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Abstract. We consider a class of spin-type discrete systems and analyze their continuum limit
as the lattice spacing goes to zero. Under standard coerciveness and growth assumptions together

with an additional head-to-tail symmetry condition, we observe that this limit can be conveniently

written as a functional in the space of Q -tensors. We further characterize the limit energy density
in several cases (both in 2 and 3 dimensions). In the planar case we also develop a second-order

theory and we derive gradient or concentration-type models according to the chosen scaling.

1. Introduction

The application of Γ-convergence to the study of discrete systems allows the rigorous definition of
continuum limits for variational problems starting from point-interaction energies. This discrete-to-
continuum approach consists in first introducing a small geometric parameter ε and defining suitably
scaled energies whose domain are functions {ui} parameterized by the nodes of a lattice of lattice
spacing ε , and then identifying those functions with continuous interpolations. This process allows
to embed such energies in classes of functionals that can be studied by ‘classical’ methods of Γ-
convergence. Following this approach it has been possible on one hand, e.g., to prove compactness and
integral representation theorems for volume and surface integrals deriving from atomistic interactions
[2,4,8] by following the localization arguments of classical results for continuum energies [12,18], and
on the other hand to highlight interesting features of the limit energies implied by the constraints
given by the discrete nature of the parameters (for example, optimality properties for discrete linear
elastic composites [14], multi-phase limits for next-to-nearest neighbor scalar spin systems [1], ‘double-
porosity’ models [13], ‘surfactant’-type theories [6], etc.).

A first scope of this paper is to give a contribution to the problem of the choice of the proper
macroscopic parameter in the process described above. This is a crucial issue, since from that choice
depend the relevant features that will apper in the limit continuum description. In many cases this
parameter is given by some strong or weak limits of the interpolations of the lattice functions as ε→ 0.
Examples comprise continuum parameters representing macroscopic elastic deformations starting from
atomistic displacements, macroscopic magnetization starting from a spin variable and ferromagnetic
energies, etc. In some cases, though, such a simple choice of the parameter integrates out much
relevant information, and some new parameter has to be chosen. In the case of antiferromagnetic
scalar spin systems, for example, the relevant parameter describes the patterns of oscillating ground
states and highlights the presence of phase and anti-phase boundaries [1,26]. In view of elaborating a
general strategy for the choice of the macroscopic parameter, in this paper we analyze another relevant
case, which is instead driven by symmetry arguments regarding the energies, for vector spin systems,
which leads to energies described by the De Gennes’ Q-tensor. A trivial example is given by an energy
favouring the alignment of spins to a fixed direction ν (e.g., with energy density −|u · ν|2 ). If we
take Q = u ⊗ u as parameter then the discrete-to-continuum computation described above gives a
non-trival energy minimized by the uniform state ν ⊗ ν , while the description through the variable
u gives an energy minimized on arbitrary mixtures of the two states ν and −ν , so that the use of
the parameter Q gives a more precise description of the energetic behaviour. In other cases it also
allows to derive higher-order theories involving gradient terms. Once such a choice of the parameter is
justified, the second scope of this work is to elaborate a number of test studies on well-known Maier-
Saupe models of Liquid Crystals, which show how the discrete-to-continuum approach can be applied
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in this context, in order to provide a general framework for future applications to more elaborate
analyses and possibly new models.

We begin with a brief setup for the derivation of continuum limits of spin systems. Taking the cubic
lattice ZN as reference, the set up of the problem is the following: given Ω ⊂ RN , Zε(Ω) := ZN ∩ 1

εΩ,
Y ⊆ SN−1 and denoting by u : Zε(Ω) → Y , i 7→ ui the spin field, one is interested in the limit as
ε→ 0 of energies of the form

Eε(u) =
∑
ξ∈ZN

∑
i∈Rξε(Ω)

εNgξε(i, ui, ui+ξ), (1.1)

where Rξε(Ω) := {i ∈ Zε(Ω) : i+ ξ ∈ Zε(Ω)} parameterizes the set of nodes in Zε(Ω) with an active
interaction with a node at a distance εξ in the scaled lattice. The energy density gξε represents the
interaction potential between points at distance εξ in εZε(Ω), so that the internal sum gives the
energy obtained by summing the interactions of the node at position εi with all the other nodes in
Ω, scaled by the volume factor εN .

Under the exchange symmetry condition

gξε(i, u, v) = g−ξε (i+ ξ, v, u)

and suitable decay assumptions on the strength of the potentials gξε as |ξ| diverges, an integral
representation result has been proved in [4] asserting that, up to subsequences,

Γ- lim
ε
Eε(u) =

∫
Ω

g(x, u(x)) dx.

Note that, even if the knowledge of this bulk limit does not describe with enough details some of the
features of many spin systems, for which the analysis of higher scalings is needed, nevertheless the
characterization of g is a necessary starting point. Concerning the analysis at higher order, it is worth
noting that few general abstract results are available (interesting exceptions being the paper [8], and
the case of periodic interactions [15]). Indeed, in most of the cases the analysis has to be tailored to
the specific features of the discrete system and in particular to the symmetries of its energy functional.
Following this general idea, the first problem to face is the definition of a ‘correct’ order parameter
which may keep track of the concentration of energy at the desired scale.

We will consider discrete energies as in (1.1) satisfying an additional head-to-tail symmetry condi-
tion, namely

gξε(i,−u, v) = gξε(i, u, v) = gξε(i, u,−v). (1.2)

The condition above, which entails that antipodal vectors may not be distinguished energetically,
motivates the choice of the order parameter. Even though ground states may exhibit complex mi-
crostructures, the description of the overall properties of the system can be described in terms of the
De Gennes Q-tensor associated to u ; namely, Q(u) = u⊗ u (see for instance [19,24]).

Among the physical models driven by energies satisfying a head-to-tail symmetry condition a special
role is played by nematics. In particular, energetic models belonging to the class we consider here
are the so called lattice Maier-Saupe models, first introduced by Lebwohl and Lasher in [21] as a
simplification of the celebrated mean-field Maier-Saupe model for liquid crystals (see [23]). The
lattice model introduced by Lebwohl and Lasher neglects the interaction between centers of mass
of the molecules (those being fixed on a lattice) and penalizes only alignment. Even if it does not
reproduce any liquid feature of nematics, this model has proved to be quite a good approximation
of the general theory in the regime of high densities and at the same time less demanding from the
computational point of view. For these reasons it has been subsequently widely generalized by many
authors (some interesting development of the model are presented in [16,20,22]).

With the choice of the Q-tensor order parameter the energy in (1.1) takes the form

Fε(Q) =
∑
ξ∈ZN

∑
i∈Rξε(Ω)

εNfξε (i, Qi, Qi+ξ)
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(now Qi = Q(ui)), which underlines that in (1.1) we can rewrite energies as depending only on u⊗u .
Besides decay assumption on long-range interactions, we suppose that the potentials fξε satisfy the
exchange symmetry condition:

fξε (i, Q, P ) = f−ξε (i+ ξ, P,Q),

assumption (1.2) being now expressed by the structure of the Q-tensors. An application of Theorems
3.4 and 5.3 in [4] gives the integral-representation and homogenization results stated in Theorems 3.3
and 3.5. In the particular case when fξε (i, P,Q) = fξ(P,Q) does not depend on the space variable
and ε , we obtain an integral-representation formula for the Γ-limit of Fε of the type

Γ- lim
ε
Fε(Q) =

∫
Ω

fhom(Q(x)) dx, (1.3)

where fhom is given by an abstract asymptotic homogenization formula (see (3.16)). One of the
most interesting consequences of this reformulation is that now the limit functional depends on the
Q-tensor, thus the expected head-to-tail symmetry property of the continuum model is satisfied.
Moreover, continuum models involving a Q-tensor variable have been the object of intense studies
in recent years (see [10] and [27]) so that the class of systems we study may be seen as a discrete
approximation of some models of this kind and the Γ-convergence analysis we perform may be useful
to rigorously justify some of their numerical approximations. Furthermore, from a technical point of
view, the understanding of the algebraic structure of the space of Q-tensors proves to be useful for
better characterizing the limit energies in many special cases under different scalings. This is indeed
the main object of this paper and to it we devote the last part of the introduction. Before going on it is
worth pointing out that in the framework of liquid crystal models, other points of view and modeling
assumptions are possible (see for instance [19]). A classical model is constructed as follows. To each
point i ∈ Zε(Ω) one associates a probability measure µi on SN−1 accounting for an heuristic aver-
aging of the microscopic orientations on some fixed mesoscale. Assuming symmetry properties of the
distribution of these orientations one has that µi has vanishing barycenter. As a result, a meaningful
energy to consider depends on the measured-valued function µ defined on Zε(Ω) in terms of its second
moment Qµ : Zε(Ω)→MN×N

sym . It may be seen that at each point i ∈ Zε(Ω) (Qµ)i belongs to the set
of Q-tensors (i.e., nonnegative symmetric matrices with trace 1) and that every Q -tensor is the sec-
ond moment of some probability measure with vanishing barycenter. On the other hand, since there
is no canonical way to associate with continuity a measure to a Q-tensor and since the compactness
of the energies we consider only concerns Q-tensors (even Sobolev compactness of a sequence Qµε of
energy equi-bounded tensors is still weaker than any weak convergence of µε ) it seems unnatural to
choose as order parameter µ and to perform the Γ-limit with respect to weak convergence of measures.

Starting from the abstract formula (1.3) and inspired by some of the above-mentioned physical
models, our first purpose is to characterize fhom for special choices of gξε . In Section 3.3 we give a
complete analysis in the case of planar nearest-neighbor interactions; i.e, when gξε is non zero only
for |ξ| = 1, and for such ξ we have gξε(u, v) = f(u, v). In particular in Theorem 3.10 we prove that
fhom = 4f̂∗∗ , where f̂∗∗ is the convex envelope of f̂ defined by the relaxation formula

f̂(Q) :=

f(u, v) if
u⊗ u+ v ⊗ v

2
= Q 6= 1

2
I

min
{
f(u, v) : u, v ∈ S1, u · v = 0

}
if Q = 1

2I.
(1.4)

An interesting feature of this formula is that the continuum energy of the macroscopically unordered
state Q = 1

2I is obtained by approximating Q at a microscopic level following an optimization
procedure among all the possible pairs of orthogonal vectors u, v ∈ S1 . In the anisotropic case, this
can be read as a selection criterion at the micro-scale whenever the minimum in formula (1.4) is not
trivial. In the homogeneous and isotropic case, instead, that is when f is such that

f(Ru,Rv) = f(u, v)
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for all u, v ∈ S1 and all R ∈ SO(2), the formula for fhom can be further simplified and it only involves
the relaxation of a function of the scalar variable |Q− 1

2I| . This radially symmetric energy functional
penalizes the distance of a microscopic state to the unordered one. The proof of this result is based
on a dual-lattice approach and strongly makes use of a characterization of the set of Q-tensors in
dimension two, which turns out to be ‘compatible’ with the structure of two-point interactions on a
square lattice (see Propositions 3.6 and 3.8).

The extension of the arguments of Section 3.3 to the three-dimensional case is not straightfor-
ward due to the much more complex structure of the space of Q-tensors in higher dimensions (see
Lemma 3.17). We are able to find a cell formula for fhom only for a particular class of energies.
Indeed, our dual-lattice approach fits quite well with energies depending on the set of values that
the vector field u takes on the 4 vertices of each face of a cubic cell, independently of their order.
Two-body type potentials giving raise to this special energy structure necessarily involve nearest and
next-to-nearest neighbor interactions satisfying the special relations that we consider in Section 3.4.

