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Abstract. The papers describes an easy approach, based on a classical con-
struction by Dacorogna and Moser, to prove that optimal vector fields in some
minimal flow problem linked to optimal transport models (congested traffic,
branched transport, Beckmann’s problem. . . ) are induced by a probability
measure on the space of paths. This gives a new, easier, proof of a classical
result by Smirnov, and allows handling optimal flows without taking care of
the presence of cycles.

Introduction

Many transport optimization problems come under the form of a minimal flow
problem: origins and destinations of the motion are modeled via two densities (or
measures) µ and ν on a given domain Ω ⊂ Rd, and the unknown is how to connect
them through a vector field v : Ω → Rd where v(x) stands at every point for
the density of flow passing through the point x, giving both the direction and the
intensity of the movement. The fact that this vector field must connect µ to ν is
expressed through a divergence condition: we impose ∇ · v = µ − ν, which means
that the mass “taken” from the flow is µ and the mass “released” at the end of
the movement is ν. This description of the motion is both Eulerian and statical.
Eulerian because instead of following the particles in their motion from µ to ν it
looks at what happens at each point, where particles coming from different points
could pass at different moments. Statical because it ignores the time dimension,
and v(x) represents the overall flow passing through x as if we did an average over
time, or if we supposed the motion to be perpetual and cyclical (at every instant
some mass is poured in Ω according to the distribution µ and at the same time
withdrawn according to ν).

Among all the feasible vector fields v, we minimize a criterion, looking for the v
where the overall motion is minimal in a certain sense. This typically means solving
a problem

min {F (|v|) : ∇ · v = µ− ν} ,
where we assume that F only depends (locally or not) on the intensity of v, i.e.
on |v|. F is obviously supposed to be increasing in |v|, but at least two different
behaviors should be highlighted. If F is convex and superlinear, then it overpe-
nalizes high concentrations of |v|; on the contrary, if it is concave, subadditive and
sublinear, it prefers concentration rather than dispersion. These two behaviors cor-
respond to two different models, both meaningful in transport applications. The
convex case id useful to minimize traffic congestion, where the overall total cost
that we experience is a convex function of |v|, for instance

´
|v|2. If instead we

need to build a transportation network, able to carry mass from µ to ν, and we
1



2 FILIPPO SANTAMBROGIO

need to minimize the construction and management costs of it, we will try co con-
centrate as much as possible the movement on some common axes. In this case
the overall cost that we consider for moving a mass m is of the form g(m) with g
subadditive, i.e. g(m1 + m2) < g(m1) + g(m2) (which favors concentration), and
typically it could be of the form mα, for α < 1. Notice that we changed on purpose
the notation from |v| to m, since defining such a functional F is not evident in
this case and usually requires v to be highly concentrated. The good framework is
that of vector measures (and |v| denotes in this case the total variation measure of
v). This framework also fits the convex case; in the concave case, the functional F
will only be finite on measures concentrated on (possibly infinite) one-dimensional
rectifiable graphs, and the quantity m will represent the density of |v| w.r.t. the
one-dimensional measure: it stands for the amount of mass (and not the density
of mass) passing through a precise point, and it will only be positive on a thin
set, standing for the transportation network. Notice finally that the intermediate
and concentration-neutral case where we just minimize the total mass of v, i.e.
||v|| =

´
|v| is also interesting. It has been introduced by the spatial economist M.

Beckmann in the ’50s and it turns out to be equivalent to the Monge-Kantorovich
problem for the optimal transport between µ and ν with cost |x−y| (see [22, 20, 29]
and [27] for the equivalence . In the same paper [2] Beckmann also proposed to
minimize convex costs. This idea also appears in [11] as a variant of the well-known
Benamou-Brenier formula in a dynamical setting, and could also be considered now
as a particular case of the non-linear mobility of Dolbeaut-Nazaret-Savaré, [14] (re-
cently, the concave case as well got a sort of Benamou-Brenier formulation, see
[10])

For the precise expressions of the minimization problem in the concave case,
called branched transport problem, we refer to [31] and to the monograph [5]; the
model comes from classical issues in graph optimization, see [18, 19], and it trans-
lates them into a continuous framework. The convex case, with application to
traffic congestion, is also classical, and comes, in a graph setting, from the works
of Wardrop and Beckmann, [30, 3].

