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Abstract

We use a discrete approximation of the motion by crystalline curvature to define
an evolution of sets from a single point (nucleation) following a criterion of “max-
imization” of the perimeter, formally giving a backward version of the motion by
crystalline curvature. This evolution depends on the approximation chosen.

Geometric variational evolutions, in particular curvature-based motions, may be studied
using an implicit-time scheme proposed by Almgren, Taylor and Wang. Following the
formal consideration that curvature can be seen as the variation of the perimeter, they
defined a time-discrete trajectory Eτk , where τ is a time step, Eτ0 is an initial set and Eτk
is a minimizer of

min
{
P (E) +

1
τ
D(E,Eτk−1)

}
, (1)

where P is the Euclidean perimeter, D is a dissipation term accounting for the L2-
distance of the boundary of E from that of Eτk−1. We can read (1) as follows: the set
Eτk “contracts” by minimizing the perimeter subject to a penalization of its “distance”
from Eτk−1. A suitable limit of these time-discrete trajectories gives motion by mean
curvature [3]. The same scheme can be repeated taking as P a crystalline perimeter, to
obtain motion by crystalline curvature in dimension two [2].

In this paper, we consider the opposite problem of defining a motion when starting
from the same discrete schemes for sets which “expand” by maximizing the perimeter
subject to a penalization of their distance from the previous set. Formally, this involves
considering problems of the form

min
{
−P (E) +

1
τ
D(E,Eτk−1)

}
, (2)

which can be seen as a “backward” version of the previous ones if the index k is considered
as parameterizing negative time (see [5] Section 10.2). Unfortunately, this problem is
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ill-posed, giving the trivial infimum −∞ at the first step. Following a suggestion by
J.W. Cahn, we consider a discrete approximation of P in the crystalline case, and use it
to define a backward crystalline-curvature motion with prescribed extinction point (or,
equivalently, nucleation of the motion defined for positive times).

For crystalline curvature flow, the energy to be considered is

P (A) =
∫
∂A
‖ν‖1dHd−1,

with domain the family of sets of finite perimeter in Rd, d ≥ 2, where ∂A is the reduced
boundary of A, ν is the measure-theoretical normal to ∂A, ‖ν‖1 =

∑d
i=1 |νi| and Hd−1

is the Hausdorff (d− 1)-dimensional measure [4]. The approximating energies are

Pε(A) = Hd−1(∂A), A ∈ Aε

with domain all unions of coordinate cubes of centres in εZd and side length ε; i.e.,

Aε =
{⋃
i∈I

(εi+ εQ) : I ⊂ Zd
}
, Q = [−1/2, 1/2]d.

The functionals Pε can be seen as discrete “ferromagnetic” energies (defined directly on
subsets I of Zd) and Γ-converge to P (see [1]). Minimizing movements along Pε have
been studied by Braides, Gelli and Novaga [6] and they give the crystalline curvature
flow upon taking ε << τ .

We consider initial data Eτ,ε,λ0 = Qε = εQ (which, in the discrete setting, all corre-
spond to the singleton {0}), and define iteratively Eτ,ε,λk as a minimizer of

min
{
− 1
λ
Pε(E) +

1
τ
Dε(E,E

τ,ε,λ
k−1 )

}
, (3)

where

Dε(E,E′) =
∑

i∈Zd∩ 1
ε
E

εd+1d∞

(
i,Zd ∩ 1

ε
E′
)

+
∑

i∈Zd∩ 1
ε
(E′\E)

εd+1d∞

(
i,Zd \ 1

ε
E′
)
, (4)

d∞(i, I) = min{‖i− i′‖∞ : i′ ∈ I} . (5)

Note the new parameter λ, which does not change the nature of the problems and whose
introduction can be interpreted as a time-scaling of the trajectories with λ = 1 (see [5]
Chapter 10).
Choice of scalings. We first determine a correct scaling for λ and τ in terms of ε in
order to have a non-trivial limit. To this end, we note that the minimal variation of the
energy in (3) from the set Eτ,ε,λk−1 corresponds to the addition of an ε-square with no side
in common with Eτ,ε,λk−1 . The variation is

−2d
λ
εd−1 +

1
τ
Kεd+1 (6)

2



with 0 6= K ∈ N. This quantity may be negative if and only if

1 ≤ 2dτ
λε2

. (7)

The relative scaling of ε, τ and λ must be such that this condition be satisfied.
We treat the case

