
THE FRACTIONAL CHEEGER PROBLEM

L. BRASCO, E. LINDGREN, AND E. PARINI

Abstract. Given an open and bounded set Ω ⊂ RN , we consider the problem of minimizing the
ratio between the s−perimeter and the N−dimensional Lebesgue measure among subsets of Ω.
This is the nonlocal version of the well-known Cheeger problem. We prove various properties of
optimal sets for this problem, as well as some equivalent formulations. In addition, the limiting
behaviour of some nonlinear and nonlocal eigenvalue problems is investigated, in relation with this
optimization problem. The presentation is as self-contained as possible.
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1. Introduction

1.1. Aim and results of the paper. In this paper we introduce and study the nonlocal/fractional
Cheeger problem in an open and bounded set Ω ⊂ RN . This amounts to finding a set E ⊂ Ω such
that

(1.1)
Ps(E)

|E| = inf
A⊂Ω

Ps(A)

|A| .

Here | · | stands for the N−dimensional Lebesgue measure, Ps for the nonlocal s-perimeter,

Ps(A) =

∫
RN

∫
RN

|1A(x)− 1A(y)|
|x− y|N+s

dx dy, s ∈ (0, 1),
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and 1A is the characteristic function of a set A. An s−Cheeger set of Ω is a set E satisfying (1.1).
Accordingly the quantity

hs(Ω) =
Ps(E)

|E| ,

is called the s−Cheeger constant of Ω. We point out that recently the study of nonlocal geometric
quantities like Ps has received a great impulse, as they arise in the modelization of phase-transitions
in presence of nonlocal interaction terms. We refer to the survey [17] for an updated account on
these studies.

Problem (1.1) turns out to have many interesting features and appears to be less obvious to
understand than its local counterpart, the (usual) Cheeger problem, where a Cheeger set is a set
E achieving the infimum

(1.2) h1(Ω) = inf
A⊂Ω

P (A)

|A| ,

with P (A) being the distributional perimeter of A, i.e. the total variation of the measure ∇1A.
Problem (1.2) was first introduced by Jeff Cheeger in [10] in the context of Riemannian Geometry,
see also [30] for an overview of the problem.

It is well-known that h1(Ω) is indeed an optimal Poincaré constant, namely

h1(Ω) = inf
u∈W 1,1

0 (Ω)\{0}

∫
Ω
|∇u| dx∫

Ω
|u| dx

,

and that h1(Ω) is the limit of the first eigenvalue of the p−Laplacian as p goes to 1, see [18, Corollary
6]. In the same spirit, in this paper we prove that the s−Cheeger constant can be equivalently
characterized as the following W s,1−eigenvalue (see Theorem 5.8)

λs1,1(Ω) := inf
u∈W s,1

0 (Ω)\{0}

∫
RN

∫
RN

|u(x)− u(y)|
|x− y|N+s

dx dy∫
Ω
|u| dx

,

and that hs(Ω) coincides with the limit as p goes to 1 of the nonlinear and nonlocal eigenvalues
λs1,p (see Theorem 7.1), coming from the eigenvalue problem

(1.3) 2

∫
RN

|u(y)− u(x)|p−2(u(y)− u(x))

|x− y|N+s p
dy + λs1,p(Ω) |u(x)|p−2u(x) = 0, x ∈ Ω,

which has been first introduced and studied by Lindqvist and the second author in [25].
We remark that both in (1.3) and in the definition of the s−perimeter, the integrals are taken

over the whole RN and not only over Ω itself. The reason is twofold: if one only integrates over Ω
then all sets would have s−Cheeger constant equal to zero; on the other hand, the problem (1.3)
would not have the appropriate scaling properties.

For the problem (1.3) we also provide a global L∞ estimate for the solutions (Theorem 3.3)
and a Faber-Krahn inequality with identification of equality cases (Theorem 3.5), which were both
missing in [25].

Using a scaling argument, it is easy to see that s−Cheeger sets must touch the boundary of Ω.
We are able to prove that, as in the local case, this happens in a C1 fashion at the points where
∂Ω is regular. Moreover we show that in the interior of Ω any s−Cheeger set is, up to a singular
set of dimension N − 2, a C1,α surface having constant non-local mean curvature equal to −hs(Ω),
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in the sense that

(1.4) lim
δ→0+

∫
RN\Bδ(x0)

1E(x)− 1RN\E(x)

|x− x0|N+s
dx = −hs(Ω),

for x0 ∈ ∂E ∩ Ω.
Finally, we provide another alternative characterization of the s−Cheeger constant, i.e.,

(1.5)
1

hs(Ω)
= min{‖ϕ‖L∞(RN×RN ) : R∗s,1(ϕ) = 1 in Ω},

where R∗s,1 is the adjoint of the following linear and continuous operator

u 7→ u(x)− u(y)

|x− y|N+s
.

This is a nonlocal version of the Max Flow Min Cut Theorem, which can be useful to obtain lower
bounds on hs(Ω). We recall that for the local case this was investigated in [32], where the following
characterization

1

h1(Ω)
= min

V ∈L∞(Ω;RN )

{
‖V ‖L∞(Ω) : −div V = 1 in Ω

}
,

was obtained (see also [21]).

1.2. Open problems. We are left with many open questions and problems. Since the nonlocal
mean curvature is a quantity that takes into account the global behavior, the property (1.4) can
not in general imply a local characterization of the boundary of a Cheeger set. Even for dimension
N = 2 we are not able to provide any finer information about the interior behaviour of s−Cheeger
sets, apart from the C1 regularity. However, we should mention that even for the usual Cheeger
constant h1(Ω), explicitly determining or inferring fine properties of the Cheeger sets are difficult
tasks. These usually become affordable for N = 2, when some severe geometric restrictions are
imposed on Ω (see for example [22, 23]).

A deep difference between the nonlocal case and the usual one is enlightened by the following
behaviour: as it is shown in Remark 4.5, for a sequence of sets {Ek}k∈N ⊂ RN such that

P (Ek) ≤ C and lim
k→∞

|Ek| = 0,

the s−perimeter as well converges to 0. This implies for example that in general filling a hole does
not decrease the s−perimeter, at least if the hole is “large enough”, while of course this is always
the case for the usual distributional perimeter. This behaviour is due to the fact that Ps(E) is a
sort of interpolation quantity between P (E) and |E| (see Corollary 4.4).

Related is the question of uniqueness of s−Cheeger sets which also remains open. While Cheeger
sets are known to be unique when Ω is convex, as proved in [3, 9], this is no longer clear in the
nonlocal setting.

1.3. Plan of the paper. We start with Section 2, where we precise the functional analytic set-
ting of our problem and we recall some facts about fractional Sobolev spaces that will be needed
throughout the whole paper. Then in Section 3 we recall the definition of first eigenvalue λs1,p(Ω)

from [25] and prove that the associated first eigenfunctions are bounded, together with the Faber-
Krahn inequality. Section 4 introduces the s−perimeter of a set, there we recall some connections
between the naturally associated Sobolev space W s,1 and the space of BV functions. With Section
5 we enter the core of the paper: we introduce problem (1.1) and prove some first properties.
The remaining sections are then devoted to study regularity issues for s−Cheeger sets (Section 6),
the relation between the first eigenvalues λs1,p(Ω) and the s−Cheeger constant (Section 7) and the

alternative characterization (1.5) (Section 8). Three appendices containing some technical results
complement the paper.
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2. A glimpse on fractional Sobolev spaces

Here and throughout the whole paper we will use the notation Br(x0) to denote the open ball
of RN centered at x0 and with radius r > 0. Moreover, we will denote by ωk the measure of the
k−dimensional ball with unit radius.

Given p ∈ [1,∞) and s ∈ (0, 1), let us denote by

(2.1) [u]W s,p(RN ) =

(∫
RN

∫
RN

|u(x)− u(y)|p
|x− y|N+s p

dx dy

) 1
p

,

the (s, p) Gagliardo seminorm in RN of a measurable function u. Given an open and bounded set
Ω ⊂ RN , we first observe that we have

[u]W s,p(RN ) < +∞, for every u ∈ C∞0 (Ω).

We then precise the Sobolev space we want to work with.

Definition 2.1. The space W̃ s,p
0 (Ω) is defined as the closure of C∞0 (Ω) with respect to the norm

u 7→ [u]W s,p(RN ) + ‖u‖Lp(Ω).

This is a Banach space, which is reflexive for 1 < p <∞.

In this paper we will deal with variational problems in the limit case p = 1, where W̃ s,1
0 (Ω) is

not reflexive. In this case, we will need the following larger Sobolev space.

Definition 2.2. The space Ws,1
0 (Ω) is defined by

Ws,1
0 (Ω) =

{
u ∈ L1(Ω) : [u]W s,1(RN ) < +∞ and u = 0 a.e. in RN \ Ω

}
.

Of course, we have W̃ s,1
0 (Ω) ⊂ Ws,1

0 (Ω).

The following approximation result in Ws,1
0 (Ω) is valid under smoothness assumptions on Ω and

will be quite useful in Section 5 and 7.

Lemma 2.3. Let Ω ⊂ RN be an open and bounded Lipschitz set and s ∈ (0, 1). For every u ∈
Ws,1

0 (Ω) there exists a sequence {ϕn}n∈N ⊂ C∞0 (Ω) such that

(2.2) lim
n→∞

‖ϕn − u‖L1(Ω) = 0 and lim
n→∞

[ϕn]W s,1(RN ) = [u]W s,1(RN ).

Proof. The proof is based on the construction of [26, Lemma 3.2]. Indeed, by this result we know
that under the standing assumptions on Ω there exists a family of diffeomorphisms Φε : RN → RN
with inverses Ψε such that:

• we have

lim
ε→0+

‖DΦε − Id‖L∞ + ‖Φε − Id‖L∞ = 0 and lim
ε→0+

‖DΨε − Id‖L∞ + ‖Ψε − Id‖L∞ = 0;

• Ωε := Φε(Ω) b Ω for all ε� 1.

We then define the sequence ϕn = (u ◦Ψ1/n) ∗ %n, where %n is a standard convolution kernel such
that ‖%n‖L1 = 1. By construction ϕn ∈ C∞0 (Ω) and the first property in (2.2) is easily verified.
Observe that by Fatou Lemma, this also implies that

lim inf
n→∞

[ϕn]W s,1(RN ) ≥ [u]W s,1(RN ),
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then in order to conclude we just need to prove the upper semicontinuity of the seminorm. We first
observe that

(2.3) [ϕn]W s,1(RN ) = [(u ◦Ψ1/n) ∗ %n]W s,1(RN ) ≤ [u ◦Ψ1/n]W s,1(RN ),

then the latter can be written as

[u ◦Ψ1/n]W s,1(RN ) =

∫
RN

∫
RN

|u(z)− u(w)|
|Φ1/n(z)− Φ1/n(w)| |JΦ1/n(z)| |JΦ1/n(w)| dz dw,

by a simple change of variables (z, w) = (Ψ1/n(x),Ψ1/n(y)), where JΦ1/n denotes the Jacobian
determinant. We now observe that by construction

|Φ1/n(z)− Φ1/n(w)| ≥M1 |z − w| and |JΦ1/n(z)| ≤M2,

for some M1 > 0 and M2 ≥ 1 independent of n. By applying Lebesgue Dominated Convergence
Theorem and keeping into account (2.3), we can conclude. �

We now prove a Poincaré–type inequality for Gagliardo seminorms.

Lemma 2.4. Let 1 ≤ p <∞ and s ∈ (0, 1), Ω ⊂ RN be an open and bounded set. There holds

(2.4) ‖u‖pLp(Ω) ≤ IN,s,p(Ω) [u]p
W s,p(RN )

, for every ϕ ∈ C∞0 (Ω),

where the geometric quantity IN,s,p(Ω) is defined by

(2.5) IN,s,p(Ω) = min

{
diam(Ω ∪B)N+s p

|B| : B ⊂ RN \ Ω is a ball

}
.

Proof. Let u ∈ C∞0 (Ω) and BR ⊂ RN \ Ω, i.e. a ball of radius R contained in the complement of
Ω. For every x ∈ Ω and y ∈ BR we then have

|u(x)|p =
|u(x)− u(y)|p
|x− y|N+s p

|x− y|N+s p,

from which we can infer

|BR| |u(x)|p ≤ sup
x∈Ω,y∈BR

|x− y|N+s p

∫
BR

|u(x)− u(y)|p
|x− y|N+s p

dy.

Integrating on Ω with respect to x we obtain∫
Ω
|u|p dx ≤ diam(Ω ∪BR)N+s p

|BR|

∫
Ω

∫
BR

|u(x)− u(y)|p
|x− y|N+s p

dx dy,

which concludes the proof. �

Remark 2.5. The previous result shows that for an open and bounded set Ω ⊂ RN the space

W̃ s,p
0 (Ω) can be equivalently defined as the closure of C∞0 (Ω) with respect to the seminorm [ · ]W s,p(RN ).

