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Abstract

We prove higher summability and regularity of Γ
(
f
)

for functions f in spaces satisfying

the Bakry-Émery condition BE(K,∞).
As a byproduct, we obtain various equivalent weak formulations of BE(K,N) and

we prove the Local-to-Global property of the RCD∗(K,N) condition in locally compact
metric measure spaces (X, d,m), without assuming a priori the non-branching condition
on the metric space.
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1 Introduction

Curvature-dimension conditions for metric-measure spaces. The theory of syn-
thetic Ricci lower bounds has been so far developed along two lines: the Bakry-Émery
approach [9], see also [8, 10], uses the formalism of Dirichlet forms (and the heat flow associ-
ated with the Dirichlet form) and it is based on the so-called BE(K,N) condition, formally
expressed in differential terms by

Γ2(f) ≥ K Γ
(
f
)

+
1

N
(∆f)2, where Γ2(f) :=

1

2
∆Γ
(
f
)
− Γ

(
f,∆f

)
. (1.1)

Here Γ is the Carré du Champ representing the energy density of a strongly local Dirichlet
form

E(f, g) :=

∫
X

Γ
(
f, g
)

dm f, g ∈ D(E) ⊂ L2(X,m), (1.2)

and ∆ is the associated selfadjoint linear operator in the Lebesgue space L2(X,m) (see e.g. [11,
19]). A fundamental example is of course given by Euclidean measure spaces endowed with
the classical Dirichlet energy.

The more recent approach of Lott-Villani [25] and Sturm [32, 33], based on the so-
called CD(K,N) condition, makes sense for metric measure spaces and it is based on convexity
inequalities fulfilled by suitable “entropies” along geodesics for the Wasserstein distance. In
the case N <∞, also the more recent variant CD∗(K,N), see [6], should be considered, which
provides an (a priori) weaker condition when K 6= 0.

Since these theories formalize “local” conditions (namely the lower bound on the Ricci
tensor and the upper bound on the dimension) with “nonlocal” tools, for both theories it
is important to ascertain the validity of the so-called Global-to-Local and Local-to-Global
properties. Since this theme has been more investigated on the CD(K,N) side, we confine
our discussion to this theory, although the equivalence results that we shall mention later
on could be used to read some results also from the BE(K,N) side. Typically, the Global-
to-Local property requires some strong convexity property (either of the entropy or of the
subdomain under consideration), see for instance [35, Proposition 30.1], while the Local-to-
Global property has been established under the non-branching assumption, first in CD(K,∞)
spaces [32], then in CD(0, N) spaces [35, Theorem 30.37] and eventually in CD∗(K,N) spaces
[6] (see also [13] for recent progress on the globalization for CD(K,N)). On the other hand,
since the non-branching assumption is unstable under Gromov-Hausdorff convergence, it is
desirable to have stronger axiomatizations of the CD(K,N) theory which retain stability and
Local-to-Global properties and do not involve the non-branching assumption. Actually, some
results of the CD(K,N) theory initially proved under the non-branching assumption have
been recently proved by Rajala without making use of this assumption [27], [28]. But, a
recent remarkable paper by the same author [29] provides for all K ∈ R and N ≥ 1 a (highly
branching) compact metric measure space satisfying CD∗(0, 4) = CD(0, 4) locally, but not
CD(K,∞) (and therefore not even CD(K,N)).

The case of RCD∗(K,N) spaces. The main goal of this paper is to prove the Local-to-
Global property in the class of locally compact Riemannian metric measure spaces RCD∗(K,N)
independently of non-branching assumptions. Local compactness is in fact always true in the
finite dimensional case N <∞ [33, Corollary 2.4], so that it is a restrictive assumption only
in the case N =∞.
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The RCD axiomatization can be obtained from the CD one by just adding the requirement
that the metric measure structure is infinitesimally Hilbertian (an assumption suggested by
Cheeger-Colding in [14, Appendix 2]); formally, this translates into the assumption that
the so-called Cheeger’s energy Ch is a quadratic form.

The class of RCD(K,∞) has been introduced in [3] (and then improved in [1]), while
its dimensional counterparts RCD∗(K,N) have been studied in the more recent papers [18],
[5]. Since in the RCD spaces Ch can also be viewed as a Dirichlet form, a more precise
connection between the RCD∗ and the BE sides of the theory is possible and can indeed be
established: without entering here in too many technical details, we just mention that in [3] it
was proved that BE(K,∞) holds for RCD(K,∞) spaces, while the implication from BE(K,∞)
to RCD(K,∞) has been established in [4] under mild regularity assumptions on the metric
measure structure; the dimensional counterparts of this equivalence are given in [18], [5].

Using these connections and partitions of unity, we can read the local RCD property as
a local BE property and then use partitions of unity to globalize it; eventually we use the
equivalence in the converse direction to obtain the RCD property globally.

Integral formulation of BE(K,∞) and gradient estimates. Even if the classical dif-
ferential formulation (1.1) of the Bakry-Émery condition is clearly local, the weak-integral
BE(K,N) condition introduced in [4] has a global character: the corresponding Γ2 tensor also
involves a test function ϕ in the multilinear form

Γ2(f ;ϕ) :=

∫
X

(1

2
Γ(f)∆ϕ− Γ

(
f,∆f

)
ϕ
)

dm, f, ∆f ∈ D(E), ϕ,∆ϕ ∈ L∞(X,m), (1.3)

and the resulting BE(K,N) condition

Γ2(f ;ϕ) ≥
∫
X

(
K Γ

(
f
)

+
1

N
(∆f)2

)
ϕdm for every ϕ ≥ 0, (1.4)

is thus of global type and involves test functions ϕ which belong to the domain of ∆ in
L∞. The formulation based on (1.3) and (1.4) is carefully adapted to deal with the lowest
regularity and summability properties of f, ϕ, that should be both sufficient to give sense to
the Γ2 tensor and invariant with respect to the action of the Markov semigroup. The latter
is a crucial requirement that is intrinsically global, not satisfied by the stronger differential
formulation as in (1.1) which would impose Γ

(
f
)
∈ D(∆). In fact, the typical approach

requiring the existence of an algebra of sufficiently smooth functions where all the relevant
computations can be carried on, is quite useful to deal with many concrete examples but it
does not seem to be well adapted to the non-smooth framework of general metric measure
spaces.

Therefore finding useful localizations of BE(K,N) is not a trivial issue, since it involves
the summability of ∆ϕ and the regularity of ∆f and of Γ

(
f
)
. Recall that a product with a

test function χ affects ∆f through the Leibniz formula

∆(fχ) = χ∆f + f∆χ+ 2Γ
(
f, χ

)
, (1.5)

thus showing the importance to secure existence of good classes of cutoff functions χ with
χ,Γ

(
χ
)
, ∆χ ∈ L∞(X,m) (a problem addressed in Lemma 6.7) and general conditions ensuring

Γ
(
f
)
∈ D(E). Similar problems arise with the chain rule

∆η(f) = η′(f)∆f + η′′(f)Γ
(
f
)
, η ∈ C2(R). (1.6)
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It is therefore natural to investigate higher integrability and regularity properties of Γ(f) (see
Theorems 3.1 and 5.5) that are interesting by themselves and will also play a role in our
forthcoming paper [5].

Improving some results of [31], in this paper we show that in BE(K,∞) spaces functions
f ∈ L2 ∩ L∞(X,m) with ∆f ∈ L2(X,m) satisfy the extra integrability property for Γ

(
f
)

Γ
(
f
)
∈ L2(X,m),

∫
X

Γ
(
f
)2

dm ≤ AK‖f‖2L∞(X,m)

∫
X

(
f −∆f

)2
dm. (1.7)

In addition, if f and ∆f belong to L4(X,m) then Γ
(
f
)

belongs to the domain of the Dirichlet
form E and satisfies

Γ
(
f
)
∈ D(E),

∫
X

(
Γ
(
f
)2

+ Γ
(
Γ
(
f
)))

dm ≤ BK
∫
X

(
f −∆f

)4
dm. (1.8)

The constants AK , BK in the previous estimates depend only on K. These properties allow
for simpler formulation of (1.4) and are the starting points for studying its localization, since
we will show that the same estimates hold even if X is covered by a collection of spaces
satisfying BE(K,∞).

Plan of the paper. The paper is organized as follows: in Section 2 we will work in the
general framework of Dirichlet spaces, without assuming that the Dirichlet form E is induced
by the Cheeger energy and actually avoiding any reference to a metric structure (so that the
role of modulus of the weak gradient is played by

√
Γ(f)); more precisely we just assume

that (X, τ) is a Polish topological space endowed with a σ-finite reference Borel measure m
and a strongly local and symmetric Dirichlet form E on L2(X,m) enjoying a Carré du Champ
Γ : D(E)×D(E)→ L1(X,m) and a Γ-calculus (see e.g. [4, § 2]). In this framework, under the
BE(K,∞) condition, we establish useful higher integrability properties for Γ(f) as (1.7) by an
interpolation argument (Section 3) and the extra-regularity property (1.8) (Section 5). These
properties will be used in [5] and in the second part of the paper to prove the Local-to-Global
property. Still in the same framework, in Section 4 we provide equivalent formulations and
implications of the BE(K,N) property that play a role in this and in the companion paper
[5].

In the second part, composed by Sections 6 and Section 7, we will work instead with
metric measure spaces and we will use the previous estimates to prove the Local-to-Global
property. In Section 6 we discuss basic localization properties of gradients and Laplacians
and show how curvature lower bounds can be used to obtain existence of cutoff functions with
bounded Laplacian.

In Section 7 we recall the precise definitions of RCD∗(K,N) spaces, the equivalence results
with BE(K,N), and we carry on the proof of the Local-to-Global property in case the space
(X, d,m) is locally compact.

Acknowledgement. The authors acknowledge the support of the ERC ADG GeMeThNES
and warmly thank Tapio Rajala for his comments on a preliminary version of this paper.

2 Notation, preliminaries and the Bakry-Émery condition

In this section we will recall the basic assumptions related to the Bakry-Émery condition.
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Strongly local Dirichlet forms and Γ-calculus. The natural setting is provided by a
Polish topological space (X, τ) endowed with a σ-finite reference Borel measure m with full
support (i.e. supp(m) = X) and

a strongly local, symmetric Dirichlet form E on L2(X,m) enjoying

a Carré du Champ Γ : D(E)×D(E)→ L1(X,m) and

generating a mass-preserving Markov semigroup (Pt)t≥0 on L2(X,m),

(2.1)

(see e.g. [4, §2]). None of the estimates we are discussing in this section really needs an
underlying compatible metric structure, as the one discussed in [4, §3]. We refer to [4, §2] for
the basic notation and assumptions; in any case, we will apply all the results to the case of
the Cheeger energy (thus assumed to be quadratic) of the metric measure space (X, d,m) and
we will use the calculus properties of the Dirichlet form that are related to the Γ-formalism.

In the following we call V the Hilbert space made by D(E) ⊂ L2(X,m) endowed with the
scalar product

(f, g)V :=

∫
X

(
fg + Γ(f, g)

)
dm.

