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Abstract. We establish a local minimality sufficiency criterion, based on the strict positivity

of the second variation, in the context of a variational model for the epitaxial growth of elastic

films. Our result holds also in the three-dimensional case and for a general class of nonlinear
elastic energies. Applications to the study of the local minimality of flat morphologies are also

shown.

1. Introduction

In the last few years morphological instabilities of interfaces in systems governed by the compe-
tition between volume and surface energies have been the subject of investigation of several studies.
Such instabilities occur, for instance, in the mechanism of the epitaxial growth of an elastic film
on a relatively thick substrate, in presence of a mismatch between the lattice structures of the two
crystalline solids. A threshold effect, known as the Asaro-Grinfeld-Tiller (AGT) instability, char-
acterizes the observed configurations: after reaching a critical value of the thickness, a flat layer
becomes morphologically unstable, and typically the free surface starts to develop irregularities
(see, for instance, [20]).

In this paper we continue the rigorous mathematical investigation of this phenomenon started
in [8], where the existence of minimizing configurations for a two-dimensional variational model is
established in the framework of linearized elasticity. In [16] a regularity theory for minimizers is
developed, while qualitative properties of equilibrium configurations are studied in [18] by means
of a new local minimality criterion based on the positivity of the second variation of the total
energy of the system: in particular, an analytical study of local and global minimality of the flat
configuration is carried out in two-dimensions and for the linear elastic case. We mention also the
related papers [6], where anisotropic surface energies are taken into consideration, and [17], which
deals with the evolution by surface diffusion of epitaxially strained films.

In the present work we aim at extending the sufficiency minimality criterion introduced in [18]
to the physically relevant three-dimensional case and to a larger class of nonlinear elastic energies,
which appear in the context of Finite Elasticity. In addition, as it was done in [6], we will take
into account anisotropic surface energies, that is, we will allow the surface term in the total energy
to depend on the orientation of the normal to the free surface.

To be more precise, the functional under consideration is defined over pairs (h, u), where
h : RN−1 → R is a positive, periodic function whose subgraph Ωh represents the reference
configuration of the film, and u : Ωh → RN is a deformation of the reference configuration. A
Dirichlet boundary condition is imposed on the function u at the interface between the film and
the flat substrate, forcing the film to be elastically stressed. The total energy of a pair (h, u) takes
the form

F (h, u) =

∫
Ωh

W (∇u) dz +

∫
Γh

ψ(ν) dHN−1,

where Γh denotes the free surface of Ωh (that is, the graph of h), ν is the unit normal to Γh ,
and W and ψ are the (nonlinear) elastic energy density and the (anisotropic) surface energy
density, respectively. Here the surface tension ψ is assumed to be regular and to satisfy a uniform
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ellipticity condition (see Section 2 for more details). We say that a pair (h, u) is a strong local
minimizer for F if (h, u) minimizes the functional among all competitors (g, v) such that g is in
a small L∞ -neighborhood of h and satisfies the volume constraint |Ωg| = |Ωh| , and the gradients
of the deformations ∇u , ∇v are close in L∞ . Necessary conditions for local minimality are the
first order conditions  div(DW (∇u)) = 0 in Ωh,

DW (∇u)[ν] = 0 on Γh,
W (∇u) +Hψ = const on Γh,

(1.1)

where Hψ denotes the anisotropic mean curvature of Γh .
In the main result of the paper we provide a sufficient condition for a critical pair (that is,

a pair (h, u) satisfying (1.1)) to locally minimize the total energy: precisely, we show that any
regular critical configuration with strictly positive second variation is a strong local minimizer for
F , according to the previous definition (Theorem 6.5). We also prove a stronger result in the
case of linear elasticity (see Theorem 6.6), namely we replace the L∞ -closeness of the deformation
gradients appearing in the definition of local minimizer by a uniform bound on the Lipschitz
constant of the deformations.

Although the question whether strict stability implies local minimality is very classical for
the standard functionals of the Calculus of Variations, its investigation in the context of free-
discontinuity problems has been started only in recent years: in particular, in addition to [18], we
refer to [9, 7], which deal with the Mumford-Shah functional, to [1] for a nonlocal isoperimetric
problem arising in the modeling of microphase separation in diblock copolymers, and to [10] for a
variational model dealing with cavities in elastic bodies.

Our minimality criterion can be applied to the study of the local minimality of flat morphologies,
when the amount of material deposited is small. We will also prove the interesting fact, firstly
observed in [6], that for crystalline anisotropies, whose Wulff shape contains a flat horizontal facet,
the AGT instability is suppressed, that is the flat configuration is always a local minimizer, no
matter how thick the film is.

We also mention that our result could be useful to deal with the three-dimensional version of
the elastic film evolution by surface diffusion with curvature regularization, studied in [17] in the
two-dimensional case. In particular, it is a natural question in this context to ask whether the
strict positivity of the second variation guarantees the Lyapunov stability with respect to this
evolution; we think that our criterion could be instrumental in establishing such a result.

One of the crucial difficulties that arise when treating the three-dimensional case is the lack
of a regularity theory for minimizers, which prevents us to extend completely the results of [18].
This is the reason why the minimality property that we are able to prove is weaker than the one
considered in [18], as it requires the L∞ -closeness of the deformation gradients (or a bound on the
Lipschitz constant of the deformation in the linear elastic case). While this constraint seems to
be not too restrictive in the nonlinear case, we expect that in the linearized framework the local
minimality should hold without such a condition; however, our strategy to improve the result in
this direction needs a regularity theory which is not yet available in three dimensions.

We now describe with some additional details the strategy leading to our main result. We first
introduce the notion of admissible variation of a critical pair (h, u), by considering the deformed
profiles ht := h + tφ , for t ∈ R , where φ ∈ C∞(RN−1) is any periodic function with zero mean
value. One of the difficulties which arise in the nonlinear context is the issue of the existence of a
critical point for the elastic energy in the deformed domain Ωht (that is, a deformation satisfying
the first two conditions of (1.1) in Ωht ). Nevertheless, by the Implicit Function Theorem we
show that, if the elastic second variation at u is uniformly positive in Ωh (see condition (3.1)),
it is possible to find a critical point ug for the elastic energy in Ωg (which in addition locally
minimizes the elastic energy), provided that g is sufficiently close to h in the W 2,p -topology
(see Proposition 3.4 and Proposition 3.6). This allows us to consider a one-parameter family of
variations (ht, uht) and to define the second variation of the functional at the critical pair (h, u)
along the direction φ as the second derivative at t = 0 of the map t 7→ F (ht, uht).
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The explicit computation of the second variation, performed in Theorem 4.1, will show that it

can be expressed in terms of a nonlocal quadratic form ∂2F (h, u) defined on the space H̃1
#(Γh) of

the periodic functions ϕ ∈ H1(Γh) such that
∫

Γh
ϕdHN−1 = 0. Then the strict stability condition

reads as

∂2F (h, u)[ϕ] > C‖ϕ‖2H1(Γh) for every ϕ ∈ H̃1
#(Γh). (1.2)

The proof of the sufficiency of (1.2) for strong local minimality is inspired by the two-steps
strategy devised in [18]. Firstly, we show that condition (1.2) is sufficient, in dimension N = 2, 3,
for a weaker notion of local minimality, namely with respect to competitors (g, v) with ‖g−h‖W 2,p

sufficiently small. Since the expression of the second variation involves the trace of the gradient
of W (∇u) on Γh , a crucial point in the proof of this result consists in controlling this term
in a proper Sobolev space of negative fractional order. We overcome this difficulty by proving
careful new estimates for the elliptic system associated with the first variation of the elastic
energy in Lemma 5.3, which provides a highly non-trivial generalization to the three-dimensional
and nonlinear cases of the estimates proved in [18, Lemma 4.1].

The second part of the proof consists in showing that, in any dimension, the aforementioned
weaker notion of minimality implies the desired strong local minimality. This is obtained by a
contradiction argument: assuming the existence of a sequence (gn, vn) converging to (h, u) and
violating the minimality of (h, u), one replaces (gn, vn) by a new pair (kn, wn) selected as the
solution to a suitable penalized minimum problem, whose energy is still below the energy of (h, u).
Due to minimality, the pairs (kn, wn) enjoy better regularity properties: since the L∞ -bound on
the deformation gradients allows us to regard the elastic energy as a volume perturbation of the
surface area, we may appeal to the regularity theory for quasi-minimizers of the area functional to
deduce the C1,α -convergence of kn to h . In turn, with the aid of the Euler-Lagrange equations
for the minimum problem solved by (kn, wn) we obtain the W 2,p -convergence of kn to h , and
we reach a contradiction to the local minimality of (h, u) with respect to W 2,p -perturbations
established in the first step of the proof.

The paper is organized as follows. We introduce the variational model and the basic definitions
in Section 2. As pointed out in the previous discussion, we need to find deformations which locally
minimize the elastic energy in the perturbed reference configurations: this is done in Section 3.
The explicit computation of the second variation is carried out in Section 4, where we also prove
two different, equivalent formulations of condition (1.2). In Section 5 we start the proof of the main
result of the paper, showing that the strict stability of a critical pair implies local minimality in the
W 2,p -sense; in Section 6 we prove that, in any dimension, local W 2,p -minimizers are strong local
minimizers, and we show how the results can be strengthen in the linear elastic case. Section 7 is
devoted to the study of the stability of flat morphologies. In the final Appendix we collect some
auxiliary results that are needed in the rest of the paper.

2. Setting of the problem

In this section we introduce the notation used in the paper and we describe the setting of the
variational problem that we consider.

2.1. General notation. We denote by MN the space of N × N real matrices and by MN
+ its

subset of matrices with positive determinant. The scalar product in MN is defined by A : B :=
trace (ATB), where AT is the transpose of A , and we denote by |A| the associated euclidean
norm. The symbol I stands for the identity matrix, while Id : RN → RN denotes the identity
map. We also deal with fourth order tensors, which are linear transformations of the space MN

into itself. We denote the action of such a tensor C on a matrix M by CM .
We write every vector z ∈ RN , N ≥ 2, as z = (x, y), where x ∈ RN−1 is the orthogonal

projection of z on the hyperplane spanned by {e1, . . . , eN−1} and y ∈ R . Here e1, . . . , eN are
the vectors of the canonical basis of RN . We denote by RN+ := {(x, y) ∈ RN : y > 0} and

RN− := {(x, y) ∈ RN : y < 0} the upper and lower half-space, respectively.

Let Q = (0, 1)N−1 be the unit square in RN−1 . For p ∈ [1,+∞] and k ≥ 0, we denote by

W k,p
# (Q) the set of functions h : RN−1 → (0,+∞) of class W k,p

loc (RN−1) which are one-periodic
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with respect to all the coordinate directions, endowed with the norm ‖·‖Wk,p(Q) . Similarly, Ck#(Q)

and Ck,α# (Q), for α ∈ (0, 1), denote the sets of one-periodic functions h : RN−1 → (0,+∞) of

class Ck and Ck,α , respectively.
Given a smooth orientable (N − 1)-dimensional manifold Γ ⊂ RN , we denote by ν a normal

vector field on Γ. If g : U → Rd is a smooth vector-valued function defined in a tubular neigh-
borhood U of Γ, we denote by ∇Γg its tangential differential (which we identify with a matrix)
and, if d = N , by divΓg its tangential divergence. We refer to [23, Chapter 2, Section 7] for the
definition of these tangential differential operators and for some related identities (in particular,
we will make use of the divergence formula, which allows to extend to tangential operators the
usual integration by parts formula). For every x ∈ Γ we set

B(x) := ∇Γν(x) = ∇ν(x), H(x) := div ν(x) = divΓν(x) = trace B(x).

The bilinear form associated with B(x) is symmetric and, when restricted to TxΓ×TxΓ, it co-
incides with the second fundamental form of Γ at x , while the value H(x) coincides with the
mean curvature of Γ at x . If ψ : RN \{0} → (0,+∞) is a smooth, positively 1-homogeneous
and convex function, we define the anisotropic second fundamental form of Γ and the anisotropic
mean curvature of Γ by

Bψ := ∇(∇ψ ◦ ν), Hψ := trace Bψ = div (∇ψ ◦ ν) (2.1)

respectively. Note that, also in this case, we have Hψ = divΓ (∇ψ ◦ ν) on Γ. Finally, if Φ : RN →
RN is a smooth orientation-preserving diffeomorphism, we denote by JΦ := |(∇Φ)−T [ν]|det∇Φ
the (N − 1)-dimensional Jacobian of Φ on Γ.

2.2. The variational model. We now describe the variational model which will be the subject
of this work, bearing in mind the two-dimensional setting introduced in [8, 18]. We first introduce
the class of admissible profiles, given by Lipschitz, strictly positive and periodic functions:

AP (Q) :=
{
h : RN−1 → (0,+∞) : h is Lipschitz continuous,

h(x+ ei) = h(x) for every x ∈ RN−1 and i = 1, . . . , N − 1
}
.

Given h ∈ AP (Q), we define the associated reference configuration Ωh and its periodic extension

Ω#
h to be the sets

Ωh :=
{

(x, y) ∈ RN : x ∈ Q, 0 < y < h(x)
}
, Ω#

h :=
{

(x, y) ∈ RN : 0 < y < h(x)
}

respectively, and the graph Γh of h and its periodic extension Γ#
h , representing the free profile,

Γh :=
{

(x, h(x)) ∈ RN : x ∈ Q
}
, Γ#

h :=
{

(x, h(x)) ∈ RN : x ∈ RN−1
}
.

We also introduce the following space of admissible elastic variations:

V(Ωh) :=
{
w ∈W 1,∞(Ω#

h ;RN ) : w(x, 0) = 0, w(x+ ei, y) = w(x, y)

for all (x, y) ∈ Ω#
h and i = 1, . . . , N − 1

}
,

and we will denote by Ṽ(Ωh) the completion of V(Ωh) with respect to the norm of H1(Ωh;RN ).
Since we assume to be in presence of a mismatch strain at the interface {y = 0} , we prescribe a
boundary Dirichlet datum in the form

u0(x, y) := (A[x] + q(x), 0),

where A ∈ MN−1
+ and q : RN−1 → RN−1 is a smooth function, one-periodic with respect to the

coordinate directions. We can finally define the space of admissible pairs

X =
{

(h, u) ∈ AP (Q)×W 1,∞(Ω#
h ;RN ) : u− u0 ∈ V(Ωh), det∇u(z) > 0 for a.e. z ∈ Ωh

}
.

In order to introduce the functional on X which represents the total energy of the system, we
define the elastic energy density and the anisotropic surface energy density to be, respectively:

• W : MN
+ → [0,+∞) of class C3 ,
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• ψ : RN → [0,+∞), of class C3 away from the origin, positively 1-homogeneous, such that

m|z| ≤ ψ(z) ≤M |z| for all z ∈ RN (2.2)

for some positive constants m,M, and satisfying the following condition of uniform con-
vexity: for every v ∈ SN−1

∇2ψ(v)[w,w] > c̄ |w|2 for all w ⊥ v, (2.3)

for some constant c̄ > 0.