In view of the previous remark, in what follows we will always consider the space W̃ s,p
0 (Ω) as

equipped with the equivalent norm

(2.6) ‖u‖
W̃ s,p

0 (Ω)
:= [u]W s,p(RN ), u ∈ W̃ s,p

0 (Ω).

We will also define the space W s,p
0 (RN ) as the closure of C∞0 (RN ) with respect to the norm

[ · ]W s,p(RN ). Then it is immediate to see that the application

i : W̃ s,p
0 (Ω)→W s,p

0 (RN ),

which associates to each u ∈ W̃ s,p
0 (Ω) its extension by 0 to the whole RN is well-defined and

continuous.

Next, we investigate the behaviour of fractional Sobolev spaces under varying p.
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Lemma 2.6. Let Ω ⊂ RN be an open and bounded set. Let 1 ≤ q ≤ p <∞ and s ∈ (0, 1), then for
every 0 < ε < s we have

[u]W s−ε,q(RN ) ≤
C

ε (s− ε) [u]W s,p(RN ), for every u ∈ C∞0 (Ω),

where C = C(N,Ω, s, p, q) > 0.

Proof. Let u ∈ C∞0 (Ω), by a simple change of variables and using the invariance by translations of
Lp norms, we have

[u]q
W s−ε,q(RN )

=

∫
{h : |h|>1}

∫
RN

|u(x+ h)− u(x)|q
|h|N+(s−ε) q dx dh

+

∫
{h : |h|≤1}

∫
RN

|u(x+ h)− u(x)|q
|h|N+(s−ε) q dx dh

≤ 2q−1N ωN
(s− ε) q

∫
RN
|u|q dx+

∫
{|h|≤1}

(∫
RN

|u(x+ h)− u(x)|q
|h|s q dx

)
dh

|h|N−ε q .

We then observe that ∫
RN
|u|q dx =

∫
Ω
|u|q dx ≤ |Ω|1−

q
p

(∫
Ω
|u|p dx

) q
p

,

and for every |h| ≤ 1, since the function u(x+ h)− u(x) has compact support1, we get∫
RN

|u(x+ h)− u(x)|q
|h|s q dx ≤ CΩ,p,q

(∫
RN

|u(x+ h)− u(x)|p
|h|s p dx

) q
p

≤ C ′ [u]q
W s,p(RN )

,

where in the last inequality we used Lemma A.1. Putting everything together, we have obtained

[u]q
W s−ε,q(RN )

≤ 2q−1N ωN
(s− ε) q |Ω|

1− q
p

(∫
Ω
|u|p dx

) q
p

+
C ′N ωN
ε q

[u]q
W s,p(RN )

.

By using Poincaré inequality (2.4) in the previous, we get the conclusion. �

Theorem 2.7. Let 1 ≤ p < ∞ and s ∈ (0, 1), let Ω ⊂ RN be an open and bounded set. Let

{un}n∈N ⊂ W̃ s,p
0 (Ω) be a bounded sequence, i.e.

(2.7) sup
n∈N
‖un‖W̃ s,p

0 (Ω)
< +∞.

Then there exists a subsequence {unk}k∈N converging in Lp(Ω) to a function u. Moreover, if p > 1

then u ∈ W̃ s,p
0 (Ω), while for p = 1 we have u ∈ Ws,1

0 (Ω).

Proof. We first observe that the sequence {un}n∈N is bounded in Lp as well, thanks to (2.7) and the
Poincaré inequality (2.4). We then extend by zero the functions un to the whole RN and observe
that in order to get the desired conclusion, by the classical Riesz-Fréchet-Kolmogorov compactness
theorem we only have to check that

(2.8) lim
|h|→0

(
sup
n∈N

∫
RN
|un(x+ h)− u(x)|p dx

)
= 0.

By (2.7) and Lemma A.1 we get∫
RN
|un(x+ h)− un(x)|p dx = |h|s p

∫
RN

|un(x+ h)− un(x)|p
|h|s p dx ≤ C |h|s p [u]p

W s,p(RN )
≤ C̃ |h|s p,

for every |h| < 1. The previous estimate implies (2.8) and this gives the desired conclusion. Finally,

the last statement is a consequence of the reflexivity of W̃ s,p
0 (Ω) for p > 1. �

1More precisely, observe that the support of this function is contained in the open and bounded set
⋃
|h|≤1

(Ω + h).
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More generally we get the compactness of the embedding in Lq spaces for suitable q.

Corollary 2.8. For 1 ≤ p < ∞ and s ∈ (0, 1), let Ω ⊂ RN be an open and bounded set. Every

bounded sequence {un}n∈N ⊂ W̃ s,p
0 (Ω) admits a subsequence converging in Lq(Ω) to a function u,

for every q ≥ 1 such that

q < p∗ :=


N p

N − s p, if s p < N,

+∞, if s p ≥ N.

Proof. For 1 ≤ q < p, we can use Theorem 2.7 in conjunction with

‖u‖Lq(Ω) ≤ |Ω|
1
q
− 1
p ‖u‖Lp(Ω).

For p < q it is sufficient to combine the standard interpolation inequality (suppose for simplicity
that s p < N)

‖u‖Lq(Ω) ≤ ‖u‖ϑLp∗ (Ω)
‖u‖1−ϑLp(Ω), with ϑ =

p∗

q

q − p
p∗ − p,

and the Sobolev inequality in W s,p
0 (RN ) (see [15]) with Theorem 2.7. �

For completeness, we conclude this section by considering the case s p > N . The proof is the
same as in [12, Theorem 8.2], the only difference is that here we work with the narrower space

W̃ s,p
0 (Ω), so boundary issues can be disregarded.

Proposition 2.9. Let Ω ⊂ RN be an open and bounded set. Let 1 < p <∞ and s ∈ (0, 1) be such

that s p > N . Then for every u ∈ W̃ s,p
0 (Ω) there holds u ∈ C0,α with α = s−N/p. Moreover there

exists a constant γN,s,p > 0 such that we have the estimates

(2.9) |u(x)− u(y)| ≤
(
γN,s,p ‖u‖W̃ s,p

0 (Ω)

)
|x− y|α, x, y ∈ RN ,

and

(2.10) ‖u‖L∞ ≤ γN,s,p ‖u‖W̃ s,p
0 (Ω)

diam(Ω)α.

Proof. By extending u by 0 to the whole RN , we can consider it as an element of W s,p
0 (RN ), then

we take x0 ∈ RN , δ > 0 and estimate∫
Bδ(x0)

|u(x)− ux0,δ|p dx ≤
1

|Bδ(x0)|

∫
Bδ(x0)

∫
Bδ(x0)

|u(x)− u(y)|p dx dy,

where ux0,δ denotes the average of u on Bδ(x0). By observing that |x − y| ≤ 2 δ for every x, y ∈
Bδ(x0) and using that Bδ(x0) = ωN δ

N , we get∫
Bδ(x0)

|u(x)− ux0,δ|p dx ≤ C δs p [u]p
W s,p(RN )

,

that is

(2.11) |Bδ(x0)|− s pN
∫
Bδ(x0)

|u(x)− ux0,δ|p dx ≤ C [u]p
W s,p(RN )

,

possibly with a different constant C > 0. The estimate (2.11) implies that u belongs to the
Campanato space Lp,sp, which is isomorphic to C0,α with α = s − p/N (see [20, Theorem 2.9]).
This gives (2.9), while (2.10) can be obtained from the previous by simply taking y outside the
support of u. �
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3. The first fractional eigenvalue

Definition 3.1. Let 1 < p <∞ and s ∈ (0, 1). Given an open and bounded set Ω ⊂ RN we define

(3.1) λs1,p(Ω) = min
u∈W̃ s,p

0 (Ω)

{
‖u‖p

W̃ s,p
0 (Ω)

: ‖u‖Lp(Ω) = 1, u ≥ 0

}
,

where the norm ‖ · ‖
W̃ s,p

0 (Ω)
is defined in (2.6).

Observe that the constraint u ≥ 0 in (3.1) has no bearing: by dropping it, the minimal value
λs1,p(Ω) is unchanged, as for every u ∈ Lp(Ω) we have∣∣|u(x)| − |u(y)|

∣∣p ≤ |u(x)− u(y)|p and
∥∥|u|∥∥

Lp(Ω)
= ‖u‖Lp(Ω).

The minimum in (3.1) is well-defined thanks to Theorem 2.7 (see also [25, Theorem 5]) and every

minimizer uΩ ∈ W̃ s,p
0 (Ω) satisfies the following nonlocal and nonlinear equation∫

RN

∫
RN

|u(x)− u(y)|p−2 (u(x)− u(y))

|x− y|N+s p
(ϕ(x)− ϕ(y)) dx dy = λ

∫
Ω
|u|p−2 uϕdx,(3.2)

for every ϕ ∈ W̃ s,p
0 (Ω), with λ = λs1,p(Ω).

Remark 3.2. Observe that λs1,p(Ω) equals the inverse of the best constant in the Poincaré inequality

(2.4), thus λs1,p(Ω) > 0 thanks to Lemma 2.4, indeed we have the lower bound

λs1,p(Ω) ≥ 1

IN,s,p(Ω)
,

with IN,s,p as in (2.5).

We show that solutions to (3.2) are globally bounded. The same result can be found in the recent
paper [16]: there a suitable modification of the De Giorgi iteration method is employed. Here on
the contrary we use a variant of the Moser iteration technique. We can limit ourselves to prove the

result for s p ≤ N , since for s p > N functions in W̃ s,p
0 (Ω) are Hölder continuous and thus bounded,

thanks to Proposition 2.9.

Theorem 3.3 (Global L∞ estimate). Let 1 < p < ∞ and 0 < s < 1 such that s p ≤ N . If

u ∈ W̃ s,p
0 (Ω) achieves the minimum (3.1), then u ∈ L∞(RN ) and for s p < N we have the estimate

(3.3) ‖u‖L∞(Ω) ≤ C̃N,p,s
[
λs1,p(Ω)

] N
s p2 ‖u‖Lp(Ω),

where C̃N,p,s > 0 is a constant depending only on N, p and s (see Remark 3.4 below).

Proof. We set for simplicity λ = λs1,p(Ω) and we first consider the case s p < N . For every M , we

define uM = min{u,M} and observe that uM is still in W̃ s,p
0 (Ω), since this is just the composition

of u with a Lipschitz function. Given β ≥ 1 , we insert the test function ϕ = uβM in (3.2), then we
get ∫

RN

∫
RN

|u(x)− u(y)|p−2 (u(x)− u(y)) (uβM (x)− uβM (y))

|x− y|N+s p
dxdy ≤ λ

∫
RN

uβ+p−1 dx,

where we used that uM ≤ u. We now observe that the left-hand side can be estimated from below
by a Gagliardo seminorm of some power of u. Indeed, by using inequality (C.2) in the Appendix
we get ∫

RN

∫
RN

|u(x)− u(y)|p−2 (u(x)− u(y))

|x− y|N+s p
(uβM (x)− uβM (y)) dxdy

≥ β pp

(β + p− 1)p

∫
RN

∫
RN

∣∣∣∣uβ+p−1
p

M (x)− u
β+p−1
p

M (y)

∣∣∣∣p
|x− y|N+s p

dxdy.
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We can now use the Sobolev inequality for W s,p
0 (RN ), so to get

∫
RN

∫
RN

∣∣∣∣uβ+p−1
p

M (x)− u
β+p−1
p

M (y)

∣∣∣∣p
|x− y|N+s p

dxdy ≥ CN,p,s
(∫

RN

(
u
β+p−1
p

M

) N p
N−s p

dx

)N−s p
N

.

By keeping everything together and passing to the limit as M goes to ∞, we then obtain the
following iterative scheme of reverse Hölder inequalities

(3.4)

(∫ (
u
β+p−1
p

) N p
N−s p

dx

)N−s p
N

≤ λ

CN,p,s

(
β + p− 1

p

)p−1 ∫ (
u
β+p−1
p

)p
dx,

where we used that β ≥ 1, so that
β + p− 1

p

1

β
≤ 1.

Let us now set ϑ = β+p−1
p , then the previous inequalities can be written as(∫
u
ϑ N p
N−s p dx

)N−s p
ϑN p

≤
(

λ

CN,p,s

) 1
ϑ p (

ϑ
1
ϑ

) p−1
p

(∫
uϑ p

) 1
ϑ p

,

that is

‖u‖
L
ϑ

N p
N−s p

≤
(

λ

CN,p,s

) 1
ϑ p (

ϑ
1
ϑ

) p−1
p ‖u‖Lϑ p .