However, the goal of this short paper is not to enter into details of these transport
models, but only to address one single question which often arises when studying
them. In many cases it is important to be able to switch from an Eulerian model
to a Lagrangian one. In Lagrangian models, instead of looking at what happens at
each point, one looks at what happens at each particle, describing its trajectory.
Yet, since particles are considered to be indistinguishable, it is enough to consider
how many particles follow each possible trajectory, i.e. giving a measure on the
space of possible trajectories. Usually, we consider a probability measure Q, called
traffic plan, on the space C := Lip([0, 1],Ω) of Lipschitz continuous paths valued in
our domain Ω, and we impose that it connects the measures µ and ν, by requiring
(e0)#Q = µ and (e1)#Q = ν, where et : C → Ω denotes the evaluation map at time
t, i.e. et(ω) = ω(t) for every ω ∈ C. Then, one needs to associate a positive measure
iQ to Q which will represent the traffic intensity generated by Q and, possibly, a
vector measure vQ standing for the flow generated by the same Q. This has been
formalized in the traffic framework in [12] (for iQ) and [8] (for vQ), and we will
recall the precise definitions in the next section. [12] also describes the equivalence
between the optimization point of view (a planner decides where every agent moves)
and the equilibrium point of view (every agent chooses her own path, but her cost



DACOROGNA-MOSER FOR MINIMAL FLOWS 3

depends on the choices of everybody, and we look for a Nash equilibrium), for the
congestion case. Even if looking for an equilibrium is not equivalent to optimizing
the total cost of the agents, there is a connection between the two notions (the
equilibrium actually optimizes some total cost of a similar form, which makes this
a potential game). It is important to stress that equilibrium conditions can only
be stated in the Lagrangian framework.

The problem of switching from Eulerian to Lagrangian formalisms amounts at
the following question: when does a vector field v with ∇ · v = µ− ν is induced by
a traffic plan Q (i.e. whether v = vQ) with (e0)#Q = µ and (e1)#Q = ν. This is a
classical question, and a general answer is provided by the well-known and classical
result by Smirnov, [28], which is expressed in terms of currents. In his paper,
Smirnov first studies the structure of cyclical currents (i.e. with 0 divergence,
Theorems A and B of his paper), and then turns to general currents (Theorem
C) by proving a decomposition of the following form: every vector field v can be
decomposed into two parts, one is cyclical and the other is induced by a traffic
plan Q. Also, the mass of v is equal to the sum of the two masses, which was
probably the most delicate contribution of Smirnov. In particular, this implies
that any v without cycles is induced by a traffic plan. Thus, many papers in
branched transport have tried to use this idea to make a bridge between the Eulerian
model by Xia (see [31]) and the Lagragian models by Maddalena-Solimini-Morel
and then Bernot-Caselles-Morel (see [21, 4]). The main tool was first proving that
optimal fields v have no cycles. In this way, the possible presence of cycles has
become almost an obsession for many researches that have been carried on about
branched transport (the congested models have been more or less preserved from
this obsession, since proofs were easier in that case due to a smoother setting : Lp
vector fields instead of singular measures). Notice by the way that the meaning of
the word “cycles” may be different according to the context: in branched transport,
optimal solutions are tree-shaped and two different points are never joined by two
different paths, while in congested traffic this is allowed (even encouraged), but what
is forbidden is the presence of an oriented cycle, i.e. a completely useless circular
path which does not contribute to the divergence but increases total traffic. The
recent paper [6] introduces the interesting distinction between “cycles” (two different
curves connecting the same two points) and “loops” (one closed curve).

This correspondence between the Eulerian and the Lagrangian descriptions is
crucial to understand in depth the properties of the model, and is also very useful for
some proofs. Moreover, the Eulerian model is also discutable from a modelization
point of view, since it allows for cancellations when we want to model two opposite
vehicle flows. All these reasons stress the interest for Lagrangian models and,
indeed, many papers have been devoted to this topic from a rater abstract point of
view: for instance the papers by Paolini-Stepanov, Georgiev-Stepanov and Brasco-
Petrache which exactly deal with these representation questions for currents, either
in the Euclidean or metric setting, and they do it both for the applications to
the transport optimization problems, and for geometric purposes: [23, 25, 24, 17,
9]. These papers propose different approaches than Smirnov’s one (in particular,
Paolini-Stepanov, who prove in [25, 24] the same result as Smirnov in the general
setting of metric spaces, go the opposite way: first they prove, by approximation
from a network setting, that vector fields with no cycles are induced by a Q, then
they pass to the general case).
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For the congestion case, [8] proposed an equivalence between the Lagrangian
problem with Q and the Eulerian one with v, with an explicit way to construct Q
from v following an idea that Dacorogna and Moser developed in [13] for diffeomor-
phism purposes and first used in transport in [15]. This required a regularity proof,
but in particular an assumption on µ and ν, which were supposed to have densi-
ties bounded from below. This assumption is indeed very important, and explains
what is the true obstruction to the equality v = vQ: the problem are not cycles, but
cycles turning where there is no mass! indeed, there can be cyclical vector fields v
of the form vQ, but in this case both µ and ν should give some positive mass to
somewhere along the cycle. On the contrary, a cycle located outside of the supports
of µ and ν, cannot for sure be induced by an admissible Q even if its divergence is
equal to µ − ν. Notice also that [7] also proves, by Dacorogna-Moser techniques,
the equality of the minimal values of the Eulerian and the Lagrangian problems for
the congestion model, but does not take care of the representation of the optimal
v as a vQ.

