
Lemma 5.3.2. Let f and p be as in Lemma 5.3.1 (u is the limit candidate minimizer measure). Thus
there exists g > 0 such that for every 0 < ¢ < e and every good point & € X\ B. there exists
po = po(€o, €0, M) such that the following is true:
For all £ € sptunN BS, (§0) and all p < po such that
2

M
peBS(€) = > H2  (graphuf N BL(€))
=1

wh61€ each 'U/S S C ’ (BZP(g) Ll, Ll ) Such that
L (BQD(E) Ll) I f oc(Be ( ) L )

and where ’Hg denotes the 2 dimensional Hausdorff measure of the Riemannian manifold (M, g).
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PROOF. First we claim that for all p < £% the following equation holds:

M
plLBS(&) = H2 (graphay, N BS(E)) + bk (5.36)

=1
where 0}, is a signed measure with liminf;_, ., of the total mass is smaller than cp2+o‘, i.e. there exist two
radon measures 6 and 67 such that 6, = 6} — 67 and such that liminfy o (0}(M) + 62(M)) < cp*T.

To prove the claim, recall that we have ( from the diameter estimates in Lemma 5.2.7 and from the
quadratic area decay) >, £? (dim) + 3, H (Pf) < cax(p)? p?; thus for p < £2 Lemma 5.3.1 yields
liminfy o 3, ; £2 (dﬁmn) + liminfy0 33, H2 (PF) < cp>t0

It follows that ufLBg(§) = EzAi1 H2 (graphwj, N BS(€)) + 6x where

M
Or = > Hoo((Dj, \ graphy,) N BS(¢ Z}ﬁ ((graph}, \ D}.) N BL(€)) = 6}, — 67

We have that 0}(M) < Y2, H2 (PF) and that 02(M) < cY,, , L2 (dﬁc’m), and (5.36) follows.
Now by taking limits in the measure theoretic sense we claim that for all £ € spt N B%, (£o):
2

M
peBg(§) = Z H?JL(graph ulg N BS(E)) + 46 (5.37)
=1

where 6 is a signed measure with total mass smaller than cp?*.

that

This equation holds for all p < {2 such

" (532(5)) = Hgl_graph ué (5‘B;(§)) =0 foralll.

Notice that the last sequence of equations holds for a.e. p (since we are dealing with radon measures with
finite mass).

To prove (5.37) let U C M be an open subset. We have that

1) Let p < 45 be such that p (9B5(€)) = 0. Moreover assume that pu B¢(€) (OU) = 0. It follows
that u ((9 (Uﬂ B;(E))) = 0 and therefore pj (Uﬂ B;(f)) — (U N BE(€)>'

2) Let p < £2 be such that HZgraph ulg (0B¢(€)) = 0. Moreover assume that 2. (graph ué N B;(i)) (oU) =
0. It follows from i) of Proposition 5.2.3 that

’7’-13\_(g1raphﬂ§c N B;({)) U) = /L XUﬁBg(g)(ﬂc + @k (2))y/1+ |Dal ()2 + O(p*).

Now we have that

| Xonsgeo o+ T@IW 1+ DT = [ (@ k(a1 D)
1 l

< C/L XUmB;(g) (z ""_ﬂ%c(x)) - XUnt(g)(w + ulg(‘r)>‘+/L XUmB;(g) (x+ul§(x)) ’ \V 1+ |Dﬂ§€(l‘)‘2 Y. 1+ |Dul§<$)|2 :
l 1

Since @k, — ulg uniformly and since ’Hgl_graph ulE (6‘B; (5)) = 0 it follows that

— l
Xunsse (x+u(z)) — Xunsse (z +ug(z)) forae x€l.
To see this we have to consider two distinct cases:

(i) @ € L; such that x + ué(m) € Un By(§): Then XUmBﬁ(s)(l‘ + ué(x)) = 1 and since U N Bg(§) is
open and u}, — ul5 uniformly it follows that = + . (z) € U N B{ (&) for k sufficiently large so that
XUmB;;(s) (x + ﬂZ(l‘)) =1L
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(ii) = € L; such that x—i—ué(m) elin B;(f)cz Now Xunssce) (x—i—ulf(m)) = 0 and since U N Bg(f)c is open
it again follows that  + u}(z) € U N Bg(f)c for k sufficiently large and x,, e, (7 + ul(z)) = 0.

Now notice that

L2 ({zeLilz+ug(z) €0(UNBLE))}) =0
since Hngraph ulE (0(UN BS({))) = 0 by the choice of the set U and

HZ graphul (0 (UNBLE))) = (1—|—O(p2))/ \/1+ |Dul|?
g ¢ r {zeL, |z+ul§(w)€6(UﬂB§(§))} ¢

S0 ({re Lile+ubx) €0 (UNBY©)}).

v

Therefore
—1 l
Xunssce) (z+7ay(z)) — Xvnpse (x+ ug(x)) for a.e. x € L.

By the dominated convergence theorem we get that le Xunss(e) (z +7(2)) — Xunss @) (x+ ué(z)) —

0. Because of the elementary inequality |\/ 14+a2—-V1+ b2| < |a — b| we get on the other hand that

1+ D (2)? —

1+ |Dul€(x) 2

[ Xensgeo o+ k(o)
L

< /L Xonss e (m—&-uf }Duk né’—l—/L xUmBg(g)(x—i—ué(x)) Wg _ an/L Xunss ) (:U—&—ué(x)) W _ Dué(m)‘ )
l l

Now we have that X, . ., (* 4—ul5 ())=0if x ¢ B¢ 1) (§) N L;. This follows from the L>°-bound for
P P

(1—ca€

1
the function ué Therefore we get that (fL XUme;(g)(x + ué(@)) * < L2 < Be €n Ll> <c¢p. In

(1 LEG)/)

N

view of (5.34) the liminf of the first term can now be estimated by

liminf/ Xunsg o (& + ug(2)) | D (x) — mp.| < ep®t
L

k—o0

With (5.35) we get in the same way that [} Xunssee) (z+ug(z)) ‘nl _ Dul&(x)‘ < ¢p?Te. Now since 1k, — 1’
strongly) we have that limy_, Xorme o (T + ub(z I — pnl| = 0. Therefore after all we get that
L Xunsg© 3 e =1
P
7‘-[31_(g1raphﬂ§C NBs(E)) (U) = ’Hg\_(graphul& NBs(E)) (U) + 01 (U) + O(p*)
where ék is a signed measure with lim infy_, ., total mass < cp2+

Since 6, is a signed measure it converges weakly (after passing to a subsequence) to some signed measure
0 with total mass smaller than cp?t®. Assume that §(dU) = 0. Then it follows that 6 (U) — 6(U) and
therefore we get that

Jim H2L (graphy, N BE(€)) (U) = H2c (graphul N BE(€)) (U) + 0(U) + O(p*). (5.38)
3) Since the 6}’s were signed measures such that the liminf of the total mass is smaller than cp?*® they

converge in the weak sense (after passing to a subsequence) to a signed measure 6 with total mass smaller
than cp?*®, csin}. Assuming 6(0U) = 0 it follows that

0, (U) — 0(U). (5.39)

Now by taking limits in (5.36) we get that

pBg (€ Z’H graphug NBs(&)) (U) +0(U)
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where § = 6+60+ O(p?) is a signed measure with total mass smaller than cp?T. Notice that this equation

holds for every U C M open such that pB§(£)(0U) = "HgL(graph ulE N B;(ﬁ)) (OU) = 6(dU) = 0(8U) =

0. By choosing an appropriate exhaustion this equation holds for arbitrary open sets U C M and (5.37)
is shown.

Next we claim that spt u is locally given by the union of the graphs of the functions ul57 i.e. there
exists a pg = po(&o, €0, M) such that for all £ € spt uN B$, (&) and all p < pg it follows that
2

M

spt u N By(§) = U graph ul5 N By (). (5.40)
=1

To prove the claim (5.40) let py be such that Proposition 5.2.5 holds. Let & € spt un B$ (50) and

choose p € (£5%, £5%) according to (5.37) such that . Bg(€) = le\il HgL(graph ug N Bz(f)) + 9.

S C 7 let @ € spt N BS(€). Since & is a good point and &, x are near &g, the lower density bound
2
given in Proposition 5.2.5 holds and we get puBj(§) (Be£ (x)) =/ (B‘z (x)) > ¢p?. We get
2 2

M=

ép? < 'Hg (graph ulE N B (m)) +cp?t

l

Il
-

For p < pg, where pg = po(&o,€0, M), we conclude that Zf\il ’Hg (graph ulg N B¢ (gc)) > 0 and therefore
2
x € Ui\il graph ué
D et 2 € Uf\il gmphul5 N BS(§). Write z = = + ué(x) for some [ € {1,..., M} and some
2
x € L. fy € B¢ (x) N L; we claim that y + ué(y) € B$(z), indeed for € < gg (g9 maybe smaller ) we get
4 2

2=y — ub)] < |o —yl + Juk@) —uk()| < (1+ et ) o -yl < (14esb) 2 < 2.

Therefore

Hgraph ug (B'g(Z)) > /Be( . XB%(Z)(yJFulE(y)) dpy > c L2 (B%(x) le) — &2,
z)NL,

As above we obtain p (Beﬁ (z)) > ¢p? — cp?T™ > 0 for p < po, where py = po(€o,c0, M), and conclude
2

that z € spt p.
This shows (5.40). Now the claim (5.40) implies that the functions ufg do not depend on the point &
in the following sense: let n € ¥ N B%, (§y). Then we have for all p < pg that
2

M

U graphué N (Be( )N Bo(n
=1

raphu N ( B‘f(g) ﬁBZ(n)). (5.41)

HCz

In the next step choose p < pg such that u (63;(5)) = ’Hg\_graph ué (8B;(f)) = 0 for all [, therefore,

from (5.37),
M

peB(€) =Y H2 (graphug N BS(€)) + 6. (5.42)
=1
Let z € spt uN Bg(§) = Uf‘il graph ué N By (&) and let o > 0 be such that B (z) C By(£) and such that

(due to (5.37) for the point z) uLBS(z) = Zl]\;l H2L(graphul N BE(2)) 4 0., where the total mass of 0,
is smaller than co?t2.
From (5.41) it follows that 0 (BS(z)) = 0, (B&(z)) , hence we get a nice decay for the signed measure 6:

L 0(BS(2)

o—0 0‘2

M
=0 forall z €sptun By(§) = U graphulg N By (). (5.43)
=1
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Next we claim that for all z € spt 4N Bg (&) = Ul]\il graph ué N Bg (&),

r,fZ&Hé@wm%ﬂ%@ﬁ@ﬂm
i in o?

>C > 0. (5.44)

To prove the claim (5.44), let z € sptu N By(§) = Ull\il graph ul£ N B5(§) and let o > 0 be such that
Bg(2) C By(§). Let z € graph ué for some [, then

M2 (graphuf N B5(€)) (BS(2)) = M (graphug N BS(2)) = /L X pe oy (U + ug(y)) dg.
1
Now let z = = + ulg(a?) with @ € B5(£) N Li. We have that

1
|2 =y = wk()] < o -yl + Jub(@) —ub(v)] < (1+est ) | =y,

therefore

X Bg(z>(y+ué(y)) =1 iflz—y| < o

1+ ces
Estimating as before (5.44) follows (with €y maybe smaller).
Now for z € sptu N B () = Uf\il graph ul§ N B;(§) and o > 0 such that Bg(z) C Bj(¢), it follows
from (5.42), (5.43) and (5.44) that
pB3(§) (Bs(2))
S, H2 (graphul 0 Bg(€) ) (Bs(2)

0 (B(2)) '
S, M2 (graphul 0 B3 (€)) (Bg(2))

Since the right hand side converges to 1 this shows that D( M. H2 L (graphulBs(6))) (MLBg(g)) () =1

for all z € spt u N By(§) = Ui\il graph ué N B;(§) and the lemma follows from the Theorem of Radon-
Nikodym. m

Proposition 5.3.3. Let (M,g) and fi be as in i) or ii) of Lemma 5.5.1. Let p be the candidate
minimizer limit measure given by Theorem 4.2.6 or Theorem 4.1.13. Then there exists g > 0 such that
for all e € (0,&¢] the following is true: for every e-good point & there exist

- po = po(o:€0),

- 2-dimensional subspaces Ly C Te, M1 =1,..., Mg, ( by estimates in Lemma 5.2.7, Lemma 5.2.4 and
the above discussion M¢, < cf is uniformly bounded with respect to &) and

- functions ul&J : LiNBE (&) — Li-, with uéo e Ch(LN B, () NW22(Ly N B, (€0)) which satisfy the
following power decay

/Be( . |D?ug, |> < Co® (5.45)
o\ T i

for all x € B (§0) N Ly and all o > 0 sufficiently small,
such that for all p < pg the following equation holds

Mg,
,ul_BZ(go) = Z ’HgL(graph “lEo N B;(fo)) )

=1

PrROOF. In Lemma 5.3.2 we showed that there exists 9 > 0 such that for all € € (0,eg] the following
is true: for every e-good point & there exist pg = po(&o,€0), 2-dimensional subspaces L; C Te, M, 1 =
1,..., Mg, and functions uéo 1 LN By (§o) — Lit, with uéo e C%Y (LN B (&) such that for all p < p,

M
B (&) = S 'HgL(graph uléo N B;({O)) )
Here we have to prove that the functions uf are actually C1* N W?? regular. Observe that, by the

uniform bounds on the area and on the Willmore functional of the immersions fj in metric g, using Propo-
sition 5.2.3 it is easy to see that for pg maybe smaller we have 5, (BS (&0)) < C and [, (o) |Hg|2dus < C.
PO

Called VL B¢ (&) the varifold associated to fi(S*) N BE (&), where B (&) is endowed with eu-
clidean metric, with a Schwartz inequality we get the uniform bound on the first variation [6V)7| :=
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I} Be (€0) |Hf|dug < C. By Allard Compactness Theorem there exists a 2-varifold V¢ such that, up to
)

subsequences V¢ — V¢ in varifold sense; moreover the varifold V¢ has finite first variation and, applying
the theory of the measure-function pairs of Hutchinson (see Theorem 4.4.2 in [Hul]) to the measure-
function pairs (V,¢, HZ) (for more explanations see Appendix 6.6) we get that the limit varifold V¢ has
weak mean curvature H¢. Moreover, called u® its spatial measure, repeating the proof of Lemma 5.3.2
by replacing everywhere the Hausdorff measure 7{3 of the manifold with the euclidean Hausdorff measure

H2 we obtain
Mg,

pLBg (&) = Z H?20 (graph uéo N B5(%))
=1

for all p < pg maybe smaller. Notice that by the lower semicontinuity of the Willmore functional under
varifold convergence we have

/ |He|?dps < liminf/ |HE|?dus, < 211minf/ |AS |2 dug < cp®
B (£o) ko JBs() ko B

€

for 0 < p < po, po maybe smaller, where we used the inequality |H¢|? < 2|A%|? and Lemma 5.3.1.
Observe that for every § € By (§0), po maybe smaller, choosing pg¢ in a way that By, (&) < Bj, (%)
and repeating the arguments above just replacing § with { and pg with pg it is easy to check that the
following conditions are satisfied:

- there exist 2-dimensional affine subspaces ng CTe(eM,l=1,..., Mg, passing through &

i
- there exist functions ulg : Lf NBg (&) — ng , with ué e CO (LN B;.(€)
M,
- pLBp (§) = Sp Hzl_(graph ufE N B, (5))
- the radius power decay of the Willmore functional fBE(g) |He|2dps < cp™ for all p < pe.
P

It is not difficult to check that the graph functions ué are weak solutions to the following equation:

2

S 0 (Vdetg g/ 0,11 ) = Vdetg H o F i B, (€) N 1y

4,j=1

where F(z) =z + ué(x) and g;; = 0;; + 8iui- . ﬁjué; this follows directly from the definition of the weak
mean curvature vector and the graph representation of Lemma 5.3.2.

Using the bounds on Dul5 and the power decay of the Willmore functional above one gets for all
o < pe sufficiently small that (choosing € < g¢, €9 small enough)

/ |D2ul§|2 < c/ |D2ul§|2 + co®.
By (ONL] Bg(§)\Bg (L]

[D?ugf* <0 [,

all § € By (§0) N X and all o < p¢ sufficiently small.

Applying Lemma 5.5.3 we obtain [p. e |D2uf|> < co®. Tt is important to observe that ¢ and o do
o l

nLs |D2ug|? 4 co® for some 6 € (0,1), for

Now again by "hole-filling” we get || Be () ©nLs
2

not depend on § € Bf (§p). Finally, with a Schwartz inequality we get

1

2
/ |D2ul§| < co / |D2ul£|2 < colt
Be (&)L Be(£)nLE

for all £ € By (§o) Nspt 1 and all o < p¢ sufficiently small.