The Laplace operator −∆ : V→ V′ and its perturbation −∆λ are respectively defined as

〈−∆f, g〉 := E(f, g), −∆λf = λf −∆f for every f, g ∈ V. (2.2)

The operator ∆ is the generator of the Markov semigroup (Pt)t≥0 and its realization in
L2(X,m) is an unbounded selfadjoint nonnegative operator with domain DL2(∆).

We will denote by

DLp(∆) :=
{
f ∈ V ∩ Lp(X,m) : ∆f ∈ L2 ∩ Lp(X,m)

}
, p ∈ [1,∞], (2.3)

its domain as unbounded operator in Lp(X,m), endowed with the norm ‖f‖V+‖f−∆f‖L2∩Lp .
This choice of the norm is justified by the inequalities

λf −∆f = g ∈ Lp(X,m) =⇒ λ‖f‖Lp ≤ ‖g‖Lp , ‖∆f‖Lp ≤ 2‖g‖Lp = 2‖∆λf‖Lp (2.4)

for all λ ≥ 0. In turn, the implication (2.4) follows by the fact that the resolvents λ(λ−∆)−1,
λ > 0, associated to a Dirichlet form are sub-Markovian (see e.g. [26, Def. 4.1 and Thm. 4.4])
and therefore contractive in every Lp(X,m).

The Γ2 tensor and the Bakry-Émery condition. We introduce the multilinear form
Γ2 given by

Γ2(f, g;ϕ) :=
1

2

∫
X

(
Γ
(
f, g
)

∆ϕ−
(
Γ
(
f,∆g

)
+ Γ

(
g,∆f

))
ϕ
)

dm (f, g, ϕ) ∈ D(Γ2), (2.5)

where D(Γ2) := DV(∆)× DV(∆)× DL∞(∆), and DV(∆) =
{
f ∈ V : ∆f ∈ V

}
. When f = g

we also set

Γ2(f ;ϕ) := Γ2(f, f ;ϕ) =

∫
X

(1

2
Γ
(
f
)

∆ϕ− Γ
(
f,∆f

)
ϕ
)

dm, (2.6)

so that

Γ2(f, g;ϕ) =
1

4
Γ2(f + g;ϕ)− 1

4
Γ2(f − g;ϕ). (2.7)
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The multilinear form Γ2 provides a weak version (inspired by [8, 10]) of the Bakry-Émery
condition [9, 7]. In the sequel, given f : X → R, we denote by supp(f) the smallest closed set
C ⊂ X such that f = 0 m-a.e. in X \C; this way, the definition of support is independent of
modifications of f in m-negligible sets.

Definition 2.1 (Bakry-Émery condition). Let K ∈ R, N ∈ [1,∞], and ν := 1
N ∈ [0, 1]. We

say that the strongly local Dirichlet form E satisfies the BE(K,N) condition, if it admits a
Carré du Champ Γ : D(E)×D(E)→ L1(X,m) and for every (f, ϕ) ∈ DV(∆)×DL∞(∆) with
ϕ ≥ 0 there holds

Γ2(f ;ϕ) ≥ K
∫
X

Γ
(
f
)
ϕdm + ν

∫
X

(∆f)2ϕdm. (2.8)

We say that E satisfies the BEloc(K,N) condition if (2.8) holds for all (f, ϕ) ∈ DV(∆) ×
DL∞(∆) with ϕ ≥ 0 compactly supported.

Remark 2.2 (On the global character of the BE(K,N) condition). Notice that BE(K,N)
has a global nature, related to the fact that an integration by parts is understood in the weak
formulation (2.6) of Bochner’s inequality; for this reason, even the issue of the Global-to-Local
property is delicate in this framework, since the passage to a smaller open set U ⊂ X changes
the Dirichlet form and the action of the Laplacian operator (unless one deals with functions
compactly supported in U , compare with Remark 6.6). As a matter of fact, the localization
seems to involve some “metric” assumption on U , relative to the distance dE induced by E,
see Proposition 6.4(c). For this reason, in the discussion of the Local-to-Global and Global-
to-Local properties, we will deal with metric measure spaces under a metric version of the
BE(K,N) condition (see Definition 6.1), although the equivalence results of [4], [18], [5] could
be used to translate back the result to the BE formalism. �

Remark 2.3 (Pointwise gradient estimates for the heat flow under BE(K,∞)). When N =
∞, condition (2.8) is in fact equivalent (see [4, Corollary 2.3]) to either of the following
pointwise gradient estimates

Γ
(
Ptf
)
≤ e−2Kt Pt

(
Γ
(
f
))

m-a.e. in X, for every f ∈ V, (2.9)

2I2K(t)Γ
(
Ptf
)
≤ Ptf

2 −
(
Ptf
)2

m-a.e. in X, for every t > 0, f ∈ L2(X,m), (2.10)

where IK denotes the real function

IK(t) :=

∫ t

0
eKr dr =

{
1
K (eKt − 1) if K 6= 0,

t if K = 0. �

3 Interpolation estimates: extra integrability of Γ(f)

Let us now consider the semigroup (Pλt )t≥0 generated by the operator ∆λ := ∆− λ, λ ≥ 0,

Pλt f := exp(t∆λ)f = e−λt exp(t∆)f = e−λt Ptf. (3.1)

Since
√

I2K(t) ≥
√
t eKt if K ≤ 0, choosing λ ≥ K− and p ≥ 2, BE(K,∞) and the contrac-

tivity of Pt in Lp yield by (2.10)∥∥Γ
(
Pλt f

)1/2∥∥
Lp(X,m)

≤ 1√
2t
‖f‖Lp(X,m) for every f ∈ Lp(X,m), t > 0. (3.2)
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We prove now a useful estimate for Γ
(
f
)

in Lp(X,m) when ∆f ∈ Lp(X,m) and f is bounded.
For the sake of simplicity, we will only focus on the cases p = 2 and p =∞, that will also play
a role in [5]. Analogous results (in X = Rd) when only a one-sided bound on f is available
have been proved with completely different proofs in [24, 20].

Theorem 3.1 (Gradient interpolation). Assume BE(K,∞), let λ ≥ K−, p ∈ {2,∞}, and
f ∈ L2 ∩ L∞(X,m) with ∆f ∈ Lp(X,m). Then Γ

(
f
)
∈ Lp(X,m) and∥∥Γ

(
f
)
‖Lp(X,m) ≤ c‖f‖L∞(X,m) ‖∆λf‖Lp(X,m) (3.3)

for a universal constant c independent of λ,X,m, f (c =
√

2π when p =∞).
Moreover, if fn ∈ DL2(∆) ∩ L∞(X,m) with supn ‖fn‖L∞(X,m) < ∞ and fn → f strongly

in DL2(∆), then Γ
(
fn
)
→ Γ

(
f
)

and Γ
(
fn − f

)
→ 0 strongly in L2(X,m).

Proof. Let us first consider the case p =∞ (here we follow the argument of [16, Prop. 3.6]):
recalling the identity

f =

∫ ∞
0

e−s Rts(f − tAf) ds

valid for nonnegative selfadjoint semigroups R with infinitesimal generator A, by applying
(3.2) with p =∞ to ft := f − t∆λf we get∥∥∥Γ

(
f
)1/2∥∥∥

L∞(X,m)
≤ ‖ft‖L∞(X,m)

∫ ∞
0

e−s(2ts)−1/2 ds =

√
π

2t
‖ft‖L∞(X,m)

≤
√
π

2t

(
‖f‖L∞(X,m) + t‖∆λf‖L∞(X,m)

)
.

Choosing t = ‖f‖∞ ‖∆λf‖−1
∞ we obtain (3.3).

In order to prove the formula (3.2) in the case p = 2, by an elementary approximation,
suffices to show the inequality under the additional assumption f ∈ V, ∆f ∈ V. We use the
Leibniz formula

d

dt
Γ
(
Pλt f

)
= 2Γ

(
Pλt f,

d

dt
Pλt f

)
to get ∣∣∣∣ d

dt
Γ
(
Pλt f

)1/2∣∣∣∣2 =

(
Γ(Pλt f,

d
dtP

λ
t f)
)2

Γ(Pλt f)
≤ Γ

( d

dt
Pλt f

)
. (3.4)

Commuting ∆ with d
dt , using the identity d

dtP
λ
t f = ∆λP

λ
t f together with the fact that λ ≥ 0

we get∫ ∞
0

∫
X

Γ
( d

dt
Pλt f

)
dmdt = −

∫ ∞
0

∫
X

(
d

dt
Pλt f)(

d

dt
∆Pλt f) dmdt (3.5)

= −
∫ ∞

0

∫
X

(
d

dt
Pλt f)(

d

dt
∆λP

λ
t f) dmdt− λ

∫ ∞
0

∫
X

( d

dt
Pλt f

)2
dmdt

≤ −1

2

∫ ∞
0

∫
X

d

dt
|∆λP

λ
t f |2 dmdt ≤ 1

2

∫
X

(
∆λf

)2
dm.

Setting gt := Γ
(
Pλt f

)1/2
, inserting (3.4) into (3.5) it follows that∫ ∞

0
‖t1/2 d

dt
gt‖2L2(X,m)

dt

t
≤ 1

2
‖∆λf‖2L2(X,m). (3.6)
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According to the J.L. Lions Trace interpolation method (here we follow the notation of
[34, 1.8.1]), the estimates (3.2) and (3.6) show that gt belongs to the weighted functional space
V1(∞, 1

2 , L
∞(X,m); 2, 1/2, L2(X,m)), so that its trace at t = 0 belongs to the K-interpolation

space

g0 ∈ (L∞(X,m), L2(X,m))θ,p with θ =
1

2
, p = 4,

with
‖g0‖(L∞(X,m),L2(X,m))θ,p ≤ c‖f‖

1/2
L∞(X,m)‖∆λf‖

1/2
L2(X,m)

.

Since g0 = Γ
(
f
)1/2

we get (3.3) also in the case p = 2.
Let us now consider the last statement. The fact that Γ

(
fn−f

)
→ 0 strongly in L2(X,m)

follows immediately from the interpolation inequality (3.3) by replacing f with fn − f and
observing that ∆λ(fn − f)→ 0 strongly in L2(X,m) since fn → f in DL2(∆). Recalling that∣∣Γ(fn)− Γ

(
f
)∣∣2 =

∣∣Γ(fn − f, fn + f
)∣∣2 ≤ Γ

(
fn − f

)
Γ
(
fn + f

)
we also get Γ

(
fn
)
→ Γ

(
f
)

strongly in L2(X,m). �

4 Equivalent formulations of BE(K,N)

Let f ∈ DV(∆) and ϕ ∈ DL∞(∆) and let us consider the expression (2.6) of Γ2(f ;ϕ); under
the additional assumption f ∈ DL∞(∆), by “integrating by parts” the term Γ

(
f,∆f

)
it is

possible to write Γ2(f ;ϕ) in a different form:

Lemma 4.1. If f ∈ DV(∆) ∩DL∞(∆) and ϕ ∈ DL∞(∆) then

Γ2(f ;ϕ) =

∫
X

(1

2
Γ
(
f
)
∆ϕ+ ∆f Γ

(
f, ϕ

)
+ ϕ(∆f)2

)
dm. (4.1)

Proof. Starting from the Leibniz formula

Γ
(
f, g
)
ϕ = Γ

(
f, gϕ

)
− Γ

(
f, ϕ

)
g for every f ∈ V, g, ϕ ∈ V ∩ L∞(X,m),

if f ∈ DL2(∆) one has by integration∫
X

Γ
(
f, g
)
ϕdm = −

∫
X

(
gϕ∆f + Γ

(
f, ϕ

)
g
)

dm.