In the present paper we still use Dacorogna-Moser and we give (in Section 1,
Proposition 1.3) a new proof of Smirnov’s Theorem C, which states that every v
can be decomposed as the sum of a vector field vQ induced by a traffic plan and
a cycle v − vQ, with no mass loss, i.e. ||v|| = ||v − vQ|| + ||vQ||. The proof shares
something of the spirit of Smirnov’s one, which also followed the integral curves of
some vector fields, but is shorter, since it does not require to start the analysis from
the cyclical case. Not only, exactly as from Smirnov’s result, one can conclude the
following fact: for every v there is a vector field vQ with |vQ| ≤ |v| and |vQ| 6= |v|
unless v = vQ. This allows to prove that optimal vector fields v are of the form
v = vQ every time that we minimize F (|v|) and F has some strict monotonicity
properties (Theorem 2.1). We will show in particular the application of this result
to the case of the Beckmann problem min

´
|v|. What is quite astonishing, but it

is not really a novelty of this paper (just a different way of stating the results), is
the fact that there is no need to care about cycles, or to mention them, even if it
happens that the possible difference v − vQ should indeed come from the presence
of cycles in v which do not correspond to some mass in the measures µ and ν. This
was indeed one of the first motivations of the paper (proving v = vQ for optimal
flows v without mentioning cycles), but it turned out later that a new proof of
Theorem C by Smirnov was also possible.

No really new result is contained in this paper, just some new - and hopefully
simpler - approaches. Part of this framework and of these ideas have been used
both for the presentation in the Mini-symposium “Des probabilités aux EDP par le
transport optimal” at the conference SMAI 2013, and for the mini-course the author
gave in August 2013 at MSRI in Berkeley during the program “Optimal Transport:
Geometry and Dynamics”.

1. Traffic intensity and traffic flows for measures on curves

1.1. Definitions and first properties. We introduce in this section the main
objects of our analysis, i.e. a vector field vQ, called traffic flow, and a scalar
intensity iQ associated to a probability measure Q on the set of paths.

Let us introduce some notations and be more precise. First, let us denote the
space of scalar measures on Ω by M(Ω), the set of positive measures by M+(Ω)
and the space of vector measures valued in Rd by Md(Ω). For a vector measure
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v ∈ Md(Ω), we denote by |v| ∈ M+(Ω) its total variation measure, which is such
that v = ξ · |v| with |ξ| = 1, |v|−a.e.. The norm in the space Md(Ω) is given by
||v|| = |v|(Ω). Notice that we also have ||v|| = sup{

´
X · dv : ||X||∞ ≤ 1}. In

all the paper Ω is considered to be a compact set, and measures on Ω can give
mass to its boundary (we do not make distinctions between Ω and Ω̄). In all these
measure spaces, the symbol ⇀ denotes convergence in duality with C0 functions
and replaces the symbol ∗⇀ for simplicity.

Given an absolutely curve ω : [0, 1]→ Ω and a continuous function ϕ, let us set

(1.1) Lϕ(σ) :=

ˆ 1

0

ϕ(ω(t))|ω′(t)|dt.

This quantity is the length of the curve weighted with the metric ϕ. When we take
ϕ = 1 we get the usual length of ω and we denote it by L(ω) instead of L1(ω).

We consider probability measures Q on the space C := Lip([0, 1],Ω). We re-
strict ourselves to measures Q such that

´
L(ω) dQ(ω) < +∞: these measures will

be called traffic plans, according to a terminology introduced in [4]. We endow
the space C with the uniform convergence. Notice that Ascoli-Arzelà’s theorem
guarantees that the sets {ω ∈ C : Lip(ω) ≤ c} are compact for every c. We will
associate two measures on Ω to such a Q. The first is a scalar one, called traffic
intensity and denoted by iQ ∈M+(Ω); it is defined byˆ

ϕdiQ :=

ˆ
C

( ˆ 1

0

ϕ(ω(t))|ω′(t)|dt
)
dQ(ω) =

ˆ
C

Lϕ(ω)dQ(ω).

for all ϕ ∈ C(Ω,R+). This definition (taken from [12]) is a generalization of the
notion of transport density which is nowadays classical in the Monge case of optimal
transport theory, see [15, 16, 1, 26]. The interpretation is the following: for a
subregion A, iQ(A) represents the total cumulated traffic in A induced by Q, i.e.
for every path we compute “how long” does it stay in A, and then we average on
paths.

We also associate a vector measure vQ to this traffic plan Q, defined through

∀X ∈ C(Ω;Rd)
ˆ

Ω

X · dvQ :=

ˆ
C

(ˆ 1

0

X(ω(t)) · ω′(t)dt
)
dQ(ω).

We will call vQ traffic flow induced by Q. Taking a gradient field X = ∇ψ in the
previous definition yieldsˆ

Ω

∇ψ · dvQ =

ˆ
C

[ψ(ω(1))− ψ(ω(0))]dQ(ω) =

ˆ
Ω

ψ d((e1)#Q− (e0)#Q).