By the bound ||Dul£||Loo(B§£(§)) < ced, varying £ we observe that the planes ng are obtained from L'
by rotations of order 5 and translations. Since Ul]VflO graph uéo N Bg, ¢ = U;\iglo graph ul5 N Bg, (&) we
get that |D2ulgo |2 < c|D2ul€|2 + ¢ for g small enough; moreover, taken z € L' N B{ (£0) and called § its
projection on graph ulgo, it is easy to see that the projection of BS(x) N L; into Ll€ is contained in the ball

B¢ ()N Lf for some ¢ > 1 uniform on x.
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Hence, there exist C' > 0 and 0 < a < 1 such that for all z € L' N B (&)

/ |D2ul§0\ < c/ |D2ul£| +co? < Cotte,
B (x)NLy Be, (§)NLf

Since uy, € W2 (Bg, (¢0) N Ly, Li) and therefore Duj, € W' (Bg, (£0) N Ly, Li-), it follows from Mor-
rey’s lemma (see [GT], Theorem 7.19) that

Dug, € CO* (B, () N Ly, L)

and therefore that each graph function uéo e Cche (BSO (&) N Ly, LIL) This finally shows that for each
e-good point & there exists a neighborhood of &, in which our limit varifold is given as a union of
Ch* N W?2-graphs ug, : B, (&) N Ly — L;- with small gradient bounded by ces and such that

/ |D2ué-0|2 < Co®
Be(x)NLy

for all z € Bf (o) N L; and all ¢ > 0 sufficiently small. ®

5.3.2 Non existence of bad points

Let us start with a technical but useful Lemma.

Lemma 5.3.4. Let (M, g), {fr}ren and p be as in i) orii) of Lemma 5.8.1. Fiz an arbitrary £ € spt p
(good or bad point) and consider normal coordinates centered in & on a neighborhood U C M. Given
x € U take p € fk_l({x}) a preimage and consider the tangent space T, fi; we denote by (T, fi)*< the
orthogonal complement in the normal coordinates and with 1. the projection on (Tpfk)J-E.

Then for every € > 0 there exists pg > 0 small enough such that, up to subsequences in { [y},

|(z — &)*le

e <e foralze (fk(Sz) NBy(&)\ B} (E)) \ By (5.46)

where By, C f(S?) N BE, (&) with H? ( fe(8?) N B\ By () N Bk> < cep?.

ProoF. First of all, as before, by Nash Theorem we can assume that M C R is isometrically em-
bedded for some p; therefore the sequence {fi }ren can be seen also as a sequence of immersions in R¥.
Recall the uniform area bounds given by Proposition 4.1.1, Proposition 4.1.2 and Remark 4.1.3, and the
uniform bound on the Willmore functionals W ( fx); then the proof of Lemma 4.1.10 gives (4.6) namely
[ |Hseps|?dHis < C.

From (3.32) in [SiL] (for more details see also (3.54) in [Schy]) there exists po such that for p < 22,
up to subsequences in {fx}ren, for k large enough (the subsequence does not depend on p while the
largeness of k does)

on (fu(s?) N B (€)\ BE (€)) \ By

where By, C fx(S?) N B¥® (€) with H%gs (fk(Sz) N BéR; &\ B]g‘s n Bk> < cep?. Now it is easy to see

po/2
that N N
(=8 le _ [(x—§)"=5[ps
lz—¢&le T [z —&lrs
where remainder(p) | 0 as p | 0. Therefore, choosing py small enough such that for p < pg we have

remainder(p) < /2, M N (B5(€) \ BS(€)) € M N (B, (&) \ BE (&) and BE ,(€) N M € B, (§) N M,

+ remainder(p)

we obtain for such p

(@ —&)*<le

iz — ¢l <e foraullace(fk(SQ)mB;(f)\B’eg(g))\B,C
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where By C f,(S?) N BS, (€) with H2, ( Fr(8%) N BYE) \ By ()N Bk> <cept. m

Now we will handle the bad points and prove a similar power decay as in Lemma 5.3.1, but now for
balls around the bad points. Since the bad points are discrete and since we want to prove a local decay,
we can assume here that there is only one bad point . As in the Definition 5.2.1, there exists pg > 0
such that for p < pg and k sufficiently large

2

13

|AY |2 dpd < —.
/B“)\BE“) BOTR T2

g9
%0

Now the statements 4), i¢) and v) of Proposition 5.2.3 and Lemma 4.1.10, for a maybe smaller py we have

/ A2 dpg < &2, (5.47)
BL(O\Bg (€)
Now let us show that for p < po and k sufficiently large
£1(8%) 1085, (€) £ . (5.48)

Let & € fi(S?) be such that & — & Thus fx(S?) N ng(f) # () for k sufficiently large. Now suppose
that f(S?) N 6B§p(§) = (. Since f5(S?) is connected, Wé get that fi(S?) C B%p(«f). Due to Proposition
5.2.3 it follows that

diamg (f.(S%)) = (1 + O(p?)) diam,(f(S®)) < cp < epo,

and therefore, by choosing pg smaller, we get a contradiction with the lower diameter bound given by
Proposition 4.1.6 (or Proposition 4.2.3).
Let z € X N 8B§p(§); recalling Lemma 4.1.10, we may apply the graphical decomposition lemma to
4

fx, z and infinitely many k to get that there exist pairwise disjoint closed subsets Pf, ... ,P]’f,k C X such
that
Mk (Z)
- : . -
kN B‘Z% (2) = U graphuy, U U Pl N BZ% (2),
=1 n

where the following holds:
1. The sets P are diffeomorphic to discs and disjoint from graph uﬁf
2. ul € C“(@, (LL)h), where L! is a 2-dim. plane and Q) = (BAL (mp(2))N Li) \ U dfcym, where
)\5C > 1—”6 and where the sets dﬁam are pairwise disjoint closed discs in L%C.

3. The following inequalities hold:

My(z) <e¢, where ¢ < oo does not depend on z, k and p, (5.49)
Z diam dfmm + Z diam P* < ce?p, (5.50)
Lo 1 1
;HukHLw(Q;) + 1 Dug [l ey < cev. (5.51)
Remark 5.3.5. Notice that z € f,,(S?*)NOBS (£) was arbitrary. Now cover B, ., (§)\BS, , \ (£
ar (+1s)r (§—13=)r
by finitely many balls B‘;% with center in 8B§p(£), where the number does not depend on p, namely
4
I
B, B, B% (s
(%Jrﬁ)p(f)\ (%_ﬁ)p(f) - g 2 (i),



where y; € (“)ng(f) and I is an universal constant. From this it follows that there exist points {z},,. .., z,‘j’“} -
4
fx($?)n (“)Bep(f) with Ji, < I such that

3
1

Jr
fe(8) N B ONBly_1), 0 < U B (). (5.52)

(3+3s)e

Now denote by
(ZP|1<p< B (5.53)

the images via fi, of the connected components of fkfl(BEg_Fi)p(ﬁ) \ Bzﬁ—#)p(g))' From the above
4 128 4

128
inclusion, the universal bound on Jy, the graphical decomposition from above and the universal bound on

My, (2F) we get that
P, <c¢, wherec is an universal constant independent of k and p. (5.54)
In the next step we show that
dist (&, Lj,) < cesp foralll e {1,..., Mir(2)}. (5.55)
To prove this notice that Proposition 5.2.5 and Proposition 5.2.3 imply
(B (2) = ep®. (5.56)

Now to prove (5.55) notice that
(graphul, N BY () \ B 0,

where B, was defined in Lemma 5.3.4. This follows from the graphical decomposition above, the diameter
estimates for the sets P¥, the area estimate concerning the set B, and (5.56).

Let y € (graph ul B, (z)) \ By © ( fr(8?) N B\ By (g)) \ By. Tt follows that

1€ — 71,7, (&) <ely =& <e(ly— 2]+ 2= &) < cep.

Define the perturbed plane LL by Lt = L} + (y—ﬂLL (y)). Thus dist(Lk, L) = |y—7TLL (y)| < cedp (since
y € graphu! N BS (2)). Thus clearly, by Pythagoras Theorem, |y — Tt (71, £ () < |y — 71,1, (E) > <
32 c E 2

ly — €2 < ¢p?. Since Ty fy, can be parametrized in terms of Dul (y) over Lt we get that

77,7 (8) = 71 (77, 7 ()] < | Dl e ly — 77y (71, 7, (€))] < e p.

Therefore by triangle inequality we finally get (5.55).

dist(,L}) = |¢ =71y (©)]
< |e—muy (s ()]
< =75, ()] + 7,50 () — iy (71,5,(0))
+ ‘Wigc(WTyzk('f)) - Wle(WTyzk(ﬁ))‘
< ceép,

Since dist(¢, L) < cet p, we may assume (after translation) that ¢ € L for all 1 € {1,..., My(2)}
and k without changing the estimates for the functions u!. Moreover we again have that L! — L! with
¢ € L'. Therefore for k sufficiently large we may assume that Lﬁc is a fixed 2-dim. plane L'.

Now we have that either the point z lies in one of the graphs or can be connected to one of the graphs.
Without loss of generality we may assume that this graph corresponds to the function u,lC Subsequently
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we will work only with this function u,l€7 which is defined on some part of the plane L; with some discs
dy. ,,, removed. We will therefore drop the index 1. Define the set

Ti(z) = {T € <6p4 ﬂ? 32>

It follows from the diameter estimates and the selection principle in [SiL] that for e < gy there exists a

TE (&7 \/532) such that 7 € Tj(z) for infinitely many k.

Since £ € L, it follows from the choice of 7 that for € < ¢

OB (mr(2)) N Ud’“m = (Z)} .

6B§p(§) N aBi(TfL(Z)) NL= {pl,k7p2,k}7

where p; , P2k € (Be » (mn(z))N L) \ U,,, dk,m are distinct.
V232 )
Define the image points z; j, € graphuy by

Zik = Dik + uk(Dik)-
Using the L>-estimates for uy we get for € < g that gp <|zr—El < %p and thus [, (2i.8) |AS|? dus < €2
p(Zik

8
Therefore we can again apply the graphical decomposition lemma to the points z; ;. Thus there exist

pairwise disjoint subsets Pf’k, e vafk C fx(S?) such that
M; 1 (zik)
fx(S*) N BZ% (zig) = U graph uﬁ’k U U PiF N Bz% (Zik)s
=1 n

where the usual properties and estimates holds.

1. The sets Pi* are closed topological discs disjoint from graph u; k.

2. uik € C‘X’(Qé,k,(Lé,k)l), where Lllk is a 2-dim. plane and Qék = (Bké,k(ﬂLg,k(Zi’k)) ng:,k) \

U, dék’m, where Aék > 1—”6 and where the sets dﬁ)k)m are pairwise disjoint closed discs in L;k.

3. The following inequalities hold:

M; k(zi k) < ¢, where ¢ < oo does not depend on z; , k and p, (5.57)
Z diam dﬁ»7k7m + Zdiam Pk < e p, (5.58)
Lo ! 1

;Hui,k”Lw(Qé,k) +1Du gl ) < ce®. (5.59)

Now we have again that the points z; ; either lie in one of the graphs ui’  Or can be connected to one
of them. Without loss of generality let this be the graph corresponding to ullk We will again drop the

upper index. Since z; € graphuy it follows that dist(z; 5, L) < ces p and that graphw,; is connected
to graphug. Since the L*-norms of uy and u, ; and their derivatives are small, we may assume (after
translation and rotation as done before) that L; = L.

By continuing with this procedure we get after a finite number of steps, depending not on p and k,
an open cover of 8B§p(§) N L which also covers the set

V26477 V264

Now it can happen that after one ”walk-around” we do not end up in the same disc of f(S?) N B (2)
32

A(L){ery‘x6L,dist<x,3B§p(§)ﬁL)< p e Lty < -2 }

which contains the point z. But then we can proceed in a similar way and do another ”walk-around”.
Now by construction, the ”flatness” of the involved graph functions and the diameter bounds for the discs,
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every “walk-around” corresponds to a part of fi(S?) with an area that is bounded from below by cp?,
where c is a universal constant independent of & and p. On the other hand we have that g (BS(£)) < cp®.
It follows that after a finite number of ”walk-arounds” (which is bounded by a universal constant) we
have to get back to the disc of f,(S?)N Bz% (z) which contains the point z.

We summarize the above procedure and the resulting properties in the following remark.

Remark 5.3.6. If ¢ < ¢q, for each component f)i there exist pairwise disjoint subsets Plk’p, . ,Pﬁﬁp C
fx(S?), a natural number k, € N and a smooth function ul defined on the rectangular set

B£:{<<i_ﬁ{&l)p,<z+m) ) ozﬂ U,

where the d}, = are closed discs in ((% — ) 0, (i +

1
V264

. 7561 )p) x [0, 27ky), such that

S = | By (graph UF) uUP’P N By, 1, O\ Bl (O,

128 47 128

where graph UY = {(re®, uf(r,0)) | (r,0) € BL} and R, denotes a rotation such that R,(R?) = L, where
L, is the 2-dim. plane from before. Moreover we have

. . k, 1 1 1
Zdlamdi)m + Zdlaij P < cezp, ;”Uz”Loo(Bi’) + [ Dug| oo (pry < cet.
J
We may assume without loss of generality that the discs df, k.m e pairwise disjoint, since otherwise we

can exchange two intersecting discs by one disc whose diameter is smaller than the sum of the diameters
of the intersecting discs.

Now let p < pg and define the set

o -{re((G- )25

It follows that

. . 512
ABE(€) N Upfv” =0, - |AR? dsf; < 752

£1Cul€) = 550

since by the diameter estimates for the ”pimples” we have for € < g¢ that

31 31
1 —_— — —_— R
£ g€(<4 256)p’(4+256> >

and therefore we would get, assuming that £'(Cy(£)) < 150,

o nJpkr =0t > o

62

V

|Ae|2d,ue

/EkﬂBe( )\BE ©

Y
,—Aﬁ\
™
AN
—
N[
|
‘H

/ |Ae)® ds. do
250 (3435 )p)| 0BE ()N, ; PEP=0 \Ch(€) J 0B (¢)

Again it follows from the diameter bounds, a simple Fubini argument and Lemma 5.5.2 that there exists
ao e (( 2é6) ( + 206) ) such that o € Ci(€) for infinitely many k& € N. Denote by

{St<a<ai} (5.60)

the images of the components of f,~ L(B<(€)). By Remark 5.3.5, we get that @y, is bounded by an universal
constant which is independent of k£ and p.
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Lemma 5.3.7. Suppose that
1
§/|Ai|2dui <dmr—§

for some § > 0 (this holds in both our cases by Lemma 4.1.4, and Lemma 4.1.14 together with Proposition
4.2.3). Then for e < e each X is a topological disc. Moreover we have that k, =1 for all p (for the
definition of k, see Remark 5.3.6).

Proor. Fix k € N. First of all we construct a new surface ¥, such that, called [, the associated Radon
measure, we have

(1) e Bs () = pieBs (8),

(i%) / Kgdjy| < ced (K¢ = Gauss curvature of ),
B, (O\BE(9)
(§+1hs)e

(’LZZ) / Kedp, = 0.

3.1
(Z+128 4

To define ¥ recall Remark 5.3.6 and notice that Zp’m diam dﬁm < ceép. Now denote by My, the

number of all discs dp Because of the diameter estimate it follows for ¢ < gy that there exists an

interval I! C ((2 — 256) p, (2 + 535) p) with £H(I7) > mp such that (I}, x [0,27k,)) NU,, d}. ., =
Let I} = (af,b}) and ¢, € C>((0,00) x [0,27k,)) with 0 < ¢, < 1 such that

0p =1on (0,a’) x [0,27k,), @, =0on (bf,00) x [0,27k,), [Dp,| < i and [D2g,| < ,762'

Now define new ”components” %7 by

P _ P k,p e e
%P = | R, (graph U}) U UP NBly, 1), O\ Bl 1), ),
where graph U? is given by
graph UP = {(rew,gop(n O)ul (r, 9)) ’ (r,0) € BZ} ,

and R, denotes a rotation such that R, (R?) = L, where L, is the 2-dim. plane from before. Namely we
just "flattened out” the components .
Now define the new surface ;. by

ik:<(fk(82)m3é Iy )\UE”)UU (ZPU L)

By definition i) follows immediately. Since 3 \ Bfé-s—#)p(s) =U, Ly \ Bfé-s-#)p(g)’ we moreover have
4 128 4

128

fz’“\BE ) © K¢ dfir, = 0. To prove property (ii) above notice that
Z 128 )P
/_ |Ke|du, < / |KG|de+Z/ | K| djig.
BBy 1, OB O 1 ENBO\BY (© (eraph U7)
4 128

Now the first integral on the right hand side can be estimated by

1
/ Keldui < 5 [ A2 dyg < &2,
fk(SQ)ﬁBS(é)\B% © BZ(&)\B% 6)

The second integral can be estimated by

1
[ Keldm<g [ AP <c [ Dol
R, (graph Ulf) graph U? B?

k
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Because of the properties of the functions v} and ¢, we have

1
£3
[D(ppuy)|” < e (JufP[D%0p|* + | Dup [P Doy |* + [0 |*| D [*) < ezt | D*u?
and therefore we get

/ D> (puf)? < ee5 + c/ |AGJ dpsf, < ceb + c/ |AS|2 dps < ceb.
B graph U B3 (O\Bj (&)

Thus the desired property (ii) is shown (here we also use that 1 < p < P, < ¢) and the construction of
¥ is concluded.