In the last section we further analyze the planar case by considering different scalings of homoge-
neous and isotropic energies whose bulk limit provides little information on the microscopic structure
of the ground states. In Theorem 4.4 we study a class of nearest-neighbor interaction energies and
prove that their Γ-limit is an integral functional whose energy density is proportional to the squared
modulus of the Q-tensor. Our result contains as a special case the analysis of the well-known Lebwohl-
Lasher model of nematics, in which case we prove that the energy favors a uniform distribution of
vector fields at the microscopic scale. Another class of energies is analyzed in Theorem 4.7. Here,
as a consequence of the competition between nearest and next-to-nearest interactions, the Γ-limit,
while again proportional to the squared modulus of Q , favors oscillating microscopic configurations.
In both the above cases the limit energy, of the form

γ

s2

∫
Ω

|∇Q(x)|2 dx,

can be interpreted as the cost of unit spatial variations of Q on the sub-manifold |Q − 1
2I| =

√
2

2 s
of the space of Q -tensors. Being the pre-factor an increasing function of the distance of Q from
the set of ordered states, this energy can be interpreted as a measure of the microscopic disorder of
the system. In the analysis done in Section 4 a crucial role is played by some lifting result recently
prove in [11] which allows us to deal (up to arbitrarily small errors in energy) with orientable Sobolev
Q -tensor fields having constant Frobenius norm as clarified in Remark 4.2). In order to complete an
overview of results in parallel with the known ones, in the last subsection of the paper we describe some
of the features of head-to-tail symmetric spin systems under scalings allowing for the emergence of
topological singularities. To that end we focus on the Lebwohl-Lasher model under a logarithmic type
scaling (for the analysis of more general long-range models see Remark 4.14). Namely, we consider

Eε(u) =
1

| log ε|
∑
|i−j|=1

(1− |(ui · uj)|2)

and prove that in an appropriate topology its Γ-limit leads to concentration on point singularities.
From a microscopical point of view (see Figure 5) this asserts that microscopic ground states look
like a finite product of complex maps with half-integer singularities. Note that discrete systems under
concentration scalings have been recently studied also in [3], [5], [9] and [7].

2. Notation and Preliminaries

Throughout the paper Ω ⊂ RN is a bounded open set with Lipschitz boundary. Further hypotheses
on Ω will be specified when necessary. For every A ⊆ Ω we define Zε(A) as the set of points i ∈ ZN

such that εi ∈ A . The N -dimensional reference cube
[
− 1

2 ,
1
2

)N of RN is denoted by WN . The set Ωε
is then defined as the union of all the cubes ε{i+WN} with i ∈ ZN and such that ε{i+WN} ⊂⊂ Ω.
In the case N = 2, which we will be mainly concerned with, we use the shorthand W in place of W2 .
The standard norms in euclidean spaces will be always denoted by | · | ; this holds in particular for the
euclidean norm on RN as well as for the Frobenius norm on the space of N ×N matrices MN×N and
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on the subspace of N ×N symmetric matrices MN×N
sym . For these given metrics, B(x, ρ) and B(Q, ρ)

will denote the open balls of radius ρ > 0 centered at x ∈ RN , and Q ∈ MN×N
sym , respectively. The

symbol SN−1 stands as usual for the unit sphere of RN .
Given two vectors a and b in RN , the tensor product a⊗ b is the N ×N matrix componentwise

defined by (a⊗ b)lm = albm for all l,m = 1, . . . , N . Note that, if c and d are also vectors in RN ,

(a · c)(b · d) = (a⊗ b) : (c⊗ d) . (2.1)

Here · is the euclidean scalar product, while : is the scalar product between matrices inducing the
Frobenius norm. In particular we have

|a⊗ b| = |a||b| . (2.2)

Furthermore, the action of the matrix a⊗ b on a vector c satisfies

(a⊗ b)c = (b · c)a. (2.3)

We will make often use of the following tensor calculus identity.

Proposition 2.1. Let u : Ω→ SN−1 be a C1 function. Then

|∇(u⊗ u)(x)|2 = 2|∇u(x)|2 (2.4)

for all x ∈ Ω .

Proof. Denoting with el with l = 1, . . . , N the vectors of the canonical basis of RN and using (2.1)
and (2.2), one has

|∇(u⊗ u)(x)|2 = lim
h→0

N∑
l=1

∣∣∣ (u⊗ u)(x+ hel)− (u⊗ u)(x)
h

∣∣∣2
= 2 lim

h→0

N∑
l=1

1− (u(x+ hel) · u(x))2

h2

= 2 lim
h→0

N∑
l=1

1− (u(x+ hel) · u(x))
h2

[1 + (u(x+ hel) · u(x))]

= lim
h→0

N∑
l=1

∣∣∣u(x+ hel)− u(x)
h

∣∣∣2[1 + (u(x+ hel) · u(x))] = 2|∇u(x)|2 ,

where we also took into account that u(x+ hel) · u(x)→ |u(x)|2 = 1 as h→ 0. �

In Section 4.3 we will consider the distributional Jacobian Jw of a function w ∈ W 1,1(Ω; R2) ∩
L∞(Ω; R2). It is defined through its action on test functions φ ∈ C0,1

c (Ω), the space of Lipschitz
continuous functions on Ω with compact support, as follows:

〈Jw, ϕ〉 = −
∫

R2
w1(w2)x2ϕx1 − w1(w2)x1ϕx2 dx. (2.5)

It is not difficult to see that w 7→ Jw is continuous as a map from W 1,1(Ω; R2) ∩ L∞(Ω; R2) to the
dual of C0,1

c (Ω); moreover, if additionally w ∈ W 1,2(Ω; R2), then Jw ∈ L1(Ω) and we recover the
usual definition of Jacobian as Jw = det∇w .

3. The energy model and its bulk scaling

Given Ω ⊂ RN and ε > 0, we consider a pairwise-interacting discrete system on the lattice
Zε(Ω) whose state variable is denoted by u : Zε(Ω) → RN . Such a system is driven by an energy
Eε : RN → (−∞,+∞) given by

Eε(u) =
∑

i,j∈Zε(Ω)

εNeε(i, j, ui, uj)
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for some energy density eε : Zε(Ω)2 × R2N → R . We observe that there is no loss of generality in
assuming the interactions symmetric. This symmetry condition is expressed by the formula

eε(i, j, u, v) = eε(i, j, v, u)

(note that, otherwise, one could consider ẽε(i, j, u, v) = 1
2 (eε(i, j, u, v) + eε(j, i, v, u)). A key feature

of our model is its orientational symmetry; i.e. the systems we consider are characterized by the
property that one cannot distinguish a state from its antipodal. From the point of view of the energy,
this translates into the following condition:

eε(i, j, u, v) = eε(i, j, u,−v). (3.1)

In the following we find it useful to rewrite the energy by a change of variable. Given ξ ∈ ZN we
define:

gξε(i, u, v) := eε(i, i+ ξ, u, v) (3.2)
and we have

Eε(u) =
∑
ξ∈ZN

∑
i∈Rξε(Ω)

εNgξε(i, ui, ui+ξ),

with Rξε(Ω) := {i ∈ Zε(Ω) : i + ξ ∈ Zε(Ω)} . Note that, in the current variables, the symmetry
conditions read

gξε(i, u, v) = g−ξε (i+ ξ, v, u) (3.3)

gξε(i, u, v) = gξε(i, u,−v) (3.4)

Notice that the two equations above also imply that

gξε(i,−u, v) = gξε(i, u, v) = gξε(i,−u,−v). (3.5)

Indeed, by (3.3) and (3.4)

gξε(i,−u, v) = g−ξε (i+ ξ, v,−u) = g−ξε (i+ ξ, v, u) = gξε(i, u, v)

and the other equality can be proven similarly.

3.1. Q-theory - L∞ energies. In the rest of the paper we will be concerned with energies defined
on SN−1 -valued functions u : Zε(Ω)→ SN−1 . In this case one can regard the energies as defined on
tensor products of the type Q(u) = u⊗ u . More precisely, for all ε, i, u, v we will write

fξε (i, Q(u), Q(v)) := gξε(i, u, v). (3.6)

This identification is not ambiguous because of (3.5), (3.4) and the following proposition.

Proposition 3.1. Let u,w ∈ SN−1 . Then Q(u) = Q(w) if and only if u = ±w .

Proof. By the definition of Q , (2.1) and (2.2) we have that

|Q(u)−Q(w)|2 = |u⊗ u− w ⊗ w|2 = 2(1− (u · w)2).

Therefore Q(u) = Q(w) if and only if (u · w)2 = 1. Since u,w ∈ SN−1 this is equivalent to the
statement. �

The choice of the variables in (3.6) will prove to be very useful in the following analysis and
corresponds to the usual de Gennes Q-tensor approach to liquid crystals (see [19]). In these variables
the two symmetry conditions (3.3) and (3.4) reduce only to the first one (3.3) which now reads as

fξε (i, Q(u), Q(v)) = f−ξε (i+ ξ,Q(v), Q(u)), (3.7)

the second symmetry condition being entailed by the structure of the tensor variable. We define
SN−1
⊗ ⊂ MN×N

sym as SN−1
⊗ := {Q(v) : v ∈ SN−1} . Note that by (2.2) we have |Q| = 1 for all

Q ∈ SN−1
⊗ . We then identify every u : Zε(Ω) 7→ SN−1 with Q(u) : Zε(Ω) 7→ SN−1

⊗ , where Q(u) is
defined at each i ∈ Zε(Ω) as Qi := (Q(u))i = Q(ui). Furthermore, to the latter we associate a
piecewise-constant interpolation belonging to the class

Cε(Ω;SN−1
⊗ ) := {Q : Ω→ SN−1

⊗ : Q(x) = Qi if x ∈ ε{i+WN}, i ∈ Zε(Ω)}. (3.8)
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As a consequence we may see the family of energies Eε as defined on a subset of L∞(Ω,MN×N
sym ) and

consider their extension on L∞(Ω,MN×N
sym ) through the family of functionals Fε : L∞(Ω,MN×N

sym ) →
(−∞,+∞] defined as

Fε(Q) =


∑
ξ∈ZN

∑
i∈Rξε(Ω)

εNfξε (i, Qi, Qi+ξ) if Q ∈ Cε(Ω, SN−1
⊗ )

+∞ otherwise.
(3.9)

We make the following set of hypotheses on the family of functions fξε : Zε(Ω)×MN×N
sym ×MN×N

sym →
(−∞,+∞] :

(H1) For all i , ξ and ε , fξε satisfies (3.7),
(H2) For all i , ξ and ε , fξε (i, P,Q) = +∞ if (P,Q) /∈ SN−1

⊗ × SN−1
⊗ ,

(H3) For all i , ξ and ε , there exists Cξε,i ≥ 0 such that

|fξε (i, P,Q)| ≤ Cξε,i for all P,Q ∈ SN−1
⊗ ,

lim sup
ε→0

sup
i∈Zε(Ω)

∑
ξ∈ZN

Cξε,i <∞,

(H4) for all δ > 0, there exists Mδ > 0 such that

lim sup
ε→0

sup
i∈Zε(Ω)

∑
|ξ|≥Mδ

Cξε,i ≤ δ.

In what follows we will also use a localized version of the functional Fε , defined below. Let A(Ω)
be the class of all open subset of Ω. For every A ∈ A(Ω) we set

Fε(Q,A) =


∑
ξ∈ZN

∑
i∈Rξε(A)

εNfξε (i, Qi, Qi+ξ) if Q ∈ Cε(Ω;SN−1
⊗ )

+∞ otherwise.
(3.10)

3.2. General integral representation theorems. In this section we state a general compactness
and integral representation result for the functionals Fε defined in (3.10). To that end we will need
the following characterization of the convex envelope of SN−1

⊗ .

