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Abstract. Balanced Viscosity solutions to rate-independent systems arise as limits of regu-

larized rate-independent flows by adding a superlinear vanishing-viscosity dissipation.
We address the main issue of proving the existence of such limits for infinite-dimensional

systems and of characterizing them by a couple of variational properties that combine a local
stability condition and a balanced energy-dissipation identity.

A careful description of the jump behavior of the solutions, of their differentiability prop-

erties, and of their equivalent representation by time rescaling is also presented.
Our techniques rely on a suitable chain-rule inequality for functions of bounded variation

in Banach spaces, on refined lower semicontinuity-compactness arguments, and on new BV-

estimates that are of independent interest.
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1. Introduction

This paper concerns the asymptotic behavior of the solutions uε : [0, T ] → V , ε ↓ 0, of
singularly perturbed doubly nonlinear evolution equations of the type

∂Ψε(u̇ε(t)) + ∂Et(uε(t)) 3 0 in V ∗, t ∈ (0, T ). (1.1)

Here (V, ‖·‖) is a Banach space satisfying the Radon-Nikodým property (e.g. a reflexive space, see
[DiU77]), ∂E is the Fréchet subdifferential of a time-dependent energy functional E : [0, T ]×V →
(−∞,+∞], and Ψε : V → [0,+∞) is a family of convex and superlinear dissipation potentials;
the main coercivity and structural assumptions on Ψε,E will be discussed in Section 2.1.

The main feature we want to address here is the degeneration of the superlinear character of
Ψε as ε ↓ 0, approximating a degree-1 positively homogeneous convex potential Ψ : V → [0,+∞),

Ψ(λv) = λΨ(v) for every v ∈ V, λ ≥ 0; Ψ(v) > 0 if v 6= 0. (1.2)

An important example motivating our investigation is the vanishing quadratic approximation

Ψε(v) = Ψ(v) +
ε

2
‖v‖2, associated with the viscous potential Φ(v) :=

1

2
‖v‖2. (1.3)

The superlinear case. Equations of the type (1.1) arise in several contexts, ranging from ther-
momechanics to the modeling of rate-independent evolution. In the realm of these applications,
(1.1) may be interpreted as generalized balance relation, balancing viscous and potential forces.

The analysis of (1.1) when the energy E has the typical form

Et(u) = E(u)− 〈`(t), u〉, with ` : [0, T ]→ V ∗ smooth and E : V → (−∞,+∞] convex

goes back to the seminal papers [CoV90, Col92]. Therein, the existence of absolutely continuous
solutions to the Cauchy problem for (1.1) was proved by means of maximal monotone operator
techniques. Existence and approximation results for a broad class of nonconvex energies, also
featuring a singular dependence on time, have been recently obtained in [MRS13], relying on
various contributions from the theory of curves of Maximal Slope [DGMT80, MST89] and from
the variational approach to gradient flows [De 93, RoS06, AGS08, RMS08].

Positively 1-homogeneous dissipations: energetic solutions. Since Ψ is positively homo-
geneous of degree 1, when ε = 0 the formal limit of (1.1)

∂Ψ(u̇(t)) + ∂Et(u(t)) 3 0 in V ∗, t ∈ (0, T ), (1.4)

describes a rate-independent evolution. In this case, even for convex energies Et(·) one cannot
expect the existence of absolutely continuous solutions to (1.1): in general, they may be only BV
with respect to time and in fact have jumps, so that even the precise meaning of the differential
inclusion (1.4) is a delicate question.

This has called for weak-variational characterization of the solutions of (1.4), leading to the
concept of energetic solution to the rate-independent system (V,E,Ψ): it dates back to [MiT99]
and was further developed in [MiT04, DFT05], see also [Mie05, Mie11] and the references therein.

In this setting, u : [0, T ]→ V is an energetic solution to equation (1.4), if it complies with the
global stability (S) and with the energy balance (E) conditions

∀ v ∈ V : Et(u(t)) ≤ Et(v) + Ψ(v−u(t)) for all t ∈ [0, T ], (S)

VarΨ(u; [0, t]) + Et(u(t)) = E0(u(0)) +

∫ t

0

∂tEs(u(s)) ds for all t ∈ [0, T ], (E)

where VarΨ(u; [a, b]) is the total variation induced by Ψ(·) on the interval [a, b] ⊂ [0, T ], viz.

VarΨ(u; [a, b]) := sup
{ M∑
m=1

Ψ
(
u(tm)− u(tm−1)

)
: a = t0 < t1 < · · · < tM−1 < tM = b

}
. (1.5)

The energetic formulation (S)–(E) has several strong points: it is derivative-free, it bypasses all
the technical differentiability issues on V (related to the validity of the Radon-Nikodým property),
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on u (related to its behavior on the Cantor-Jump set), and on the energy E (related to its Frechét
subdifferential). Furthermore, it provides nice existence-stability results under simple coercivity
and time-regularity assumptions.

Nonetheless, in the case of nonconvex energies it is now well known [MRS09, MRS12a, Mie11,
MiZ12, RoS13] that the global stability condition (S) involves a variational characterization of
the jump behavior of the system, that is affected by the whole energetic landscape of E.

Positively 1-homogeneous dissipations: the vanishing-viscosity approach. The by now
well-established vanishing-viscosity approach aims to find good local conditions describing rate-
independent evolution (and in particular the behavior of the solutions at jumps). It also leads to
a clarification of the connections with the metric-variational theory of gradient flows.

While referring to [MRS12a] for a more detailed survey, here we recall the works where the
vanishing-viscosity analysis is carried out via the reparameterization technique introduced in
[EfM06]. They range from applicative contexts in material modeling (such as crack propagation
[KMZ08, KZM10], Cam-Clay and non-associative plasticity [DMDS11, DDS12, BFM12], and
damage [KRZ13]), to the analysis of parabolic PDEs with rate-independent dissipation terms
[MiZ12].

Abstract rate-independent systems in a finite-dimensional setting have been studied by [MRS09,
MRS12a]. In particular, the vanishing-viscosity limit of gradient systems of the type (1.1) has
been studied in [MRS12a] when V is a finite-dimensional space and E ∈ C1([0, T ] × V ). Here
we aim to generalize the results from [MRS12a] to the present nonsmooth, infinite-dimensional
setting.

A simple prototype of the situation we have in mind (see also Section 5) is

V = L2(Ω), Ψε(v) =

∫
Ω

|v|+ ε

2
|v|2 dx, Et(u) =

∫
Ω

(
1

2
|∇u|2 +W (u)− `(t)u

)
dx (1.6)

where Ω is a bounded open subset of Rd, ` ∈ C1([0, T ];L2(Ω)) and W ∈ C1(R) is, e.g., a double-
well type nonlinearity. The abstract subdifferential inclusion (1.1) leads to the nonlinear parabolic
equation

ε ∂tu+ Sign
(
∂tu
)
−∆u+W ′(u) = ` in Ω× (0, T ), (1.7)

for which the vanishing-viscosity limit ε ↓ 0 was in fact analyzed in [MiZ12], based on the
reparameterization technique and on the concept of parameterized solution, from [EfM06].

In this work we will propose a direct characterization of the limit evolution, in the same spirit
of conditions (S)–(E), and we will show how it is related to a parameterized formulation. A
particular emphasis will be on the crucial property encoded in the balanced energy–dissipation
identities, both in the original and in the rescaled time variables. The notion of Balanced Viscosity
(BV) solution to a rate-independent system tries to capture this essential feature.

Balanced Viscosity (BV) solutions. Let us briefly describe what we mean by a balanced
viscosity (BV) solution to the rate-independent system (RIS) (V,E,Ψ,Φ), where now also the
viscosity correction induced by Φ characterizes the evolution. To simplify the exposition in this
introduction, we suppose that Ψ is V -coercive, i.e. Ψ(v) ≥ c‖v‖ for all v ∈ V and for a constant
c > 0.

A crucial role is played by the dual convex set

K∗ := {ξ ∈ V ∗ : 〈ξ, v〉 ≤ Ψ(v) for every v ∈ V } (1.8)

whose support function is Ψ. Following [MRS12a], we say that a curve u ∈ BV([0, T ];V ) is a BV
solution to the RIS (V,E,Ψ,Φ), if it fulfills the following local stability condition

K∗ + ∂Et(u(t)) 3 0 for all t ∈ [0, T ] \ Ju, (Sloc)

where Ju is the jump set of u, and the Energy-Dissipation Balance

Varf(u; [0, t]) + Et(u(t)) = E0(u(0)) +

∫ t

0

∂tEs(u(s)) ds for all t ∈ [0, T ]. (Ef)
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Like (E), (Ef) as well balances at every evolution time t ∈ [0, T ] the energy dissipated by the
system and the current energy, with the initial energy and the work of the external forces. How-
ever, in (Ef) dissipation is measured by the total variation functional Varf. While referring to the
forthcoming Definition 3.6 for a precise formula, we may mention here that the main difference
of Varf with respect to VarΨ concerns the contribution of the jumps. In fact, in the definition of
Varf the cost Ψ(u(t+)− u(t−)) of the transition from the left limit u(t−) to the right limit u(t+)
at a time t ∈ Ju is replaced by the Finsler dissipation cost

∆ft(u0, u1) := inf
{∫ 1

0

ft(ϑ; ϑ̇) dr : ϑ ∈ AC([0, 1];V ), ϑ(0) = u(t−), ϑ(1) = u(t+)
}
, (1.9)

where

ft(ϑ; ϑ̇) = Ψ(ϑ̇) + et(ϑ)‖ϑ̇‖, et(ϑ) := inf
{
‖ξ − z‖∗ : ξ ∈ −∂Et(ϑ), z ∈ K∗

}
. (1.10)

Formula (1.10) clearly shows that the Finsler dissipation cost (1.9) (and thus the total variation
Varf) encompasses both rate-independent effects through Ψ(·), and viscous effects through ‖·‖.
The latter are active whenever et(ϑ) > 0, precisely when the local stability condition (Sloc) is
violated, since K∗ + ∂Et(u) 3 0 if and only if et(u) = 0. Ultimately, by virtue of (Ef), viscous
dissipation enters in the description of the energetic behavior of the system at jumps.

The link between the particular structure of (1.10) and the vanishing-viscosity approximation
(1.1) can be better understood by recalling the strucure of the energy-dissipation balance satisfied
by the solutions to the viscous evolution:

Et(uε(t))+

∫ t

0

(
Ψε(u̇ε)+Ψ∗ε(ξε)

)
dr = E0(uε(0))+

∫ t

0

∂tEr(uε(r)), ξε(r) ∈ −∂Er(uε(r)). (1.11)

It turns out that ft admits the variational representation

ft(ϑ, ϑ̇) = inf
{

Ψε(ϑ̇) + Ψ∗ε(ξ) : ξ ∈ −∂Et(ϑ), ε > 0
}
. (1.12)

This feature is in some sense reflected by the so-called optimal jump transitions connecting u(t−)
and u(t+): they are curves ϑ ∈ AC([0, 1];V ) which attain the infimum in formula (1.9) and keep
track of the asymptotic profile of the converging solutions uε around a jump point. By means of
a careful rescaling technique, we will show that optimal transitions fulfill the doubly nonlinear
equation

∂Ψ(ϑ̇(r)) + ∂Φ(ε(r)ϑ̇(r)) + ∂Et(ϑ(r)) 3 0 for a.a. r ∈ (0, 1) (1.13)

for some map r 7→ ε(r) ∈ [0,+∞).

Lack of differentiability and non-coercive rate-independent dissipations. Up to now, for
the sake of simplicity, we have overlooked one crucial issue in the analysis of the rate-independent
equation (1.4), namely the lack of differentiability of the limiting solution u when Ψ is not coercive
with respect to the norm ‖ · ‖ on V (as in the example (1.6)). Even the introduction of a weaker
norm cannot avoid this technical issue, since in many interesting examples norms of L1-type do
not comply with the Radon-Nikodým property.

This fact leads to significant technical difficulties, in that Ψ-absolutely continuous curves need
not be pointwise differentiable with respect to time. Hence, for example formulae (1.9)–(1.10)
need to be carefully modified by introducing the convenient notion of the metric Ψ-derivative,
and differential inclusions like (1.13) have to be suitably interpreted.

On the other hand, we will show that under slightly stronger assumptions on the energy
functional E, limiting solutions still belong to BV([0, T ];V ) even in the case of a degenerate rate-
independent dissipation Ψ. For this class of V -parameterizable solutions we can recover a more
precise differential characterization, and several expressions take a simpler form.
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Main results and plan of the paper. In this paper we provide existence and approximation
results for Balanced Viscosity solutions to the RIS (V,E,Ψ,Φ) under quite general conditions
on the dissipation potentials Ψ, Φ and on the energy functional E, enlisted in Section 2.1. Let
us mention in advance that, our standing assumptions on E guarantee the lower semicontinuity,
coercivity, uniform subdifferentiability of the functional u 7→ Et(u), and (sufficient) smoothness of
the time-dependent function t 7→ Et(u). In §2.2 we provide some preliminary results on absolutely
continuous and BV curves, while the main existence and structural properties of viscous gradient
systems are recalled in § 2.3–§ 2.4.

In Section 3 we present our main results concerning Balanced Viscosity solutions. The Finsler
cost (1.9) and its related total variation are discussed in § 3.1. In Theorem 3.9 we state the
relative compactness of viscous solutions (uε)ε to (1.1) with respect to pointwise convergence,
and we show that any limit point as ε ↓ 0 is a BV solution. A similar result (Theorem 3.10)
addresses the passage to the limit in the time-incremental minimization scheme [De 93] for the
viscous problem: given a time step τ > 0, the uniform partition tn := nτ , n = 0, · · · , Nτ , of the
time interval [0, T ] so that τ(Nτ −1) < T ≤ τNτ , and an initial datum U0

τ,ε, the scheme produces
discrete sequences (Un

τ,ε), n ∈ N, by solving the minimization problem

Un
τ,ε ∈ Argmin

U∈V

{
τΨε

(U−Un−1
τ,ε

τ

)
+ Etn(U)

}
for n = 1, · · · , Nτ . (IPε,τ )

As τ, ε ↓ 0 with τ/ε ↓ 0 we will prove that the piecewise affine interpolants (see (7.25)) (Uτ,ε)τ,ε
of the discrete values Un

τ,ε converge (up to subsequences) to a BV solution of the RIS (V,E,Ψ,Φ).
Under slightly stronger assumptions on the energy functional E, Theorems 3.21 and Corollary
3.23 show that the limits obtained by this variational scheme belong to BV([0, T ];V ) and are
V -parameterizable, a distinguished class of solutions studied in § 3.4. Other important properties
of BV solutions are discussed in § 3.2 and 3.3: the latter is focused in particular on the notion
of optimal jump transition, a useful tool to describe the asymptotic profile of the solution uε
around a jump limit point.

We discuss parameterized solutions in Section 4: Theorem 4.3 provides the main existence
and convergence result, the tight connections with BV solutions are clarified in Theorem 4.7,
and the case of V -parameterized solutions is investigated in Section 4.2.

Section 5 is devoted to a series of examples, where we discuss the validity of the abstract
conditions on the energy enucleated in § 2.1, and in particular of the chain-rule inequality. Fur-
thermore, Example 5.2 shows that there exist BV solutions which are not V -parameterizable.
Most of the proofs and of the technical tools are collected in the last three sections. Section 6
is devoted to the main theme of the chain-rule inequalities in the parameterized (§ 6.1) and BV
setting (§ 6.2).

Section 7 contains the main stability, compactness, and lower semicontinuity results that lie at
the core of our proofs. In § 7.1 and § 7.2 we alternate the parameterized and the non-parameterized
point of view to describe the limit of various integral functionals. The crucial lower semicontinuity
result in the BV setting is Proposition 7.3, where we adapt ideas introduced in [MRS12b]. The
proofs of the main Theorems are eventually collected in §7.3. The crucial BV estimate for the
discrete Minimizing Movements leading to V -parameterizable solutions are collected in § 7.4.

2. Notation, assumptions and preliminary results

2.1. The energy-dissipation framework. Throughout the present paper we will suppose that

(V, ‖·‖) is a separable Banach space satisfying the Radon-Nikodým property. (2.1)

This means that absolutely continuous curves with values in V are L 1-a.e. differentiable, see
Section 2.2. This condition is certainly satisfied if V is reflexive or if it is the dual of a separable
Banach space, see [DiU77]. With ‖·‖∗ we will denote the dual norm in V ∗, while 〈·, ·〉 stands for
the duality pairing between V ∗ and V .
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Rate-independent and viscous dissipation. On V are defined two

continuous convex dissipation potentials Ψ,Φ : V → [0,+∞), strictly positive in V \ {0}.
(D.0)

The “rate-independent” potential Ψ is positively 1-homogeneous (a “gauge” functional, [Roc70])

Ψ(λv) = λΨ(v) for all λ ≥ 0 and v ∈ V. (D.1)

Notice that if Ψ(−v) = Ψ(v) for every v ∈ V , then Ψ is a norm in V ; we will say that Ψ is
coercive if Ψ(v) ≥ c‖v‖ for every v ∈ V and some constant c > 0. However, in general we will
not assume any coercivity on Ψ, so that the sublevel sets {v ∈ V : Ψ(v) ≤ r} are not bounded.

Coercivity will be recovered by the addition of a “viscous” dissipation potential Φ of the form

Φ(v) = F (‖v‖) for F ∈ C1([0,+∞)) convex, with

F (r) > 0 for r > 0, F (0) = F ′(0) = 0, lim
r↑+∞

F ′(r) = +∞. (D.2)

We then consider a vanishing-viscosity family Ψε : V → [0,+∞), ε > 0, of dissipation potentials
approximating Ψ:

Ψε(v) := Ψ(v) + ε−1Φ(εv) =: ε−1Ψ1(εv), Ψ0(v) := Ψ(v) = lim
ε↓0

Ψε(v) = inf
ε>0

Ψε(v). (2.2)

Observe that the whole theory is restricted to the case Ψε(v) < +∞. Indeed, allowing for Ψε(v) =
+∞ as in unidirectional processes such as damage, hardening, or fracture (cf., e.g., [DFT05,
MiR06, MaM09, KRZ13, BFM12]) would give rise to additional complications, which we prefer
not to address in this paper. Still, a typical situation that is relevant in elastoplasticity is given
by the choices V = Lp(Ω;Rm) for p ∈ (1,∞), ‖v‖ = (

∫
Ω
|v(x)|p dx)1/p, Ψ(v) =

∫
Ω
σY |v(x)|dx,

and F (r) = νrp. In particular, Ψε has the simple form Ψε(v) =
∫

Ω
σY |v(x)|+ εp−1ν|v(x)|p dx.

Subdifferential of the rate-independent dissipation and the dual convex stability set.
Ψ is the support function of the w∗-closed and bounded convex subset of V ∗

K∗ :=
{
ξ ∈ V ∗ : 〈ξ, w〉 ≤ Ψ(w) for every w ∈ V

}
⊂ V ∗, Ψ(v) = sup

ξ∈K∗
〈ξ, v〉, (2.3)

which will play a prominent role in the following. K∗ is related to Ψ by two different important
relations: first of all, it is the proper domain of the conjugate function of Ψ∗:

Ψ∗(ξ) := sup
v∈V

(〈ξ, v〉 −Ψ(v)) = IK∗(ξ) =

{
0 if ξ ∈ K∗,
+∞ otherwise.