From now on, we will restrict our attention to admissible traffic plans Q, i.e. traffic
plans such that (e0)#Q = µ and (e1)#Q = ν, where µ and ν are two prescribed
probability measures on Ω. This means that

∇ · vQ = µ− ν
and hence vQ is an admissible flow connecting µ and ν. Notice that the divergence
is always considered in a weak (distributional) sense, and automatically endowed
with Neumann boundary conditions, i.e. when we say∇·v = f we mean

´
∇ψ ·dv =

−
´
ψ df for all ψ ∈ C1(Ω), without any condition on the boundary behavior of the

test function ψ.
Coming back to vQ, it is easy to check that |vQ| ≤ iQ, where |vQ| is the total

variation measure of the vector measure vQ. This last inequality is not in general
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an equality, since the curves of Q could produce some cancellations (imagine a non-
negligible amount of curves passing through the same point with opposite directions,
so that vQ = 0 and iQ > 0).

We need some properties of the traffic intensity and traffic flow.

Proposition 1.1. Both vQ and iQ are invariant under reparametrization (i.e., if
T : C → C is a map such that for every ω the curve T (ω) is just a reparametrization
in time of ω, then vT#Q = vQ and iT#Q = iQ).

For every Q, the total mass iQ(Ω) equals the average length of the curves accord-
ing to Q, i.e.

´
C
L(ω) dQ(ω) = iQ(Ω). In particular, vQ and iQ are finite measures

thanks to the definition of traffic plan.
If Qn ⇀ Q and iQn

⇀ i, then i ≥ iQ.
If Qn ⇀ Q, vQn ⇀ v and iQn ⇀ i, then ||v− vQ|| ≤ i(Ω)− iQ(Ω). In particular,

if Qn ⇀ Q and iQn ⇀ iQ, then vQn ⇀ vQ.

Proof. The invariance by reparametrization comes from the fact that both Lϕ(ω)

and
´ 1

0
X(ω(t)) · ω′(t)dt do not change under reparametrization.

The formula
´
C
L(ω) dQ(ω) = iQ(Ω) is obtained from the definition of iQ by

testing with the function 1.
To check the inequality i ≥ iQ, fix a positive test function ϕ ∈ C(Ω) and suppose

ϕ ≥ ε0 > 0. Write

(1.2)
ˆ
ϕdiQn =

ˆ
C

(ˆ 1

0

ϕ(ω(t))|ω′(t)|dt
)
dQn(ω).

Notice that the function C 3 ω 7→ Lφ(ω) =
´ 1

0
ϕ(ω(t))|ω′(t)|dt is positive and

lower-semi-continuous w.r.t. ω. Indeed, if we take a sequence ωn → ω, from the
bound ϕ ≥ ε0 > 0 we can assume that

´
|ω′n(t)|dt is bounded. Then we can infer

ω′n ⇀ ω′ weakly (as measures, or in L1), which implies, up to subsequences, the
existence of a measure ξ ≥ |ω′| such that |ω′n| ⇀ ξ; moreover, ϕ(ωn(t)) → ϕ(ω(t))
uniformly, which gives

´
ϕ(ωn(t))|ω′n(t)|dt→

´
ϕ(ω(t))ξ(t)dt ≥

´
ϕ(ω(t))|ω′(t)|dt.

This allows to pass to the limit in (1.2), thus obtainingˆ
ϕdi = lim

n

ˆ
ϕdiQn

= lim inf
n

ˆ
C

Lϕ(ω)dQn(ω) ≥
ˆ
C

Lϕ(ω)dQ(ω) =

ˆ
ϕdiQ.

If we take an arbitrary test function ϕ (without a lower bound), add a constant ε0

and apply the previous reasoning we get
´

(ϕ + ε0)di ≥
´

(ϕ + ε0)diQ and, letting
ε0 → 0, since i is a finite measure and ϕ is arbitrary, we get i ≥ iQ.

To check the last property, fix a bounded vector test function X and a number
λ > 1 and look at

(1.3)
ˆ
X · dvQn

=

ˆ
C

(ˆ 1

0

X(ω(t)) · ω′(t)dt
)
dQn(ω)

=

ˆ
C

(ˆ 1

0

X(ω(t)) · ω′(t)dt+ λ||X||∞L(ω)

)
dQn(ω)− λ||X||∞iQn(Ω),

where we just added and subtracted the total mass of iQn , equal to the average of
L(ω) according to Qn.

Now notice that C 3 ω 7→
´ 1

0
X(ω(t))·ω′(t)dt+λ||X||∞L(ω) ≥ (λ−1)||X||∞L(ω)

is l.s.c. in ω (use the same argument as above, noting that, if we take ωn → ω, we
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may assume L(ωn) to be bounded, and obtain ω′n ⇀ ω′). This means that if we
pass to the limit in (1.3) we get
ˆ
X · dv = lim inf

n

ˆ
X · dvQn

≥
ˆ
C

(ˆ 1

0

X(ω(t)) · ω′(t)dt+ λ||X||∞L(ω)

)
dQ(ω)− λ||X||∞i(Ω)

=

ˆ
X · dvQ + λ||X||∞(iQ(Ω)− i(Ω)).