Now denote by N : £, — S? the Gauss-map. Since the degree of the Gauss-map deg(NN) is half the
Euler characteristic, it follows from Gauss-Bonnet that

1 1 1
de(V) = o [ Kedi = [ Kedit [ Kedm
T Js d 0By, 1) (O\B(8) T JSknBs ()
477128 )F

and therefore we get using (ii) above that

ol

< ces.

/ K¢ dpy — 4 deg(N)
SrNBE(£)

On the other hand it follows from the assumptions and Proposition 5.2.3 that

o e 1 e e 6
/_ Kgdj,| = / Kg dug, 35/ \A,;\Qdu,;§47r—§
TeNBg(£) Fk(8?)NBg(£) Bs(€)
by choosing po smaller if necessary (remember: p < pg). Since deg(N) € Z it follows for € < g that
/ Kedus| = / K dfi| < ce5. (5.61)
fe(8)NBE (&) SrNBg(€)

Now by the choice of o we have for all p =1, ..., P that
Sk NOB(8) = v,

where each 1, is a closed, immersed smooth curve and where P} is bounded by a universal constant.
By construction and the choice of ¢ we have that v, N Uj Pf’p = (), therefore (see the almost graph

representation of X7 above) vy, is almost a flat circle of radius o which can be parametrized on the
interval [0,27k,). After some computations it follows from the choice of ¢ that (called x the geodesic

curvature)
2 L
1 e e 1 1 e|2 e 1 o\* L1
<ced +c | |Ajldsy < cet +co? |Az|“dst | <ces +c| =) e<ces,
g 9B () p

/ kdsy, — 2mky
.
and therefore it follows from the bound on P, that

P P

Py

kds; — 2 k
/833(@ ko) k

p=1

< ces. (5.62)

On the other hand we have that f5,(S?)NBS (&) = UqQ:’“1 %9, Now the Euler characteristic of the components
is given by ~

X(2%) = 2(1 = gg) — by,
where b, is the number of boundary components of EZ and g, is the genus of the closed surface which
arises by gluing b, topological discs. Especially we have that

Qk
by >1 and qu = P.

g=1
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By summing over g we get that the Euler characteristic of UQ’c Zk is

Qk Ox
XE <U 2%) =2(Qk —9) — Py, withg= qu > 0.

g=1 g=1

Since Qr < Pi we finally get that

Py,
1
Pk22(Qk—g)—Pk:f Kgd/,l, —‘y—* KZCZSZZZ]{IP—C€%ZP]€—CE%.
27 J . (s2)nBg () 21 J p(s2)noBg (6) ponr]

Since 2(Qr —g) — P, € N it follows for € < ¢y that P, = 2(Qr —g) — Px and therefore (since Qi < Pj) that
Qr = P and g = 0. It follows that g, = 0 and b, = 1 for all g. This yields that the Euler characteristic
of EN]Z is 1 for all ¢ and therefore each ENEZ is a topological disc. Moreover the estimate above yields that
kp=1forallp. m

Remark 5.3.8. Notice that it follows from the last Lemma and Remark 5.3.6 that for each component
Z of ¥ N B( o &)\ BES . )p(ﬁ) there exist pairwise disjoint subsets Plk’p, cee Pllf,fp C Y and a
128 17 128 ’

smooth function ) defined on the rectangular set

-t e G t)) oo U

where the d?  are pairwise disjoint, closed discs in ((§ - ) 0, (% + — ) p) x [0,27), such that

k,m

4 V264 V264

5 = | By (eraph U}) uUP’“’ N By, 1,6\ Bl ), (0,

128

where graph U} is given by
graph U? = {(Teie,ui(r,e)) ‘ (r,0) € B,’;}
and R, denotes a rotation such that R,(R?) = L,, where L, is the 2-dim. plane. Moreover we have

Z diamdf  + Z diam Pf’p < ceip,
m J
Lo P %
*||“k||L°¢(B§) + ||D“k||L°c(Bg) < ces.
Moreover it follows from the last Lemma that the number of components of ¥ N B( 34 1 )p(f) equals
4 128

the number of components of ¥; N B(§+#)p( ) \BEE_L),;(S)' ]

128 128

Define the set

C{;_{ (o, 1;)8)|<(ip+5) 027r) Ud }

By the diameter estimates for the discs dk mn and Lemma 5.5.2 there exists a s € (0, 128) such that s € C},
for infinitely many k.
Now define the set
512
Dy — seC”/ A dsg < = [ 1AL
R, | graph U
( T () >>
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As before there exists s € (0, ﬁ) such that s € DY for infinitely many k and u} is defined on the line
(2p+s) x [0,27). Now it follows from the last Remark that R,(graph U’fl ) divides fx(S?)

((%ers) X [0,2«))

into two topological discs X7, £57 one of them, w.l.o.g. £5?  intersecting ng(f).
4

From the estimates for the function u} and the choice of s we get that Zlf’p C B¢ ) (¢) and Lemma

(3+13s)e
4.1.10 yields p¢ (S5P) < cp?.

According to the Lemma 5.5.1, let w} € C*° <B§p+s &) NLy, L;) be an extension of Ry, (U}) restricted
to aBépH(f) N L,. In view of the estimates for u} and therefore for w} we get that graphw) C

Blaran)o©)

Now, we can define the surface ¥, by

S = (fk@?) U E’f””) U graph wf

p

and we can do exactly the same as in the proof of Lemma 5.3.1 to get the same power decay as for the
good points, but now for balls around the bad points. But by definition the bad points do not allow a
decay like this, and therefore we have proved that there are no bad points.

5.4 (C* regularity of the minimizer

At this point we proved that the candidate minimizer limit measure p is locally the measure associated
to O N W22 graphs. To prove higher regularity we have to show that such graphs satisfy the Euler
Lagrange equation of the functional. Since we started from a minimizing sequence among immersions of
2-spheres, we first have to show that yp is the measure associated to an immersion of a 2-sphere, then we
will prove that the graphs satisfy the equation and finally, using a PDE Lemma of Simon and a bootstrap
argument, we conclude with the smoothness of .

5.4.1 CY*N W22 parametrization on S? of the limit measure ;.

Up to now we have shown that the limit measure p is everywhere the sum of the Radon measures
associated to the graphs of some C*NIW 22 functions; now we want to show that there exists a C*NW 2?2
immersion f : S? < M such that x is the Radon measure on M associated to f. In order prove this,
let us show that we can modify the immersions {fi}ren of the minimizing sequence such that the new
immersions fj, are generalized (r, \)-immersions for some A < ; and r > 0 ( see Definition 5.5.5) and the
associated measures iy converge to u weakly as measures.

Lemma 5.4.1. Let f and p as before. Then it is possible to modify the smooth immersions {fy : S? —
M}ren into the new CH'-immersions {fi : S* — M}ren which are generalized (r, X)-immersions in the
sense of Definition 5.5.5 with A < 1, some r > 0 and |f,(S?)| < C, namely { fi}ren C F&(r,N).
PrOOF. Recall that both p and the fi’s are locally representable as union of graphs and pimples in the
following way: for every £ € spt u there exists r¢ > 0 and there exists K¢ such that

i) for k > K¢ we have pgc By, (€) = S HgL(graphuf ulU; PFn B, (§)> where uf are smooth
functions defined on appropriate planes L; with the usual properties and estimates (see Lemma 5.2.7),

i) pe By, (§) = Z;\iﬁ ’HgL(graph up N B, (f)), where u; are C1*NW?2? functions defined on the planes
L; (see Lemma 5.3.2).

For ¢ € spt it denote pg := sup{re which satisfies i) and ii) }.

Claim. We have that p := inf{p¢ : £ € spt u} > 0.

Proof. If by contradiction p = 0 then there exists a sequence {§; };en of points in spt u such that ps, — 0.

By compactness of spt u, up to subsequences & — & € spt y; let r¢ > 0 be as in i) and ii) above. Since

& — &, we have B%, (§) C By, (&) for i large therefore on the ball B%, (€;) we have the desired graphical
= z

decomposition i),ii). It follows that pe, > % > 0, contradiction. O
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By compactness of spt u there exist {&1,...,&5} C sptu such that sptu C U}I:1 B¢ (&;). Since f(S?)
4
converges to spt y in Hausdorff distance sense, for k large we also have f,(S?) C szl B (&;).
4
M, . A
From i) above recall that .. B5(§;) = l:f 'HgL(graph u;w ulU, P n B;(fj)).

[S]hsY]

By the diameter estimates on the pimples Pik’j and the selection principle 5.5.2 there exists
such that 9B;(&) N, ; PRI —( for all I € {1,...,J} and for infinitely many k.

Of course we still have that - x fi (S?)Usptu C U}I:1 Beg (&) and the graphical decomposition as
in 1), ii) still holds in Bg(&;).

First consider f(S*)NBE(&1). We replace the pimples (PP}, 1 of f1.(S?) NBE(&1) with the extension
Lemma 5.5.1 as done in the proof of Lemma 5.3.1 (see (5.20) by graphs of functlons with small C'-norms
defined on the discs di’ . It follows that the area of these graphs is bounded by c¢(diam dl- )2, thus
the sum of the areas of all the graphs is bounded by ¢}, (diam dk‘l) < cep, which followed from the

graphical decomposition lemma. Notice that by the choice of p no pimple intersects 836(51) and we
obtain a new C! immersion f! : S* < M such that

€ (

)
NS

)

7

My
Fe(S)\ B(&) = [RS8\ Bg(&),  fi(S*) N Bg(&) = | graphwf,. (5.63)

=1
Moreover by the above area estimate we get | f(S?)| < |fx(S?)[+ cep. Observe that wy; : L} N B(&1) —
(LY)+ are C1! functions which satisfy: %le’leLoo + [|[Dwfy || < ces + 0 with & — 0. Moreover we
have that uLBg(&1) = ey H2L (graphug N BE(£1)) and by the construction after Lemma 5.3.1 we have

that wl’fl — 1,1 uniformly.
Now consider some &; such that B% (&) N Bq (&) # 0, without loss of generality we can take j =

AM

2. Recall that ppcBg(62) = > ;- 1?—[
defined on appropriate planes L ».

Observe that on the intersection of the doubled balls, fi(S?) N B&(&1) N BS(&2) = U;\ill graph wl’fl

and because of the C' estimates for wl’fl and uf’Z and the diameter estimate on the pimples, these

functions can be written as graphs on the planes L; > satisfying analogous estimates. We conclude that
fH(S?) N BE(&1) N BE(&2) = UM graph wf, where now the functions wy’, are defined on the planes Lj.
From (5.63), the graphical representation of fi.(S*)NB&(&2)\ Bg(£1) and the choice of p, we can replace the
pimples inside B5(&2) \ B5(£1) with new graphs as done before obtammg anew C1! immersion f7 : §* —

M which is union of graphs (without pimples) in both balls such that the corresponding graph functions
converge uniformly to the graph functions representing p, and such that |f2(S?)| < |fx(S?)| + 2cep.

Repeating the above procedure a finite number of times we obtain the desired C''! immersion fk
£l S — M with |f,(S?)| < |f(S?)| + ¢Jep < C because of the uniform area estimate given in
Proposition 4.1.1, Proposition 4.1.2 and Remark 4.1.3.

Now let us show that the C! immersion fk are actually generalized (r, A\)-immersions. Recall that
sptu C U‘jjzl Bg(&;) is an open cover of sptyu, then by Lebesgue Lemma there exists the Lebesgue
number p > 0 with the following property: for every { € spt u we have that B§(£) C B5(¢;) for some
je{l,...,J}.

Now observe that also fk(Sz) converges to sptu in Hausdorff distance sense (this follows by the
uniform convergence of the corresponding graphs), then B z (fu(S?)) C U}‘]=1 B5(&;) for k large. Let

graphuf, UJ; PPN B%fg)) where 4> are smooth functions

us take a point p € S? and observe that B¢( fe(p)) C B£(&;) for some j; therefore by construction
2

7 r e(f M; e 3
of fr we have fx(S?) N B%(fk(p)) = U2 graphw{fj where wl’fj : LEn Bg(wﬁ(fk(p))) — (Lh)*
CH! functions which satisfy ||lek;j||Loo < ceb + 0 with 0 — 0 (where 7} denotes the orthogonal
projection onto Lé) Now let us recall that by Nash embedding theorem we can assume that our ambient

manifold is isometrically embedded in some R¥; let us denote by A’;’ 7 : R® — RY an Euclidean isometry
which maps the origin to fi(p) and the subspace R? x {0} onto fx(p) + (Lh — Fg(fk(p))) We get
that f(S?) N Be~ (fe(p) = Ul | (AIc L (graphwl])> where zf)lkj : R?2N Be~ (0) — (R?)* is given by
ar; = (A’; Ll) 1owl ' oA —(fre(p)— (fk( ))) are C'! functions which sat1sfy |1 D@f ;|| L < e + 0y,
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with 0 — 0. Now call Ug,p C S? the p-component of the set (m o (A;L;.)_l o fr) Y (R% N B%(O))
where m : RS — R? is the projection on the first two coordinates. By construction we have that
(A’;’L;)*1 o fk(Ug,p) = graphay;, where @f; : R* N B%(O) — (R%)1 is a Cb! function which satisfies
| DWF || < ce® + b, with 6 — 0.

For any A < i,
have that fi : S2 < M is a generalized (g, A)-immersion. W

choosing in the beginning of the construction € small enough, for k large enough we

By the compactness Theorem 5.5.6 for generalized (r, \)-immersions of Breuning, we know that there
exists a generalized (5, \)-function f:S? < M (see Definition 5.5.5) and diffeomorphisms ¢y, : S — S?

such that fy, o ¢r — f uniformly. Let us briefly recall Breuning’s construction of the limit f (see page

57 of [BreuTh]). Let ¢ be in S* and ¢, = ¢x(g); by the uniform convergence of the fj, o ¢y we have that

for k large BS (fi(qx)) C B5(;) for some j. By the construction carried in the proof of Lemma 5.4.1 we
2

know that for each large k ~
(Af, ) o Ju(UE ) = graphaf;.

As Breuning proves, there exist A-Lipschitz functions %, ; such that

k k - _ -
wl’fj i))oul,j and (Aqué) 1 of(Uqu) = graph 4y ;.

On the other hand we know from the representation of the limit measure p we have

M

peBS(&5) =Y H2c(graphw,; N BE(S))
=1

where w; are C¢ N W22 functions defined on the planes L] (see Lemma 5.3.2) and A, ;1 o Wy o
L :

(A o)™t oo uy,;. By uniqueness of the limit it follows that @;; = (A, 1)~ o uy; o A, 1 is actually
> ) >
Ch* N W22 and A, 1 (graphy ;) = graphu ;. Thus

()

f(Uqu) = Aq’Lé (graph @ ;) = graphug ;.

We have therefore shown that the generalized (2, \)-function f : S? < M is actually a CH N W22
immersion and g is the Radon measure on M associated to the immersion f. Henceforth we have just
proven the following Lemma.

Lemma 5.4.2. Let fi and p as before. Then there exists a CY* N W22 immersion f : S? < M such
that p is the Radon measure associated to the immersion f.

5.4.2 Smoothness of the immersion f parametrizing u

First of all let us point out that via a standard approximation argument one can check that
inf{E(h)|h : S* < M smooth immersion } = inf{E(h)|h : $* < M C' N W>? immersion }

(analogous equality for W7 replacing F). Then by lower semicontinuity (Theorem 4.2.6 and Theorem
4.1.13) the limit immersion f constructed in Lemma 5.4.2 minimizes E (respectively W) among C1NW 2?2
immersions of S? into M, in particular it satisfies the Euler Lagrange equation (at the point z)

B/(f)la] = SH — SH(H? 2147 = Ry(f(2) + (Vo E)(T.f)

where A is the Laplace Beltrami of the immersion f and as before R, and V., K are respectively the
scalar curvature and the covariant derivative of the sectional curvature of the ambient manifold (M, g)
(instead, the Euler equation for Wy is Wi(f) = $AH — $H(H? — 2|A|? — 2Ricy(v,v) + 4) where, of
course, Ricy(v,v) is the Ricci tensor of (M, g) evaluated on the unit normal v to f). It is a long and
tedious computation but it is possible to check that the Euler Lagrange equation of E (resp. of W) fits
in Lemma 3.2 in [SiL].
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It follows that the functions u! representing p are actually C%* N W32 and the L? norm of the 37
derivatives satisfies the power decay [ B |D3u!|? < cp®. Now using the difference quotients method one
I3

proves that the functions u! are actually C*® N W2 and the L? norm of the 4*" derivatives satisfies the

power decay [ B |D*u!|? < ¢p®; continuing this bootstrap argument one shows the smoothness of u! and
P

thus that of f.

5.5 Appendix to regularity theory

5.5.1 Some useful lemmas

The following Lemmas have been used in the regularity theory and their proof is essentially due to Simon
(see [SiL]). Simon’s formulation of the next lemma a is bit different, here we use a little modification
given by Schygulla in [Schy] which has the advantage of having a more constructive proof.