We want to iterate the previous inequality, by taking the following sequence of exponents

ϑ0 = 1, ϑn+1 = ϑn
N

N − s p =

(
N

N − s p

)n+1

.

Observe that N/(N − s p) > 1, then ϑn diverges at infinity and in addition
∞∑
n=0

1

ϑn
=
∞∑
n=0

(
N − s p
N

)n
=
N

sp
,

and
∞∏
n=0

ϑ
1
ϑn
n = exp

 ∞∑
n=0

n log
(

N
N−s p

)
(

N
N−s p

)n
 =

(
N

N − s p

)N−s p
s p

N
s p

.

By starting from n = 0, at the step n we have

‖u‖Lϑn+1 ≤
((

λ

CN,p,s

) 1
p

)∑n
i=0

1
ϑi
(

n∏
i=0

ϑ
1
ϑi
i

) p−1
p

‖u‖Lp ,

then by taking the limit as n goes to ∞ we finally obtain

‖u‖L∞ ≤
(

λ

CN,p,s

) N
s p2

(
N

N − s p

)N(N−s p)
s2 p2

p−1
p

‖u‖Lp ,

which concludes the proof.

We now pay attention to the borderline case s p = N . In this case W̃ s,p
0 (Ω) ↪→ Lq(Ω) for every

q <∞. Then we can proceed as before, by replacing Sobolev inequality with the following one

∫
RN

∫
RN

∣∣∣∣uβ+p−1
p

M (x)− u
β+p−1
p

M (y)

∣∣∣∣p
|x− y|N+s p

dxdy ≥ αsp(Ω)

(∫
RN

(
u
β+p−1
p

M

)2 p

dx

) 1
2

,
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where

αsp(Ω) = min
W̃ s,p

0 (Ω)

{
[u]p

W s,p(RN )
: ‖u‖L2 p(Ω) = 1

}
.

Then as before we arrive at

(3.5)

(∫ (
u
β+p−1
p

)2 p

dx

) 1
2

≤ λ

αsp(Ω)

(
β + p− 1

p

)p−1 ∫ (
u
β+p−1
p

)p
dx,

which is analogous to (3.4). By setting again ϑ = (β + p− 1)/p, we obtain(∫
u2ϑ p dx

) 1
2 p ϑ

≤
(

λ

αsp(Ω)

) 1
p ϑ (

ϑ
1
ϑ

) p−1
p

(∫
up ϑ dx

) 1
p ϑ

By iterating the previous with the sequence of exponents

ϑ0 = 1, ϑn+1 = 2ϑn = 2n+1,

we can conclude the proof as before. �

Remark 3.4. A closer inspection of the proof informs us that for s p < N the constant in (3.3) is
given by

C̃N,p,s =

 sup
u∈W s,p

0 (RN )\{0}

(∫
RN
|u|

N p
N−s p dx

)N−s p
N

[u]p
W s,p(RN )


N
s p2 (

N

N − s p

)N(N−s p)
s2 p2

p−1
p

.

The first term is the best constant in the Sobolev inequality for W s,p
0 (RN ), see [15]. .

Observe that the quantity λs1,p(Ω) enjoys the following scaling law

λs1,p(tΩ) = t−s p λs1,p(Ω), t > 0,

then the shape functional Ω 7→ |Ω|(s p)/N λs1,p(Ω) is scaling invariant. We have the following.

Theorem 3.5 (Faber-Krahn inequality). Let 1 < p < ∞ and s ∈ (0, 1). For every Ω ⊂ RN open
and bounded, we have

(3.6) |Ω|(s p)/N λs1,p(Ω) ≥ |B|(s p)/N λs1,p(B),

where B is any N−dimensional ball. Moreover, if equality holds in (3.6) then Ω is a ball. In other
words, balls uniquely minimize the first eigenvalue λs1,p among sets with given N−dimensional
Lebesgue measure.

Proof. Without loss of generality, we can suppose that |Ω| = |B|. Then it is sufficient to use the
following Pòlya-Szegő principle

(3.7) [u]p
W s,p(RN )

≥ [u#]p
W s,p(RN )

,

which is proved in [2, Theorem 9.2], see also [15, Theorem A.1]. In (3.7) u# stands for the symmetric

decreasing rearrangement of the function u, i.e. u# ∈ W̃ s,p
0 (B) is the radially symmetric decreasing

function such that

|{x : u(x) > t}| = |{x : u#(x) > t}|, t > 0.

By using (3.7), we immediately get (3.6). For the cases of equality, we observe that if λs1,p(Ω) =

λs1,p(B) and |Ω| = |B|, then equality must hold in (3.7). Again by [15, Theorem A.1], we obtain that

any first eigenfunction of Ω has to coincide with (a translate of) a radially symmetric decreasing
function. This implies that Ω has to be a ball. �
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4. The s−perimeter of a set

Definition 4.1. For every Borel set E, we define its s−perimeter as

Ps(E) = [1E ]W s,1(RN ) =

∫
RN

∫
RN

|1E(x)− 1E(y)|
|x− y|N+s

dx dy,

where it is understood that Ps(E) = +∞ if the above integral is not finite.

Observe that the s−perimeter has the following scaling property

Ps(t E) = tN−s Ps(E), t > 0,

and we have the isoperimetric inequality

(4.1) Ps(E) ≥ Ps(B)

( |E|
|B|

)N−s
N

,

where B is any N−dimensional ball. Moreover, equality holds in (4.1) if and only if E is a ball,
see [15, 19]. It is straightforward to see from the definition that

Ps(E) = 2

∫
E

∫
Ec

1

|x− y|N+s
dx dy,

where we set Ec = RN \ E. In what follows we denote by BV (RN ) the space

BV (RN ) =
{
u ∈ L1(RN ) : |∇u|(RN ) < +∞

}
,

where |∇u|(RN ) is the total variation of the distributional gradient of u. The following interpolation
inequality will be useful.

Proposition 4.2. Let s ∈ (0, 1). For every u ∈ BV (RN ) we have

(4.2) [u]W s,1(RN ) ≤
21−sN ωN
(1− s) s

[
|∇u|(RN )

]s
‖u‖1−s

L1(RN )
.

Proof. Let u ∈ BV (RN ), at first we will prove that

(4.3)

∫
RN

∫
RN

|u(x)− u(y)|
|x− y|N+s

dx dy ≤ N ωN

(
1

1− s

∫
RN
|∇u| dx+

2

s

∫
RN
|u| dx

)
.

We recall that there exists a sequence {un}n∈N ⊂ C∞(RN ) ∩BV (RN ) such that

lim
n→∞

‖un − u‖L1(RN ) = 0 and lim
n→∞

∫
RN
|∇un| dx = |∇u|(RN ),

see for example [5]. Then in order to prove (4.3) it will be sufficient to prove it for un. We have∫
RN

∫
RN

|un(x)− un(y)|
|x− y|N+s

dx dy =

∫
RN

∫
RN

|un(x+ h)− un(x)|
|h|N+s

dx dh

=

∫
{h : |h|≥1}

∫
RN

|un(x+ h)− un(x)|
|h|N+s

dx dh

+

∫
{h : |h|<1}

∫
RN

|un(x+ h)− un(x)|
|h|N+s

dx dh

then we observe that we have

|un(x+ h)− un(x)| ≤
(∫ 1

0
|∇un(x+ t h)| dt

)
|h|, h ∈ RN .
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By using this and the invariance of Lp norms by translations, we get

∫
{h : |h|<1}

∫
RN

|un(x+ h)− un(x)|
|h|N+s

dx dh ≤
∫
{h : |h|<1}

∫
RN

∫ 1

0
|∇un(x+ t h)| dt

|h|N+s−1
dx dh

=

∫
{h : |h|<1}

∫
RN
|∇un| dx

|h|N+s−1
dh =

N ωN
1− s

∫
RN
|∇un| dx.

For the other integral, by using the triangular inequality and again the invariance of Lp norms by
translations, we get∫

{h : |h|≥1}

∫
RN

|un(x+ h)− un(x)|
|h|N+s

dx dh ≤
∫
{h : |h|≥1}

1

|h|N+s

(∫
RN
|un(x+ h)| dx

)
dh

+

(∫
{h : |h|≥1}

dh

|h|N+s

) (∫
RN
|un| dx

)
= 2

N ωN
s

∫
RN
|un| dx.

In conclusion we obtained (4.3) for the sequence {un}n∈N and thus for u, by passing to the limit.

In order to arrive at (4.2), it is now sufficient to use a standard homogeneity argument. Let
u ∈ BV (RN ) \ {0} and set uλ(x) = u(x/λ), where λ > 0. Then by (4.3) we get

λN−s
∫
RN

∫
RN

|u(x)− u(y)|
|x− y|N+s

dx dy ≤ N ωN

(
λN−1

1− s

∫
RN
|∇u| dx+

2λN

s

∫
RN
|u| dx

)
,

that is

(4.4) λ1−s
∫
RN

∫
RN

|u(x)− u(y)|
|x− y|N+s

dx dy − 2N ωN
λ

s

∫
RN
|u| dx ≤ N ωN

1− s

∫
RN
|∇u| dx.

The left-hand side is maximal for

λ =

(
(1− s) s [u]W s,1(RN )

2N ωN ‖u‖L1(RN )

) 1
s

.

By replacing this value in (4.4), we obtain the desired result. �

Remark 4.3. We point out that in dimension N = 1 inequality (4.2) is sharp for every s ∈ (0, 1),
since equality is attained for characteristic functions of bounded intervals. Let u = 1I be the
characteristic function of the interval I having length `, a direct computation gives

[u]W s,1(RN ) = Ps(I) =
4 `1−s

s (1− s) ,

while
ω1 = 2, ‖u‖L1(R) = `, |u′|(R) = 2,

then it is easily seen that equality holds in (4.2).

We now highlight a couple of consequences of inequality (4.2). The first one gives a relation
between the s−perimeter and the standard distributional perimeter. For the proof it is sufficient
to take u = 1E in (4.2). A related estimate for N = 2 can be found in [28, Lemma 2.2].

Corollary 4.4. Let s ∈ (0, 1), for every finite perimeter set E ⊂ RN we have

Ps(E) ≤ 21−sN ωN
(1− s) s P (E)s |E|1−s.
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Remark 4.5. The previous result implies that if {Ek} ⊂ RN is such that P (Ek) ≤ C and |Ek|
converges to 0 as k goes to ∞, then Ps(Ek) as well converges to 0. For example, by taking the
annular set Ck = {x : 1− 1/k < |x| < 1}, we get that Ps(Ck) is going to 0 as k goes to ∞. Then
in general for the s−perimeter it is not true that filling a hole decreases the perimeter, like in the
standard case.

By simply using Poincaré inequality in (4.2), we can also infer the following.

Corollary 4.6. Let s ∈ (0, 1). For every u ∈ BV (RN ) with compact support there holds∫
RN

∫
RN

|u(x)− u(y)|
|x− y|N+s

dx dy ≤ 21−sN ωN
(1− s) s diam(sptu)1−s |∇u|(RN ),

where spt(u) denotes the support of u.

In what follows, we will need the following Coarea Formula for nonlocal integrals. This has been
first proved by Visintin in [33]. The proof is omitted, we just recall that it is based on Fubini’s
Theorem and on the so-called Layer Cake Representation for functions.

Lemma 4.7. Let u ∈ L1(RN ), then there holds the following Coarea-type formula

(4.5) [u]W s,1(RN ) =

∫ ∞
0

Ps({x : |u(x)| > t}) dt.

In particular, if [u]W s,1(RN ) < +∞ then for almost every t ∈ R the sets {x : |u(x)| > t} has finite
s−perimeter.

By Proposition 4.2 and Lemma 4.7, we can infer the following limiting behaviour for the (s, 1)
Gagliardo seminorm, whose proof is essentially the same as [27, Theorem 8]. We give it for ease of
completeness.

Proposition 4.8. Let u ∈ BV (RN ) have compact support. Then there holds

(4.6) lim
s↗1

(1− s) [u]W s,1(RN ) = 2ωN−1 |∇u|(RN ).

Proof. First of all, we remark that [u]W s,1(RN ) < +∞ for every s < 1, thanks to Proposition 4.2.

By the coarea formula (4.5)

(1− s) [u]W s,1(RN ) = (1− s)
∫ +∞

0
Ps(Ωt) dt,

where we set Ωt := {|u| > t}. Since by definition Ps(Ωt) = [1Ωt ]W s,1(RN ), by Corollary 4.6 we have

that2

(1− s)Ps(Ωt) ≤ C P (Ωt), t > 0,

where P denotes the usual distributional perimeter. By using the usual coarea formula for BV
functions (see [5]), we get ∫ +∞

0
P (Ωt) dt = |∇u|(RN ) < +∞.

On the other hand, by [27, Theorem 4] we have3

lim
s↗1

(1− s)Ps(Ωt) = 2ωN−1 P (Ωt).