Finally, we define the functional on X

F (h, u) :=

∫
Ωh

W (∇u) dz +

∫
Γh

ψ(νh) dHN−1,

where νh denotes the exterior unit normal vector to Ωh on Γh (we shall omit the subscript h
when there is no risk of ambiguity).

Remark 2.1. Although, for the sake of simplicity, we assume that W is defined on the space
MN

+ of the matrices with positive determinant, the results contained in this paper are valid also

for a general nonlinear density W of class C3 , defined only on an open subset O of MN ; in this
case the space X should be replaced by the following space of admissible pairs:{

(h, u) ∈ AP (Q)×W 1,∞(Ω#
h ;RN ) : u− u0 ∈ V(Ωh), ∇u(z) ∈ O for a.e. z ∈ Ωh

}
.

The physically relevant condition that W (ξ)→ +∞ as det ξ → 0+ , which is customary in Finite
Elasticity, is compatible with our assumption. When W is a quasi-convex function defined on the
whole space MN and satisfying standard p-growth conditions, the definition of the functional F
can be extended to a larger class of admissible pairs by a relaxation procedure (see [11]).

We will denote the derivatives of W by

Wξ(ξ) := DW (ξ) =

(
∂W

∂ξij
(ξ)

)
ij

, Wξξ(ξ) := D2W (ξ) =

(
∂2W

∂ξij∂ξhk
(ξ)

)
ijhk

.

We now give the definitions of critical point for the elastic energy in a given reference configuration
Ωh , and of critical pair for the functional F .

Definition 2.2. Let (h, u) ∈ X with u ∈ C1(Ω
#

h ;RN ). The function u is said to be a critical
point for the elastic energy in Ωh if∫

Ωh

Wξ(∇u) : ∇w dz = 0 for every w ∈ V(Ωh). (2.4)

Notice that, by periodicity, (2.4) is equivalent to{
div [Wξ(∇u)] = 0 in Ω#

h ,

Wξ(∇u)[ν] = 0 on Γ#
h .

Definition 2.3. We say that a pair (h, u) ∈ X is a (regular) critical pair for F if h ∈ C2
#(Q),

u ∈ C2(Ω
#

h ;RN ) is a critical point for the elastic energy in Ωh , and the following condition holds:

W (∇u) +Hψ = const on Γh. (2.5)

In the main result of the paper (Theorem 6.5) we provide a sufficient condition for a critical
pair (h, u) ∈ X to be a local minimizer of the functional F under volume constraint.

The regularity assumptions on a critical pair (h, u) allow us to extend u to a slightly larger
domain, preserving the property that the deformation gradient ∇u has positive determinant.
More precisely, given a critical pair (h, u) we can find an open set Ω′ of the form Ωh+η , for some
η > 0, with the following property: denoting by Ω′# the periodic extension of Ω′ , we can extend

u to a periodic function of class C1 in Ω
′
# in such a way that det∇u(z) > 0 for every z ∈ Ω

′
.

This induces us to consider the following class of competitors:

X ′ :=
{

(g, v) ∈ X : Ωg ⊂ Ω′, v ∈W 1,∞(Ω′#;RN ), det∇v(z) > 0 for a.e. z ∈ Ω′
}
. (2.6)
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We then consider the following notion of local minimality.

Definition 2.4. Let (h, u) ∈ X be a critical pair for F . We say that (h, u) is a local minimizer
for F if there exists δ > 0 such that

F (h, u) ≤ F (g, v) (2.7)

for all (g, v) ∈ X ′ with ‖g − h‖∞ < δ , |Ωg| = |Ωh| , and ‖∇v −∇u‖L∞(Ω′;MN ) < δ . We say that
(h, u) is an isolated local minimizer if (2.7) holds with strict inequality when g 6= h .

Remark 2.5. The following construction will be used several times throughout the paper. Given
any admissible profile h ∈ AP (Q), we associate with every g ∈ AP (Q) in a sufficiently small

L∞ -neighborhood of h a map Φg : Ω
#

h → Ω
#

g with the properties:

• Φg(x, 0) = (x, 0) for every x ∈ RN−1 ;

• Φg(x, y) = (x, y + g(x)− h(x)) in a neighborhood of Γ#
h ;

• Φg(x+ ei, y) = Φg(x, y) + (ei, 0) for (x, y) ∈ Ω
#

h and i = 1, . . . , N − 1;
• Φg satisfies the following estimate:

‖Φg − Id‖L∞(Ωh;RN ) ≤ ‖g − h‖L∞(Q). (2.8)

We can explicitly construct the diffeomorphism Φg as follows. Setting m0 := minh > 0, we fix
a nonnegative cut-off function ρ ∈ C∞c (−m0

2 ,
m0

2 ) with ρ ≡ 1 in (m0

4 ,
m0

4 ). Then it is easily seen
that, if ‖g − h‖∞ < m0

4 , the map

Φg(x, y) :=
(
x, y + ρ(y − h(x))(g(x)− h(x))

)
satisfies all the previous conditions.

Remark 2.6. We note here for later use that, as a consequence of the positive 1-homogeneity of
the anisotropy ψ ,

∇2ψ(v)[v] = 0 for every v ∈ RN \{0}. (2.9)

Moreover, given a sufficiently regular admissible profile h , we can prove the following explicit
formula for the anisotropic mean curvature of Γh (see (2.1) for the definition):

Hψ(x, h(x)) =

N−1∑
i=1

∂

∂xi

( ∂ψ
∂zi

(−∇h(x), 1)
)
. (2.10)

In fact, observe that by (2.9) we have ∇2ψ(−∇h, 1)[(−∇h, 1)] = 0, that is,

N−1∑
j=1

∂2ψ

∂zi∂zj
(−∇h, 1)

∂h

∂xj
=

∂2ψ

∂zi∂zN
(−∇h, 1)

for i = 1, . . . , N . Hence, as ∇ψ is 0-homogeneous, a straightforward computation yields

Hψ(x, h(x)) = divΓh(∇ψ ◦ ν)|(x,h(x)) = −
N−1∑
j,k=1

∂2ψ

∂zj∂zk
(−∇h, 1)

∂2h

∂xk∂xj

+
1

1 + |∇h|2
N−1∑
i,k=1

(N−1∑
j=1

∂2ψ

∂zk∂zj
(−∇h, 1)

∂h

∂xj
− ∂2ψ

∂zk∂zN
(−∇h, 1)

)
∂2h

∂xk∂xi

∂h

∂xi
,

from which (2.10) follows by using the previous equality.

3. Critical points for the elastic energy

The purpose of this section is to associate with every g close to h (in a norm to be specified)
a deformation ug such that, if g is fixed, the map v 7→ F (g, v) has a local minimum at ug . If
this is the case, then in order to prove the local minimality of an admissible pair (h, u) it will be
sufficient to compare F (h, u) only with the values of F at pairs of the form (g, ug), avoiding in
some sense the dependence on the second variable. The Implicit Function Theorem guarantees
that this is in fact possible, under suitable assumptions on the starting pair (h, u).
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Definition 3.1. Let (h, u) ∈ X , and assume that u is a critical point for the elastic energy in
Ωh , according to Definition 2.2. We say that u is a strict δ -local minimizer for the elastic energy
in Ωh , for δ > 0, if ∫

Ωh

W (∇u) dz <

∫
Ωh

W (∇u+∇w) dz

whenever w ∈ V(Ωh) and 0 < ‖∇w‖L∞(Ωh;MN ) ≤ δ .

We now provide suitable assumptions on a pair (h, u), with u critical point for the elastic
energy in Ωh , which guarantee that if g is a small W 2,p -perturbation of the profile h then we
can find a critical point ug for the elastic energy in Ωg which in addition locally minimizes the
elastic energy. In order to do this, we introduce a fourth order symmetric tensor field, associated
with a deformation u in the domain Ωh , setting

Cu(z) := Wξξ(∇u(z)) for every z ∈ Ω
#

h .

Definition 3.2. Let (h, u) ∈ X . We say that the elastic second variation is uniformly positive
at u in Ωh if there exists a positive constant c0 such that∫

Ωh

Cu∇w :∇w dz ≥ c0‖w‖2H1(Ωh;RN ) for every w ∈ Ṽ(Ωh) , (3.1)

where we recall that Ṽ(Ωh) denotes the completion of V(Ωh) with respect to the norm of
H1(Ωh;RN ).

Arguing as in [24, Theorem 1], it is possible to prove1 the following equivalent formulation of
condition (3.1).

Theorem 3.3. Let (h, u) ∈ X be such that h ∈ C2
#(Q) and u ∈ C2(Ω

#

h ;RN ) is a critical point

for the elastic energy in Ωh . Then (3.1) holds (with some positive constant c0 depending only on
the pair (h, u)) if and only if the following three conditions are satisfied:

(H1) for all z ∈ Ωh the fourth order tensor Cu(z) satisfies the strong ellipticity condition, that
is

Cu(z)M : M > 0

whenever M = a⊗ b with a 6= 0 , b 6= 0 ;

(H2) for all z0 ∈ Γh the boundary value problem{
div [Cu(z0)∇v] = 0 in Hν(z0),

(Cu(z0)∇v) [ν(z0)] = 0 on ∂Hν(z0),

where
Hν(z0) := {z ∈ RN : z · ν(z0) > 0},

satisfies the complementing condition, i.e., the only bounded exponential solution to the
previous equation is v ≡ 0 . By bounded exponential we mean a solution of the form

v(z) = Re
[
f(z · ν(z0)) ei(z·b)

]
for some b ∈ ∂Hν(z0)\{0} and f ∈ C∞([0,+∞),CN ) satisfying sups |f(s)| <∞ ;

(H3) the elastic second variation is strictly positive, that is, for every w ∈ Ṽ(Ωh)\{0}∫
Ωh

Cu∇w :∇w dz > 0 .

We are now ready to explain the construction announced at the beginning of this section.

Proposition 3.4. Let (h, u) ∈ X be such that h ∈ C2
#(Q) , u ∈ C2(Ω

#

h ;RN ) is a critical point for

the elastic energy in Ωh , and condition (3.1) holds. Let p ∈ (N,+∞) . There exists a neighborhood

U of h in W 2,p
# (Q) and a map g ∈ U 7→ ug ∈W 2,p(Ωg;RN ) such that:

1In view of the Remark following [24, Proposition 9.4], our regularity assumptions on W and (h, u) are sufficient

to guarantee the validity of the stated result.



8 M. BONACINI

(i) ug is a critical point for the elastic energy in Ωg , according to Definition 2.2;
(ii) uh = u ;

(iii) the map g 7→ ug ◦ Φg is of class C1 from W 2,p
# (Q) to W 2,p(Ωh;RN ) .

Proof. We start by observing that if g ∈ W 2,p
# (Q) is close to h in the W 2,p -topology, the maps

Φg introduced in Remark 2.5 are orientation preserving diffeomorphisms of class W 2,p satisfying
an estimate

‖Φg − Id‖W 2,p(Ωh;RN ) ≤ c ‖g − h‖W 2,p(Q) (3.2)

for some constant c > 0 depending only on h . Moreover, by construction the map g 7→ Φg is

affine, and hence of class C∞ from a neighborhood of h in W 2,p
# (Q) to W 2,p(Ωh;RN ).

Our aim is to associate, with every g in a sufficiently small W 2,p -neighborhood of h , a solution
ug to (2.4) with ug − u0 ∈ V(Ωg). A change of variables shows that a function v is a solution to
(2.4) with v−u0 ∈ V(Ωg) if and only if the function ṽ = v ◦Φg −u0 belongs to V(Ωh) and solves∫

Ωh

Wξ

(
(∇ṽ +∇u0)(∇Φg)

−1
)
(∇Φg)

−T : ∇w̃ det∇Φg dz = 0 for every w̃ ∈ V(Ωh). (3.3)

Note that an equivalent formulation of (3.3) is{
div
[
QΦg (z,∇ṽ(z))

]
= 0 in Ω#

h ,

QΦg (z,∇ṽ(z))[ν] = 0 on Γ#
h ,

where we set, for z ∈ Ω
#

h and M ∈MN ,

QΦg (z,M) := det∇Φg(z)Wξ

(
(M +∇u0(z))(∇Φg(z))

−1
)

(∇Φg(z))
−T . (3.4)

Our strategy will be to get a solution to this boundary value problem by means of the Implicit
Function Theorem. To this aim, let us define the open subsets

A :=
{

Φ ∈W 2,p(Ωh;RN ) : det∇Φ > 0 in Ω#
h , ∇Φ(x+ ei, y) = ∇Φ(x, y)

for (x, y) ∈ Ω#
h and i = 1, . . . , N − 1

}
,

B := {v ∈ V(Ωh) ∩W 2,p(Ωh;RN ) : det(∇v +∇u0) > 0 in Ωh} ,

both equipped with the norm ‖ · ‖W 2,p(Ωh;RN ) (notice that the pointwise conditions on the deter-

minants in the definition of the spaces A and B make sense thank to the embedding of W 2,p in
C1,α ). Observing that, for (Φ, v) ∈ A × B , the map z 7→ QΦ(z,∇v(z)) is of class W 1,p in Ωh
(here QΦ is defined as in (3.4) with Φg replaced by Φ), we introduce the spaces

Y1 :=
{
f ∈ Lp(Ωh;RN ) : f(x+ ei, y) = f(x, y) for a.e. (x, y) ∈ Ω#

h and i = 1, . . . , N − 1
}
,

Y2 :=
{
η ∈W 1− 1

p ,p(Γh;RN ) : η(x+ ei, h(x+ ei)) = η(x, h(x)) for a.e. x ∈ RN−1
}
,

and the map G : A×B → Y1 × Y2 defined as

G(Φ, v) :=
(

div
[
QΦ(·,∇v(·))

]
, QΦ(·,∇v(·))[ν]

)
.

It can be checked that G is a map of class C1 , and G(Id, u − u0) = (0, 0) (as u solves (2.4)).
In order to apply the Implicit Function Theorem, we need to verify that the partial derivative
∂vG(Id, u−u0) is an invertible bounded linear operator. Since for every v ∈ V(Ωh)∩W 2,p(Ωh;RN )

∂vG(Id, u− u0)[v] =
(

div [Wξξ(∇u)∇v] ,
(
Wξξ(∇u)∇v

)
[ν]
)

=
(
div [Cu∇v] , (Cu∇v)[ν]

)
,

the invertibility of the operator ∂vG(Id, u−u0) corresponds to prove existence and uniqueness in
V(Ωh) ∩W 2,p(Ωh;RN ) of solutions to the problem{

div [Cu∇v] = f in Ω#
h ,

(Cu∇v)[ν] = η on Γ#
h ,
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for any given (f, η) ∈ Y1 × Y2 . The proof of this fact relies on the regularity theory for elliptic
systems with mixed boundary conditions, and in particular on the regularity estimates of Agmon,
Douglis and Nirenberg (see [2, Theorem 10.5]), which can be applied thank to the assumption
(3.1), which is equivalent to the three conditions (H1)–(H3) by Theorem 3.3, and to the regularity
of h and u (we refer also to [25] for a clear presentation of the theory in the context of linear
elasticity).