(2.4)

Second, K∗ can be characterized in terms of the subdifferential ∂Ψ : V ⇒ V ∗ of Ψ, defined as

ξ ∈ ∂Ψ(v) ⇔ 〈ξ, w − v〉 ≤ Ψ(w)−Ψ(v) ∀w ∈ V, (2.5)

so that

K∗ = ∂Ψ(0); ξ ∈ ∂Ψ(v) ⇔ ξ ∈ K∗ and 〈ξ, v〉 = Ψ(v). (2.6)

The energy functional and its subdifferential. We shall consider a time-dependent

lower semicontinuous energy functional E : [0, T ]×D → R, D ⊂ V . (E.0)

To simplify some formulae, we will set Et(u) = +∞ if u 6∈ D and we will assume the following
properties:

Coercivity: the map

u 7→ G(u) := Ψ(u) + sup
t∈[0,T ]

Et(u) has compact sublevels in V ,

i.e. for every E > 0 the set DE := {u ∈ D : G(u) ≤ E} is compact.
(E.1)
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Power-control: for all u ∈ D the function t 7→ Et(u) is differentiable on [0, T ] with deriv-
ative Pt(u) := ∂tEt(u) satisfying for a constant CP ≥ 0

|Pt(u)| ≤ CP
(
Ψ(u) + Et(u)

)
, lim sup

w→u,w∈DE
Pt(w) ≤ Pt(u) (E.2)

for every (t, u) ∈ (0, T )×D, E > 0.

Ψ-uniform subdifferentiability: for every E > 0 there exists an upper semicontinuous
map ωE : [0, T ]×DE ×DE → R, with ωE· (u, u) ≡ 0 for every u ∈ DE , such that

Et(v) ≥ Et(u) + 〈ξ, v − u〉 − ωEt (u, v)Ψ∧(v − u) ∀ t ∈ [0, T ], u, v ∈ DE , ξ ∈ ∂Et(u), (E.3)

where

Ψ∧(w) := min
(

Ψ(w),Ψ(−w)
)
. (2.7)

Recall that the Fréchet subdifferential of Et is the possibly multivalued map ∂Et : V ⇒ V ∗ defined
at u ∈ D by

ξ ∈ ∂Et(u) ⇐⇒ ξ ∈ V ∗, Et(v)− Et(u)− 〈ξ, v − u〉 ≥ o(‖v − u‖) as v → u in V , (2.8)

Thus (E.3) prescribes a uniform and specific form for the remainder infinitesimal term on the
right-hand side of (2.8). For later use, we observe that (E.2) and the Gronwall Lemma yield

0 ≤ Ψ(u) + Es(u) ≤ G(u) ≤ exp(CPT )
(
Ψ(u) + Et(u)

)
for all s, t ∈ [0, T ], u ∈ D. (2.9)

Since E is lower semicontinuous, (2.9) joint with (E.1) yields that the maps

u 7→ Ψ(u) + Et(u) have compact sublevels in V for every t ∈ [0, T ]. (2.10)

Remark 2.1. Most of the results of the present paper could be extended to the cases when Ψ
depends on the state of the system (as in [MRS13]), or it is replaced by a distance on D (as in
[RMS08, MRS09]) and when the viscous correction Φ is a general convex superlinear functional
(as in [MRS12a]). We have chosen the current simpler structure to focus on the main features
and techniques of the vanishing-viscosity method in the infinite-dimensional setting.

2.2. Absolutely continuous and BV functions. As in Section 2.1 let Ψ : V → [0,∞) be a
gauge function with Ψ(v) > 0 if v 6= 0 and let Z a subset of V . The function

Z 3 u, v 7→ ∆Ψ(u, v) := Ψ(v − u) is an asymmetric continuous distance on Z. (2.11)

We say that a curve u : [0, T ] → Z is Ψ-absolutely continuous if there exists a nonnegative
function m ∈ L1(0, T ) such that

∆Ψ(u(t0), u(t1)) ≤
∫ t1

t0

m(s) ds for every 0 ≤ t0 < t1 ≤ T. (2.12)

We denote by AC([0, T ];Z,Ψ) the set of all Ψ-absolutely continuous curves with values in Z.
There is a minimal function m such that (2.12) holds [AGS08, RMS08], and with a slight abuse
of notation we denote it by Ψ[u′], since it admits the expression

Ψ[u′](t) = lim
h→0

Ψ
(u(t+ h)− u(t)

h

)
for L 1-a.a. t ∈ (0, T ), (2.13)

so that Ψ[u′](t) = Ψ(u̇(t)) whenever u is differentiable at t. Since V has the Radon-Nikodým
property, this happens at L 1-a.a. t ∈ (0, T ) (L 1 denoting the Lebesgue measure on (0, T )), when
Ψ is coercive: if this is the case and Z = V , we will simply write u ∈ AC(0, T ;V ).

VarΨ(u; [a, b]) is the pointwise total variation induced by Ψ on the interval [a, b] ⊂ [0, T ], viz.

VarΨ(u; [a, b]) := sup
{ M∑
m=1

Ψ
(
u(tm)− u(tm−1)

)
: a = t0 < t1 < · · · < tM−1 < tM = b

}
. (2.14)

If Z ⊂ V , BV([0, T ];Z,Ψ) will denote the set of all curves u : [0, T ] → Z with finite Ψ-total
variation in [0, T ]. When Ψ := ‖ · ‖ we will simply write BV([0, T ];V ) and we will omit the index
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Ψ in the symbol of the total variation. Notice that BV([0, T ];V ) ⊂ BV([0, T ];V,Ψ) for every
choice of Ψ, whereas the opposite inclusion only holds when Ψ is coercive on V .

To every u ∈ BV([0, T ];Z,Ψ) we can associate the nondecreasing scalar function V : R→ [0,∞)

V(t) :=


0 if t ≤ 0,

VarΨ(u; [0, t]) if t ∈ (0, T ),

VarΨ(u; [0, T ]) if t ≥ T
with distributional derivative µ =

d

dt
V. (2.15)

The finite Borel measure µ is supported in [0, T ] and it can be decomposed into the sum µ = µd+µJ

of a diffuse part µd (such that µd({t}) = 0 for every t ∈ R), and a jump part µJ concentrated in
a countable set Ju ⊂ [0, T ].

When Z is compact (or when Ψ is coercive), for every δ > 0 there exists a constant Mδ > 0
such that (recall (2.7) for the definition of Ψ∧)

‖u− v‖ ≤ δ +Mδ Ψ∧(v − u) for every u, v ∈ Z. (2.16)

By introducing the continuous and concave modulus of continuity

ΩZ : [0,+∞)→ [0,+∞), ΩZ(r) := inf
δ>0

δ +Mδ r so that lim
r↓0

ΩZ(r) = 0, (2.17)

(2.16) rewrites as

‖u− v‖ ≤ ΩZ(Ψ∧(u− v)) for every u, v ∈ Z. (2.18)

If (2.16) holds, it is easy to show that a function u ∈ BV([0, T ];Z,Ψ) is continuous in [0, T ] \ Ju
and its left and right limits exist at every t ∈ [0, T ] :

u(t−) := lim
s↑t

u(s), u(t+) := lim
s↓t

u(s) with the convention u(0−) := u(0), u(T+) := u(T ), (2.19)

so that Ju admits the representation

Ju :=
{
t ∈ [0, T ] : u(t−) 6= u(t) or u(t) 6= u(t+)

}
(2.20)

and

µJ({t}) = Ψ(u(t)− u(t−)) + Ψ(u(t+)− u(t)) for every t ∈ Ju. (2.21)

Furthermore, µd admits the Lebesgue decomposition µd = µL +µC with µL � L 1 and µC ⊥ L 1.
The density of µL with respect to L 1 is provided by the same formula (2.13) and one has

u ∈ AC([0, T ];Z,Ψ) if and only if µJ = µC ≡ 0, with VarΨ(u; [a, b]) =

∫ b

a

Ψ[u′](t) dt. (2.22)

In this case, when Z is compact or Ψ coercive, u is a continuous curve. In general we have

VarΨ(u; [a, b]) = µd([a, b]) + JmpΨ(u; [a, b]), (2.23)

where the jump contribution JmpΨ(u; [a, b]) can be described by

JmpΨ(u; [a, b]) := ∆Ψ(u(a), u(a+)) + ∆Ψ(u(b−), u(b))

+
∑

t∈Ju∩(a,b)

(
∆Ψ(u(t−), u(t)) + ∆Ψ(u(t), u(t+))

)
,

= ∆Ψ(u(a), u(a+)) + ∆Ψ(u(b−), u(b)) + µJ((a, b)).

(2.24)

Remark 2.2 (Scalar vs. vector measures). If u ∈ BV(0, T ;V ) all the previous definitions have an
important vector counterpart in terms of the vector measure u′D associated with the distributional
derivative of u: u′D is a Radon vector measure on (0, T ) with values in V , with finite total variation
‖u′D‖. The measure u′D can be decomposed into the sum of the three mutually singular measures

u′D = u′L + u′C + u′J, u′d := u′L + u′C, (2.25)

where u′L is its absolutely continuous part with respect to L 1. u′J is a discrete measure concen-
trated on Ju, and u′C is the so-called Cantor part, still satisfying u′C({t}) = 0 for every t ∈ [0, T ].
Therefore u′d = u′L + u′C is the diffuse part of the measure, which does not charge Ju.
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Since V has the Radon-Nikodým property, u is differentiable L 1-a.e. in (0, T ) (we denote by u̇
its derivative), and we can express u′d in terms of its density n with respect to its total variation
‖u′d‖ as

u′d = n‖u′d‖ where ‖n‖ = 1 ‖u′d‖-a.e., u′L = u̇L 1, n =
u̇

‖u̇‖
‖u′L ‖-a.e.. (2.26)

The relation to the previously introduced measures µd, µC, and µL is

µd = Ψ(n)‖u′d‖, µC = Ψ(n)‖u′C‖, µL = Ψ(n)‖u′L ‖ = Ψ(u̇)L 1. (2.27)

2.3. Two useful properties from the theory of gradient systems. The assumptions on
the dissipation potentials Ψ and Φ and on the energy E stated in the previous section yield two
important consequences, stated in Theorem 2.3 below, that play a crucial role in the variational
approach to gradient systems and rate-independent evolutions.

Before stating them, let us recall that for every map Λ : V → (−∞,+∞] bounded from below
by a continuous and affine function, Λ∗ : V ∗ → (−∞,+∞] will denote the conjugate

Λ∗(ξ) := sup
v∈V
〈ξ, v〉 −Λ(v). (2.28)

For the functional Φ in (D.2) we have

Φ∗(ξ) = F ∗
(
‖ξ‖∗

)
, where F ∗(s) = sup

r≥0
rs− F (r), (2.29)

so that, by the inf-convolution duality formula (see e.g. [IoT79, Thm. 1, p. 178]) and the mono-
tonicity of F ∗ we find

Ψ∗ε (ξ) =
1

ε
min
z∈K∗

Φ∗(ξ − z) =
1

ε
min
z∈K∗

F ∗
(
‖ξ − z‖∗

)
=

1

ε
F ∗
(

min
z∈K∗

‖ξ − z‖∗
)
. (2.30)

Theorem 2.3 ([MRS13, Prop. 2.4]). Under the assumptions of Section 2.1 the following proper-
ties hold.

Chain rule: For every u ∈ AC([0, T ];V ) and ξ ∈ L1(0, T ;V ∗) with

sup
t∈[0,T ]

|Et(u(t))| < +∞, ξ(t) ∈ −∂Et(u(t)) for a.a. t ∈ (0, T ), and∫ T

0

Ψε(u̇(t)) dt < +∞,
∫ T

0

Ψ∗ε(ξ(t)) dt < +∞,
(2.31)

the map t 7→ Et(u(t)) is absolutely continuous and

d

dt
Et(u(t)) = −〈ξ(t), u′(t)〉+ Pt(u(t)) for a.a. t ∈ (0, T ) . (2.32)

Strong-Weak closedness of the graph of (E, ∂E): For all sequences (tn) ⊂ [0, T ], (un) ⊂
V and (ξn) ⊂ V ∗ we have the following condition:

if tn → t in [0, T ], un → u in V, ξn ⇀ ξ in V ∗, ξn ∈ ∂Etn(un),

and if Etn(un)→ E in R, then ξ ∈ ∂Et(u) and E = Et(u).
(2.33)

Furthermore, (2.33) implies that ∂Et(u) is a weakly∗-closed, convex subset (possibly empty) of V ∗.

2.4. Variational gradient systems. We recall an application of the general existence and ap-
proximation result of [MRS13] for the Cauchy problem associated with (1.1).

Theorem 2.4 ([MRS13]). Let us assume that (D.0)–(D.2) and (E.0)–(E.3) hold. Then, for every
u0,ε ∈ D there exists a curve uε ∈ AC([0, T ];V ) solving (1.1) and fulfilling the Cauchy condition
u(0) = u0,ε. More precisely, there exists a function ξε ∈ L1(0, T ;V ∗) fulfilling

ξε(t) ∈ −∂Et(uε(t)), ξε(t) ∈ ∂Ψε(u̇ε(t)) for a.a. t ∈ (0, T ), (2.34)
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and the energy identity for all 0 ≤ s ≤ t ≤ T∫ t

s

(
Ψε(u̇ε(r))+Ψ∗ε(ξε(r))

)
dr + Et(uε(t)) = Es(uε(s)) +

∫ t

s

Pr(uε(r)) dr. (2.35)

Minimizing Movement solutions. Theorem 2.4 was proved in [MRS13, Thm. 4.4] by passing
to the limit in the time-discretization scheme (IPε,τ ), see the last paragraph of the introduction.
Here we quote the main convergence result:

Theorem 2.5 (Minimizing Movement solutions to (1.1)). Under our standard assumptions

(D.0)–(D.2) and (E.0)–(E.3), Problem (IPε,τ ) has at least a solution (Un
τ,ε)

Nτ
n=0. For every ε > 0

there exist a sequence τk ↓ 0 as k → ∞ and a limit solution uε ∈ AC([0, T ];V ) to (2.34) and
(2.35) such that the piecewise affine interpolants Uτ satisfy

Uτk,ε → uε in V , uniformly in [0, T ]. (2.36)

Since solutions obtained as such limits have special properties, we will call them Minimizing
Movement solutions according to [De 93] (see also [AGS08]).

3. Balanced Viscosity (BV) solutions

Throughout this section we will keep to the notation and assumptions of Section 2.1, in par-
ticular we will suppose that Ψ,Φ fulfill (D.0)–(D.2) and that E complies with (E.0)–(E.3).

After a discussion of the main concepts of contact potential and Finsler dissipation cost in §3.1,
we will introduce the notion of Balanced Viscosity (BV) solutions in §3.2 and we will present the
main results related to this crucial concept. The distinguished subclass of V -parameterizable
solutions will be considered in the last part § 3.4.

3.1. Finsler dissipation functionals. As in [MRS12a], the vanishing-viscosity contact potential
p : V × V ∗ → [0,+∞) induced by the dissipation potentials Ψε is

p(v, ξ) := inf
ε>0

(
Ψε(v) + Ψ∗ε (ξ)

)
, v ∈ V, ξ ∈ V ∗. (3.1)

The representation formula (2.30) for Ψ∗ε and the fact that

inf
ε>0

ε−1
(
F (εr) + F ∗(s)

)
= rs for every r, s ≥ 0,

yield the useful splitting of p:

p(v, ξ) = Ψ(v) + ‖v‖ min
z∈K∗

‖ξ − z‖∗. (3.2)

Remark 3.1 (More general viscous dissipations and contact potentials). The particular form
(D.2) of Φ allows for the simple representation (3.2) of p, which is useful to understand the role
played by the two different viscosities. The general case concerning arbitrary convex superlinear
functions Φ has been analyzed in [MRS12a] and almost all the crucial properties can also be
adapted to the present infinite-dimensional setting. Here we just mention that every contact
potential is convex and degree-1 homogeneous with respect to its first variable and it fulfills the
Fenchel inequality

p(v, ξ) ≥ 〈ξ, v〉, and

{
p(v, ξ) ≥ Ψ(v) for all (v, ξ) ∈ V × V ∗,
p(v, ξ) = Ψ(v) if and only if ξ ∈ K∗.

(3.3)

Next, we associate with p and with the Fréchet subdifferential ∂E the time-dependent family of
Finsler dissipation functionals

f : [0, T ]×D × V → [0,+∞], ft(u; v) := inf
{
p(v, ξ) : ξ ∈ −∂Et(u)

}
, (3.4)

where we adopt the standard convention inf ∅ = +∞. Notice that when ∂Et(u) 6= ∅ the inf in
formula (3.4) is attained; moreover, the functional v 7→ ft(u; v) is lower semicontinuous, convex,
and positively 1-homogeneous.
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In accord with (3.2) it will also be useful to split ft(u; v) into the sum of the dissipation Ψ(v)
(independent of u) and of the correction term induced by the viscous norm ‖ · ‖ and ∂E, viz.

ft(u; v) = Ψ(v) + et(u)‖v‖, et(u) := inf
{
‖ξ − z‖∗ : ξ ∈ −∂Et(u), z ∈ K∗

}
. (3.5)

By (2.33), for every E > 0 the function e : [0, T ]×D → [0,∞] satisfies the crucial properties

e is l.s.c. in [0, T ]×DE and et(u) = 0 ⇐⇒ K∗ + ∂Et(u) 3 0, (3.6)

where DE denotes the E-sublevel of the energy, cf. (E.1).
If Ψ were coercive on V , then the Finsler cost associated to ft could be simply defined as

∆ft(u0, u1) := inf
{∫ r1

r0

ft(ϑ(r); ϑ̇(r)) dr : ϑ ∈ AC([r0, r1];V ), ϑ(ri) = ui, i = 0, 1
}
, (3.7)

and it would be possible to show that the infimum in (3.7) is attained whenever the cost is finite.
Notice that, since ft(u; ·) is positively 1-homogeneous, the choice of the interval [r0, r1] in (3.7) is
irrelevant and one can also assume that the competing curves ϑ belong to Lip([r0, r1];V ).

On the other hand, since Ψ is not coercive in general, the definition (3.7) has to be conveniently
adapted to cover the case of curves ϑ that may lack differentiability at every time. The next
definition focuses on this aspect (see §2.2 for BV and AC curves with respect to Ψ).

Definition 3.2 (Admissible curves). A curve ϑ : [r0, r1]→ V is called admissible if it belongs to
AC([r0, r1];DE ,Ψ) for some E > 0, and if its restriction to the (relatively) open set

Gt = Gt[ϑ] :=
{
r ∈ [r0, r1] : et(ϑ(r)) > 0

}
, (3.8)

belongs to ACloc(Gt[ϑ];V ). We call Tt(u0, u1) the class of all admissible transition curves ϑ :
[0, 1]→ V such that ϑ(i) = ui, i = 0, 1, and we set

ft[ϑ;ϑ′](r) :=

{
ft(ϑ(r); ϑ̇(r)) = Ψ(ϑ̇(r)) + et(ϑ(r))‖ϑ̇(r)‖ if r ∈ Gt[ϑ],

Ψ[ϑ′](r) if r ∈ [0, 1] \Gt[ϑ].
(3.9)

Remark 3.3. Let us add a few comments on the previous definition. First of all, as we discussed
in Section 2.2, we notice that the continuity of ϑ follows from the compactness of DE in V and
the fact that Ψ is continuous and nondegenerate, so that Ψ(v) = 0 ⇒ v = 0.

Once ϑ is continuous, the l.s.c. property of e stated in (3.6) implies that the set Gt[ϑ] defined
in (3.8) is open. Since V has the Radon-Nikodým property, ϑ is differentiable L 1-a.e. in Gt[ϑ].
It is immediate to see that for every admissibile curve ϑ∫ 1

0

ft[ϑ;ϑ′](r) dr =

∫ 1

0

Ψ[ϑ′](r) dr +

∫
Gt[ϑ]

et(ϑ(r))‖ϑ̇(r)‖ dr. (3.10)

We are now in the position to extend the definition (3.7) of ∆f.