Choosing g = ∆f ∈ V ∩ L∞(X,m) we immediately see that (2.6) yields (4.1). �

Recalling the polarization identity (2.7), if f, g ∈ DV(∆) ∩ DL∞(∆) and ϕ ∈ DL∞(∆),
from (4.1) we also get

Γ2(f, g;ϕ) =
1

2

∫
X

(
Γ
(
f, g
)
∆ϕ+ ∆f Γ

(
g, ϕ

)
+ ∆g Γ

(
f, ϕ

)
+ 2ϕ∆f ∆g

)
dm. (4.2)

In the passage from (2.5) to (4.1) (or, equivalently, (4.2)) we used the additional regularity
assumption f ∈ DL∞(∆); therefore the following approximation result will be useful in the
verification of the BE(K,N) property.
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Lemma 4.2 (Approximation of DV(∆) by DV(∆) ∩ DL∞(∆)). Let f ∈ DV(∆). Then there
exist fn ∈ DV(∆) ∩DL∞(∆) such that

fn → f in V and ∆fn → ∆f in V.

In particular, BE(K,N) holds if and only if (2.8) holds for all f ∈ DV(∆) ∩DL∞(∆) and all
ϕ ∈ DL∞(∆) nonnegative.

Proof. Let f ∈ DV(∆) and define h ∈ V by h := f −∆f . Consider the truncated functions

hn := max{min{h, n},−n}. (4.3)

Clearly hn ∈ V ∩ L∞(X,m) and hn → h in V. Let fn ∈ V be the unique (weak) solution
of

fn −∆fn = hn. (4.4)

Of course fn → f ∈ V and the variational maximum principle implies that |fn| ≤ |hn|≤n
m-a.e. in X; let us briefly recall the argument, well known in literature as Stampacchia’s
truncation. The solution fn of (4.4) is the unique minimum point of the strictly convex
functional

V 3 g 7→ 1

2

∫
X
|g − hn|2 dm +

1

2
E(g, g);

replacing fn by the truncated function f̃n := max{min{fn, n},−n} ∈ V neither of the integrals
above increase. It follows that fn = f̃n m-a.e. in X, as desired.

We conclude by observing that, since fn belong to V∩L∞(X,m), we have ∆fn = fn−hn
belong to V ∩ L∞(X,m) as well and, since hn → h and fn → f in V, we get ∆fn → ∆f in
V. �

Thanks to the improved integrability of Γ, provided by the BE(K,∞) condition, we can

now somehow extend the domain of Γ2(f, g;ϕ) to
(

DL2(∆) ∩ L∞(X,m)
)3

, i.e. neither re-

quiring ∆f , ∆g to be in V nor requiring ∆ϕ to be in L∞(X,m).

Corollary 4.3. If BE(K,∞) holds then the right hand side of (4.2) makes sense in the space(
DL2(∆) ∩ L∞(X,m)

)3
. In addition, if BE(K,N) holds then∫

X

(1

2
Γ
(
f
)
∆ϕ+ ∆f Γ

(
f, ϕ

)
+ ϕ(∆f)2

)
dm ≥ K

∫
X

Γ
(
f
)
ϕdm + ν

∫
X

(∆f)2ϕdm (4.5)

is satisfied by every choice of f, ϕ ∈ DL2(∆) ∩ L∞(X,m) with ϕ ≥ 0.

Proof. Notice that the right hand side of (4.2) makes sense if f, g, ϕ ∈ DL2(∆) ∩ L∞(X,m)
since Γ

(
f
)
, Γ
(
g
)
, Γ
(
ϕ
)
∈ L2(X,m) by Theorem 3.1. Under the assumption BE(K,N), in

order to check (4.5) we introduce the mollified heat flow

Hεf :=
1

ε

∫ ∞
0

Prf κ(r/ε) dr, (4.6)

where κ ∈ C∞c (0,∞) is a nonnegative regularization kernel with
∫∞

0 κ(r) dr = 1.
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Setting f ε := Hεf, ϕε := Hεϕ, it is not difficult to check that if f, ϕ ∈ DL2(∆)∩L∞(X,m)
then f ε, ϕε ∈ DV(∆) ∩DL∞(∆); morever, ϕε ≥ 0 if ϕ ≥ 0, so that (2.8) and (4.1) yield∫

X

(1

2
Γ
(
f ε
)
∆ϕε + ∆f ε Γ

(
f ε, ϕε

)
+ (1− ν)ϕε(∆f ε)2

)
dm ≥ K

∫
X

Γ
(
f ε
)
ϕε dm.

Since

f ε → f, ϕε → ϕ strongly in DL2(∆), ‖f ε‖L∞(X,m) ≤ ‖f‖L∞(X,m), ‖ϕε‖L∞(X,m) ≤ ‖ϕ‖L∞(X,m)

we can apply the continuity properties of Γ stated in Theorem 3.1 to pass to the limit in the
previous inequality as ε ↓ 0. �

5 Further regularity for Γ(f) in BE(K,∞) spaces and the measure-
valued Γ2-tensor

5.1 Quasi-regular Dirichlet forms and the measure-valued Γ2-tensor

In this section we will assume that the Dirichlet form E is quasi-regular, according to Ma and
Röckner: we refer to [26, III.2, III.3, IV.3] (covering the more general case of a possibly non-
symmetric Dirichlet form) and [15, 1.3] for the precise definition and for the related notions
of E-polar sets and E-quasi-continuous functions, see also the concise account of [31, § 2.3].
Here we just recall that this setting covers the main example of regular Dirichlet forms in
locally compact and separable metric spaces, which is sufficient for our main applications in
the next sections. Still the results presented here, at least in the case BE(K,∞), could be
interesting in more general situations where (X, τ) is not locally compact: this is the reason
why we state them in greater generality.

Remark 5.1 (Regular Dirichlet forms). When (X, τ) is also locally compact, we recall that
a Dirichlet form E is regular if D(E) ∩ Cc(X) is dense both in D(E) (w.r.t. the V-norm) and
in Cc(X) (w.r.t. uniform convergence).

If E is quasi-regular, then [15, Remark 1.3.9(ii)]

every function f ∈ V admits an E-quasi-continuous representative f̃ .

The function f̃ is uniquely determined up to a E-polar set. We introduce the convex set

V+ :=
{
ϕ ∈ V : ϕ ≥ 0 m-a.e. in X

}
and we denote by V′ the set of continuous linear functionals ` : V→ R, while V′+ denotes the
convex subset of all continuous linear functionals ` such that 〈`, φ〉 ≥ 0 for all φ ∈ V+; we also
set V′± := V′+ − V′+.

The next result provides an important characterization of functionals in V′+, that motivates
our interest for quasi-regular Dirichlet forms (see [26, Ch. VI, Prop. 2.1] and also [11, Ch. I,
§ 9.2] in the case of a finite measure m(X) <∞ for the proof).

Proposition 5.2. Let us assume that E is quasi-regular. Then for every ` ∈ V′+ there exists
a unique σ-finite and nonnegative Borel measure µ` in X such that

(1) every E-polar set is µ`-negligible;
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(2) for all f ∈ V the E-q.c. representative f̃ belongs to L1(X,µ`) and

〈`, f〉 =

∫
X
f̃ dµ`; (5.1)

(3) if 〈`, ϕ〉 ≤M <∞ for every ϕ ∈ V+ with ϕ ≤ 1 m-a.e. in X, then µ` is a finite measure
and µ`(X) ≤M .

We will often identify ` ∈ V′+ with the corresponding measure µ`. Notice that if ` ∈ V′
and there exists h ∈ L1 ∩ L2(X,m) such that

〈`, ϕ〉 ≥
∫
X
hϕdm for every ϕ ∈ V+ (5.2)

then there exists a measure µ+ ∈ V′+ such that ` can be represented by the signed meassure
µ` = hm + µ+. When for some f ∈ V the functional ` = ∆f can be identified with a signed
measure µ`, we will use the notation µ` = ∆∗f .

The next result collects a few useful properties that have been proved in [31, § 3]; we
introduce the space LΓ :=

{
f ∈ V : f, Γ

(
f
)
∈ L∞(X,m)

}
.

Theorem 5.3. Let us suppose that E satisfies the BE(K,∞) condition.

(1) For every f ∈ DV(∆) ∩ LΓ we have Γ
(
f
)
∈ V with

E(Γ
(
f
)
) ≤ −

∫
X

(
2KΓ

(
f
)2

+ 2Γ
(
f
)
Γ
(
f,∆f

))
dm. (5.3)

(2) DV(∆)∩LΓ is an algebra (i.e. closed w.r.t. pointwise multiplication) and, more generally,
if f = (fi)

n
i=1 ∈ (DV(∆) ∩ LΓ)n then Φ(f) ∈ DV(∆) ∩ LΓ for every smooth function

Φ : Rn → R with Φ(0) = 0.

(3) If E is also quasi-regular and f ∈ DV(∆)∩LΓ, then ∆Γ
(
f
)

can be represented by a signed
measure vanishing on E-polar sets and, defining

Γ∗2,K [f ] :=
1

2
∆?Γ

(
f
)
−
(

Γ
(
f,∆f

)
+KΓ

(
f
))

m, (5.4)

the measure Γ∗2,K [f ] is nonnegative, satisfies

Γ∗2,K [f ](X) ≤
∫
X

((
∆f
)2 −KΓ

(
f
))

dm (5.5)

and provides a representation of the Γ2 multilinear form as follows:

Γ2(f ;ϕ) =

∫
X
ϕ̃d Γ?2,K [f ] +K

∫
X

Γ
(
f
)
ϕdm, for every ϕ ∈ DL∞(∆). (5.6)

(4) There exists a continuous, symmetric and bilinear map γ2,K :
(
DV(∆)∩LΓ

)2 → L1(X,m)
such that for every f ∈ DV(∆) ∩ LΓ (so that Γ

(
f
)
∈ V ∩ L∞(X,m)) there holds

Γ?2,K [f ] = γ2,K [f, f ]m + Γ⊥2 [f ], with Γ⊥2 [f ] ≥ 0, Γ⊥2 [f ] ⊥ m. (5.7)

Setting γ2,K [f ] := γ2,K [f, f ] ≥ 0, one has for every f ∈ DV(∆) ∩ LΓ

Γ
(
Γ
(
f
))
≤ 4γ2,K [f ] Γ

(
f
)

m-a.e. in X. (5.8)
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Notice that the measures Γ?2,K [f ], K ∈ R, just differ by a multiple of Γ
(
f
)
m, so the

(nonnegative) singular part in the Lebesgue decomposition (5.7) is independent of K. In all
the relevant estimates, it would be sufficient to consider the Lebesgue density γ2,K [·], but it
is still useful to think in terms of measures to recover all the information coded inside Γ2(·; ·).