We are now in position to apply the Implicit Function Theorem: there exist a neighborhood V
of Id in A , a neighborhood W of u− u0 in B and a map

Φ ∈ V 7−→ uΦ ∈ W

of class C1 such that uId = u− u0 and G(Φ, uΦ) = (0, 0) for all Φ ∈ V . Finally, thank to (3.2),

we can determine a neighborhood U of h in W 2,p
# (Q) such that if g ∈ U then Φg ∈ V . Setting

ug := (uΦg + u0) ◦ Φ−1
g for any g ∈ U , we obtain the conclusion of the proposition. �

Remark 3.5. From the proof of the previous proposition it follows in particular that there exists
a compact set K ⊂MN

+ such that

∇ug(z) ∈ K for every g ∈ U and z ∈ Ωg.

We conclude this section by showing that the critical points ug constructed in Proposition 3.4
are also local minimizers of the elastic energy, in the sense of Definition 3.1.

Proposition 3.6. Let U be as in Proposition 3.4. There exist δ > 0 and ε > 0 such that, if
g ∈ U and ‖g− h‖W 2,p(Q) < ε, then ug is a strict δ -local minimizer for the elastic energy in Ωg ,
according to Definition 3.1.

Proof. We start by observing that, if g ∈ U and ‖g − h‖W 2,p(Q) < ε , then from (3.1) and from
the smoothness of the map g 7→ ug ◦ Φg one can easily deduce that∫

Ωg

Cug∇w :∇w dz > c0
4
‖w‖2H1(Ωg ;RN ) (3.5)

for every w ∈ V(Ωg), provided ε > 0 is small enough.
Let now w ∈ V(Ωg) satisfy 0 < ‖∇w‖L∞(Ωg ;MN ) ≤ δ , with δ > 0 to be chosen. We set

f(t) :=

∫
Ωg

W (∇ug + t∇w) dz, t ∈ [0, 1].

Notice that, since ug is a critical point, f ′(0) = 0. Hence, there exists τ ∈ (0, 1) such that∫
Ωg

W (∇ug +∇w) dz = f(1) = f(0) +
f ′′(τ)

2

=

∫
Ωg

W (∇ug) +
1

2

∫
Ωg

Cug [∇w,∇w] dz

+
1

2

∫
Ωg

(Wξξ(∇ug + τ∇w)−Wξξ(∇ug)) [∇w,∇w] dz

≥
∫

Ωg

W (∇ug) +
(c0

8
− ω(δ)

)
‖w‖2H1(Ωg ;RN ), (3.6)

where we used (3.5) and we set

ω(δ) := max
{
‖Wξξ(A+ τB)−Wξξ(A)‖∞ : A ∈ K, B ∈MN , |B| ≤ δ, 0 ≤ τ ≤ 1

}
,

with K as in Remark 3.5. Note that ω(δ) → 0 as δ → 0+ . Therefore, choosing δ so small that
ω(δ) < c0

8 it follows from (3.6) that ug is a strict δ -local minimizer. �
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4. The second variation

The main result of this section is the explicit computation of the second variation of the
functional F along volume-preserving deformations. Here and in the following we assume that

(h, u) ∈ X satisfies the assumptions of Proposition 3.4: h ∈ C2
#(Q), u ∈ C2(Ω

#

h ;RN ) is a critical

point for the elastic energy in Ωh , and condition (3.1) holds.
Given φ ∈ C2

#(Q) with
∫
Q
φdx = 0, for t ∈ R we set ht := h+tφ . According to Proposition 3.4,

for t so small that ht ∈ U we may consider a critical point uht for the elastic energy in Ωht . To
simplify the notation, we set ut := uht . We define the second variation of F at (h, u) along the
direction φ to be the value of

d2

dt2
[F (ht, ut)] |t=0.

We remark that the existence of the derivative is guaranteed by the regularity result contained in
Proposition 3.4 (see the first step of the proof of Theorem 4.1).

Before stating the main results of this section, we introduce some more notation. For any one-
parameter family of functions {gt}t∈R we denote by ġt(z) the partial derivative with respect to t
of the function (t, z) 7→ gt(z). We omit the subscript when t = 0. In particular we let

u̇t :=
∂ut
∂t

, u̇ :=
∂ut
∂t

∣∣∣
t=0

.

We introduce also the following subspace of H1(Γh):

H̃1
#(Γh) :=

{
ϑ ∈ H1

loc(Γ
#
h ) : ϑ(x+ ei, h(x+ ei)) = ϑ(x, h(x)) for a.e. x ∈ RN−1

and for every i = 1, . . . , N − 1,

∫
Γh

ϑ dHN−1 = 0
}
,

and we define ϕ ∈ H̃1
#(Γh) to be

ϕ :=
φ√

1 + |∇h|2
◦ π,

where π : RN → RN−1 is the orthogonal projection on the hyperplane spanned by {e1, . . . , eN−1} .

Denote also by νt the outer unit normal vector to Ωht on Γht , and by Hψ
t := div (∇ψ ◦ νt) the

anisotropic curvature of Γht . It will be convenient to consider, as we did before, a family of
diffeomorphisms Φt : Ωh → Ωht of class C2 such that Φ0 = Id and Φt(x, y) = (x, y+ tφ(x)) in a
neighborhood of Γh (see Remark 2.5).

In the following theorem we deduce an explicit expression of the second variation.

Theorem 4.1. Let (h, u) , φ , ϕ and (ht, ut) be as above. Then the function u̇ belongs to V(Ωh)
and satisfies the equation∫

Ωh

Cu∇u̇ : ∇w dz =

∫
Γh

divΓh(ϕWξ(∇u)) · w dHN−1 for all w ∈ Ṽ(Ωh). (4.1)

Moreover, the second variation of F at (h, u) along the direction φ is given by

d2

dt2
F (ht, ut)|t=0 = −

∫
Ωh

Cu∇u̇ : ∇u̇ dz +

∫
Γh

(∇2ψ ◦ ν)[∇Γhϕ,∇Γhϕ] dHN−1

+

∫
Γh

(
∂ν(W ◦ ∇u)− trace (BψB)

)
ϕ2 dHN−1 (4.2)

−
∫

Γh

(
W ◦ ∇u+Hψ

)
divΓh

[(
(∇h, |∇h|2)√

1 + |∇h|2
◦ π

)
ϕ2

]
dHN−1,

where Hψ , B and Bψ are the anisotropic mean curvature, the second fundamental form and the
anisotropic second fundamental form of Γh , respectively.

Before proving the theorem, we collect in the following lemma some identities that will be used
in the computation of the second variation.
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Lemma 4.2. The following identities are satisfied on Γh :

(a) ∂νH
ψ = −trace

(
BψB

)
= −trace

(
B2(∇2ψ ◦ ν)

)
;

(b) ν̇ = −∇Γhϕ ;

(c) Ḣψ = divΓh

(
(∇2ψ ◦ ν)[ν̇]

)
= −divΓh

(
(∇2ψ ◦ ν)[∇Γhϕ]

)
.

Proof. Recalling that ∇ν[ν] = 0, we easily deduce that ∇ (∇ψ ◦ ν) [ν] = 0. By differentiating,

∂ν (∇ (∇ψ ◦ ν)) = −∇ (∇ψ ◦ ν)∇ν = −BψB,

and from this we obtain (a), since

∂νH
ψ = ∂ν [div(∇ψ ◦ ν)] = ∂ν [trace (∇ (∇ψ ◦ ν))]

= trace [∂ν (∇ (∇ψ ◦ ν))] = −trace
[
BψB

]
.

Let us prove (b). Differentiating with respect to t the identity

νt ◦ Φt =
(−∇ht, 1)√
1 + |∇ht|2

◦ π on Γh,

and evaluating the result at t = 0, we get that on Γh holds

ν̇ + (φ ◦ π)∂yν =

(
−∇φ√

1 + |∇h|2
+

(∇h · ∇φ)∇h
(1 + |∇h|2)

3
2

,
−∇h · ∇φ

(1 + |∇h|2)
3
2

)
◦π

=
(−∇φ, 0)√
1 + |∇h|2

◦ π −
(
∇h · ∇φ

1 + |∇h|2
◦ π
)
ν

=

(
− 1√

1 + |∇h|2
◦ π
)[
∇(φ ◦ π)−

(
∇(φ ◦ π) · ν

)
ν
]

=

(
− 1√

1 + |∇h|2
◦ π
)
∇Γh(φ ◦ π).

Hence, using the identity

∂yν = ∇Γh

(
1√

1 + |∇h|2
◦ π
)

on Γh,

we finally get

ν̇ = −
(

1√
1 + |∇h|2

◦ π
)
∇Γh(φ ◦ π)−∇Γh

(
1√

1 + |∇h|2
◦ π
)

(φ ◦ π)

= −∇Γh

(
φ√

1 + |∇h|2
◦ π
)

= −∇Γhϕ,

that is (b).
Let us prove (c). Differentiating in the direction ν the identity (∇2ψ ◦ ν)[ν, ν̇] = 0 (which

follows by (2.9)), we obtain

ν · ∂ν
(
(∇2ψ ◦ ν)[ν̇]

)
= −(∇2ψ ◦ ν)[ν̇, ∂νν] = 0,

where we recall that ∂νν = 0. Hence

Ḣψ =
∂

∂t
Hψ
t |t=0 =

∂

∂t
[div(∇ψ ◦ νt)] |t=0 = div

(
(∇2ψ ◦ ν)[ν̇]

)
= divΓh

(
(∇2ψ ◦ ν)[ν̇]

)
+ ν · ∂ν

(
(∇2ψ ◦ ν)[ν̇]

)
= divΓh

(
(∇2ψ ◦ ν)[ν̇]

)
= −divΓh

(
(∇2ψ ◦ ν)[∇Γhϕ]

)
,

where in the last equality we used (b). �

We are now ready to perform the computation of the second variation of the functional.
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Proof of Theorem 4.1. We divide the proof into several steps.

Step 1. We claim that the regularity property stated in Proposition 3.4-(iii) guarantees that the
map (t, z) 7→ wt(z) := ut ◦ Φt(z) is of class C1 in (−ε0, ε0)× Ωh for some ε0 small enough.

Indeed, denoting by w′t0 the derivative of the map t 7→ wt with respect to the W 2,p -norm,
evaluated at some t0 (small), we have that

1
s

(
wt0+s − wt0

)
→ w′t0 in W 2,p(Ωh), as s→ 0. (4.3)

In particular, wt0+s → wt0 in C1(Ωh) as s → 0, showing that the map (t, z) 7→ ∇wt(z) is
continuous in (−ε0, ε0) × Ωh . Moreover, (4.3) implies that w′t0 = ẇt0 , and the continuity of

t 7→ w′t yields ẇt0+s → ẇt0 in C0(Ωh) as s → 0, showing that the map (t, z) 7→ ẇt(z) is
continuous in (−ε0, ε0)× Ωh . The claim follows.

This provides a justification to all the differentiations that will be performed throughout the
proof. Moreover, it is also easily seen that u̇t ∈ V(Ωht) for t ∈ (−ε0, ε0).

Step 2. We prove (4.1). Let us recall that ut satisfies equation (2.4):∫
Ωht

Wξ(∇ut) : ∇w dz = 0 for every w ∈ V(Ωht). (4.4)

Fix w ∈ V(Ωh). Then w may be extended outside Ωh in such a way that w ∈ V(Ωht) for t small.
We can differentiate (4.4) with respect to t and evaluate the result at t = 0 to obtain

0 =

∫
Ωh

Cu∇u̇ : ∇w dz +

∫
Q

φ(x) [Wξ(∇u) : ∇w] |(x,h(x)) dx (4.5)

=

∫
Ωh

Cu∇u̇ : ∇w dz +

∫
Γh

ϕWξ(∇u) : ∇w dHN−1.

Recalling that Wξ(∇u)[ν] = 0 along Γh , the second integral in the above formula can be rewritten
as ∫

Γh

ϕWξ(∇u) : ∇w dHN−1 =

∫
Γh

ϕWξ(∇u) : ∇Γhw dHN−1

= −
∫

Γh

divΓh(ϕWξ(∇u)) · w dHN−1 .

This concludes the proof of (4.1).

Step 3. We compute the first variation. By the positive one-homogeneity of ψ we have on Γht

ψ(νt) = ψ

(
(−∇ht, 1)√
1 + |∇ht|2

◦ π

)
=
ψ ((−∇ht, 1))√

1 + |∇ht|2
◦ π.

Hence,

d

dt
F (ht, ut) =

d

dt

[∫
Q

∫ ht

0

W (∇ut) dy dx+

∫
Q

ψ((−∇ht, 1)) dx

]

=

∫
Q

φ(x) [W (∇ut)] |(x,ht(x)) dx+

∫
Q

∫ ht

0

Wξ(∇ut) : ∇u̇t dy dx

−
∫
Q

∇ψ((−∇ht, 1)) · (∇φ, 0) dx.

Since u̇t ∈ V(Ωht) the second integral vanishes by (4.4). Then, integrating by parts in the last
integral and recalling the expression for the anisotropic mean curvature provided by (2.10), we
obtain

d

dt
F (ht, ut) =

∫
Q

φ(x)
[
W (∇ut) +Hψ

t

]
|(x,ht(x)) dx. (4.6)
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Step 4. We finally pass to the second variation. Differentiating (4.6) with respect to t and
evaluating the result at t = 0 we get

d2

dt2
F (ht, ut)|t=0 =

∫
Q

φ(x) [Wξ(∇u) : ∇u̇] |(x,h(x)) dx+

∫
Q

φ(x)Ḣψ|(x,h(x)) dx

+

∫
Q

φ(x)
[
∇(W ◦ ∇u+Hψ)

]
|(x,h(x)) · (0, φ(x)) dx

=: I1 + I2 + I3.

Since u̇ ∈ V(Ωh), thanks to (4.5) the first integral is

I1 = −
∫

Ωh

Cu∇u̇ : ∇u̇ dz.

For the second integral, changing variables, using identity (c) of Lemma 4.2 and integrating by
parts we get

I2 = −
∫

Γh

ϕdivΓh

(
(∇2ψ ◦ ν)[∇Γhϕ]

)
dHN−1 =

∫
Γh

(∇2ψ ◦ ν)[∇Γhϕ,∇Γhϕ] dHN−1.

To conclude, we observe that along Γh the vector (0, ϕ) can be decomposed as

(0, ϕ) = (0, ϕ)Γh + (0, ϕ)ν ,

with (0, ϕ)Γh tangent to Γh and (0, ϕ)ν parallel to ν , i.e.,

(0, ϕ)Γh = ϕ

[
(∇h, |∇h|2)

1 + |∇h|2
◦ π
]
, (0, ϕ)ν = ϕ

[
(−∇h, 1)

1 + |∇h|2
◦ π
]
.