2The constant C only depends on the dimension N and the diameter of sptu, for s close to 1.
3The reader should pay attention to the fact that our definition of Ps(Ω) differs from that of [27] by a multiplicative

factor 2.
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We point out that the constant ωN−1 can be deduced from formula (4) in [27]. Therefore it is
possible to apply Lebesgue’s Dominated Convergence Theorem in order to obtain

lim
s↗1

(1− s) [u]W s,1(RN ) = lim
s↗1

(1− s)
∫ +∞

0
Ps(Ωt) dt = 2ωN−1

∫ +∞

0
P (Ωt) dt = 2ωN−1 |∇u|(RN ),

thus concluding the proof. �

We also recall the sharp Sobolev inequality in W s,1
0 (RN ), which is nothing but a functional

version of the isoperimetric inequality (4.1).

Theorem 4.9 (Sobolev inequality in W s,1
0 (RN )). Let N ≥ 2 and s ∈ (0, 1), then

(4.7) min
u∈W s,1

0 (RN )\{0}

∫
RN

∫
RN

|u(x)− u(y)|
|x− y|N+s

dx dy(∫
RN
|u| N

N−s dx

)N−s
N

= Ps(B) |B| s−NN ,

where B is any N−dimensional ball. The minimum in (4.7) is attained by any characteristic
function of an N−dimensional ball.

Proof. We at first observe that it is sufficient to prove the result for positive functions. Let u ∈
W s,1

0 (RN ) be positive and let us indicate with µ its distribution function

µ(t) = |{x : u(x) > t}|.
By using the Cavalieri principle we get the following estimate (see [29, Section 1.3.3])(∫

RN
|u| N

N−s dx

)N−s
N

≤
∫ ∞

0
µ(t)

N−s
N dt.

Using the latter, (4.5) and the isoperimetric inequality (4.1), we get the estimate∫
RN

∫
RN

|u(x)− u(y)|
|x− y|N+s

dx dy(∫
RN
|u| N

N−s

)N−s
N

≥

∫ ∞
0

Ps({u > t}) dt∫ ∞
0

µ(t)
N−s
N dt

≥ Ps(B) |B| s−NN ,

for all u ∈ W s,1
0 (RN ). On the other hand, by taking u = 1B with B any N−dimensional ball, we

get equality in the previous. �

5. The nonlocal Cheeger constant

Definition 5.1. Let s ∈ (0, 1). For every open and bounded set Ω ⊂ RN we define its s−Cheeger
constant by

(5.1) hs(Ω) = inf
E⊂Ω

Ps(E)

|E| .

A set EΩ ⊂ Ω achieving the infimum in the previous problem is said to be an s−Cheeger set of Ω.
Also, we say that Ω is s−calibrable if it is an s−Cheeger set of itself, i.e. if

hs(Ω) =
Ps(Ω)

|Ω| .

Remark 5.2. As in the local case, any ball B ⊂ RN is s−calibrable. This is a direct consequence
of the isoperimetric inequality (4.1), which gives for every E ⊂ B

Ps(E)

|E| ≥
Ps(B)

|B|

( |B|
|E|

) s
N

≥ Ps(B)

|B| .
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Proposition 5.3. Let s ∈ (0, 1), every Ω ⊂ RN open and bounded admits an s−Cheeger set.
Moreover, if EΩ is an s−Cheeger set of Ω, then ∂EΩ ∩ ∂Ω 6= ∅.
Proof. First of all, we observe that hs(Ω) < +∞, i.e. there exists at least an admissible set such
that the ratio defining hs(Ω) is finite. Indeed, since Ω is open, it contains a ball Br and for this
Ps(Br) < +∞. We then take a minimizing sequence {En}n∈N ⊂ Ω and we can obviously suppose
that

Ps(En)

|En|
≤ hs(Ω) + 1, for every n ∈ N.

As |En| ≤ |Ω|, the previous immediately gives a uniform bound on the s−perimeter of the sequence
{En}n∈N. Moreover, by combining the previous and (4.1), we get

|En|
N−s
N

(
Ps(B)

|B|N−sN

)
≤ (hs(Ω) + 1) |En|,

which in turn implies

(5.2) |En| ≥ cN,Ω,s > 0.

Then we get

[1En ]W s,1(RN ) + ‖1En‖L1 ≤ C, for every n ∈ N.
By appealing to Theorem 2.7, this in turn implies that the sequence {1En}n∈N is strongly converging
(up to a subsequence, not relabeled) in L1 to a function ϕ, which has the form ϕ = 1EΩ

for some
measurable set EΩ ⊂ Ω. Thanks to (5.2), we can also assure that |EΩ| > 0. By using the latter
and the lower semicontinuity of the Gagliardo seminorms, we get

[1EΩ
]W s,1(RN )

|EΩ|
≤ lim inf

n→∞

[1En ]W s,1(RN )

|En|
= hs(Ω).

This concludes the proof of the existence.

Let us now prove the second statement. Assume by contradiction that EΩ b Ω. Then, for t > 1
sufficiently close to 1, the scaled set t EΩ is still contained in Ω. We have

Ps(t EΩ)

|t EΩ|
=
tN−s Ps(EΩ)

tN |EΩ|
= t−shs(Ω) < hs(Ω),

contradicting the minimality of EΩ. Hence we obtain the claim. �

Remark 5.4. We have seen that an s−Cheeger EΩ of Ω has to touch the boundary ∂Ω. Actually,
the previous proof shows that EΩ has the following slightly stronger property: t EΩ is not contained
in Ω for any t > 1.

It is not difficult to see that balls (uniquely) minimize the s−Cheeger constant among sets having
given N−dimensional measure. This can be seen as a limit case of the Faber-Krahn inequality (3.6).

Proposition 5.5. Let s ∈ (0, 1), for every open and bounded set Ω ⊂ RN we have

(5.3) |Ω| sN hs(Ω) ≥ |B| sN hs(B),

where B is any N−dimensional ball. Equality in (5.3) holds if and only if Ω itself is a ball.

Proof. Let B be a ball such that |Ω| = |B| and let EΩ be an s−Cheeger set for Ω. By using (4.1)
we have

hs(Ω) =
Ps(EΩ)

|EΩ|
≥ Ps(B)

|B|

( |B|
|EΩ|

) s
N

≥ Ps(B)

|B| = hs(B),

where we used that |EΩ| ≤ |Ω| = |B|. The characterization of equality cases directly follows from
the equality cases in (4.1). �
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Thanks to Corollary 4.4, the nonlocal quantity hs(Ω) can be estimated in terms of the usual
(local) Cheeger constant h1(Ω).

Proposition 5.6. Let s ∈ (0, 1) and Ω ⊂ RN be an open bounded set. Then we have

hs(Ω) ≤ 21−sN ωN
(1− s) s h1(Ω)s.

Proof. Let E ⊂ Ω be a Cheeger set, then by using Corollary 4.4 we get

h1(Ω)s =

(
P (E)

|E|

)s
≥ (1− s) s

21−sN ωN

Ps(E)

|E| ,

which gives the conclusion. �

We now provide an equivalent definition of hs(Ω). Let us define

λs1,1(Ω) = inf
u∈W̃ s,1

0 (Ω)

{
[u]W s,1(RN ) : ‖u‖L1(Ω) = 1, u ≥ 0

}
.

This variational problem in general has a “relaxed” solution, i.e. this infimum is attained in the
larger space Ws,1

0 (Ω), at least for Ω smooth enough. This is the content of the next result.

Lemma 5.7. Let s ∈ (0, 1) and Ω ⊂ RN be an open and bounded Lipschitz set. Then

(5.4) λs1,1(Ω) = min
u∈Ws,1

0 (Ω)

{
[u]W s,1(RN ) : ‖u‖L1(Ω) = 1, u ≥ 0

}
,

and the minimum on the right is attained.

Proof. Of course, since W̃ s,1
0 (Ω) ⊂ Ws,1

0 (Ω), we have

(5.5) inf
u∈Ws,1

0 (Ω)

{
[u]W s,1(RN ) : ‖u‖L1(Ω) = 1, u ≥ 0

}
≤ λs1,1(Ω),

then we just have to show the reverse inequality. At first, we observe that the infimum in the
left-hand side of (5.5) is attained by some function u0 ∈ Ws,1

0 (Ω), again thanks to Theorem 2.7.
Then we observe that since Ω is Lipschitz, by Lemma 2.3 there exists a sequence {ϕn}n∈N ⊂ C∞0 (Ω)
such that

lim
n→∞

‖ϕn − u0‖L1(Ω) = 0 and lim
n→∞

[ϕn]W s,1(RN ) = [u0]W s,1(RN ).

As C∞0 (Ω) ⊂ W̃ s,1
0 (Ω), by appealing to the definition of λs1,1(Ω) we get

λs1,1(Ω) ≤ lim
n→∞

[ϕn]W s,1(RN )

‖ϕn‖L1(Ω)
= [u0]W s,1(RN ).

By using the minimality of u0 and (5.5), we get (5.4). �

Then the main result of this section is the following characterization of hs(Ω).

Theorem 5.8. Let s ∈ (0, 1) and let Ω ⊂ RN be an open and bounded set. For every u ∈
Ws,1

0 (Ω) \ {0}, we have

(5.6)
[u]W s,1(RN )

‖u‖L1(Ω)
≥ hs(Ω).

Moreover, if equality holds in (5.6), then u has the following property: almost every level set of u
with positive N−dimensional Lebesgue measure is an s−Cheeger set of Ω.

Finally, if Ω has Lipschitz boundary then

(5.7) λs1,1(Ω) = hs(Ω).
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Proof. The proof of the first part is based on the Coarea Formula of Lemma 4.7. Without loss of
generality, we can suppose that u is positive. Then by (4.5), Cavalieri formula and the definition
of hs(Ω) we get

[u]W s,1(RN )

‖u‖L1(Ω)
=

∫ ∞
0

Ps({x : u(x) > t}) dt∫ ∞
0
|{x : u(x) > t}| dt

≥ hs(Ω),

which proves (5.6). The property of the level sets of an optimal function u is a consequence of the
previous estimate, since if equality holds then we must have

Ps({x : u(x) > t}) = hs(Ω) |{x : u(x) > t}|,
for almost every level t.

In order to prove (5.7), we at first observe that the previous estimate easily implies

λs1,1(Ω) ≥ hs(Ω).

On the other hand, by Lemma 5.7 we have that the variational problem giving λs1,1(Ω) is the same

as hs(Ω), but in the latter we restricted the competitors to a narrower class. This implies

λs1,1(Ω) ≤ hs(Ω),

so that equality (5.7) holds. �

6. Regularity of s−Cheeger sets

Following [6], given two sets A,B ⊂ RN and 0 < s < 1, we introduce the following notation

L(A,B) =

∫
A

∫
B

1

|x− y|N+s
dx dy.

Moreover, if Ω ⊂ RN is an open set, we define

JΩ(E) = L(E ∩ Ω, Ec) + L(E \ Ω, Ec ∩ Ω).

Observe that if E ⊂ Ω, then

JΩ(E) = L(E,Ec) =
1

2
Ps(E).

Using this perimeter-type functional we introduce the notion of nonlocal minimal surfaces and
almost nonlocal minimal surfaces, in the spirit of [6, 7].

Definition 6.1. We say that E is a nonlocal minimal surface in Ω if for any F such that F\Ω = E\Ω
there holds

JΩ(E) ≤ JΩ(F ).

Definition 6.2. Let δ > 0 and ω : (0, δ)→ R+ be a modulus of continuity. Then we say that E ⊂
RN is (JΩ, ω, δ)−minimal in Ω if for any x0 ∈ ∂E and any set F such that E \Br(x0) = F \Br(x0)
and r < min(δ, dist(x0, ∂Ω)) we have

JΩ(E) ≤ JΩ(F ) + ω(r) rN−s.

We will also simply say that E is almost minimal in Ω.

We need to recall the following regularity result.

Theorem 6.3. Assume that E ⊂ RN is (JΩ, C r
α, 1)−minimal in B1 for some α ∈ (0, s] and some

C > 0. Then:
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(1) there exists δ0 = δ0(N, s, α, C) > 0 such that if

∂E ∩B1 ⊂ {x : |〈x, e〉| ≤ δ0}, for some unit vector e,

then ∂E is C1 in B1/2;

(2) outside a singular set having at most Hausdorff dimension N − 2, ∂E is C1 regular;
(3) in the case N = 2, the singular set is empty, i.e., ∂E is C1 regular everywhere.

Proof. The first two parts are proved in [7]. For the last part we observe that in [31, Theorem 1]
it is proved that actually there are no singular cones for N = 2. By using [7, Theorem 7.4, part 3]
this implies that nonlocal almost minimal surfaces are C1 for N = 2 as well. �

By appealing to the previous result, we can prove our first interior regularity result for an
s−Cheeger set.