If BE(K,N) holds and E is quasi-regular, we have the refined inequalities

Γ?2,K [f ] ≥ γ2,K [f ]m ≥ ν(∆f)2m. (5.9)

5.2 Measure-valued Γ2 tensor under lower regularity assumptions

In this section we want to show that the regularity assumptions in Theorem 5.3 can be con-
siderably relaxed: in particular we will give a meaning to Γ?2,K [f ] for every f ∈ DL4(∆). The
main tools are the a-priori estimates of Theorem 5.5 and the following simple approximation
result.

Lemma 5.4. Let us assume BE(K,∞) and p ∈ (1,∞). For every f ∈ DLp(∆) there exist
fn ∈ DV(∆) ∩ LΓ converging to f in DLp(∆).

Proof. We argue as in the proof of Lemma 4.2: by setting h = f −∆f ∈ L2 ∩ Lp(X,m) and
considering the truncated functions hn ∈ L2 ∩ L∞(X,m) as in (4.3) and fn given by (4.4),
it is immediate to see that fn converge to f in DLp(∆) thanks to (2.4). On the other hand,
fn ∈ DL∞(∆), so that fn,ε := Hεfn (where Hε is given by (4.6)) belong to DV(∆) ∩ LΓ and
converge to fn in DLp(∆) as ε ↓ 0. A simple diagonal argument exhibits a sequence fn,εn
satisfying the thesis of the Lemma. �

Theorem 5.5. Let us assume that BE(K,∞) holds and let f, g ∈ DL4(∆). Then Γ
(
f, g
)
∈ V

and for every λ ≥ (K − 1/2)− and f, g ∈ DL4(∆) we have (with non-optimal constants)

‖Γ
(
f
)
‖V ≤ 2

√
10 ‖∆λf‖2L4 , ‖Γ

(
f, g
)
‖V ≤ 4

√
10 ‖∆λf‖L4 ‖∆λg‖L4 . (5.10)

In particular, if BE(K,N) holds, for every f ∈ DL4(∆) and ϕ ∈ V+ we have∫
X

(
− 1

2
Γ
(
Γ
(
f
)
, ϕ
)

+ ∆f Γ
(
f, ϕ

)
+ ϕ(∆f)2

)
dm ≥

∫
X

(
K Γ

(
f
)

+ ν(∆f)2
)
ϕdm (5.11)

and for every ϕ ∈ V+ with Γ
(
ϕ
)
∈ L∞(X,m), setting Kλ := 2K + 2λ ≥ 1, there holds∫

X

(
Γ
(
Γ
(
f
))

+KλΓ
(
f
)2)

ϕdm ≤ 2

∫
X

(
∆λfΓ

(
f,Γ

(
f
))

+ ∆f ∆λfΓ
(
f
))
ϕdm

+

∫
X

(
− Γ

(
f
)
Γ
(
Γ
(
f
)
, ϕ
)

+ 2∆λf Γ
(
f
)
Γ
(
f, ϕ

))
dm.

(5.12)

Proof. For every f ∈ DV(∆) ∩ LΓ, (5.3) and an integration by parts immediately yield

Kλ

∫
X

Γ
(
f
)2

dm + E(Γ
(
f
)
) ≤ −2

∫
X

Γ
(
f
)
Γ
(
f,∆λf

)
dm

= 2

∫
X

(
∆λf ∆f Γ

(
f
)

+ ∆λf Γ
(
f,Γ

(
f
)))

dm. (5.13)
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By (2.4) and the Hölder, inequality the right hand side of (5.13) can be bounded by

4‖∆λf‖2L4‖Γ
(
f
)
‖L2 + 2‖∆λf‖L4 ‖Γ

(
f
)
‖1/2
L2 ‖Γ

(
Γ
(
f
))
‖1/2
L1

≤ 1

4
‖Γ
(
f
)
‖2L2 + 16‖∆λf‖4L4 +

1

2
E(Γ

(
f
)
) +

1

4
‖Γ
(
f
)
‖2L2 + 4‖∆λf‖4L4

which yields the first estimate of (5.10). The second one can be obtained by polarization, see
the next Remark 5.6.

Now we use Lemma 5.4 to approximate any f ∈ DL4(∆) with a sequence fn in DV(∆)∩LΓ

converging to f in DL4(∆) and we pass to the limit in (5.10) by using the obvious bounds∥∥Γ
(
fn
)
− Γ

(
fm
)∥∥

V =
∥∥Γ
(
fn − fm, fn + fm

)∥∥
V ≤ 4

√
10
∥∥∆λ(fn − fm)

∥∥
L4

∥∥∆λ(fn + fm)
∥∥
L4 .

(5.14)
By the regularity of Γ

(
f
)

we can easily integrate by parts (4.5) obtaining

Γ2(f ;ϕ) =

∫
X
−1

2
Γ
(
Γ
(
f
)
, ϕ
)

+ ∆f Γ
(
f, ϕ

)
+ ϕ(∆f)2 dm (5.15)

and thus, if BE(K,N) holds, (5.11). If ϕ ∈ V+ is bounded with Γ
(
ϕ
)
∈ L∞(X,m), the

inequality (5.12) is an immediate consequence of (5.11) with ν = 0, by replacing ϕ with Γ
(
f
)
ϕ.

In the general case ϕ ∈ V+ with Γ
(
ϕ
)
∈ L∞(X,m) we use a truncation argument. �

Remark 5.6. If A, B are normed spaces and G : A × A → B is a symmetric bilinear map
satisfying ‖G(a, a)‖B ≤ C‖a‖2A for every a ∈ A, then G is continuous and satisfies

‖G(a0, a1)‖B ≤ 2C ‖a0‖A‖a1‖A for every a0, a1 ∈ A. (5.16)

It is sufficient to apply the polarization identity to G to obtain the estimate

‖G(a0, a1)‖B ≤
C

4

(
‖a0 + a1‖2A + ‖a0 − a1‖2A

)
≤ C

(
‖a0‖2A + ‖a1‖2A

)
.

Then, substituting a0 by λa0 and a1 by λ−1a1 and optimizing w.r.t. the parameter λ > 0 the
inequality (5.16) follows.

Corollary 5.7. Assume that BE(K,∞) holds. Then, for every f ∈ DL4(∆) the linear func-
tional

V 3 ϕ 7→
∫
X
−1

2
Γ
(
Γ
(
f
)
, ϕ
)

+ ∆f Γ
(
f, ϕ

)
+
(
(∆f)2 −KΓ

(
f
))
ϕdm (5.17)

belongs to V′+ and can be represented by a measure that satisfies (5.5) and (5.8), with γ2,K [f ]
defined as in (5.7). We still denote this measure by Γ?2,K [f ].

Proof. Let us denote by `f ∈ V′ the functional in (5.17). By (5.11) it is immediate to see that
`f ∈ V′+ so that we can apply the representation result stated in Proposition 5.2; moreover,
the first inequality in (5.10) gives∣∣∣〈`f , ϕ〉∣∣∣ ≤ ‖ϕ‖V

(1

2
‖Γ
(
f
)
‖V + ‖∆f‖L4‖Γ

(
f
)
‖1/2
L2 + ‖∆f‖2L4 + |K|‖Γ

(
f
)
‖L2

)
(5.18)

≤ CK‖ϕ‖V ‖f −∆f‖2L4

for all ϕ ∈ V.
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In order to prove (5.8) and (5.5) we apply Lemma 5.4, obtaining fn ∈ DV(∆) ∩ LΓ

converging to f in DL4(∆). We first observe that Theorem 5.3, the convergence of ∆fn in
L4(X,m) and the convergence of Γ

(
fn
)

in V coming from (5.14), together with (5.18), yield

lim
n→∞

∫
X
ϕdΓ∗2,K [fn] =

∫
X
ϕdΓ∗2,K [f ] for every ϕ ∈ V. (5.19)

Passing to the limit as n→∞ in the inequality (derived from the fact that fn satisfy (5.5))∫
X
ϕdΓ∗2,K [fn] ≤

∫
X

((
∆fn

)2 −KΓ
(
fn
))

dm

we obtain the same inequality with f in place of fn; then, (5.18) and Proposition 5.2(3)
provide (5.5) for f . In addition, we can still use the strong convergence of Γ

(
fn
)

to Γ
(
f
)

in V to show that
(
Γ
(
fn
))1/2

and
(
Γ
(
Γ
(
fn
)))1/2

converge to
(
Γ
(
f
))1/2

and to
(
Γ
(
Γ
(
f
)))1/2

in L2(X,m) respectively. Since the functions gn := (γ2,K [fn])1/2 are uniformly bounded
in L2(X,m) thanks to (5.5), up to extracting a weakly converging subsequence, it is not
restrictive to assume that gn ⇀ g in L2(X,m) as n→∞ so that for every essentially bounded
ϕ ∈ V+∫

X

(
Γ
(
Γ
(
f
)))1/2

ϕdm = lim
n→∞

∫
X

(
Γ
(
Γ
(
fn
)))1/2

ϕdm

≤ 2 lim
n→∞

∫
X
gnΓ

(
fn
)1/2

ϕdm = 2

∫
X
gΓ
(
f
)1/2

ϕdm.

(5.20)

On the other hand, for every essentially bounded ψ ∈ V′+ we obtain from (5.19)∫
X
g2ψ dm ≤ lim inf

n→∞

∫
X
g2
nψ dm ≤ lim

n→∞

∫
X
ψ dΓ?2,K [fn] =

∫
X
ψ dΓ?2,K [f ]

=

∫
X
ψγ2,k[f ] dm +

∫
X
ψ dΓ⊥2,K [f ],

(5.21)

so that g2 ≤ γ2,k[f ] m-a.e. in X. Combining with (5.20) and taking the squares we eventually
get (5.8). �

6 Metric measure spaces and their localization

6.1 Metric measure spaces, weak gradients and Cheeger energy

We refer to the papers [2], [3], [4] for the basic facts and terminology on calculus in metric
measure spaces; we will use the notation W 1,2(X, d,m) for the Sobolev space, Ch for the
Cheeger energy arising from the relaxation in L2(X,m) of the local Lipschitz constant

|Df |(x) := lim sup
y→x

|f(y)− f(x)|
d(y, x)

, f : X → R, (6.1)

of Lipschitz maps, |Df |w for the so-called minimal relaxed gradient.
From now on, we shall denote by X the class of metric measure spaces (X, d,m) satisfying

the following three conditions:
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(a) (X, d) is complete and separable;

(b) m is a nonnegative Borel measure with supp(m) = X, satisfying

m(Br(x)) ≤ c eAr
2

(6.2)

for suitable constants c ≥ 0, A ≥ 0.