Hence, recalling the definition of ϕ , changing variables in I3 and integrating by parts:

I3 =

∫
Γh

ϕ∇(W ◦ ∇u+Hψ) · (0, ϕ)
(√

1 + |∇h|2 ◦ π
)
dHN−1

=

∫
Γh

ϕ2∇Γh(W ◦ ∇u+Hψ) ·

(
(∇h, |∇h|2)√

1 + |∇h|2
◦ π

)
dHN−1

+

∫
Γh

ϕ2 ∂ν(W ◦ ∇u+Hψ) dHN−1

= −
∫

Γh

(W ◦ ∇u+Hψ) divΓh

[(
(∇h, |∇h|2)√

1 + |∇h|2
◦ π

)
ϕ2

]
dHN−1

+

∫
Γh

ϕ2
[
∂ν(W ◦ ∇u)− trace (BψB)

]
dHN−1,

where in the last equality we used identity (a) of Lemma 4.2. �

Remark 4.3. For a fixed s ∈ R sufficiently small, we deduce also from Theorem 4.1 that

d2

dt2
F (ht, ut)|t=s =

d2

dt2
F (hs+t, us+t)|t=0

= −
∫

Ωhs

Cus∇u̇s : ∇u̇s dz +

∫
Γhs

(∇2ψ ◦ νs)[∇Γhs
ϕs,∇Γhs

ϕs] dHN−1

+

∫
Γhs

(
∂νs(W ◦ ∇us)− trace (Bψ

s Bs)
)
ϕ2
s dHN−1

−
∫

Γhs

(
W ◦ ∇us +Hψ

s

)
divΓhs

[(
(∇hs, |∇hs|2)√

1 + |∇hs|2
◦ π

)
ϕ2
s

]
dHN−1,
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where ϕs := φ√
1+|∇hs|2

◦π ∈ H̃1
#(Γhs), Bs := ∇νs and Bψ

s := ∇(∇ψ◦νs). Moreover, the function

u̇s belongs to V(Ωhs) and satisfies the equation∫
Ωhs

Cus∇u̇s : ∇w dz =

∫
Γhs

divΓhs
(ϕsWξ(∇us)) · w dHN−1 for all w ∈ Ṽ(Ωhs).

4.1. The second order condition. The expression of the second variation at a critical pair (see
Definition 2.3) simplifies, as the last integral in (4.2) vanishes by the divergence formula. This
observation suggests to associate with every critical pair (h, u) ∈ X a quadratic form ∂2F (h, u) :

H̃1
#(Γh)→ R defined as

∂2F (h, u)[ϕ] := −
∫

Ωh

Cu∇vϕ : ∇vϕ dz +

∫
Γh

(∇2ψ ◦ ν)[∇Γhϕ,∇Γhϕ] dHN−1

+

∫
Γh

(
∂ν(W ◦ ∇u)− trace (BψB)

)
ϕ2 dHN−1, (4.7)

where vϕ ∈ Ṽ(Ωh) is the unique solution to∫
Ωh

Cu∇vϕ : ∇w =

∫
Γh

divΓh(ϕWξ(∇u)) · w dHN−1 for every w ∈ Ṽ(Ωh). (4.8)

It is easily seen that the positivity of the quadratic form (4.7) is a necessary condition for the local
minimality: this is made precise by the following theorem.

Theorem 4.4. Let (h, u) ∈ X , with h ∈ C2
#(Q) and u ∈ C2(Ω

#

h ;RN ) , be a local minimizer for

F , according to Definition 2.4, and assume in addition that u satisfies (3.1). Then the quadratic
form (4.7) is positive semidefinite, i.e.,

∂2F (h, u)[ϕ] ≥ 0 for every ϕ ∈ H̃1
#(Γh).

Proof. Given any ϕ ∈ H̃1
#(Γh) ∩ C∞(Γ#

h ), we can consider the deformation ht = h + tφ , where

φ(x) = (1+ |∇h(x)|2)
1
2 ϕ(x, h(x)), and, for t small, the corresponding critical points for the elastic

energy uht . It follows from equation (4.2) and from the local minimality of (h, u) (which is in
particular a critical pair) that

∂2F (h, u)[ϕ] =
d2

dt2
F (ht, uht)|t=0 ≥ 0.

For a general ϕ the result follows by approximation with functions in H̃1
#(Γh)∩C∞(Γ#

h ) (observe

that ∂2F (h, u) is continuous with respect to the strong convergence in H1 ). �

Definition 4.5. Let (h, u) ∈ X be a critical pair for the functional F , according to Definition 2.3.
We say that (h, u) is strictly stable if the elastic second variation is uniformly positive at u in Ωh
(see Definition 3.2) and in addition

∂2F (h, u)[ϕ] > 0 for every ϕ ∈ H̃1
#(Γh)\{0}. (4.9)

The main result of this paper (Theorem 6.5) states that a strictly stable critical pair is a local
minimizer for F , according to Definition 2.4. This will be proved in Sections 5 and 6, while now
we focus on the condition (4.9) providing two equivalent formulations.

Given a critical pair (h, u) ∈ X satisfying (3.1), we define the bilinear form on H̃1
#(Γh)

(ϕ, ϑ)∼ :=

∫
Γh

(∇2ψ ◦ ν)[∇Γhϕ,∇Γhϑ] dHN−1 +

∫
Γh

aϕϑ dHN−1 (4.10)

for ϕ, ϑ ∈ H̃1
#(Γh), where a := ∂ν(W◦∇u)−trace (BψB) on Γh . Arguing as in [9, Proposition 4.2],

one can show that if

(ϕ,ϕ)∼ > 0 for every ϕ ∈ H̃1
#(Γh)\{0}, (4.11)
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then (· , ·)∼ is a scalar product which defines an equivalent norm on H̃1
#(Γh), denoted by ‖ · ‖∼ .

We omit the proof also of the following result, since it can be deduced by repeating the proof of
[18, Proposition 3.6] (see also [9, Proposition 4.3, Theorem 4.6, Theorem 4.10]).

Theorem 4.6. The following statements are equivalent.

(i) Condition (4.9) holds.

(ii) Condition (4.11) is satisfied and T : H̃1
#(Γh)→ H̃1

#(Γh) , defined by duality as

(Tϕ, ϑ)∼ :=

∫
Γh

divΓh(ϑWξ(∇u)) · vϕ dHN−1 =

∫
Ωh

Cu∇vϕ : ∇vϑ dz (4.12)

for every ϕ, ϑ ∈ H̃1
#(Γh) , is a compact, monotone, self-adjoint linear operator such that

λ1 < 1, where λ1 := max
‖ϕ‖∼=1

(Tϕ, ϕ)∼. (4.13)

(iii) Condition (4.11) is satisfied and defined, for v ∈ Ṽ(Ωh) , Φv to be the unique solution in

H̃1
#(Γh) to the equation

(Φv, ϑ)∼ =

∫
Γh

divΓh(ϑWξ(∇u)) · v dHN−1 for every ϑ ∈ H̃1
#(Γh),

we have

µ1 := min

{∫
Ωh

Cu∇v : ∇v dz : v ∈ Ṽ(Ωh), ‖Φv‖∼ = 1

}
> 1. (4.14)

Remark 4.7. We remark that, by definition of T , we have

∂2F (h, u)[ϕ] = ‖ϕ‖2∼ − (Tϕ, ϕ)∼ for every ϕ ∈ H̃1
#(Γh). (4.15)

Observe also that λ1 coincides with the greatest λ such that the following system{
λ
∫

Ωh
Cu∇v : ∇w =

∫
Γh

divΓh(ϕWξ(∇u)) · w dHN−1 for every w ∈ Ṽ(Ωh),

(ϕ,ψ)∼ =
∫

Γh
divΓh(ψWξ(∇u)) · v dHN−1 for every ψ ∈ H̃1

#(Γh)
(4.16)

admits a nontrivial solution (v, ϕ) ∈ Ṽ(Ωh) × H̃1
#(Γh): in fact, λ is an eigenvalue of T with

eigenfunction ϕ if and only if the pair (
vϕ
λ , ϕ) is a nontrivial solution to (4.16).

Corollary 4.8. If (4.9) holds, then ∂2F (h, u) is uniformly positive: that is, there exists a constant
C > 0 such that

∂2F (h, u)[ϕ] ≥ C‖ϕ‖2H1(Γh) for every ϕ ∈ H̃1
#(Γh).

Proof. By (4.15), recalling that ‖ · ‖∼ is an equivalent norm on H̃1
#(Γh) and that λ1 < 1 we have

∂2F (h, u)[ϕ] = ‖ϕ‖2∼ − (Tϕ, ϕ)∼ ≥ (1− λ1)‖ϕ‖2∼ ≥ C‖ϕ‖2H1(Γh),

which is the conclusion. �

5. W 2,p -local minimality

In this section we prove the first part of the main result of the paper, namely that the strict
stability of a critical pair (h, u) is a sufficient condition for local minimality, in the following
weaker sense:

Definition 5.1. Let p ∈ [1,∞). We say that a critical pair (h, u) ∈ X is a W 2,p -local minimizer
for F if there exists δ > 0 such that

F (h, u) ≤ F (g, v) (5.1)

for all (g, v) ∈ X with 0 < ‖g − h‖W 2,p(Q) < δ , |Ωg| = |Ωh| , and ‖∇v −∇u‖L∞(Ωg ;MN ) < δ . We

say that (h, u) is an isolated W 2,p -local minimizer if the inequality in (5.1) is strict when g 6= h .

Theorem 5.2. Let N = 2, 3 , and let p > 2N . If (h, u) ∈ X is a strictly stable critical pair for
F , according to Definition 4.5, then (h, u) is an isolated W 2,p -local minimizer for F .
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The proof will be achieved by following, essentially, the strategy developed in [18, Proposi-
tion 4.5 and Theorem 4.6] (see also [9, Theorem 5.1]). As has been observed in [18], the main
difficulty in proving Theorem 5.2 comes from the presence, in the expression of the quadratic form
associated with the second variation, of the trace of the gradient of W (∇u) on Γh : the crucial
estimate is provided by Lemma 5.3, where it is shown how to control this term in a proper Sobolev
space of fractional order, uniformly with respect to small W 2,p -variations of the profile h (we refer
to Section 8.1 for the definition and properties of fractional Sobolev spaces).

Let Uδ := {g ∈ C∞# (Q) : ‖g − h‖W 2,p(Q) < δ, |Ωg| = |Ωh|} , where δ > 0 is so small that Uδ is
contained in the neighborhood U of h determined by Proposition 3.4: this allows us to consider,
for g ∈ Uδ , a critical point ug for the elastic energy in Ωg . We denote by c0 a positive constant
such that g ≥ 2c0 in Q for every g ∈ Uδ .

Lemma 5.3. Under the assumptions of Theorem 5.2, we have that

sup
g∈Uδ

‖∂νg (W (∇ug)) ◦ Φg − ∂ν(W (∇u))‖
W
− 1
p
,p

# (Γh)
→ 0 as δ → 0.

Proof. We set, for g ∈ Uδ , vg := ug − u ◦ Ψg (where Ψg := Φ−1
g ), and we denote by vig the

components of vg . We remark that, by Proposition 3.4,

sup
g∈Uδ

‖vg‖W 2,p(Ωg ;RN ) → 0 as δ → 0, (5.2)

and moreover, since p > 2N , ug ◦ Φg → u in C1,α(Ωh;RN ) as δ → 0, for α = 1− N
p , uniformly

with respect to g ∈ Uδ .

Step 1. We start by observing that, using the equations satisfied by u and ug and performing a
change of variable, we get∫

Ωg

[
Wξ(∇ug)−Wξ(∇(u ◦Ψg))

]
: ∇w dz =

∫
Ωg

dg : ∇w dz for all w ∈ V(Ωg),

where dg := Wξ(∇(u ◦ Ψg)(∇Ψg)
−1)(∇Ψg)

−T det∇Ψg −Wξ(∇(u ◦ Ψg)). Observe in particular
that, by using the explicit construction of the diffeomorphism Ψg (see Remark 2.5) and the
regularity of u ,

sup
g∈Uδ

‖dg‖W 1,p(Ωg;MN ) → 0, sup
g∈Uδ

∥∥∥∂dg
∂zk

∥∥∥
Lp(Γg ;MN )

→ 0 as δ → 0. (5.3)

Fix now any ϕ ∈ W
1
p ,

p
p−1

# (Γg;RN ), and consider an extension of ϕ (which we still denote by ϕ)

such that ϕ ∈W 1, p
p−1

# (Ωg;RN ), ϕ vanishes in Ωg−c0 and

‖ϕ‖
W

1,
p
p−1 (Ωg;RN )

≤ C‖ϕ‖
W

1
p
,
p
p−1 (Γg;RN )

(5.4)

for some constant C > 0 which can be chosen independently of g ∈ Uδ (see Theorem 8.4).
Differentiating the equation div[Wξ(∇ug)−Wξ(∇(u ◦Ψg))] = divdg with respect to zk , mul-

tiplying by ϕ and integrating by parts on Ωg we get∫
Γg

Cug∇
(∂vg
∂zk

)
[νg] · ϕdHN−1 =

∫
Γg

(Cu◦Ψg − Cug )∇
(∂(u ◦Ψg)

∂zk

)
[νg] · ϕdHN−1

+

∫
Ωg

[
Cug∇

(∂ug
∂zk

)
− Cu◦Ψg∇

(∂(u ◦Ψg)

∂zk

)
− ∂dg
∂zk

]
: ∇ϕdz +

∫
Γg

∂dg
∂zk

[νg] · ϕdHN−1

≤ C
(
‖Cu◦Ψg − Cug‖∞‖∇2(u ◦Ψg)‖Lp(Γg) + ‖dg‖W 1,p(Ωg;MN ) +

∥∥∥∂dg
∂zk

∥∥∥
Lp(Γg ;MN )

+
∥∥∥Cug∇(∂ug∂zk

)
− Cu◦Ψg∇

(∂(u ◦Ψg)

∂zk

)∥∥∥
Lp(Ωg ;MN )

)
‖ϕ‖

W
1
p
,
p
p−1 (Γg ;RN )

,
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where we repeatedly used (5.4) (here the constant C is independent of g ∈ Uδ ). Hence, recalling
(5.2) and (5.3), we deduce that for k = 1, . . . , N

sup
g∈Uδ

∥∥∥∥Cug∇(∂vg∂zk

)
[νg]

∥∥∥∥
W
− 1
p
,p

# (Γg;RN )

→ 0 as δ → 0. (5.5)

Step 2. We now claim that for k = 1, . . . , N

sup
g∈Uδ

∥∥∥∇( ∂u
∂zk

)
−∇

(∂ug
∂zk

)
◦ Φg

∥∥∥
W
− 1
p
,p

# (Γh;MN )
→ 0 as δ → 0. (5.6)

We first note that, thanks to the uniform convergence of Cug ◦ Φg to Cu and to the strong
ellipticity of Cu , also the tensors Cug are strongly elliptic for every g ∈ Uδ , if δ is sufficiently
small; in particular, there exists a positive constant m0 such that

Cug (z) a⊗ b : a⊗ b ≥ m0 |a|2 |b|2 for every a, b ∈ RN ,

for every z ∈ Ωg and for every g ∈ Uδ . Hence the N ×N matrix Qg(z), whose entries are defined
by

qih(z) :=

N∑
j,k=1

Cijhk(z)νjg(z)νkg (z), i, h = 1, . . . , N (5.7)

(Cijhk denoting the components of the tensor Cug ), is positive definite, and detQg(z) is uniformly

positive with respect to z ∈ Ωg and g ∈ Uδ .
Setting, for i, j, k = 1, . . . , N ,

σijk :=
∂2vkg
∂zi∂zj

,

by Lemma 8.6 our claim reduces to show that

sup
g∈Uδ

‖σijk‖
W
− 1
p
,p

# (Γg)
→ 0 as δ → 0.

We start from the case N = 2. Consider the following system of equations at the points of Γg :
η1

η2

ϑ11

ϑ12

ϑ21

ϑ22

 :=


0 0 a b c d
0 0 a′ b′ c′ d′

ν2
g 0 −ν1

g 0 0 0
0 ν2

g 0 −ν1
g 0 0

0 0 ν2
g 0 −ν1

g 0
0 0 0 ν2

g 0 −ν1
g

 ·


σ111

σ112

σ121

σ122

σ221

σ222

 , (5.8)

where the coefficients in the first two rows of the matrix are defined by

a = C1111ν
1
g + C1211ν

2
g , b = C1121ν

1
g + C1221ν

2
g ,

c = C1112ν
1
g + C1212ν

2
g , d = C1122ν

1
g + C1222ν

2
g ,

a′ = C2111ν
1
g + C2211ν

2
g , b′ = C2121ν

1
g + C2221ν

2
g ,

c′ = C2112ν
1
g + C2212ν

2
g , d′ = C2122ν

1
g + C2222ν

2
g

in such a way that

η1 =

(
Cug∇

(∂vg
∂z2

)
[νg]

)
· e1, η2 =

(
Cug∇

(∂vg
∂z2

)
[νg]

)
· e2.