Proposition 6.4 (Interior regularity). Let s ∈ (0, 1) and Ω ⊂ RN be an open and bounded set. Let
E be an s−Cheeger set of Ω. Then ∂E ∩ Ω is C1, up to a singular set of Hausdorff dimension at
most N − 2. In the case N = 2, ∂E ∩ Ω is C1.

Proof. We prove at first that E is (JΩ, C r
s, 1)−minimal in Ω, with C = C(N,Ω) > 0. Since E is

an s−Cheeger set, it is a minimizer of

(6.1) 2

∫
E

∫
Ec

1

|x− y|N+s
dx dy − hs(Ω)|E|,

among all subsets of Ω. Hence, for any x0 ∈ ∂E∩Ω, r < dist(x0, ∂Ω) and F such that F \Br(x0) =
E \Br(x0), we have F ⊂ Ω and thus

2

∫
E

∫
Ec

1

|x− y|N+s
dx dy ≤ 2

∫
F

∫
F c

1

|x− y|N+s
dx dy + hs(Ω)(|E ∩Br(x0)| − |F ∩Br(x0)|)

≤ 2

∫
F

∫
F c

1

|x− y|N+s
dx dy + C rN .

Now, we observe that E \ Ω = ∅ = F \ Ω, thus the previous estimate is the same as

(6.2) JΩ(E) ≤ JΩ(F ) + C rN ,

which proves that E is (JΩ, C r
s, 1)−minimal in Ω.

We are now going to use Theorem 6.3. Let x0 ∈ ∂E ∩ Ω, then there exists a ball Br0(x0) ⊂ Ω. By
defining

Ẽ =
E − x0

r0
and Ω̃ =

Ω− x0

r0
,

and using the scaling properties of L, we get

J
Ω̃

(Ẽ) =
JΩ(E)

rN−s0

.

By using this and (6.2) we get

J
Ω̃

(Ẽ) ≤ J
Ω̃

(F̃ ) +
C

rN0
rN ,

for every y ∈ ∂Ẽ, every F̃ such that Ẽ \Br(y) = F̃ \Br(y) and every r such that r < dist(y, ∂Ω̃).

This gives that Ẽ is (J
Ω̃
, C̃ rs, 1)−minimal in Ω̃, where C̃ = C r−N0 . Observe that B1 ⊂ Ω̃ by

construction, thus Ẽ has the same almost minimality property in B1 and Theorem 6.3 applies. By
scaling and translating back, we get the desired result for E. �

By the same idea, we can obtain regularity of an s−Cheeger set at points touching ∂Ω.

Proposition 6.5 (Boundary regularity). Let x0 ∈ ∂E ∩ ∂Ω and assume that ∂Ω is locally of class
C1,α around x0. Then there exists r0 > 0 such that ∂E ∩Br0(x0) is the graph of a C1 function.
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Proof. Let r0 > 0 and set for simplicity B = Br0(x0). Up to translating and scaling the sets as in
the proof Proposition 6.4, we can suppose for simplicity that x0 = 0 and r0 = 1. As before, we
start by proving that E is (JB, C r

α̃, 1)−minimal in B, where we set

α̃ = min{α, s}.
We take again F to be a set coinciding with E outside Br(y) for y ∈ ∂E ∩B and r < dist(y, ∂B).
Then F ∩ Ω is admissible for the minimization of (6.1), thus as before∫

E

∫
Ec

1

|x− y|N+s
dx dy ≤

∫
F∩Ω

∫
(F∩Ω)c

1

|x− y|N+s
dx dy + hs(Ω) (|E| − |F ∩ Ω|)

≤
∫
F∩Ω

∫
(F∩Ω)c

1

|x− y|N+s
dx dy + C rN ,

where in the second inequality we used that E and F only differ in Br(y). For the same reason we
have F \B = E \B and F c \B = Ec \B, so that

JB(E) = L(E ∩B,Ec) + L(E \B,Ec ∩B)

= L(E ∩B,Ec) + L(E \B,Ec) + L(E \B,Ec ∩B)− L(E \B,Ec)
= L(E,Ec)− L(E \B,Ec \B)

≤ L(F ∩ Ω, (F ∩ Ω)c)− L(F \B,F c \B) + C rN

= JB(F ) +
[
L(F ∩ Ω, (F ∩ Ω)c)− L(F ∩B,F c)− L(F \B,F c)

]
+ C rN

which gives

(6.3) JB(E) ≤ JB(F ) +
[
L(F ∩ Ω, (F ∩ Ω)c)− L(F, F c)

]
+ C rN .

We have to estimate the second term in the right-hand side of (6.3). For this, we note that

F c ∪ (F ∩ Ωc) = F c ∪ Ωc = (F ∩ Ω)c,

then for every positive measurable function g we have∫
F∩Ω

∫
(F∩Ω)c

g(x, y) dxdy =

∫
F∩Ω

∫
F c
g(x, y) dxdy +

∫
F∩Ω

∫
F∩Ωc

g(x, y) dxdy

=

∫
F

∫
F c
g(x, y) dxdy −

∫
F∩Ωc

∫
F c
g(x, y) dxdy +

∫
F∩Ω

∫
F∩Ωc

g(x, y) dxdy

≤
∫
F

∫
F c
g(x, y) dxdy +

∫
Ω

∫
Br(y)∩Ωc

g(x, y) dxdy,

thanks to the fact that F ∩ Ωc ⊂ Br(y) ∩ Ωc, since F ⊂ Br(y) ∪ Ω by construction. Thus we can
infer∫

F∩Ω

∫
(F∩Ω)c

1

|x− y|N+s
dx dy ≤

∫
F

∫
F c

1

|x− y|N+s
dx dy +

∫
Ω

∫
Br(y)∩Ωc

1

|x− y|N+s
dx dy

≤
∫
F

∫
F c

1

|x− y|N+s
dx dy + C rα rN−s,

where the second inequality follows from [7, Example 2] since we have assumed that Ω has a C1,α

boundary. By inserting the previous estimate in (6.3), we finally get

JB(E) ≤ JB(F ) + C rN + C rα rN−s,

which proves that E is (JB, C r
α̃, 1)−minimal in B, possibly with a different constant C.
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T (x)

x
−eN

Figure 1. The vector T (x) + eN is parallel to x + eN and T (x) and x have the
same distance from the boundary of the ball.

The C1 regularity now follows from part 3 in [7, Theorem 7.4]. Indeed, if we perform a blow-up of
E, we will as usual obtain a nonlocal minimal cone K. Moreover, the complement Kc is minimal
as well and Kc contains a tangential ball, due to the fact that Ω is assumed to be C1,α, which
means that ∂Ω becomes a half-space after a blow-up. By [6, Corollary 6.2] we get that ∂K is a C1

surface, and since K is a cone, this means that K is a half-space. From [7, Theorem 7.4, part 3],
we can now conclude that E is C1. �

Finally we prove that at any point of ∂E∩Ω having a tangent ball from both sides, an s−Cheeger
set E has constant nonlocal mean curvature equal to −hs(Ω). At this aim, we first need a technical
result, whose proof closely follows that of [6, Theorem 5.1].

Lemma 6.6. Let Ω ⊂ RN be an open bounded set and E ⊂ RN a set satisfying

(6.4) L(A,E)− L(A, (E ∪A)c) ≤ C0 |A|,
for every A ⊂ Ω \ E and for some constant C0. Let us suppose that there exists a ball Br(y0) ⊂ E
which is tangent at x0 ∈ ∂E ∩ Ω. Then we have

(6.5) lim sup
δ→0+

∫
RN\Bδ(x0)

1E(x)− 1Ec(x)

|x− x0|N+s
dx ≤ C0.

Proof. We briefly recall the construction of the proof in [6, Theorem 5.1] for the reader’s conve-
nience. Let us set eN = (0, . . . , 0, 1), without loss of generality we can assume that x0 = 0 and that
Br(y0) = B2(−2 eN ), since we can always reduce to this case by rescaling and translating. Take
0 < δ � 1 such that Bδ(0) ⊂ Ω and 0 < ε� δ such that4 B1+ε(−eN ) \ E ⊂ Bδ(0). We denote by
T the radial reflection in the sphere ∂B1+ε(−eN ) (see Figure 1), then we define the sets

A− = B1+ε(−eN ) \ E, A+ = T (A−) \ E and A = A+ ∪A−,
see Figure 2. Observe that by construction A ⊂ Bδ(0) ⊂ Ω. Finally, we define

F := T (Bδ(0) ∩ (E ∪A)c) ⊂ E ∩Bδ(0).

Since by construction A ⊂ Ω \ E, by (6.4) we get

(6.6) L(A,E)− L(A, (E ∪A)c) ≤ C0 |A|.
4This is possible by taking for example ε ≤ ε0(δ), where

ε0(δ) :=

√
1 +

δ2

2
− 1 ' δ2

4
.
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∂E

Bδ(0)

0

B1+ε(−eN )

A+

A−

B2(−eN )

Figure 2. The construction of Lemma 6.6. In this particular case we have T (A−)∩
E = ∅, so that we simply have A+ = T (A−).

We remark that we have the following set relations

E = (E \Bδ(0)) ∪ [(E ∩Bδ(0)) \ F ] ∪ [(E ∩Bδ(0)) ∩ F ]

= (E \Bδ(0)) ∪ [(E ∩Bδ(0)) \ F ] ∪ F,

where we used that F ⊂ E ∩Bδ(0). Also, since A ⊂ Bδ(0) there holds

(E ∪A)c = Ec ∩Ac = [(Ec ∩Ac) ∩Bδ(0)] ∪ [(Ec ∩Ac) \Bδ(0)]

= T (F ) ∪ [Ec \Bδ(0)].

By putting these two relations together we can realize that

L(A,E)− L(A, (E ∪A)c)

=
[
L(A,E \Bδ(0))− L(A,Ec \Bδ(0))

]
−
[
L(A, T (F ))− L(A,F )

]
+ L(A, (E ∩Bδ(0)) \ F )

≥
[
L(A,E \Bδ(0))− L(A,Ec \Bδ(0))

]
−
[
L(A, T (F ))− L(A,F )

]
=: I1 − I2.

Due to (6.6) we can thus conclude that

(6.7) I1 − I2 ≤ C0 |A|.
In the proof of [6, Theorem 5.1] it is proved that (see formula (5.1))∣∣∣∣∣I1 − |A|

∫
RN\Bδ(0)

1E(y)− 1Ec(y)

|y|N+s
dy

∣∣∣∣∣ ≤ C ε 1
2 δ−1−s |A|,

and5 (see formula (5.3) and Lemma 5.2 in [6])

I2 ≤ C δ1−s |A|+ C εη |A−| ≤ C |A| (δ1−s + εη),

5We should note that in order to prove the estimate on I2 the authors strongly use the positive density property
for nonlocal minimal surfaces (see [6, Section 4]), which also holds true for nonlocal almost minimal boundaries, see
[7, Proposition 4.1].
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for some sequence ε → 0 and for some η ∈ (0, 1− s). Plugging the two above estimates into (6.7)
and dividing by |A| yields∫

RN\Bδ(0)

1E(y)− 1Ec(y)

|y|n+s
dy ≤ C0 + C ε

1
2 δ−1−s + C δ1−s + C εη.

We then pass to the limit as ε goes to 0 and then to the limit as δ goes to 0, this implies

lim sup
δ→0+

∫
RN\Bδ(0)

1E(y)− 1Ec(y)

|y|N+s
dy ≤ C0,

which concludes the proof. �

Theorem 6.7. Let E be an s−Cheeger set of Ω such that E admits a tangent ball from both sides
at x0 ∈ ∂E ∩ Ω. Then

lim
δ→0+

∫
RN\Bδ(x0)

1E(x)− 1Ec(x)

|x− x0|N+s
dx = −hs(Ω).

Proof. We first observe that since E is a minimizer of (6.1), we get that E satisfies (6.4) with
C0 = −hs(Ω). For this, it sufficient to test the minimality of E against a set of the form A∪E, for
every A ⊂ Ω \ E. Therefore (6.5) implies

lim sup
δ→0+

∫
RN\Bδ(x0)

1E(x)− 1Ec(x)

|x− x0|N+s
dx ≤ −hs(Ω).