Definition 3.4 (Finsler dissipation cost). Let t ∈ [0, T ] be fixed and let us consider u0, u1 ∈ D.
The (possibly asymmetric) Finsler cost induced by f at the time t is given by

∆ft(u0, u1) := inf
ϑ∈Tt(u0,u1)

∫ 1

0

ft[ϑ, ϑ
′](r) dr (3.11)

= inf
ϑ∈Tt(u0,u1)

∫ 1

0

Ψ[ϑ′](r) dr +

∫
Gt[ϑ]

et(ϑ(r))‖ϑ̇(r)‖ dr, (3.12)

with the usual convention of setting ∆ft(u0, u1) = +∞ if Tt(u0, u1) is empty.

Let us notice that in general ∆ft(·, ·) is not symmetric, unless Ψ is symmetric, and that

∆ft(u0, u1) ≥ ∆Ψ(u0, u1) for every u0, u1 ∈ D, t ∈ [0, T ]. (3.13)

This follows from the fact that in (3.12) we have∫ 1

0

Ψ[ϑ′](r) dr = VarΨ(ϑ; [0, 1]) ≥ Ψ(u1 − u0) = ∆Ψ(u0, u1).
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In the next important result we collect a few crucial properties of the Finsler dissipation cost,
namely the existence of optimal transition paths and the lower semicontinuity properties needed
in what follows. Theorem 3.5 will be proved in Section 7.2.

Theorem 3.5. Let (D.0)–(D.2) and (E.0)–(E.3) hold. Let t ∈ [0, T ], E > 0 and u−, u+ ∈ DE.

(F1) If ∆ft(u−, u+) < ∞ there exists a transition path ϑ ∈ Tt(u−, u+) attaining the infimum in
(3.12). Moreover

∆ft(u−, u+) ≥
∣∣∣Et(u−)− Et(u+)

∣∣∣. (3.14)

(F2) If u0,n, u1,n ∈ DE, n ∈ N, then

lim
n→∞

u0,n = u−, lim
n→∞

u1,n = u+ =⇒ lim inf
n→∞

∆ft(u0,n, u1,n) ≥ ∆ft(u−, u+). (3.15)

(F3) If un ∈ AC([αn, βn];V ), ũn : [αn, βn] → DE measurable, ξn ∈ L1(αn, βn;V ∗), εn > 0,
n ∈ N, are sequences satisfying

lim
n→∞

sup
r∈[αn,βn]

‖ũn(r)− un(r)‖ = 0, ξn(r) ∈ −∂Er(ũn(r)) for a.a. r ∈ (αn, βn), (3.16)

lim
n→∞

un(αn) = u−, lim
n→∞

un(βn) = u+, lim
n→∞

αn = lim
n→∞

βn = t, (3.17)

and

lim
n→∞

εn = 0, ∆ := lim
n→∞

∫ βn

αn

(
Ψεn(u̇n) + Ψ∗εn(ξn)

)
dr <∞, (3.18)

then there exist an increasing subsequence (nk)k ⊂ N, increasing and surjective time rescal-
ings tnk ∈ AC([0, 1]; [αnk , βnk ]), and an admissible transition ϑ ∈ Tt(u−, u+) such that

lim
k→∞

uεnk ◦ tnk = ϑ strongly in V , uniformly on [0, 1],

∫ 1

0

ft[ϑ, ϑ
′](r) dr ≤ ∆. (3.19)

In particular, whenever (3.16) and (3.17) hold, along any sequence εn ↓ 0 we have

lim inf
n→∞

∫ βn

αn

(
Ψεn(u̇n) + Ψ∗εn(ξn)

)
dr ≥ ∆ft(u−, u+). (3.20)

Solutions to (1.1), with ũn = un, provide a particularly important example of sequences in
assertion (F3) of Thm. 3.5. Notice that by (3.14) the Finsler cost controls the amount of energy
dissipation between two arbitrary points at a fixed time t. On the other hand, (3.20) shows that
∆f captures the concentration of the asymptotic energy dissipation of a family of solutions to the
viscous gradient flow (2.34).

We now use the Finsler cost ∆f to characterize the minimal dissipated energy along any curve
u ∈ BVΨ([0, T ];V ), by means of a suitable notion of total variation, which involves ∆f to measure
the contributions due to the jumps of u (recall (2.23) and (2.24)).

Definition 3.6 (Jump and total variation induced by f). Let E > 0 and u ∈ BV([0, T ];DE ,Ψ)
be a given curve with jump set Ju. For every subinterval [a, b] ⊂ [0, T ] the jump variation of u
induced by f on [a, b] is

Jmpf(u; [a, b]) := ∆fa(u(a), u(a+)) + ∆fb(u(b−), u(b))

+
∑

t∈Ju∩(a,b)

(
∆ft(u(t−), u(t)) + ∆ft(u(t), u(t+))

)
. (3.21)

The f-total variation induced of u on [a, b] for a < b is

Varf(u; [a, b]) := VarΨ(u; [a, b])− JmpΨ(u; [a, b]) + Jmpf(u; [a, b]) (3.22)

= µd(a, b) + Jmpf(u; [a, b]). (3.23)
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Remark 3.7. As already pointed out in [MRS12a, Rmk. 3.5], Varf is not a standard total vari-
ation functional: for instance, it is not induced by any distance on V , and it is not lower semi-
continuous with respect to pointwise convergence in V , unless a further local stability constraint
is imposed.

Nevertheless, Varf enjoys the nice additivity property

Varf(u; [a, b]) + Varf(u; [b, c]) = Varf(u; [a, c]) whenever 0 ≤ a < b < c ≤ T. (3.24)

3.2. Balanced Viscosity (BV) solutions. Based on Definition 3.6, we can now specify the con-
cept of Balanced Viscosity (BV) solution to the rate-independent system generated by (V,E,Ψ,Φ):
the global stability condition in the definition of energetic solutions is replaced by the local sta-
bility condition (Sloc), and the energy balance features the total variation functional Varf. As
usual, we will always assume that Ψ,Φ fulfill (D.0)–(D.2) and that E complies with (E.0)–(E.3).

Definition 3.8 (BV solutions). A curve u ∈ BV([0, T ];D,Ψ) is a BV solution of the rate-
independent system (V,E,Ψ,Φ) if the local stability (Sloc) and the (Ef)-energy balance hold:

K∗ + ∂Et(u(t)) 3 0 for all t ∈ [0, T ] \ Ju, (Sloc)

Varf(u; [0, t]) + Et(u(t)) = E0(u(0)) +

∫ t

0

Ps(u(s)) ds for all t ∈ (0, T ]. (Ef)

Every BV solution u to the RIS (V,E,Ψ,Φ) satisfies the energy balance in each subinterval

Varf(u; [s, t]) + Et(u(t)) = Es(u(s)) +

∫ t

s

Pr(u(r)) dr for every 0 ≤ s < t ≤ T, (3.25)

thanks to (Ef) and the additivity (3.24) of the total variation functional Varf.
Before studying other properties and characterizations of balanced viscosity solutions, let us

first present our main existence and convergence results.

Main existence and convergence results. Our first result states the convergence in the
vanishing-viscosity limit ε ↓ 0 of solutions to (1.1) to a BV solution of the rate-independent
system (V,E,Ψ,Φ). As a byproduct, we can prove in this way the existence of BV solutions.
Let us emphasize that Definition 3.8 of BV solutions is only inspired by the vanishing-viscosity
approach but otherwise completely independent of it. We postpone the proofs to Section 7.3.

The reader should be aware that, here and in what follows, we will call a sequence (εk)k
converging to 0 simply a vanishing sequence.

Theorem 3.9 (Existence of BV solutions and convergence of viscous approximations). If (D.0)–
(D.2) and (E.0)–(E.3) hold, then for every u0 ∈ D there exists a BV solution u of the RIS
(V,E,Ψ,Φ).

Moreover for every family (uε, ξε)ε ⊂ AC([0, T ];V ) × L1(0, T ;V ∗) of solutions of the doubly
nonlinear equation (2.34) with

uε(0)→ u0 in V and E0(uε(0))→ E0(u0) as ε ↓ 0 (3.26)

and for every vanishing sequence (εk)k there exist E > 0, a further (not relabeled) subsequence,
and a limit function u ∈ BV([0, T ];DE ,Ψ) such that as k →∞

uεk(t)→ u(t) in V for all t ∈ [0, T ], (3.27)

lim
k→∞

Et(uεk(t)) = Et(u(t)) for all t ∈ [0, T ], (3.28)

Varf(u; [s, t]) = lim
k→∞

Varf(uεk ; [s, t]) = lim
k→∞

∫ t

s

(
Ψεk(u̇εk(r))+Ψ∗εk(−ξεk(r))

)
dr (3.29)

for all 0 ≤ s < t ≤ T . Any pointwise limit function u obtained in this way is a BV solution to
the RIS (V,E,Ψ,Φ).
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Let us emphasize that, in view of the above result, every limit point u of solutions (uε)ε of
(2.34) such that (3.27)–(3.29) hold is a BV solution.

The next theorem concerns the convergence of the discrete solutions of the viscous time-
incremental problem (IPε,τ ), as both the viscosity parameter ε and the time-step τ tend to zero.
Similar results for the finite-dimensional case were obtained in [MRS12a, Thm. 4.10].

Theorem 3.10 (Discrete-viscous approximations converge to BV solutions). Assume that (D.0)–
(D.2) and (E.0)–(E.3) hold. Let u0 ∈ D be fixed, and let (Uτ,ε)τ,ε be a family of piecewise affine
interpolants of discrete solutions (Un

τ,ε)n,τ,ε to (IPε,τ ), with

U0
τ,ε → u0 in V and E0(U0

τ,ε)→ E0(u0) as τ, ε ↓ 0. (3.30)

Then for all sequences (τk, εk)k∈N satisfying

lim
k→∞

εk = lim
k→∞

τk
εk

= 0, (3.31)

there exists E > 0, a (not relabeled) subsequence and a curve u ∈ BV([0, T ];DE ,Ψ) such that

Uτk,εk(t)→ u(t) in V for all t ∈ [0, T ], (3.32)

Et(Uτk,εk(t))→ Et(u(t)) for all t ∈ [0, T ], (3.33)

as k →∞, and the limit u is a BV solution to the RIS (V,E,Ψ,Φ).

We now aim to shed more light onto the definition and the properties of BV solutions: first of
all, we derive a characterization of BV solutions in terms of a one-sided version of the energy iden-
tity (Ef), based on the chain-rule inequality stated in Theorem 3.11. A second characterization
is given through a “metric” subdifferential inclusion and a set of jump conditions.

Chain-rule inequalities and characterizations of BV solutions. The next result is the
infinite-dimensional analogue of [MRS09, Prop. 4] and is especially adapted to rate-independent
systems. In particular, the fact that Varf is not a true total variation functional is here compen-
sated by assuming that u fulfills the local stability condition (Sloc).

Theorem 3.11 (A chain-rule inequality for BV curves). If u ∈ BV([0, T ];DE ,Ψ), E > 0, satisfies
the local stability condition (Sloc) and Varf(u; [0, T ]) < ∞, then the map t 7→ e(t) := Et(u(t))
belongs to BV([0, T ]) and satisfies the following chain-rule inequality:∣∣∣e(t1)− e(t0)−

∫ t1

t0

Pt(u(t))dt
∣∣∣ ≤ Varf(u; [t0, t1]) for all 0 ≤ t0 ≤ t1 ≤ T. (3.34)

If moreover u ∈ BV([0, T ];V ) and ξ : [0, T ] → K∗ is a Borel map such that ξ(t) ∈ −∂Et(u(t))
for every t ∈ [0, T ] \ Ju then the diffuse part e′d of the distributional derivative e′D of e can be
represented as (recall (2.26))

e′d = −〈ξ,n〉‖u′d‖+ P·(u)L 1 = −〈ξ,n〉‖u′C‖+
(
−〈ξ, u̇〉+ P·(u)

)
L 1, (3.35)

where n is as in (2.26), and u′d, u′C are from (2.25).

Indeed, (3.34) is the counterpart to the parameterized chain-rule inequality which shall be stated
in Theorem 4.4 ahead. Both Theorems will be proved in Section 6.

As a direct consequence of Theorem 3.11 we have a characterization of BV solutions in terms
of a single, global in time, energy-dissipation inequality.

Corollary 3.12 (A global energy-dissipation inequality characterizing BV solutions). A curve
u ∈ BV([0, T ];DE ,Ψ) for some E > 0 is a BV solution to the RIS (V,E,Ψ,Φ) if and only if it
satisfies the local stability (Sloc) and the one-sided global in time version of (Ef), viz.

Varf(u; [0, T ]) + ET (u(T )) ≤ E0(u(0)) +

∫ T

0

Ps(u(s)) ds . (Ef,ineq)
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Proof. In order to deduce the energy balance (Ef) from (Ef,ineq), we define a(t) := Et(u(t)) −∫ t
0
Ps(u(s)) ds and v(t) := Varf(u; [0, t]) such that (Ef,ineq) takes the form a(T ) + v(T ) ≤ a(0) +

v(0), because v(0) = 0. The additivity (3.24) gives Varf(u; [s, t]) = v(t)− v(s), so that the chain-
rule estimate (3.34) rephrases as |a(t) − a(s)| ≤ v(t) − v(s) for all 0 ≤ s ≤ t ≤ T . This implies
the monotonicity a(t) + v(t) ≥ a(s) + v(s), and we conclude a(t) + v(t) = a(0) + v(0) for all t,
which is (Ef). �

The importance of using the viscous total variation induced by f (instead of the simpler one
associated with Ψ) is clarified by the next result, characterizing the jump conditions.

Theorem 3.13 (Local stability, (Ψ)-energy dissipation and jump conditions). A curve
u ∈ BV([0, T ];DE ,Ψ) is a BV solution of the RIS (V,E,Ψ,Φ) if and only if it satisfies the local
stability condition (Sloc), the (Ψ)-energy dissipation inequality

VarΨ(u; [s, t]) + Et(u(t)) ≤ Es(u(s)) +

∫ t

s

Pr(u(r)) dr for every 0 ≤ s < t ≤ T, (EΨ,ineq)

and the following jump conditions at each point t ∈ Ju of the jump set (2.20)

Et(u(t))− Et(u(t−)) = −∆ft(u(t−), u(t)),

Et(u(t+))− Et(u(t)) = −∆ft(u(t), u(t+)),

Et(u(t+))− Et(u(t−)) = −∆ft(u(t−), u(t+)) = −
(

∆ft(u(t−), u(t)) + ∆ft(u(t), u(t+))
)
.

(JBV)

Proof. If u is a BV solution to (V,E,Ψ,Φ), then (EΨ,ineq) is a trivial consequence of the energy
balance (3.25) since Varf(u; [s, t]) ≥ VarΨ(u; [s, t]) for every interval [s, t]. The jump conditions
(JBV) follow by writing (3.25) in the intervals [t, t+η] or [t−η, t] for small η > 0 and then passing
to the limit as η ↓ 0.

In order to prove the converse implication, let suppose that Ju = (tn)n ⊂ (0, T ) and let us call
0 = t0 < t1 < · · · < tN < tN+1 = T an ordered subdivision of [0, T ] such that {t1, t2, · · · , tN} is
a permutation of {t1, t2, · · · , tN} ⊂ Ju.

Writing (EΨ,ineq) in each interval [ti + η, ti+1 − η] for sufficiently small η > 0 and taking the
limit as η ↓ 0, also recalling VarΨ(u; [a, b]) ≥ µd(a, b) (cf. (2.23)), we get

µd(ti, ti+1) ≤ Eti(u(ti,+))− Eti+1
(u(ti+1,−)) +

∫ ti+1

ti

Ps(u(s)) ds. (3.36)

From (JBV) and (3.13) we obtain

∆fti
(u(ti), u(ti+)) + µd(ti, ti+1) + ∆fti+1

(u(ti+1,−), u(ti+1))

≤ Eti(u(ti))− Eti+1
(u(ti+1)) +

∫ ti+1

ti

Ps(u(s)) ds,

so that summing up all the contributions (recalling that u(t0,+) = u(t0) = u(0) and u(tN,−) =
u(tN ) = u(T )) we get

µd(0, T ) +

N∑
i=1

∆fti
(u(ti,−), u(ti)) + ∆fti

(u(ti), u(ti,+)) ≤ E0(u(0))− ET (u(T )) +

∫ T

0

Ps(u(s)) ds.

If Ju is finite we get (Ef,ineq) choosing N = #(Ju) and recalling (2.23) and (2.24). If Ju is infinite,
we simply pass to the limit as N ↑ +∞. We leave to the reader the obvious modifications in the
case Ju ∩ {0, T} 6= ∅. �

The jump conditions (JBV) should be compared with the general estimate (3.14), that at every
jump point t ∈ Jw of an arbitrary curve w ∈ BV([0, T ];DE ,Ψ) rephrases as∣∣∣Et(w(t+))− Et(w(t))

∣∣∣ ≤ ∆ft(w(t), w(t+)),
∣∣∣Et(w(t))− Et(w(t−))

∣∣∣ ≤ ∆ft(w(t−), w(t)). (3.37)
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We extend now the differential characterization of BV solutions in [MRS12a, Thm. 4.3] to the
present setting.

Theorem 3.14 (Differential characterization of BV solutions). Let u ∈ BV([0, T ];V ) with distri-
butional derivative decomposed as in Remark 2.2. Then u is a BV solution of the RIS (V,E,Ψ,Φ)
if and only if it satisfies the doubly nonlinear differential inclusion in the BV sense

∂Ψ
(du′d

dλ
(t)
)

+ ∂Et(u(t)) 3 0 for λ-a.a. t ∈ (0, T ) with λ = ‖u′C‖+ L 1, (DNBV)

and the jump conditions (JBV). In particular (DNBV) yields the pointwise inclusion

∂Ψ
(
u̇(t)

)
+ ∂Et(u(t)) 3 0 for L 1-a.a. t ∈ (0, T ). (DNL )

Proof. We briefly recall the argument presented in [MRS12a, Prop. 2.7, Thm. 4.3]. Let us first
notice that (DNBV) yields the local stability condition, since the support of λ is the full interval
[0, T ] and K∗ contains the range of ∂Ψ. By the distributional chain rule (3.35) we get

e′d = −Ψ(n)‖u′d‖+ P·(u)L 1 (2.27)
= −µd + P·(u)L 1.

Combining this information with the jump conditions (JBV) and recalling formula (3.23) for Varf
we get (Ef).

Conversely, if u is a solution then (EΨ,ineq) yields

e′d + Ψ(n)‖u′d‖ − P·(u)L 1 ≤ 0 in D ′(0, T ).

Recalling (3.35) we thus obtain for −ξ ∈ ∂Et(u(t)) ∩K∗(
〈−ξ,n〉+ Ψ(n)

)
‖u′d‖ ≤ 0 in D ′(0, T ),

which yields the inclusion (DNBV) ‖u′d‖-a.e. in (0, T ), and in particular L 1-a.e. in the set ‖u̇‖ > 0.
For L 1-a.a. points of the set ‖u̇‖ = 0 the local stability condition still provides (DNBV). �

3.3. Optimal jump transitions. Thanks to the jump conditions given by (JBV), we can give
a finer description of the behavior of BV solutions along jumps. The crucial notion is provided
by the following definition.

Definition 3.15 (Optimal transitions). Let t ∈ [0, T ] and u−, u+ ∈ D with

K∗ + ∂Et(u−) 3 0, K∗ + ∂Et(u+) 3 0. (3.38)

We say that an admissible curve ϑ ∈ Tt(u−, u+) is an ft-optimal transition between u− and u+ if

Et(u−)− Et(u+) = ∆ft(u−, u+) = ft[ϑ, ϑ
′](r) > 0 for a.a. r ∈ (0, 1), (3.39)

and we denote by Ot(u−, u+) the (possibly empty) collection of such optimal transitions.
We say that ϑ is of

sliding type, if et(ϑ(r)) = 0 for every r ∈ [r0, r1], (3.40)

viscous type, if et(ϑ(r)) > 0 for every r ∈ (r0, r1). (3.41)

The main interest of optimal transitions derives from the next result, whose proof follows
immediately from Theorem 3.5 by a simple rescaling argument.