Hence by (5.5) we have

‖ηi‖
W
− 1
p
,p

# (Γg)
→ 0 as δ → 0 (5.9)

(uniformly with respect to g ∈ Uδ ). Moreover, observe that we can write each ϑij as a tangential
derivative on Γg :

ϑij = ∂τg

(∂vjg
∂zi

)
= ∇

(∂vjg
∂zi

)
· (ν2

g ,−ν1
g ),
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so that by [18, Theorem 8.6] we also have

‖ϑij‖
W
− 1
p
,p

# (Γg)
≤ C

∥∥∥∇(∂vjg
∂zi

)∥∥∥
Lp(Ωg;R2)

→ 0 as δ → 0 (5.10)

(uniformly with respect to g ∈ Uδ ). To conclude, observe that the 6 × 6 matrix in (5.8) has
coefficients uniformly bounded in C0,α with respect to g ∈ Uδ , for α = 1− 2

p >
1
p (as p > 4); if

we are able to show that its determinant is uniformly positive, then we can invert the relations in
(5.8) and express σijk as linear combinations of the quantities estimated in (5.9) and (5.10), and
in turn (5.6) follows by Lemma 8.6. Hence we are left with the computation of the determinant
of the 6× 6 matrix M appearing in (5.8), which turns out to be equal to

detM = (ν2
g (z))2 detQg(z),

which is uniformly positive as observed before. This concludes the proof of Step 1 in the case
N = 2.

In the three-dimensional case we follow the same strategy. We observe that, setting

ηik :=

(
Cug∇

(∂vg
∂zk

)
[νg]

)
· ei for i, k = 1, 2, 3, (5.11)

by (5.5) we have

‖ηik‖
W
− 1
p
,p

# (Γg)
→ 0 as δ → 0

(uniformly with respect to g ∈ Uδ ). Moreover by Theorem 8.5 we have also a similar estimate for
the quantities ϑijk := σikjν

3
g − σi3jνkg for i, j = 1, 2, 3 and k = 1, 2, namely

‖ϑijk‖
W
− 1
p
,p

# (Γg)
≤ C

∥∥∥∇(∂vjg
∂zi

)∥∥∥
Lp(Ωg ;R3)

→ 0

as δ → 0, uniformly with respect to g ∈ Uδ . Hence we can write a linear system similar to
(5.8) by choosing 18 among the 27 quantities ϑijk , ηik to be expressed as combinations of the 18
(different) terms σijk : precisely, we consider ηik for k = 3 and i = 1, 2, 3, and all the ϑijk except
for ϑ211 , ϑ221 , ϑ231 . As before, the (computer assisted) computation of the determinant of the
18 × 18 matrix of the system obtained in this way shows that this coincides (up to a sign) with
(ν3
g (z))12 detQg(z), which is uniformly positive (see Section 8.2 for more details). Inverting these

relations we can then write each term σijk as a linear combination of the quantities ϑijk , ηik ,
and from the previous estimates the claim follows, again using Lemma 8.6.

Step 3. We claim that there exists a constant C , independent of g ∈ Uδ , such that for every

ϕ ∈W
1
p ,

p
p−1

# (Γh) ∥∥Wξ(∇ug ◦ Φg)ϕ
∥∥
W

1
p
,
p
p−1 (Γh;MN )

≤ C ‖ϕ‖
W

1
p
,
p
p−1 (Γh)

. (5.12)

In fact, we use Theorem 8.4 to extend ϕ to a function ϕ̃ ∈W 1, p
p−1

# (Ωh). Note that, by the Sobolev

Imbedding Theorem, setting q := Np
Np−N−p we have

‖ϕ̃‖Lq(Ωh) ≤ C‖ϕ̃‖
W

1,
p
p−1 (Ωh)

≤ C‖ϕ‖
W

1
p
,
p
p−1 (Γh)

for some constant C independent of g (the second inequality still follows from Theorem 8.4).
Hence, using Hölder inequality, we deduce that

‖Wξ(∇ug ◦ Φg)ϕ‖
W

1
p
,
p
p−1 (Γh;MN )

≤ C ‖Wξ(∇ug ◦ Φg)ϕ̃‖
W

1,
p
p−1 (Ωh;MN )

≤ C ‖Wξ(∇ug ◦ Φg)‖L∞(Ωh;MN )‖ϕ̃‖
L

p
p−1 (Ωh)

+ C
∥∥∇(Wξ(∇ug ◦ Φg)ϕ̃

)∥∥
L

p
p−1 (Ωh)

≤ C ‖Wξ(∇ug ◦ Φg)‖L∞(Ωh;MN )‖ϕ̃‖
W

1,
p
p−1 (Ωh)

+ C ‖ϕ̃‖Lq(Ωh)

∥∥∇(Wξ(∇ug ◦ Φg)
)∥∥
LN (Ωh)

≤ C
[
‖Wξ(∇ug ◦ Φg)‖L∞(Ωh;MN ) + ‖Cug ◦ Φg‖L∞(Ωh)‖∇2ug ◦ Φg‖Lp(Ωh)

]
‖ϕ‖

W
1
p
,
p
p−1 (Γh)

.
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From this estimate, recalling the equiboundedness of ug ◦Φg in W 2,p(Ωh), we obtain that (5.12)
holds with a constant C depending also on the C2 -norm of W on K , where K is the compact
subset of MN

+ given by Remark 3.5.

Step 4. We now conclude the proof of the lemma. For every ϕ ∈W
1
p ,

p
p−1

# (Γh), and for k = 1, . . . , N
we have∫

Γh

[
∂

∂zk
W (∇u)−

( ∂

∂zk
W (∇ug)

)
◦ Φg

]
ϕdHN−1

=

∫
Γh

(
Wξ(∇u)−Wξ(∇ug) ◦ Φg

)
: ∇
( ∂u
∂zk

)
ϕdHN−1

+

∫
Γh

Wξ(∇ug) ◦ Φg :
[
∇
( ∂u
∂zk

)
−∇

(∂ug
∂zk

)
◦ Φg

]
ϕdHN−1

≤ C
∥∥Wξ(∇u)−Wξ(∇ug) ◦ Φg

∥∥
L∞(Γh;MN )

‖ϕ‖
L

p
p−1 (Γh)

+
∥∥Wξ(∇ug ◦ Φg)ϕ

∥∥
W

1
p
,
p
p−1 (Γh;MN )

∥∥∥∇( ∂u
∂zk

)
−∇

(∂ug
∂zk

)
◦ Φg

∥∥∥
W
− 1
p
,p

# (Γh;MN )
,

where C is a positive constant depending only on the C2 -norm of u and on HN−1(Γh). Hence,
since supg∈Uδ

∥∥Wξ(∇u) −Wξ(∇ug) ◦ Φg
∥∥
L∞(Γh;MN )

→ 0 as δ → 0, recalling (5.6) and (5.12) we

obtain that

sup
g∈Uδ

∥∥∇(W (∇u))−∇(W (∇ug)) ◦ Φg
∥∥
W
− 1
p
,p

# (Γh;RN )
→ 0 as δ → 0,

and the conclusion of the lemma follows from Lemma 8.6. �

We can now prove Theorem 5.2 by reproducing the strategy of [18] with easy modifications.
For the sake of completeness and for the reader’s convenience we will work out all the details of
the proof.

Proof of Theorem 5.2. Let δ > 0 to be chosen and consider any g ∈ Uδ . We will denote by Bg

and Hg the second fundamental form and the mean curvature of Γg respectively, and by Bψ
g ,

Hψ
g the “anisotropic versions” of the same quantities. We define the bilinear form on H̃1

#(Γg)

(ϕ, ϑ)∼,g :=

∫
Γg

(∇2ψ ◦ νg)[∇Γgϕ,∇Γgϑ] dHN−1 +

∫
Γg

ag ϕϑdHN−1

where ag := ∂νg (W ◦ ∇ug)− trace (Bψ
g Bg) on Γg , and we set ‖ϕ‖2∼,g := (ϕ,ϕ)∼,g . We omit the

subscript in all the analogous quantities defined on Γh , according to the notation introduced in
Section 4. We now split the proof into four steps.

Step 1. We start by observing that for every ϕ ∈ H̃1
#(Γg)∫

Γh

(
a(JΦg )2 − (ag ◦ Φg)JΦg

)
(ϕ ◦ Φg)

2 dHN−1 ≤ c(δ)‖ϕ‖2H1(Γg) , (5.13)

where c(δ) → 0 as δ → 0 (independently of g ∈ Uδ ). Indeed, by using Lemma 5.3 and recalling
that ‖JΦg − 1‖L∞(Γh) → 0 as δ → 0, we have∫

Γh

(
∂ν(W (∇u))(JΦg )2 − (∂νg (W (∇ug)) ◦ Φg)JΦg

)
(ϕ ◦ Φg)

2 dHN−1

≤ c′(δ)‖(ϕ ◦ Φg)
2‖
W

1
p
,
p
p−1

# (Γh)
≤ c′(δ)‖(ϕ ◦ Φg)

2‖
W

1,
p
p−1 (Γh)

≤ c′′(δ)‖ϕ ◦ Φg‖2H1(Γh) ≤ c
′′′(δ)‖ϕ‖2H1(Γg) ,

where the third inequality can be deduced by recalling the imbedding of H1(Γh) in Lq(Γh) for
every q , which holds in dimension N ≤ 3. Here c′(δ), c′′(δ), c′′′(δ) → 0 as δ → 0, independently
of g ∈ Uδ . Moreover, it is not hard to see that

sup
g∈Uδ

∥∥trace (Bψ
g Bg) ◦ Φg − trace (BψB)

∥∥
Lp/2(Γh)

→ 0 as δ → 0 ,
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from which follows by Hölder inequality (again using ‖JΦg − 1‖L∞(Γh) → 0)∫
Γh

(
trace (Bψ

g Bg) ◦ Φg − trace (BψB)JΦg

)
JΦg (ϕ ◦ Φg)

2 dHN−1

≤ c′(δ)‖(ϕ ◦ Φg)
2‖
L

p
p−2 (Γh)

= c′(δ)‖ϕ ◦ Φg‖2
L

2p
p−2 (Γh)

≤ c′′(δ)‖ϕ ◦ Φg‖2H1(Γh) ≤ c
′′′(δ)‖ϕ‖2H1(Γg) ,

where the second inequality is justified, as before, by the Sobolev Embedding Theorem. By
combining the previous estimates, (5.13) follows.

Step 2. We claim that if δ is sufficiently small then for every g ∈ Uδ
‖ϕ‖2∼,g ≥ C1‖ϕ‖2H1(Γg) for every ϕ ∈ H̃1

#(Γg) (5.14)

for some positive constant C1 . To prove (5.14), we first note that for every ϑ ∈ H̃1
#(Γh) one has,

thanks to (4.15) and to Corollary 4.8,

‖ϑ‖2∼ ≥ ∂2F (h, u)[ϑ] ≥ C‖ϑ‖2H1(Γh).

For ϕ ∈ H̃1
#(Γg) we define ϕ̃ := (ϕ ◦ Φg)JΦg ∈ H̃1

#(Γh); then, using the area formula we have

‖ϕ‖2H1(Γg) =

∫
Γg

(ϕ2 + |∇Γgϕ|2) dHN−1 =

∫
Γh

(
(ϕ ◦ Φg)

2 + |(∇Γgϕ) ◦ Φg|2
)
JΦg dHN−1

≤ C ′‖ϕ̃‖2H1(Γh) ≤
C ′

C
‖ϕ̃‖2∼

for some positive constant C ′ independent of g ∈ Uδ . Now

‖ϕ̃‖2∼ =

∫
Γh

(
a ϕ̃2 + (∇2ψ ◦ ν)[∇Γh ϕ̃,∇Γh ϕ̃]

)
dHN−1

= ‖ϕ‖2∼,g +

∫
Γh

(
a(JΦg )2 − (ag ◦ Φg)JΦg

)
(ϕ ◦ Φg)

2 dHN−1

+

∫
Γh

(∇2ψ ◦ ν)[∇Γh ϕ̃,∇Γh ϕ̃] dHN−1

−
∫

Γh

(∇2ψ ◦ νg ◦ Φg)[(∇Γgϕ) ◦ Φg, (∇Γgϕ) ◦ Φg]JΦg dHN−1

≤ ‖ϕ‖2∼,g + c(δ)‖ϕ‖2H1(Γg), (5.15)

where c(δ) tends to 0 as δ → 0. To deduce the last inequality in the previous estimate we used in
particular (5.13) and the fact that ‖Φg − Id‖W 2,p(Γh;RN ) → 0. Choosing δ sufficiently small and
combining the previous estimates the claim follows.