Lemma 5.5.1. Let L be a 2-dimensional plane in R™, xo € L and v € C* (U, LL) where U C L
is an open neighborhood of L N 0B,(xg). Moreover let |Du| < c in U. Then there exists a function

w e C® (m, LJ-) with the following properties:

1) w=u ondB,(xg)

ow Ou ,
2.) o =5 " 0B,(xo) (v = outer unit normal to OB,(x))

1 1
3.) ;||wI|Lw(Bp(xo)) <¢(n) <pIU||Loc(aBp(mo)) + IDU||Loc(aBp<mo))>
4.)  ||Dwl|Lee (B, (z0)) < c(M)||DullL= (0B, (z0))

5.) /B D@ < ey / A()? dy

graph u|aBp(m0)

The next Lemma can be found with proof in the appendix of [SiL]

Lemma 5.5.2. Let § > 0,1 C R a bounded interval and Ay, C I,k € N, measurable sets with L*(Ay) > &
for all k. Then there exists a set A C I with LY(A) > § such that each point x € A lies in Ay, for infinitely
many k.

The Lemma below is a little modification of what Simon uses in [SiL], hence we give a proof.

Lemma 5.5.3. Let g: (0,b) — [0, +00[ be a real valued bounded function such that

g (z) <vg9(2z) + Cz® for allx € (0, Z)

wh > U, v < (05 1) and C some pOSili?}@ constant. lthHOU)S that there exists B c (1), ) and a constan
¢ C (bv ||g||L°°(0,b)> such that 0 ant
g(x) < C.’L’ f()7 a” S (0, b) .

PROOF. First of all observe that since g is non negative we can choose v € (0,1) maybe a little larger

such that v # (%)a Next choose 8 € (0,min(1, «)) such that v < (%)B Now let = € (%,b) and m € N.
It follows that

m—1

g(27™x) < 4Mg(x) + Z Cy? (Zj*ma:)a.
5=0
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Let us estimate the second adding term in the right hand side:

m—1 m—1
i @ c o ] c 1—20mym
Cy (27Me)" = e (27) = o™ — ~gany
j=0 j=0
m O « m —m [e]) m —-m €T [e3
< Cyy™ + Sam 2" = Cyy™ 4+ C (27"z)" = Cyy +C’<2 bg)

< Cpyy™ + Gy (2”’%)5 ,

therefore it follows that (since g is bounded)

b
g(27 M) < Ch,llglnoeom " + Cb (27mx)ﬁ for all x € (2, b) and m € N.

b

Since g is bounded, for m =0 and x € (5, b) we have

2z x x\b 5
9(x) < C=lgllz=©0) < Clgleon 3 = Clslixon g < Clgleos (g) < Collgllzoe o

Now for m > 1 let I,,, = (2_(m+1)b72_mb). For y € I,,, there exists z € (g,b) such that y = 27"z and
. B
therefore we get (notice that y™ < (2)" y”)

9W) < Cojgllmeion Y™ + Cot” < Cojgl om0 8"
Therefore the lemma is proved. m
Lemma 5.5.4. Let ;1> 0,6 € (0,4) and Q = sz (0)\E where E C R? is measurable with £ (p1(E)) < &

and LY (p2(E)) < & where py is the projection onto the x-awis and py is the projection onto the y-axis.
Then for any f € CY(Q) there exists a point (xq,yo) € 2 such that

/ F = Flo, o) < Ou? / IDFI? + Copsup |2
Q [9] Q

where C is a absolute constant.

PrOOF. First consider the case p = 1.
Let f € C1(Q) and define the set S by

It follows by assumption that

We also have that
L,NE=0 forallz € S

where I, = {(z,y) |y € R}. Now let T" C S be given by
T.— {xGS‘/ IDf(z, ) dy<4/|Df|2}.
1.NQ Q

L£NT) >

It follows that

e~ w

since otherwise we would have that
[t = [ [ pseuPdpde> [ o[ 0 =a(eis)- £1m) [ 05
Q S\T J1,nQ S\T JQ Q

> a(1=3) [pse= [ pre.
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a contradiction.
Since L1(I, N Q) < 2 for all z € T and |f(z,y) — f(z,0)] < flmQ |Df(z,y)|dy for all y € I, N Q we
therefore get, by using the Cauchy-Schwartz-Inequality, that /

sup |f — f(z,0)[? §8/ |Df|? for all z € T.
Q

1:NQ
b b
/ h2 S (b—a)2/ (h/)2

holds for every function h € C((a,b)) such that h = 0 at some point of (a,b).
For y € (—1,1)\p2(E) define the set L, = {(z,y)|z € R}. Since £}(L, N Q) < 2 we get for all
y € (—1,1)\p2(F) and all zy € T that

On the other hand the inequality

[ e - faonPa<a [ |pse
LynQ LynQ
By the above estimates, we conclude that for all y € (—1,1)\p2(F) and all zo € T
[ 1w - seoPd<a [ pEes [ pse
LynQ LynQ Q
By integration over all y € (—1,1)\p2(FE) we get that
[\ e~ f@oP < [ DfF forallm e
Q\p; ' (E) Q
Since |f(z,y) — f(20,0)|? < 4supg |f|> and £L2(QNp; ' (E)) < 2§ by assumption, we also get that
/ |f — f(20,0)]> < 8Fsup|f|* forall zg€T.
Qnp; ' () Q
Therefore we conclude that
/ If = f(z0, ) < c/ IDf2+ Cosup|f|2 for all z € T.
Q Q Q
Since T # () the Lemma is proven for u = 1.
Now let p1 > 0 be arbitrary and f € C1(Q). Define the set
| .
Q=-0=B;(0)\FE
U
where the set E is given by E = iE By the assumptions it follows that

J

LYpi(E) <= and LY(p(E)) < - <

N —
|

Define also the function f € C1(Q) by f(z) = f(ux). From the p = 1-case it follows that
2 2 5 -
|7 =i < [ pi] +c2 sl fp (564
Q Q Hog

for some point (Zg, 7o) € 2.
Elementary calculations using the transformation formula show that

/Q ‘JZ— F(@o,90)

oAt

Plugging the last formulas in (5.64), the desired estimate follows for arbitrary p > 0. ®

’2 = “_2/Q|f - f($0,y0)|2 where (z0,y0) = p(To, o) € 2,

/ D and suplfP = sup|fP
Q Q Q
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5.5.2 Definitions and properties of generalized (r, \)-immersions

In this subsection we briefly recall the definitions and properties of generalized (7, A)-immersions of
f:S? < M c RS appearing in [BreuTh].

We call a mapping A : R® — R a Euclidean isometry, if there is a rotation R € SO(p) and a
translation 7' € R¥, such that A(x) = Rz + T for all x € R¥.

For a given point ¢ € S? and a given 2-plane E € G(p,2) let Ay R% — RS be a Euclidean isometry,
which maps the origin to f(q) and the subspace R? x {0} C R® onto f(q) + E.

Let U, C S? be the g-component of the set (w0 A, o f)~'(B,), where w : RS — R? is the projection
on the first two coordinates.

Definition 5.5.5. An immersion f : S? < (M,g) C R® is called a generalized (r,\)-immersion, if for
each point q € S? there is an E = E(q) € G(p,2), such that A;}; o f(qu) is the graph of a differentiable
function u : B, — (R?)* with || Dul|co(p,) < A

The set of generalized (r, \)-immersions is denoted by F'(r,\). Moreover let F-(r,\) be the set of
all immersions f € F'(r,\) such that |f(S*)| <V (of course |f(S?)| is the area of S* with respect to the
pullback metric f*g).

A continuous function f : S* < (M, g) C R® is called an (r, \)-function, if for each point q € S? there
is an E = E(q) € G(p,2), such that A{;}E o f(qu) is the graph of a Lipschitz function u : B, — (R?)*
with with Lipschitz constant .

The set of (r, \)-functions is denoted by FO(r, \).

Now we recall the compactness theorem Theorem 0.5 in [BreuTh].

Theorem 5.5.6. Let A < 1. Then Fi.(r,\) is relatively compact in F°(r,\) in the following sense: Let
fr :S? = (M, g) C RY be a sequence in FL(r,\). Then, after passing to a subsequence, there exists an
f € FOr,\) and a sequence of diffeomorphisms ¢y : S* — S?, such that fi. o ¢i is uniformly Lipschitz
bounded and converges uniformly to f.
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Chapter 6

Existence and partial regularity of
minimizers for supercritical L”
curvature integral functionals in
Riemannian manifolds, arbitrary
dimension and codimension

In this chapter we prove existence and partial regularity of integral rectifiable m-dimensional varifolds
minimizing functionals of the type [|H[? and [ |A|P in a given Riemannian n-dimensional manifold
(N,g), 2 <m < n and p > m, under suitable assumptions on N (in the end of the chapter we give
many examples of such ambient manifolds). To this aim we introduce the following new tools: some
monotonicity formulas for varifolds in R® involving J|H|P, to avoid degeneracy of the minimizer, and a
sort, of isoperimetric inequality to bound the mass in terms of the mentioned functionals. The content of
the chapter corresponds to the paper [MonVar].

6.1 Monotonicity formulas for integral m-varifolds with weak
mean curvature in L, p >m

Let V = V(M, 0) be an integral varifold of R (associated to the rectifiable set M C R® and with integer
multiplicity function 0) with weak mean curvature H (since throughout this section we consider only
varifolds in R and there is no ambiguity, we adopt the easier notation H for H RS). Let us write p for
py = my(V) the push forward of the varifold measure V on G,,(IN) to N via the standard projection
7w Gpn(N) = N,7(z,P) = x (see Appendix 6.6 for more details); of course uy can also be seen as
wy = H™|0, the restriction of the m-dimensional Hausdorff measure to the multiplicity function 6.

The first Lemma is a known fact (see for example the book of Leon Simon [SiGMT] at page 82) of
which we report also the proof for completeness.

Lemma 6.1.1. Let V = V(M,0) € IV,,(R®) be with weak mean curvature H as above and fix a point
x9 € M. For p-a.e. x € M call r(z) := |z — 20| and D*r the orthogonal projection of the gradient vector
Dr onto (T,M)*+. Consider a nonnegative function ¢ € C1(R) such that

Pt)<OVteER, o¢t)=1fort< () =0 fort > 1.

N =
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For all p > 0 let us denote

=
>
|

/ o/ p)dp

M

L) = [ olr/o)a=a0)- Han
Jp) = /qu(r/p)mlrﬁdu;

then
d

ol 0= (o) + p~"L(p). (6.1)

ProOF. The idea is to use formula (6.44) and chose the vector field X in an appropriate way in order
to get informations about V. First of all let us recall that for any function f € C'(R%) and any x € M
where the approximate tangent space T,, M exists (it exists for p-a.e. © € M see [SIGMT] 11.4-11.6 ) one
can define the tangential gradient as the projection of the gradient in R® onto T, M:

S
VMfi=>" PI'D f(z)e;

j,l=1

where D, f denotes the partial derivative % of f, P! is the matrix of the orthogonal projection of R
onto T, M and {ej}j:Lm,S is an orthonormal basis of RS. Denoted V;-V[ =ej - VM recall that the

tangential divergence is defined as
s

divy X = VI XT;
j=1

moreover it is easy to check the Leibniz formula
divar fX == VM f. X + fdivy X Vf € CHR?Y) and VX € CH(R®) vector field.
Now let us choose the vector field. Fix p > 0 and consider the function v € C!'(R) defined as
A(t) = (t/p);
then of course we have the following properties:

V() <O0VteR, ~(t)=1fort< y(t) =0for t > p.

[N

Call r(z) := |z — x| and choose the vector field

Using the Leibniz formula we get

divyX = VM) - (x — x0) +y(r)diva (x — x0)
@ =) (= @)
= Y (r)5— —— +my(r)
|z — o] |z — 0|
= Y/ (r)(1 =D r?) + mr(r), (6.2)
(xfmo)L

where u” is the projection of the vector v € RS onto T,M and Dtr = is the orthogonal projection

|[z—z0|

of the gradient vector Dr onto (T, M)1. The equation (6.44) of the weak mean curvature thus yields
m [ A@dns [ 0= [ D P [ @@ 63)
M M M M

Now recall that ¥(r) = ¢(r/p), so ry'(r) = £¢'(r/p) = —p%[(ﬁ(r/p)]. Thus, combining (6.3) and the
definitions of I(p), J(p) and L(p) one gets

ml(p) — pI'(p) = —pJ'(p) — L(p).
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m—

Thus, multiplying both sides by p~™~! and rearranging we obtain

d —m —m —m—=
gl el = J'(p) +p~ " L(p).
This concludes the proof m

Estimating from below the right hand side of (6.1) and integrating, we get the following useful
inequalities.
Proposition 6.1.2. Let V = V(M,0) € IV,,(R®) be with weak mean curvature H € LP(V), p > m (we
mean that me(RS) |HPdV < oo or equivalently, denoted with an abuse of notation H(z) = H(x, T, M),
Sy [HIPdp < 00). Fized a point xo € M and 0 < 0 < p < oo, then
1 1 p2 1—m % p2 1—m »
o Bl < o Bplao) T ([ qapan) e ([ mpan)”
By (z0) p—m By (z0)

p—m
(6.4)

PROOF. Let us estimate from below the right hand side of equation (6.1). Observe that

d
7o) =4 [ otw/pID =2 [ o /plD > 0

since ¢'(t) < 0 for all t € R. Thus we can say that

O B 10 (6.5)

Let us estimate from below the right hand side by the Schwartz inequality:

pL(p) = pm /M¢<r/p><m—xo>-Hdu

v

el / (6(r/p)F |H) |z — zolo(r/p) " dp.
M

Now recalling that ¢(t) = 0 for ¢t > 1 we get that ¢(r/p) = 0 for r > p so | — x| in the integral can be
estimated from above by p and we can say that

P L) = = [ (@l ot/ T di

thus, by Holder inequality, for all p > 1

p—1

L) 2 - /Mcﬁ(r/p)mpdu)i( IR

1

—-m p=1
= ([ stw/plEpdn) 1) (6.6)
M
Putting together inequalities (6.5) and (6.6) we get
d

dfp[p‘mf(p)] > —p""(/M ¢(7"/p)|H\pd,u)% I(p) 7 ;

=

multiplying both sides by p™ ™ 7 I (p)ii1 and rearranging we get

Tl 2 F ([ S pIHPd)”.

Now, after choosing p > m, integrate the last inequality from o to p (the same p chosen in the statement
of the Proposition) and get with an integration by parts of the right hand side

B~ F 1) = o [([ (%) ([ otrmimpan)

==[(=2) (0 ([ stmnran)” —o ([ otrioiaran)”)]

+p/: [(17 %)_1#—%(% /M ¢(r/t)|H|pd/¢>}dt (6.7)
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Observe that, as before for J'(p), since ¢'(¢) < 0 for all ¢ it follows

d — -2 !
G | oteitaran =2 [ ot mimpran = o

so the second integral in equation (6.7) is non negative and, recalling the definition of I, we can write

2

(p*m /M d)(r/p)d,u)% - (J*m y gf)(r/d)d#)% 2 [* pl = (/M qS(r/p)\HV’du)é

tolo% ( /M ¢(r/0)|H\pdu) 7} (6.8)

Now observe that during all this proof and during all the proof of Lemma 6.1.1 the only used properties
of ¢ have been

peCHR), ¢'(t)<OVteR, o¢t)<1VteR, o) =0VYt>1;

thus, for all such ¢, the inequality (6.8) holds. Now taking a sequence ¢y, of such functions pointwise
converging to the characteristic function of | — 0o, 1] and, using the Dominated Convergence Theorem,
passing to the limit on k in (6.8) we get

=

[pimN(Bp(xO))] "o [Uﬁm'u‘(BU(zO))] = p g m [7p1_% </Bp(960) |H|pd'u) % +o' 7% (/Bg(zo) |H|pdﬂ> %:| '

Rearranging we can conclude that

2

2 5 v

_ 1 p 1-m v P =% '

- m (B 3 p / HIPd _ P / HIPd .
(o™ By (@o))] 7+ (Bp(ml | M) p—m’ (B(,m)l | M)

S

[U_mM(BU (xo))]

From Corollary 17.8 page 86 of [SiIGMT], if H € LP(V) for some p > m, then the density 6(z) =

: 1(By (@)
hmpw W

o — 0, one has

exists at every point 2 € R® and 6 is an upper semicontinuous function. Hence, letting

2

< [”(B;fo”]‘l’ +pfm[pp‘m /BP(%) IHlpduF.

=

[wmf(zo)]

Using the inequality ar +br < 25 (a + b)% given by the concavity of the function ¢ — tv with p>1
and t > 0, we get

2

B P
wnaflag) < 21 [ 00D) (P p”*m/ |H|Pdp].
P p—m B, (20)

Since V € IV, (R%), then @ is integer valued and by definition # > 1 p-a.e. From the upper semicontinuity
of 0 it follows that 6(x) > 1 for all © € spt 1 (where, as before, 1 is the spatial measure associated to V).
Then the last formula can be written more simply getting the fundamental inequality

B
W 4™ |H|Pdu} Vo € spt g, (6.9)

1< Cpm|
Bp(xﬂ)

where C), ,, > 0 is a positive constant depending on p, m and such that Cp ,,, — oo if p | m.
Using the fundamental inequality now we can link through inequalities the mass of V, the diameter
of M and the LP norm of the weak mean curvature H.