Proposition 3.2. The convex envelope of SN−1
⊗ is given by the set

K := {Q ∈MN×N
sym : Q ≥ 0, trQ = 1}. (3.11)

Proof. Note that K is convex and that it contains the convex envelope of (SN−1
⊗ ). It therefore

remains to show that every matrix in K can be represented as a convex combination of matrices in
SN−1
⊗ . For every Q ∈ K , by the symmetry and the positive semidefiniteness of Q , we may consider

its ordered eigenvalues 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λN . By the trace condition we have that
N∑
l=1

λl = 1. (3.12)

On the other hand we may represent Q as

Q =
N∑
l=1

λlel ⊗ el, (3.13)

where {e1, e2, . . . , eN} is an orthonormal basis in RN and each of the el is an eigenvector relative to
λl . Since λl ≥ 0, combining (3.12) and (3.13) we conclude the proof. �

The following Γ-convergence result holds true.
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Theorem 3.3 (compactness and integral representation). Let {fξε } satisfy hypotheses (H1)–(H4), and
let K be given by (3.11). Then, for every sequence εn converging to zero, there exists a subsequence
(not relabelled) and a Carathéodory function f : Ω × K → R convex in the second variable such
that the functionals Fεn Γ-converge with respect to the weak∗ -convergence of L∞(Ω,MN×N

sym ) to the
functional F : L∞(Ω,MN×N

sym )→ (−∞,+∞] given by

F (Q) =


∫

Ω

f(x,Q(x)) dx if Q ∈ L∞(Ω;K),

+∞ otherwise.

Proof. The proof follows from [4, Theorem 3.4] upon identifying MN×N
sym with RN(N+1)/2 via the usual

isomorphism, and by the characterization of the convex envelope of SN−1
⊗ in Proposition 3.2. �

In what follows we state a homogenization problem for our type of energies.
Let k ∈ N and for any ξ ∈ ZN , let fξ : ZN × SN−1

⊗ × SN−1
⊗ → R be such that fξ(·, P,Q) is

[0, k]N -periodic for any P,Q ∈ SN−1
⊗ . We then set

fξε (i, P,Q) := fξ(i, P,Q). (3.14)

In this case, hypotheses (H2), (H3), (H4) read:

(H2’) For all i and ξ , fξ(i, P,Q) = +∞ if (P,Q) 6∈ SN−1
⊗ × SN−1

⊗ .
(H3’) For all i and ξ , there exists Cξ ≥ 0 such that |fξ(i, P,Q)| ≤ Cξ for all P,Q ∈ SN−1

⊗ , and∑
ξ C

ξ <∞ .

We now introduce the notion of discrete average.

Definition 3.4. For any A ⊂ Ω, ε > 0, and Q ∈ Cε(Ω, SN−1
⊗ ), we set

〈Q〉d,εA =
1

#Zε(A)

∑
i∈Zε(A)

Qi

(in this notation d stands for discrete).

Theorem 3.5 (homogenization). Let {fξε }ε,ξ satisfy (3.14), (H1), (H2’) and (H3’). Then Fε Γ-
converge with respect to the L∞ -weak∗ topology to the functional Fhom : L∞(Ω; MN×N

sym ) → [0,+∞]
defined as

Fhom(Q) =


∫

Ω

fhom(Q(x))dx if Q ∈ L∞(Ω;K)

+∞ otherwise,
(3.15)

where fhom is given by the homogenization formula

fhom(P ) = lim
ρ→0

lim
h→+∞

1
hN

inf

{∑
ξ∈ZN

∑
j∈Rξ1(hWN )

fξ(j,Qj , Qj+ξ),
∣∣∣〈Q〉d,1hWN

− P
∣∣∣ ≤ ρ}. (3.16)

Proof. The proof follows by applying [4, Theorem 5.3]. �

3.3. Nearest-neighbor interactions in two dimensions. In this section we consider a pairwise
energy between nearest-neighboring points on a planar lattice whose configuration is parameterized
by a function u belonging to S1 . In this case the energy takes the form

Eε(u) =
∑
|i−j|=1

ε2f(ui, uj). (3.17)

The symmetry hypotheses can be rewritten as

f(u, v) = f(u,−v) = f(−u, v), (3.18)
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and hypothesis (H3) reduces to assume that f : Zε(Ω) → R is a bounded function. Via the usual
identification Qi = Q(ui) we may associate to Eε(u) the functional Fε(Q) given by:

Fε(Q) =


∑
|i−j|=1

ε2f(ui, uj) if Q ∈ Cε(Ω;S1
⊗)

+∞ otherwise.
(3.19)

In this special case it is particularly easy to recover an explicit formula for the energy density fhom

in Theorem 3.5. Some useful identities are pointed out in the next proposition.

Proposition 3.6. It holds that:
(a) Let u and v ∈ S1 . Denote by I the identity 2× 2 matrix. Then∣∣∣1

2
(u⊗ u+ v ⊗ v)− 1

2
I
∣∣∣ =
√

2
2
|u · v| . (3.20)

(b) Let K be defined as in (3.11) with N = 2 . Then we have

K = {Q ∈M2×2
sym : |Q| ≤ 1, trQ = 1} = {Q ∈M2×2

sym : |Q− 1
2I| ≤

√
2

2 , trQ = 1} . (3.21)

Proof. Let Q ∈M2×2
sym be such that trQ = 1, then∣∣∣Q− 1

2
I
∣∣∣2 = |Q|2 − 1

2
. (3.22)

In the particular case where Q = u⊗u+v⊗v
2 with u, v ∈ S1 , using (2.1) and (2.2) we get∣∣∣∣u⊗ u+ v ⊗ v

2
− 1

2
I

∣∣∣∣2 =
∣∣∣∣u⊗ u+ v ⊗ v

2

∣∣∣∣2 − 1
2

=
1
4

(2 + 2(u · v)2)− 1
2

=
1
2

(u · v)2

which implies (a). Let Q ∈ M2×2
sym be such that trQ = 1. If λ and 1 − λ are the eigenvalues of Q ,

then the condition 1 ≥ |Q|2 = λ2 + (1− λ)2 is equivalent to λ ∈ [0, 1]. This implies the first equality
in (3.21). From that and (3.22) also the second equality follows. �

Remark 3.7. Note that, following the same argument of the proposition above, we may also show
that

K = {Q ∈M2×2
sym : |Q− sI|2 ≤ s2 + (1− s)2, trQ = 1}.

The case s = 1
2 highlighted in the proposition will be more useful since in that case Q − 1

2I are
traceless matrices.

We now show that, for every Q ∈ K , there exist u and v ∈ S1 such that

Q = 1
2 (u⊗ u+ v ⊗ v) .

This decomposition will turn out to be unique (up to the order) except in the case when Q = 1
2I .

Indeed, in that case any pair of orthonormal vectors u, u⊥ satisfies

u⊗ u+ u⊥ ⊗ u⊥

2
=

1
2
I.

Proposition 3.8. Let Q ∈ K . Then there exist u and v ∈ S1 such that

Q = 1
2 (u⊗ u+ v ⊗ v) . (3.23)

Furthermore, if Q 6= 1
2I , the matrices u⊗u and v⊗ v are uniquely determined up to exchanging one

with the other.

Proof. Let Q ∈ K . Then it exists λ ∈ [0, 1] and an orthonormal basis {n1, n2} of R2 such that

Q = λn1 ⊗ n1 + (1− λ)n2 ⊗ n2 .

If we set
u =
√
λn1 +

√
1− λn2 , v =

√
λn1 −

√
1− λn2 ,

both u and v ∈ S1 , and a direct computation shows that (3.23) is satisfied.
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Now, let us suppose that Q = 1
2 (u ⊗ u + v ⊗ v) = 1

2 (z ⊗ z + w ⊗ w), with u , v , z , w ∈ S1 , and
Q 6= 1

2I . First of all, by (3.20) we get

|u · v| = |z · w| 6= 0 .

Up to changing w with −w , which does not affect the matrix w ⊗ w , we can indeed suppose

(u · v) = (z · w) 6= 0 . (3.24)

Set λ = 1
2 (1 + (u · v)). Using (2.3), a direct computation and (3.24) then give

Q(u+ v) = λ(u+ v) , Q(z + w) = λ(z + w)

and
Q(u− v) = (1− λ)(u− v) , Q(z − w) = (1− λ)(z − w)

Since, by (3.24), λ 6= 1
2 , the matrix Q has two distinct one-dimensional eigenspaces. Hence the vector

u+ v must then be parallel to z + w and u− v parallel to z − w . Furthermore, again using (3.24),
|u + v| = |z + w| and |u − v| = |z − w| . Up to changing both u and v with their antipodal vectors
−u and −v (which does not affect the matrices u⊗ u and v ⊗ v ) we can indeed suppose

u+ v = z + w (3.25)

while leaving (3.24) unchanged. Then, if necessary exchanging z and w we can additionally assume

u− v = z − w ; (3.26)

again, this would not affect the validity of (3.24) and (3.25). Then, (3.25) and (3.26) are simultaneously
satisfied if and only if u = z and v = w , as required. �

In order to compute the Γ-limit of Eε(u) given by (3.17) we will use a dual-lattice approach. To
that end we need to fix some notation about lattices and the corresponding interpolations. Given
u : Zε(Ω) → S1 and its corresponding Q , we may associate to Q a piecewise-constant interpolation
on the ’dual’ lattice

Z′ε(Ω) :=
{ i+ j

2
: i, j ∈ Zε(Ω), |i− j| = 1

}
, (3.27)

by setting

Q′k =
1
2

(Qi +Qj) (3.28)

for k = i+j
2 . Correspondingly we define Q′ε in the class

C ′ε(Ω;K) :=
{
Q : Ω→ K : ∃Q ∈ Cε(Ω, S1

⊗) such that Q′(x) =
1
2

(Qi +Qj)

if x ∈ ε
{ i+ j

2
+W ′

}
, i, j ∈ Zε(Ω), |i− j| = 1

}
, (3.29)

where W ′ is the reference cube of the dual configuration, obtained from the cube
[
−
√

2
4 ,
√

2
4

)2 by a
rotation of π

4 . The following lemma asserts that these two interpolations have the same limit points
as ε goes to 0.

Lemma 3.9. Let N = 2 and let a family of functions uε : Zε(Ω)→ S1 be given and define accordingly
the piecewise-constant interpolations Qε ∈ Cε(Ω;S1

⊗) and Q′ε ∈ C ′ε(Ω;K) , respectively. Then

Qε −Q′ε
∗
⇀ 0

weakly∗ in L∞(Ω;K) as ε→ 0 .

Proof. Let Ω′ ⊂⊂ Ω, and i ∈ Zε(Ω′) such that dist(εi, ∂Ω′) ≥ ε . This implies that ε{i + W} ⊂ Ω′ ,
and that for every of k satisfying |k − i| = 1

2 , one has k ∈ Z′ε(Ω) and ε{k + W ′} ⊂ Ω′ . Now, in
dimension N = 2 there are 4 of such k ’s. Since W has unit area and W ′ has area 1

2 , one therefore
gets ∫

ε{i+W}
A : Qi dx = (A : Qi) = A :

Qi
2

∑
k∈Z′

ε(Ω)

|k−i|= 1
2

ε2|{k +W ′}| =
∑

k∈Z′
ε(Ω)

|k−i|= 1
2

∫
ε{k+W ′}

A :
Qi
2
dx
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for every A ∈M2×2
sym . Summing over all indices i , it follows that∫

Ω′
A : (Qε(x)−Q′ε(x)) dx→ 0

for every A ∈ M2×2
sym and Ω′ ⊂⊂ Ω, which implies the conclusion by the uniform boundedness of Qε

and Q′ε . �
We now set

f̂(Q) :=

{
f(u, v) if u⊗u+v⊗v

2 = Q 6= 1
2I

min{f(u, v) : u, v ∈ S1, u⊗u+v⊗v
2 = 1

2I} if Q = 1
2I

(3.30)

and notice that
Eε(u) ≥ 2

∑
k∈Z′

ε(Ω)

ε2f̂(Q′k). (3.31)

We also define on L∞(Ω; M2×2
sym) the energy F̂ε by setting

F̂ε(Q) :=


2
∑

k∈Z′
ε(Ω)

ε2f̂(Q′k) if Q′ ∈ C ′ε(Ω;K)

+∞ otherwise
(3.32)

and we observe that

F̂ε(Q′) :=

4
∫

Ω

f̂(Q′(x)) dx+ rε if Q′ ∈ C ′ε(Ω;K)

+∞ otherwise,
(3.33)

where the reminder term rε comes from the fact that a portion of the cubes k + εW ′ may not be
completely contained in Ω, and a multiplier 2 appears, since the area of the reference cube W ′ is 1

2 .
By the boundedness of the integrand we have that rε = o(1) uniformly in Q′ ∈ C ′ε(Ω;K). We then
have the following result.