Step 3. By Step 2 we can define a compact linear operator Tg : H̃1
#(Γg)→ H̃1

#(Γg) by duality:

(Tgϕ, ϑ)∼,g =

∫
Γg

divΓg (ϑWξ(∇ug)) · vϕ dHN−1 =

∫
Ωg

Cug∇vϕ : ∇vϑ dz (5.16)

for every ϕ, ϑ ∈ H̃1
#(Γg), where for ζ ∈ H̃1

#(Γg) we denote by vζ the unique solution in Ṽ(Ωg)
to the equation∫

Ωg

Cug∇vζ : ∇w dz =

∫
Γg

divΓg (ζ Wξ(∇ug)) · w dHN−1 for every w ∈ Ṽ(Ωg). (5.17)

Setting, similarly to (4.13),

λ1,g := max
‖ϕ‖∼,g=1

(Tgϕ,ϕ)∼,g,

we claim that

λ∞ := lim sup
‖g−h‖W2,p(Q)→0

λ1,g ≤ λ1. (5.18)
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Indeed, let (gn)n be a sequence in C∞# (Q) converging to h in W 2,p(Q), |Ωgn | = |Ωh| , such that

λ∞ = lim
n→+∞

λ1,gn ,

and let un be the corresponding critical points for the elastic energy in Ωgn . Let ϕn ∈ H̃1
#(Γgn),

with ‖ϕn‖∼,gn = 1, be such that

λ1,gn = (Tgnϕn, ϕn)∼,gn =

∫
Ωgn

Cun∇vϕn : ∇vϕn ,

where vϕn is defined as in (5.17). We set ϕ̃n := cn(ϕn◦Φgn)JΦgn
, where cn := ‖(ϕn◦Φgn)JΦgn

‖−1
∼ ,

so that ϕ̃n ∈ H̃1
#(Γh) and ‖ϕ̃n‖∼ = 1. Setting also wn := vϕn ◦ Φgn , by a change of variables it

follows that for every w ∈ Ṽ(Ωgn)∫
Ωgn

Cun∇vϕn : ∇w dz =

∫
Ωh

An∇wn : ∇(w ◦ Φgn) dz,

where An is the fourth order tensor defined by

AnM =
(
Wξξ

(
∇(un ◦ Φgn)(∇Φgn)−1

)(
M(∇Φgn)−1

))
(∇Φgn)−T det∇Φgn for M ∈MN .

Hence by (5.17) we see that wn ∈ Ṽ(Ωh) solves the equation∫
Ωh

An∇wn : ∇w dz =

∫
Γh

(
divΓgn

(ϕnWξ(∇un)) ◦ Φgn
)
· w JΦgn

dHN−1 (5.19)

for every w ∈ Ṽ(Ωh). Let us observe also that An → Cu uniformly in Ωh . We now claim that

lim
n→∞

∫
Ωh

Cu∇vϕ̃n : ∇vϕ̃n dz = lim
n→∞

∫
Ωh

An∇wn : ∇wn dz. (5.20)

Notice that this implies (5.18), since

λ1 ≥ lim
n→∞

(T ϕ̃n, ϕ̃n)∼ = lim
n→∞

∫
Ωh

Cu∇vϕ̃n : ∇vϕ̃n dz

= lim
n→∞

∫
Ωh

An∇wn : ∇wn dz = lim
n→∞

∫
Ωgn

Cun∇vϕn : ∇vϕn dz = λ∞.

In order to prove (5.20), we need to deduce some preliminary estimates. Using the equation
satisfied by vϕn and recalling (3.5) we have

c0
4
‖vϕn‖2H1(Ωgn ;RN ) ≤

∫
Ωgn

Cun∇vϕn : ∇vϕn dz =

∫
Γgn

divΓgn

(
ϕnWξ(∇un)

)
· vϕn dHN−1

≤ ‖divΓgn

(
ϕnWξ(∇un)

)
‖
H
− 1

2
# (Γgn ;RN )

‖vϕn‖H 1
2 (Γgn ;RN )

,

and since the H−
1
2 -norm in the previous expression is uniformly bounded by Lemma 8.7 (re-

call that ϕn are uniformly bounded in H1(Γgn), and that Wξ(∇un) are uniformly bounded in

C0,α(Ωgn ;MN ) with α = 1− N
p > 1

2 ), we deduce that

sup
n
‖vϕn‖H1(Ωgn ;RN ) <∞. (5.21)

Moreover we have also

sup
n
‖wn‖H1(Ωh;RN ) <∞, sup

n
‖vϕ̃n‖H1(Ωh;RN ) <∞, (5.22)

where the first estimate follows from (5.21), using the definition of wn . Finally, arguing as in the

proof of the estimate (5.15) with ϕ̃ replaced by ϕ̃n
cn

and ϕ replaced by ϕn , we obtain cn → 1.

Now we are ready to prove (5.20), from which the conclusion follows. Observe that, thanks to
the uniform bound (5.22) and to the uniform convergence of An to Cu , we have

lim
n→∞

∫
Ωh

Cu∇wn : ∇wn dz = lim
n→∞

∫
Ωh

An∇wn : ∇wn dz,
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thus claim (5.20) will follow from

lim
n→∞

∫
Ωh

Cu∇(vϕ̃n − wn) : ∇(vϕ̃n − wn) dz = 0, (5.23)

since this implies that vϕ̃n − wn tends to 0 strongly in H1(Ωh;RN ). Hence we are left with the
proof of (5.23).

Observe that, as vϕ̃n − wn is an admissible test function for both the equations satisfied by
vϕ̃n and wn , we have∫

Ωh

Cu∇(vϕ̃n − wn) : ∇(vϕ̃n − wn) dz

=

∫
Ωh

Cu∇vϕ̃n : ∇(vϕ̃n − wn) dz −
∫

Ωh

(Cu −An)∇wn : ∇(vϕ̃n − wn) dz

−
∫

Ωh

An∇wn : ∇(vϕ̃n − wn) dz

=

∫
Γh

divΓh(ϕ̃nWξ(∇u)) · (vϕ̃n − wn) dHN−1 −
∫

Ωh

(Cu −An)∇wn : ∇(vϕ̃n − wn) dz

−
∫

Γh

(
divΓgn

(ϕnWξ(∇un)) ◦ Φgn
)
· (vϕ̃n − wn)JΦgn

dHN−1

=: I1 − I2 − I3.

It is clear, from the bounds in (5.22) and from the uniform convergence of An to Cu , that the

second integral I2 tends to 0. Since, thanks to (5.22), vϕ̃n − wn is bounded in H
1
2 (Γh;RN ), to

prove that also the difference I1 − I3 tends to 0 it will be sufficient to show that∥∥divΓh(ϕ̃nWξ(∇u))− divΓgn
(ϕnWξ(∇un)) ◦ Φgn

∥∥
H
− 1

2
# (Γh;RN )

→ 0 .

In turn, by Lemma 8.6 the previous convergence will follow from

‖ϕ̃nhn‖
H

1
2
# (Γh;MN )

→ 0, (5.24)

where

hn := Wξ(∇u)− c−1
n (JΦgn

)−1Wξ(∇un) ◦ Φgn .

Recalling that cn → 1, we have that hn → 0 in C0,α(Γh;MN ) for α = 1− N
p ; hence by Lemma 8.7

we obtain (5.24), which concludes the proof of Step 3.

Step 4. We define ht := h+ t(g − h) for t ∈ [0, 1]. Setting f(t) := F (ht, uht), we claim that if δ
is sufficiently small then

f ′′(t) > 2C2‖ϕg‖2H1(Γg) for every t ∈ [0, 1] (5.25)

for some positive constant C2 , where ϕg :=
(
(g − h)/

√
1 + |∇g|2

)
◦ π . In fact, the quantity

f ′′(t) is nothing but the second variation of F at (ht, uht) along the direction g − h , hence by
Remark 4.3

f ′′(t) = −(Thtϕt, ϕt)∼,ht + ‖ϕt‖2∼,ht

−
∫

Γht

(
W (∇uht) +Hψ

ht

)
divΓht

[(
(∇ht, |∇ht|2)√

1 + |∇ht|2
◦ π
)
ϕ2
t

]
dHN−1, (5.26)

where ϕt :=
(
(g − h)/

√
1 + |∇ht|2

)
◦ π ∈ H̃1

#(Γht). Observe that, as λ1 < 1 by Theorem 4.6,
combining Step 2 and Step 3 we have that for δ sufficiently small

−(Thtϕt, ϕt)∼,ht + ‖ϕt‖2∼,ht ≥ (1− λ1,ht)‖ϕt‖2∼,ht >
1− λ1

2
‖ϕt‖2∼,ht

≥ C1(1− λ1)

2
‖ϕt‖2H1(Γht )

≥ C1(1− λ1)

4
‖ϕg‖2H1(Γg), (5.27)
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where in the last inequality we used the fact that, for δ small enough,

1

2
‖ϕg‖2H1(Γg) ≤ ‖ϕt‖

2
H1(Γht )

≤ 2‖ϕg‖2H1(Γg). (5.28)

In addition, as (h, u) is a critical pair, there exists a constant Λ such that W (∇u) + Hψ ≡ Λ
on Γh . Recall now the uniform convergence of ∇uht to ∇u as δ → 0, the continuity of W , and
observe that the anisotropic curvature of Γht tends to the anisotropic curvature of Γh in  Lp as
δ → 0, due to the W 2,p -convergence of ht to h ; hence, as these convergences are uniform with
respect to t ∈ [0, 1] and g ∈ Uδ , we can conclude that

sup
g∈Uδ

sup
t∈[0,1]

∥∥W (∇uht) +Hψ
ht
− Λ

∥∥
Lp(Γht )

→ 0 as δ → 0. (5.29)

From this it follows that if δ is sufficiently small, by Hölder inequality

−
∫

Γht

(
W (∇uht) +Hψ

ht

)
divΓht

[(
(∇ht,|∇ht|2)√

1+|∇ht|2
◦ π
)
ϕ2
t

]
dHN−1

= −
∫

Γht

(
W (∇uht) +Hψ

ht
− Λ

)
divΓht

[(
(∇ht,|∇ht|2)√

1+|∇ht|2
◦ π
)
ϕ2
t

]
dHN−1

≥ −
∥∥W (∇uht) +Hψ

ht
− Λ

∥∥
Lp(Γht )

{∥∥∥divΓht

(
(∇ht,|∇ht|2)√

1+|∇ht|2
◦ π
)∥∥∥

Lp(Γht )
‖ϕt‖2

L
2p
p−2 (Γht )

+ 2
∥∥∇Γht

ϕt
∥∥
L2(Γht ;RN )

∥∥∥ϕt (∇ht,|∇ht|2)√
1+|∇ht|2

◦ π
∥∥∥
L

2p
p−2 (Γht ;RN )

}
≥ −C1(1− λ1)

8
‖ϕg‖2H1(Γg), (5.30)

where in the last inequality we used also the boundedness of ht in W 2,p(Q), the Sobolev imbedding
theorem, (5.29) and (5.28).

Collecting (5.26), (5.27) and (5.30) we conclude that the claim (5.25) holds with C2 = C1(1−λ1)
16 .

Finally, thank to the fact that f ′(0) = 0 (as (h, u) is a critical pair), we have

F (h, u) = f(0) = f(1)−
∫ 1

0

(1− t)f ′′(t) dt < F (g, ug)− C2‖ϕg‖2H1(Γg). (5.31)

This inequality is valid for every g ∈ Uδ , for a sufficiently small δ . Now, by an approximation
argument, if g ∈ AP (Q) is such that ‖g−h‖W 2,p(Q) < δ and |Ωg| = |Ωh| , we set g̃ := h+ρε∗(g−h),
where ρε is a standard mollifier with support in Bε(0). Then g̃ ∈ Uδ , and ε can be chosen so
small that

F (g̃, ug̃) ≤ F (g, ug) +
C2

2
‖ϕg̃‖2H1(Γg̃),

hence by (5.31)

F (h, u) < F (g, ug)−
C2

2
‖ϕg̃‖2H1(Γg̃).

Now the minimality with respect to a generic pair (g, v) follows from Proposition 3.6. �

6. Strong local minimality

In the main result of this section (Theorem 6.4) we prove that the W 2,p -local minimality (see
Definition 5.1) implies the local minimality in the stronger sense of Definition 2.4. In particular, by
Theorem 5.2 we deduce that the strict stability of a critical pair (h, u) is a sufficient condition for
local minimality (Theorem 6.5). We will also observe, in Theorem 6.6, that our methods provide
the isolated local minimality in the case of the linear elasticity.

The contradiction argument which leads to the proof of these results is mainly based on the
regularity properties of the solutions to suitable penalization problems, which will turn out to be
quasi-minimizers of the anisotropic perimeter, according to the following definition. For every
finite-perimeter set E we denote by ∂∗E its reduced boundary and by νE the generalized outer
unit normal.
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Definition 6.1. A set of finite perimeter E ⊂ RN is an (ω,R)-minimizer for the anisotropic
perimeter, with ω > 0, R > 0, if for every ball Br(x), 0 < r < R , and for every set of finite
perimeter F such that E 4 F ⊂⊂ Br(x) we have∫

∂∗E

ψ(νE) dHN−1 ≤
∫
∂∗F

ψ(νF ) dHN−1 + ω|E 4 F |.

In this context, we say that a set E is periodic if its characteristic function is one-periodic in
the first N−1 coordinate directions. The following theorem contains the main regularity property
of uniform sequences of quasi-minimizers.

Theorem 6.2. Let En be a sequence of periodic (ω,R)-minimizers of the anisotropic perimeter
such that supnHN−1(∂∗En∩([0, 1)N−1×R)) <∞ and χEn → χE in L1

loc(RN ) , where E ⊂ RN is

a periodic set of class C2 . Then, for n sufficiently large En is a set of class C1, 12 and ∂En → ∂E
in C1,α for every α ∈ (0, 1

2 ) , in the sense that

∂En = {z + ϕn(z)νE(z) : z ∈ ∂E}
with ϕn → 0 in C1,α(∂E) .

The previous result is a consequence of the standard regularity theory for almost-minimal
currents (see [3, 5, 22]). Precisely, it can be deduced from the result stated in [14, Theorem 15]
by an argument which is well-known to specialists and can be found, for instance, in the proof of
[14, Theorem 8] (see also [13, Lemma 3.6] for the isotropic case). Notice that the quasi-minimality
property considered in [14], namely∫

∂∗E

ψ(νE) dHN−1 ≤
∫
∂∗F

ψ(νF ) dHN−1 + ωrP(E 4 F )

whenever E4 F is compactly contained in a ball of radius r , is clearly implied by our definition
of quasi-minimality as a consequence of the isoperimetric inequality.

Another preliminary result that we will need in this section is the following lemma, which can
be proved by standard elliptic estimates.

Lemma 6.3. Let h ∈ C2
#(Q) , and let hn ∈ C1,α

# (Q) be such that hn → h in C1,α , for some

α ∈ (0, 1) . Assume also that the anisotropic mean curvature Hψ
hn

of hn is bounded. Then

(i) if Hψ
hn

(·, hn(·))→ Hψ(·, h(·)) in Lp(Q) , then hn → h in W 2,p(Q) ;

(ii) if supn ‖H
ψ
hn
‖Lp(Q) <∞ , then supn ‖hn‖W 2,p(Q) <∞ .