Proposition 3.16. If u ∈ BV([0, T ];V,Ψ) is a BV solution to the rate-independent system
(V,E,Ψ,Φ), then for every t ∈ Ju there exists an ft-optimal transition ϑt ∈ Ot(u(t−), u(t+)) such
that u(t) = ϑt(r) for some r ∈ [0, 1].

We now provide a characterization of sliding and viscous optimal transitions in terms of doubly
nonlinear differential inclusions.

Proposition 3.17 (The structure of optimal transitions). Let t ∈ [0, T ] and u−, u+ ∈ D fulfilling
(3.38) be given and let ϑ ∈ Tt(u−, u+) be an admissible transition curve with constant normalized
velocity ft[ϑ, ϑ

′](r) ≡ c > 0 for a.a. r ∈ (0, 1). Then
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(1) ϑ is an optimal transition of sliding type if and only if it satisfies

∃ξ(r) ∈ −∂Et(ϑ(r))) ∩K∗ for every r ∈ [0, 1], (3.42)

d

dr
Et(ϑ(r)) + Ψ[ϑ′] = 0 for a.a. r ∈ (0, 1). (3.43)

In particular, when ϑ is differentiable L 1-a.e. in (0, 1), (3.42) and (3.43) are equivalent to

∂Ψ(ϑ̇(r)) + ∂Et(ϑ(r)) 3 0 for a.a. r ∈ (0, 1). (3.44)

(2) ϑ is an optimal transition of viscous type if and only if it is differentiable L 1-a.e. in (0, 1)
and there exists maps ξ ∈ L1(0, 1;V ∗), and ε : (0, 1)→ (0,+∞) such that

ξ(r) ∈
(
∂Ψ(ϑ̇(r)) + ∂Φ(ε(r)ϑ̇(r))

)
∩
(
− ∂Et(ϑ(r))

)
for a.a. r ∈ (0, 1); (3.45)

in particular,

ε(r) = Λt(ϑ(r); ϑ̇(r)) for a.a. r ∈ (0, 1),

where Λt(ϑ; v) := (F ∗)′(et(ϑ))/F (‖v‖) ϑ ∈ D, v ∈ V \ {0}. (3.46)

Equivalently, there exists an absolutely continuous, surjective time rescaling r : (s0, s1) →
(0, 1), with −∞ ≤ s0 < s1 ≤ +∞ and ṙ(s) > 0 for L 1-a.a. s ∈ (s0, s1), such that the rescaled
transition θ(s) := ϑ(r(s)) satisfies the viscous differential inclusion

∂Ψ(θ̇(s)) + ∂Φ(θ̇(s)) + ∂Et(θ(s)) 3 0 for a.a. s ∈ (s0, s1). (3.47)

(3) If ϑ is an optimal transition, then it can be decomposed in a canonical way into an (at most)
countable collection of optimal sliding and viscous transitions. Namely, there exist (uniquely
determined) disjoint open intervals (Sj)j∈σ and (Vk)k∈υ of (0, 1), with σ, υ ⊂ N, such that

(0, 1) ⊂
(
∪j∈σ Sj) ∪

(
∪k∈υ Vk

)
and

ϑ|Sj is of sliding type, ϑ|Vk is of viscous type.

Proof. (1) It is easy to check that if an admissible transition ϑ satisfies (3.42)–(3.43) then ϑ is
an optimal transition of sliding type. Indeed, by the chain rule of Theorem 2.3 r 7→ Et(ϑ(r))
is absolutely continuous, and integrating (3.43) we get (3.39). The converse implication is even
easier by combining the chain rule along ϑ, the fact that ft[ϑ, ϑ

′] = Ψ[ϑ′], and (3.39).
(2) Similarly, if ϑ, ε, ξ satisfy (3.45), the chain rule yields

d

dr
Et(ϑ(r)) = −〈ξ(r), ϑ̇(r)〉 = −Ψε(r)(ε(r)ϑ̇(r))−Ψ∗ε(r)(ϑ(r))

≤ −Ψ(ϑ̇(r))− 1

ε(r)
F (ε(r)‖ϑ̇(r)‖)− 1

ε(r)
F ∗(et(ϑ(r)))

≤ −Ψ(ϑ̇(r))− et(ϑ(r))‖ϑ̇(r)‖ = −ft(ϑ(r), ϑ̇(r)) = −c < 0.

Integrating in time we get one inequality of (3.39); the converse one is always true. Then, all
the above inequalities are in fact equalities: in particular et(ϑ(r)) > 0 in (0, 1), since F (r) > 0 if
r > 0 by (D.0). We then conclude that ϑ is an optimal transition of viscous type.

The converse implication follows from the fact that

et(ϑ)‖ϑ̇‖ =
1

ε
F (ε‖ϑ̇‖) +

1

ε
F ∗(et(ϑ)) if ε = Λt(ϑ, ϑ̇).

Observing that ϑ̇ is locally bounded in (0, 1) so that r 7→ 1/ε(r) is also locally bounded, in order
to get (3.47) we simply operate the absolutely continuous time rescaling

s(r) :=

∫ r

1/2

ε−1(r) dr, r := s−1, θ(s) := ϑ(r(s)), θ̇(s) = ε(r(s))ϑ̇(r(s)).

(3) We can simply split the parameter interval (0, 1) into the open sets V := {r : et(ϑ(r)) > 0},
S := [0, 1] \ V , and then we consider their connected components. �
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As a last result, we show that optimal transitions capture the asymptotic profile of rescaled
solutions to (1.1) around a jump point.

Proposition 3.18 (Asymptotic profiles and optimal transitions). Let εk ↓ 0 and let (uεk , ξεk) be
a sequence of solutions to the viscous doubly nonlinear equation (2.34), so that uεk converge to a
BV solution u of the RIS (V,E,Ψ,Φ) as k → ∞ according to Theorem 3.9. For every t ∈ Ju let
αk < t < βk be two sequences such that

αk ↑ t, βk ↓ t, lim
k→∞

uεk(αk) = u(t−), lim
k→∞

uεk(βk) = u(t+). (3.48)

Then

lim
k→∞

∫ βk

αk

(
Ψεk(u̇εk)+Ψ∗εk(−ξεk)

)
dr = ∆ft(u(t−), u(t+)), (3.49)

and there exist a further subsequence (not relabeled), increasing and surjective time rescalings
tk ∈ AC([0, 1]; [αk, βk]), and an optimal transition ϑ ∈ Ot(u(t−), u(t+)) such that

lim
k→∞

uεk ◦ tk = ϑ strongly in V , uniformly on [0, 1]. (3.50)

Proof. Estimate (3.20) from Theorem 3.5 provides the inequality

lim inf
k→∞

∫ βk

αk

(
Ψεk(u̇εk)+Ψ∗εk(ξεk)

)
dr ≥ ∆ft(u(t−), u(t+)).

On the other hand, applying (3.29) to each interval [αh, βh] we obviously get

lim sup
k→∞

∫ βk

αk

(
Ψεk(u̇εk)+Ψ∗εk(ξεk)

)
dr ≤ Varf(u; [αh, βh]) for every h ∈ N.

Passing to the limit as h ↑ ∞ we obtain (3.49). We then apply assertion (F3) of Theorem 3.5
to find an admissible transition ϑ ∈ Tt(u(t−), u(t+)) and rescalings tk such that (3.19) holds.
Relation (3.49) shows that ϑ is optimal. �

3.4. V -parameterizable solutions. In this section we will focus on a more restrictive notion
of solution, exhibiting better regularity properties: they belong to BV([0, T ];V ) and at all jump
points the left and the right limits can be connected by an optimal transition with finite V -length.
Moreover, we will require that the total V -length of the connecting paths is finite.

Definition 3.19 (V -parameterizable BV solutions). A balanced viscosity solution u of the RIS
(V,E,Ψ,Φ) (in the sense of Definition 3.8) is called V -parameterizable if u ∈ BV([0, T ];V ) and

i) ∀ t ∈ Ju ∃ϑt ∈ Ot(u(t−), u(t+)) ∩AC([0, 1];V ),

ii)
∑
t∈Ju

∫ 1

0

‖ϑ̇t(r)‖ dr <∞. (3.51)

The notion of V -parameterizable BV solution slightly differs from the concept of connectable
BV solution introduced in [Mie11, Def. 4.21], which only requires condition i).

As one can expect, a limit curve of solutions to (1.1) satisfying a uniform BV([0, T ];V )-bound
is a V -parameterizable solution.

Theorem 3.20. Let (uε)ε>0 be a family of solutions to (1.1) satisfying (3.26) at t = 0 and the
uniform bound

∃C > 0 ∀ ε > 0 : Var(uε; [0, T ]) ≤ C. (3.52)

Then any limit curve as in Theorem 3.9 is a V -parameterizable BV solution to the RIS (V,E,Ψ,Φ).
Similarly, let (Un

τ,ε)τ,ε be a family of discrete solutions to (IPε,τ ), satisfying (3.30) and (3.31). If

∃C > 0 ∀ τ, ε > 0 : Var(Uτ,ε; [0, T ]) =

Nτ∑
n=1

‖Un
τ,ε −Un−1

τ,ε ‖ ≤ C, (3.53)

then any accumulation point of the piecewise affine interpolants Uτ,ε as in Theorem 3.10 is a
V -parameterizable solution.
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Proof. The proofs of the two statements are very similar, thus we only prove the first one.
Since the total variation functional is lower semicontinuous with respect to pointwise conver-

gence, any limit curve u obtained as in Theorem 3.9 clearly belongs to BV([0, T ];V ).
In order to check i) of (3.51) we apply Proposition 3.18 and we find a sequence of rescalings

tk : [0, 1]→ [αtk, β
t
k] (we explicitly indidate the dependence of the time intervals [αk, βk] on t) and

an optimal transition ϑt ∈ Ot(u(t−), u(t+) with (3.48) and (3.50). This shows that

Var(ϑt; [0, 1]) ≤ lim inf
k→∞

Var(uεk ; [αtk, β
t
k]) <∞, (3.54)

so that ϑt ∈ BV(0, 1;V ). Since ϑt is also continuous, up to a further time rescaling we can obtain
an optimal transition absolutely continuous in V .

A slight refinement of the above argument also provides ii): we consider an arbitrary finite
collection of points t1, t2, . . . th ⊂ Ju and we choose a common subsequence uεk satisfying (3.48)

in each interval. For sufficiently big k so that the intervals [α
tj
k , β

tj
k ] are disjoint, (3.54) yields

h∑
j=1

Var(ϑtj ; [0, 1]) ≤ lim inf
k→∞

h∑
j=1

Var(uεk ; [α
tj
k , β

tj
k ]) ≤ lim inf

k→∞
Var(uεk ; [0, T ])

(3.52)

≤ C.

Since the number h of jump points is arbitrary, we obtain ii). �

The next results show that one can actually prove (3.52) and (3.53) for the particular choice

Φ(v) =
1

2
‖v‖2, F (r) :=

1

2
r2, (3.55)

under slightly more restrictive assumptions on the energy functional and on the initial data: be-
sides the usual (D.0)–(D.1) and (E.0)–(E.2), we will also assume that for every E > 0 there exist
constant αE ,ΛE , LE > 0 such that the energy functional satisfies the G̊arding-like subdifferen-
tiability inequality

Et(v)−Et(u) ≥ 〈ξ, v − u〉+αE‖v − u‖2−ΛEΨ∧(v−u)‖v−u‖ if u, v ∈ DE , ξ ∈ ∂Et(u). (3.56)

We will also require that the power functional is uniformly Lipschitz in DE , viz.

|Pt(u)− Pt(v)| ≤ LE‖u− v‖ if t ∈ [0, T ], u, v ∈ DE . (3.57)

Then, we have the following result.

Theorem 3.21 (A priori estimates for discrete Minimizing Movements). Assume that (3.55)–
(3.57) hold. Then any family of solutions (Un

τ,ε) of (IPε,τ ) fulfilling, for some constants E0, Q > 0,

Ψ(U0
τ,ε) + E0(U0

τ,ε) ≤ E0, τ ≤ Qε, K∗ + ∂E0(U0
τ,ε) 3 0, (3.58)

satisfies estimates (3.53). In particular, if (3.30), (3.31) and (3.58) hold, any curve u obtained as
limit of the piecewise affine interpolants Uτ,ε (cf. Theorem 3.10) is a V -parameterizable solution.

The proof will be given in Section 7.4. A similar priori estimate in the form
∫ T

0
‖u̇ε(t)‖dt ≤

C was derived in [MiZ12] for semi- and quasilinear partial differential equations with smooth
nonlinearities. There Galerkin approximation and differentiation in time is used. Like in the
present case, where we have to confine ourselves to Minimizing Movement solutions (cf. Corollary
3.22 below), in [MiZ12] the a priori estimate in BV([0, T ];V ) can only be shown for a suitable
subclass of solutions to (1.1), cf. [MiZ12, Def. 4.3]. This establishes an interesting parallel between
our Minimizing Movement approach, and the one in [MiZ12].

Corollary 3.22 (A priori estimate for Minimizing Movement solutions). Assume that (3.55)–
(3.57) hold. Then every family (uε)ε ⊂ AC([0, T ];V ) of Minimizing Movement solutions to (1.1),
fulfilling

uε(0)→ u0 in V , E0(uε(0))→ E0(u0), K∗ + ∂E0(uε(0)) 3 0, (3.59)

satisfies estimate (3.52). Any limit u is a V -parameterizable solution to the RIS (V,E,Ψ,Φ).

Proof. Choose U0
τ,ε = uε(0) and apply Theorem 2.5, passing to the limit in estimate (3.53). �
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The following result is an immediate consequence of Corollary 3.22 or Theorem 3.21.

Corollary 3.23 (Existence of V -parameterizable BV solutions). If (3.55)–(3.57) hold, then for
every u0 ∈ D with K∗ + ∂E0(u0) 3 0 there exists a V -parameterizable BV solution to the RIS
(V,E,Ψ,Φ) starting form u0.

Notice that the subdifferentiability condition (3.56) implies (E.3) as well as

〈η − ξ, v − u〉 ≥ 2αE‖v − u‖2 − 2ΛEΨ∧(v − u) ‖v − u‖ − LE |t− s| ‖v − u‖
whenever η ∈ ∂Et(v), ξ ∈ ∂Es(u), u, v ∈ DE , s, t ∈ [0, T ].

(3.60)

To check (3.60), it is sufficient to write (3.56) for u and v at time s, t respectively. Adding the
two inequalities and using (3.57) we get the bound (assuming s < t)

Et(v)− Es(v) + Es(u)− Et(u) ≤
∫ t

s

(
Pr(v)− Pr(u)

)
dr ≤ LE (t− s)‖u− v‖.

Observe that in (3.56), as in (E.3), we allow for a negative modulus of convexity in the Ψ-term,
provided that it is possible to gain an even small positive modulus of subdifferentiability in the
stronger V -norm. This is akin to the G̊arding inequality for elliptic operators.

The next result provides a useful criterium on the energy functional E to establish the subdif-
ferentiability condition (3.56). It is a sort of (generalized) λ-convexity condition, involving two
norms. Notice that both (3.61) and (3.56) are required to hold on sublevels of E, only.

Lemma 3.24. Suppose that for every E > 0 there exist constant αE ,ΛE > 0 such that the energy
functional Et : V → (−∞,+∞] satisfies

Et((1− θ)u+ θv) ≤ (1− θ)Et(u) + θEt(v)− θ(1− θ)
(
αE‖u− v‖2 − ΛEΨ∧(u− v)‖u− v‖

)
(3.61)

for every u, v ∈ DE and θ ∈ [0, 1]. Then its Fréchet subdifferential ∂Et : V ⇒ V ∗ satisfies (3.56).

Proof. For ξ lying in the Fréchet subdifferential ∂Et(u) there holds for every v, u ∈ DE and θ ↓ 0

〈ξ, θ(v − u)〉+ o(θ‖v − u‖) ≤ Et((1− θ)u+ θv)− Et(u)

≤ θ(Et(v)− Et(u))− θ(1− θ)(αE‖v − u‖2 − ΛEΨ∧(v − u)‖v − u‖).

Dividing both sides of the inequality by θ, the limit θ ↓ 0 yields the desired estimate (3.56). �

4. Parameterized solutions

4.1. Vanishing-viscosity analysis, parameterized curves and solutions. Under the work-
ing assumptions of §2.1 (in particular, (D.0)–(D.2) and (E.0)–(E.3)), in this section we will present
a different approach to the vanishing-viscosity analysis of (1.1), which goes back to [EfM06] and
was further developed in [MRS09, MRS12a]. The main idea is to rescale time in (1.1) and study
the limiting behavior as ε ↓ 0 of the rescaled viscous solutions. This naturally leads to the notion
of parameterized solution in Definition 4.2: it is a space-time parameterized curve, along which the
energy E fulfills a “parameterized” version of the energy-dissipation identity (2.35). At the end
of this section, we will also discuss the parameterized counterpart to V -parameterizable BV so-
lutions. Let us emphasize that, while parameterized solutions were developed in [EfM06, MiZ12]
in their own right, we use them mainly to obtain the desired results for BV solutions.

Vanishing-viscosity analysis. Let (uε)ε be a family of solutions to the “viscous” doubly non-
linear equation (1.1). It follows from the energy identity (2.35) and from the variational charac-
terization of f (3.1)–(3.4) that∫ t

s

fr(uε(r); u̇ε(r)) dr + Et(u(t)) ≤ Es(u(s)) +

∫ t

s

Pr(u(r)) dr for all 0 ≤ s ≤ t ≤ T, (4.1)
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whence, relying on the power control (E.2), we deduce that there exists a constant C > 0 such
that

Sε := T +

∫ T

0

fr(uε(r); u̇ε(r)) dr ≤ C for every ε > 0. (4.2)

We rescale the functions uε by the energy-dissipation arclength sε : [0, T ] → [0,Sε] of the curve
uε, defined by

sε(t) := t+

∫ t

0

fr(uε(r); u̇ε(r)) dr. (4.3)

Hence, we introduce the rescaled functions (tε, uε) : [0,Sε]→ [0, T ]× V

tε(s) := s−1
ε (s) , uε(s) := uε(tε(s)). (4.4)

We write the “rescaled energy identity” fulfilled by the triple (tε, uε) by means of the space-time
Finsler dissipation functionals Fε,Gε : [0, T ]×D × [0,+∞)× V → [0,+∞) defined by

Fε(t, u;α, v) := Ψ(v) + Gε(t, u;α, v)− αPt(u) with

Gε(t, u;α, v) :=

{
α
εΦ( εαv) + α

εF
∗(et(u)) for α > 0,

∞ for α = 0,

(4.5)

where we combined (2.30) for Ψ∗ε, yielding (3.5) for ft, and the monotonicity of F ∗ to find

inf
ξ∈−∂Et(u)

Ψ∗ε(ξ) = inf
ξ∈−∂Et(u)
z∈K∗

1

ε
F ∗(‖ξ − z‖∗) =

1

ε
F ∗(et(u)).