Lemma 6.1.3. Let V = V(M,0) € 1IV,,(R%) be a non null integral m-varifold with compact spatial
support spt u C RS and weak mean curvature H € LP(V') for some p > m. Then, called d = diampgs (spt u1)
the diameter of spt u as a subset of R,

V] < (fi) | i (6.10)
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PROOF. In the same spirit of the proof of Lemma 6.1.1 we choose a suitable vector field X to plug in
the mean curvature equation (6.44)

/ divy Xdp = — / X - Hdu
M M

in order to get informations about the varifold V = V (M, 6). Now fix a point z¢ € spt  and simply let
X(x) =z —xg. Since divyy X = m p-a.e. (for more details see the proof of Lemma 6.1.1), observing that
|X| < d p-a.e. and estimating the right hand side by Holder inequality we get

mlV] < d(/M |H\pdu)%|x/|”%.

Now multiply both sides by \V\%_l and raise to the power p in order to get the thesis.
|

Lemma 6.1.4. Let V = V(M,0) € IV,,(R®) be a non null integral m-varifold with compact connected
spatial support spt u C RS and weak mean curvature H € LP(V) for some p > m. Then, called d =
diampgs (spt u),

m

4 Cyu( [ 1Pa1) T v

where Cp, , > 0 is a positive constant depending on p,m and such that Cp ,,, — 00 if p L m.

m

T (6.11)

PROOF. Since spt u C RS is compact, then there exist zo,yo € spt p such that
d = |zo — Yol
Let p €]0,d/2] and call N := |d/p] the integer part of d/p. For j =1,..., N — 1 take
Yj € 0B 1),(y) Nspt p

(observe that, since spt u is connected, 5B(j+%)p(yo) Nsptu # @ for 5 =1,...,N —1). For each ball
B,2(y5), j = 0,...,N — 1 we have the fundamental inequality (6.9); since the balls B,/3(y;), j =
0,...,N — 1 are pairwise disjoint, summing up over j we get

Vv
N < G (B o [ iipan).
P M
Moreover, since N = |d/p| > 2%, we have

d<2pN < Cpm <p|7}l/|1 + pp—m“/ |H|pdu) : (6.12)
M

Now let us choose p in an appropriate way; observe that taken

- )
2 \ [y |HPdp)

in force of the estimate (6.10), the condition p < d/2 is satisfied. Finally, plugging this value of p into
equation (6.12), after some trivial computation we conclude that

m—1

d< Cp [VI"5 (/ IHl”du)
M

Combining the Fundamental Inequality with the previous lemmas we are in position to prove a lower
diameter and mass bound.
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Lemma 6.1.5. Let V. = V(M,0) € IV,,(R%) be a non null integral m-varifold with spatial support
spt u C RS and weak mean curvature H € LP(V') for some p > m. Then, called d := diamgs (spt ;1)

1
d> . (6.13)

Coan ( fog 1HIPdy) ™"

where Cp, p, > 0 is a positive constant depending on p, m and such that Cp ,, — 00 if p L m.

PRrOOF. If d = 0o, the inequality (6.13) is trivially satisfied; hence we can assume that spt u C R¥ is
compact. It follows that there exist xg,yo € spt u such that

d = |zo — yol.
Recall the Fundamental Inequality (6.9) and choose p = d obtaining

1< Cpm(g/—m' + /M |H|Pdpr). (6.14)

From Lemma 6.1.3,
1
Vi< [ Hd
mp M

hence the inequality (6.14) becomes
1< Gy P / \HPdp
M

and we can conclude.
|

Lemma 6.1.6. Let V = V(M,0) € 1IV,,(R%) be a non null integral m-varifold with compact spatial
support spt u C RS and weak mean curvature H € LP(V) for some p > m. Then

1
Coam ( for 1HIPdp)

where Cp, p, > 0 is a positive constant depending on p, m and such that Cp ,, — 00 if p L m.

V>

(6.15)

p—m

ProoOF. First of all we remark that each connected component of spt p is the support of an integral
varifold with weak mean curvature in L?. Hence can assume that spt u C R is connected, otherwise just
argue on a non null connected component of spt 1 and observe that the inequality (6.15) is well behaved
for bigger subsets.

Call as before d := diamgs (spt u); from the inequality (6.11),

dp—£,+1

m_1_ *
(Jo [Hpdp) 7=

Vi=

But from the last inequality (6.13),
1

Coan ( for 1HIPdp

Combining the two estimates, with an easy computation we get the conclusion.
|

dpﬂ’;ﬂ >

- .
) =m) (p—mFD)

Proposition 6.1.7. Let {V}, = Vi,(My, 03) Yren C IV (R®) be a sequence of integral varifolds with weak
mean curvature Hy € LP(Vy) for some p > m and associated spatial measures py. Assume a uniform
bound on the LP norms of Hy:

dC' >0: Vk e N / |Hk|pduk=/ ‘Hk|pde§C,
Mk Gm(]RS)
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and assume a uniform bound on the spatial supports spt -
dR > 0 :sptux C B}%S

where B%S is the ball of radius R centered in the origin in RS,
It follows that if there exists a Radon measure i on RS such that

W — 1 weak as Radon measures,

then
spt pr — spt . in Hausdorff distance sense.

PrOOF. First of all observe that the uniform bound on the spatial supports spt p; implies that spt p is
compact. Since spt u is compact, recall that spt ux — spt p if and only if the set of the all possible limit
points of all possible sequences {z }ren With x € spt uy, coincides with spt p. Let us prove it by double
inclusion.

i) since pp — p weak as Radon measures of course Vo € spt u there exists a sequence {zy}reny with
Zr, € spt ug such that xp — x. Otherwise there would exist ¢ > 0 such that for infinitely many &’

Be(z) N'spt pgr = 0.
This would imply that py (Be(x)) = 0, but 2 € spt u so we reach the contradiction
0 < u(Bc(x)) = likr,nuk/Be(x) =0.

ii) Let {x }ren with xi € spt g be such that 2, — x. We have to show that = € spt . Let us argue
by contradiction:
if x ¢ spt p then there exists g > 0 such that

0= u(Be (w)) = lim e (Bey (). (6.16)
Since spt pg 3 xx — x, then for every € € (0, €y/2) there exists K, > 0 large enough such that
x € (sptur N Be(x)) VEk > K..

Now consider the balls Bc(z}) for k > K.: by the triangle inequality B.(zx) C B, (x), moreover, since
by construction xy € spt py, we can apply the fundamental inequality (6.9) to each Bc(z)) and obtain

B, _
1 < Cp,m{iuk( "$xk))+€p m/ |Hk\pduk}
€ Be(wk)
B, _
< Cym [W%—e” m/ |Hk|pdpk] Vk > K.. (6.17)
M,

Keeping in mind (6.16), for every fixed € € (0,€p/2) we can pass to the limit on k in inequality (6.17)
and get
lim inf Hy|Pdug > .
A M [ H|Pdypy, > e
But € > 0 can be arbitrarily small, contradicting the uniform bound | M, |Hy|Pduy, < C of the assumptions.
|

6.2 Isoperimetric inequalities and compactness results

6.2.1 An isoperimetric inequality involving the generalized second funda-
mental form

The following Isoperimetric Inequality involving the generalized second fundamental form is inspired by
the paper of White [Whi] and uses the concept of varifold with second fundamental form introduced by
Hutchinson [Hul]. Actually we need a slight generalization of the definition of curvature varifold given
by Hutchinson: in Definition 5.2.1 of [Hul], the author considers only integral varifolds but, as a matter
of fact, a similar definition makes sense for a general varifold. In Appendix 6.6 we recalled the needed
concepts.
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Theorem 6.2.1. Let N CC N be a compact subset of a (maybe non compact) n-dimensional Riemannian
manifold (N, g) (which, by Nash Embedding Theorem we can assume isometrically embedded in some R®)
and let m < n — 1. Then the following conditions are equivalent:

i) N contains no nonzero m-varifold with null generalized second fundamental form

ii) There is an increasing function ® : RY — RT with ®(0) = 0 and a function F : G,,(N) xRS® - R+
satisfying (6.6.2) (see Appendiz 6.6) such that for every m-varifold V in N with generalized second
fundamental form A

V] < @(/GW(N) F(J:,P,A(x,P))dV).

ii1) for every function F : G, (N) X RS® — R+ satisfying (6.6.2) (see Appendiz 6.6) there exists a
constant C'p > 0 such that for every m-varifold V in N with generalized second fundamental form A

|vwscu:/ F(, P, A(z, P))av.
G (N

PrOOF. Of course iii) = ii) = i). It remains to prove that i) = iii). Let us argue by contradiction:
assume that iii) is not satisfied and prove that also i) cannot be satisfied.

First fix the function F. If iii) is not satisfied then there exists a sequence {(Vi, Ag)}ren of m-varifolds
in N with generalized second fundamental form (see Definition 6.6.5) such that

V| > k/ F(z, P, Ax(z, P))dVj.

We can assume that |Vi| = 1 otherwise replace Vi with the normalized varifold f/k = ﬁVk (ob-

serve that the second fundamental form is invariant under this rescaling of the measure and that
me(N) F(l‘, P, Ak)de = |Vk‘ me(N) F(I, P, Ak)de) Hence

1
| Fera <
Gm(N)

o~

Recall that |Vi| = 1 so, from Banach-Alaoglu and Riesz Theorems, there exists a varifold V' such that,
up to subsequences, V3, — V in varifold sense (i.e weak convergence of Radon measures on G,,(N)). Of
course |V| = limy, |Vi| = 1.

Using the notation of [Hul] (see the Appendix 6.6) we have that the measure-function pairs (Vj, Ax)
over G,,(N), up to subsequences, satisfy the assumptions of Theorem 6.6.4. From (i) of the mentioned
Theorem 6.6.4, it follows that there exists a measure-function pair (V, A) with values in R ’ (i.e a Radon
measure V on G,,(N) and a matrix valued function A € L}, (V) ) such that (Vi, Ar) — (V,A) (i.e
Vi| A, — V| A weak convergence of Radon vector valued measures).

From Remark 6.6.6 we can express the generalized curvatures By of the varifolds Vj in terms of the
second fundamental forms Aj. Moreover, calling B the corresponding quantity to A, from the explicit
expression (6.42) it is clear that the weak convergence (Vi, Az) — (V, A) implies the weak convergence
(Vi, Be) = (V, B).

Passing to the limit in & in (6.40) we see that (V, B) satisfies the equation, so V is an m-varifold with
generalized curvature B.

Now let us check that the corresponding generalized second fundamental form (in sense of equation
(6.41)) to B is A.

Call

oQ
Aéj(x,P) 1= Ppj Bip(z, P) — ijPquqp(gc)

the corresponding second fundamental form to B and Ay = Ay the corresponding to By (in a varifold
with generalized curvature, B;;; is uniquely determined by the integration by parts formula (6.40) and,
by definition, Alij = Aﬁj; but for our limit varifold it is not a priori clear that A = A).

Since (Vi, By,) — (V, B), from the definitions it is clear that (Vi, Ag) — (V, A); but, from the definition
of A, (Vi,A) = (Vi, Ax) — (V, A). Tt follows that A = A V-almost everywhere and that A is the
generalized second fundamental form of V.
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Finally, the lower semicontinuity of the functional ( sentence (ii) of Theorem 6.6.4) implies

/ F(z,P,A)dV < lim inf/ F(z, P, A)dVy, = 0.
G (N) k Gum(N)

From the assumption ii) of condition (6.6.2) on F' it follows that A = 0 V-almost everywhere; henceforth
we constructed a non null m-varifold V in N with null second fundamental form and this concludes the
proof. W

Remark 6.2.2. A trivial but fundamental example of F : G, (N) X RS® L R satisfying the assumptions
of Theorem 6.2.1 is F(x, P, A) = |A|P for any p > 1. Hence the Theorem implies that if a compact subset
N of a Riemannian n-dimensional manifold (N, g) does not contain any non null k-varifold (k <n —1)
with null generalized second fundamental form then for every p > 1 there exists a constant C, > 0 such
that

vise, [ japav
G (N)
for every k-varifold V in N with generalized second fundamental form A.

Putting together the fundamental compactness and lower semicontinuity Theorem 6.6.7 of Hutchinson
and the Isoperimetric Theorem 6.2.1 we get the following useful compactness-lower semicontinuity result.

Theorem 6.2.3. Let N CC N be a compact subset of a (maybe non compact) n-dimensional Riemannian
manifold (N, g) (which, by Nash Embedding Theorem we can assume isometrically embedded in some RY),
fizm<n-—1andlet F:Gp,(N) x R5® 5 R+ be a function satisfying (6.6.2).

Assume that, for some m < n — 1, the space (N,g) does not contain any non zero m-varifold with
null generalized second fundamental form.

Consider a sequence {Vi}ren C CVin(N) of curvature varifolds with generalized second fundamental
forms {Ag}ren such that

/ F(xz,P,Ay)dV, < C
Gm(N)

for some C > 0 independent of k.

Then there exists V € CV,,,(N) with generalized second fundamental form A such that, up to subse-
quences,

i) (Vi, Ar) = (V, A) in the weak sense of measure-function pairs,

it) me(N) F(z,P,A)dV < liminfy me(N) F(x, P, A)dV.

PrROOF. From Theorem 6.2.1 there exists a constant C'r > 0 depending on the function F' such that
Vil < Cr [, () F(x, P, Ag(x, P))dVy, thus from the boudness of [, () F(z, P, Ay)dV;, we have the
uniform mass bound

Vel < C (6.18)

for some C' > 0 independent of k. This mass bound, together with Banach Alaoglu and Riesz Theorems,

implies that there exists an m-varifold V' on N such that, up to subsequences, V}, — V in varifold sense.
In order to apply Hutchinson compactness Theorem 6.6.7 we have to prove that V' actually is an

integral m-varifold.

From assumption iv) on F' of Definition 6.6.2, there exists a continuous function ¢ : G,,,(IN) x [0,00) —

[0,00), with 0 < ¢(z,P,s) < ¢(z,P,t) for 0 < s < ¢t and (z,P) € Gyn(N), é(z, P,t) — oo locally

uniformly in (z, P) as t — oo, such that

¢(z, P, |A|)[A| < F(x, P, A) (6.19)
for all (z,P,A) € G (N) X RS®. Since N is compact, also G,,,(IN) is so and from the properties of ¢

there exists C' > 0 such that ¢(x, P,|A]) > 1 for |A| > C and any (z, P) € Gy, (N). Thus for every k we
can split the computation of the L'(V}) norm of Ay as

/ | Ay |dVi, :/ | Ay |dVi, +/ | Ap|dVi..
Gm(N) Gm (N)N{]A|<C} G (N)N{|Ax|>C}
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The first term is bounded above by the mass bound (6.18). About the second term observe that, for
|A| > C the inequality (6.19) implies that |A| < F(z, P, A); then also the second term is bounded in
virtue on the assumption that me(N) F(z, P, A)dVj is uniformly bounded.

We have proved that there exists a constant C such that, for all £ € N,

/ |AldVi, < C. (6.20)
Gm(N)

Now, change point of view and look at the varifolds V}, as curvature varifolds in R®. Recall (see Remark
6.6.6) that the curvature function B can be written in terms of the generalized second fundamental form A
relative to N and of the extrinsic curvature of the manifold N (as submanifold of R®) which is uniformly
bounded on N from the compactness assumption. Using the triangle inequality together with estimate
(6.20) and the mass bound (6.18) we obtain the uniform estimate of the L*(V}) norms of the curvature
functions By,

/ |B|dVy, < C (6.21)
G (RS)

for some C > 0 independent of k.
Estimate (6.21) and Remark 6.6.10 tell us that the integral varifolds V; of R¥ have uniformly bounded
first variation: there exists a C' > 0 independent of k such that

160Ve(X)| < Csup |X|, VX € CHR) vector field.
RS

The uniform bound on the first variations and on the masses of the integral varifolds Vj allow us to apply
Allard’s integral compactness Theorem (see for example [SIGMT] Remark 42.8 or the original paper of
Allard [Al]) and say that the limit varifold V' is actually integral.

The conclusions of the Theorem then follow from Hutchinson Theorem 6.6.7. &

Corollary 6.2.4. Let N CC N be a compact subset with non empty interior, int(N) # 0, of a (maybe
non compact) n-dimensional Riemannian manifold (N,g) (which, by Nash Embedding Theorem can be
assumed isometrically embedded in some R®) and let F : Gp(N) x RS® & R+ be a function satisfying
(6.6.2).

Assume that, for some m < n — 1, the space (N,g) does not contain any non zero m-varifold with
null generalized second fundamental form.

Call

ay p = inf {/ F(x,P,A)dV : V € CV,,,(N),V # 0 with generalized second fundamental form A
Gm(N)

(6.22)
and consider a minimizing sequence {Vi}ren C CVin(N) of curvature varifolds with generalized second
fundamental forms {Ax}ren such that

/ F(z, P, Ag)dVy, | o p.
GnL(N)

Then there exists V € CV,,,(N) with generalized second fundamental form A such that, up to subse-
quences,

i) (Vi, Ar) = (V, A) in the weak sense of measure-function pairs,

i1) me(N) F(z,P,A)dV < op.