Proof. The function hn is a weak solution to the equation

−
∫
Q

∇ψ(−∇hn, 1) · (∇η, 0) dx =

∫
Q

Hψ
hn

(x, hn(x))η(x) dx for all η ∈ C∞# (Q)

with Hψ
hn

(·, hn(·)) ∈ L∞(Q), which implies, by elliptic regularity (see, e.g., [4, Proposition 7.56]),

that hn ∈W 2,2
# (Q). Hence it makes sense to perform the differentiation and rewrite the equation

in non-divergence form:

N−1∑
i,j=1

∂2ψ

∂zi∂zj
(−∇hn(x), 1)

∂2hn
∂xi∂xj

(x) = −Hψ
hn

(x, hn(x)) a.e. in Q.

By elliptic regularity results for equations in non-divergence form with continuous coefficients, we
deduce that hn ∈W 2,p

# (Q) for every p ∈ [1,∞) (see [4, Theorem 7.48]), and in turn the conclusion

follows from [19, Theorem 9.11] recalling that hn → h in C1,α . �

We recall that we associated, with a critical pair (h, u), an open set Ω′ containing Ωh in terms
of which we defined in (2.6) the class of competitors X ′ . Our strategy requires now the extension
of the functional F to a larger class of admissible pairs: in particular, we shall consider not just
subgraphs of Lipschitz functions, but generic periodic sets with locally finite perimeter. More

precisely, let X̃ be the set of all pairs (Ω, v) such that:
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• Ω ⊂ Ω′ is a set of finite perimeter; we will denote by Ω# the periodic extension of
Ω ∪ (Q× R−) in the first N − 1 directions;

• v ∈W 1,∞(Ω′#;RN ) is such that v − u0 ∈ V(Ω′) and det∇v > 0 a.e. in Ω.

For (Ω, v) ∈ X̃ we define

F̃ (Ω, v) :=

∫
Ω

W (∇v) dz +

∫
ΓΩ

ψ(νΩ) dHN−1

where ΓΩ := ∂∗Ω# ∩
(
[0, 1)N−1 ×R

)
and νΩ is the generalized outer unit normal to the reduced

boundary of Ω# . We remark that, if (g, v) ∈ X ′ , then (Ωg, v) ∈ X̃ and F̃ (Ωg, v) = F (g, v).
We are now ready to state and prove the main result of this section.

Theorem 6.4. Let p ∈ (1,∞) , and assume that a critical pair (h, u) ∈ X is a W 2,p -local
minimizer, in the sense of Definition 5.1. Then (h, u) is a local minimizer for F , according to
Definition 2.4.

Proof. We argue by contradiction, assuming the existence of a decreasing sequence σn → 0 and
of a sequence (gn, un) ∈ X ′ such that

0 < ‖gn − h‖∞ ≤ σn, ‖∇un −∇u‖L∞(Ω′;MN ) ≤ σn, |Ωgn | = |Ωh|,
and

F (gn, un) < F (h, u). (6.1)

We now split the proof into several steps.

Step 1. We claim that we can find new sequences δn → 0 and vn ∈ C∞(Ω
′
;RN ) such that

(gn, vn) ∈ X ′ , ‖gn − h‖∞ ≤ δn , ‖∇vn −∇u‖L∞(Ω′;MN ) ≤ δn , and for which we still have

F (gn, vn) < F (h, u). (6.2)

Indeed, for every n we can construct an approximating sequence vkn , k ∈ N , in the following way:
we let ρ1/k be the standard mollifier in RN with support compactly contained in B1/k , and we
set

vkn := wkn ∗ ρ1/k + u0, where wkn(x, y) :=

{
(un − u0)(x, y − 1/k) if y ≥ 0,
0 if y < 0

(where we extended un − u0 to 0 in RN− ). Then by the properties of the convolution product we

have vkn ∈ C∞(Ω
′
;RN ), vkn − u0 ∈ V(Ω′), and

‖∇vkn −∇u‖L∞(Ω′;MN ) ≤ 2σn

for every k sufficiently large. Moreover, F (gn, v
k
n) → F (gn, un) as k → ∞ by the Lebesgue

Dominated Convergence Theorem. Hence, for every n we can find kn such that the function
vn := vknn satisfies the desired properties with δn = 2σn . We set Mn := ‖∇2vn‖∞ .

Step 2. Let (Ωn, wn) ∈ X̃ be a solution to the penalized problem

min
{
Jβ(Ω, v) : (Ω, v) ∈ X̃, Ωh−δn ⊂ Ω ⊂ Ωh+δn , v ∈W 2,∞(Ω′;RN ),

‖∇2v‖∞ ≤Mn, ‖∇v −∇u‖L∞(Ω′;MN ) ≤ δn
}
, (6.3)

where
Jβ(Ω, v) := F̃ (Ω, v) + β

∣∣|Ω| − |Ωh|∣∣
and β is a positive constant, to be chosen later. Observe that problem (6.3) admits a solution
by the direct method of the Calculus of Variations: indeed, if (Ωk, wk) is a minimizing sequence,
then up to subsequences we have that Ωk → Ω0 in L1 and wk → w0 weakly* in W 2,∞(Ω′); the
pair (Ω0, w0) satisfies all the constraints and is a minimizer of (6.3) by the lower semicontinuity
of the functional (which follows in particular from Reshetnyak’s Lower Semicontinuity Theorem,
as stated in [4, Theorem 2.38], for the surface term).

Since (Ωgn , vn) is an admissible competitor for (6.3), the minimality of (Ωn, wn) and (6.2) yield

F̃ (Ωn, wn) ≤ Jβ(Ωn, wn) ≤ Jβ(Ωgn , vn) = F (gn, vn) < F (h, u). (6.4)
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Step 3. We claim that, for β large enough (independently of n), (Ωn, wn) is also a solution to
the minimum problem

min
{
J̃β(Ω, v) : (Ω, v) ∈ X̃, v ∈W 2,∞(Ω′;RN ), ‖∇2v‖∞ ≤Mn, ‖∇v −∇u‖L∞(Ω′;MN ) ≤ δn

}
,

(6.5)

where

J̃β(Ω, v) := Jβ(Ω, v) + 2β |Ω4 Tn(Ω)|
and Tn(Ω) :=

(
Ω ∪ Ωh−δn

)
∩ Ωh+δn .

To prove the claim, consider any competitor (Ω, v) for problem (6.5). Then we have, since
Tn(Ωn) = Ωn ,

J̃β(Ω, v)− J̃β(Ωn, wn) = Jβ(Tn(Ω), v)− Jβ(Ωn, wn) + 2β |Ω4 Tn(Ω)|

+

∫
Ω

W (∇v) dz −
∫
Tn(Ω)

W (∇v) dz +

∫
ΓΩ

ψ(νΩ) dHN−1 −
∫

ΓTn(Ω)

ψ(νTn(Ω)) dHN−1

+ β
(∣∣|Ω| − |Ωh|∣∣− ∣∣|Tn(Ω)| − |Ωh|

∣∣)
≥ (2β −W0 − β) |Ω4 Tn(Ω)|+

∫
ΓΩ

ψ(νΩ) dHN−1 −
∫

ΓTn(Ω)

ψ(νTn(Ω)) dHN−1,

where in the last inequality we used the fact that Jβ(Tn(Ω), v)−Jβ(Ωn, wn) ≥ 0 by the minimality
of (Ωn, wn), and W0 is a positive constant depending only on W and u .

Now recalling the 1-homogeneity of ψ , the Euler’s theorem ψ(ν) = ∇ψ(ν) ·ν and the convexity
of ψ yield

ψ(νΩ) ≥ ψ(νh) +∇ψ(νh) · (νΩ − νh) = ∇ψ(νh) · νΩ on ΓΩ,

where, for every z ∈ RN , we denote by νh(z) the upper unit normal to the graph of h at the point
(π(z), h(π(z))). Hence, using again Euler’s theorem and observing that HN−1 -almost everywhere
on ΓTn(Ω) \ ΓΩ the normal to ΓTn(Ω) coincides with νh , we obtain∫

ΓΩ

ψ(νΩ) dHN−1 −
∫

ΓTn(Ω)

ψ(νTn(Ω)) dHN−1

≥
∫

ΓΩ\ΓTn(Ω)

∇ψ(νh) · νΩ dHN−1 −
∫

ΓTn(Ω)\ΓΩ

∇ψ(νh) · νh dHN−1

≥ −
∫

Ω4Tn(Ω)

∣∣div(∇ψ ◦ νh)
∣∣ dz ≥ −Λ0|Ω4 Tn(Ω)| . (6.6)

Here Λ0 := ‖Hψ‖L∞(Γh) , where Hψ denotes the anisotropic mean curvature of Γh . Hence we
can conclude

J̃β(Ω, v)− J̃β(Ωn, wn) ≥ (β −W0 − Λ0) |Ω4 Tn(Ω)|,
so that by choosing β > W0 + Λ0 (notice that this constant depends only on W , ψ , h and u)
we deduce that (Ωn, wn) is a solution to (6.5).

Step 4. We claim that each Ωn satisfies the volume constraint

|Ωn| = |Ωh|. (6.7)

Suppose by contradiction that |Ωh| − |Ωn| =: d > 0 for some n . We can find δ ∈ (−δn, δn) such
that |Ωn ∪ Ωh+δ| = |Ωh| . Define U := Ωn ∪ Ωh+δ . Then, as |U | = |Ωh| , we have

Jβ(U,wn)− Jβ(Ωn, wn) =

∫
U

W (∇wn) dz −
∫

Ωn

W (∇wn) dz

+

∫
ΓU

ψ(νU ) dHN−1 −
∫

ΓΩn

ψ(νΩn) dHN−1 − βd

≤ (W0 − β) d+

∫
ΓU

ψ(νU ) dHN−1 −
∫

ΓΩn

ψ(νΩn) dHN−1 (6.8)
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where W0 is the same constant as in Step 3. Now, arguing as in (6.6), we have∫
ΓU

ψ(νU ) dHN−1 −
∫

ΓΩn

ψ(νΩn) dHN−1 ≤ Λ0d.

Hence (6.8) implies that

Jβ(U,wn)− Jβ(Ωn, wn) ≤ (W0 + Λ0 − β) d < 0

(recall that β > W0 + Λ0 ), which is a contradiction with the minimality of (Ωn, wn).
In the case |Ωn| > |Ωh| , we can find δ ∈ (−δn, δn) such that |Ωn∩Ωh+δ| = |Ωh| . Then, setting

U := Ωn ∩ Ωh+δ and arguing as before, we still contradict the minimality of (Ωn, wn).

Step 5. We claim that Ω#
n is an (ω,R)-minimizer for the anisotropic perimeter (see Definition 6.1),

with ω and R independent of n . Indeed, consider any ball Br(x) and any set F such that
Ω#
n 4 F ⊂⊂ Br(x). By a translation argument we can assume Br(x) ⊂ Q × R ; moreover, by

taking a sufficiently small R we can also assume without loss of generality that Br(x) ⊂ Ω′ .

Hence, setting F ′ := F ∩ Ω′ , we have that (F ′, wn) ∈ X̃ is an admissible competitor in problem

(6.5). By the minimality of (Ωn, wn), we have J̃β(F ′, wn)− J̃β(Ωn, wn) ≥ 0, which yields∫
∂∗Ωn∩Br(x)

ψ(νΩn) dHN−1

≤
∫
∂∗F∩Br(x)

ψ(νF ) dHN−1 +

∫
F ′
W (∇wn) dz −

∫
Ωn

W (∇wn) dz

+ β
∣∣|F ′| − |Ωn|∣∣+ 2β|F ′ 4 Tn(F ′)|

≤
∫
∂∗F∩Br(x)

ψ(νF ) dHN−1 + (W0 + 3β)|F ′ 4 Ωn|,

where we used the fact that F ′ 4 Tn(F ′) ⊂ F ′ 4 Ωn . Since |F ′ 4 Ωn| = |F 4 Ω#
n | , the previous

inequality proves the claim with ω = W0 + 3β .
Hence, by the regularity of quasi-minimizers (see Theorem 6.2), we deduce that Ωn is a set of

class C1, 12 for n large enough, and that it converges to Ωh in C1,α for all α ∈ (0, 1
2 ). In turn,

this implies that for n large the set Ωn is in fact the subgraph of a function kn ∈ C
1, 12
# (Q) (that

is, Ωn = Ωkn ), and kn → h in C1,α for all α ∈ (0, 1
2 ).

Step 6. We claim that kn → h in W 2,p for every p ∈ (1,∞).
Fix η ∈ C∞# (Q) and set kεn := kn + εη , for ε > 0. By the quasi-minimality property of Γkn

proved in the previous step we have∫
Γkn

ψ(νkn) dHN−1 ≤
∫

Γkεn

ψ(νkεn) dHN−1 + ε

∫
Q

|η(x)| dx.

Dividing by ε and letting ε→ 0, we deduce∫
Q

∇ψ(−∇kn, 1) · (∇η, 0) dx ≤ ‖η‖L1(Q) .

Hence, the left-hand side in the previous inequality defines a continuous linear functional on

L1
#(Q), that is, denoting by Hψ

kn
the anisotropic mean curvature of Γkn and recalling (2.10),

−Hψ
kn

(·, kn(·)) = Hn on Q

in the sense of distributions, for some bounded function Hn whose L∞ -norm is bounded by 1.
This uniform bound, combined with the convergence of the functions kn to h in C1,α , implies by
standard elliptic estimates (see Lemma 6.3) that the functions kn are equibounded in W 2,p for
every p > 1.

We can now write the Euler-Lagrange equations for the problem (6.3): since kn is of class W 2,p

we have

Hψ
kn

(x, kn(x)) =

{
−W

(
∇wn(x, kn(x))

)
+ λn in An :=

{
|kn − h| < δn

}
,

−W
(
∇u(x, h(x)

)
+ λ in

{
|kn − h| = δn

}
,
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where λn , λ are the Lagrange multipliers due to the volume constraint. To deduce the equation
in An we considered variations only of the profile kn , compactly supported in An , while the
equation in the complement of An easily follows from the fact that (h, u) satisfies (2.5). Notice

that the sequence λn is bounded, by the uniform bounds on Hψ
kn

and on ∇wn .

Now, if HN−1(An)→ 0, we immediately have

Hψ
kn

(·, kn(·))→ Hψ(·, h(·)) in Lp(Q) for all p > 1. (6.9)

Otherwise, assuming that HN−1(An) ≥ c > 0 for all n , integrating the Euler-Lagrange equation
in Q we deduce by periodicity that

−
∫
An

W (∇wn(x, kn(x))) dx+ λnHN−1(An)−
∫
Q\An

W (∇u(x, h(x))) dx+ λHN−1(Q \An)

=

∫
Q

Hψ
kn

(x, kn(x)) dx = 0 =

∫
Q

Hψ(x, h(x)) dx = −
∫
Q

W (∇u(x, h(x))) dx+ λHN−1(Q).

Now the uniform convergence of ∇wn to ∇u on Γkn and the convergence of kn to h in C1,α

yield (λn− λ)HN−1(An)→ 0, and in turn λn → λ since HN−1(An) ≥ c > 0. Hence, using again
the Euler-Lagrange equations, we can conclude that (6.9) holds. In turn, by elliptic regularity
(Lemma 6.3) this implies that kn → h in W 2,p for every p > 1, as claimed.