Theorem 3.10. Let Fε : L∞(Ω; M2×2
sym)→ R ∪ {∞} be defined by (3.19). Then Fε Γ-converges with

respect to the weak∗ -topology of L∞(Ω; M2×2
sym) to the functional F : L∞(Ω; M2×2

sym)→ R∪{∞} defined
by

F (Q) :=

4
∫

Ω

f̂∗∗(Q(x)) dx if Q ∈ L∞(Ω;K)

+∞ otherwise.

In particular fhom = 4f̂∗∗ .

Proof. The proof is obtained by using (3.31), (3.30) and Lemma 3.9. �

Being of particular interest in the applications, we now further simplify the formula above in the
isotropic case, that is when

f(Ru,Rv) = f(u, v), if u, v ∈ S1 and R ∈ SO(2).

The previous condition is equivalent to saying that f is a function of the scalar product u · v ; taking
also into account the head-to-tail symmetry condition (3.1) this amounts to require that there exists
a bounded Borel function h : [0, 1]→ R such that

f(u, v) = h(|u · v|) (3.34)

for every u and v ∈ S1 . This choice of the energy density, together with the special symmetry of K
in the two dimensional case (highlighted in formula (3.21)) will lead to a radially symmetric fhom .

We first observe that from (3.34) and (3.20), the function f̂ defined in (3.30) takes now the form

f̂(Q) = h(
√

2|Q− 1
2I|) (3.35)

for every Q ∈ K . For such a f̂ the function f̂∗∗ can be characterized by a result in convex analysis.
To that end, we introduce a monotone envelope as follows
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Definition 3.11. Let h : [0, 1] → R . We define the nondecreasing convex lower-semicontinuous
envelope h++ of h as the largest nondecreasing convex lower-semicontinuous function below h at
every point in [0, 1]. This is a good definition since all these properties are stable when we take the
supremum of a family of functions.

Remark 3.12. (i) The function h++ satisfies the following property

min
t∈[0,1]

h++(t) = h++(0) = inf
t∈[0,1]

h(t) . (3.36)

As a consequence, if h has an interior minimum point t , then

h++(t) ≡ h(t) (3.37)

for every 0 ≤ t ≤ t ;
(ii) let M2×2

D be the subspace of trace-free symmetric 2×2 matrices, and let ϕ : M2×2
D → R∪{+∞}

and ψ : [0,+∞) → R ∪ {+∞} be proper Borel functions. If ϕ(Q) = ψ(|Q|) for all Q ∈ M2×2
D , then

ϕ∗∗(Q) coincides with the largest nondecreasing convex lower-semicontinuous function below ψ at
every point in [0,+∞) computed at |Q| ( [25, Corollary 12.3.1 and Example below]). Note that if
ψ(t) = +∞ for t ≥ 1 then we have ϕ∗∗(Q) = ψ++(|Q|) if |Q| ≤ 1, with ψ++ as in Definition 3.11.

Proposition 3.13. Let h : [0, 1] → R be a bounded Borel function. Let K be given by (3.11) and
define f̂ : M2×2

sym → R by

f̂(Q) :=

{
h(
√

2|Q− 1
2I|) if Q ∈ K

+∞ otherwise .

Then the lower semicontinuous and convex envelope f̂∗∗ of f̂ is given by

f̂∗∗(Q) =

{
h++(

√
2|Q− 1

2I|) if Q ∈ K
+∞ otherwise .

(3.38)

Proof. For a matrix Q ∈M2×2
sym , consider the deviator QD of Q , that is its projection onto the linear

subspace M2×2
D of trace-free symmetric 2 × 2 matrices, which is orthogonal to the identity. Using

(3.21) it is not difficult to see that Q ∈ K if and only if Q = 1
2I +QD with QD belonging to

KD := {QD ∈M2×2
D : |QD| ≤

√
2

2 } .

Define now f̂D : M2×2
D → [0,+∞] by

f̂D(QD) :=

{
h(
√

2|QD|) if QD ∈ KD

+∞ otherwise .

Obviously, f̂∗∗(Q) = +∞ when Q /∈ K . When Q ∈ K , being |Q − 1
2I| = |QD| and exploiting the

well-known characterization

f̂∗∗(Q) = inf
{ m∑
l=1

λlf̂(Ql) : m ∈ N, λl ≥ 0 ,
m∑
l=1

λl = 1,
m∑
l=1

λlQl = Q
}

(3.39)

we easily get f̂∗∗(Q) = f̂∗∗D (QD), so that (3.38) follows now by Remark 3.12(ii). �

Theorem 3.14. Let Fε : L∞(Ω; M2×2
sym)→ R∪{∞} be defined by (3.19) with f as in (3.34). Then Fε

Γ-converges with respect to the weak∗ -topology of L∞(Ω; M2×2
sym) to the functional F : L∞(Ω; M2×2

sym)→
R ∪ {∞} defined by

F (Q) :=

4
∫

Ω

h++(
√

2|Q(x)− 1
2I|) dx if Q ∈ L∞(Ω;K)

+∞ otherwise

where h++ : [0, 1]→ R is the nondecreasing convex lower semicontinuous envelope of h as in Defini-
tion 3.11.
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Proof. The result follows Theorem 3.10 and (3.38). �

We end up this section with another simple example where the locus of minima of fhom can be
explicitly computed.

Example 3.15. We consider f of the form f(u, v) = min{f̃(u, v), f̃(v, u)} with

f̃(u, v) :=

{
0 if |u · e1| = α, |u · v| = β

1 otherwise,

where for simplicity the parameters α and β are both taken strictly contained in (0, 1) (the case where
at least one of them attains the value 0 or the value 1 can be treated with minor modifications).
Defining f̂ as in (3.30), one immediately has that f̂ only takes the two values 0 and 1: namely,
setting

G :=
{
Q ∈ K : Q =

u⊗ u+ v ⊗ v
2

, |u · e1| = α, |u · v| = β
}

one has f̂(Q) = 0 if Q ∈ K and f̂(Q) = 1 if Q ∈ K \G . In our case, since 0 < α < 1 and 0 < β < 1,
G consists of exactly 4 distinct matrices. Precisely, taking θα and θβ ∈ (0, π2 ) such that cos(θα) = α
and cos(θβ) = β we set

u(1) = (cos(θα), sin(θα)), u(2) = (cos(π − θα), sin(π − θα))

and

v(1) = (cos(θα + θβ), sin(θα + θβ)), v(2) = (cos(θα − θβ), sin(θα − θβ))

v(3) = (cos(π − θα + θβ), sin(π − θα + θβ)), v(4) = (cos(π − θα − θβ), sin(π − θα − θβ)) .

Then, G consists of the 4 matrices Q(n) , with n = 1, . . . , 4, respectively given by

Q(1) = u(1)⊗u(1)+v(1)⊗v(1)
2 = 1

2

(
cos2(θα) + cos2(θα + θβ) 1

2 [sin(2θα) + sin(2(θα + θβ)]
1
2 [sin(2θα) + sin(2(θα + θβ))] sin2(θα) + sin2(θα + θβ)

)
,

Q(2) = u(1)⊗u(1)+v(2)⊗v(2)
2 = 1

2

(
cos2(θα) + cos2(θα − θβ) 1

2 [sin(2θα) + sin(2(θα − θβ))]
1
2 [sin(2θα) + sin(2(θα − θβ))] sin2(θα) + sin2(θα − θβ)

)
,

Q(3) = u(2)⊗u(1)+v(3)⊗v(3)
2 = 1

2

(
cos2(θα) + cos2(θα − θβ) − 1

2 [sin(2θα) + sin(2(θα − θβ))]
− 1

2 [sin(2θα) + sin(2(θα − θβ))] sin2(θα) + sin2(θα − θβ)

)
,

Q(4) = u(2)⊗u(2)+v(4)⊗v(4)
2 = 1

2

(
cos2(θα) + cos2(θα + θβ) − 1

2 [sin(2θα) + sin(2(θα + θβ))]
− 1

2 [sin(2θα) + sin(2(θα + θβ))] sin2(θα) + sin2(θα + θβ)

)
.

By construction, and using (3.20), |Q(n) − 1
2I| =

√
2

2 β . Furthermore, Q(1) − Q(4) is parallel to
Q(2)−Q(3) . Therefore, in the two-dimensional affine space of the matrices Q ∈M2×2

sym with trQ = 1,
the convex envelope co(G) can be represented as a trapezoid inscribed in the circle with center at 1

2I

and radius
√

2
2 β (see Figure 1). Finally, by Theorem 3.10, we have fhom = 4f̂∗∗ , which implies in

this case that fhom ≥ 0 and fhom(Q) = 0 if and only if Q ∈ co(G).

3.4. An explicit formula in three dimensions. In this section we provide an explicit formula for
the limiting energy density of a three-dimensional system. We consider nearest and next-to-nearest
interactions on a cubic lattice for a special choice of the potentials. Our dual-lattice approach may
be easily extended to the case of energy densities with four-point interactions of the type f(p, q, r, s)
depending on the values that the microscopic vector field u takes on the 4 vertices of each face of
the cubic cell and are invariant under permutations of the arguments. In our context, we consider f
that can be written as a sum of two-point potentials. In this case, we obtain some relations between
nearest and next-to-nearest neighbor interactions giving rise to energies as in (3.40) below.
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Figure 1. The locus of minimizers co(G) in Example 3.15

1
2I

Q(1)
Q(2)

Q(3)
Q(4)

S1
⊗

Following the scheme of Section 3.3 we consider the family of energies:

Fε(Q) =


∑
|i−j|=1

ε3f(ui, uj) +
1
4

∑
|i−j|=

√
2

ε3f(ui, uj) if Q ∈ Cε(Ω;S2
⊗)

+∞ otherwise.
(3.40)

Remark 3.16. We observe that the choice of the next to nearest neighbor potentials as being exactly
one fourth of the nearest-neighbor potential is crucial in deriving an explicit formula. It makes
compatible the algebraic decomposition in Lemma 3.17 below with the topological structure of the
graph given by the nearest and next-to-nearest bonds of the cubic lattice.

Lemma 3.17. Let K be as in (3.11) with N = 3 and let Q ∈ K . Then there exist u, v, w, z ∈ S2

such that
Q =

1
4

(u⊗ u+ v ⊗ v + w ⊗ w + z ⊗ z) (3.41)

Proof. Let 0 ≤ λ1 ≤ λ2 ≤ λ3 be such that

Q = λ1e1 ⊗ e1 + λ2e2 ⊗ e2 + λ3e3 ⊗ e3.

From trQ = 1 we get that 1
2 ≤ λ2 + λ3 ≤ 1. We now set δ := λ2 + λ3 − 1

2 and observe that δ ≤ λ3 .
In fact, assuming by contradiction δ > λ3 we would have 2(λ2 + λ3)− 1 = 2δ > 2λ3 ≥ λ2 + λ3 that
would imply λ2 + λ3 > 1. Hence, we may define

u =
√

2λ2e2 +
√

2(λ3 − δ)e3, (3.42)

v =
√

2λ2e2 −
√

2(λ3 − δ)e3, (3.43)

w =
√

2λ1e1 +
√

2δe3, (3.44)

z =
√

2λ1e1 −
√

2δe3. (3.45)

Since, by the definition of δ , we have that 2(λ2 +λ3−δ) = 2(λ1 +δ) = 1, it follows that u, v, w, z ∈ S2

while a direct computation shows (3.41). �
We now set

f̂(Q) := min
{ 4∑
l,m=1
i<j

f(ul, um) : ul ∈ S2,
1
4

4∑
l=1

ul ⊗ ul = Q
}
. (3.46)
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Theorem 3.18. Let Fε : L∞(Ω; M3×3
sym)→ R ∪ {∞} be defined by (3.40). Then Fε Γ-converges with

respect to the weak∗ -topology of L∞(Ω; M3×3
sym) to the functional F : L∞(Ω; M3×3

sym)→ R∪{∞} defined
by

F (Q) :=


3
2

∫
Ω

f̂∗∗(Q(x)) dx if Q ∈ L∞(Ω;K)

+∞ otherwise.