PROOF. We only have to check that oy p < oo, then the conclusion follows from Theorem 6.2.3. But
the fact is trivial since int(N) # ), indeed we can always construct a smooth compact m-dimensional
embedded submanifold of N, which of course is a curvature m-varifold with finite energy. m

Remark 6.2.5. Notice that, a priori, Corollary 6.2.4 does not ensure the existence of a minimizer
since it can happen that the limit m-varifold V is null. In the next Section 6.3 we will see that, if
F(x,P,A) > C|A]P for some C > 0 and p > m, then this is not the case and we have a non trivial
mingmizer.
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6.2.2 An isoperimetric inequality involving the weak mean curvature

In this Subsection we adapt to the context of varifolds with weak mean curvature the results of the previous
Subsection 6.2.1 about varifolds with generalized second fundamental form (for the basic definitions and
properties see Appendix 6.6). The following Isoperimetric Inequality involving the weak mean curvature
can be seen as a variant of Theorem 2.3 in [Whi].

Theorem 6.2.6. Let N CC N be a compact subset of a (maybe non compact) n-dimensional Riemannian
manifold (N, g) (which, by Nash Embedding Theorem we can assume isometrically embedded in some RS)
and let m < n — 1. Then the following conditions are equivalent:

i) N contains no nonzero m-varifold with null weak mean curvature relative to N (i.e N contains no
nonzero stationary m-varifold; see Remark 6.6.13).

ii) There is an increasing function ® : RT — R* with ®(0) = 0 and a function F : G,,(N) xRS — RT
satisfying (6.6.2) (see Appendiz 6.6) such that for every m-varifold V' in N with weak mean curvature

HYN relative to N
V| < @(/ F(z, P, HN(x,P))dV>.
Gm(N)

iii) for every function F : Gp(N) x RS — R satisfying (6.6.2) (see Appendiz 6.6) there exists a
constant Cp > 0 such that for every m-varifold V in N with weak mean curvature HY relative to N

V] < C’F/ F(x, P, HN (2, P))dV.
G (N)

PrROOF. The proof is similar to the proof of Theorem 6.2.1. Of course iii) = ii) = i). We prove by
contradiction that i) = iii): assume that iii) is not satisfied and show that also i) cannot be satisfied.
First fix the function F. If iii) is not satisfied then there exists a sequence {Vj }ren of m-varifolds in N
with weak mean curvatures HY' relative to N (see Definition 6.6.11) such that

Vidzk [ PP ).
Gm(N)

We can assume that |Vi| = 1 otherwise replace Vj, with the normalized varifold Vi = ﬁVk (observe that
the weak mean curvature is invariant under this rescaling of the measure and that |, G (N) F(z,P,HY)dV), =
Vel Ja,, () Fa, P, HY)dVy). Hence

1
/ F(x, P,HY (2, P))dV; < —.
G (N) k

Recall that |Vi| = 1 so, from Banach-Alaoglu and Riesz Theorems, there exists a varifold V' such that,
up to subsequences, V;; — V in varifold sense (i.e weak convergence of Radon measures on G,,(N)). Of
course |V| = limy, |Vi| = 1.

Now the measure-function pairs (V, H év ) over G,,(N), up to subsequences, satisfy the assumptions
of Theorem 6.6.4 and (i) (of the mentioned Theorem 6.6.4) implies that there exists a measure-function
pair (V, HV) with values in R such that (Vi, HY) — (V, HV) weak convergence of measure-function
pairs (see Definition 6.6.1).

At this point we have to check that V is an m-varifold of N with weak mean curvature HY relative
to N. Recall that N < R®, so the varifolds V}, can be seen as varifolds with weak mean curvatures
H}fs in R¥; from equation (6.45), the measure-function pair convergence (Vi, HY) — (V, HY) implies

the measure-function pair convergence (Vk,HES) — (V,HN + Py, %‘ig) which says ( pass to the limit

in Definition 6.6.9) that V is an m-varifold in R with weak mean curvature HN + Pjy, 88%’3 . Thus, by
Definition 6.6.11, V is an m-varifold of N with weak mean curvature HY := HYN relative to N.

Finally, the lower semicontinuity of the functional ( sentence (ii) of Theorem 6.6.4) implies

/ F(z,P,HN)dV < liminf/ F(x, P,H})dV;, = 0.
G (N) k G (N)

From the assumption ii) of condition (6.6.2) on F' it follows that HY = 0 V-almost everywhere; henceforth
we constructed a non null m-varifold V' in N with null weak mean curvature relative to N and this
concludes the proof. B

We also have a counterpart of Theorem 6.2.3 concerning the weak mean curvature:
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Theorem 6.2.7. Let N CC N be a compact subset of a (maybe non compact) n-dimensional Riemannian
manifold (N, g) (which, by Nash Embedding Theorem we can assume isometrically embedded in some RS ),
firm <n—1 and let F: G,(N) x RS = R* be a function satisfying (6.6.2).

Assume that, for some m < n — 1, the space (N,g) does not contain any non zero m-varifold with
null weak mean curvature relative to N.

Consider a sequence {Vi }ken C HV,n(N) of integral m-varifolds with weak mean curvatures { H} }pen
relative to N such that

/ F(xz, P,HY)dV,, < C
G (N)

for some C' > 0 independent of k.

Then there exists V. € HV,,(N) integral varifold with weak mean curvature HY relative to N such
that, up to subsequences,

i) (Vie, HY) — (V, HY) in the weak sense of measure-function pairs,

it) me(N) F(z, P, HN)dV < liminf}, me(N) F(z, P,HYN)dV.

PROOF. The proof is analogous to the proof of Theorem 6.2.3. From Theorem 6.2.6 there exists a
constant Cr > 0 depending on the function F such that |V;| < Cp fG () F(z, P,H}Y (2, P))dV}, thus

from the boudness of me(N) F(z, P, H,va)de we have the uniform mass bound
Vil <C (6.23)

for some C' > 0 independent of k. This mass bound, together with Banach Alaoglu and Riesz Theorems,
implies that there exists an m-varifold V on N such that, up to subsequences, V;, — V in varifold sense.

The proof that V' actually is an integral m-varifold is completely analogous to the same statement in
the proof of Theorem 6.2.3: formally substituting H ,ﬁv to Ak in the mentioned proof we arrive to

/ |HY |dV;, < C. (6.24)
Gm(N)

Now, change point of view and look at the varifolds Vj, as integral varifolds in R®. From Definition
6.6.11 the weak mean curvature H, }55 in R¥ can be written in terms of H N and of the extrinsic curvature
of the manifold N (as submanifold of R¥) which is uniformly bounded on N from the compactness
assumption. Using the triangle inequality together with estimate (6.24) and the mass bound (6.23) we
obtain the uniform estimate of the L!(V}) norms of the weak mean curvatures H ,Dfs

/ \HE |V, < © (6.25)
Gm (RY)

for some C' > 0 independent of k. It follows (see Definition 6.6.9) that the integral varifolds V;, of RS
have uniformly bounded first variation: there exists a constant C' > 0 independent of k such that

10Ve(X)| < Csup |X|, VX € CHR) vector field.
RS

The uniform bound on the first variations and on the masses of the integral varifolds Vj allow us to apply
Allard’s integral compactness Theorem (see for example [SIGMT]| Remark 42.8 or the original paper of
Allard [Al]) and say that the limit varifold V' is actually integral.

With the same arguments in the end of the proof of Theorem 6.2.6, one can show that the varifold
convergence of a subsequence Vj, — V and the uniform energy bound |, G (N) F(z,P H ,év )dVy, < C implies

the existence of a measure-function pair converging subsequence (Vj,, H ,iv ) — (V, H") for some R -valued
function HY € L}, (V) which actually is the weak mean curvature of V relative to N.

We conclude that V € HV,,(N) is an integral m-varifold of N with weak mean curvature H" relative
to N and i) holds; property ii) follows from the general Theorem 6.6.7 about measure-function pair

convergence (specifically see sentence ii) of the mentioned Theorem). ®

Finally we have a counterpart of Corollary 6.2.4
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Corollary 6.2.8. Let N CC N be a compact subset with non empty interior, int(N) # 0, of a (possibly
non compact) n-dimensional Riemannian manifold (N,g) (which, by Nash Embedding Theorem can be
assumed isometrically embedded in some RS) and let F : G,,(N) x RS — RT be a function satisfying
(6.6.2).

Assume that, for some m < n — 1, the space (N,g) does not contain any non zero m-varifold with

null weak mean curvature relative to N.
Call

BN p = inf {/ F(x,P,HN)dV : V € HV,,(N),V # 0 with weak wean curvature HY relative to N
Gm(N)
(6.26)

and consider a minimizing sequence {Vi}ken C HV,(N) of integral varifolds with weak mean curvatures
{HN}ren such that

/ F(z, P, HY)dVi | B3 5.
G (N)

Then there exists an integral m-varifold V€ HV,,(N) with weak mean curvature H relative to N
such that, up to subsequences,

i) Vi, HY) — (V, HN) in the weak sense of measure-function pairs,

i) fg, v Flx, PLHN)AV < B p.

PROOF. As in Corollary 6.2.4 we have that 83 r < oo, then the conclusion follows from Theorem 6.2.7.
|

Remark 6.2.9. As for the generalized second fundamental form, a priori, Corollary 6.2.4 does not ensure
the existence of a minimizer since it can happen that the limit m-varifold V' is null. In Section 6.4 we
will see that, if F(x, P,HN) > C|HNP for some C > 0 and p > m, then this is not the case and we have
a non trivial minimizer.

6.3 Case F(z,P, A) > C|A|P with p > m: non degeneracy of the
minimizing sequence and existence of a C'''® minimizer

Throughout this Section, (N, g) stands for a compact n-dimensional Riemannian manifold isometrically
embedded in some R® (by Nash Embedding Theorem) and N CC N is a compact subset with non empty
interior (as subset of N). Fix m < n—1; we will focus our attention and specialize the previous techniques
to the case

F : Gpn(N)x RS® — R* is a function satisfying (6.6.2)
F(z,P,A) > C]AJP for some p > m and C > 0. (6.27)

Recall that we are considering the minimization problem
ay g = inf {/ F(z,P,A)dV : V € CV,,(N),V # 0 with generalized second fundamental form A} .
Gm (N)

Our goal is to prove the existence of a minimizer for o} z, F' as in (6.27).
Let {Vi}tren C CVin(N) be a minimizing sequence of curvature varifolds with generalized second
fundamental forms { Ay }ren such that

/ F(.%‘, P, Ak)de i Oé%’ F
G (N) ’

from Corollary 6.2.4 we already know that there exists V' € CV,,,(N) with generalized second fundamental
form A such that, up to subsequences,

i) (Vi, Ar) — (V, A) in the weak sense of measure-function pairs,

ii) me(N) F(z, P, A)dV < o} .

In order to have the existence of a minimizer we only have to check that V' is not the zero varifold;
this will be done in the next Subsection 6.3.1 using the estimates of Section 6.1.
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6.3.1 Non degeneracy properties of the minimizing sequence

First of all, since N C R, a curvature m-varifold V of N can be seen as a curvature varifold in RS (for
the precise value of the curvature function B in R® see Remark 6.6.6); as before we write V = V (M, 6)
where M is a rectifiable set and 6 is the integer multiplicity function. Let us call HX® the weak mean
curvature of V as integral m-varifold in R® and, as in Section 6.1, let us denote by u = py = H™ |0 = mV
the spatial measure associated to V' and with spt u its support.

Lemma 6.3.1. Let N CC N be a compact subset of the n-dimensional Riemannian manifold (N, g)
isometrically embedded in some RY (by Nash Embedding Theorem) and fix p > 1. Then there exists a
constant Cn ., > 0 depending only on p and N such that for every V.= V(M,0) € CV,,(N) curvature

m-varifold of N
| dp < c v
< Cnp [ IV]+ |A[PdV | .
M Gm(N)

PROOF. Recall (see Remark 6.6.6) that it is possible to write the curvature function B of V' seen as
curvature m-varifold of RS in terms of the second fundamental form A relative to N and the curvature
of the manifold N seen as submanifold of R® (the terms involving derivatives of Q):

0Qux - 0Qy;
q D, (z) + P Pig Dz, (z).

Biji = A + Al + Py P

From Remark 6.6.10 the weak mean curvature H RS, which is a vector of R®, can be written in terms of
B as

s 5 & 0Q 0Q

j i ly 1z .

(HR )Z = ZBjij = Z (Agl + A% + Pileq—azq] (z) + leij—axq (x)) i=1...,8.
j=1 j=1

Notice that, since N CC N is a compact subset of the manifold N smoothly embedded in R?, the functions

9915 are uniformly bounded by a constant Cy depending on the embedding N < R¥; moreover the Pj,,

0T,
are projection matrices so they are also uniformly bounded and we can say that

OQui

— <
4 O0xq < Oy

i=1,...,8

s
0Qy;4

Z P”ij—axf + P; P;

gil,m=1 a

as vector of R®.

About the first term observe that, from the triangle inequality applied to the R¥-vectors (A;i),-:17.__,s (j
is fixed for each single vector),

5 5
S <> |(Ad)ims| < 814
j=1 i=1,..,5 =1
where, of course |A| := Zij,k:l(A;‘k>2 > |(A§1)l:15\ for all j =1,...,5. The second adding term is
analogous.

Putting together the two last estimates, by a triangle inequality, we have
‘HRS’ < 28|A| + Cy.

Using the standard inequality (a + b)? < 2P~ 1(a? + bP) for a,b > 0 and p > 1 given by the convexity of
the function ¢t — t? for t > 0,p > 1 we can write

p

‘HRS < Cnp (JAP +1). (6.28)

With an integration we get the conclusion. m

Using the estimates of Section 6.1 and the last Lemma we have uniform lower bounds on the mass
and on the diameter of the spatial support of a curvature m-varifold V' € CV,,(N) of N with bounded
me(N) |APdV | p > m.
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Theorem 6.3.2. Let N CC N be a compact subset of the n-dimensional Riemannian manifold (N, g)
isometrically embedded in some R® (by Nash Embedding Theorem) and fir m <n —1, p > m.

Then there exists a constant Ci pm > 0 depending only on p,m and on the embedding of N into R
such that Cnpm T +00 as p L m and such that for every V.=V (M,0) € CV,,,(N) curvature m-varifold
of N with spatial measure

1
i) diam g (spt ) > T (6.29)

CNpm (|V| + me(N) |A|PdV) o

where diam y (spt ) is the diameter of sptu as a subset of the Riemannian manifold N

i) Cypm V] <|V|+/
G

Notice that i) implies the existence of a constant aANmp,[ A >0 depending only on p, m, on fG’ () |A[PdV
and on the embedding of N into RS, with aNpm, [ AP + 0 if p L m orif fG () |A|PAV 1 +o00 such that

m
p—m

|A|pdv> > 1. (6.30)

m

|V| > aN’p’mJ‘A‘p > 0.

PRroOOF.
i) From Lemma 6.1.5

1
diam g (spt p) > diamgs (spt p) > .

Cp,m ( fM |H|pd//'> o

where Cp., > 0 is a positive constant depending on p, m and such that Cp,, — oo if p | m. The
conclusion follows plugging into the last inequality the estimate of Lemma 6.3.1.
i1) From Lemma 6.1.6,

p—m

1
V| > -

oo (o 1)

with C,, ,, > 0 as above. The conclusion, again, follows plugging into the last inequality the estimate of
Lemma 6.3.1 and rearranging. B

Corollary 6.3.3. Let N CC N be a compact subset with non empty interior, int(N) # 0, of the
n-dimensional Riemannian manifold (N, g) isometrically embedded in some R® (by Nash Embedding
Theorem) and fix m <n — 1.

Assume that the space (N, g) does not contain any non zero m-varifold with null generalized second

fundamental form and consider a function F' : Gp,(N) x RS® — R+ satisfying (6.6.2), (6.27) and a
corresponding minimizing sequence of curvature m-varifolds {Vi}ren C CVpn(IN) with generalized second
fundamental forms {Ay}ren such that

/ F(:c,P,Ak)de \La%,F
G"L(N)

( for the definition of o - see (6.22)). Then, called uy, the spatial measures associated to Vi, there exists
a constant an,pm > 0 depending only on N,F and m such that

1) diam 5 (spt i) > an,F.m (6.31)

ZZ) ‘Vk| Z aN,Fm- (632)

PROOF. From Theorem 6.2.1 and the finiteness of o} p, since (I, g) does not contain any non zero
m-varifold with null generalized second fundamental form,

Vil < CN7F7m/ F(z, P, Ak)dVi, < CN,Fm
Gm(N)
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for some Cy,F,m > 0 depending only on N, F' and m.
Moreover, since (by assumption (6.27)) F(z, P, A) > C|AJP for some p > m and C > 0, the boundness of
me(N) F(z, P, A)dV}, implies that

/ ALPdVi, < Cov.pom
Gm(N)

for some Cn,F,m>0 depending only on N, F' and m.
The conclusion follows putting the last two inequalities into Theorem 6.3.2. B

6.3.2 Existence and regularity of the minimizer

Collecting Corollary 6.2.4 and Corollary 6.3.3 we can finally state and prove the first main Theorem 1.0.17.

Proof of Theorem 1.0.17

If a) is true we are done, so we can assume that a) is not satisfied.