By replacing X with −X we get∣∣∣∣ˆ X · dv − ˆ X · dvQ∣∣∣∣ ≤ λ||X||∞(i(Ω)− iQ(Ω)).

Letting λ→ 1 and taking the supremum over X with ||X||∞ ≤ 1 we get ||v−vQ|| ≤
i(Ω)− iQ(Ω).

The very last property is evident, indeed one can assume up to a subsequence
that vQn

⇀ v holds for a certain v, and i = iQ implies v = vQ (which also implies
the full convergence of the sequence). �

1.2. Where Dacorogna-Moser comes into play. Let us start from a particular
case of the construction in [13].
Construction : Suppose that v : Ω→ Rd is a Lipschitz vector field parallel to the
boundary (i.e. v · nΩ = 0 on ∂Ω) with ∇ · v = f0 − f1, where f0, f1 are positive
probability densities which are Lipschitz continuous and bounded from below. Then
we can define the non-autonomous vector field ṽ(t, x) via

ṽ(t, x) =
v(x)

ft(x)
where ft = (1− t)f0 + tf1

and consider the Cauchy problem{
y′x(t) = ṽ(t, yx(t))

yx(0) = x
,

We define the map Y : Ω→ C through Y (x) = yx(·), and we look for the measures
Q = Y#f0 and ρt := (et)#Q. From standard arguments on the link between the
flows of the ODE and the continuity equation, ρt solves ∂tρt +∇ · (ρtṽt) = 0. Yet,
it is easy to check that ft also solves the same equation since ∂tft = f1 − f0 and
∇ · (ṽft) = ∇ · w = f0 − f1. By uniqueness arguments (which are valid because ṽt
is Lipschitz continuous), from ρ0 = f0 we infer ρt = ft.

In particular, x 7→ yx(1) is a transport map from f0 to f1.
It it interesting to compute what are the traffic intensity and the traffic flow

associated to the measure Q in Dacorogna-Moser construction. Fix a scalar test
function ϕ:
ˆ

Ω

ϕdiQ =

ˆ
Ω

ˆ 1

0

ϕ(yx(t))|ṽ(t, yx(t))|dtf0(x)dx

=

ˆ 1

0

ˆ
Ω

ϕ(y)|ṽ(t, y)|ft(y)dydt =

ˆ
Ω

ϕ(y)|v(y)|dy
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so that iQ = |v|. Analogously, fix a vector test function X
ˆ

Ω

X · dvQ =

ˆ
Ω

ˆ 1

0

X(yx(t)) · ṽ(t, yx(t))dtf0(x)dx

=

ˆ 1

0

ˆ
Ω

X(y) · ṽ(t, y)ft(y)dydt =

ˆ
Ω

X(y) · v(y)dy,

which shows vQ = w (indeed, in this case we have |vQ| = iQ and this is due to the
fact that no cancellation is possible, since all the curves share the same direction at
every given point, as a consequence of the uniqueness in Cauchy-Lipschitz theorem).

With these tools we can now get closer to our main result.

Lemma 1.2. Consider two probabilities µ, ν ∈ P(Ω) and a vector measure v sat-
isfying ∇ · v = µ− ν in distributional sense (with Neumann boundary conditions).
Then, for every domain Ω′ containing Ω in its interior, there exist a family of vector
fields vε ∈ C∞(Ω′) with vε ·nΩ′ = 0, and two families of densities µε, νε ∈ C∞(Ω′),
bounded from below by positive constants cε > 0, with ∇ · vε = µε − νε and´

Ω′ µ
ε =

´
Ω′ ν

ε = 1, weakly converging to w, µ and ν as measures, respectively,
and satisfying |vε|⇀ |v|.

Proof. First, take convolutions (in the whole space Rd) with a gaussian kernel ηε, so
that we get v̂ε := v ∗ηε and µ̂ε := µ∗ηε ν̂ε := ν ∗ηε, still satisfying ∇· v̂ε = µε−νε.
Since the Gaussian Kernel is strictly positive, we also have strictly positive densities
for µ̂ε and ν̂ε. These convolved densities and vector field would do the job required
by the theorem, but we have to take care of the support (which is not Ω′) and of
the boundary behavior.

Let us set
´

Ω′ µ̂
ε = 1 − aε and

´
Ω′ ν̂

ε = 1 − bε. It is clear that aε, bε → 0 as
ε → 0. Consider also v̂ε · nΩ′ : due to d(Ω, ∂Ω′) > 0 and to the fact that ηε goes
uniformly to 0 locally outside the origin, we also have |v̂ε · nΩ′ | ≤ cε, with cε → 0.