In particular fhom = 3
2 f̂
∗∗ .

Proof. Let Q ∈ L∞(Ω;K) and let Qε ∈ Cε(Ω;S2
⊗) be such that Qε

∗
⇀ Q . For all i ∈ Zε(Ω) we

consider uε,i such that Qε,i = Q(uε,i) and define the dual cells P kli (see Figure 2) as follows

P kli = co
{
Skli , i+

1
2

(ek + el) +
1
2

(ek ∧ el), i+
1
2

(ek + el)−
1
2

(ek ∧ el)
}

(3.47)

where ek and el are two distinct vectors of the canonical base of R3 and Skli is the unitary square
in the plane spanned by them having i as left bottom corner; namely,

Skli = co{i, i+ ek, i+ ek + el, i+ el}. (3.48)

Observe that |P kli | = 1
3 . To Qε we associate the dual piecewise-constant interpolation Q′ε defined as

Q′ε(x) =
1
4

(Qε,i +Qε,i+ek +Qε,i+ek+el +Qε,i+el) for all x ∈ εP kli . (3.49)

First, we show that Qε −Q′ε
∗
⇀ 0. Let us fix Ω′ ⊂⊂ Ω and A ∈M3×3

sym . We have that∫
Ω′
A : Q′ε(x) dx =

∑
i∈Zε(Ω′)

3∑
k,l=1
k<l

∫
εPkli

A : Q′ε(x) dx+ o(1)

=
∑

i∈Zε(Ω′)

3∑
k,l=1
k<l

ε3A :
1
12

(
Qε,i +Qε,i+ek +Qε,i+ek+el +Qε,i+el

)
+ o(1)

=
∑

j∈Zε(Ω′)

ε3A : Qε,j + o(1) =
∫

Ω′
A : Qε(x) dx+ o(1).

The last equality is obtained by reordering the sums observing that each j ∈ Zε(Ω′) appears exactly
12 times (4 for each of the three possible choices of k < l ). By the arbitrariness of A and Ω′ it
follows that Qε −Q′ε

∗
⇀ 0. We now prove the liminf inequality. We may write

Fε(Qε) = 2
1
4

∑
i∈Zε(Ω′)

3∑
k,l=1
k<l

ε3
[
f(uε,i, uε,i+ek) + f(uε,i, uε,i+el)

+f(uε,i+ek , uε,i+ek+el) + f(uε,i+el , uε,i+ek+el)

+f(uε,i, uε,i+ek+el) + f(uε,i+ek , uε,i+el)
]

+ o(1),

where the prefactor 2 appears since we are passing from an unordered sum to an ordered one, while
the additional 1/4 in front of the nearest-neighbor interaction potentials is due to the fact that
each nearest-neighboring pair (apart from those close to the boundary which carry an asymptotically
negligible energy) corresponds to 4 distinct choices of the indices i, k, l . Taking into account (3.46)
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Figure 2. The dual cell P kli with Skli in grey

i

ek

el

we continue the above estimate as

Fε(Qε) ≥ 1
2

∑
i∈Zε(Ω′)

3∑
k,l=1
k<l

ε3f̂
(
Q′ε

(
εi+

ε

2
(ek + el)

))
+ o(1)

=
3
2

∑
i∈Zε(Ω′)

3∑
k,l=1
k<l

∫
εPkli

f̂(Q′ε(x)) dx+ o(1)

≥ 3
2

∫
Ω

f̂∗∗(Q′ε(x)) dx+ o(1)

The liminf inequality follows passing to the liminf as ε→ 0.
We now prove the limsup inequality. By Theorem 3.5 it suffices to prove that for any constant

Q ∈ K and every open set A ⊂ Ω it exists a sequence Qε
∗
⇀ Q such that

lim sup
ε

Fε(Qε, A) ≤ 3
2
f̂(Q)|A|. (3.50)

In fact, by formula (3.15), the arbitrariness of Q and A and the convexity of fhom , this would imply
that

fhom(Q) ≤ 3
2
f̂∗∗(Q)

thus concluding the proof of the limsup inequality. By the locality of the construction we will prove
(3.50) in the case A = (−l, l)3 , where, up to a translation, we are supposing that 0 ∈ Ω. Let p, q, r, s
realize the minimum in formula (3.46) for the given Q . We set u0 = p and construct a 2-periodic
function u whose unit cell is pictured in Figure 3. We then set uε,i = ui and Qε = uε ⊗ uε . Note
that for any choice of i ∈ Zε(Ω) and k, l ∈ {1, 2, 3} with k < l the values of uε on the vertices of Skli
are always all the 4 values p, q, r, s . As a result the dual interpolation Q′ε constructed as in (3.49)
is constantly equal to Q . Since Q′ε − Qε

∗
⇀ 0 this gives that Qε

∗
⇀ Q . Furthermore the following

equality holds

Fε(Qε, A) = 2
1
4

∑
i∈Zε(A)

3∑
k,l=1
k<l

ε3[f(p, q) + f(r, s) + f(p, r) + f(q, s) + f(p, s) + f(q, r)] + o(1)

=
3
2

∑
i∈Zε(A)

3∑
k,l=1
k<l

|εP kli |f̂(Q) + o(1) =
3
2
f̂(Q)|A|+ o(1) (3.51)

which implies (3.50). �
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Figure 3. The recovery sequence in Theorem 3.18 on a periodicity cell
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4. Gradient-type and concentration scalings

For all s ∈ (0, 1] we define the subset ∂Ks of K as

∂Ks :=
{
Q ∈ K,

∣∣∣Q− 1
2
I
∣∣∣ =
√

2
2
s
}
. (4.1)

In the case s = 1 we omit the subscript s .; in that case we have

∂K = {Q ∈ K, |Q| = 1}. (4.2)

In this section we will make use of the following Lemma.

Lemma 4.1. Let s ∈ (0, 1] and Q ∈ W 1,2(Ω; ∂Ks) . For all η > 0 there exists an open set Ωη ⊂ Ω
and u ∈W 1,2(Ωη;S1) such that

|Ω \ Ωη| < η,

Q(x) = s
(
u(x)⊗ u(x)− 1

2
I
)

+
1
2
I, (4.3)∫

Ω

|∇Q(x)|2 dx <
∫

Ωη

|∇(u(x)⊗ u(x))|2 dx+ η.

Proof. It suffices to consider the case s = 1. With the same argument as in the proof iof Proposition
4 in [11] one can prove that there exists u ∈ SBV 2(Ω;S1) such that (4.3) holds. Furthermore,
n ∈W 1,2(Ω \Cη) where Cη is an arbitrarily small covering of the jump set of u . Since

∫
Cη
|∇Q|2 dx

is small by integrability, the claim follows by taking Ωη = Ω \ Cη . �

Remark 4.2. Assume that Q satisfies (4.3) on some open set Ω. First of all, setting u⊥(x) the
counterclockwise rotation of u(x) by π

2 , we have that

Q(x) =
1 + s

2
u(x)⊗ u(x) +

1− s
2

u⊥(x)⊗ u⊥(x); (4.4)

hence, setting

v(x) =

√
1 + s

2
u(x) +

√
1− s

2
u⊥(x),

(4.5)

w(x) =

√
1 + s

2
u(x)−

√
1− s

2
u⊥(x),

one has that

Q(x) =
1
2
v(x)⊗ v(x) +

1
2
w(x)⊗ w(x), (4.6)
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where v, w ∈ W 1,2(Ω;S1). If Q ∈ C∞(Ω; ∂Ks) ∩ W 1,2(Ω; ∂Ks) we moreover have that v, w ∈
C∞(Ω;S1) ∩W 1,2(Ω;S1). Finally, if Q ∈ W 1,2(Ω; ∂Ks) and n ∈ W 1,2(Ω;S1) are related by (4.3),
by (2.4) and a density argument one gets

|∇Q(x)|2 = 2s2|∇u(x)|2 (4.7)

for a.e. x ∈ Ω.

4.1. Sobolev scaling - Selection of uniform states. In this section we consider higher-order
scalings of energies of the form:

Eε(u) =
∑
|i−j|=1

ε2h(|(ui · uj)|) (4.8)

where h is a bounded Borel function. Via the usual identification Qi = Q(ui) we may associate to
Eε(u) the functional Fε(Q) as done in the previous section. We now scale Fε by ε2 as follows:

F 1
ε (Q) :=

Fε(Q)− inf Fε
ε2

.

As usual we extend this functional (without renaming it) and consider

F 1
ε (Q) =

{∑
|i−j|=1 h(|(ui · uj)|)− inf h if Q ∈ Cε(Ω;S1

⊗)
+∞ otherwise.

(4.9)

A relevant example of an energy of the type above is the one in the Lebwohl-Lasher model (see [17],
[21]), which corresponds to the case h(x) = −x2 .

We consider the case when inf h = h(1), or equivalently the function f̂ in (3.35) attains its
minimum on all points of ∂K . In this case, by Remark 3.12, the zero-th order Γ-limit of ε2F 1

ε is
identically 0. We will additionally assume that h ∈ C1([0, 1]) and that there exists δ > 0 such that
h ∈ C2([1 − δ, 1]). Under these hypotheses we are able to estimate the Γ-limsup of F 1

ε . In order to
estimate the Γ-liminf, we will make the following assumption on h : there exists γ > 0 such that

h(x)− h(1) ≥ γ

2
(1− x2) (4.10)

for every x ∈ [0, 1].

Remark 4.3. Hypothesis (4.10) implies in particular that 1 is the unique absolute minimum for h
in [0, 1]. Since a function γ as in (4.10) must satisfy γ ≤ |h′(1)| , when such an hypothesis holds, we
have h′(1) < 0. If h′(1) = 0, so that in particular (4.10) cannot hold, we will show later that the
Γ-liminf lower bound of Theorem 4.4 is not true, even for convex h . Namely, in this degenerate case
the Γ-liminf can be finite also on functions whose gradient is not in L2 . This will be shown in the
example at the end of this section. Examples of functions satisfying (4.10) are all convex functions on
[0, 1] with h′(1) < 0. In this case, indeed, by convexity and since h′(1) < 0 one has

h(x)− h(1) ≥ h′(1)(x− 1) = |h′(1)|(1− x)

for every x ∈ [0, 1]. By means of the elementary inequality 1 − x ≥ 1
2 (1 − x2) for every x ∈ [0, 1],

one gets (4.10) with γ that can be taken exactly equal to |h′(1)| . For such energy densities, the full
Γ-convergence result of Theorem 4.4, part (c), holds.

Among nonconvex functions, (4.10) is for instance satisfied in the case h(x) = −xp with p ≥ 1. In
this case, γ = min{2, p} . In particular, if 1 ≤ p ≤ 2, then γ = p = |h′(1)| and the full Γ-convergence
result again holds. Otherwise, we only have a lower bound on the Γ-liminf of F 1

ε which is of the same
type of the upper bound on the Γ-limsup, but with a different constant multiplying the Dirichlet
integral.

We will prove the following result.
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Theorem 4.4. Let F 1
ε : L∞(Ω; M2×2

sym) → R ∪ {∞} be defined by (4.9) with h ∈ C1([0, 1]) . Assume
that there exists δ > 0 such that h ∈ C2([1−δ, 1]) . Define the functional F 1 : L∞(Ω; M2×2

sym)→ R∪{∞}
as

F 1(Q) :=


|h′(1)|

2

∫
Ω

|∇Q(x)|2 dx if Q ∈W 1,2(Ω;S1
⊗)

+∞ otherwise.

(a) Let (F 1)′′ be the Γ-limsup of F 1
ε with respect to the weak∗ -topology of L∞(Ω; M2×2

sym) . Then
(F 1)′′ ≤ F 1 .