τ/ε = γ ∈ (0,+∞), λε = α ∈ (0,+∞), (8)

so that (7) corresponds to
1
2d
≤ γ

α
. (9)

The convergence result. We can now describe the behaviour of the minimizing-movement
scheme in (3).
Theorem (nucleation). Let τ, ε and λ satisfy condition (8); correspondingly, let
Eτ (t) = Eτ,ε,λbt/τc, with Eτ,ε,λk given by (3) with initial data Eτ,ε,λ0 = εQ, and let

2dγ
α
6∈ N (10)

be satisfied. Then, for all fixed t, the Kuratowsky limit of the family Eτ (t) as τ → 0 is
a square of centre 0 and side length 2

⌊2dγ
α

⌋
t. In particular:

(a) (pinning threshold) if (9) is not satisfied, then the motion is trivial: E(t) = {0};
(b) (linear expansion) if (9) and (10) are satisfied, then the motion is given by a

family of expanding cubes whose sides move with constant velocity b2dγα
⌋
.

Remark. (i) if 2dγ
α ∈ N, then we obtain that the sets E are contained in the cubes

moving with velocity 2dγ
α , and contain the cubes moving with velocity 2dγ

α − 1, but need
not be cubes themselves. This is due to the non-uniqueness of the minimal sets in (3);

(ii) contrary to the forward case, in which crystalline motion has been described
only in dimension two (see [8]), due to its simpler form the limit can be described in all
dimensions d;

(iii) the problem can be set for different distances dϕ (depending on a norm ϕ) in
the place of the ∞-distance in (5). In that case, the sets E(t) are not cubes, but are
homothetic to the convex envelope E of the set of points i ∈ Zd such that

dϕ(i, 0) ≤ 2d
γ

α
(11)

(as above, this description does not hold if we have equality in (11) for some i), and
expand with constant velocity. Note that, even for the Euclidean distance, such sets are
non-trivial polyhedra;

(iv) note that for general distances, the set E may be of dimension lower than d.
For example, in dimension two, and ϕ a sufficiently asymmetric norm, E(t) may be a
linearly growing segment.
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We give a brief proof of the theorem as stated in this easier case, and after that
comment the more technical points for the changes in the proof in the general case.
Proof. First note that if (9) is not satisfied, then every competing set E in the definition
of Eτ,ε,λ1 gives a strictly larger value than the set Eτ,ε,λ0 ; hence, each discrete trajectory
is trivial, and so is their limit.

Suppose now that (9) is satisfied. We then prove that Eτ,ε,λk is a (even) checkerboard
structure containing εQ; i.e., it is the union of cubes ε(i + Q) with i ∈ Zd and ‖i‖1 =
|i1|+ · · ·+ |id| even (for short, we say that i is even). Moreover,

{i ∈ Zd : εi ∈ Eτ,ε,λk } =
{
i ∈ Zd even , ‖i‖∞ ≤

⌊2dγ
α

⌋
k
}
. (12)

The statement above can be proved inductively by showing that

{i ∈ Zd : εi ∈ Eτ,ε,λk } =
{
i ∈ Zd even , d∞

(
i,

1
ε
Eτ,ε,λk−1

)
≤
⌊2dγ
α

⌋}
. (13)

To this end, it suffices to note that the contribution of the energy of a competitor E
corresponding to points i with d∞

(
i, Eτ,ε,λk−1

)
= j for 1 ≤ j ≤ 2dγ/α is minimal when no

two such points have a nearest-neighbour in E, while if j > 2dγ/α it is minimal if E
contains no such point. This shows that Eτ,ε,λk \ Eτ,ε,λk−1 corresponds to a checkerboard
structure. Since the contribution of even and odd checkerboard structure outside Eτ,ε,λk−1

is equal, and the even checkerboard structure allows to leave Eτ,ε,λk−1 unchanged, we get
the thesis.
Remark. The proof above relies heavily on the structure of the l∞ distance, for which
all sublevel sets in the proof are squares. For a general norm ϕ this is not true; as a
consequence, in particular we might not have that the minimal sets Eτ,ε,λk correspond
to the same checkerboard structure (even or odd), and they might ‘oscillate’ between
even or odd checkerboards. This may happen only for a finite number of indices k;
eventually, they stabilize and after some k0 theu have the same parity (which may be
the odd checkerboard, not containing then the point 0). At this point, we may apply
an induction argument as above. Note, however, that in this case the evolving sets are
homothetic only in the limit, while the discrete sets are not homothetic at ε, τ, λ fixed.

The proofs and examples in the general case will appear in [7].
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