Consider uε the solution to
∆uε = aε−bε

|Ω′| inside Ω′

∂uε

∂n = −v̂ε · nΩ′ on ∂Ω′,´
Ω′ u

ε = 0

and the vector field δε = ∇uε. Notice that a solution exists thanks to
´
∂Ω′ v̂

ε ·nΩ′ =
aε − bε. Notice also that an integration by parts showsˆ

Ω′
|∇uε|2 = −

ˆ
∂Ω′

uε(v̂ε · nΩ′)−
ˆ

Ω′
uε
(
aε − bε
|Ω′|

)
≤ C||∇uε||L2(cε + aε + bε),

and provides ||∇uε||L2 ≤ C(aε + bε + cε)→ 0. This shows ||δε||L2 → 0.
Now take

µε = µ̂ε Ω′ +
aε
|Ω′|

; νε = ν̂ε Ω′ +
bε
|Ω′|

; vε = v̂ε Ω′ + δε,

and check that all the requirements are satisfied. In particular, the last one is
satisfied since ||δε||L1 → 0 and |v̂ε|⇀ |v| by general properties of the convolutions.

�

Remark 1. Notice that considering explicitly the dependence on Ω′ it is also
possible to obtain the same statement with a sequence of domains Ω′ε converging
to Ω (for instance in the Hausdorff topology). It is just necessary to choose them



DACOROGNA-MOSER FOR MINIMAL FLOWS 9

so that, setting tε := d(Ω, ∂Ω′ε), we have ||ηε||L∞(B(0,tε)c) → 0. For the Gaussian
kernel, this is satisfied whenever t2ε/ε → ∞ and can be guaranteed by taking tε =
ε1/3.

With these tools we can now prove

Proposition 1.3. For every finite vector measure v ∈Md(Ω) and µ, ν ∈ P(Ω) with
∇·v = µ−ν there exists a traffic plan Q ∈ P(C) with (e0)#Q = µ and (e1)#Q = ν
such that |vQ| ≤ iQ ≤ |v|, and ||v − vQ|| + ||vQ|| = ||v − vQ|| + iQ(Ω) = ||v||. In
particular we have |vQ| 6= |v| unless vQ = v.

Proof. By means of Lemma 1.2 and Remark 1 we can produce an approximating
sequence (vε, µε, νε) ⇀ (w, µ, ν) of C∞ functions supported on domains Ωε con-
verging to Ω. We apply Dacorogna-Moser’s construction to this sequence of vector
fields, thus obtaining a sequence of measures Qε. We can consider these measures
as probability measures on Lip([0, 1]; Ω′) (where Ω ⊂ Ωε ⊂ Ω′) which are, each,
concentrated on curves valued in Ωε. They satisfy iQε = |vε| and vQε = vε. We
can reparametrize (without changing their names) by constant speed the curves on
which Qε is supported, without changing traffic intensities and traffic flows. This
means using curves ω such that L(ω) = Lip(ω). The equalitiesˆ

C

Lip(ω) dQε(ω) =

ˆ
C

L(ω) dQε(ω) =

ˆ
Ω′
iQε

=

ˆ
Ω′
|vε| → |v|(Ω′) = |v|(Ω)

show that
´
C

Lip(ω) dQε(ω) is bounded and Qε is tight. Hence, up to subsequences,
we can assume Qε ⇀ Q. The measure Q is obviously concentrated on curves valued
in Ω. The measures Qε were constructed so that (e0)#Qε = µε and (e1)#Qε = νε,
which implies, at the limit, (e0)#Q = µ and (e1)#Q = ν. Moreover, thanks to
Proposition 1.1, since iQε

= |wε| ⇀ |v| and vQε
⇀ v, we get |v| ≥ iQ ≥ |vQ| and

||v− vQ|| ≤ |v|(Ω)− iQ(Ω). This gives ||v− vQ||+ ||vQ|| ≤ ||v− vQ||+ iQ(Ω) ≤ ||v||
and the opposite inequality ||v|| ≤ ||v − vQ||+ ||vQ|| is always satisfied. �

Remark 2. The previous statement contains that of Theorem C in [28], i.e. the
decomposition of any v into a cycle v− vQ and a flow vQ induced by a measure on
paths , with ||v|| = ||v − vQ||+ ||vQ||.

Remark 3. It is possible to guess what happens to a cycle through this construc-
tion. Imagine the following example: Ω is composed of two parts Ω+ and Ω−, with
sptµ∪ spt ν ⊂ Ω+ and a cycle of v is contained in Ω−. When we build the approx-
imations µε and νε they will give a positive mass to Ω−, but very small. Because
of the denominator in the definition of ṽ, the curves produced by Dacorogna-Moser
will follow this cycle very fast, passing many times on each point of the cycle.
Hence, the flow vε in Ω− is obtained from a very small mass which passes many
times. This implies that the measure Qε of this set of curves will disappear at the
limit ε → 0. Hence, the measure Q will be concentrated on curves staying in Ω+

and vQ = 0 on Ω−. In this way, we got rid of that particular cycle, but the same
does not happen for cycles located in regions with positive masses of µ and ν. In
particular nothing guarantees that vQ has no cycles.