(b) Assume that in addition (4.10) holds, and define the functional F 1
γ : L∞(Ω; M2×2

sym)→ R∪ {∞}
by

F 1
γ (Q) :=


γ

2

∫
Ω

|∇Q(x)|2 dx if Q ∈W 1,2(Ω;S1
⊗)

+∞ otherwise .

Denote by (F 1)′ the Γ-liminf of F 1
ε with respect to the weak∗ -topology of L∞(Ω; M2×2

sym) . Then
(F 1)′ ≥ F 1

γ .
(c) If in particular we can take γ = |h′(1)| in (4.10), then F 1

ε Γ-converges with respect to the
weak∗ -topology of L∞(Ω; M2×2

sym) to the functional F 1 .

The following lemma will be useful in the proof.

Lemma 4.5. Let Ω be an open subset of R2 . Given a function uε : Zε(Ω) → S1 let Qε be the
piecewise-constant interpolation of Q(uε) and let Qaε be the piecewise-affine interpolation of Q(uε)
having constant gradient on triangles with vertices εi and longest side parallel to e1 − e2 . Then∫

Ωε

|Qε(x)−Qaε(x)|2 dx ≤ 1
2
ε2

∫
Ωε

|∇Qaε(x)|2 dx (4.11)

In particular, if
∫

Ωε
|∇Qaε(x)|2 dx is uniformly bounded, then Qε is L2 -compact as ε→ 0 , and each

limit point Q of Qε belongs to W 1,2(Ω;S1
⊗) .

Proof. Let i ∈ Z2 be such that ε{i+W} ⊂ Ω and fix x in the interior of such a cube. By construction,
up to a null set the gradient ∇Qaε is constant on the segment joining x and εi , the only possible
exception being when x− εi is parallel to one of the coordinate axes, or to e1 − e2 . By this and the
mean value theorem we then have that

|Qε(x)−Qaε(x)| = |Qaε(εi)−Qaε(x)| ≤ |x− εi||∇Qaε(x)|

for a.e. x ∈ ε{i+W} . Therefore

|Qε(x)−Qaε(x)|2 ≤ 1
2
ε2|∇Qaε(x)|2

for a.e. x ∈ ε{i+W} . Summing over all such cubes, we get (4.11).
Since Qaε are uniformly bounded in L∞ , if

∫
Ωε
|∇Qaε(x)|2 dx is uniformly bounded, the sequence

Qaε is L2 -compact by the Rellich Theorem and the equiintegrability given by the uniform bound
|Qaε(x)| ≤ 1. So is then Qε by (4.11), and it has the same limit points. Each limit point belongs then
to L2(Ω;S1

⊗) since this set is closed with respect to strong L2 convergence. By the boundedness of∫
Ω
|∇Qaε(x)|2 dx , we also infer that actually each limit point Q of Qε belongs to W 1,2(Ω;S1

⊗). �
We are now in a position to give the proof of Theorem 4.4.

Proof of Theorem 4.4: (a) We need to prove the inequality only for Q ∈ W 1,2(Ω;S1
⊗). Let R > 0

be such that Ω ⊂ RW and let Q ∈ W 1,2(RW ;S1
⊗) denote the (not renamed) extension of any

Q ∈W 1,2(Ω;S1
⊗) which exists thanks to the regularity of Ω. We first suppose that Q(x) = u(x)⊗u(x)

with u ∈ C∞(RW ;S1). For every ε we set uε,i = u(εi) for every i ∈ Zε(RW ) and we consider
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the piecewise-affine interpolation uε(x) taking the values uε,i on εZε(RW ). We also set Qaε(x) =
uε(x)⊗ uε(x). We have

F 1(Q) = lim
ε→0

|h′(1)|
2

∫
Ω+B(0,ε)

|∇Qaε(x)|2 dx . (4.12)

By the regularity of u , the functions uε are bounded in W 1,∞ , which means that there exists a
constant M independent of ε such that

|uε,i − uε,j | ≤ 2Mε

for every i, j ∈ Zε(RW ) with |i− j| = 1. This implies, by a direct computation, that

|uε,i · uε,j | ≥ 1−Mε2. (4.13)

In particular, when ε is small enough, |uε,i · uε,j | belongs to the interval [1− δ, 1] where h is C2 .
Using (2.1) and (2.2) we have∫

Ω+B(0,ε)

|∇Qaε(x)|2 dx ≥
∑

i,j∈Zε(Ω)
|i−j|=1

1
2
ε2
∣∣∣uε,i ⊗ uε,i − uε,j ⊗ uε,j

ε

∣∣∣2

=
∑

i,j∈Zε(Ω)
|i−j|=1

(1− (uε,i · uε,j)2), (4.14)

where we have taken into account that every triangular cell has measure ε2/2 and that every interac-
tion between i and j belonging to Zε(Ω) appears with the same factor two, both in the sum (since
it is not ordered) and in the integral. Observe that by (4.13) one has

1− |uε,i · uε,j | ≤Mε2, 1− (uε,i · uε,j)2 ≤ 2Mε2,

(4.15)
1
2
≥ 1

1 + |uε,i · uε,j |
− M

2
ε2,

so that inserting these inequalities in the previous estimate we arrive to∫
Ω+B(0,ε)

|∇Qaε(x)|2 dx ≥ 2
∑

i,j∈Zε(Ω)
|i−j|=1

1− (uε,i · uε,j)2

1 + |uε,i · uε,j |
−Mε2

∑
i,j∈Zε(Ω)
|i−j|=1

(1− (uε,i · uε,j)2)

(4.16)

≥ 2
∑

i,j∈Zε(Ω)
|i−j|=1

(1− |uε,i · uε,j |)− 4M2ε2|Ω|.

If now C denotes an upper bound for h′′/2 in [1− δ, 1], we have

h(x)− h(1) ≤ |h′(1)|(1− x) + C(1− x)2

for every x ∈ [1− δ, 1]. Multiplying (4.16) by |h′(1)| and inserting this last inequality, we get

|h′(1)|
∫

Ω+B(0,ε)

|∇Qaε(x)|2 dx ≥ 2
∑

i,j∈Zε(Ω)
|i−j|=1

(h(|uε,i · uε,j |)− h(1))

−8|h′(1)|M2ε2|Ω| − 2 C
∑

i,j∈Zε(Ω)
|i−j|=1

(1− |uε,i · uε,j |)2,
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whence, using (4.15), we deduce that there is a positive constant L independent of ε such that

|h′(1)|
∫

Ω+B(0,ε)

|∇Qaε(x)|2 dx ≥ 2
∑

i,j∈Zε(Ω)
|i−j|=1

(h(|uε,i · uε,j |)− h(1))− Lε2 .

Defining now Qε the piecewise-constant interpolation of Q(uε), by Lemma 4.5, we have that Qε → Q
strongly in L2(Ω;S1

⊗). We may rewrite the previous inequality as

|h′(1)|
2

∫
Ω+B(0,ε)

|∇Qaε(x)|2 dx ≥ F 1
ε (Qε)− Lε2 .

Taking the lim sup as ε → 0, by (4.12) we deduce the upper-bound inequality. If now Q(x) =
u(x)⊗ u(x) with u ∈W 1,2(Ω;S1) the result follows by density. In the general case we reduce to the
above case (up to an arbitrarily small error in the energy) thanks to Lemma 4.1.

(b) We denote with (F 1)′ the Γ-liminf of F 1 . We want to show the Γ-liminf inequality (F 1)′ ≥ F 1 .
Let Qε ∈ Cε(Ω;S1

⊗) be the sequence of piecewise-constant functions associated to Q(uε), for some
uε : Zε(Ω) → S1 and let Qaε be the piecewise-affine interpolations satisfying Qaε(εi) = uε,i ⊗ uε,i for
every i ∈ Zε(Ω). We claim that it suffices to prove∑

i,j∈Zε(Ω)
|i−j|=1

[h(|uε,i · uε,j |)− h(1)] ≥ γ

2

∫
Ωε

|∇Qaε(x)|2 dx . (4.17)

Indeed by (4.9), (4.17) is equivalent to

F 1
ε (Qε) ≥

γ

2

∫
Ωε

|∇Qaε(x)|2 dx ;

therefore, if the left-hand side keeps bounded, by Lemma 4.5 we have that Qε − Qaε → 0 strongly
in L2(Ω;K) and each limit point of Qε must belong to W 1,2(Ω;S1

⊗). Furthermore, the inequality
(F 1)′(Q) ≥ F 1(Q) for Q ∈W 1,2(Ω;S1

⊗) follows from (4.17) by semicontinuity.
Now, since (4.10) gives∑

i,j∈Zε(Ω)
|i−j|=1

[h(|uε,i · uε,j |)− h(1)] ≥ γ

2

∑
i,j∈Zε(Ω)
|i−j|=1

(1− (uε,i · uε,j)2)

(4.17) immediately follows from the inequality∑
i,j∈Zε(Ω)
|i−j|=1

(1− (uε,i · uε,j)2) ≥
∫

Ωε

|∇Qaε(x)|2 dx ,

that can be obtained from∫
Ωε

|∇Qaε(x)|2 dx ≤
∑

i,j∈Zε(Ω)
|i−j|=1

1
2
ε2
∣∣∣uε,i ⊗ uε,i − uε,j ⊗ uε,j

ε

∣∣∣2

=
∑

i,j∈Zε(Ω)
|i−j|=1

(1− (uε,i · uε,j)2)

which holds by construction of Qaε . Finally, (c) is an obvious consequence of (a) and (b). �

At the end of this section we give an example of an energy of the type (4.8) such that inf h =
h(1) = 0 and that h′(1) = 0. In this case the assumptions of Theorem 4.4 are not satisfied and indeed
we can show that the domain of the Γ-lim sup of the ε2 -scaled energy (4.9) is strictly larger than
W 1,2(Ω;S1

⊗).
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Example 4.6. Let h(x) = (1− x)2 so that F 1
ε takes the form:

F 1
ε (Q) =


∑
|i−j|=1

(1− |ui · uj |)2 if Q ∈ Cε(Ω;S1
⊗)

+∞ otherwise.
(4.18)

Consider Q(x) = x
|x| ⊗

x
|x| . Note that Q /∈ W 1,2(Ω;S1

⊗) (while Q ∈ W 1,p(Ω;S1
⊗) for all 1 ≤ p < 2).

Setting u(x) = x
|x| we have that Q(x) = Q(u(x)). To show that Γ- lim supε F 1

ε (Q) < +∞ , it suffices
to construct a sequence of unitary vector fields uε → u in L1 (this implies that Qε → Q in L1 ) such
that lim supε

Eε(uε)
ε2 < +∞ . We give an arbitrary value u0 ∈ S1 to the function u in the origin, we

set uε,i = u(εi) for all i ∈ Zε(Ω) and we define uε as the piecewise-affine interpolation taking values
uε,i on εZε(Ω). We have that uε → u in L1 . We first observe that we have

1
ε2
Eε(uε) ≤ 8 +

∑
i,j∈Zε(Ω)\{(0,0)}

|i−j|=1

(1− |uε,i · uε,j |)2 ;

this is obtained by estimating with 1 all the 4 interactions (each appearing twice) between 0 and its
nearest neighbors. Taking into account that for all i, j ∈ Zε(Ω) \ {(0, 0)} , |i − j| = 1 we have that
uε,i · uε,j = |uε,i · uε,j | we may write

1
ε2
Eε(uε) ≤ 8 +

∑
i,j∈Zε(Ω)\{(0,0)}

|i−j|=1

(1− uε,i · uε,j)2.