On the other hand, we also get

(6.8) L(A,E \A)− L(A,Ec) ≥ −hs(Ω) |A|,
where this time we tested the minimality of E against E \ A, with A being any subset of E. It is
immediate to see that (6.8) means that Ec as well satisfies (6.4), this time with C0 = hs(Ω) and
by hypothesis Ec contains a tangent ball at x0. Then again we can apply Lemma 6.6 and thus

−hs(Ω) ≤ − lim sup
δ→0+

∫
RN\Bδ(x0)

1Ec(x)− 1(Ec)c(x)

|x− x0|N+s
dx = lim inf

δ→0+

∫
RN\Bδ(x0)

1E(x)− 1Ec(x)

|x− x0|N+s
dx,

which gives the desired result. �

7. The first eigenvalues and the Cheeger constant

In this section we show that for a Lipschitz set Ω, the nonlocal Cheeger constant hs(Ω) is the
limit of the first eigenvalues λs1,p(Ω), as in the case of the p−Laplacian. The main result is the
following.

Theorem 7.1 (Convergence of the minima). Let Ω ⊂ RN be an open and bounded Lipschitz set.
For every 0 < s < 1 we have

(7.1) lim
p→1+

λs1,p(Ω) = hs(Ω).

Proof. We are going to prove the two inequalities

lim sup
p→1+

λs1,p(Ω) ≤ hs(Ω) and lim inf
p→1+

λs1,p(Ω) ≥ hs(Ω).

Limsup inequality. We have for any ϕ ∈ C∞0 (Ω)

λs1,p(Ω) ≤
(

[ϕ]W s,p(RN )

‖ϕ‖Lp(Ω)

)p
.
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Thus,

(7.2) lim sup
p→1+

λs1,p(Ω) ≤ lim sup
p→1+

(
[ϕ]W s,p(RN )

‖ϕ‖Lp(Ω)

)p
=

[ϕ]W s,1(RN )

‖ϕ‖L1(Ω)
.

Thanks to equation (5.7) and by density of C∞0 (Ω) in W̃ s,1
0 (Ω), for every δ > 0 we can take

ϕδ ∈ C∞0 (Ω) so that

hs(Ω) + δ ≥
[ϕδ]W s,1(RN )

‖ϕδ‖L1(Ω)
.

Then by appealing to (7.2) we get

lim sup
p→1+

λs1,p(Ω) ≤ hs(Ω) + δ.

Since δ is arbitrary, this proves the limsup inequality.

Liminf inequality. Let {pj}j∈N ⊂ (1,+∞) be a sequence converging to 1 and such that

lim
j→∞

λs1,pj (Ω) = lim inf
p→1+

λs1,p(Ω),

and let upj ∈ W̃
s,pj
0 (Ω) achieve the minimum in (3.1). Thanks to Lemma 2.6 we have the continuous

embedding

W̃
s,pj
0 (Ω) ↪→Ws/2,1

0 (Ω).

More precisely, for j large enough we can infer

[upj ]W s/2,1(RN ) ≤ C [upj ]W s,pj (RN ) = C λs1,pj (Ω)
1
pj ≤ C (1 + hs(Ω)),

for a constant C > 0 which does not depends on pj . By Corollary 2.8, up to extracting a subse-
quence, we can then suppose that the eigenfunctions {upj}j∈N are converging to a function u in
Lq(Ω) and almost everywhere, for an exponent 1 < q < 2N/(2N − s). In particular we have

lim
j→∞

∣∣∣‖upj‖Lpj − ‖u‖L1

∣∣∣ ≤ lim
j→∞

‖upj − u‖Lpj + lim
j→∞

∣∣∣‖u‖Lpj − ‖u‖L1

∣∣∣ = 0,

where we used that pj ≤ q for j sufficiently large. The previous implies that ‖u‖L1 = 1. From
Fatou’s Lemma we can then infer

lim inf
p→1+

λs1,p(Ω) = lim
j→∞

λs1,pj (Ω) = lim
j→∞

[upj ]
pj
W s,pj (RN )

≥ [u]W s,1(RN ) ≥ hs(Ω),

where we used (5.6) in the last inequality. �

Theorem 7.2 (Convergence of the minimizers). Let Ω ⊂ RN be an open and bounded Lipschitz
set and for every p > 1 let up achieve the minimum (3.1). Then there exists a sequence {pj}j∈N
converging to 1 such that {upj}j∈N converges strongly in Lq(Ω) for every q <∞ to a solution u1 of

λs1,1(Ω) = min
u∈Ws,1

0 (Ω)

{
[u]W s,1(RN ) : ‖u‖L1(Ω) = 1, u ≥ 0

}
= hs(Ω).

Moreover u1 ∈ L∞(Ω) and we have

(7.3) ‖u1‖L∞(Ω) ≤
[
|B|N−sN

Ps(B)

]N
s

hs(Ω)
N
s ,

where B is any N−dimensional ball.
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Proof. Observe that we have

[up]
p
W s,p(RN )

= λs1,p(Ω),

then by Theorem 7.1

lim
p→1+

[up]
p
W s,p(RN )

= hs(Ω).

As in the proof of Theorem 7.1, by Lemma 2.6 {up}p>1 is equi-bounded inWs/2,1
0 (Ω) for p sufficiently

small. Again thanks to Theorem 2.7 we can extract a subsequence {upj}j∈N converging in L1 to a
function u1 such that ‖u1‖L1 = 1. Thus we obtain

hs(Ω) = lim
j→∞

[upj ]
pj
W s,pj (RN )

≥ [u1]W s,1(RN ) ≥ hs(Ω),

thus u1 achieves λs1,1(Ω) = hs(Ω). Observe that the sequence {upj}j∈N is equi-bounded in L∞(Ω)

thanks to Proposition 3.3, then u1 as well is in L∞(Ω) since

(7.4) ‖u1‖L∞ ≤ lim inf
j→∞

‖upj‖L∞ ≤ lim
j→∞

C̃N,pj ,s λ
s
1,pj (Ω)

N

s p2
j < +∞.

By a simple interpolation argument we then get that {upj}j∈N actually converges to u1 in every
Lq(Ω), with 1 ≤ q <∞.

In order to prove (7.3), we use (7.4) and keep into account Remark 3.4, which permits to infer

lim sup
j→∞

C̃N,pj ,s = lim sup
j→∞

 sup
u∈W

s,pj
0 (RN )\{0}

(∫
RN
|u|

N pj
N−s pj dx

)N−s pj
N

[u]p
W s,pj (RN )



N

s p2
j

≤
[
|B|N−sN

Ps(B)

]N
s

.

In the last inequality we have used that the limsup of the best constant of the Sobolev inequality in
W s,p

0 (RN ) for p > 1 is certainly less than the best constant for the limit case6 p = 1, the latter being
given by (4.7). Combining this and the convergence of λs1,pj (Ω) to hs(Ω) concludes the proof. �

Remark 7.3. Actually, estimate (7.3) holds true for every function u ∈ Ws,1
0 (Ω) attaining λs1,1(Ω).

Indeed, let Ωt = {x ∈ Ω : u(x) > t} and set M = ess sup{t ≥ 0 : |Ωt| > 0}. By Theorem 5.8, we
know that Ωt is a s−Cheeger set of Ω, for almost every t ∈ [0,M). We then get

1 =

( |Ωt|
|Ωt|

)N
s

= |Ωt|
N
s

(
hs(Ω)

Ps(Ωt)

)N
s

≤ |Ωt|
N
s

(
hs(Ω)

Ps(B)

)N
s
( |B|
|Ωt|

)N−s
s

,

where we used the isoperimetric inequality (4.1). Thus the previous gives

1 ≤ |Ωt|
[
|B|N−sN

Ps(B)

]N
s

hs(Ω)
N
s , for a.e. t ∈ [0,M).

By integrating the previous in t ∈ [0,M) and using Cavalieri principle, we get (7.3) for u.
Observe that equality holds in (7.3) when Ω = B is a ball and u = 1B. Thus the L∞ estimate

(3.3) becomes sharp in the limit as p goes to 1. In the local case, we recall that an L∞ estimate
for functions attaining the Cheeger constant h1(Ω) can be found in [8, Theorem 4].

We have already seen in Proposition 5.6 that hs(Ω) can be estimated in terms of h1(Ω). By
using the recent Γ−convergence result by Ambrosio, De Philippis and Martinazzi in [4], one can
show that hs(Ω) converges to h1(Ω), as s goes to 1.

6This is a consequence of [15, Corollary 4.2] with r = p∗ and equation (4.2) there.
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Proposition 7.4. Let Ω ⊂ RN be an open and bounded set. Then we have

(7.5) lim
s↗1

(1− s)hs(Ω) = 2ωN−1 h1(Ω).

Proof. For every ε > 0, let uε ∈ C∞0 (Ω) be such that

h1(Ω) + ε ≥ |∇uε|(R
N )

‖uε‖L1(Ω)
.

By using (4.6) we obtain

2ωN−1 (h1(Ω) + ε) ≥ 2ωN−1
|∇uε|(RN )

‖uε‖L1(Ω)
= lim

s↗1
(1− s)

[uε]W s,1(RN )

‖uε‖L1(Ω)
≥ lim

s↗1
(1− s)hs(Ω),

where we used again (5.6) to get the last estimate. By the arbitrariness of ε, we get

2ωN−1 h1(Ω) ≥ lim sup
s↗1

(1− s)hs(Ω).

On the other hand, let {sj}j∈N ⊂ (0, 1) be a sequence increasingly converging to 1 such that

lim
j→∞

(1− sj)hsj (Ω) = lim inf
s↗1

(1− s)hs(Ω).

For every j ∈ N let us take Ej ⊂ Ω such that

(7.6) (1− sj)hsj (Ω) = (1− sj)
Psj (Ej)

|Ej |
,

so that

(1− sj)Psj (Ej) ≤ C.

Up to a subsequence (not relabeled), the sequence {Ej}j∈N is then converging in L1 to a Borel set
E∞ ⊂ Ω, thanks to [4, Theorem 1]. This implies in particular that |Ej | converges to |E∞|, but we
have to exclude that |E∞| = 0. At this aim we observe that by (7.6), proceeding as in the proof of
Proposition 5.3, we get

|Ej | ≥
(

1

CN,Ω
(1− sj)Psj (B) |B|

sj−N
N

)N
sj

,

where B is any N−dimensional ball. By passing to the limit as j goes to ∞ in the previous and
using (4.6)

|E∞| ≥
(

2ωN−1

CN,Ω
P (B) |B| 1−NN

)N
> 0,

as desired. We can now use the Γ−liminf inequality of [4, Theorem 2] to infer7

lim inf
s→1

(1− s)hs(Ω) ≥ lim inf
j→∞

(1− sj)
Psj (Esj )

|Esj |
≥ 2ωN−1

P (E∞)

|E∞|
≥ 2ωN−1 h1(Ω).

This concludes the proof. �

7Again, our definition of Ps(Ω) differs by a multiplicative factor 2 from that in [4].
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8. A nonlocal Max Flow Min Cut Theorem

It is well-known (see [21]) that for the Cheeger constant h1, we have the following dual charac-
terization in terms of vector fields with prescribed divergence

1

h1(Ω)
= min

V ∈L∞(Ω;RN )

{
‖V ‖L∞(Ω) : −div V = 1

}
,

where the divergence constraint has to be attained in distributional sense, i.e.∫
Ω
〈∇ϕ, V 〉 dx =

∫
Ω
ϕdx, for every ϕ ∈ C∞0 (Ω).

The previous in turn can be rewritten as

h1(Ω) = sup
{
h ∈ R : ∃V ∈ L∞(Ω;RN ) such that ‖V ‖L∞ ≤ 1 and − div V ≥ h

}
,

and the latter is usually referred to as a continuous version of the Min Cut Max Flow Theorem
(see [21] for a detailed discussion). In this section we show that similar characterizations hold for
hs(Ω) as well.

Let Ω ⊂ RN be as always an open and bounded set. Let p ∈ [1,∞) and s ∈ (0, 1), we set
q = p/(p− 1) if p > 1 or q =∞ is p = 1 and

W̃−s,q(Ω) =
{
F : W̃ s,p

0 (Ω)→ R : F linear and continuous
}
.

We also define the linear and continuous operator Rs,p : W̃ s,p
0 (Ω)→ Lp(RN × RN ) by

Rs,p(u)(x, y) =
u(x)− u(y)

|x− y|
N
p

+s
, for every u ∈ W̃ s,p

0 (Ω).

Lemma 8.1. The operator R∗s,p : Lq(RN × RN )→ W̃−s,q(Ω) defined by

(8.1) 〈R∗s,p (ϕ), u〉 :=

∫
RN

∫
RN

ϕ(x, y)
u(x)− u(y)

|x− y|
N
p

+s
dx dy, for every u ∈ W̃ s,p

0 (Ω),

is linear and continuous. Moreover, R∗s,p is the adjoint of Rs,p.

Proof. We start by observing that for every ϕ ∈ Lq(RN × RN ), R∗s,p(ϕ) defines a distribution on
Ω, i.e. R∗s,p(ϕ) ∈ D′(Ω). Then by Hölder inequality, we get

(8.2) |〈R∗s,p(ϕ), u〉| ≤ ‖ϕ‖Lq(RN×RN ) ‖u‖W̃ s,p
0 (Ω)

.