Let {Vik}ren C CV,(N) with generalized second fundamental forms {Ag}ren be a minimizing se-
quence of afy p:

/ F(J?,P,Ak)de\LO/]GF-
G (N) '

Called py the spatial measures associated to Vi notice that, since the integrand F is non negative,
we can assume that the spatial supports spt p are connected (indeed, from Definition 6.6.5, using cut
off functions it is clear that every connected component of spt p is the spatial support of a curvature
varifold). From Corollary 6.3.3 we have the lower bounds:

i) diam g (spt px) > an,pm
i) Vil > an Fom,
for a constant an,F,, > 0 depending only on N,F and m. Corollary 6.2.4 implies the existence of a
curvature m-varifold V = V(M,0) € CV,,(N) with generalized second fundamental form A such that,
up to subsequences,
i) (Vi, Ax) = (V, A) in the weak sense of measure-function pairs of IV,
ii) me(N) F(z, P, A)dV < o} p.
The measure-function pair convergence implies the varifold convergence of V;, — V and the convergence
of the associated spatial measures

m Vi =: . — p = m3V  weak convergence of Radon measures on N.

It follows that
0< AN, Fm < |Vk| = ,uk(N) — M(N) = ‘V‘7

. L m
thus V' # 0 is a minimizer for o[y .

Notice that, since N < R is properly embedded, the weak convergence ji;; — 1 on N implies the
weak convergence of y;, — p as Radon measures on R¥. From mass bound on the Vj and the bound on
me(N) |Ar|PdV} given by the assumption (6.27) on F', Lemma 6.3.1 allows us to apply Proposition 6.1.7
and we can say that the spatial supports

spt i — spt u Hausdorff convergence as subsets of R,
Notice that, since N < R is embedded, the Hausdorff convergence of M, — M as subsets of R implies
spt i, — spt . Hausdorff convergence as subsets of N,

and this implies that
0<anpm< lilgn diam  (spt ux) = diam g (spt p),

hence b2). Moreover the Hausdorff limit of connected subsets is connected thus also b1) is proved.
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Now the minimizer V' € CV(N) is a non null curvature varifold on N with generalized second
fundamental form A (relative to N) in LP(V) for some p > m. Since N < RS V can also be seen as a
varifold in R® and Remark 6.6.6 tell that V is actually a varifold with generalized curvature function B

given by
0Quk 0Qi;

B,’jk = Aic] + Azk + lePiqqu(x) + Pklpiq axq (l‘)

where the terms of the type leﬂq%(l’) represent the extrinsic curvature of N as a submanifold of RS
q
and, of course, are bounded on N from the compactness:

0Qux 0Qu;
Py P,—— Py Py—= < Cpn.
sup | Fithiag, (%) + PrPig oz, ()] < Cn
Hence, from triangle inequality,
|B| <2|A4|+ Cn

and
|BIP < Cn,p (AP +1).

Using the mass bound |V| = limy, |Vi| < C < oo, with an integration we get

/ B[PV < o,
G (RS)

Under this conditions Hutchinson shows in [Hu2] that V' is a locally a graph of multivalued C'*** functions
and that b3) holds. m

6.4 Existence of an integral m-varifold with weak mean curva-
ture minimizing [ |H[? for p > m

As before, throughout this Section (N,g) stands for a compact n-dimensional Riemannian manifold
isometrically embedded in some R® (by Nash Embedding Theorem) and N CC N is a compact subset
with non empty interior (as subset of N). Fix m < n — 1; analogously to Section 6.3 we will focus our
attention to the case

F . Gu(N)xRY = RT is a function satisfying (6.6.2)
F(z,P,H) > C|H|? for some p >m and C > 0. (6.33)

Recall that we are considering the minimization problem
BN F = inf {/ F(xz,P,HN)dV : V € HV,,(N),V # 0 with weak mean curvature H” relative to N} .
G (N)

Our goal is to prove the existence of a minimizer for S -, F' as in (6.33).
As in Section 6.3 we consider a minimizing sequence {Vi}ken C HV,,(N) of integral m-varifolds with
weak mean curvatures { H' }xen relative to N such that

/ Fx, P, HY)dVy. | B3
GT?‘L(N)

from Corollary 6.2.8 we already know that there exists V' € HV,,(N) with with weak mean curvature
HY relative to N such that, up to subsequences,

i) (Vi, HY) — (V, HY) in the weak sense of measure-function pairs,

i) [o, o) Fla, PHN)AV < B p.

In order to have the existence of a minimizer we only have to check that V' is not the zero varifold;
this will be done analogously to Subsection 6.3.1 using the estimates of Section 6.1.

As before, since N C R®, an integral m-varifold V of N with weak mean curvature HV relative to N
can be seen as integral m-varifold of RS with weak mean curvature H®”. We write V = V (M, §) where
M is a rectifiable set and 6 is the integer multiplicity function; finally, as in Section 6.1, let us denote by
= py =H"| 8 =mV the spatial measure associated to V' and with spt p the spatial support of V.
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Lemma 6.4.1. Let N CC N be a compact subset of the n-dimensional Riemannian manifold (N, g)
isometrically embedded in some R (by Nash Embedding Theorem) and fix p > 1. Then there exists a
constant Cn,, > 0 depending only on p and N such that for every V.= V(M,0) € HV,,(N) integral
m-varifold of N with weak mean curvature HN relative to N

/ ‘HRS‘pdu < Cy, <|V| +/ |HN|PdV> .
M Gm(N)

PrOOF. By Definition 6.6.11 we can express

RS\ _ (N 0Qi;
(H )1 = (H )l + ij oxk
and from the triangle inequality
s 0Qi;
|| < 1Y) + | P 82,5 : (6.34)

as vectors in R¥. The second summand of the right hand side is a smooth function on the compact set
G (IN) hence bounded by a constant Cy depending on N:

0Qi;
Fj axkj

< Cy.

Using the standard inequality (a + b)P < 2P~1(aP + bP) for a,b > 0 and p > 1 we get

17| < o1+ V)

which gives the thesis with an integration. B

Remark 6.4.2. An analogous result to Theorem 6.5.2 holds, just replace V.=V (M,0) € CV,,(N) with
V=V(M,0) e HV,,(N) and me(N) |[A[PAV with me(N) |HN|PdV .

Now we can show the non degeneracy of the minimizing sequence for Bﬁ r, Fasin 6.6.2, (6.33).

Lemma 6.4.3. Let N CC N be a compact subset with non empty interior, int(N) # (0, of the n-
dimensional Riemannian manifold (N, g) isometrically embedded in some R (by Nash Embedding The-
orem) and fit m <n — 1.

Assume that the space (N, g) does not contain any non zero m-varifold with null weak mean curvature
HY relative to N and consider a function F : G, (N) x RS — R satisfying (6.6.2), (6.33) and a cor-
responding minimizing sequence of integral m-varifolds {Vi}ren C HV,, (N) with weak mean curvatures
{HN}ren relative to N such that

/ F(z, P,HY )V | B3 1
G (N)

( for the definition of B} o see (6.26)). Then, called puy the spatial measures of Vi, there exists a constant
bn,F.m > 0 depending only on N,F' and m such that

Z) diamN(spt /Lk) Z bN,F,m (635)

i) [Vi| > bn, Fym- (6.36)

PrOOF. From Theorem 6.2.6 and the finiteness of B} -, since (N, g) does not contain any non zero
m-varifold with null weak mean curvature HY relative to N,

Vil < Cxrom / F(a, P, HY)dVi < Cy pm
Gm(N)
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for some Cy,F,m > 0 depending only on NV, F' and m.
Moreover, since (by assumption (6.33)) F(x, P, HN) > C|HN [P for some p > m and C > 0, the boundness
of [, ) F(z, P,H})dV}, implies that

/ |HY|PdVy < O
Gm(N)

for some Cy,F,m>0 depending only on N, F' and m.
The conclusion follows from the last two inequalities and Remark 6.4.2. B

Now, collecting Corollary 6.2.8 and Lemma 6.4.3 we can finally state and prove Theorem 1.0.15,
namely the existence of a non trivial minimizer for Sy ., I as in 6.6.2, (6.33).

Proof of Theorem 1.0.15
If a) is true we are done, so we can assume that a) is not satisfied.
Let {Vi}ren C HV,,,(N) with weak mean curvatures { H} }ren be a minimizing sequence of B F

[ Fepavo s
Gm(N) ’

Called uj the spatial measures of Vi notice that, since the integrand F' is non negative, we can assume
that the spatial supports spt ux are connected (indeed, as for the curvature varifolds, every connected
component of spt uy, is the spatial support of a mean curvature varifold). From Lemma 6.4.3 we have the
lower bounds:

i) diam g (spt px) > by pm > 0
ZZ) |Vk| Z bN,F,m > 07

for a constant by g, > O depending only on N,F and m. Corollary 6.2.8 implies the existence of
an integral m-varifold V' € HV,,(N) with weak mean curvature H N relative to N such that, up to
subsequences,

i) (Vi, HY) — (V, HY) in the weak sense of measure-function pairs of NV,

ii) me(N) F(x, P,HN)dV < BN -

Analogously to the proof of Theorem 1.0.17, one shows that

0 <bn,Fpm < |Vi| = ue(N) = p(N) = |V,

thus V' # 0 is a minimizer for B3 p. The proof of b1) and b2) are again analogous to the proof of
the corresponding sentences in Theorem 1.0.17: from the mass bound on the Vi and the bound on
me(N) |HY|PdV}, given by the assumption (6.33) on F', Lemma 6.4.1 allows us to apply Proposition 6.1.7
and, using the same tricks of Theorem 1.0.17 we can say that the spatial supports

spt . — spt . Hausdorff convergence as subsets of N,

and this implies that
0<bnrm< liin diam 5 (spt pg ) = diam g (spt p),

hence 02). Moreover the Hausdorff limit of connected subsets is connected thus also b1) is proved. m

6.5 Examples and Remarks

First of all let us point out that our setting includes, speaking about ambient manifolds, a large class of
Riemannian manifolds with boundary.

Remark 6.5.1. Notice that if N is a compact n-dimensional manifold with boundary then there exists
an n-dimensional (a priori non compact) manifold N without boundary such that N is a compact subset
of N (to define N just extend N a little beyond ON in the local boundary charts). Hence, given a compact
n-dimensional Riemannian manifold (N, g) with boundary such that the metric g can be extended in a
smooth and non degenerate way (i.e. g positive definite) up to the boundary ON, then N is isometric to
a compact subset of an n-dimensional Riemannian manifold (N,g) without boundary.

Thus all the Lemmas, Propositions and Theorems apply to the case in which the ambient space is a
Riemannian manifold with boundary with the described non degeneracy property at ON .
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Now let us show that the main results Theorem 1.0.17 and Theorem 1.0.15 are non empty, i.e we have
examples of compact subsets of Riemannian manifolds where do not exist non zero varifolds with null
weak mean curvature relative to N and a fortiori there exists no non zero varifold with null generalized
second fundamental form. Let us start with an easy Lemma:

Lemma 6.5.2. Let N CC N be a compact subset of the n-dimensional Riemannian manifold (N, g)
isometrically embedded in some RS (by Nash Embedding Theorem), fit m < n — 1 and assume that N
contains no non zero m-varifold with null weak mean curvature relative to N. Then N does not contain
any non zero m-varifold with null generalized second fundamental form.

PRrROOF. We show that if the varifold V' has null generalized second fundamental form relative to N then
V' also has null weak mean curvature relative to N. Indeed let V be a varifold on N with generalized

curvature function B and second fundamental form A relative to N, then, from Remark 6.6.6,

OQu 0Qy;

Bijr = AZ— + A{k + le-PipTxp(x) + PklPipTxp(x)

where P and Q(z) are the projection matrices on P € G,,(N) and T, N. Moreover, from Remark 6.6.10,
V has weak mean curvature as a varifold in R

S
(H®)i = Bjij;
hence, if the generalized second fundamental form A is null, then

0Q;j 0Qu;i
o2, (z) + lep]kTm(x)'

(HRS )i = PuPjg

It is not hard to check that the first summand of the right hand side is null (fix a point  of N and choose

a base of T, N in which the Christoffel symbols of N vanish at x; write down the orthogonal projection

matrix @ with respect to this base and check the condition in this frame). Thus Hi-RS = Pj;, %Qx;’ and
Definition 6.6.11 gives

N RS 0Qi;

(H")i=(H" )i — P [“)x:

(x) = 0.

Collecting Lemma 6.5.2 and Remark 6.6.12 we can say that if a compact subset N CC N has a non
zero m-varifold with null generalized second fundamental form, then a fortiori N contains a non zero
m-varifold with null weak mean curvature relative to N, then a fortiori N contains a non zero m-varifold
with null first variation relative to N (recall, see Remark 6.6.13, that a varifold with null first variation
is also called stationary varifold). Hence it is enough to give examples of compact subsets of Riemannian
manifolds which do not contain any non zero m-varifold with null first variation relative to N.

First, we mention two examples given by White in [Whi] (for the proofs we refer to the original paper)
next we will propose a couple of new examples which can be seen as a sort of generalization of White’s
ones. Recall that if N is a compact Riemannian manifold with smooth boundary, NV is said to be mean
convex provided that the mean curvature vector at each point of N is an nonnegative multiple of the

inward-pointing unit normal.

Example 6.5.1. Suppose that N is a compact, connected, mean conver Riemannian manifold with
smooth, nonempty boundary, and that no component of ON is a minimal surface. Suppose also that the
dimension n of N is at most 7 and that the Ricci curvature of N is everywhere positive. Then N contains
no non zero (n — 1)-varifold with null first variation relative to N (i.e. stationary n — 1-varifold).

More generally, if N has nonnegative Ricci curvature, then the same conclusion holds unless N con-
tains a closed, embedded, totally geodesic hypersurface M such that Ric(v,v) = 0 for every unit normal
v to M (where Ric is the Ricci tensor of N ).

Minimal surfaces in ambient manifolds of the form M x R have been deeply studied in recent years
(see for example [MeRo04], [MeRo05] and [NeRo02]); notice that M x R is foliated by the minimal
surfaces M x {z}. In the second example we can see that very general compact subsets of ambient spaces
admitting such foliations do not contain non zero codimension 1 varifolds with null first variation.
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Example 6.5.2. Let N be an n-dimensional Riemannian manifold. Let f : N — R be a smooth function
with nowhere vanishing gradient such that the level sets of f are minimal hypersurfaces or, more generally,
such that the sublevel sets {x : f(x) < z} are mean conver. Let N be a compact subset of N such that
for each z € R, no connected component of f~1(z) is a minimal hypersurface lying entirely in N. Then
N contains no non zero n — l-varifold with null first variation relative to N.

Observe that both examples concern the non-existence of codimension 1 stationary varifolds: next
we propose a couple of new examples in higher codimension. We need the following maximum principle
for stationary (i.e. with null first variation) varifolds given by White, for the proof see [Whi2], Theorem
1. Before stating it recall that if N is an n-dimensional Riemannian manifold with boundary 0N, N is
said strongly m-convezr at a point p € N provided

ki+ko+...+kn,>0

where ky < ko < ... < k,_1 are the principal curvatures of ON at p with respect to the unit normal vy
that points into V.

Theorem 6.5.3. Let N be a smooth Riemannian manifold of dimension n, let N C N be a smooth
Riemannian n-dimensional manifold with boundary, and assume p to be a point in ON at which N is
strongly m-convex. Then p is not contained in the support of any m-varifold in N with null first variation
relative to N.

Actually the Theorem of White is more general and precise, but for our purposes this weaker version
is sufficient.
Now are ready to state and prove the two examples.

Theorem 6.5.4. Let N be an n-dimensional Riemannian manifold and consider as ambient manifold
N x RS, s > 1 with the product metric. Then any compact subset N CC N x RS does not contain any
non null stationary n+ k-varifold, k =1,...,s—1 (i.e. n+ k-varifold with null first variation relative to
N x R9).

PROOF. Assume by contradiction that V' is a non null n + k-varifold in N with null first variation in
N x RS for some 1 < k < s — 1. Consider the function p : N x RS — R* defined as

N x R¥ 3 (z,y) — p(z,y) = |y|gs

where of course |y|gs is the norm of y as vector of RS. With abuse of notation, call M C N the spatial
support of V' (now M may not be rectifiable, it is just compact); observe that, since M is compact, then
the function p restricted to M has a maximum r > 0 at the point (zg,y0) € M C N x R® (observe
that the maximum r has to be strictly positive otherwise we would have a non null n + k-varifold in
an n-dimensional space, which clearly is not possible by the very definition of varifold). It follows that,
called N, the tube of center N and radius r

NT = {({E,y) SRS Nv |y|]RS < T}a
the spatial support of V is contained in N,
M C N,. (6.37)

Moreover M is tangent to the hypersurface C,. := ON,. = {(z,y) : x € N, |y|gs = r} at the point (zg, yo)-
Observe that O, is diffeomorphic to N x rS]l‘;;l, where of course rSD;;l is the s — 1-dimensional sphere of
RS of radius r centered in the origin.
Using normal coordinates in N x R it is a simple exercise to observe that the principal curvatures
of C,. with respect to the inward pointing unit normal are constantly
1
ki=ky=...=kp,=0, kny1 =kpio=... = ks_1 = -
(just observe that the inward unit normal is —©, where © is the radial vector which parametrizes Sﬂigl; of
course —O is constant respect to the x coordinates; using normal coordinates one checks that the second
fundamental form is made of two blocks: the one corresponding to N is null and the other one coincides
with the second fundamental form of Sﬁgl as hypersurface in R).
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It follows that C, = ON, is strongly n + k-convex in all of its points, for all 1 < k <n —1; but V
is a non null n 4 k-varifold in N, with null first variation relative to N and tangent to C,. at the point
(z0,y0) € C,. N M. Fact which contradicts the maximum principle, Theorem 6.5.3. B

As a corollary we have an example in all the codimensions in R:

Theorem 6.5.5. Let N CC R® be a compact subset of R®, s > 1. Then, for all1 < m < s—1, N
contains no non zero m-varifold with null first variation relative to RS.