Observing that

(1− uε,i · uε,j)2 =
1
4
|uε,i − uε,j |4

we are only left to show that

lim sup
ε

1
4

∑
i,j∈Zε(Ω)\{(0,0)}

|i−j|=1

|uε,i − uε,j |4 < +∞ . (4.19)

In order to prove the claim, we make use of the following simple inequality (whose proof is omitted):
for all x und y ∈ R2 , with |x| ≥ ε , |y| ≥ ε and |y − x| ≤

√
2ε one has

1
|y|4
≤ (
√

2 + 1)4

|x|4
. (4.20)

Consider now a triangle T of the interpolation grid, satisfying T ⊂⊂ R2 \ 2εW : in this way, however
taken x and y ∈ T , (4.20) is satisfied. Let εi1 , εi2 , and εi3 ∈ εZε(Ω) \ {(0, 0)} be the vertices of T ,
ordered in a way that |i1 − i2| = |i1 − i3| = 1. By the Mean Value Theorem, one gets the existence
of two points v12 and v13 both belonging to T , such that

|uε,i1 − uε,i2 |4 = |u(εi1)− u(εi2)|4 = ε4|∇u(v12)|4 =
ε4

|v12|4

and

|uε,i1 − uε,i3 |4 =
ε4

|v13|4
.
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By this, using (4.20), we obtain

ε2

∫
T

|∇u(x)|4 dx = ε2

∫
T

1
|x|4

dx =
ε2

2(
√

2 + 1)4

∫
T

( 1
|v12|4

+
1
|v13|4

)
dx

=
1

4(
√

2 + 1)4

( ε4

|v12|4
+

ε4

|v13|4
)

=
1

4(
√

2 + 1)4

(
|uε,i1 − uε,i2 |4 + |uε,i1 − uε,i3 |4

)
.

Summing over all triangles T having vertices in εZε(Ω) \ {(0, 0)} we get

8 + (
√

2 + 1)4ε2

∫
(Ω+B(0,ε))\2εW

|∇u(x)|4 dx ≥ 1
4

∑
i,j∈Zε(Ω)\{(0,0)}

|i−j|=1

|uε,i − uε,j |4 . (4.21)

Indeed, every element of the sum appears twice in both sides, since there are two triangles of the
interpolation grid having εi and εj as vertices, with the exception of the 8 pairs of points on the
boundary of 2εW . These are counted only once in the left-hand side, since in this case one of the
triangles is contained 2εW . The corresponding element of the sum is simply estimated by 1.

Now, taking M > 0 such that Ω +B(0, ε) ⊂ B(0,M) we have, passing to polar coordinates

ε2

∫
(Ω+B(0,ε))\2εW

|∇u(x)|4 dx ≤ ε2

∫ M

ε

1
r3
dr =

1
2
− ε2

2M2
→ 1

2

as ε→ 0. By this, and (4.21), (4.19) immediately follows.

4.2. Sobolev scaling - Selection of oscillating states. In this paragraph we give an example
of gradient-type energy finite on non-uniform states as a result of the competition between nearest
and next-to-nearest neighbor energies. Such a competition will affect the continuum limit only in
the gradient-type scaling leaving the bulk limit unchanged. We consider a bounded Borel function
h : [0, 1]→ R having a strict absolute minimum s ∈ (0, 1): without loss of generality we may assume
that h(s) = 0. We now define the following family of energies

Eε(u) =
∑
|i−j|=1

ε2h(|ui · uj |) +
∑

|i−j|=
√

2

ε2(1− (ui · uj)2).

With similar arguments as in Theorem 3.14, noting that the construction optimizing the first term in
Eε produces a negligible effect in the second term of Eε , one has that the Γ-limit of Eε(u) is given
by

F (Q) :=

4
∫

Ω

h++(
√

2|Q(x)− 1
2I|) dx if Q ∈ L∞(Ω;K)

+∞ otherwise

where K is defined by (3.11) and h++ : [0, 1] → R as in Definition 3.11. As already observed in
Remark 3.12(i), since h++(t) = 0 for all t ∈ [0, s] , F provides little information on the set of the
ground-state configurations. However, the effect of the second term in the energy will be evident in
the next-order Γ-limit, as shown below. Let F 1

ε : L∞(Ω; M2×2
sym)→ [0,+∞] be given by

F 1
ε (Q) =


∑
|i−j|=1

h(|ui · uj |) +
∑

|i−j|=
√

2

(1− (ui · uj)2) if Q ∈ Cε(Ω;S1
⊗)

+∞ otherwise.
(4.22)

Theorem 4.7. Let F 1
ε be as in (4.22) and let F 1 : L∞(Ω; M2×2

sym)→ R ∪ {∞} be defined as

F 1(Q) :=


2
s2

∫
Ω

|∇Q(x)|2 dx if Q ∈W 1,2(Ω; ∂Ks)

+∞ otherwise
(4.23)
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with ∂Ks as in (4.1). Then we have that

Γ- lim inf
ε

F 1
ε (Q) ≥ F 1(Q), (4.24)

with respect to the weak∗ topology of L∞(Ω; M2×2
sym) . If in addition there exist δ > 0 , C > 0 and

p > 1 such that
h(x) ≤ C|x− s|2p ∀x ∈ (s− δ, s+ δ), (4.25)

then

Γ- lim
ε
F 1
ε (Q) = F 1(Q). (4.26)

Before the proof we first state two lemmata.

Lemma 4.8. Let Q ∈W 1,2(Ω; ∂Ks) and assume that there exist v̂, ŵ ∈W 1,2(Ω;S1) such that (4.6)
holds true. Then

1
s2

∫
Ω

|∇Q(x)|2 dx =
∫

Ω

|∇v̂(x)|2 dx+
∫

Ω

|∇ŵ(x)|2 dx.

Proof. Take v, w as in (4.5). Then v, w also satisfy (4.6). By Proposition 3.8 we have that for
almost every x ∈ Ω v̂ ⊗ v̂ = v ⊗ v and ŵ ⊗ ŵ = w ⊗ w or the converse, which implies that∫

Ω

|∇v̂(x)|2 dx+
∫

Ω

|∇ŵ(x)|2 dx =
∫

Ω

|∇v(x)|2 dx+
∫

Ω

|∇w(x)|2 dx. (4.27)

An explicit computation yelds

|∇v(x)|2 + |∇w(x)|2 = (1 + s)|∇n(x)|2 + (1− s)|∇n⊥(x)|2 = 2|∇n(x)|2. (4.28)

On the other hand by (4.3) and (4.7) we have that

|∇Q(x)|2 = s2|∇(n(x)⊗ n(x))|2 = 2s2|∇n(x)|2 = s2(|∇v(x)|2 + |∇w(x)|2) (4.29)

hence the conclusion. �
In the statement of the following lemma, as well as in what follows, we use the terminology that a

point i = (i1, i2) ∈ Z2 is called even if i1 + i2 is even, and odd otherwise.

Lemma 4.9. Let Ω be an open subset of R2 . Denote by Ŵ the cube obtained by rotating
√

2W by
π/4 . Given a sequence of functions Qε ∈ Cε(Ω;S1

⊗) , let Qoddε (x) and Qevenε (x) be the odd and the
even piecewise-constant interpolations of Qε on the cells ε{i+Ŵ} for i odd, and i even, respectively.
Let Qodd,aε be the odd piecewise-affine interpolation of Qε having constant gradient on triangles with
odd vertices and longest side parallel to e1 . Similarly define the even piecewise-affine interpolation
Qeven,aε . Then, for all relatively compact Ω′ ⊂⊂ Ω∫

Ω′
|Qoddε (x)−Qodd,aε (x)|2 dx ≤ ε2

∫
Ω′+B(0,

√
2ε)

|∇Qodd,aε (x)|2 dx (4.30)

In particular, if
∫

Ω′+B(0,
√

2ε)
|∇Qodd,aε (x)|2 dx is bounded uniformly with respect to ε and Ω′ , then

Qodd,aε −Qoddε converges to 0 in L2(Ω; M2×2
sym) as ε→ 0 , and each limit point Qodd of Qodd,aε belongs

to W 1,2(Ω; ∂K) . The same statement holds with Qeven,aε and Qevenε in place of Qodd,aε , and Qoddε ,
respectively.

Proof. The proof follows the one of Lemma 4.5. Consider an odd i ∈ Zε(Ω′) and fix x in the interior
of ε{i + Ŵ} . By construction, up to a null set the gradient ∇Qodd,aε is constant on the segment
joining x and εi , the only possible exception being when x− εi is parallel to one of the vectors e1 ,
e1 − e2 , and e1 + e2 . By this and the mean value theorem we then have that

|Qoddε (x)−Qodd,aε (x)| = |Qodd,aε (εi)−Qodd,aε (x)| ≤ |x− εi||∇Qodd,aε (x)|
for a.e. x ∈ ε{i+W ′} . Therefore

|Qoddε (x)−Qodd,aε (x)|2 ≤ ε2|∇Qodd,aε (x)|2
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Figure 4. Even and odd dual lattices in Theorem 4.7 and Lemma 4.9 and their
unitary cells in light and dark grey

for a.e. x ∈ ε{i+ Ŵ} . Summing over all such cubes, we get (4.30), and we conclude as in Lemma 4.5.
�

Proof of Theorem 4.7. Proof of the Γ-liminf inequality.
Let Qε ∈ Cε(Ω;S1

⊗) be such that Qε
∗
⇀ Q and that supε F 1

ε (Qε) ≤ C . As usual, for all i ∈ Zε(Ω)
we consider uε,i ∈ S1 such that Qε,i = Q(uε,i). In order to give the optimal lower bound for the
energy, we proceed as follows. Consider the rotated cube Ŵ , and the odd and even piecewise-affine
interpolations Qodd,aε and Qeven,aε of Qε , as in Lemma 4.9. If we split Ŵ into two triangles having
common boundary in the direction e1 , calling T̂1 the upper one and T̂2 the lower one, by construction
∇Qodd,aε is constant on each cell ε(T̂1 + i) and ε(T̂2 + i) with i even (so that all the vertices of the
cells are odd points). Therefore, also using (2.1) and (2.2), for every i even we have∫

ε( bT1+i)

|∇Qodd,aε (x)|2 dx

= ε2

(
|Qε,i+e2 −Qε,i−e1 |√

2ε

)2

+ ε2

(
|Qε,i+e2 −Qε,i+e1 |√

2ε

)2

=
1
2
(
|Qε,i+e2 −Qε,i−e1 |2 + |Qε,i+e2 −Qε,i+e1 |2

)
= (1− (uε,i+e2 · uε,i−e1)2) + (1− (uε,i+e2 · uε,i+e1)2) (4.31)

Fix Ω′ ⊂⊂ Ω. Summing over the even i ∈ Z2 we obtain∑
i

(∫
ε( bT1+i)

|∇Qodd,aε (x)|2 dx+
∫
ε( bT2+i)

|∇Qodd,aε (x)|2 dx

)

≤ 2 · 1
2

∑
|i−j|=

√
2, i odd

(1− (uε,i · uε,j)2),

where the prefactor 2 accounts for at most two different triangles leading to the same next-to-nearest
neighbor interaction, while the other additional prefactor 1

2 is due to the passage from an ordered to
a non-ordered sum. This leads to∫

Ω′
|∇Qodd,aε (x)|2 dx ≤

∑
|i−j|=

√
2, i odd

(1− (uε,i · uε,j)2) ≤ F 1
ε (Qε) ≤ C, (4.32)

where C is independent of Ω′ and ε . This estimate implies in particular that Qodd,aε is weakly
compact in W 1,2(Ω; M2×2

sym) and thus strongly compact in L2(Ω; M2×2
sym). Let Qodd be its limit, by
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Lemma 4.9 we have that Qodd ∈W 1,2(Ω;S1
⊗). As observed in Remark 4.2, this implies the existence

of v̂ ∈W 1,2(Ω;S1) such that Qodd(x) = v̂(x)⊗ v̂(x). Thus, using (4.7) we get∫
Ω

|∇v̂(x)|2 dx =
1
2

∫
Ω

|∇Qodd(x)|2 dx ≤ 1
2

lim inf
ε

∑
|i−j|=

√
2, i odd

(1− (uε,i · uε,j)2). (4.33)

A similar argument leads to the existence of ŵ ∈ W 1,2(Ω;S1) such that Qeven,aε → Qeven , where
Qeven(x) = ŵ(x)⊗ ŵ(x) and∫

Ω

|∇ŵ(x)|2 dx =
1
2

∫
Ω

|∇Qeven(x)|2 dx ≤ 1
2

lim inf
ε

∑
|i−j|=

√
2, i even

(1− (uε,i · uε,j)2). (4.34)

After summing (4.33) and (4.34) we get

Γ- lim inf
ε

F 1
ε (Q) ≥ 2

∫
Ω

|∇v̂(x)|2 dx+ 2
∫

Ω

|∇ŵ(x)|2 dx. (4.35)

We now show that

Q(x) =
1
2
v̂(x)⊗ v̂(x) +

1
2
ŵ(x)⊗ ŵ(x) . (4.36)

To do this, we construct the (odd and even) piecewise-constant interpolations Qoddε and Qevenε as in
Lemma 4.9; by the same Lemma we obtain that

Qoddε → Qodd, Qevenε → Qeven.

strongly in L2(Ω; M2×2
sym). Note that Qoddε +Qevenε

2 coincides exactly with the piecewise-constant dual
interpolation Q′ε of Qε defined in (3.28) (see also Figure 4). The previous discussion and Lemma 3.9
imply then that (4.36) holds, and that Q′ε → Q strongly in L2(Ω; M2×2

sym). Using formula (3.20) and
arguing as in the previous section, we have that

sup
ε

4
ε2

∫
Ω′
h(
√

2|Q′ε(x)− 1
2
I|) dx ≤ sup

ε

∑
|i−j|=1

h(|uε,i · uε,j |) ≤ C,

which, together with the strong compactness of Q′ε implies that
∫

Ω
h(
√

2|Q(x) − 1
2I|) dx = 0. This

gives that Q(x) ∈ ∂Ks for a.e.x ∈ Ω, therefore Q ∈ W 1,2(Ω; ∂Ks). From this, (4.35), (4.36) and
Lemma 4.8 the lower-bound inequality follows.