(c) (X, d,m) is infinitesimally Hilbertian according to the terminology introduced in [21],
i.e., the Cheeger energy Ch is a quadratic form.

As explained in [3], [4], the quadratic form Ch canonically induces a strongly regular Dirichlet
E form in (X, τ), where τ is the topology induced by d. In addition, but this fact is less
elementary (see [3, §4.3]), the formula

Γ
(
f
)

= |Df |2w, Γ
(
f, g
)

= lim
ε↓0

|D(f + εg)|2w − |Df |2w
2ε

f, g ∈W 1,2(X, d,m)

(where the limit takes place in L1(X,m)) provides an explicit expression of the Carré du
Champ Γ : D(E)×D(E)→ L1(X,m) and yields the pointwise upper estimate

Γ
(
f
)
≤ |Df |2 m-a.e. in X, whenever f ∈ Lip(X) ∩ L2(X,m), |Df | ∈ L2(X,m). (6.3)

Eventually, (6.2) ensures that the generated Markov semigroup (Pt)t≥0 is mass-preserving, so
that (2.1) and the formalism of Section 2 applies to the class of metric measure spaces in X;
in particular we can identify W 1,2(X, d,m) with V.

The above discussions justify the following natural definition (equivalent to the RCD∗(K,N)
condition, see the next Section 7).

Definition 6.1 (Metric BE(K,N) condition for metric measure spaces). We say that
(X, d,m) ∈ X satisfies the metric BE(K,N) condition if the Dirichlet form associated to the
Cheeger energy of (X, d,m) satisfies BE(K,N) according to Definition 2.1 and any

f ∈W 1,2(X, d,m) ∩ L∞(X,m) with
∥∥Γ
(
f
)∥∥
L∞
≤ 1 has a 1-Lipschitz representative. (6.4)

It is worth noticing that if (X, d,m) satisfies the metric BE(K,∞) condition then d co-
incides with the intrinsic distance dE induced by E and (X, d) is a length space (recall that
(X, d) is a length space if the distance between two arbitrary points in X is the infimum of the
length of the absolutely continuous curves connecting them). More precisely, the inequality
dE ≤ d is a direct consequence of (6.4), while the curvature condition is involved in the proof
of the converse inequality.

In this section we see how these concepts can be localized, building suitable cutoff functions
with good second order regularity properties and a partition of unity subordinated to an open
covering. As an application, we see how the metric BE(K,N) condition can, to some extent,
be globalized (at least in locally compact metric spaces).

The results of this section could be put in a more abstract setup, as we did in §2, assum-
ing the existence of cutoff functions f with Γ(f) ∈ L∞(X,m) separating sets with positive
distance. However, since the results we aim to are relative to metric measure spaces, we
prefer to state them in this setting, where, as a simple but useful application of (6.3), we can
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easily construct cutoff functions with bounded weak gradient. To this aim, we consider the
distance-functions and the corresponding neighbourhoods

d(x, F ) := inf
y∈F

d(x, y), F [h] :=
{
x ∈ X : d(x, F ) ≤ h

}
, for F ⊂ X, x ∈ X, h ≥ 0, (6.5)

and we compose them with a function η ∈ Lipc(R) with bounded support, so that χ :=
η ◦ d(·, F ) has bounded support; it is immediate to see that

χ = η ◦ d(·, F ) belongs to V, with Γ
(
χ
)
≤
∣∣η′(d(·, F )

)∣∣2 m-a.e. in X. (6.6)

Let us conclude this introductory part with two simple remarks concerning proper metric
spaces and and the regularity of the Cheeger energy. Recall that a metric space (X, d) is
called proper if every closed bounded subset is compact.

Remark 6.2 (Proper metric spaces and the length condition). Every complete and locally
compact metric space (X, d) is also proper if it satisfies a length condition (see e.g. [12,
Prop. 2.5.22]). Properness immediately yields that this infimum is also attained so that a
locally compact length space is proper and geodesic. This characterization is well adapted
to our situation, since every m.m.s. (X, d,m) satisfying the metric BE(K,N) condition is a
length space and it is also locally compact (thus proper and geodesic) if N <∞.

Remark 6.3 (Regularity of the Cheeger energy in proper metric spaces). Recalling Remark
5.1, it is immediate to check that the Cheeger energy is a regular (thus a fortiori quasi-regular)
Dirichlet form whenever (X, d) is proper. In fact, it is easy to see that every function with
finite energy can be approximated in W 1,2(X, d,m) by functions with bounded support (see
e.g. [2, Lemma 4.11]) and those functions are limits in W 1,2(X, d,m) of sequences of Lips-
chitz functions with bounded support. The same approximation property holds for uniform
convergence and any function in Cc(X) by Arzelà-Ascoli Theorem.

6.2 Localization of metric measure spaces

In connection with localization-globalization of spaces (X, d,m) ∈ X, the following properties
of the relaxed gradient will be useful (see [3, Theorem 4.19] for the proof).

Proposition 6.4 (Localization of relaxed gradients and X). For U ⊂ X open, let us con-
sider the metric measure space (Ū , d,mxŪ) and let us denote by |Df |w,Ū the minimal relaxed
gradient in the new space. Then:

(a) f ∈ W 1,2(X, d,m) implies f ∈ W 1,2(Ū , d,mxŪ) and |Df |w = |Df |w,Ū m-a.e. in U .
Conversely, if f ∈W 1,2(Ū , d,mxŪ) and supp(f) has positive distance from X \U , then
f extended with the 0 value to the whole of X belongs to f ∈W 1,2(X, d,m).

(b) If m(∂U) = 0 then (Ū , d,mxŪ) ∈ X.

For U ⊂ X open, W 1,2
c (U, d,m) will denote the subspace of W 1,2(X, d,m) whose functions

have compact support in U . We will similarly consider Lipc(U). We will occasionally identify
a measurable function f : U → R with compact support in U with its trivial extension f̃ to
X and viceversa.

We can also introduce the localized versions of Lebesgue and Sobolev spaces on open
subsets of X. Even if not explicitly assumed, these notions are interesting when X is locally
compact.
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Definition 6.5 (Local Lp and Sobolev spaces). Let U ⊂ X be open and non-empty and
let f : U → R be a m-measurable map. We say that f ∈ Lploc(U,m), p ∈ [1,∞], if f |E ∈
Lp(E,mxE) for every compact subset E ⊂ U . We say that f ∈ W 1,2

loc (U, d,m) if for every
compact set E ⊂ U there exists fE ∈ W 1,2(X, d,m) such that f = fE m-a.e. in E. For every
f, g ∈W 1,2

loc (U, d,m) we can then define Γ
(
f, g
)
∈ L1

loc(U,m) by Γ
(
f, g
)
|E := Γ

(
fE , gE

)
.

It is not difficult to check that the above definition is consistent thanks to the locality
property of Γ. We can also easily check the equivalent characterization in terms of cutoff
function (used for instance in [22]):

f ∈W 1,2
loc (U, d,m) iff f̃χ ∈W 1,2(X, d,m) for every χ ∈ Lipc(U). (6.7)

Notice that if f ∈W 1,2
loc (U, d,m) and h ∈W 1,2

c (U, d,m) we have Γ̃(f, h) ∈ L1(X,m) with

Γ̃(f, h) = Γ
(
f̃χ, h

)
whenever χ ∈ Lipc(U), χ ≡ 1 on supp(h). (6.8)

Let us now consider the localization property of the Laplace operator.

Lemma 6.6 (Global to local for the Laplacian of compactly supported functions).
Let (X, d,m) ∈ X and, given an open set U ⊂ X, assume that f ∈W 1,2(X, d,m) has support
with positive distance from X \ U . Then ∆f ∈ L2(X,m) if and only if ∆Ūf ∈ L2(Ū ,mxŪ).
In addition ∆Ūf = ∆f m-a.e. in Ū and supp(∆f) ⊂ supp(f).

Proof. Let us assume that ∆f ∈ L2(X,m). First of all, choosing Lipschitz functions g in (2.2)
with compact support in G := X \supp(f) (these functions are dense in L2(G,mxG) by a sim-
ple truncation argument) we see that ∆f = 0 m-a.e. in X \supp(f), i.e. supp(∆f) ⊂ supp(f).
Now, for every ψ ∈ W 1,2(Ū , d,mxŪ) we can apply Proposition 6.4 and a multiplication by
a cutoff function as in (6.6) with F = supp(f) to find another function ψ̃ ∈ W 1,2(X, d,m)
coinciding with ψ in a neighbourhood of supp(f); thanks to the locality of Γ we have then∫

Ū
Γ(ψ, f) dm =

∫
X

Γ(ψ̃, f) dm = −
∫
X
ψ̃∆f dm = −

∫
Ū
ψ∆f dm.

The proof of the converse implication is similar. �

Lemma 6.7 (Construction of smoother cutoff functions). Let (X, d,m) ∈ X and let U ⊂ X
be an open subset such that (Ū , d,mxŪ) ∈ X satisfies the metric BE(K,∞) condition.

Then, for all E ⊂ U compact and G ⊂ X open and relatively compact with E ⊂ G and
Ḡ ⊂ U there exists a Lipschitz function χ̂ : X → R satisfying:

(i) 0 ≤ χ̂ ≤ 1, χ̂ ≡ 1 on a neighbourhood E[h] of E for some h > 0, and supp(χ̂) ⊂ G;

(ii) ∆χ̂ ∈ L∞(X,m) and Γ
(
χ̂
)
∈W 1,2(X, d,m).

Proof. Notice that the point is to construct a cut off function with L∞ Laplacian, indeed the
existence of a Lipschitz cut off function f : X → [0, 1] satisfying (i) is trivial by (6.6), since
ε := infx6∈G d(x,E) > 0; we can thus suppose that f ≡ 1 on E[ε/3] and supp(f) ⊂ E[2ε/3].

At first we regularize f via the mollified heat flow HtU of the m.m.s. (Ū , d,mxŪ) defined
as in (4.6) by setting

ft := HtUf.
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Since by assumption (Ū , d,mxŪ) satisfies the metric BE(K,∞) condition, by the point-
wise gradient estimate (2.9) together with the maximum principle and (6.4), we know that
{ft}t∈[0,δ] are uniformly Lipschitz on Ū for any δ > 0, and moreover ∆ft ∈ L∞(Ū ,mxŪ).
Combining Arzelà-Ascoli theorem and the fact that ft → f in L2(Ū ,m) as t → 0 it follows
that ft → f uniformly on Ḡ. Therefore, recalling also the maximum principle for the heat
flow, for δ > 0 small enough we have

3

4
≤ fδ ≤ 1 on E[ε/3] and 0 ≤ fδ ≤

1

4
on Ḡ \ E[2ε/3]. (6.9)

Now let η ∈ C2([0, 1], [0, 1]) be such that η([0, 1/4]) = {0} and η([3/4, 1]) = {1}. It is
immediate to check, using Lemma 6.6, Proposition 6.4 and Theorem 5.5 (applied to the
m.m.s. (Ū , d,mxŪ)) that the trivial extension of χ̂ := η◦fδ outside Ḡ has the desired properties
with h := ε/3. �

Remark 6.8. Notice that whenever E ⊂ U , with E compact and U open and locally compact,
we can always find an open and relatively compact neighbourhood G of E as in the above
Lemma: since for every x ∈ E there exists a relatively compact open ball Bx with Bx ⊂ U , it
is sufficient to set G := ∪x∈E0Bx where E0 ⊂ E is a finite set such that (Bx)x∈E0 is an open
cover of E.