PrOOF. Just take N := {z} in the previous example, Theorem 6.5.4, and observe that {z} x R¥ is
isometric to R,

Otherwise argue by contradiction as in the proof of Theorem 6.5.4 and observe that the support of
the non zero m-varifold with null first variation is contained in a ball of R® and tangent to its boundary,
namely a sphere. Of course the sphere is strongly m-convex; it follows a contradiction with the maximum
principle, Theorem 6.5.3.

|

Remark 6.5.6. Recall that if the ambient n-dimensional Riemannian manifold N is compact without
boundary, then Almgren proved in [Alm] that for every 1 < m < n there exists an integral m-varifold
with null first variation relative to N. Moreover, in the same setting of compact N and ON = (), Schoen
and Simon [ShSim81], using the work of Pitts [Pit81], proved that N must contain a closed, embedded
hypersurface with singular set of dimension at most n — 7. Hence, the isoperimetric inequality Theorem
6.2.6 fails for such N and the Theorem 1.0.15 is trivially true. However, as written above, there are
many interesting examples of ambient manifolds with boundary where the Theorem is non trivial.

Remark 6.5.7. It is known that the ambient Riemannian n-manifolds, n > 3 (with or without boundary)
which contain a smooth m-dimensional submanifold, m > 2, with null second fundamental form (i.e a
totally geodesic submanifold) are quite rare. It could be interesting to show the same in the context of
varifolds, that is to prove that the ambient compact Riemannian n-manifolds, n > 3 (with or without
boundary) which contain a non zero (a priori non rectifiable) m-varifold, m > 2, with null second fun-
damental form relative to N (see Definition 6.6.5) are quite rare. This fact would imply the existence of
a larger class of ambient Riemannian manifolds where the isoperimetric inequality Theorem 6.2.1 holds
and the main Theorem 1.0.17 is non trivial.

6.6 Appendix: some basic facts about varifold theory

Since throughout the thesis we use the theory of varifolds, in order to make the exposition as much as
possible self-contained, we recall here some basic useful facts. In particular we review the concept of
curvature varifold introduced by Hutchinson in [Hul] giving a slightly more general definition; namely
Hutchinson defines the curvature varifolds as “special” integral varifolds in a Riemannian manifold but,
as a matter of fact, the same definition makes sense for an even non rectifiable varifold in a subset of
a Riemannian manifold. So we will define (a priori non rectifiable) varifolds with curvature, which are
endowed with a generalized second fundamental form.

We start by recalling the basic definitions. For more material about the general theory, the interested
reader may look at the standard references [Fed], [Mor], [SiIGMT] or, for faster introductions, at [Mant]
or the appendix of [Whi].

Consider a (maybe non compact) n-dimensional Riemannian manifold (N, g). Without loss of gener-
ality, by the Nash Theorem, we can assume that

(N, g) — R¥ isometrically embedded for some S > 0.

We will be concerned with a subset N C N which, a fortiori, is also embedded in RS: N < RS,
Since throughout the thesis we reduce ourself to the case when N CC N is a compact subset (to avoid
pathological behavior we will also assume that it has non empty interior int(NN) # @) also in this appendix
it is assumed to be so, even if most of the following definitions and properties are valid for more general
subsets.

Let us denote by G(S,m) the Grassmannian of unoriented m-dimensional linear subspaces of R,
with

Gm(N) := (R® x G(S,m)) N {(x,P): x € N,P C T, N m-dimensional linear subspace}
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and with
Gm(N) =G, (N)N{(z,P):x € N}.

We recall that a m-varifold V on N is a Radon measure on G,,(IN) and that the sequence of varifolds
{Vi }ren converges to the varifold V in varifold sense if Vj, — V weak as Radon measures on G,,(N); i.e.

/ ¢ dVi, — 6 dV
G (N) G (N)

as k — oo, for all ¢ € C%G,,(N)). A special class of varifolds are the rectifiable varifolds: given
a countably m-rectifiable, H™- measurable subset M of N ¢ R® and 6 a non negative locally H™
integrable function on M, the rectifiable varifold V associated to M and 6 is defined as

V(g) = /N O)oln MR V6 € CEG(N))

and sometimes it is denoted with V' (M, ). Recall that if M, 6 are as above then the approximate tangent
space T, M exists for H™-almost every x € M (Theorem 11.6 in [SIGMT], for the definitions see 11.4 of
the same book). If moreover 6 is integer valued, then we say that V' is an integral varifold; the set of the
integral m-varifolds in N is denoted by IV, (N).

If V is a k-varifold, let |V| denote its mass:

V] :=V(Gm(N)).
Observe that we have a natural projection
m:Gpn(N)—> N (z,P)w— z, (6.38)
and pushing forward the measure V via the projection 7w, we have a positive Radon measure uy on N
pv(B) =V (r Y(B)) = V(Gn(B)) VB C N Borel set.

Since V' is a measure on Gy, (N), its support is a closed subset of G,,, (V). If we project that closed set
on N by the projection 7 then we get the spatial support of V', which coincides with spt uy .
Now let us define the notion of measure-function pair.

Definition 6.6.1. Let V be a Radon measure on G, (N) (i.e. a varifold) and f : G(N) — R be a
well defined V' almost everywhere L, (V) function. Then we say that (V, f) is a measure-function pair
over G, (N) with values in R*.

Given {(Vi, fr) }ken and (V, f) measure-function pairs over G, (N) with values in R®, suppose Vi, —
V weak as Radon measures in G, (N) (or equivalently as varifolds in N ). Then we say (Vi, fr) converges
to (V, f) in the weak sense and write

(Vi fe) = (Vo f)

if Vi fr = V| f weak convergence of Radon vector valued measures. In other words, if

/ (i &) dVi — (f. 6) dV
Gm(N)

Gm(N)
as k — oo, for all ¢ € CO(G,,(N),R®), where (.,.) is the scalar product in R®.

Definition 6.6.2. Suppose F' : G, (N) x R* — R. We will denote the variables in Gy, (N) x R* by
(x,P,q). We say that F satisfies the condition (6.6.2) if the following statements are verified:
1) F is continuous,
it) F is non negative (i.e. F(x,P,q) > 0 for all (x,P,q) € G, (N) x R®) and F(x, P,q) = 0 if and only
i11) F is convex in the q variables, i.e.

F(z,P,Aq1 + (1 = N)g2) < AF(x,P,q1) + (1 — A\)F(z, P, q2)

for all X € (0,1), (z,P) € Gn(N),q1 € R¥, g2 € R®,
i) F has non linear growth in the q variables, i.e. there exists a continuous function ¢, where ¢ :
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Gm(N) x [0,00) = [0,00), 0 < ¢(z, P,s) < ¢(x, P,t) for 0 <s <t and (z,P) € Gp(N), ¢(x, P,t) = o0
locally uniformly in (x, P) as t — oo, such that

¢(x, P, lg|)la| < F(z, P, q)
for all (z,P,q) € G, (N) x R,
An example (trivial but fundamental for this thesis) of such an F' is F(x, P, q) := |q|P for any p > 1.

Remark 6.6.3. For simplicity, in Definition 6.6.2, we assumed the same conditions of Hutchinson ([Hul]
Definition 4.1.2) on F but some hypotheses can be relaxzed. For example, about the results in this thesis,
if F = F(q) depends only on the q variables it is enough to assume (in place of i)) that F is lower
semicontinuous (see Theorem 6.1 in [MantCVDBJ).

In the aforementioned paper, Hutchinson proves the following useful compactness and lower semicon-
tinuity Theorem (see Theorem 4.4.2 in [Hul]):

Theorem 6.6.4. Suppose {(Vi, fr)}ren are measure-function pairs over G, (N) with values in R®.
Suppose V' is a Radon measure on G,,(N) (i.e a varifold in N) and Vi, — V weak converges as Radon
measures (equivalently varifold converges in N ). Suppose F' : G, (N) x R® — R satisfies the condition
(6.6.2). Then the following are true:

i) If there exists C' > 0 such that

/ F(z, P, fo(z, P))dVi < C Yk €N (6.39)
G (N)

then there exists a function f € L} (V) such that, up to subsequences, (Vi, fx) — (V, f).

loc

ii) if there exists C > 0 such that (6.39) is satisfied and (Vi, fr) = (V, f) then

/ F(z, P, f(z,P))dV < liminf/ F(z, P, fi(z, P))dV.
G (N) b JGm )

Now we want to define the varifolds of N with curvature. Observe that given (z, P) € G,,(N), the
m-dimensional linear subspace P C T, N C R® can be identified with the orthogonal projection matrix

on Hom(RS RS) = RS®
P =[P,] e RS

Similarly, the tangent space of N at x can be identified with its orthogonal projection matrix
- 2
T.N = Q(x) := [Qij(z)] € RS,

Before defining the varifolds with curvature let us introduce a bit of notation: given ¢ = ¢(z, P) €

CHR?® x R? 2) we call the partial derivatives of ¢ with respect to the variables z; and Pj; (freezing all
other variables) by
Di¢ and Dj¢ for i,j,k=1,...,8

respectively. In the following definition we will consider the quantity

oy

Pi,i
J@:z:j

(z) for ¢ € CH(N);
we mean that 1 is extended to a C' function to some neighborhood of 2 € R® and, since P is the

projection on a m-subspace of T,, N, the definition does not depend on the extension. Observe moreover
that the quantity depends on (x, P) so it is a function on G,,(N).

Definition 6.6.5. Let V be an m-varifold on N C N — R%, m < n—1. We say that V is a varifold with
(generalized) curvature or with (generalized) second fundamental form if there exist real-valued functions
Biji, for 1 < i,j,k < S, defined V' almost everywhere in G,,(N) such that on setting B = [Bjji] the
following are true:
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i) (V, B) is a measure-function pair over G,,(N) with values in RS?
ii) For all functions ¢ = ¢(z, P) € CL(RY x R52) one has

0= / [P”Dj(b(.’li, P)—I—Bljk(l', P)D;k(b(f[:, P)—l—Bjij(:v, P)(b(l', ‘P)}d‘/(m7 P) fori=1,...,8. (640)
Gm(N)

In this case B is called (generalized) curvature and we can also define the (generalized) second funda-
mental form of V' (with respect to N) as the L} (V) function with values in RS?

loc
A Gu(N) >R,
0
Al (2, P) = PljBikl(x,P)—Pleiq%(x). (6.41)
q

We will denote the set of integral m-varifolds of N with generalized curvature as CV,,(N) and we will
call them curvature m-varifolds.

Observe that we use different notation from [Hul]: we call B what Hutchinson calls A and vice versa;

this is because we want to denote by A the second fundamental form with respect to N. Moreover, as it is
shown in Section 5 of [Hul], if V' is the integral varifold associated to a smooth immersed m-submanifold
of N then A coincides with the classical second fundamental form with respect to V.

Remark 6.6.6. By definition, the generalized second fundamental form A is expressed in terms of B
but, as Hutchinson proved in [Hul] Propositions 5.2.4 and 5.2.6, it is possible to express B in terms of
A. Indeed, choosing appropriate test functions, with some easy computations one can prove that

OQuk 0Q;

Biji = Afj + Aly + PjiPig— 2= () + P Pig 5> (). (6.42)
q q

Now let us recall the fundamental compactness and lower semi continuity Theorem of Hutchinson
(Theorem 5.3.2 in [Hul])

Theorem 6.6.7. Consider {Vj}ren C CVy(N) with generalized second fundamental forms {Ax}ren, V

an integral m-varifold of N and suppose Vi, — V in varifold sense. Let F : G,,(N) X R5% & R be a
function satisfying the condition (6.6.2) and assume that

/ F(LU,P,Ak)de < C
G'm(N)

for some C > 0 independent of k. Then
i) V € CVu(N) with generalized second fundamental form A,
it) (Vi, Ar) = (V, A) in the weak sense of measure-function pairs,
iii) f¢ o Fw, P, A)AV < liminfy, [, ) F(x, P, Ay)dVi.

Now we briefly recall the definition of first variation of an m-varifold V in R®; the original definitions
are much more general, here we recall only the facts we need for this thesis.

Definition 6.6.8. Let V be an m-varifold in RS and let X be a CL(RS) wvector field. We define first
variation 0V the linear functional on CL(RS) vector fields

SV (X) ::/G (Rs)diva(m)dV(m,P);

where for every P € G(S,m),

5 s
divpX = ZVin = Z P;D; X",
i=1 i,j=1
where VP f = P(Vf) is the projection on P of the gradient in RS of f and VI := e; - VI (where

{e;}i=1....s is an orthonormal basis of RY).
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V is said to be of locally bounded first variation in RS if for every relatively compact open W CC R®
there exists a constant Cyy < oo such that

[0V(X)| < Cw sup | X]|
w

for all X € CH(R®) wvector fields with support in W.

An interesting subclass of varifolds with locally bounded first variation are the varifolds with weak
mean curvature.

Definition 6.6.9. Let V be an m-varifold in R® and H : G,,,(RS) — R an L} (V) function (in the
previous notation we would say that (V, H) is a measure-function pair on G, (R®) with values in RS);
then we say that V has weak mean curvature H if for any vector field X € C1(R¥) one has

WV (X):= /G - divp X (x)dV (z, P) = 7/(; - H-XdV(z, P). (6.43)

Observe that if V' = V(M,0) is a rectifiable varifold with weak mean curvature H then with abuse of
notation we can write H(z) = H(x,T,M) and we get the following identities:

/ diUMXd/.LV = / d’L.UTl,]wX(l‘)dV = —/ H(l‘,TIM) - XdV = —/ H(J?) . Xduv, (644)
M G (RS) G (RS) M

where divy X is the tangential divergence of the vector field X and is defined to be divy X (x) =
divr, p X (x) where T, M is the approximate tangent space to M at x (which exists for py-a.e. x).

Remark 6.6.10. As Hutchinson observed in [Hul], if V is an m-varifold on N < RS with generalized
curvature B = [Bijlijk=1.....s then, as a varifold in R®, V has weak mean curvature H; = Zf:l Bj;; for
i=1,...,8. Indeed, for any relatively compact open subset W CC R® and any vector field X € CL(R?)
with compact support in W, taking ¢ = X", i =1,...,5 in equation (6.40) and summing over i we get

0= / [P,;;D; X' () + Bjij(z, P)X ' (2)]|dV (z, P)
Gm(RS)
which implies

SV(X) = /G o P XNV @ P) =~ /G o B PIX @) 4V (2, P;

the conclusion follows from the fact that B € L} (V).

loc

Now let us define the varifolds with weak mean curvature in a compact subset N CC N of a Rieman-
nian manifold (N, g) isometrically embedded in R¥.

Definition 6.6.11. Let V be an m-varifold on N € N < R%, m <n — 1. We say that V is a varifold

with weak mean curvature HY relative to N if it has weak mean curvature % gs varifold in R. In
this case the value of (HN);, i =1,...,8 is given by

s 0Q;;
(HN)i = (HR )l — Pji, axkj'

(6.45)

Consistently with the notation introduced for the curvature varifolds, we denote by HVy,(N) the set of
integral m-varifolds on N with weak mean curvature relative to N; the elements of HVy,(N) are called
mean curvature varifolds.

Observe that in case V is the varifold associated to a smooth submanifold of N then HY coincides

with the classical mean curvature relative to N (it is enough to trace the identity (i) of Proposition 5.1.1
in [Hul] recalling that we denote by A,Q what Hutchinson calls B,S). Moreover, as an exercise, the

reader may check that also in the general case the vector (ij %Ci}f ) of R® is orthogonal to N (fix
i=1

a point z of N and choose a base of T,,N in which the Christoffel symbols of N vanish at x; write down
the orthogonal projection matrix @ with respect to this base and check the orthogonality condition).
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Remark 6.6.12. If V' is an m-varifold on N C N <= RY% m<n — 1 with weak mean curvature HN
relative to N then, for each compactly supported vector field X € C}(N) tangent to N,

SV(X) = / divp X (z)dV (z, P) = — / HY - XdV(z, P).
Gm(N) Gm(N)
This fact gives consistency to Definition 6.6.11 and follows from Definition 6.6.11, from formula (6.43)

and the orthogonality of (ij %?c’,j) to N.
i=1,...,8

Remark 6.6.13. If V is an m-varifold on N C N < R%, m < n—1 with null weak mean curvature
HYN =0 relative to N then, for each compactly supported vector field X € C(N) tangent to N,

SV(X) = / divp X (2)dV (z, P) = 0.
G (N)

In this case we say that V is an m-varifold in N with null weak mean curvature relative to N or, using
more classical language, that V' is a stationary m-varifold in N (where stationary as to be intended in

N).
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