Then, the energy identity (2.35) yields for every 0 ≤ s1 < s2 ≤ Sε∫ s2

s1

Fε(tε(s), uε(s); ṫε(s), u̇ε(s)) ds+ Etε(s2)(uε(s2)) = Etε(s1)(uε(s1)), (4.6)

and, on account of our choice (4.3) of the reparameterization, we have the normalization condition

ṫε(s) + ftε(s)(uε(s); u̇ε(s)) ≡ 1 for a.a. s ∈ (0,Sε) . (4.7)

From (4.6) it is possible to deduce a priori estimates on the family (tε, uε)ε, thus proving that,
up to a subsequence, the functions (tε, uε) converge in a suitable sense to a pair (t, u) : [0, S] →
[0, T ]×V (see Thm. 4.3 for a precise statement). In view of the forthcoming lower semicontinuity
Proposition 7.1, we expect that taking the limit ε→ 0 in (4.6) leads to the energy estimate∫ s2

s1

F(t(s), u(s); ṫ(s), u̇(s)) ds+ Et(s2)(u(s2)) ≤ Et(s1)(u(s1)) for all 0 ≤ s1 ≤ s2 ≤ S. (4.8)

The functional F : [0, T ]×D × [0,+∞)× V → [0,+∞] is defined by

F(t, u;α, v) := Ψ(v) + G(t, u;α, v)− αPt(u) with

G(t, u;α, v) := kt(u)α+ et(u)‖v‖ =

{
kt(u) if α > 0,
et(u)‖v‖ if α = 0.

(4.9)

Here we have adopted the convention 0 · (+∞) = 0, and k is the indicator function

kt(u) := inf
ξ∈−∂Et(u)

IK∗(ξ) = I{0}(et(u)) =

{
0 if K∗ + ∂Et(u) 3 0,

+∞ otherwise.
(4.10)

Hence, it would be natural to take (4.8) as definition of parameterized solution. However, as
already mentioned, limit curves have to be expected in AC([0,S];V,Ψ), i.e. they might lose the
differentiability property with respect to time. Thus, we need to develop a more refined definition.
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Admissible parameterized curves and solutions. In order to properly formulate (4.8) we
need to resort to the metric Ψ-derivative introduced in the beginning of Section 2.2. Based on
that definition, we first introduce a suitable class of parameterized curves.

Definition 4.1 (Admissible parameterized curves). We call a pair (t, u) : [a, b]→ [0, T ]× V an
admissible parameterized curve

(1) if t is nondecreasing and absolutely continuous, u ∈ AC([a, b];DE ,Ψ) for some E > 0,
(2) if u is locally V -absolutely continuous in the open set

G :=
{
s ∈ [a, b] : et(s)(u(s)) > 0

}
=
{
s ∈ [a, b] : K∗ + ∂Et(s)(u(s)) 63 0

}
, (4.11)

and t is constant in each connected component of G (in particular u is differentiable
L 1-a.e. in G),

(3) and if we have the estimate∫ b

a

Ψ[u′](s) ds+

∫
G

et(s)(u(s))‖u̇(s)‖ ds <∞. (4.12)

For every admissible parameterized curve and all s ∈ [a, b] we set

G[t, u; ṫ, u̇](s) := kt(s)(u(s))ṫ(s) + et(s)(u(s))‖u̇(s)‖,
F[t, u; t′, u′](s) := Ψ[u′](s) + G[t, u; ṫ, u̇](s)− Pt(s)(u(s))ṫ(s),

(4.13)

where, with a slight abuse of notation, we adopted the convention to set

et(s)(u(s))‖u̇(s)‖ ≡ 0 if s 6∈ G. (4.14)

By A (a, b; [0, T ]× V ) we denote the collection of all the (admissible) parameterized curves. Fur-
thermore, we call (t, u)

• nondegenerate, if ṫ(s) + Ψ[u′](s) > 0 for a.a. s ∈ (a, b);

• surjective, if t(a) = 0, t(b) = T ;

• m-normalized for a positive m ∈ L∞(0,S) (typically m ≡ 1), if (t, u) fulfills

ṫ(s) + Ψ[u′](s) + et(s)(u(s))‖u̇(s)‖ = m(s) for a.a. s ∈ (a, b) . (4.15)

Two (admissible) parameterized curves s ∈ [a, b] 7→ (t(s), u(s)) and σ ∈ [c, d] 7→ (̂t(σ), û(σ)) are
equivalent if there exists an absolutely continuous and surjective change of variable s : σ ∈ [c, d] 7→
s(σ) ∈ [a, b] such that

t̂(σ) = t(s(σ)), û(σ) = u(s(σ)) for all σ ∈ (c, d), ṡ(σ) > 0 for a.a. σ ∈ (c, d).

The above concept is nothing but the parameterized counterpart to the notion of admissible curve
from Definition 3.2: a crucial feature of parameterized curves is their L 1-a.e. differentiability on
the set G.

In the next definition of parameterized solutions we will impose (a suitable version of) (4.8)
as an equality. Indeed, the upper energy estimate has been motivated throughout (4.6)–(4.8) via
lower semicontinuity arguments. The lower energy estimate is a consequence of the chain rule of
the forthcoming Theorem 4.4.

Definition 4.2 (Parameterized solutions). A parameterized solution of the RIS (V,E,Ψ,Φ) is a
surjective and nondegenerate curve (t, u) ∈ A (a, b; [0, T ]× V ) (cf. Def. 4.1) satisfying∫ s2

s1

F[t, u; t′, u′] ds+ Et(s2)(u(s2)) = Et(s1)(u(s1)) for all a ≤ s1 ≤ s2 ≤ b. (4.16)

Since F defined in (4.13) contains the term kt(u)ṫ, the equation (4.16) encompasses the local
stability condition (Sloc). It follows from (4.12) and the power-control condition (E.2) that, along
a parameterized solution, the map s 7→ Et(s)(u(s)) is absolutely continuous on [a, b].



BV SOLUTIONS TO RATE-INDEPENDENT SYSTEMS 23

The main existence and convergence result. The main result of this section states that any
limit curve of the rescaled family (tε, uε) of solutions to (1.1) is a parameterized solution.

Theorem 4.3. Assume (D.0)–(D.2) and (E.0)–(E.3). Let (uε)ε ⊂ AC([0, T ];V ) be a family of
solutions to the doubly nonlinear equation (1.1), such that

uε(0)→ u0 in V and E0(uε(0))→ E0(u0) as ε ↓ 0 (4.17)

as in (3.26). Choose non-decreasing surjective time-rescalings tε : [0,S] → [0, T ], define uε :
[0,S]→ V by uε(s) := uε(tε(s)) for all s ∈ [0,S] and suppose that

∃m ∈ L∞(0,S) : mε := ṫε + ftε(uε, u̇ε)⇀
∗m in L∞(0,S) and m > 0 a.e. in (0,S) . (4.18)

Then, there exist a subsequence εk ↓ 0 and a parameterized solution (t, u) ∈ AC([0,S]; [0, T ]×V )
to the RIS (V,E,Ψ,Φ), such that the following convergences hold as k →∞:

(tεk , uεk) −→ (t, u) in C0([0,S]; [0, T ]× V ), (4.19)

Etεk (s)(uεk(s)) −→ Et(s)(u(s)) uniformly in [0,S], (4.20)∫ s2

s1

(
Ψ(u̇εk) + Gεk(tεk , uεk ; ṫεk , u̇εk)

)
ds −→

∫ s2

s1

(
Ψ[u′] + G[t, u; ṫ, u̇]

)
ds (4.21)

for all 0 ≤ s1 ≤ s2 ≤ S. Moreover, (t, u) is m-normalized.

We have already seen that the choice (4.3)–(4.4) provides the normalization condition (4.7), and
thus (up to a multiplication factor converging to 1) the curves (tε, uε) satisfy (4.18) with m ≡ 1.

The proof of this result is postponed to the end of § 7.3.

Chain rule and further properties of parameterized solutions. We present now a parame-
trized version of the chain rule (2.32) (cf. also (3.34)), satisfied by admissible parameterized curves.
In fact, (4.22) is a metric-like chain-rule inequality, since it involves the Ψ-metric derivative of
the curve. A key ingredient of its proof is the uniform subdifferentiability condition (E.3).

Theorem 4.4 (Chain-rule inequality for parameterized curves). If (t, u) ∈ A (a, b; [0, T ]×V ) then
the map s 7→ Et(s)(u(s)) is absolutely continuous on [a, b] and the following chain-rule inequality
holds for a.a. s ∈ (a, b) (recalling (4.14))∣∣∣ d

ds
Et(s)(u(s))− Pt(s)(u(s))ṫ(s)

∣∣∣ ≤ Ψ[u′](s) + et(s)(u(s))‖u̇(s)‖. (4.22)

Moreover, if u is a.e. differentiable, then for a.a. s ∈ (a, b) we have

d

ds
Et(s)(u(s))− Pt(s)(u(s))ṫ(s) = −〈ξ, u̇(s)〉 ≥ −ft(s)(u(s); u̇(s)) for all ξ ∈ −∂Et(s)(u(s)). (4.23)

We postpone the proof to Section 6.1. As a straightforward consequence of the chain-rule in-
equality (4.22), we can characterize parameterized solutions by a simpler one-sided inequality on
the interval (a, b). The result below corresponds to Corollary 3.12 for BV solutions.

Corollary 4.5. For every surjective and nondegenerate admissible curve in (t, u) ∈ A (a, b; [0, T ]×
V ) the following three conditions are equivalent:

i) (t, u) is a parameterized solution of the RIS (V,E,Ψ,Φ);

ii)

∫ b

a

F[t, u; t′, u′] ds+ Et(b)(u(b)) ≤ Et(a)(u(a)); (4.24)

iii)
d

ds
Et(s)(u(s))− Pt(s)(u(s))ṫ(s) = −Ψ[u′](s)− et(s)(u(s))‖u̇(s)‖ for a.a. s ∈ (a, b). (4.25)

When u is L 1-a.e. differentiable, it is also possible to characterize parameterized solutions in
terms of a doubly nonlinear differential inclusion involving the dissipation potentials Ψ and Φ (to
be compared with the differential characterization of BV solutions in Theorem 3.14).
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Proposition 4.6. If (t, u) is a L 1-a.e. differentiable parameterized solution of the RIS (V,E,Ψ,Φ),
then there exist measurable functions λ : (a, b)→ [0,+∞) and ξ : (a, b)→ V ∗ such that

ξ(s) ∈
(
∂Ψ(u̇(s))+∂Φ(λ(s)u̇(s))

)
∩
(
−∂Et(s)(u(s))

)
, λ(s)ṫ(s) = 0 for a.a. s ∈ (a, b). (4.26)

Conversely, if an absolutely continuous, surjective, nondegenerate and L 1-a.e. differentiable
curve (t, u) : [a, b]→ [0, T ]×DE satisfies (4.26) for some measurable maps λ, ξ and s 7→ Et(s)(u(s))
is absolutely continuous in [a, b], then (t, u) is a parameterized solution to the RIS (V,E,Ψ,Φ).

The reformulation of the notion of parameterized solutions in terms of the subdifferential
inclusion (4.26) reflects the following mechanical interpretation:

• the regime (ṫ > 0, u̇ ≡ 0) corresponds to sticking ;
• the regime (ṫ > 0, u̇ 6= 0) corresponds to rate-independent sliding ( λ = 0 implies the

local stability K∗ + ∂Et(u) 3 0);
• when ṫ = 0 (i.e. at a jump in the (slow) external time scale, encoded in the function
t), the system may switch to a viscous regime (when λ > 0), and the solution follow a
viscous transition path.

Proof. If (t, u) is a L 1-a.e. differentiable parameterized solution, (4.25) and (4.23) show that for
every selection ξ ∈ −∂Et(s)(u(s)) we have

〈ξ, u̇(s)〉 = Ψ(u̇(s)) + et(s)(u(s))‖u̇(s)‖ for a.a. s ∈ (a, b). (4.27)

If et(s)(u(s)) = 0 then choosing ξ ∈ K∗ we get (4.26) with λ(s) = 0. If et(s)(u(s)) > 0 then

ṫ(s) = 0 so that u̇(s) 6= 0 by the nondegeneracy condition; we obtain (4.26) by choosing λ(s) =
Λt(s)(u(s), u̇(s)), see (3.46).

Conversely, assume (4.26) and that the energy map is absolutely continuous. If λ(s) = 0 then
et(s)(u(s)) = 0 so that 〈ξ, u̇(s)〉 = Ψ(u̇(s)). If λ(s) > 0 then ṫ(s) = 0 so that u̇(s) 6= 0 and

〈ξ, u̇(s)〉 = Ψ(u̇(s)) +
1

λ(s)
Φ(λ(s)u̇(s)) +

1

λ(s)
Φ∗(ξ) ≥ Ψ(u̇(s)) + et(s)(u(s))‖u̇(s)‖ ≥ 〈ξ, u̇(s)〉.

Hence, all the above estimates are equalities, and therefore et(s)(u(s)) > 0. Furthermore, (4.27)
holds. Combining this with the fact that at almost all points the energy is differentiable with
derivative d

dsEt(s)(u(s)) = Pt(s)(u(s))ṫ(s)−〈ξ, u̇(s)〉 in L1(a, b), we conclude that (t, u) is admissible
and (4.25) holds. �

Parameterized and BV solutions.

Proposition 4.7 (Equivalence between BV and parameterized solutions).

(BVP1) If (t, u) ∈ A (a, b; [0, T ]× V ) is surjective and nondegenerate, then any curve

u : [0, T ]→ V with u(t) ∈
{
u(s) : t(s) = t

}
(4.28)

belongs to BV([0, T ];DE ,Ψ) for some E > 0, satisfies the local stability condition (Sloc),
and for every 0 ≤ t0 < t1 ≤ T with G defined as in (4.11) we have

Varf(u; [t0, t1]) ≤
∫ s(t1)

s(t0)

Ψ[u′](s) ds+

∫
[s(t0),s(t1)]∩G

et(s)(u(s))‖u̇(s)‖ds; (4.29)

in particular Varf(u; [0, T ]) <∞.
(BVP2) If (t, u) : [0,S]→ [0, T ]× V is a parameterized solution of the RIS (V,E,Ψ,Φ), then any

curve u : [0, T ]→ V satisfying (4.28) is a BV solution in the sense of Definition 3.8.
(BVP3) Conversely, if u ∈ BV([0, T ];DE ,Ψ) satisfies (Sloc) with Varf(u; [0, T ]) <∞, then there

exists a nondegenerate, surjective (t, u) ∈ A (0,S; [0, T ]× V ) such that (4.28) holds and

Varf(u; [0, T ]) =

∫ S

0

Ψ[u′](s) ds+

∫
[0,S]∩G

et(s)(u(s))‖u̇(s)‖ ds. (4.30)

Thus if u is a BV solution of the RIS (V,E,Ψ,Φ) then (t, u) is a parameterized solution.
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Proof. (BVP1): let s : [0, T ] → [a, b] be any inverse of t. Notice that t ∈ Ju if and only if
t ∈ Js and t(s) ≡ t for every s ∈ [s(t−), s(t+)]. We can also define s(t) in [s(t−), s(t+)] so that
u(t) = u(s(t)) for every t ∈ [0, T ]. By this choice it is immediate to see that u ∈ BV([0, T ];DE ,Ψ)
with

VarΨ(u; [t0, t1]) = VarΨ(u; [s(t0), s(t1)]) =

∫ s(t1)

s(t0)

Ψ[u′](r)dr for every 0 ≤ t0 < t1 ≤ T.

On the other hand, the curve u : [s(t−), s(t+)] → V is an admissible transition connecting u(t−)
to u(t+) with

∆ft(u(t−), u(t)) ≤
∫ s(t)

s(t−)

fs(r)[u, u
′](r) dr, ∆ft(u(t), u(t+)) ≤

∫ s(t+)

s(t)

fs(r)[u, u
′](r) dr,

which yields (4.29). Since ṫ = 0 in G, t(G) is L 1-negligible, so that its complement (where the
local stability condition (Sloc) holds) is dense in [0, T ]. Since e is lower semicontinuous, every
point in [0, T ] \ Ju satisfies (Sloc).

(BVP2) is now immediate: since (Sloc) holds, it is sufficient to check (Ef,ineq); this follows by
combining (4.29), (4.16), and the change of variable formula∫ T

0

Pt(u(t)) dt =

∫ S

0

Pt(s)(u(s))ṫ(s) ds. (4.31)

In order to prove (BVP3), we introduce the parameterization

s(t) := t+ Varf(u; [0, t]), S := s(T ), Ju = Js = (tn)n∈N, (4.32)

In := (s(tn−), s(tn+)), I :=
⋃
n∈N

In, t := s−1 : [0,S] \ I → [0, T ], u := u ◦ t. (4.33)

It is immediate to check that t and u are Lipschitz maps. We extend t and u to I by setting

t(s) ≡ tn, u(s) := ϑn(rn(s)) whenever s ∈ In, (4.34)

where rn : In → [0, 1] is the unique affine and strictly increasing function mapping In onto [0, 1]
and ϑn ∈ Ttn(u(tn−), u(tn+)) is an admissible transition satisfying ϑn(rn(s(tn))) = u(tn) and
(recall (F1) of Theorem 3.5)∫ 1

0

ftn [ϑn;ϑ′n](r) dr = ∆ftn
(u(tn−), u(tn)) + ∆ftn

(u(tn), u(tn+)). (4.35)

It follows that (4.28) holds with u = u ◦ s and∫ S

0

Ψ[u′](s) ds+

∫
G

et(s)(u(s)) ‖u̇(s)‖ ds = VarΨ(u; [0, S]) +

∫
G

et(s)(u(s)) ‖u̇(s)‖ ds

= VarΨ(u; [0, T ]) +
∑
n∈N

∫ 1

0

etn(ϑn(r))‖ϑ̇n(r)‖ dr

≤ VarΨ(u; [0, T ])− JmpΨ(u; [0, T ]) + Jmpf(u; [0, T ]) = Varf(u; [0, T ]),

so that (4.30) holds and (t, u) ∈ A (0,S; [0, T ]× V ).
If moreover u is a BV solution, then the chain rule from Theorem 4.4 and (4.31) yield inequality

(4.24). �

4.2. V -parameterized solutions. We consider now the special class of parameterizable solu-
tions, corresponding to the notion introduced in §3.4, namely those for which u is absolutely
continuous with values in V .

Definition 4.8. A V -parameterized solution (t, u) : [a, b]→ [0, T ]× V of the RIS (V,E,Ψ,Φ) is
a parameterized solution such that u ∈ AC(a, b;V ).
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Since V -parameterized solutions are differentiable L 1-a.e., one does not have to distinguish the
behavior of u in the set G of (4.11) from its complement. By adopting the “pointwise” definition
(4.9) of F and G in place of (4.13), metric concepts are no longer needed, and expressions like
(4.12) become simpler.

Proposition 4.9. If (t, u) ∈ AC([0,S]; [0, T ] × V ) is a V -parameterized solution to the RIS
(V,E,Ψ,Φ) then every u satisfying (4.28) is a V -parameterizable BV solution. If u is a V -
parameterizable BV solution there exists a V -parameterized solution (t, u) such that (4.28) hold.

Proof. The approach is analogous to the proof of Proposition 4.7: In one direction it follows by

the identity Var(u; [0, T ]) =
∫ S

0
‖u̇(s)‖ ds. In the opposite one, we can simply replace (4.32) by

s(t) := t+ Varf(u; [0, t]) + Var(u; [0, t]), (4.36)

choosing the optimal jump transitions according to (3.51). �

Thanks to Proposition 4.9, Corollary 3.23 implies the following result:

Corollary 4.10 (Existence of V -parameterized solutions). If (3.55)–(3.57) hold, then for every
u0 ∈ D with K∗+∂E0(u0) 3 0 there exists a V -parameterized solution (t, u) ∈ AC([0,S]; [0, T ]×V )
of the RIS (V,E,Ψ,Φ).

V -parameterized solutions can also be obtained as limit of rescaled solutions to (1.1) if they
satisfy the uniform bound (3.52): one can simply adapt the argument discussed in §4.1, by
replacing the definition (4.3) of the arclength sε with, e.g.,

sε(t) := t+

∫ t

0

fr(uε(r); u̇ε(r)) dr +

∫ t

0

‖u̇ε(r)‖dr, tε := s−1
ε , (4.37)

in order to gain a uniform control of the Lipschitz constant of the rescaled functions uε. The
vanishing-viscosity limit in Theorem 4.3 then gives the following.