The lemma above easily provides the following proposition, stating the existence of a
regular partition of unity.

Proposition 6.9 (Partition of unity). Let (X, d,m) ∈ X, E ⊂ X compact and let U = ∪i∈IUi
where {Ui}i∈I is a covering of E by non-empty locally compact open subsets such that the
m.m.s. (Ūi, d,mxŪi) ∈ X satisfy the metric BE(K,∞) condition. Then there exist Lipschitz
functions χi : X → [0,∞), null for all but finitely many i and satisfying:

(i) supp(χi) ⊂ Ui is compact and
∑

i
χi ≡ 1 on a neighbourhood of E;

(ii) ∆χi ∈ L∞(X,m) and Γ
(
χi
)
∈W 1,2(X, d,m).

In particular ψ :=
∑

i
χi satisfies ψ ≡ 1 on E and

ψ ∈ Lipc(U), 0 ≤ ψ ≤ 1, ∆ψ ∈ L∞(X,m), Γ
(
ψ
)
∈W 1,2(X, d,m). (6.10)

Proof. By the compactness of E we can assume with no loss of generality that I is finite.
Since the continuous function

E 3 x 7→ max
i∈I

d(x,X \ Ui)

has a minimum a > 0 in E, considering the sets

Ei := {x ∈ E : dist(x,X \ Ui) ≥ a/2} , Gi := {x ∈ X : dist(x,Ei) < b}

for b > 0 sufficiently small, we provide compact sets Ei ⊂ Gi and open relatively compact (by
Remark 6.8) sets Gi ⊂ X with Ei ⊂ Gi and Ḡi ⊂ Ui, in such a way that ∪i∈IEi = E and the
neighbourhood E[h] of E is contained in ∪iGi for h < b.
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With this choice of Ei andGi, if we consider the cutoff functions χ̂i provided by Lemma 6.7,
we clearly have

∑
i
χ̂i ≥ 1 on E[h] for some positive h < b sufficiently small. By Leibniz and

chain rule, it is therefore clear that the functions

χi :=
χ̂i

η(
∑

i
χ̂i)

= 2χ̂i +
( 1

η(
∑

i
χ̂i)
− 2
)
χ̂i

satisfy (i) and (ii) above, provided that we choose a smooth nondecreasing function η(s)
identically equal to s on [1,∞) and identically equal to 1/2 on [0, 1/2].

In order to prove the regularity for Γ
(
ψ
)

of (6.10) it is sufficient to recall Proposition 6.4
and

Γ
(∑

i

χi
)

=
∑
i, j

Γ
(
χi, χj

)
, Γ

(
χi, χj

)
=

1

4
Γ
(
χi + χj

)
− 1

4
Γ
(
χi − χj

)
. � (6.11)

Remark 6.10. Let U = ∪i∈IUi as in the previous Proposition 6.9. Then a measurable
function f : U → R belongs to W 1,2

loc (U, d,m) if and only if f̃ψ ∈ W 1,2(X, d,m) for every
function ψ as in (6.10). Thus we can use better cutoff functions in (6.7).

We can now use the partitions of unity to prove a local higher integrability and regularity of
Γ.

Lemma 6.11 (Improved local integrability and regularity of Γ(f)). Let (X, d,m) be a locally
compact m.m.s. in X and let X = ∪i∈IUi where {Ui}i∈I are non-empty open subsets such
that (Ūi, d,mxŪi) ∈ X satisfy the metric BE(K,∞) condition for all i ∈ I.

Then for every f ∈ DL4(∆)∩L∞(X,m) one has Γ
(
fψ
)
∈W 1,2(X, d,m) and fψ ∈ DL4(∆)

for every cutoff function ψ satisfying (6.10). In particular, Γ(f) ∈W 1,2
loc (X, d,m).

Proof. Let us consider the compact set E := supp(ψ) and let {χi}, I = {1, . . . , n}, be
the partition of unity, subordinated to E and to the open covering {Ui}, constructed in
Proposition 6.9; let χ̂i be a cutoff function provided by Lemma 6.7 corresponding to the
compact set supp(χi), the open set Ui and Gi as in Remark 6.8. We define

f̂i := χ̂if, fi := χif, so that fi = χi f̂i. (6.12)

Recalling Lemma 6.6 and the Leibniz formula (1.5), it is easy to check that f̂i ∈ L∞ ∩
W 1,2(Ūi, d,mxŪi) and that ∆f̂i ∈ L2(Ūi,mxŪi). Since by assumption the m.m.s. (Ūi, d,mxŪi)
satisfies the BE(K,∞) condition, by the gradient interpolation Theorem 3.1 with p = 2 we
obtain that Γ(f̂i) ∈ L2(Ūi,mxŪi).

Still applying (1.5), now with f := f̂i and χ := χi, we obtain that fi ∈W 1,2(Ūi, d,mxŪi)∩
L∞(Ūi,m) with ∆Ūi

fi ∈ L4(Ūi,mxŪi): Theorem 5.5 provides Γ
(
fi
)
∈ W 1,2(Ūi, d,mxŪi) and

since Γ
(
fi
)

has compact support in Ui we conclude that (the trivial extension of) Γ
(
fi
)

belongs
to W 1,2(X, d,m) and that ∆fi ∈ L4(X,m). More generally, since χj is globally Lipschitz and
with bounded Laplacian in X, we obtain that fiχj ∈ DL4(∆) for all i, j = 1, . . . , n. Since
both fiχj and fjχi have compact support in Ui we obtain ∆Ūi

(fiχj ± fjχi) ∈ L4(Ūi,mxŪi).
By applying Theorem 5.5 in Ui we get Γ

(
fiχj±fjχi

)
∈W 1,2(X, d,m), so that by polarization

Γ
(
fi, fj

)
= Γ

(
fiχj , fjχi

)
∈W 1,2(X, d,m).
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The bilinearity of Γ yields

Γ
(∑

i

fi
)

= Γ
(∑

i

fi,
∑
j

fj
)

=
∑
ij

Γ
(
fi, fj

)
∈W 1,2(X, d,m).

Using that
∑

i
χi ≡ 1 on E and the identity fψ =

∑
i(fψ)χi = ψ

∑
i fi we conclude that

Γ
(
fψ
)
∈W 1,2(X, d,m) and ∆(fψ) ∈ L4(X,m).

Finally, Γ
(
f
)
∈W 1,2

loc (X, d,m) follows by Remark 6.10. �

Theorem 6.12. Under the same assumptions of the previous Lemma 6.11, every function
f ∈ DL4(∆) ∩ L∞(X,m) satisfies (5.11) for every nonnegative ϕ ∈W 1,2

c (X, d,m).
If, moreover, (X, d) is a proper metric space then there exists a nonnegative Radon measure

Γ?2,K [f ] vanishing on E-polar sets and representing the linear functional

W 1,2
c (X, d,m) 3 ϕ 7→

∫
X
−1

2
Γ
(
Γ
(
f
)
, ϕ
)

+ ∆f Γ
(
f, ϕ

)
+
(
(∆f)2 −KΓ

(
f
))
ϕdm. (6.13)

Finally, the density γ2,K [f ] of the measure Γ?2,K [f ] still satisfies (5.8).

Notice that both (5.11) and (5.12) make sense under the above assumptions thanks to
Lemma 6.11.

Proof. Let f ∈ DL4(∆) ∩ L∞(X,m) and ϕ ∈W 1,2
c (X, d,m) be fixed and let us prove (5.11).

Let E = supp(ϕ) and let {χi} be the cutoff functions constructed in Proposition 6.9,
subordinated to the open covering {Ui}, whose sum is identically 1 in a neighbourhood of E,
null for all but finitely many i; since χi have support contained in Ui, for all i such that χi
is not null we apply Lemma 6.7 to obtain Lipschitz function χ̂i with compact support in Ui,
bounded Laplacian, identically equal to 1 on a neighbourhood of supp(χi). We can also find
ψ ∈ Lipc(U) satisfying (6.10) and ψ ≡ 1 on supp(

∑
i
χ̂i).

It is easy to check, using Lemma 6.11 and Lemma 6.6, that the functions ϕi := χiϕ and
fi := χ̂if satisfy the assumptions of Theorem 5.5 in the metrically BE(K,N) m.m.s. (Ūi, d,mxŪi).
We thus get∫
Ūi

(
− 1

2
Γ
(
Γ
(
fi
)
, ϕi
)

+ ∆fi Γ(fi, ϕi) +ϕi(∆fi)
2
)

dm ≥ K
∫
Ūi

Γ(fi)ϕi dm+ ν

∫
Ūi

(∆fi)
2ϕi dm.

(6.14)
Since Lemma 6.11 gives that Γ(f) ∈ W 1,2

loc (X, d,m), recalling also that
∑

i ϕi ≡ ϕ and
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χ̂i ≡ 1 on supp(χi), we can write∫
X

(
− 1

2
Γ
(
Γ
(
f
)
, ϕ
)

+ ∆f Γ
(
f, ϕ

)
+ ϕ(∆f)2

)
dm

=

∫
X

(
−1

2
Γ
(
Γ
(
f
)
ψ,
∑
i

ϕi
)

+ ∆f Γ
(
f,
∑
i

ϕi
)

+
(∑

i

ϕi
)
(∆f)2

)
dm

=
∑
i

∫
Ūi

(
−1

2
Γ
(
Γ
(
f
)
ψ,ϕi

)
+ ∆f Γ (f, ϕi) + ϕi(∆f)2

)
dm

=
∑
i

∫
Ūi

(
−1

2
Γ
(
Γ
(
fi
)
, ϕi
)

+ ∆fi Γ (fi, ϕi) + ϕi(∆fi)
2

)
dm

≥
∑
i

K

∫
Ūi

Γ(fi)ϕi dm + ν

∫
Ūi

(∆fi)
2ϕi dm by (6.14)

=
∑
i

K

∫
Ūi

Γ(f)ϕi dm + ν

∫
Ūi

(∆f)2ϕi dm

= K

∫
X

Γ(f)ϕdm + ν

∫
X

(∆f)2ϕdm.