By density this implies that R∗s,p(ϕ) can be (uniquely) extended to an element of W̃−s,q(Ω) and

‖R∗s,p(ϕ)‖
W̃−s,q(Ω)

≤ ‖ϕ‖Lq(RN×RN ).

Then R∗s,p is well-defined and is of course a linear operator. The previous estimate implies that this
is continuous as well.

To prove the second statement, by the very definition of R∗s,p we get8

〈R∗s,p(ϕ), u〉
(W̃−s,q(Ω),W̃ s,p

0 (Ω))
= 〈ϕ,Rs,p(u)〉(Lq(RN×RN ),Lp(RN×RN )).

This concludes the proof. �

8Given a topological vector space X and its dual space X∗, we denote by 〈·, ·, 〉(X∗,X) the relevant duality pairing.
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Remark 8.2. The operator R∗s,p has to be thought of as a sort of nonlocal divergence. Observe
that by performing a discrete “integration by parts”, R∗s,p(ϕ) can be formally written as

(8.3) R∗s,p(ϕ)(x) =

∫
RN

ϕ(x, y)− ϕ(y, x)

|x− y|
N
p

+s
dy, x ∈ RN ,

so that

〈R∗s,p(ϕ), u〉 =

∫
Ω

(∫
RN

ϕ(x, y)− ϕ(y, x)

|x− y|
N
p

+s
dy

)
u(x) dx, u ∈ W̃ s,p

0 (Ω).

Indeed, by using this formula∫
RN

u(x)R∗s,p(ϕ)(x) dx =

∫
RN

∫
RN

u(x)
ϕ(x, y)

|x− y|
N
p

+s
dy dx−

∫
RN

∫
RN

u(x)
ϕ(y, x)

|x− y|
N
p

+s
dy dx,

and exchanging the role of x and y in the second integral, we obtain that this is formally equivalent
to (8.1).

We record the following result for completeness.

Proposition 8.3. Let 1 < p < ∞ and s ∈ (0, 1). Given an open and bounded set Ω ⊂ RN , for

every f ∈ W̃−s,q(Ω) we have

max
u∈W̃ s,p

0 (Ω)

{
〈f, u〉 − 1

p

∫
RN

∫
RN

|u(x)− u(y)|p
|x− y|N+s p

dx dy

}
= min

ϕ∈Lq(RN×RN )

{
1

q

∫
RN

∫
RN
|ϕ|q dx dy : R∗s,p(ϕ) = f in Ω

}
,

(8.4)

where as before q = p/(p− 1) and the constraint R∗s,p(ϕ) = f has to be attained in the sense

〈f, u〉 =

∫
RN

∫
RN

ϕ(x, y)
u(x)− u(y)

|x− y|
N
p

+s
dx dy, for every u ∈ C∞0 (Ω).

Proof. Observe that the maximization problem in the left-hand side of (8.4) can be written in the
form

max
x∈X
〈x∗, x〉 − G(A(x)), x∗ ∈ X∗,

with X reflexive Banach space having dual X∗, G : Y → R a lower semicontinuous convex functional
and A : X → Y a linear continuous operator. Specifically, we have

X = W̃ s,p
0 (Ω), X∗ = W̃−s,q(Ω), A = Rs,p, Y = Lp(RN × RN ),

and

G(ξ) =
1

p
‖ξ‖p

Lp(RN×RN )
, ξ ∈ Lp(RN × RN ).

Then general duality results of Convex Analysis (see [14, Proposition 5, page 89]) guarantees that

max
x∈X
〈x∗, x〉 − G(A(x)) = min{G∗(ξ∗) : A∗(ξ∗) = x∗},

where A∗ : Y ∗ → X∗ is the adjoint operator of A. In our case, we have Y ∗ = Lq(RN ×RN ) and of
course A∗ coincides with the operator defined by (8.1), thanks to Lemma 8.1. �

By a simple homogeneity argument, the concave maximization problem in (8.4) is equivalent to

max
u∈W̃ s,p

0 (Ω)\{0}

|〈f, u〉|p∫
RN

∫
RN

|u(x)− u(y)|p
|x− y|N+s p

dx dy

,
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more precisely we have

max
u∈W̃ s,p

0 (Ω)

{
〈f, u〉 − 1

p

∫
RN

∫
RN

|u(x)− u(y)|p
|x− y|N+s p

dx dy

}

=

(
p− 1

p

)  max
u∈W̃ s,p

0 (Ω)\{0}

|〈f, u〉|p∫
RN

∫
RN

|u(x)− u(y)|p
|x− y|N+s p

dx dy


1
p−1

=
1

q
‖f‖q

W̃−s,q(Ω)
,

by recalling that q = p/(p− 1). As a straightforward consequence, we have the following.

Corollary 8.4. Let 1 < q <∞ and s ∈ (0, 1), then for every f ∈ W̃−s,q(Ω)

‖f‖
W̃−s,q(Ω)

= min
ϕ∈Lq(RN×RN )

{
‖ϕ‖Lq(RN×RN ) : R∗s,p(ϕ) = f in Ω

}
.

Remark 8.5. By looking at the formal expression (8.3) for R∗s,p, we may notice that for a symmetric

function ϕ ∈ Lq(RN × RN ), i.e. if we have

ϕ(x, y) = ϕ(y, x),

then of course R∗s,p(ϕ) ≡ 0. Roughly speaking, this means that functions symmetric in the two
variables play in this context the same role as free divergence vector fields in the usual local case.

Then the main result of this section is the following alternative characterization of the s−Cheeger
constant of a set, which can be used to deduce lower bounds on hs(Ω).

Theorem 8.6. Let Ω ⊂ RN be an open and bounded Lipschitz set and s ∈ (0, 1). Then we have

1

hs(Ω)
= min

{
‖ϕ‖L∞(RN×RN ) : R∗s,1(ϕ) = 1

}
.

Proof. We start by observing that

1

hs(Ω)
= sup

u∈W̃ s,1
0 (Ω)\{0}

∫
Ω
|u| dx∫

RN

∫
RN

|u(x)− u(y)|
|x− y|N+s

dx dy

= sup
u∈W̃ s,1

0 (Ω)

{
〈1, u〉 :

∫
RN

∫
RN

|u(x)− u(y)|
|x− y|N+s

dx dy ≤ 1

}
,

thanks to Lemma 5.7 and Theorem 5.8. Again, the latter is a problem of the form

sup
x∈X
〈x∗, x〉 − G(A(x)), x∗ ∈ X∗,

where G : Y → R is convex lower semicontinuous and A : X → Y is linear and continuous. In this
case we have

X = W̃ s,1
0 (Ω), X∗ = W̃−s,∞(Ω), A = Rs,1, Y = L1(RN × RN ),

and

G(ξ) =

{
0, if ‖ξ‖L1(RN×RN ) ≤ 1,

+∞, otherwise.

Then again by [14, Proposition 5] we have

sup
x∈X
〈x∗, x〉 − G(A(x)) = min

ξ∗∈Y ∗
{G∗(ξ∗) : A∗(ξ∗) = x∗} ,
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where

x∗ = 1Ω, G(ξ∗) = ‖ξ∗‖L∞(RN×RN ), Y ∗ = L∞(RN × RN ),

and the adjoint operator is T ∗ = R∗s,1. This concludes the proof. �

As a corollary of the previous result, we obtain the following characterization.

Corollary 8.7. Let Ω ⊂ RN be an open and bounded Lipschitz set and s ∈ (0, 1). Then we have

(8.5) hs(Ω) = max

{
h ∈ R : ∃ϕ ∈ L∞(RN × RN ) s. t.

‖ϕ‖∞ ≤ 1 and
R∗s,1(ϕ) ≥ h in Ω

}
.

Proof. We have

max{h : ∃ϕ ∈ L∞(RN × RN ) s. t. ‖ϕ‖∞ ≤ 1 and R∗s,1(ϕ) ≥ h}

= max

{
h : ∃ϕ ∈ L∞(RN × RN ) s. t.

1

‖ϕ‖∞
≥ h and R∗s,1(ϕ) ≥ 1

}
= max

ϕ∈L∞(RN×RN )

{
1

‖ϕ‖∞
: R∗s,1(ϕ) = 1 in Ω

}
,

and the latter quantity coincides with

1

min
{
‖ϕ‖L∞(RN×RN ) : R∗s,1(ϕ) = 1 in Ω

} .
By using Theorem 8.6 we can conclude. �

Remark 8.8 (Interpretation). The characterization (8.5) can be seen as a kind of nonlocal version
of the Max Flow Min Cut Theorem. A possible interpretation of (8.5) is the following: we have
a continuous network represented by RN , with sources (producing a given commodity) uniformly
distributed in Ω and the complement of Ω being the sink. Transportation activities are described by
ϕ, in such a way that at each point x ∈ Ω we have an incoming quantity of flow ϕ(x, y) |x− y|−N−s
from y ∈ RN and an outcoming flow ϕ(y, x) |x− y|−N−s to the same y ∈ RN . Then the total flow
at x is given by (see Remark 8.2)

R∗s,1(ϕ)(x) =

∫
RN

ϕ(x, y)− ϕ(y, x)

|x− y|N+s
dy.

The sources in Ω continuously in time produce at a rate which is (at least) h, that is R∗s,1(ϕ) ≥ h.
The L∞ bound on ϕ is clearly related to a capacity constraint for our network. A cut is any E ⊂ Ω
and observe that for every admissible flow ϕ and every cut E ⊂ Ω, we (formally) have

h |E| ≤
∫
E
R∗s,1(ϕ) dx =

∫
RN

∫
RN

ϕRs,1(1E) dx dy ≤ Ps(E).

Thus (8.5) states that trying to find the maximal (nonlocal) flow is the same as trying to find the
best (nonlocal) cut of Ω.

Appendix A. Gagliardo seminorms and differential quotients

For the sake of completeness, we record the proof of a technical result we needed for the compact

embedding W̃ s,p
0 (Ω) ↪→ Lq(Ω). The proof below is an adaptation of that of [4, Proposition 4].

Lemma A.1. Let 1 ≤ p <∞ and 0 < s < 1, for every u ∈W s,p
0 (RN ) there holds

(A.1) sup
|h|>0

∫
RN

|u(x+ h)− u(x)|p
|h|s p dx ≤ C (1− s) [u]p

W s,p(RN )
,

for a constant C = C(N, p) > 0.
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Proof. Let ρ ∈ C∞0 (RN ) be a positive function with support given by the annular region B1(0) \
B1/2(0) = {x ∈ RN : 1/2 < |x| < 1} and such that

∫
RN ρ dx = 1. We fix h ∈ RN \ {0}, then for

every 0 < ε < |h| we set

ρε(x) =
1

εN
ρ
(x
ε

)
,

and we may write

|u(x+ h)− u(x)| =
∣∣∣∣∫ u(y) ρε(x+ h− y) dy +

∫
[u(x+ h)− u(x+ h− y)] ρε(y) dy

−
(∫

u(y) ρε(x− y) dy +

∫
[u(x)− u(x− y)] ρε(y) dy

)∣∣∣∣
≤
∣∣∣∣∫ u(y) [ρε(x+ h− y)− ρε(x− y)] dy

∣∣∣∣
+

∫
|u(x+ h)− u(x+ h− y)| ρε(y) dy +

∫
|u(x)− u(x− y)| ρε(y) dy.

(A.2)

We then observe that∣∣∣ ∫ u(y) [ρε(x+ h− y)− ρε(x− y)] dy
∣∣∣ =

∣∣∣∣∫ 1

0

∫
u(y) 〈∇ρε(x− y + s h), h〉 dy ds

∣∣∣∣
=

∣∣∣∣∫ 1

0

∫
[u(y)− u(x+ s h)] 〈∇ρε(x− y + s h), h〉 dy ds

∣∣∣∣
≤ ‖∇ρ‖∞ |h|

εN+1

∫ 1

0

∫
Bε(x+s h)\B ε

2
(x+s h)

|u(y)− u(x+ s h)| dy

=
‖∇ρ‖∞ |h|
εN+1

∫ 1

0

∫
Bε(0)\B ε

2
(0)
|u(x+ z + s h)− u(x+ s h)| dz ds,

where in the second identity we used that
∫
∇ρε dx = 0. Finally by Jensen inequality and transla-

tion invariance of the Lp norm, from (A.2) we can infer∫
RN
|u(x+ h)− u(x)|p dx ≤ C |h|p

εN+p

∫
Bε(0)\B ε

2
(0)

∫
RN
|u(x+ z)− u(x)|p dx dz

+
C ‖ρ‖∞
εN

∫
Bε(0)\B ε

2
(0)

∫
RN
|u(x+ z)− u(x)|p dx dz.