Theorem 4.11. Let (uε)ε>0 be a family of solutions to (1.1) satisfying (3.26) at t = 0 and
the uniform bound (3.52) (e.g. when the assumptions of Theorem 3.21 are satisfied) and let tε :
[0,S]→ [0, T ] be nondecreasing and surjective time rescalings (e.g. (4.37)) such that uε := uε ◦ tε
satisfy (4.18) and there exists C > 0 such that supt∈(0,T ) ‖u̇ε(t)‖ ≤ C for all ε > 0. Then any

limit function (t, u) as in Theorem 4.3 is a V -parameterized solution.

V -arclength parameterizations. Still keeping the assumptions (3.55)–(3.57) of Corollary 3.22,
in particular the choice Φ(v) := 1

2‖v‖
2, we discuss now a different reparameterization technique

for studying the limit of solutions to (1.1). Since estimate (3.52) is guaranteed, like in [EfM06,
Mie11, MiZ12] we are entitled to use the V -arclength parameterization

ŝε(t) := t+

∫ t

0

‖u̇ε(r)‖ dr (4.38)

and consider the rescaled functions (̂tε, ûε) : [0, Ŝε] → [0, T ] × V , with Ŝε = ŝε(T ), defined by

t̂ε(s) := ŝ−1
ε (s) and ûε(s) := uε(̂tε(s)). By construction we have ˙̂tε(s) + ‖ ˙̂uε(s)‖ = 1 for a.a.

s ∈ (0, Ŝε), and the pair (̂tε, ûε) is a solution of the “rescaled” doubly nonlinear equation

∂Ψ( ˙̂uε(s)) +
ε

1−‖ ˙̂uε(s)‖
∂Φ( ˙̂uε(s)) + ∂Et̂ε(s)(ûε(s)) 3 0 for a.a. s ∈ (0, Ŝε), (4.39)

where we used the degree-1 homogeneity of ∂Φ. As in [EfM06, MiZ12, Mie11], we observe that

the viscous term in (4.39) is the subdifferential of the potential Φ̂ that is defined via

Φ̂(v) = f (‖v‖) with f(x) =

{
− log(1− x)− x if 0 ≤ x < 1,

+∞ if x ≥ 1.

Thus, (4.39) rewrites as

∂Ψ( ˙̂uε(s)) + ε∂Φ̂( ˙̂uε(s)) + ∂Et̂ε(s)(ûε(s)) 3 0 for a.a. s ∈ (0, Ŝε). (4.40)
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The sequence of dissipation potentials Ψ̂ε(v) := Ψ(v)+εΦ̂(v) Γ-converges monotonously, as ε ↓ 0,
to the limiting potential

Ψ̂(v) =

{
Ψ(v) if ‖v‖ ≤ 1,

+∞ else.
(4.41)

It was shown in [Mie11, Prop. 4.14] that, up to a subsequence, the parameterized solutions (̂tε, ûε)

converge in C0([0, Ŝ]; [0, T ] × V ) to a pair (̂t, û) ∈ C0
lip([0, Ŝ]; [0, T ] × V ) such that t̂(0) = 0, t̂ is

non-decreasing, and

˙̂t(s) + ‖ ˙̂u(s)‖ ∈ [0, 1] and ∂Ψ̂( ˙̂u(s)) + ∂Et̂(s)(û(s)) 3 0 for a.a. s ∈ (0, Ŝ). (4.42)

An interesting feature of this approach is that it allows for a direct passage to the limit in the
subdifferential inclusion (4.40), without passing through an energy identity like (4.6). By oper-
ating a suitable time rescaling, it is possible to show a correspondence between V -parameterized
solutions in the sense of Definition 4.8 and in the sense of (4.42): the interested reader is referred
to [Mie11, Cor. 4.22, Prop. 4.24].

However, let us stress that the technique from [EfM06, MiZ12] does not allow us to prove that

the limit curve (̂t, û) satisfies the normalization condition ˙̂t + ‖ ˙̂u‖ = 1 a.e. in (0, Ŝ). Instead, our
the variational approach of § 4.1, which is based on a chain-rule and energy-identity argument,
guarantees the preservation of the normalization condition, cf. Theorem 4.3. Moreover, we also
obtain the absolute continuity of the energy map s 7→ Et(s)(u(s)).

5. Examples

Throughout this section, we focus on the rate-independent system (V,E,Ψ,Φ) given by

V = L2(Ω), Ψ(v) =

∫
Ω

|v(x)|dx, Φ(v) =
1

2
‖v‖2 =

1

2

∫
Ω

|v(x)|2 dx

with Ω ⊂ Rd, d ≥ 1, a bounded Lipschitz domain, and on the following class of energy functionals
E : [0, T ]× L2(Ω)→ (−∞,+∞]

Et(u) =

{ ∫
Ω

(β(|∇u|) +W (u)− `(t)u) dx if u ∈W1,1(Ω), β(|∇u|), W (u) ∈ L1(Ω),
+∞ otherwise.

(5.1)

Hereafter, we suppose that

β : [0,+∞)→ [0,+∞) is convex; (5.2)

W : R→ (−∞,+∞] is bounded from below; (5.3)

` ∈ C1([0, T ];L2(Ω)). (5.4)

In all of the examples we present, E will satisfy (E.0) and for each of them we will discuss the
coercivity condition (E.1). Exploiting (5.4), it is immediate to check that for all u ∈ D the function
t 7→ Et(u) is differentiable, with derivative Pt(u) = −

∫
Ω
`′(t)udx which fulfills both (E.2) and the

Lipschitz estimate (3.57). In what follows, the focus will be on the uniform subdifferentiability
(E.3) and on the (stronger) generalized convexity (3.61) (which yields the subdifferentiability
condition (3.56) and in particular (E.3)).

We start with Example 5.1, where we provide sufficient conditions on the nonlinearities β and
W guaranteeing the validity of (3.61).

Example 5.1. We take

β(|∇u|) =
1

2
|∇u|2 and W ∈ C1(R), λ-convex for some λ ∈ R; (5.5)

for instance, one may think of the double-well potential W (u) = (1 − u2)2/4. Clearly, E from
(5.1) fulfills (E.1). In order to check (3.61), we fix u, v ∈ D and estimate, for θ ∈ [0, 1],

Et((1−θ)u+ θv) ≤ (1− θ)Et(u) + θEt(v)− (1−θ)θ
2

(
‖∇(u−v)‖2L2(Ω) + λ‖u−v‖2L2(Ω)

)
, (5.6)
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where we used 1-convexity of β and λ-convexity of W . Hence, for λ > 0 we have (3.61) with
αE = λ and ΛE = 0. If λ < 0, we use the Gagliardo-Nirenberg inequality

‖w‖L2(Ω) ≤ CGN

(
‖w‖2/(d+2)

L1(Ω) ‖∇w‖
d/(d+2)
L2(Ω) + ‖w‖L1(Ω)

)
≤
(

1
1+|λ|‖∇w‖

2
L2(Ω) +Mλ‖w‖2L1(Ω)

)1/2
,

for some Mλ > 0, which is equivalent to −‖∇w‖2L2(Ω) ≤ −(1+|λ|)‖w‖2L2(Ω) +(1+|λ|)Mλ‖w‖2L1(Ω).

Inserting this for w = u−v into (5.6) we obtain estimate (3.61) with αE = (1+|λ|) + λ = 1 > 0
and ΛE = (1+|λ|)Mλ. In particular, we have no dependence on the energy sublevel E.

In fact, it can be checked that for suitably convex functions β with the growth β(|∇u|) ≥
c1|∇u|p − c2 for some c1, c2 > 0 the related functional E in (5.1) still complies with (3.61), if
p > pd for a suitable pd > 1 depending on the dimension d.

Our next example treats the case in which β has only linear growth. Even taking a convex
function W , the generalized convexity condition (3.61) is no longer guaranteed. Nonetheless,
since the functional u 7→ Et(u) is convex, its Fréchet subdifferential reduces to the subdifferential
in the sense of convex analysis, and (E.3) clearly holds. In this setting, we show that there exist
BV solutions to the rate-independent system (V,E,Ψ,Φ), which are not V -parameterizable.

Example 5.2. We consider the one-dimensional domain Ω = (0, l) for some l > 1 and take

β
(∣∣ d

dxu
∣∣) = δ

∣∣ d
dxu

∣∣ with δ > 0, W (u) = I[0,1](u) =

{
0 if u ∈ [0, 1],
+∞ otherwise,

(5.7)

and the external loading ` : [0, T ]×(0, l)→ R with `(t, x) = t+2−x, where 0 < T ≤ l−1. Observe

that, thanks to the compactifying character of the total-variation contribution δ
∫ l

0
| d
dxu|dx, the

energy E fulfills (E.1). We now show that the function

u(t, x) = χ[0,a(t)](x) =

{
1 for x ∈ [0, a(t)],
0 otherwise

for some continuous and nondecreasing function a : [0, T ]→ [0, l], which will be specified later, is
a BV solution to the RIS (V,E,Ψ,Φ).

Concerning the energy balance (Ef), we observe that, since u ∈ C0([0, T ];L2(0, l)) there holds

Varf(u; [0, t]) = Var‖·‖L1(0,l)
(u; [0, t]) = a(t)− a(0) for all t ∈ [0, 1],

where we also used that a is nondecreasing. Easy calculations give Et(u(t)) = δ−(t+2)a(t)+ a2(t)
2

and Pt(u(t)) = −a(t), therefore (Ef) yields the flow rule for the moving interface a:

ȧ(t)(a(t)−1−t) = 0 ⇒ a(t) = 1 + t for all t ∈ [0, T ].

Since Et(·) is convex, u fulfills the local stability (Sloc) if and only if it complies with the global
stability condition (S), which in the present setting reads

δ − 1
2 (t+1)(3t+5) = Et(u(t)) ≤ Et(v) + ‖v−u(t)‖L1(0,l)

=
∫ l

0

(
δ| d

dxv|+ |v−χ[0,t+1]| − (t+2−x)v
)

dx

= δ
∫ l

0
| d
dxv|dx+ t+ 1−

∫ t+1

0
(t+3−x)v dx+

∫ l
t+1

(x−1−t)v dx

(5.8)

for all v ∈ L1(0, l) and t ∈ [0, 1]. With some calculations one can show that for all δ ∈ [0, 2]
and l ≥ 4 the function u(t, x) = χ[0,t+1](x) fulfills (5.8), hence it is a BV solution. Indeed,
u is a BV solution also in the case δ = 0, in which E does not comply with (E.1) and our
existence results Thms. 3.9 and 3.10 do not apply. Although u ∈ Clip([0, 1];L1(0, l)), we have
that u /∈ BV([0, 1];L2(0, l)), therefore it is not a V -parameterizable BV solution.

We now revisit [Mie11, Ex. 4.4, 4.27], which means in our notation that β ≡ 0 and that W
is of double-well type. Relying on the calculations from [Mie11], we show that as ε → 0 the
viscous solutions converge to a curve u, which is not a BV solution to the rate-independent
system (V,E,Ψ,Φ). Observe that in this case neither (E.1), nor the (parameterized) chain-rule
inequality (4.22), are fulfilled.
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Example 5.3. We take Ω = (0, 1), β ≡ 0, `(t, x) = t+ x, and

W (u) =


1
2 (u+4)2 if u ≤ −2,
4− 1

2u
2 if |u| < 2,

1
2 (u−4)2 if u ≥ 2,

(5.9)

In [Mie11, Ex. 4.4] the unique solution to the viscous problem

Sign(u̇ε(t, x)) + εu̇ε(t, x) +W ′(uε(t, x)) 3 `(t, x) and uε(0, x) = −4 (5.10)

was explicitly calculated: We have uε(t, x) = V ε(t+x), where V ε(τ) = −4 for τ ≤ 1+ε and it
coincides with the unique solution v of Sign(v′(τ)) + εv′(τ) + W ′(v(τ)) 3 τ for τ ≥ 1+ε. It was
shown that, on the time-interval [0, 6] the functions (uε)ε have a uniform Lipschitz bound with

values in L1(0, 1), whereas
∫ 6

0
‖u̇ε‖L2(0,1) dt tends to ∞ as ε→ 0 like 1/

√
ε. Moreover, setting

ū(t, x) = max{−4, t+x−5} for t+x ≤ 3 and ū(t, x) = t+x+3 for t+x > 3

we have ū ∈ C0([0, 6];L2(0, 1)) ∩ Clip([0, 6];L1(0, 1)) and supt∈[0,6] ‖uε(t) − ū(t)‖L2(0,1) → 0 as

ε→ 0, hence obviously Et(uε(t))→ Et(ū(t)) for all t ∈ [0, 6].
It can be shown that ū(t) complies with the local stability condition (Sloc) for all t ∈ [0, 6].

However, u does not comply with the energy balance (Ef). In fact, by continuity of ū we have
Varf(ū; [0, t]) = Var‖·‖L1(0,l)

(ū; [0, t]) for all t ∈ [0, 6], and passing to the limit as ε → 0 in the

viscous energy balance (2.35) it can be calculated explicitly that for all t ∈ [0, 6]

Var‖·‖L1
(ū; [0, t]) + Et(ū(t))− Et(ū(0))−

t∫
0

Ps(ū(s))ds = 8 max{0,min{t−2, 1}} =: ρ(t). (5.11)

Therefore, following [Mie11] we observe that there is an additional limit dissipation ρ in (5.11),
and ū is not a BV solution.

In fact, the chain-rule inequality (4.22) does not hold along the parameterized curve (cf.
Definition 4.1) (t, u) ∈ A (0, 6; [0, 6] × L2(0, 1)) given by s 7→ (t(s), u(s)) := (s, ū(s)) ∈ [0, 6] ×
L2(0, 1). On the one hand, since ū satisfies (Sloc) on [0, 6], we have et(s)(u(s))‖u̇(s)‖L2(0,1) ≡ 0 on
[0, 6]. On the other hand, (5.11) yields for almost all s ∈ (0, 6)

d

ds
Et(s)(u(s))− Pt(s)(u(s))ṫ(s) = −ρ̇(t(s))− |u′|L1(0,1)(s), (5.12)

where |u′|L1(0,1) denotes the L1(0, 1)-metric derivative of u, cf. (2.13). Clearly, the right-hand
side of (5.12) is strictly smaller than |u′|L1(0,1)(s) for s ∈ (2, 3).

In the final example we recover the coercivity condition (E.1) by taking a nonzero β, with
linear growth. Nonetheless, unlike Example 5.2 we only require W to be λ-convex: in this case,
the chain-rule inequality (4.22) is still not valid.

Example 5.4. We take Ω = (0, l) with l > 2, β(| d
dxu|) = | d

dxu|, the double-well potential W
(5.9), and `(t, x) ≡ 2 for all (t, x) ∈ [0, T ] × (0, l), where 0 < T ≤ l−2. We show that the
parameterized curve s ∈ [0, T ] 7→ (t(s), u(s)) := (s, ū(s)) ∈ [0, T ]× L2(0, l) with

ū(t, x) :=

{
6 for 0 ≤ x ≤ t+ 1,
−2 for t+ 1 < x ≤ l for all (t, x) ∈ [0, T ]× [0, l] (5.13)

does not comply with the chain-rule inequality (4.22). Note that ū satisfies ū ∈ C0([0, T ];L2(0, l))∩
Clip([0, T ];L1(0, l)) with ‖ū(t1)−ū(t2)‖L2(0,l) = 8|t1−t2|1/2 and ‖ū(t1)−ū(t2)‖L1(0,l) = 8|t1−t2|.
The latter implies |ū′|L1(0,l) ≡ 8.

To see that the chain-rule inequality (4.22) does not hold, we employ (5.13) to find

Et(ū(t)) = V(ū(t)) +

∫ l

0

(W (ū(t, x))−2ū(t, x)) dx

= 8 +

∫ t

0

(W (6)−12) dx+

∫ l

t

(W (−2)+4) dx = 8 + 6l − 16t,

(5.14)
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where we have used the notation V(u) :=
∫ l

0
| d
dxu|dx for the total variation functional on (0, l).

Next we show that ū satisfies (Sloc), i.e. K∗ + ∂Et(ū(t)) 3 0 for all t ∈ [0, T ]. For this, we claim
that

ξt ∈ ∂Et(ū(t)) with ξt(x) =

{ 1
1+t for 0 < x < t+1,
−1

l−1−t for t+1 < x < l.
(5.15)

To see this, we use V(ū(t)) = 8 and estimate, for general v ∈ BV(0, l), as follows:

V(v)− V(ū(t)) ≥ ess sup
x∈(0,l)

v − ess inf
x∈(0,l)

v − 8 ≥ 1
1+t

∫ 1+t

0
v(x)dx− 1

l−1−t
∫ l

1+t
v(x)dx − 8

=
∫ l

0
ξt(x)

(
v(x)− ū(t, x)

)
dx = 〈ξt, v−ū(t)〉L2(0,l).

Using the (−1)-convexity of W , we obtain, for all v ∈ L2(0, l), the estimate

Et(v)− Et(ū(t)) ≥ 〈ξt, v−ū(t)〉 − 1
2‖v−ū(t)‖2L2(0,l),

implying (5.15), cf. Definition (2.8) for Fréchet subdifferentials. Because of 0 ≤ t ≤ T ≤ l−2 we
have ‖ξt‖L∞ = max{ 1

1+t ,
1

l−1−t} ≤ 1 for all t ∈ [0, T ]. Hence, ξt ∈ K∗ = { ξ : ‖ξ‖L∞ ≤ 1 }, and

(Sloc) is established.
Now returning to the notation of the parameterized solution (t(s), u(s)) = (s, ū(s)) for s ∈

[0, T ], we find et(s)(u(s))‖u̇(s)‖L2(0,l) ≡ 0 on [0, T ]. Moreover, Pt(s)(u(s)) ≡ 0 as well, whereas
|u′|L1(0,l)(s) ≡ 8. Thus, on account of (5.14) we conclude that

d

ds
Et(s)(u(s))− Pt(s)(u(s))ṫ(s) = −16 � −8 = −|u′|L1(0,l)(s)− et(s)(u(s))‖u̇(s)‖L2(0,l) ,

which is a contradiction to the chain-rule inequality (4.22).

6. Chain-rule inequalities for BV and parameterized curves

In this section we will collect the proof of the chain-rule inequalities stated in Theorems 3.11
and 4.4. We first consider the case of parameterized curves, hence, using the reparameterization
technique of Proposition 4.7 we deduce Theorem 3.11.

6.1. Chain rule for admissible parameterized curves: proof of Theorem 4.4. We split
the proof in two claims.

Claim (1): the map s 7→ Et(s)(u(s)) is absolutely continuous on [a, b]. First of all, we observe

that, since sups∈[a,b] Et(s)(u(s)) =: E < ∞, by (E.3) we have ω̄ := supr,s,σ ω
E
r (u(s), u(σ)) < ∞.

We decompose the open set G defined by (4.11) as the disjoint union of open intervals Gk. We
fix a ≤ r ≤ s ≤ b and we consider the following cases:

• r, s ∈ [0, T ] \G. By (E.2) and estimate (2.9) there exists a constant C > 0 (independent of r, s)
such that

|Et(s)(u(r))− Et(r)(u(r))| ≤ C
∫ s

r

ṫ(σ)dσ, |Et(r)(u(s))− Et(s)(u(s))| ≤ C
∫ s

r

ṫ(σ)dσ.