In order to prove the second part of the statement, in the case when (X, d) is proper (recall
Remark 6.2), let us call `f the linear functional defined by (6.13), let us fix x0 ∈ X with the
collection of the open balls BR := {x ∈ X : d(x, x0) < R} and let us consider the Hilbert space
VR obtained by taking the closure in V of the set {ϕ ∈ W 1,2(X, d,m) : suppϕ ⊂ BR

}
. It is

easy to check that the restriction of E to VR is a regular Dirichlet form (recall Remark 6.3)
on L2(BR,mxBR) and the restriction of `f to VR is a nonnegative continuous functional,
which also satisfies (3) of Proposition 5.2: in fact, if ϕ ∈ VR with 0 ≤ ϕ ≤ 1 m-a.e., by
taking a cutoff function ψ as in (6.10) with U ⊃ BR and ψ ≡ 1 on BR, the inequality
0 ≤ ψ − ϕ ∈W 1,2

c (X, d,m) and (5.11) yield

〈`f , ϕ〉 ≤
∫
X
−1

2
Γ
(
Γ
(
f
)
, ψ
)

+ ∆f Γ
(
f, ψ

)
+
(
(∆f)2 −KΓ

(
f
))
ψ dm.

Thus, the action of `f on VR can be represented by a finite nonnegative Borel measure µR on
BR not charging E-polar subsets of BR. It is easy to check that S < R yields (µR)xBS = µS ,
so that we can eventually find a nonnegative Radon measure Γ?2,K [f ] as stated in the Theorem.

Let us now take an arbitrary compact set E ⊂ Ui and a Lipschitz function χi with compact
support in Ui, bounded Laplacian and identically 1 on a neighbourhood of supp(ϕi). The
function f̂i = χif belongs to W 1,2(Ūi, d,mxŪi) with fi,∆Uifi ∈ L4(Ūi,mxŪi) so that applying
Corollary 5.7 we get a finite nonnegative Borel measure µi = Γ?2,K [fi] (relative to Ui) with
Lebesgue density γi satisfying

〈`fi , ψ〉 =

∫
Ūi

ψ dµi for every ψ ∈W 1,2
c (Ui, d,m), Γ

(
Γ
(
fi
))
≤ 4γiΓ

(
fi
)

m-a.e. on Ui.

(6.15)
For every function ϕ ∈W 1,2(X, d,m) with support in E we then have∫

E
ϕdΓ?2,K [f ] = 〈`f , ϕ〉 = 〈`fi , ϕ〉 =

∫
E
ϕdµi
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so that Γ?2,K [f ] coincide with µi on E. It follows that its Lebesgue density γ coincides with
γi and (6.15) yields

Γ
(
Γ
(
f
))

= Γ
(
Γ
(
fi
))
≤ 4γi Γ

(
fi
)

= 4γ Γ
(
f
)

m-a.e. on E.

Since we can cover X with a sequence of compact sets contained in some set Ui, we conclude.
�

Theorem 6.13. Let (X, d,m) ∈ X be a proper m.m.s. and let X = ∪i∈IUi where {Ui}i∈I are
non-empty open sets such that (Ūi, d,mxŪi) ∈ X satisfy the metric BE(K,∞) condition for
all i ∈ I. For every f ∈ DL4(∆) ∩ L∞(X,m) the following properties hold:

(a) the measure Γ?2,K [f ] is finite and satisfies (5.5);

(b) Γ
(
f
)
∈W 1,2(X, d,m) and satisfies (5.12) for any nonnegative ϕ with Γ

(
ϕ
)
∈ L∞(X,m).

Proof. Let us fix x0 ∈ X and let us consider the Lipschitz cutoff function

ϕn(x) =


1 on B2n(x0),

0 on X \B2n+1(x0),

2− d(x, x0)2−n on B2n+1(x0) \B2n(x0),

(6.16)

which satisfies |Dϕn| ≤ 2−n. By Theorem 6.12, if f ∈ DL4(∆) ∩ L∞(X,m) and γ is the
Lebesgue density of Γ?2,K [f ], we get

−1

2

∫
X

Γ
(
Γ
(
f
)
, ϕ2

n

)
dm = −

∫
X

Γ
(
Γ
(
f
)
, ϕn

)
ϕn dm ≤

∫
X
ϕn

√
Γ
(
Γ
(
f
))√

Γ
(
ϕn
)

dm

≤ 2

∫
X
ϕn

√
γΓ
(
f
)
Γ
(
ϕn
)

dm ≤ ε
∫
X
γϕ2

n dm +
1

4nε

∫
X

Γ
(
f
)

dm,∫
X

∆f Γ
(
f, ϕ2

n

)
dm ≤ 2−n‖∆f‖L2

√
E(f).

In addition, the integrability of Γ
(
f
)

gives

lim sup
n→∞

∫
X

(
(∆f)2 −KΓ

(
f
))
ϕ2
n dm ≤

∫
X

(
(∆f)2 −KΓ

(
f
))

dm.

Applying the definition of Γ?2,K [f ] we get

(1− ε)
∫
X
ϕ2
n dΓ?2,K [f ] ≤ 1

4nε
E(f) + 2−n‖∆f‖L2

√
E(f) +

∫
X

(
(∆f)2 −KΓ

(
f
))
ϕ2
n dm.

Passing to the limit first as n→∞ and then as ε ↓ 0 we get the bound of statement (a).
Concerning (b), let us first remark that, setting g := Γ

(
f
)
∈ W 1,2

loc (X, d,m) and gk :=
min{g, k}, by Theorem 6.12 we have

Γ
(
gk
)
≤ 4γ gk χk, where χk =

{
1 in the set {g ≤ k},
0 in the set {g > k}

so that gk ∈W 1,2(X, d,m).
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Integrating now the nonnegative function gkϕ
2
n ∈ W

1,2
c (X, d,m) with respect to Γ?2,K [f ]

and observing that Γ
(
g, gk

)
= Γ

(
gk
)
χk = Γ

(
gk
)
, from (5.12) of Theorem 5.5 we get∫

X

(
Kλ g gk + Γ

(
gk
))
ϕ2
n dm ≤ 2

∫
X

(
∆λf Γ

(
f, gk

)
+ ∆f∆λfgk

)
ϕ2
n dm

+ 2

∫
X

(
− gkΓ

(
g, ϕn

)
+ 2∆λf gkΓ

(
f, ϕn

))
ϕn dm,

where Kλ = 2K+ 2λ and we choose λ in such a way that Kλ ≥ 1. We can now estimate from
above the integrals on the right hand side:

I =

∫
X

∆λf Γ
(
f, gk

)
ϕ2
n dm ≤ ‖∆λf‖L4 ‖g1/2

k ϕn‖L4 ‖Γ
(
gk
)1/2

ϕn‖L2

≤ 2‖∆λf‖4L4 +
1

8

∫
X
g2
k ϕ

2
n dm +

1

4

∫
X

Γ
(
gk
)
ϕ2
n dm,

since |Γ
(
f, gk

)
| ≤

√
g Γ
(
gk
)
χk =

√
gk Γ

(
gk
)
χk and |ϕn| ≤ 1;

II =

∫
X

∆f ∆λf gk ϕ
2
n dm ≤ ‖∆f‖L4‖∆λf‖L4 ‖gkϕ2

n‖L2

≤ 8‖∆λf‖4L4 +
1

8

∫
X
g2
k ϕ

2
n dm by (2.4) and |ϕn| ≤ 1,

III = −
∫
X
gkΓ
(
g, ϕn

)
ϕn dm ≤ k

2n

∫
X

√
Γ
(
g
)

dm ≤ k

2n−1

(
Γ?2,K [f ](X) · E(f)

)1/2

where we used (5.8) and the finiteness of Γ?2,K [f ],

IV = 2

∫
X

∆λf gkΓ
(
f, ϕn

)
ϕn dm ≤ k

2n−1
‖∆λf‖L2 E(f)1/2.

Since g2
k ≤ g gk, summing the contribution of the four terms and using (5.10), we get

1

2

∫
X

(
Kλ g gk + Γ

(
gk
))
ϕ2
n dm ≤ 20‖∆λf‖2L4 +

k

2n−2
E(f)1/2

(
‖∆λf‖L2 + Γ?2,K [f ](X)1/2

)
.

Passing first to the limit as n→∞ we obtain∫
X

(
Kλ g gk + Γ

(
gk
))

dm ≤ 40‖∆λf‖2L4 .

We then pass to the limit as k →∞ and we obtain g ∈W 1,2(X, d,m). Finally, (5.12) can be
obtained as in the proof of Theorem 5.5. �

Theorem 6.14. Let (X, d,m) ∈ X, with (X, d) length and locally compact. Assume that
there exists a covering {Ui}i∈I of X by non-empty open sets Ui such that (Ūi, d,mxŪi) ∈ X
satisfy the metric BE(K,N) condition.

Then also (X, d,m) satisfies the metric BE(K,N) condition.
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Proof. By applying Lemma 4.2, for every f ∈ DV(∆) we can find fk ∈ DV(∆) ∩ DL∞(∆) ⊂
DL4(∆) ∩ L∞(X,m) with fk → f and ∆fk → ∆f in V as k → ∞. If ϕ ∈ DL∞(∆) is
nonnegative, an integration by parts and Theorem 6.13 give

Γ2(fk;ϕ) =

∫
X

(
− 1

2
Γ
(
Γ
(
fk
)
, ϕ
)

+ ∆fkΓ
(
fk, ϕ

)
+ (∆fk)

2ϕ
)

dm.

Therefore, if ϕn is defined by (6.16), we can apply Theorem 6.12 to get

Γ2(fk;ϕ) = lim
n→∞

∫
X

(
− 1

2
Γ
(
Γ
(
fk
)
, ϕϕn

)
+ ∆fkΓ

(
fk, ϕϕn

)
+ (∆fk)

2ϕϕn

)
dm (6.17)

(5.11)

≥ lim
n→∞

∫
X

(
KΓ
(
fk
)

+ ν(∆fk)
2
)
ϕϕn dm =

∫
X

(
KΓ
(
fk
)

+ ν(∆fk)
2
)
ϕdm.

We can use the convergence of fk and ∆fk in V to obtain that Γ2(fk;ϕ) converges to Γ2(f ;ϕ).
Therefore, passing to the limit as k →∞ in (6.17) we obtain the BE(K,N) condition.

In order to conclude, it suffices to show that any essentially bounded f ∈ W 1,2(X, d,m)
with ‖|Df |w‖L∞(X,m) ≤ 1 has a 1-Lipschitz representative. Clearly, the fact that (Ūi, d,mxŪi)
satisfy the metric BE(K,∞) condition implies that f has a 1-Lipschitz representative on Ūi,
and therefore f has a locally 1-Lipschitz representative f̃ on ∪iUi. If we consider an absolutely
continuous curve γ connecting x to y, this easily yields (by a covering argument)

|f̃(x)− f̃(y)| ≤ length(γ).

Since (X, d) is a length space (in fact geodesic), we conclude. �

7 RCD∗(K,N) spaces and their localization and globalization

In the next two subsections we introduce the RCD(K,∞) and RCD∗(K,N) spaces, and discuss
their equivalent characterizations as well as their localization and globalization properties; the
case N =∞ is by now well established [4], while the dimensional case is more recent [18], [5].

7.1 The case N =∞

We say that (X, d,m) ∈ X is a RCD(K,∞) space if the Shannon entropy U∞ : P2(X) →
(−∞,+∞]

U∞(µ) :=


∫
X ρ log ρdm if µ = ρm;

+∞ otherwise

(7.1)

is convex along Wasserstein geodesics. More precisely, here P2(X) stands for the space of
Borel probability measures with finite quadratic moments and condition (6.2) guarantees that
the negative part of ρ log ρ is integrable for any µ = ρm ∈P2(X), see [3] for details. Hence,
(7.1) makes sense.