Since ε < |h|, the previous implies in particular∫
RN
|u(x+ h)− u(x)|p dx ≤ C |h|p

εN+p

∫
Bε(0)\B ε

2
(0)

∫
RN
|u(x+ z)− u(x)|p dx dz,

possibly with a different constant C, independent of h and ε. If we now divide both sides by |h|s p,
we get

(A.3)

∫
RN

|u(x+ h)− u(x)|p
|h|s p dx ≤ C |h|p(1−s)

εN+p

∫
Bε(0)\B ε

2
(0)

∫
RN
|u(x+ z)− u(x)|p dx dz.

If one is only interested in estimate (A.1) with a constant independent of s, then at this point one
can take ε > |h|/2, so that by construction

|h|p(1−s)
εN+p

≤ 2p(1−s) ε−N−s p ≤ 2p(1−s) |z|−N−s p, z ∈ Bε(0) \B ε
2
(0),
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which inserted in (A.3) would give

sup
|h|>0

∫
RN

|u(x+ h)− u(x)|p
|h|s p dx ≤ C [u]p

W s,p(RN )
,

with C independent of s.
On the contrary, in order to get estimate (A.1) displaying the sharp dependence on s, we proceed

more carefully: we multiply both sides of (A.3) by εp (1−s)−1 and integrate in ε between 0 and |h|.
By further simplifying the common factor |h|p (1−s), this gives

1

p (1− s)

∫
RN

|u(x+ h)− u(x)|p
|h|s p dx ≤ C

∫ |h|
0

1

εN+p s+1

∫
Bε(0)

∫
RN
|u(x+ z)− u(x)|p dx dz.

If we set for simplicity

G(ε) =

∫
Bε(0)

∫
RN
|u(x+ z)− u(x)|p dx dz, 0 < ε ≤ |h|,

by one-dimensional Hardy inequality we have9∫ |h|
0

1

εN+p s+1
G(ε) dε ≤ 1

N + p s

∫ |h|
0

G′(ε)

εN+p s
dε,

since G(0) = 0 and G is increasing. Then we observe that∫ |h|
0

G′(ε)

εN+p s
dε =

∫ |h|
0

1

εN+p s

∫
∂Bε(0)

∫
RN
|u(x+ z)− u(x)|p dx dHN−1(z) dε

=

∫
B|h|(0)

∫
RN

|u(x+ z)− u(x)|p
|z|N+p s

dx dz ≤ [u]p
W s,p(RN )

,

which concludes the proof. �

Remark A.2. The previous result can be rephrased by saying that W s,p
0 (RN ) is continuously

embedded in the relevant Nikolskii space. See for example [1] for further details on this topic.

Appendix B. A remark on two different Sobolev spaces

In order to avoid confusion, we point out that usually (see for example [12]) the symbol W s,p
0 (Ω)

denotes the closure of C∞0 (Ω) with respect to the norm

u 7→ [u]W s,p(Ω) + ‖u‖Lp(Ω).

In principle W s,p
0 (Ω) is larger than our W̃ s,p

0 (Ω) introduced in Section 2. Indeed

(B.1) [u]W s,p(RN ) = [u]W s,p(Ω) + 2

∫
Ω

∫
RN\Ω

|u(x)|p
|x− y|N+s p

dx dy,

and there could exist Ω ⊂ RN and u ∈W s,p
0 (Ω) such that the second integral on the right-hand side

is infinite. Though we did not need this result in the paper, for completeness we record a sufficient
condition for the two spaces to coincide.

9For 0 < τ � 1, integrating by parts we have∫ |h|
0

(G(ε)− τ)+

εN+p s+1
dε = − 1

N + p s

(G(|h|)− τ)+

|h|N+p s
+

1

N + p s

∫
{G(ε)>τ}

G′(ε)

εN+p s
dε

≤ 1

N + p s

∫ |h|
0

G′(ε)

εN+p s
dε

then we pass to the limit as τ goes to 0.



32 BRASCO, LINDGREN, AND PARINI

Proposition B.1. Let s ∈ (0, 1) and 1 < p < ∞ be such that s p 6= 1. Let Ω ⊂ RN be an open
bounded Lipschitz set. Then there exists a constant C = C(N, s, p,Ω) > 0 such that

[u]W s,p(RN ) + ‖u‖Lp(Ω) ≤ C
(

[u]W s,p(Ω) + ‖u‖Lp(Ω)

)
, for every u ∈ C∞0 (Ω).

In particular W̃ s,p
0 (Ω) = W s,p

0 (Ω) as Banach spaces.

Proof. Let u ∈ C∞0 (Ω), for every x ∈ Ω we set

δΩ(x) = inf
y∈RN\Ω

|x− y|,

i.e. this is the distance of x from the complement of Ω. Then we observe that

RN \ Ω ⊂ RN \BδΩ(x)(x), x ∈ Ω,

which implies ∫
Ω

∫
RN\Ω

|u(x)|p
|x− y|N+s p

dx dy ≤
∫

Ω

∫
RN\BδΩ(x)(x)

|u(x)|p
|x− y|N+s p

dy dx

=

∫
Ω
|u(x)|p

(
N ωN

∫ ∞
δΩ(x)

%−1−s p d%

)
dx

=
N ωN
s p

∫
Ω

|u(x)|p
δΩ(x)s p

dx.

(B.2)

We now have to distinguish between s p > 1 and s p < 1: in the first case, by using in (B.2) the
fractional Hardy inequality of [13, Theorem 1.1]∫

Ω

|u(x)|p
δΩ(x)s p

dx ≤ C [u]pW s,p(Ω),

wtih C = C(N, s, p,Ω) > 0, we can conclude.
In the case s p < 1 the previous Hardy inequality can not hold true (see [13, Section 2]), but we

have ∫
Ω

|u(x)|p
δΩ(x)s p

dx ≤ C ′
(

[u]pW s,p(Ω) + ‖u‖pLp(Ω)

)
, u ∈ C∞0 (Ω),

with C ′ = C ′(N, s, p,Ω), see [13]. �

Remark B.2. We point out that for the seminorm [ · ]W s,1(Ω) with Ω ⊂ RN open bounded Lipschitz
set, we have a result analogous to that of Proposition 4.8 (see [11, Theorem 1]). The case of a
general open set Ω is slightly more complicated and can be found in [24, Theorem 1.9].

Appendix C. Pointwise inequalities

We collect some inequalities needed for the proof of the L∞ estimate for eigenfunctions.

Lemma C.1. Let 1 < p <∞ and β ≥ 1. For every a, b ≥ 0 there holds

(C.1) |a− b|p−2 (a− b) (aβ − bβ) ≥ β pp

(β + p− 1)p

∣∣∣aβ+p−1
p − b

β+p−1
p

∣∣∣p .
Proof. We first observe that if a = b, then (C.1) is trivially true. Let us then suppose that a 6= b
and of course we can suppose that a > b, without loss of generality. Then by collecting aβ+p−1 on
both sides of (C.1) and setting t = b/a < 1, we get that (C.1) is equivalent to

(1− t)p−1 (1− tβ) ≥ β pp

(β + p− 1)p

(
1− t

β+p−1
p

)p
, 0 ≤ t < 1.
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This inequality is just an easy consequence of Jensen inequality. Indeed, we have

(1− t)p−1 1− tβ
β

= (1− t)p−1

∫ 1

t
sβ−1 ds ≥

(∫ 1

t
s
β−1
p ds

)p
=

pp

(β + p− 1)p

(
1− t

β+p−1
p

)p
,

which gives the desired inequality. �

Actually, we used the following version of the previous result.

Lemma C.2. Let 1 < p <∞ and β ≥ 1. For every a, b,M ≥ 0 there holds

(C.2) |a− b|p−2 (a− b) (aβM − b
β
M ) ≥ β pp

(β + p− 1)p

∣∣∣∣aβ+p−1
p

M − b
β+p−1
p

M

∣∣∣∣p ,
where we set

aM = min{a,M} and bM = min{b,M}.
Proof. By using inequality (C.1) we get

|aM − bM |p−2 (aM − bM ) (aβM − b
β
M ) ≥ β pp

(β + p− 1)p

∣∣∣∣aβ+p−1
p

M − b
β+p−1
p

M

∣∣∣∣p .
To conclude, we just need to prove that

(C.3) |aM − bM |p−2 (aM − bM ) (aβM − b
β
M ) ≤ |a− b|p−2 (a− b) (aβM − b

β
M ).

Let us suppose at first that a ≥ b. Of course, if a = b inequality (C.3) is trivially satisfied, so we
can consider a > b. In this case we have two possibility:

b ≥M or b < M.

In the first case, then aM = bM = M and (C.3) is satisfied. In the second case (C.3) reduces to

(aM − b)p−1 (aβM − bβ) ≤ (a− b)p−1 (aβM − bβ),

which is equivalent to

aM − b ≤ a− b.
As the latter is trivially verified, the validity of (C.3) is checked for a ≥ b. It is only left to observe
that the discussion for the case a ≤ b is exactly the same, so the proof in concluded. �

References

[1] R. A. Adams, J. J. F. Fournier Sobolev spaces, Second edition, Pure and Applied Mathematics (Amsterdam),
140. Elsevier/Academic Press, Amsterdam, 2003.

[2] F. J. Almgren, Jr., E. H. Lieb, Symmetric decreasing rearrangement is sometimes continuous, J. Amer. Math.
Soc. 2 (1989), 683–773.

[3] F. Alter, V. Caselles, Uniqueness of the Cheeger set of a convex body, Nonlinear Anal. 70 (2009), 32–44.
[4] L. Ambrosio, G. De Philippis, L. Martinazzi, Gamma-convergence of nonlocal perimeter functionals,

Manuscripta Math. 134 (2011), 377–403.
[5] L. Ambrosio, N. Fusco. D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford

Mathematical Monographs. The Clarendon Press Oxford University Press, New York (2000).
[6] L. Caffarelli, J.-M. Roquejoffre, O. Savin, Nonlocal minimal surfaces, Comm. Pure Appl. Math. 63 (2010),

1111–1144.
[7] M.-C. Caputo, N. Guillen, Regularity for non-local almost minimal boundaries and applications, preprint (2010)

available at http://arxiv.org/abs/1003.2470

[8] G. Carlier, M. Comte, On a weighted total variation minimization problem, J. Func. Anal. 250 (2007), 214–226.
[9] V. Caselles, A. Chambolle, M. Novaga, Uniqueness of the Cheeger set of a convex body, Pacific J. Math. 232

(2007), 77–90.
[10] J. Cheeger, A lower bound for the smallest eigenvalue of the Laplacian, Problems in analysis (Papers dedicated

to Salomon Bochner, 1969), Princeton Univ. Press, Princeton, N. J., 1970, pp. 195–199.
[11] J. Dávila, On an open question about functions of bounded variation, Calc. Var. Partial Differential Equations

15 (2002), 519–527.



34 BRASCO, LINDGREN, AND PARINI

[12] E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math.
136 (2012), 521–573.

[13] B. Dyda, A fractional order Hardy inequality, Illinois J. Math. 48 (2004), 575–588.
[14] I. Ekeland, Convexity methods in Hamiltonian mechanics, Ergebnisse der Mathematik und ihrer Grenzgebiete

(3) [Results in Mathematics and Related Areas (3)], Springer-Verlag, Berlin, 1990.
[15] R. L. Frank, R. Seiringer, Non-linear ground state representations and sharp Hardy inequalities, J. Funct. Anal.

255 (2008), 3407–3430.
[16] G. Franzina, G. Palatucci, Fractional p−eigenvalues, to appear on Riv. Mat. Univ. Parma (2013), available at

http://cvgmt.sns.it/paper/2168/

[17] G. Franzina, E. Valdinoci, Geometric analysis of fractional phase transition interfaces, in “Geometric Properties
for Parabolic and Elliptic PDE’s”, Springer INdAM Series Volume 2, 2013, 117–130.

[18] V. Fridman, B. Kawohl, Isoperimetric estimates for the first eigenvalue of the p-Laplace operator and the
Cheeger constant, Comment. Math. Univ. Carolinae 44 (2003), 659–667.

[19] N. Fusco, V. Millot, M. Morini, A quantitative isoperimetric inequality for fractional perimeters, J. Funct. Anal.
261 (2011), 697–715.

[20] E. Giusti, Direct Methods in the Calculus of Variations, World Scientific Publishing Co., Inc., River Edge, NJ,
2003.

[21] D. Grieser, The first eigenvalue of the Laplacian, isoperimetric constants, and the max flow min cut theorem,
Arch. Math. (Basel) 87 (2006), 75–85.

[22] B. Kawohl, T. Lachand-Robert, Characterization of Cheeger sets for convex subsets of the plane, Pacific J.
Math. 225 (2006), 103–118.
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