In view of (E.3), for ξ(s) ∈ ∂Et(s)(u(s)) fulfilling ξ(s) ∈ K∗ we have

Et(s)(u(s))− Et(s)(u(r)) ≤ 〈ξ(s), u(s)−u(r)〉+ ω̄Ψ∧(u(s)−u(r))

≤ Ψ(u(s)−u(r)) + ω̄Ψ(u(s)−u(r)) ≤ (1 + ω̄)

∫ s

r

Ψ[u′](σ)dσ,

where the second inequality follows from (2.3) and the last one from (2.12) and the mini-
mal representation m = Ψ[u′]. Analogously, arguing with ξ(r) ∈ ∂Et(r)(u(r)) ∩ K∗, we have

Et(r)(u(r))− Et(r)(u(s)) ≤ (1 + ω̄)
∫ s
r

Ψ[u′](σ)dσ. All in all, we conclude

|Et(s)(u(s))− Et(r)(u(r))| ≤ C1

∫ s

r

(
ṫ(σ) + Ψ[u′](σ)

)
dσ, C1 := 2(C + 1 + ω̄). (6.1)

• r, s belong to the closure Gk of the same connected component Gk = (ak, bk) for some k. It is
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not restrictive to assume that r, s ∈ Gk. Then t ≡ t̄ is constant in Gk by (2) in Definition 4.1
and u ∈ AC([r, s];V ). We denote by ∂◦E : [0, T ]×D ⇒ V ∗ the multivalued map defined by

ξ ∈ ∂◦Et(u) if and only if ‖ξ‖∗ = min{‖ζ‖∗ : ζ ∈ ∂Et(u)},

with the usual convention that the latter quantity is +∞ if ∂Et(u) is empty. Since K∗ is bounded
in V ∗, the definition of et̄(u) in (3.5) gives the estimate

et̄(u(θ)) ≥ ‖∂◦Et̄(u(θ))‖∗ − K, where K := sup{‖z‖ : z ∈ K∗},

and we conclude that
∫ s
r
‖∂◦Et̄(u(θ))‖ ‖u̇(θ)‖ dθ <∞. Hence the chain rule (analogous to Theorem

2.3, see the arguments of [AGS08, Theorem 1.2.5] and [MRS13, Proposition 2.4]) provides the
absolute continuity the energy map in Gk and for L 1-a.a. θ ∈ Gk we have

d

dθ
Et̄(u(θ)) = 〈ξ, u̇(θ)〉 for every ξ ∈ ∂Et̄(u(θ)), (6.2)∣∣∣ d

dθ
Et̄(u(θ))

∣∣∣ ≤ Ψ(u̇(θ)) + et̄(u(θ))‖u̇(θ)‖. (6.3)

• r ∈ G, s ∈ [0, T ] with r < s (or viceversa): we denote by σ the right boundary point of the
interval Gk 3 r; combining (6.1) with the integrated form of (6.3) we obtain∣∣Et(s)(u(s))− Et(r)(u(r))

∣∣ ≤ ∣∣Et(s)(u(s))− Et(σ)(u(σ))
∣∣+
∣∣Et(σ)(u(σ))− Et(r)(u(r))

∣∣
≤ CP

∫ s

σ

(
ṫ(ρ) + Ψ[u′](ρ)

)
dρ+

∫ σ

r

(
Ψ(u̇(ρ)) + et(ρ)(u(ρ))‖u̇(ρ)‖

)
dρ

=

∫ s

r

h(ρ) dρ with h ∈ L1(0, T ).

Claim (2): the chain-rule inequality (4.22) holds. It follows from Claim (1) there exists a set
of full measure T ⊂ (a, b) such that for all s ∈ T the function t is differentiable at s, the first
of (E.2) holds at s, the Ψ-metric derivative Ψ[u′](s) exists, and, if s ∈ G, the map u is V -
differentiable at s. Hence, we evaluate the derivative of the map Et(·)(u(·)) at s ∈ T: if s ∈ ∪kGk
we immediately get the thesis by (6.3) (notice that L 1

(
(∪kGk)\G

)
= 0). If s ∈ [0, T ]\∪kGk then

r = s− h ∈ [0, T ] \G for infinitely main values of h > 0, accumulating at 0. Since et(r)(u(r)) = 0
we can choose ξ(r) ∈ −∂Et(r)(u(r)) ∩K∗ and thanks to (E.3) we have

Et(s)(u(s))− Et(r)(u(r))

h
=

(
Et(s)(u(s))− Et(r)(u(s))

)
+
(
Et(r)(u(s))− Et(r)(u(r))

)
h

≥ 〈ξ(r), 1

h
(u(s)− u(r))〉 − 1

h
ωr(u(s), u(r))Ψ∧(u(s)− u(r)) +

Et(s)(u(s))− Et(r)(u(s))

h
(6.4)

≥ −1 + ωr(u(s), u(r))

h
Ψ(u(s)− u(r)) +

1

h

∫ s

r

Pt(θ)(u(s))ṫ(θ) dθ

In the limit r ↑ s, with r ∈ [0, T ] \ G, we get the lower bound d
dsEt(s)(u(s)) − Pt(s)(u(s))ṫ(s) ≥

−Ψ[u′](s). The corresponding upper bound can be obtained by choosing r = s + h, h > 0, in
(6.4), and passing to the limit as r ↓ s.

Whenever u is differentiable L 1-a.e., the chain rule (4.23) follows from (6.2) and (6.4) by a
similar argument. Hence, Theorem 4.4 is proved. �

By applying Theorem 4.4 to the parameterized curve [0, 1] 3 r 7→ (t, ϑ(r)) associated with any
admissible transition ϑ ∈ Tt(u0, u1) we immediately have the desired jump estimates.

Corollary 6.1. The jump estimates (3.14) and (3.37) hold true.
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6.2. Chain rule for BV curves: proof of Theorem 3.11. It is clearly not restrictive to
assume t0 = 0, t1 = T . If u ∈ BV([0, T ];DE ,Ψ) satisfies the local stability condition and
Varf(u; [0, T ]) <∞ as in the statement of the Theorem, we apply assertion (BVP3) of Proposition
4.7: the chain-rule inequality (3.34) follows then by the parameterized chain rule (4.22), combined
with (4.30) and (4.31).

Let us now check (3.35) in the case u ∈ BV([0, T ];V ). We will use the simpler change of
variable formula

s(t) := t+ Var(u; [0, t]), S := s(T ), (6.5)

keeping the same notation as in (4.33) for t, u, In, and I. We will use two basic facts: the first
property concerns the diffuse part s′d of the distributional derivative of s and has been proved in
[MRS12a, Prop. 6.11] (the proof does not rely on the finite-dimensional setting therein considered),
namely

u′d = n‖u′d‖ = (u̇ ◦ s) s′d, L 1
(0,T ) = (ṫ ◦ s) s′d. (6.6)

The second fact is a general property of the distributional derivative of an increasing map, viz.

t]
(
L 1

[0,S]

)
= s′d. (6.7)

We set

e(s) :=

{
e(t(s)) = Et(s)(u(s)) if s ∈ (0,S) \ I,
affine interpolation of e(tn−), e(tn+) if s ∈ In for some n ∈ N,

and we extend in a similar way s in each interval In. Now u defined by (4.33) is absolutely con-
tinuous and arguing as in § 6.1 we can easily prove that e is absolutely continuous with derivative

ė(s) = −〈ξ(t(s)), u̇(s)〉+ Pt(s)(u(s))ṫ(s) for L 1-a.a. s ∈ (0,S). (6.8)

On the other hand e(s) = e(t(s)) whenever s ∈ [0,S] \
⋃
In. Since t(s) ≡ tn and ṫ(s) ≡ 0 in In

we obtain e(t(s))ṫ(s) = e(s)ṫ(s) for a.a. s ∈ (0,S). Hence, for every ζ ∈ C1([0, T ]) with compact
support in (0, T ) we obtain∫

[0,T ]

ζ(t) de′d(t) = −
∫ T

0

ζ̇(t)e(t) dt−
∑
t∈J(u)

ζ(t)(e(t+)− e(t−))

= −
∫ S

0

ζ̇(t(s))e(t(s))ṫ(s) ds−
∑
n

ζ(tn)(e(tn+)− e(tn−))

= −
∫ S

0

ζ̇(t(s))e(s)ṫ(s) ds−
∑
n

ζ(tn)(e(s(tn+))− e(s(tn−)))

=

∫ S

0

ζ(t(s))ė(s) ds−
∑
n

∫
In

ζ(t(s))ė(s) ds =

∫
[0,S]\I

ζ(t(s))ė(s) ds

(6.8)
= −

∫
[0,S]\I

ζ(t(s))〈ξ(t(s)), u̇(s)〉ds+

∫
[0,S]\I

ζ(t(s))Pt(s)(u(s))ṫ(s) ds

(6.7)
=

∫
[0,T ]\Ju

ζ(t)
(
− 〈ξ(t), u̇(s(t))〉+ Pt(u(t))ṫ(s(t))

)
ds′d(t)

(6.6)
= −

∫
[0,T ]\Ju

ζ(t)〈ξ(t),n〉d‖u′d‖(t) +

∫ T

0

ζ(t)Pt(u(t)) dt.

Since the measure ‖u′d‖ does not charge Ju, we get (3.35), and Theorem 3.11 is proved. �
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7. Convergence proofs for the viscosity approximations

7.1. Compactness and lower semicontinuity result for parameterized curves. We first
provide a lower semicontinuity result that will be used to prove Theorems 3.5, 3.9, and 3.10 in
the next subsections.

Proposition 7.1. Let E,L > 0 and for every n ∈ N let tn ∈ AC(a, b; [0, T ]) be nondecreasing.
Assume that ũn : [a, b] → DE are measurable, Gn ⊂ [a, b] are open (and possibly empty) subsets
such that etn(s)(ũn(s)) = 0 in [a, b] \Gn, un ∈ AC([a, b];V,Ψ) ∩ACloc(Gn;V ), and there holds

Xn := sup
s∈[a,b]

‖un(s)− ũn(s)‖ → 0 as n→∞ (7.1a)

ṫn(s) + Ψ[u′n](s) + etn(s)(ũn(s))‖u̇n(s)‖ ≤ L for L 1-a.a. s ∈ (a, b), (7.1b)

where we adopt the convention etn(s)(ũn(s))‖u̇n(s)‖ ≡ 0 if s 6∈ Gn, as in (4.14).
Then there exist a subsequence (not relabeled) and a limit function (t, u) ∈ A (a, b; [0, T ]×DE)

such that (tn, un)→ (t, u) uniformly in [a, b] with respect to the topology of [0, T ]× V . Moreover
(t, u) satisfies the same bound (7.1b) and the following asymptotic properties hold as n→∞:

lim inf
n→∞

∫ b

a

Ψ[u′n](s) ds ≥
∫ b

a

Ψ[u′](s) ds, (7.2)

lim inf
n→∞

∫ b

a

etn(s)(ũn(s))‖u̇n(s)‖ ds ≥
∫ b

a

et(s)(u(s))‖u̇(s)‖ds, (7.3)

lim inf
n→∞

∫ b

a

(
ktn(s)(ũn(s))ṫn(s) + etn(s)(ũn(s))‖u̇n(s)‖

)
ds ≥

∫ b

a

G[t, u; ṫ, u̇](s) ds. (7.4)

If, moreover, un ∈ AC([a, b];V ), then

lim inf
n→∞

∫
Gn

Gεn(tn(s), ũn(s); ṫn(s), u̇n(s)) ds ≥
∫ b

a

G[t, u; ṫ, u̇](s) ds (7.5)

for every vanishing sequence (εn)n ⊂ (0,∞).

We will use later that the assumptions of Proposition 7.1 cover the case (tn, un) ∈ A (a, b; [0, T ]×
V ) with ũn = un.

Proof. By (7.1b) the sequence tn is uniformly Lipschitz, thus relatively compact with respect to
uniform convergence.

Let CΨ be the continuity constant of Ψ and Ω := ΩDE be the modulus of continuity from
(2.17): since Ω is concave and Ω(0) = 0 we have

Ω(λp) ≤ λΩ(p), Ω(p+ q) ≤ Ω(p) + Ω(q) ∀ λ, p, q ≥ 0. (7.6)

Since every curve ũn takes values in the compact set DE , we have in view of (2.18) that

‖ũn(s)− ũn(r)‖ ≤ Ω
(
Ψ∧(ũn(s)− ũn(r))

)
≤ Ω

(
Ψ(un(s)− un(r))

)
+ 2CΨΩ(Xn)

≤ LΩ(|s− r|) + 2CΨΩ(Xn) (7.7)

It follows from (7.1a) that

lim sup
n→∞

‖ũn(s)− ũn(r)‖ ≤ LΩ(|s− r|).

Thus ũn is (asymptotically) uniformly equicontinuous and we can apply the Arzelà-Ascoli Theo-
rem (in a slightly refined form, see e.g. [AGS08, Prop. 3.3.1]) to prove its uniform convergence to
a limit u. Passing to the limit in (7.1b) we get an analogous estimate for (t, u).

Statement (7.2) is an immediate consequence of the lower semicontinuity of the Ψ-total varia-
tion and of its representation formula (2.22).

In order to prove (7.3) let us observe that the lower semicontinuity property of the map e
and the above uniform convergence guarantee that the limit function s 7→ et(s)(u(s)) is lower
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semicontinuous. Thanks to (7.1a) we can find a set M ⊂ [a, b] with L 1([a, b] \M) = 0 such that
ũn converges uniformly to u in M and

∀η > 0 ∃n̄ ∈ N : etn(s)(ũn(s)) ≥ et(s)(u(s))− η for every n ≥ n̄, s ∈ M. (7.8)

If G is defined as in (4.11) and [α, β] ⊂ G, (7.8) implies that there exists a positive constant
c > 0 with etn(s)(ũn(s)) ≥ c for L 1-a.a. s ∈ (α, β) and n sufficiently big. Estimate (7.1b) then

yields that un are uniformly V -Lipschitz in [α, β] so that u is also Lipschitz, and therefore L 1-
a.e. differentiable. Since [α, β] is arbitrary, we conclude that u is locally absolutely continuous in
G, and the following Lemma 7.2 yields the lim inf inequality (7.3).

Recalling definitions (4.9) and (4.10) for G and k, assertion (7.4) follows if we check that

lim inf
n→∞

∫ b

a

ktn(s)(ũn(s))ṫn(s) ds ≥
∫ b

a

kt(s)(u(s))ṫ(s) ds,

which is again a consequence of Lemma 7.2 ahead.
In order to prove (7.5) let us observe that Gε(t, ũ;α, v) ≥ max

{
α
εF
∗(et(ũ)), et(ũ)‖v‖

}
. Splitting

the integration domain into (a, b) \G and G a further application of Lemma 7.2 yields

lim inf
n→∞

∫ b

a

Gεn(tn(s), ũn(s); ṫn(s), u̇n(s)) ds

≥ lim inf
n→∞

∫
(a,b)\G

1

εn
F ∗(etn(s)(ũn(s)))ṫn(s) ds+ lim inf

n→∞

∫
G

etn(s)(ũn(s))‖u̇n(s)‖ ds

≥
∫

(a,b)\G
kt(s)(u(s)) ṫ(s) ds+

∫
G

et(s)(u(s)) ‖u̇(s)‖ ds =

∫ b

a

G[t, u; ṫ, u̇](s) ds .

This concludes the proof of Proposition 7.1. �

A simple proof of the following lemma can be found, e.g., in [MRS12b, Lem. 4.3].

Lemma 7.2. Let I be a measurable subset of R and let hn, h,mn,m : I → [0,+∞] be measurable
functions for n ∈ N that satisfy

lim inf
n→∞

hn(x) ≥ h(x) for L 1-a.a. x ∈ I, mn ⇀m in L1(I). (7.9)

Then

lim inf
n→∞

∫
I

hn(x)mn(x) dx ≥
∫
I

h(x)m(x) dx. (7.10)

7.2. Compactness and lower semicontinuity for non-parameterized curves.

Proof of Theorem 3.5. To address assertion (F2) let ϑn ∈ Tt(u0,n, u1,n) be a sequence of
admissible transitions such that∫ 1

0

ft[ϑn;ϑ′n](r) dr ≤ ∆ft(u0,n, u1,n) + εn with εn ≥ 0 and lim
n→∞

εn = ε ≥ 0. (7.11)

By operating the change of variable

sn(r) := cn

(
r +

∫ r

0

ft[ϑn;ϑ′n](w) dw
)
, rn := s−1

n : [0,S]→ [0, 1], un := ϑn ◦ rn : [0,S]→ V,

where cn is a normalization so that S := sn(1) is independent of n, we see that the functions rn
are uniformly Lipschitz and the curve s 7→ (rn(s), un(s)) satisfies (7.1a)–(7.1b) with ũn ≡ un.

We can thus extract subsequences (still denoted by rn, un) converging uniformly to r, u respec-
tively. The previous Proposition 7.1 guarantees that u is an admissible transition connecting u−
to u+ and lim inf inequalities (7.2) and (7.3) show that

ε+ ∆ft(u−, u+) ≥ lim inf
n→∞

∫ 1

0

ft[ϑn;ϑ′n](r) dr ≥
∫ S

0

ft[u; u′](r) dr ≥ ∆ft(u−, u+).
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This proves the lower semicontinuity of the Finsler cost functional. Since we may choose 0 <
εn → ε = 0, the previous inequalities yield that u attains the infimum in (3.11), so that also
assertion (F1) is proved, since the jump estimate (3.14) has been proved in Corollary 6.1.

Let us now consider the last assertion (F3): it is not restrictive to assume u− 6= u+ so that
∆ ≥ Ψ(u+ − u−) > 0. For r ∈ [0, βn − αn] we set

sn(r) := cn

(
r +

∫ αn+r

αn

Ψεn(un(ζ)) + Ψ∗εn(ξn(ζ)) dζ
)
,

tn := s−1
n : [0, 1]→ [αn, βn], un := un ◦ tn, ũn := ũn ◦ tn : [0, 1]→ V,

where cn is a normalization constant such that sn(βn − αn) = 1. Again, it is not difficult to see
that the triple (tn, un, ũn) satisfies the assumptions of Proposition 7.1. Moreover∫ βn

αn

(
Ψεn(un(r))+Ψ∗εn(ξn(r))

)
dr =

∫ S

0

(
Ψ(u̇n(s))+Gεn(tn(s), ũn(s); ṫn(s), u̇n(s))

)
ds. (7.12)

We can thus apply Proposition 7.1 to pass to the limit obtaining an admissible limit curve (t, u) ∈
A (0, 1; [0, T ] ×DE) such that t(s) ≡ t, u(0) = u− and u(1) = u+. In particular u ∈ Tt(u−, u+)
and combining (7.12) with (7.5) we get

∆ = lim
n→∞

∫ 1

0

(
Ψ(u̇n(s)) + Gεn(tn(s), un(s); ṫn(s), u̇n(s))

)
ds ≥

∫ 1

0

(
Ψ[u′](s) + G[t, u; 0, u̇](s)

)
ds

=

∫ 1

0

(
Ψ[u′](s) + et(u(s))‖u̇(s)‖

)
ds ≥ ∆ft(u−, u+).

This concludes the proof of Theorem 3.5. �

The next result is a counterpart to Proposition 7.1 for the lower semicontinuity, but now for
the non-parameterized setting.

Proposition 7.3. Let E,C > 0 and for n ∈ N let un ⊂ AC([0, T ];V ), ũn : [0, T ] → DE,
ξn → [0, T ]→ V ∗ measurable, εn ∈ (0,∞) be sequences satisfying∫ T

0

(
Ψεn(u̇n) + Ψ∗εn(ξn)

)
dt ≤ C, ξn(t) ∈ −∂Et(ũn(t)) for L 1-a.a. t ∈ (0, T ), (7.13a)

Xn := sup
t∈[0,T ]

‖un(t)− ũn(t)‖ → 0, εn ↓ 0 as n ↑ ∞. (7.13b)

Then there exists a subsequence (not relabeled) and a limit function u ∈ BV([0, T ];DE ,Ψ) such
that convergence (3.27) holds, u satisfies the local stability condition (Sloc), and

lim inf
n→∞

∫ s

r

(
Ψεn(u̇εn(t)) + Ψ∗εn(ξεn(t))

)
dt ≥ Varf(u; [r, s]) for every 0 ≤ r < s ≤ T. (7.14)

Proof. To obtain a pointwise convergent subsequence, we proceed as in the proof Proposition 7.1.