If we endow P2(X) with the quadratic Wasserstein distance W2, we say that (X, d,m) ∈ X
is a RCD(K,∞) space if for all µ0 = ρ0m, µ1 = ρ1m in P2(X) and for every constant speed
geodesic µt in P2(X) from µ0 to µ1, for all t ∈ [0, 1] there holds µt = ρtm and∫

X
ρt log ρt dm ≤ (1− t)

∫
X
ρ0 log ρ0 dm + t

∫
X
ρ1 log ρ1 dm− K

2
t(1− t)W 2

2 (µ0, µ1). (7.2)
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This class of spaces has been introduced in [3], where one of the main results is also the
equivalence with another entropic formulation, based on the so-called EVIK property of the
Shannon entropy along the heat flow. The definition adopted here has been later on improved
in [1] (asking the convexity inequality along some geodesic, and then recovering convexity
along all geodesics out of the EVIK theorem [17]), see also [30] for new recent developments.
While this characterization is extremely useful in the proof of stability properties [3, 4, 23], in
the proof of localization or globalization properties it suffers the same limitations described
in Remark 2.2. It is instead crucial for us the following connection between RCD(K,∞) and
BE(K,∞), obtained in [4].

Theorem 7.1 (Equivalence of RCD(K,∞) and BE(K,∞)). Let (X, d,m) ∈ X. Then (X, d,m)
is RCD(K,∞) if and only if it satisfies the metric BE(K,∞) condition.

Notice that the assumption that functions with bounded relaxed gradient have a contin-
uous representative is necessary, in conjunction with BE(K,∞), to have RCD(K,∞): this
way simple examples where Ch ≡ 0 and BE(K,∞) obviously holds (see for instance [3, Re-
mark 4.12]) are ruled out. For the reader’s convenience, we state the Global-to-Local property,
see [3, Theorem 6.20] for the proof, relying on the fact that one can find geodesics connecting
probability measures in Ū lying entirely in Ū .

Proposition 7.2 (Global-to-Local for RCD(K,∞)). Let (X, d,m) ∈ X be RCD(K,∞) and
let U ⊂ X be open. If m(∂U) = 0 and (Ū , d) is geodesic, then (Ū , d,mxŪ) is RCD(K,∞).

The proof of the Local-to-Global property, established under the non-branching condition
in [32], heavily relies on the BE(K,∞) characterization of Theorem 7.1. Notice that the
only global assumptions are (6.2) and the length property (necessary already for subsets of
Euclidean spaces).

Theorem 7.3 (Local-to-Global for RCD(K,∞)). Let (X, d,m) ∈ X be a length and locally
compact space and assume that there exists a covering {Ui}i∈I of X by non-empty open subsets
such that (Ūi, d,mxŪi) ∈ X satisfy RCD(K,∞).

Then (X, d,m) is a RCD(K,∞) space.

The proof is an immediate consequence of Theorem 7.1 and Theorem 6.14.

7.2 The case N <∞

For N ≥ 1, let UN : [0,∞) → R be defined by UN (r) := N(r − r1−1/N ). The induced
dimension-dependent Rényi entropy functionals UN (whose limit as N → ∞ is the Shannon
entropy U∞ in (7.1)) is defined by

UN (µ) :=

∫
X
UN (%) dm +Nµ⊥(X) if µ = %m + µ⊥, µ⊥ ⊥ m. (7.3)

Since UN (0) = 0 and the negative part of U grows at most linearly, UN is well defined and
with values in R if µ has bounded support.
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We now introduce, for κ ∈ R, the distortion coefficients

σ(t)
κ (δ) :=



+∞ if κ ≥ π2,
sin(t
√
κδ)

sin(
√
κδ)

if 0 < κ < π2

t if κ = 0,

sinh(t
√
−κδ)

sin(
√
−κδ)

if κ < 0.

(7.4)

The so-called CD∗(K,N) condition introduced by Bacher and Sturm in [6] is based, in
analogy with the case N =∞, on a convexity inequality of UN along Wasserstein geodesics;
it is a variant of the CD(K,N) condition originally introduced by Sturm and studied in [25],
[32, 33] (based on a different choice of the distortion coefficients in (7.5) below). Here we just
mention that CDloc(K,N) is equivalent to CD∗(K,N), and this fact strongly suggests that
the latter should have better globalization/localization properties. For the purpose of this
paper, we just define the “Riemannian” CD∗(K,N) condition, adding the condition that Ch
is a quadratic form.

Definition 7.4 (RCD∗(K,N) condition). For K ∈ R and N ∈ [1,∞), we say that (X, d,m) ∈
X satisfies the RCD∗(K,N) condition if for every µi = %im ∈ P(X), i = 0, 1, with bounded
support, for all constant speed geodesic µs : [0, 1] → P2(X) from µ0 to µ1 and for every
M ≥ N there holds

UM (µs) ≤
∫ (

σ
(1−s)
K/M (d(γ0, γ1))%0(γ0)−1/M + σ

(s)
K/M (d(γ0, γ1))%1(γ1)−1/M

)
dπ(γ), (7.5)

where σκ is defined in (7.4) and UM is defined in (7.3).

The following result, extending [4] to the dimensional case, has been proved in [5] using,
from this paper, only the “abstract” regularity estimates in BE(K,N) Dirichlet spaces derived
in §3; see also Remark 7.6 below for the closely related result [18].

Theorem 7.5 (Equivalence of RCD∗(K,N) and BE(K,N)). If (X, d,m) ∈ X satisfies the
metric BE(K,N) condition then (X, d,m) is RCD∗(K,N). The converse holds if m(X) is
finite or K ≥ 0.

Remark 7.6 (Other characterizations of RCD∗(K,N)). As in the case N = ∞, another
characterization of RCD∗(K,N) has been given in [5] in terms of suitable Evolution Variation
Inequalities (EVI) satisfied by the gradient flow of the Reny entropy UN , with a modulus of
continuity proportional to K and dependent on N (in the limit case N = ∞ the modulus is
proportional to the squared Wasserstein distance). This requires a detailed analysis of the
gradient flow of the Reny entropy UN , a nonlinear diffusion equation. In this connection, a
remarkable result obtained in [18] is the characterization of the BE(K,N) property in terms
of an EVI property fulfilled, along the heat flow, by the modified Shannon entropy

ŨN (µ) := exp

(
− 1

N
U∞(µ)

)
.

This has the advantage of avoiding many technical difficulties related to nonlinear diffusion
equations in metric measure spaces. The definition of RCD∗(K,N) adopted in [18] is actually
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based on this EVI property and, due to the equivalence with BE(K,N) proved in that paper,
our Local-to-Global result applies to this definition as well.

However, as we discussed in the previous subsection, all these EVIK,N formulations, while
technically important to get stability and convexity properties on all geodesics, are less rele-
vant in the study of localization/globalization properties. �

Proposition 7.7 (Global-to-Local for RCD∗(K,N)). Let (X, d,m) ∈ X be RCD∗(K,N) and
let U ⊂ X be open. If m(∂U) = 0 and (Ū , d) is geodesic, then (Ū , d,mxŪ) is RCD∗(K,N).

Proof. The proof follows the same lines of Proposition 7.2: first (independently of curvature
assumptions) we obtain from Proposition 6.4(b) that the condition (X, d,m) localizes to U .
Then, we use the fact that one can find geodesics connecting probability measures in Ū lying
entirely in Ū . �

Theorem 7.8 (Local-to-Global for RCD∗(K,N)). Let (X, d,m) ∈ X be a length space and
assume that there exists a covering {Ui}i∈I of X by non-empty open subsets such that m(Ui) <
∞ if K < 0, and (Ūi, d,mxŪi) ∈ X satisfy RCD∗(K,N).

Then (X, d,m) is a RCD∗(K,N) space.

Proof. Since m(Ūi) < ∞ if K < 0, we know from Theorem 7.5 that all spaces (Ūi, d,mxŪi)
are metrically BE(K,N) and they are also locally compact, so that (X, d) is locally compact.
Therefore Theorem 6.14 applies and shows that (X, d,m) is a metrically BE(K,N) space and
we conclude applying Theorem 7.5 once more. �
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XIX, 1983/84, vol. 1123, Springer, Berlin, 1985, pp. 177–206.

[10] D. Bakry and M. Ledoux, A logarithmic Sobolev form of the Li-Yau parabolic in-
equality, Rev. Mat. Iberoamericana, 22 (2006), pp. 683-702.

[11] N. Bouleau and F. Hirsch, Dirichlet forms and analysis on Wiener sapces, vol. 14 of
De Gruyter studies in Mathematics, De Gruyter, 1991.

[12] D. Burago, Y. Burago, and S. Ivanov, A course in metric geometry, vol. 33 of Grad-
uate Studies in Mathematics, American Mathematical Society, Providence, RI, 2001.

[13] F. Cavalletti, Decomposition of geodesics in the Wasserstein space and the globaliza-
tion problem, Geom. Funct. Anal., 24 (2014), pp. 493–551.

[14] J. Cheeger and T. H. Colding, On the structure of spaces with Ricci curvature
bounded below. I, J. Differential Geom., 46 (1997), pp. 406–480.

[15] Z.-Q. Chen and M. Fukushima, Symmetric Markov processes, time change, and
boundary theory, vol. 35 of London Mathematical Society Monographs Series, Prince-
ton University Press, Princeton, NJ, 2012.

[16] T. Coulhon and A. Sikora, Riesz meets Sobolev, Colloq. Math., 118 (2010), pp. 685–
704.
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tion of the heat flow in RCD(K,∞) metric measure spaces, Disc. Cont. Dyn. Sist. A, 34
(2014), pp. 1641–1661.

[32] K.-T. Sturm, On the geometry of metric measure spaces. I, Acta Math., 196 (2006),
pp. 65–131.

[33] , On the geometry of metric measure spaces. II, Acta Math., 196 (2006), pp. 133–177.

[34] H. Triebel, Interpolation theory, function spaces, differential operators, Johann Am-
brosiusu Barth Verlag, Heidelberg, Leipzig, 1995.

[35] C. Villani, Optimal transport. Old and new, vol. 338 of Grundlehren der Mathematis-
chen Wissenschaften, Springer-Verlag, Berlin, 2009.

29


	Introduction
	Notation, preliminaries and the Bakry-Émery condition
	Interpolation estimates: extra integrability of (f) 
	Equivalent formulations of BE(K,N)
	Further regularity for (f) in BE( K,) spaces and the measure-valued 2-tensor
	Quasi-regular Dirichlet forms and the measure-valued 2-tensor
	Measure-valued 2 tensor under lower regularity assumptions

	Metric measure spaces and their localization
	Metric measure spaces, weak gradients and Cheeger energy
	Localization of metric measure spaces

	RCD*(K,N) spaces and their localization and globalization
	The case N=
	The case N<