2. Application to optimal flows

In this section we try to get some (easy) conclusions from the previous proofs.
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Theorem 2.1. Consider a minimization problem

min
{
F (|v|) : v ∈Md(Ω), ∇ · v = µ− ν

}
where F :M+(Ω)→ R ∪ {+∞} is an increasing functional, i.e. α ≤ β ⇒ F (α) ≤
F (β). Then if a minimizer v exists, there is also a minimizer of the form vQ,
where Q is an admissible traffic plan connecting µ to ν. Moreover, if F is strictly
increasing (i.e. α ≤ β, F (α) = F (β) ⇒ α = β), any minimizer v must be of the
form vQ.

Proof. These facts are easy consequences of Proposition 1.3. Indeed, take a mini-
mizer v and build a traffic planQ such that |vQ| ≤ |v|. By the monotonicity of F it is
clear that vQ must also be a minimizer. Moreover, it must satisfy F (|v|) = F (|vQ|),
since the value F (|vQ|) cannot be smaller than the minimal value F (|v|). Hence,
if F is strictly increasing, we must have |v| = |vQ but in this case Proposition 1.3
allows to conclude v = vQ. �

In order to complete our analysis, we use the previous result to characterize the
optimal flows in the Beckmann’s version of the optimal transport problem. To do
that, let us first recall the main points of Beckmann’s model.

The problem, that Beckmann proposed in [2] under the name Continuous model
of transportation is the following: given two measures µ and ν, find the vector field
v satisfying ∇ · v = µ− ν with minimal L1 norm. In the language of measures, this
becomes

(PB) min
{
|v|(Ω) : v ∈Md(Ω), ∇ · v = µ− ν

}
.

The existence of an optimal measure v is straightforward, and in some cases one
can also prove that it is actually absolutely continuous, with L1 or Lp density (see
[26] for the most recent results on this issues).

It happens that, even if Beckmann was not aware of it, this problem is indeed
strongly connected with the Monge-Kantorovich problem for cost c(x, y) = |x− y|.
Indeed, the minimal value of (PB) is equal to the minimal value of

(PK) min

{ˆ
Ω×Ω

|x− y| dγ : γ ∈ Π(µ, ν)

}
,

where the set Π(µ, ν) is the set of the so-called transport plans, i.e. Π(µ, ν) = {γ ∈
P(Ω× Ω) : (πx)#γ = µ, (πy)#γ = ν, } where πx and πy are the two projections of
Ω×Ω onto Ω. Moreover, it is possible to produce a minimizer v[γ] for (PB) starting
from a minimizer γ for (PK) by defining v[γ] as a measure in the following way:

ˆ
X dv[γ] :=

ˆ
Ω×Ω

ˆ 1

0

ω′x,y(t) ·X(ωx,y(t))dt dγ,

for every X ∈ C0(Ω;Rd), ωx,y being a parametrization of the segment [x, y]. It is
clear that this definition is nothing but a particular case of the definition of vQ,
when we take Q = S#γ and S is the map Ω × Ω 3 (x, y) 7→ ωx,y ∈ C (where, to
avoid ambiguities, we choose the segment ωx,y parametrized with constant speed:
ωx,y(t) = (1− t)x+ ty).

The final result we present is exactly the fact that all the minimizers v of (PB)
must be of the form v[γ].

Theorem 2.2. Let v be optimal in (PB): then there is an optimal transport plan
γ such that v = v[γ].
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Proof. Thanks to Theorem 2.1, since F (α) = |α|(Ω) is strictly increasing, we can
find an admissible traffic plan Q ∈ P(C) with (e0)#Q = µ and (e1)#Q = ν such
that v = vQ. We can assume Q to be concentrated on curves parametrized by
constant speed. The statement is proven if we can prove that Q = S#γ with γ an
optimal transport plan.

Indeed, using again the optimality of v and Proposition 1.3, we get

min(PB) = ||v|| = iQ(Ω) =

ˆ
C

L(ω) dQ(ω) ≥
ˆ
C

|ω(0)− ω(1)|dQ(ω)

=

ˆ
Ω×Ω

|x− y| d((e0, e1)#Q) ≥ min(PK).

The equality min(PB) = min(PK) implies that all these inequalities are equalities.
In particular Q must be concentrated on curves such that L(ω) = |ω(0)−ω(1)|, i.e.
segments. Also, the measure (e0, e1)#Q, which belongs to Π(µ, ν), must be optimal
in (PK). This concludes the proof. �

References

[1] L. Ambrosio and A. Pratelli. Existence and stability results in the L1 theory of optimal
transportation, in Optimal transportation and applications, Lecture Notes in Mathematics
1813, L.A. Caffarelli and S. Salsa Eds., 123-160, 2003.

[2] M. Beckmann, A continuous model of transportation, Econometrica (20), 643–660, 1952.
[3] M. Beckmann, C. McGuire and C. Winsten, Studies in Economics of Transportation.