Setting Vn(t) :=
∫ t

0
Ψεn(u̇n) dr and using ũn(t) ∈ DE we get a similar estimate as in (7.7):

‖ũn(t)− ũn(s)‖ ≤ Ω
(
Vn(t)−Vn(s)

)
+ 2CΨΩ(Xn) for every 0 ≤ s < t ≤ T, n ∈ N. (7.15)

Since the functions Vn are increasing and uniformly bounded by C, by Helly’s Theorem we can
extract a subsequence (not relabeled) pointwise converging to the increasing function V; passing
to the limit in (7.15) along such a subsequence, we obtain

lim sup
n→∞

‖ũn(t)− ũn(s)‖ ≤ Ω
(
V(t)−V(s)

)
. (7.16)

Applying the compactness result [AGS08, Prop. 3.3.1] we obtain the pointwise convergence of (a
subsequence of) ũn and thus (3.27) follows by (7.13b).

By the strong-weak closedness (2.33) of the graph of (E, ∂E) we have

lim inf
n→∞

Ψ∗εn(ξεn(t)) ≥ kt(u(t)) for L 1-a.a. t ∈ (0, T ).
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Therefore Fatou’s lemma yields
∫ T

0
kt(u(t)) dt <∞. As kt(u(t)) ∈ {0,+∞}, we arrive at

kt(u(t)) = 0 for L 1-a.a. t ∈ (0, T ).

Since k is a lower semicontinuous function we conclude that kt(u(t)) = 0 for every t ∈ [0, T ] \ Ju
and also kt(u(t±)) = 0 whenever t ∈ Ju. Thus u satisfies the local stability condition (Sloc).

To prove (7.14) let us introduce the nonnegative and bounded Borel measures νn in [0, T ] via

νn :=
(

Ψεn(u̇n) + Ψ∗εn(ξn)
)
L 1. (7.17)

Possibly extracting a further subsequence, it is not restrictive to assume that νn ⇀
∗ ν in duality

with C0([0, T ]). Since νn ≥ Ψ(u̇n)L 1 for every interval (α, β) ⊂ [0, T ],

ν([α, β]) ≥ lim sup
n→∞

∫ β

α

Ψ(u̇n) dt ≥ lim inf
n→∞

VarΨ(un; [α, β]) ≥ VarΨ(u; [α, β]) ≥ µd([α, β])

which in particular yields ν ≥ µd (with µ from (2.15)).
Let us now take t ∈ Ju and two sequences αn ↑ t and βn ↓ t such that

lim
n→∞

un(αn) = u(t−), lim
n→∞

un(βn) = u(t+).

Applying assertion (F3) of Theorem 3.5 and the upper semicontinuity property of weak∗ conver-
gence of measures on closed sets, we get

ν({t}) ≥ lim sup
n→∞

νn([αn, βn]) ≥ lim inf
n→∞

∫ βn

αn

(
Ψεn(u̇n) + Ψ∗εn(ξn)

)
dt

≥ ∆ft(u(t−), u(t+)) = µJ({t}), (7.18)

and similarly

lim sup
n→∞

νn([αn, t]) ≥ ∆ft(u(t−), u(t)), lim sup
n→∞

νn([t, βn]) ≥ ∆ft(u(t), u(t+)). (7.19)

It follows from (7.18) that ν ≥ µ. If now 0 ≤ r < s ≤ T we can choose rn > r and sn < s such
that rn ↓ r with un(rn)→ u(r+) and sn ↑ s with un(sn)→ u(s−). Eventually we have

lim inf
n→∞

∫ s

r

(
Ψεn(u̇n) + Ψ∗εn(ξn)

)
dt ≥ lim inf

n→∞
νn([r, rn]) + lim inf

n→∞
νn((rn, sn)) + lim inf

n→∞
νn([sn, s])

≥ ∆fr (u(r), u(r+)) + ν((r, s)) + ∆fs(u(s−), u(s))

≥ ∆fr (u(r), u(r+)) + µ((r, s)) + ∆fs(u(s−), u(s))
(3.23)

= Varf(u; [r, s]). �

7.3. Convergence of the vanishing-viscosity approximations. Here we prove Theorem 3.9,
which states that the limit u of solutions uε to the doubly nonlinear equations (1.1)ε are Balanced
Viscosity (BV) solutions.

Proof of Theorem 3.9. Let (uε)ε ⊂ AC([0, T ];V ) be a family of solutions to (1.1) fulfilling
(3.26) at t = 0: in particular, E0 := supε Ψ(uε(0)) + E0(uε(0)) <∞.

We combine the energy identity (2.35), written for s = 0 and for any t ∈ (0, T ], with the
estimate for Pt in (E.2), obtaining

Ψ(uε(t)) + Et(uε(t)) ≤ Ψ(uε(0)) +

∫ t

0

(
Ψε(u̇ε(r))+Ψ∗ε(ξε(r))

)
dr + Et(uε(t))

= Ψ(uε(0)) + E0(uε(0)) +

∫ t

0

Pr(uε(r)) dr ≤ E0 + CP

∫ t

0

(
Ψ(uε(r)) + Er(uε(r))

)
dr.

Applying a standard version of the Gronwall Lemma (cf. e.g. [Bré73, Lem. A.4]), we deduce that
there exist constants E,C > 0 such that for every ε > 0 and t ∈ [0, T ] we have

Ψ(uε(t)) + Et(uε(t)) ≤ E := E0 exp(CPT ) and

∫ T

0

(
Ψε(u̇ε(r))+Ψ∗ε(ξε(r))

)
dr ≤ C.
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By Proposition 7.3, for every vanishing sequence (εk)k there exists a further subsequence and
u ∈ BV([0, T ];DE ,Ψ) such that convergence (3.27) holds. By lower semicontinuity, we also have

lim inf
k→∞

Et(uεk(t)) ≥ Et(u(t)) for all t ∈ [0, T ]. (7.20)

Furthermore, by (E.2) we have |Pt(uεk(t))| ≤ CPE for all k ∈ N and t ∈ [0, T ]. Therefore,
applying Fatou’s Lemma we obtain

lim sup
k→∞

∫ t

s

Pr(uεk(r))dr ≤
∫ t

s

Pr(u(r))dr for all 0 ≤ s ≤ t ≤ T. (7.21)

We can now pass to the limit in the energy identity (2.35) as k → ∞. Combining (7.14) r = 0
and s = T with (7.20), we immediately get (Ef,ineq). We thus deduce that u is a BV solution.

The energy identity (Ef) satisfied by u on the interval [0, T ] and the elementary property of
real sequences

a, b ∈ R,

{
lim inf
n→∞

an ≥ a

lim inf
n→∞

bn ≥ b,
lim sup
n↑∞

(an + bn) ≤ a+ b =⇒

{
lim
n→∞

an = a

lim
n→∞

bn = b,
(7.22)

yield that

lim
k→∞

ET (uεk(T )) = ET (u(T )), lim
k→∞

∫ T

0

(
Ψεk(u̇εk)+Ψ∗εk(ξεk)

)
dr = Varf(u; [0, T ]). (7.23)

A further application of (7.14) on the intervals [0, t] and [t, T ] combined with (7.20), the additivity
of the total variation, and (7.22) provides convergences (3.28) and (3.29). Hence, Theorem 3.9 is
proved. �

Convergence of the discrete viscous approximations. Let us consider the time-incremental
minimization problem (IPε,τ ), giving rise to the discrete solutions (Unτ,ε)

N
n=1 which fulfill the

discrete Euler equation

∂Ψ

(
Unτ,ε − Un−1

τ,ε

τ

)
+ ∂Φ

(
ε
Unτ,ε − Un−1

τ,ε

τ

)
+ ∂Etn(Unτ,ε) 3 0 for all 1, . . . , Nτ . (7.24)

We denote by Uτ,ε the left-continuous piecewise constant interpolants, thus taking the value Un
τ,ε

for t ∈ (tn−1, tn], and by Uτ,ε the piecewise affine interpolant

Uτ,ε(t) :=
t− tn−1

τ
Un
τ,ε +

tn − t
τ

Un−1
τ,ε for t ∈ [tn−1, tn], n = 1, . . . , Nτ . (7.25)

As in [MRS13], we also consider the variational interpolant Ũτ,ε of the elements (Un
τ,ε)

N
n=1, first

introduced by E. De Giorgi in the frame of the Minimizing Movements approach to gradient

flows (see [DGMT80, De 93, Amb95, AGS08]). The functions Ũτ,ε : [0, T ] → V are defined by

Ũτ,ε(0) = uε(0) and

for t = tn−1 + r ∈ (tn−1, tn], Ũτ,ε(t) ∈ Argmin
U∈D

{
rΨε

(
U −Un−1

τ,ε

r

)
+ Et(U)

}
, (7.26)

choosing the minimizer in (7.26) so that the map t 7→ Ũτ (t) is Lebesgue measurable in (0, T ).

Notice that we may assume Uτ,ε(tn) = Uτ,ε(tn) = Ũτ,ε(tn) for every n = 1, . . . , Nτ . Moreover,

with the variational interpolants Ũτ,ε we can associate a measurable function ξ̃τ,ε : (0, T ) → V ∗

fulfilling the Euler equation for the minimization problem (7.26), i.e.

ξ̃τ,ε(t) ∈ −∂Et(Ũτ,ε(t)) ∩

(
∂Ψε

(
Ũτ,ε(t)−Un−1

τ,ε

t− tn−1

))
∀ t ∈ (tn−1, tn], n = 1, . . . , Nτ , (7.27)

cf. [MRS13] for further details. Finally, we also set tτ (t) := tk for t ∈ (tk−1, tk]. Observe that,
for every t ∈ [0, T ] there holds tτ (t) ↓ t as τ ↓ 0.

We recall now a list of important properties of the discrete solutions, stated in [MRS13, Sec. 6].
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Proposition 7.4. For every ε > 0 and τ > 0 the discrete energy inequality∫ tτ (t)

tτ (s)

(
Ψε(U̇τ,ε)+Ψ∗ε (ξ̃τ,ε)

)
dr + Etτ (t)(Uτ,ε(t)) ≤ Etτ (s)(Uτ,ε(s)) +

∫ tτ (t)

tτ (s)

Pr(Ũτ,ε(r))dr (7.28)

holds for every 0 ≤ s ≤ t ≤ T . If moreover Ψ(U0
τ,ε) + E0(U0

τ,ε) ≤ E0 for all τ > 0 and ε > 0,
then there exist constants E,S > 0 such that for every τ, ε > 0 we have

sup
t∈[0,T ]

(
G(Uτ,ε(t)) + G(Ũτ,ε(t))

)
≤ E , (7.29)

VarΨ(Uτ,ε; [0, T ]) ≤
∫ T

0

Ψε(U̇τ,ε(s)) ds ≤ S,
∫ T

0

Ψ∗ε (ξ̃τ,ε(s)) ds ≤ S, (7.30)

sup
t∈[0,T ]

(
‖Uτ,ε(t)−Ũτ,ε(t)‖+ ‖Uτ,ε(t)−Uτ,ε(t)‖

)
≤ S ω

( τ
Sε

)
, (7.31)

where ω(r) := sup
{
v ∈ [0,∞) : r F (r−1v) ≤ 1

}
satisfies limr↓0 ω(r) = 0, in view of the superlinearity of F .

Proof of Theorem 3.10. We argue exactly as in the proof of Theorem 3.9, observing that

Proposition 7.4 enables us to apply Proposition 7.3 with the choices uk := Uτk,εk , ũk := Ũτk,εk

along any sequences τk, εk satisfying (3.31).
Up to the extraction of a suitable subsequence, Proposition 7.3 shows that there exist u ∈

BV([0, T ];DE ,Ψ) satisfying the local stability condition (Sloc) such that

Uτk,εk(t), Uτk,εk(t), Ũτk,εk(t)→ u(t) in V for all t ∈ [0, T ], (7.32)

sup
t∈[0,T ]

(
‖Uτk,εk(t)− Ũτk,εk(t)‖+ ‖Uτk,εk(t)−Uτk,εk(t)‖

)
→ 0. (7.33)

We can also pass to the limit as k → ∞ in the discrete energy inequality (7.28) with s = 0.
Indeed, we use convergences (7.32), the lower semicontinuity of the energy E, and the lim inf
inequality (7.14) to obtain (Ef,ineq). Thus, by Corollary 3.12 we conclude that u is a BV solution
to the RIS (V,E,Ψ,Φ).

The proof of the further energy convergence (3.33) follows by the very same lines as in the end
of the proof of Theorem 3.9, see (7.22)–(7.23). Thus, Theorem 3.10 is proved. �

Proof of Theorem 4.3. Let (tε, uε)ε be a family of rescaled viscous solutions as in the state-
ment of Theorem 4.3. Exploiting condition (4.18) as well as the energy identity (4.6) we can
apply Proposition 7.1 in the interval [0,S] (with ũn ≡ un and Gn = [0,S]) and find a vanish-
ing subsequence (εn)n and a parameterized curve (t, u) such that convergences (4.19) hold. The
second part of (E.2), the closedness-continuity property (2.33), and Lemma 7.2 yield

lim inf
k→∞

Etεk (s)(uεk(s)) ≥ Et(s)(u(s)) for all s ∈ [0,S],

lim sup
k→∞

∫ s1

s0

Pr(uεk(r))ṫεk(r)dr ≤
∫ s1

s0

Pr(u(r))ṫ(r)dr for all 0 ≤ s0 < s1 ≤ S.
(7.34)

Combining (7.34) with (7.2) and (7.5), we pass to the limit as εk → 0 in the energy identity (4.6)
and conclude that (t, u) fulfill the energy estimate (4.24) with a = 0 and b = S. Therefore thanks
to Corollary 4.5 we have that (t, u) is a parameterized solution to the RIS (V,E,Ψ,Φ).

The enhanced convergences (4.20) and (4.21) can be proved with similar arguments as in the
end of the proof of Theorem 3.9.

In order to show that (t, u) satisfies the m-normalization condition (4.15), we observe that
ṫε ⇀∗ t and ftεk (uεk , u̇εk) ⇀∗ f = m − ṫ in L∞(0,S). The liminf estimates (7.2) and (7.3)

(localized on arbitrary intervals of [0,S]) yield that f ≥ h := Ψ(u̇) + G[t, u; ṫ, u̇] L 1-a.e. in (0,S).
Moreover, ftε(uε, u̇ε) ≤ hε := Ψ(u̇ε) + Gε(tε, uε; ṫε, u̇ε) and convergence (4.21) implies

hεk ⇀ h in the sense of distributions of D ′(0,S),
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so that f ≤ h. We conclude that f = h and ṫ + h = m, and Theorem 4.3 is proved. �

7.4. Uniform BV-estimates for discrete Minimizing Movements. The aim of this section
is to prove Theorem 3.21, i.e. the uniform bound

∃C > 0 ∀ τ > 0, ε > 0 :

Nτ∑
n=1

‖Un
τ,ε −Un−1

τ,ε ‖ ≤ C (7.35)

for all discrete Minimizing Movements, whenever the stronger structural assumptions (3.55)–
(3.57) hold and the discrete initial data satisfy (3.58). We start with an elementary discrete
Gronwall-like lemma.

Lemma 7.5 (A discrete Gronwall lemma). Let γ > 0 and let (an), (bn) ⊂ [0,+∞) be positive
sequences, satisfying

(1+γ)2 a2
n ≤ a2

n−1 + bnan ∀n ≥ 1. (7.36)

Then, for all k ∈ N there holds

k∑
n=1

an ≤
1

γ

(
a0 +

k∑
n=1

bn

)
. (7.37)

Proof. We first show that assumption (7.36) yields

(1+γ)an ≤ an−1 + bn. (7.38)

Indeed, (7.38) is trivially true if (1+γ)an ≤ an−1. If (1+γ)an > an−1 we divide both sides in

(7.36) by (1+γ)an and estimate the right-hand side by
a2n−1

(1+γ)an
+ bn

1+γ < an−1 + bn. Summing

(7.38) from n = 1 to k and setting Sk :=
∑k
n=1 an we find (1+γ)Sk ≤ a0 + Sk−1 +

∑k
n=1 bn,

which yields (7.37) since Sk−1 ≤ Sk. �

Proof of Theorem 3.21. From estimate (7.29) it follows that Un
τ,ε ∈ DE for all n and all

ε, τ > 0. Therefore (3.56)–(3.57) (and a fortiori (3.60)) hold with constants αE , ΛE , LE .
Notice moreover that setting U−1

τ,ε := 0, the discrete Euler equation (7.24) is satisfied also for

n = 0. Let us set Vn
τ,ε := τ−1(Un

τ,ε −Un−1
τ,ε ), Ξnτ,ε ∈ −∂Etn(Un

τ,ε) ∩ ∂Ψε(V
n
τ,ε) according to (7.24).

We subtract (7.24) at n from (7.24) at n+ 1, and take the duality with Vn+1
τ,ε , observing that the

generalized convexity condition (3.60) yields

〈Ξn+1
τ,ε − Ξnτ,ε,V

n+1
τ,ε 〉 ≤ −2αEτ‖Vn+1

τ,ε ‖2 + 2τΛEΨ∧(Vn+1
τ,ε )‖Vn+1

τ,ε ‖+ 2τ‖Vn+1
τ,ε ‖. (7.39)

On the other hand the homogeneity of Ψ and Φ yield

〈∂Ψ(Vn+1
τ,ε ),Vn+1

τ,ε 〉 = Ψ(Vn+1
τ,ε ), 〈∂Ψ(Vn

τ,ε),V
n+1
τ,ε 〉 ≤ Ψ(Vn+1

τ,ε ),

〈∂Φ(εVn+1
τ,ε ),Vn+1

τ,ε 〉 = ε‖Vn+1
τ,ε ‖2, 〈∂Φ(εVn

τ,ε),V
n+1
τ,ε 〉 ≤

ε

2
‖Vn+1

τ,ε ‖2 +
ε

2
‖Vn

τ,ε‖2.

and therefore
〈Ξn+1
τ,ε − Ξnτ,ε,V

n+1
τ,ε 〉 ≥

ε

2
‖Vn+1

τ,ε ‖2 −
ε

2
‖Vn

τ,ε‖2. (7.40)

Combining (7.39) and (7.40) we get

‖Vn+1
τ,ε ‖2 +

4ατ

ε
‖Vn+1

τ,ε ‖2 ≤ ‖Vn
τ,ε‖2 +

4τ

ε

(
LE + ΛEΨ∧(Vn

τ,ε)
)
‖Vn

τ,ε‖,

Observe that the above inequality can be rewritten in the form of (7.36) with the choices an =
‖Vn

τ,ε‖, bn = 4τ
ε

(
LE + Ψ(Vn

τ,ε)
)
, and γ := (1 + 4ατ/ε)1/2−1. Using a0 = ‖V0

τ,ε‖ = 0 and applying
Lemma 7.5 elementary computations yield

Nτ−1∑
n=1

τ‖Vn
τ,ε‖ ≤

(
4Q+

2

α

)(
TLE + E),

which is the desired estimate (3.53). �
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[MRS12a] A. Mielke, R. Rossi, and G. Savaré. Bv solutions and viscosity approximations of rate-independent

systems. ESAIM Control Optim. Calc. Var., 18, 36–80, 2012.
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