Proof of the Γ- lim sup inequality assuming (4.25).

Let R > 0 be such that Ω ⊂ RW and let Q ∈ W 1,2(RW ; ∂Ks) denote the (not renamed)
extension of Q ∈ W 1,2(Ω; ∂Ks), which exists thanks to the regularity of Ω. By Remark 4.2 and
arguing as in the proof of Theorem 4.4 it suffices to consider the case when Q is as in (4.6) with
v, w ∈ C∞(RW ;S1) ∩W 1,2(RW ;S1). Setting vi = v(εi) and wi = w(εi) for all i ∈ Zε(RW ), we
define uε : Zε(RW )→ S1 as

uε,i :=

{
vi if i1 + i2 ∈ 2Z,
wi else,

and Qε ∈ Cε(RW ;S1
⊗) and Q′ε ∈ C ′ε(RW ;K) as the piecewise-constant interpolation of Q(uε) on

the lattices Zε and Z′ε , respectively. By the regularity of v and w we have that Q′ε (and thus Qε
by Lemma 3.9) converge to Q weakly∗ in L∞(Ω;K). Let the piecewise-affine interpolations Qodd,aε

and Qeven,aε be defined as in the previous step. By construction, Qodd,aε and Qeven,aε agree with the
piecewise-affine interpolations of w⊗w on the cells of the type ε(i+ Ŵ ) with i even and with v⊗ v
on the cells of the type ε(i+ Ŵ ) with i odd, respectively. Observe that we have

Qodd,aε → w ⊗ w Qeven,aε → v ⊗ v (4.37)
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strongly in W 1,2(Ω; M2×2
sym). Using (4.31) we deduce that∑
i,j∈Zε(Ω)

|i−j|=
√

2, i odd

(1− (uε,i · uε,j)2) ≤
∫

Ω+B(0,
√

2ε)

|∇Qodd,aε (x)|2 dx. (4.38)

Similarly, ∑
i,j∈Zε(Ω)

|i−j|=
√

2, i even

(1− (uε,i · uε,j)2) ≤
∫

Ω+B(0,
√

2ε)

|∇Qeven,aε (x)|2 dx. (4.39)

Combining (4.37), (4.38) and (4.39), using (2.4) and Lemma 4.8 we get

lim sup
ε

∑
i,j∈Zε(Ω)

|i−j|=
√

2

(1− (uε,i · uε,j)2)

≤
∫

Ω

|∇(w(x)⊗ w(x))|2 + |∇(v(x)⊗ v(x))|2 dx

= 2
(∫

Ω

|∇w(x)|2 dx+
∫

Ω

|∇v(x)|2 dx
)

= F 1(Q). (4.40)

In view of (4.40) it is left to show that

lim sup
ε

∑
i,j∈Zε(Ω)
|i−j|=1

h(|uε,i · uε,j |) ≤ 0. (4.41)

Since Q ∈ C∞(RW ; ∂Ks) and v, w ∈ C∞(RW ;S1) we have that

|v(x) · w(x)| = s for all x ∈ RW. (4.42)

As a result, due to the regularity of v and w , for ε small enough we have that

s− δ ≤ |uε,i · uε,j | ≤ s+ δ

and
|wi − wj | ≤ Lε for all i, j such that |i− j| = 1. (4.43)

Therefore, by construction of uε , (4.25), (4.42) and (4.43) we get that∑
i,j∈Zε(Ω)
|i−j|=1

h(|uε,i · uε,j |) ≤
∑

i,j∈Zε(Ω)
|i−j|=1

∣∣∣|uε,i · uε,j | − s∣∣∣2p

=
∑

i,j∈Zε(Ω)
|i−j|=1

∣∣∣|vi · wj | − s∣∣∣2p

=
∑

i,j∈Zε(Ω)
|i−j|=1

∣∣∣|vi · wj | − |vi · wj |∣∣∣2p

≤
∑

i,j∈Zε(Ω)
|i−j|=1

|wj − wi|2p ≤ 2L|Ω +B(0, ε)|ε2(p−1).

By this estimate, (4.41) follows. �

Remark 4.10. If h ∈ C2(s− δ, s+ δ) for some δ > 0 and has a strict minimum at s , then h satisfies
(4.25) with p ≥ 1. In the case when p = 1 our construction still shows that Γ- lim supε Fε(Q) < +∞
if and only if Q ∈W 1,2(Ω; ∂Ks).
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Remark 4.11. Note that the prefactor s−2 in (4.23) is proportional to the square of the curvature
of ∂Ks . Thus, when seen as a function of s , we may give to our limit energy a nice interpretation:
it quantifies the cost of a unit spatial variation of the order parameter Q depending on its distance
from the ordered state. Indeed it is minimal for s = 1 and it diverges as s goes to zero, where s = 1
corresponds to a uniform state while s = 0 corresponds to a disordered state.

4.3. Concentration-type scaling. We now consider a different scaling for the functionals Eε with
h(x) = (1− x2) which will lead to a concentration phenomenon. We define

F cε (Q) :=
Fε(Q)− inf Fε

ε2| log ε|
.

As usual we may rewrite the functional as

F cε (Q) =


1

| log ε|
∑
|i−j|=1

(1− (ui · uj)2) if Q ∈ Cε(Ω;S1
⊗)

+∞ otherwise.
(4.44)

The Γ-limit of F cε will give rise to concentration phenomena. Following the ideas in [3], the Γ-limit
of Fε(Q) − inf Fε and of its surface scaling Fε(Q)−inf Fε

ε turn out to be trivial. The scaling we have
chosen allows us to consider F cε as a sequence of Ginzburg-Landau type functionals with a non trivial
limit. As known in this framework, in order to track the concentration effects one need to define an
appropriate notion of convergence of suitable jacobians of the order parameter as well as a notion of
degree. For every Q : Ω→ K we consider the auxiliary vector valued map A(Q) : Ω→ R2 defined as

A(Q) := (2Q11 − 1, 2Q12). (4.45)

Note that A(Q) and Q have the same Sobolev regularity; in particular, if Q ∈ W 1,1(Ω;K) we have
that A(Q) ∈ W 1,1(Ω; R2) ∩ L∞(Ω; R2). Thus, we may define the distributional Jacobian of A(Q) as
in (2.5). Furthermore if Q ∈ W 1,2(Ω;K) then A(Q) ∈ W 1,2(Ω; R2) ∩ L∞(Ω; R2) and the following
equality holds for almost every x ∈ Ω:

|∇A(Q)(x)|2 = 2|∇Q(x)|2. (4.46)

Arguing as in Section 4.1 and using (4.46) we have that

F cε (Qε) =
1

| log ε|

∫
Ωε

|∇Qaε(x)|2 dx =
1

2| log ε|

∫
Ωε

|∇A(Qaε)(x)|2 dx, (4.47)

where Qaε is the usual piecewise-affine interpolation of Qε on Zε(Ω).
The following compactness and Γ-convergence result for F cε . In the statement, ‖ · ‖ denotes the

dual norm of C0,1
c (Ω).

Theorem 4.12. It holds that:
(i) Compactness and lower-bound inequality. Let (Qε) be a sequence of functions such that

Fε(Qε) ≤ C . Then we can extract a subsequence (not relabeled) such that, ‖J(A(Qaε))−πµ‖ →
0 , where µ =

∑m
k=1 zkδxk for some m ∈ N , zk ∈ Z and xk ∈ Ω . Moreover

lim inf
ε

F cε (Qε) ≥ π|µ|(Ω) = π

m∑
k=1

|zk|. (4.48)

(ii) Upper-bound inequality. Let µ =
∑m
k=1 zkδxk . Then there exists a sequence (Qε) such that,

‖J(A(Qaε))− πµ‖ → 0 and

lim
ε→0

Fε(Qε) = π|µ|(Ω) = π

m∑
k=1

|zk|.

Proof. The proof follows by arguing as in [3], using the identities (4.46) and (4.47). �
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Figure 5. Half charged discrete vortex for µ = δ0

Remark 4.13. Coming back to the energy description in terms of the order parameter u ∈ S1 ,
the result above has an interesting interpretation. Assume that 0 ∈ Ω and take µ = δ0 . By the
previous theorem there exists a recovery sequence Qε such that J(A(Qaε)) approximates πµ in the
dual norm of C0,1

c (Ω). Following the same ideas as in [3], such Qε can be obtained by discretizing

the map Q(x) =
(
x
|x|
) 1

2 ⊗
(
x
|x|
) 1

2 (here, the square root is meant in the complex sense). The presence

of the square root is easily explained: for u(x) =
(
x
|x|
) 1

2 we have J(u) = π
2 δ0 . Moreover, for every

Q = Q(u) we have that A(Q) = (u1 + iu2)2 which in turn implies J(A(Q)) = 2J(u) = πδ0 = πµ .
Since Qε = Q(uε), with uε the discretization of u(x), read in terms of the vectorial order parameter,
the optimal sequence is pictured in Figure 5 and the energy concentrates on the topological singularity
of a map having half degree. Of course, by the locality of the construction of the recovery sequence
in [3], this observation extends to any µ of the type µ =

∑m
k=1 zkδxk for some m ∈ N , zk ∈ Z and

xk ∈ Ω, thus asserting that the optimal sequence in therms of u looks like a complex product of a
finite number of maps with half-integer singularities.

Remark 4.14. The Lebwohl-Lasher model we have considered in this section belongs to a more
general class of two-dimensional Maier-Saupe models with long-range interactions, which in the bulk
scaling can be written as

Eε(u) =
∑
ξ∈ZN

∑
i∈Rξε(Ω)

ε2cξ(1− (ui, ui+ξ)2),

with cξ = cξ⊥ , ce1 > 0 and such that
∑
ξ |ξ|2cξ < +∞ . A relevant example of energy models falling

into this class has been proposed in [22] where cξ = |ξ|−6 . The authors are indeed interested in
models where a particle has a large number of interactions, this being in spirit closer to the mean-field
approach of the Maier-Saupe theory. As a consequence of Theorem 5 in [3], the results stated in
Theorem 4.12 continue to hold for this class of functionals provided we replace the prefactor π by
π
∑
ξ |ξ|2cξ . We also observe, as a byproduct of this result, that bulk and surface-type scalings of Eε

turn out to have trivial Γ-limits.
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