Yale University Press, 1956.
[4] M. Bernot, V. Caselles and J.-M. Morel, Traffic plans, Publicacions Matemàtiques

(49), no. 2, 417–451, 2005.
[5] M. Bernot, V. Caselles and J.-M. Morel, Optimal transportation networks, Models

and Theory, Lecture Notes in Mathematics, Springer, Vol. 1955 (2008).
[6] A. Brancolini and S. Solimini, Fractal regularity results on optimal irrigation patterns,

preprint, cvgmt.sns.it, 2013.
[7] L. Brasco and G. Carlier, Congested traffic equilibria and degenerate anisotropic PDEs,

Dyn. Games Appl., to appear.
[8] L. Brasco, G. Carlier and F. Santambrogio, Congested traffic dynamics, weak flows

and very degenerate elliptic equations, J. Math. Pures et Appl., 93, No 6, 2010, 652–671.
[9] L. Brasco and M. Petrache, A continuous model of transportation revisited Zap. Nauchn.

Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. , Vol 411, 5–37, 2013.
[10] L. Brasco, G. Buttazzo and F. Santambrogio, A Benamou-Brenier approach to

branched transportation, SIAM J. Math. An., Vol. 43, Nr. 2 (2011) , p. 1023–1040.
[11] Y. Brenier: Extended Monge-Kantorovich theory. In “Optimal Transportation and Applica-

tions” (Martina Franca, 2001), Lecture Notes in Mathematics 1813, Springer-Verlag, Berlin,
2003, 91–121.

[12] G. Carlier, C. Jimenez and F. Santambrogio, Optimal transportation with traffic con-
gestion and Wardrop equilibria, SIAM J. Control Optim. (47), 2008, 1330-1350.

[13] B. Dacorogna and J. Moser, On a partial differential equation involving the Jacobian
determinant. Ann. Inst. H. Poincaré Anal. Non Linéaire 7 (1990), no. 1, 1–26.

[14] J. Dolbeault, B. Nazaret and G. Savaré, A new class of transport distances between
measures. Calc. Var. Partial Differential Equations, 34 (2009), 193–231.

[15] L. C. Evans and W. Gangbo, Differential equations methods for the Monge-Kantorovich
mass transfer problem, Mem. Amer. Math. Soc. 137, 653 (1999)

[16] M. Feldman and R. McCann, Uniqueness and transport density in Monge’s mass trans-
portation problem, Calc. Var. Par. Diff. Eq. 15, n. 1, pp. 81–113, 2002.

[17] V. Georgiev and E. Stepanov Metric cycles, curves and solenoids, to appear in DCDS
series A, special issue on Optimal Transport and Applications, vol. 34, no. 4, 2014.

[18] E. N. Gilbert, Minimum cost communication networks, Bell System Tech. J. (46), 2209–
2227, 1967.



12 FILIPPO SANTAMBROGIO

[19] E. N. Gilbert and H. O. Pollak, Steiner minimal trees. SIAM J. Appl. Math. (16), 1–29,
1968.

[20] L. Kantorovich, On the transfer of masses. Dokl. Acad. Nauk. USSR, (37), 7–8, 1942.
[21] F. Maddalena, S. Solimini and J.-M. Morel, A variational model of irrigation patterns,

Int. and Free Bound., 5 (2003), 391–416.
[22] G. Monge, Mémoire sur la théorie des déblais et des remblais, Histoire de l’Académie Royale

des Sciences de Paris, 666–704, 1781.
[23] E. Paolini and E. Stepanov Optimal transportation networks as flat chains, Interfaces

and Free Boundaries, 8, no.4 (2006), 393–436.
[24] E. Paolini and E. Stepanov Structure of metric cycles and normal one-dimensional currents

Funct. Anal., 2013
[25] E. Paolini and E. Stepanov Decomposition of acyclic normal currents in a metric space

Funct. Anal., Vol 263 No 11, 3358–3390, 2012.
[26] F. Santambrogio, Absolute continuity and summability of transport densities: simpler

proofs and new estimates, Calc. Var. Par. Diff. Eq. 36, no. 3, 2009, 343-354.
[27] G. Strang, L1 and L∞ approximation of vector fields in the plane Lecture Notes in Num.

Appl. Anal. 5, 1982, 273-288.
[28] S. K. Smirnov, Decomposition of solenoidal vector charges into elementary solenoids, and

the structure of normal one-dimensional flows, Algebra i Analiz, 5:4 (1993), 206–238, later
translated into English in St. Petersburg Math. J., 5(4): 841–867, 1994.

[29] C. Villani. Topics in Optimal Transportation. Graduate Studies in Mathematics, AMS,
2003.

[30] J. G. Wardrop, Some theoretical aspects of road traffic research, Proc. Inst. Civ. Eng. 2
(1952), 325-378.

[31] Q. Xia, Optimal Paths related to Transport Problems. Comm. Cont. Math. (5), no. 2, 251–
279, 2003.

Filippo Santambrogio, Laboratoire de Mathématiques d’Orsay, Université Paris-
Sud, 91405 Orsay cedex, FRANCE, e-mail address:, filippo.santambrogio@math.u-psud.fr
— This paper is part of the ANR project ISOTACE —


	Introduction
	1. Traffic intensity and traffic flows for measures on curves
	1.1. Definitions and first properties
	1.2. Where Dacorogna-Moser comes into play

	2. Application to optimal flows
	References