Step 7. We are now in position to conclude the proof of the theorem. Since

‖kn − h‖W 2,p(Q) → 0, ‖∇wn −∇u‖L∞(Ωkn ;MN ) → 0,

and, by Step 4, |Ωkn | = |Ωh| , inequality (6.4) is in contradiction with the W 2,p -local minimality
of (h, u). �

Combining the previous result with Theorem 5.2, we immediately obtain the announced local
minimality condition.

Theorem 6.5. Assume N = 2, 3 . If (h, u) ∈ X is a strictly stable critical pair, according to
Definition 4.5, then (h, u) is a local minimizer for the functional F , in the sense of Definition 2.4.

We conclude this section by observing that Theorem 6.5 can be extended to the linear elastic
case, where we have the following stronger result. Given a set A and a constant M > 0, we
denote by LipM (A;RN ) the class of Lipschitz functions v : A→ RN whose Lipschitz constant is
bounded by M .

Theorem 6.6. Assume that the elastic energy density has the form

W (ξ) :=
1

2
C

(
ξ + ξT

2

)
:

(
ξ + ξT

2

)
, ξ ∈MN ,

for some constant fourth-order tensor C such that

Cξ : ξ ≥ c0|ξ|2 for every ξ ∈MN
sym, c0 > 0, (6.10)

where MN
sym denotes the subset of MN of the symmetric matrices. If N = 2, 3 and (h, u) is a

strictly stable critical pair, then (h, u) is an isolated local minimizer for F in the following sense:
for every M > ‖∇u‖∞ there exists δ = δ(M) > 0 such that

F (h, u) < F (g, v) (6.11)

for every (g, v) ∈ X with 0 < ‖g − h‖∞ < δ , |Ωg| = |Ωh| , and v ∈ LipM (Ωg;RN ) .

Remark 6.7. Notice that, by Korn’s inequality, the positive definiteness of the tensor C on the
space of symmetric matrices implies that condition (3.1) is automatically satisfied. We suspect
that, as in the two-dimensional case (see [18]), in the linearized framework the following stronger
result should hold: there exists δ > 0 such that (6.11) is satisfied for every (g, v) ∈ X with
0 < ‖g − h‖∞ < δ , |Ωg| = |Ωh| , and v ∈ Lip(Ωg;RN ). In order to prove such a result, we
would need a regularity theory for minimizing configurations, which is not yet available in the
three-dimensional case.
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Proof of Theorem 6.6. We first observe that the conclusion of Theorem 5.2 holds also in this case.
Indeed, the construction provided by Proposition 3.4 is now unnecessary, since for every admissible
profile g we can consider the unique minimizer ug of the elastic energy in the corresponding ref-
erence configuration Ωg . By standard elliptic regularity, the map g 7→ ug satisfies the conclusions
of Proposition 3.4, so that we can repeat the proof of Theorem 5.2 without changes. Notice also
that the estimate provided by Lemma 5.3 remains valid in this case, since the fourth order tensor
Wξξ satisfies the strong ellipticity condition, as a consequence of (6.10).

At this point we can follow the strategy of the proof of Theorem 6.4, where the contradiction
hypothesis consists now in assuming the existence of a sequence (gn, vn) ∈ X such that δn :=
‖gn − vn‖∞ → 0, |Ωgn | = |Ωh| , vn ∈ LipM (Ωgn), and F (gn, vn) ≤ F (h, u)

The approximation argument contained in Step 1 of the previous proof is in this case unnec-
essary, so that we do not need the strict inequality in (6.2). Indeed, each function vn can be
extended to Ω′ without increasing the Lipschitz constant, and we can now consider the penalized
minimum problems

min
{
Jβ(Ω, v) : (Ω, v) ∈ X̃, Ωh−δn ⊂ Ω ⊂ Ωh+δn , v ∈ LipM (Ω′;RN )

}
(6.12)

which admits a solution without assuming any a priori W 2,∞ -bound, as we did before. Replacing
(6.3) by (6.12), the proof goes exactly as in the previous case, yielding the C1,α -convergence of
kn to h at the end of the fifth step; moreover, kn ∈W 2,p(Q), as proved in the first part of Step 6.

Observe now that, denoting by w̃n the unique minimizer of the (linear) elastic energy in Ωkn ,
by the standard regularity of the elliptic system associated with the first variation of the elastic
energy we have that ∇w̃n ◦Φkn converge uniformly to ∇u in Ωh , so that for n sufficiently large
the constraint w̃n ∈ LipM (Ω′) is satisfied. Hence we necessarily have wn = w̃n : thus wn is in fact
of class C1 up to Γkn , and we can conclude as before, by writing the Euler-Lagrange equations
for the penalized problems, that kn → h in W 2,p(Q).

Finally, in the last step of the proof we deduce, by the isolated local minimality of (h, u) proved
in Theorem 5.2, that kn = h and wn = u for all sufficiently large n . It follows that (h, u) and,
in turn, (gn, vn) are solutions to the penalized minimum problem: repeating the same argument
for the sequence (gn, vn), we conclude that for n sufficiently large gn = h and vn = u , which is
the final contradiction. �

7. Stability of the flat configuration

In this section, as an application of our local minimality criterion, we deal with the issue of the
stability of the flat configuration. Given a volume d > 0, we will assume the existence of an affine
critical point for the elastic energy in the domain Ωd = Q× (0, d), namely (recall Definition 2.2)
an affine function v0(z) = M [z] for some M ∈MN

+ solution to the problem
div(Wξ(∇v0)) = 0 in Ωd,

Wξ(∇v0)[eN ] = 0 on Γd,

v0 − u0 ∈ V(Ωd),

(7.1)

where u0(x, y) = (A[x], 0) is the boundary Dirichlet datum. Notice that an affine function auto-
matically satisfies the first condition (as ∇v0 is constant), but this is not always the case for the
second one, that can be rewritten as

∂W

∂ξiN
(∇v0) = 0 for every i = 1, . . . , N. (7.2)

Definition 7.1. A pair (d, v0) ∈ X , with v0(z) = M [z] , satisfying (7.1) and condition (3.1) will
be referred to as flat configuration with volume d .

We remark that, whenever it exists, (d, v0) is obviously a critical pair for the functional F .

Example 7.2. We now show the existence of an affine critical point for the elastic energy in
a flat domain, for boundary data close to the identity, under the assumption that the identical
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deformation is a strict local minimum of the elastic energy. More precisely, we assume that
W (I) = 0 and that∫

Ωd

Wξξ(I)∇w : ∇w dz ≥ k‖w‖2H1(Ωd;RN ) for every w ∈ Ṽ(Ωd), (7.3)

for some k > 0. Notice that, as W ≥ 0 and W (I) = 0, necessarily Wξ(I) = 0. We claim that,
if |A − I| < ε0 for some ε0 > 0 sufficiently small, then there exists an affine solution to (7.1)
corresponding to the boundary datum u0(x, y) = (A[x], 0).

Indeed, given A ∈MN−1 , we look for a vector b = (b1, . . . , bN ) such that the affine function

vA,b(x, y) = (A[x], 0) + yb

satisfies (7.2). We define a map G : (A,b) 7→ Wξ(∇vA,b)[eN ] . As Wξ(I) = 0, we have that
G(I, eN ) = 0. Moreover the matrix ∂bG(I, eN ) is positive definite (hence invertible), since for
every vector w ∈ RN \ {0}

∂bG(I, eN )[w,w] =

N∑
i,j=1

∂2W

∂ξiN∂ξjN
(I)wiwj = Wξξ(I)(w ⊗ eN ) : (w ⊗ eN ) > 0 ,

where the last inequality follows from the fact that the tensor Wξξ(I) satisfies the strong ellipticity
condition (by Theorem 3.3 and (7.3)). Hence the claim follows by applying the Implicit Function
Theorem (notice also that the affine critical point constructed in this way satisfies condition (3.1),
up to taking a smaller ε0 if necessary, by continuity and by (7.3)).

When dealing with the flat configuration (d, v0), it is convenient to identify the space H̃1
#(Γd)

with the space

H̃1
#(Q) :=

{
ϕ ∈ H1

loc(RN−1) : ϕ(x+ ei) = ϕ(x) for a.e. x ∈ RN−1,

for every i = 1, . . . , N − 1,

∫
Q

ϕ(x) dx = 0
}
.

Notice that condition (4.11) is always fulfilled (the coefficient a in (4.10) vanishes), so that

‖ϕ‖2∼ =

∫
Q

∇2ψ(eN )[(∇ϕ, 0), (∇ϕ, 0)] dx for every ϕ ∈ H̃1
#(Q)

is an equivalent norm on H̃1
#(Q); in particular, this allows us to discuss the positivity of the

second variation at the flat configuration in terms of the quantity λ1(d) defined by (4.13) (here
we make explicit the dependence on the height d of the reference configuration).

We now prove a couple of propositions concerning the stability of the flat configuration. Pre-
cisely, we show that the flat configuration, whenever it exists, is strictly stable if the volume
is sufficiently small, while condition (4.9) is not satisfied if the domain is large enough. In the
following, we will always assume to deal with elastic energy densities W which admit a flat con-
figuration.

Proposition 7.3. There exists d0 > 0 such that for every d < d0

∂2F (d, v0)[ϕ] > 0 for every ϕ ∈ H̃1
#(Q)\{0}.

Proof. Denote by µ1(d) the value of the minimum in (4.14) corresponding to the critical pair
(d, v0); by Theorem 4.6 it is sufficient to show that

lim
d→0+

µ1(d) = +∞.

Assume by contradiction that there exist C > 0, a sequence dn → 0+ and a sequence vn ∈ Ṽ(Ωdn)
such that ‖Φvn‖∼ = 1 and ∫

Ωdn

Wξξ(∇v0)∇vn : ∇vn dz ≤ C.
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Then the functions

ṽn(x, y) :=

{
0 if 0 ≤ y ≤ 1− dn
vn(x, y − 1 + dn) if 1− dn < y ≤ 1

belong to Ṽ(Ω1), ‖Φṽn‖∼ = ‖Φvn‖∼ = 1 and satisfy∫
Ω1

Wξξ(∇v0)∇ṽn : ∇ṽn dz ≤ C.

It follows that, up to subsequences, ṽn converges weakly to 0 in Ṽ(Ω1). From the compactness

of the map v 7→ Φv we conclude that Φṽn → 0 strongly in H̃1
#(Q), a contradiction with the fact

that ‖Φṽn‖∼ = 1. �

In order to show a situation where the flat configuration is no longer a local minimizer, we
slightly modify the setting of the problem defining, for d > 0, Qd = (0, d)N−1 and Ωd = (0, d)N ;
all the notions considered up to now are extended to this situation in the natural way.

Proposition 7.4. There exists d1 > 0 such that the quadratic form ∂2F (d, v0) is not positive
semidefinite for all d > d1 . In particular, for all d > d1 the flat configuration (d, v0) is not a
local minimizer for F .

Proof. Consider a nontrivial solution (v, ϕ) ∈ Ṽ(Ω1) × H̃1
#(Q) of (4.16) in Ω1 with λ = λ1(1).

Setting vd(z) = v( zd ), ϕd(x) = dϕ(xd ), a direct computation shows that (vd, ϕd) is a nontrivial
solution of (4.16) in Ωd corresponding to λ = d λ1(1). Hence λ1(d) ≥ d λ1(1), and taking
d1 = 1

λ1(1) we get that λ1(d) > 1 for every d > d1 . From this it is easily seen, using (4.15), that

the quadratic form ∂2F (d, v0) is not positive semidefinite for all d > d1 . The last part of the
statement follows from Theorem 4.4. �

We conclude this section by discussing what happens in the case of crystalline anisotropies,
namely if we assume less regularity in the anisotropic surface density (we refer also to [6], where
the two-dimensional case, in the framework of linearized elasticity, is studied in details). Precisely,
we assume here that ψc : RN → [0,+∞) is a Lipschitz, positively 1-homogeneous and convex
function, such that the associated Wulff shape Wψc contains a neighborhood of the origin and its
boundary has a flat horizontal facet intersecting the y -axis. We recall (see, e.g., [15]) that the
Wulff shape associated with a convex function ψ : SN−1 → (0,+∞) is the convex set Wψ := {z ∈
RN : z · ν ≤ ψ(ν) for every ν ∈ SN−1} .

Under these assumptions, we can show that the flat configuration is always a local minimizer
for the associated functional Fc , whatever the volume d > 0.

Theorem 7.5. Let N = 2, 3 , and let ψc : RN → [0,+∞) be a Lipschitz, positively 1-homogeneous
and convex function, such that {|x| ≤ a, y = b} ⊂ ∂Wψc for some a, b > 0 . Then for every d > 0
the flat configuration (d, v0) is a local minimizer for the associated functional Fc , in the sense of
Definition 2.4.

Proof. Since we always evaluate the function ψc at vectors whose last component is nonnegative,
without loss of generality we can assume that the Wulff shape Wψc is symmetric with respect to
the hyperplane {y = 0} .

From the assumptions on ψc it follows that the cylinder C = {(x, y) : |x| ≤ a, |y| ≤ b} is
contained in Wψc . Let ψC(ν1, ν2) = a|ν1| + b|ν2| be an anisotropy whose Wulff shape is exactly
the cylinder C . Observe that

ψC ≤ ψc, ψc(0, 1) = ψC(0, 1) = b (7.4)

(the first follows from [15, Proposition 3.5 (iii)] and the inclusion C ⊂Wψc , while the second is a
consequence of [15, Proposition 3.5 (iv)]).

We now introduce a family of “approximating” functionals: consider, for ε > 0, the function
ψε(x, y) = a

√
ε2y2 + |x|2 + (b− aε)|y| , and the associated functional Fε . Note that ψε converges

monotonically from below to ψC as ε→ 0+ ; geometrically, the Wulff shapes associated with the
functions ψε converge monotonically from the interior to the cylinder C .
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Consider first the regular functions ψ̂ε(x, y) = a
√
ε2y2 + |x|2 and the associated functionals

F̂ε : they satisfy all the assumptions of Section 2 (in particular, the uniform convexity condition

(2.3) follows from the explicit computation of the hessian of ψ̂ε ), and the quadratic form associated

to the second variation of F̂ε at the flat configuration turns out to be

∂2F̂ε(d, v0)[ϕ] = −
∫
Q×(0,d)

Wξξ(∇v0)∇vϕ : ∇vϕ dz +
a

ε

∫
Q

|∇ϕ|2 dHN−1.

Since ∫
Q×(0,d)

Wξξ(∇v0)∇vϕ : ∇vϕ dz ≤ C‖vϕ‖2H1(Ωd;R2) ≤ C
′‖ϕ‖2H1(Q)

(where C,C ′ are positive constants depending only on the boundary Dirichlet datum), it follows

that there exists ε0 > 0 such that the quadratic form ∂2F̂ε0(d, v0) is positive definite. Hence, by

Theorem 6.5, the flat configuration (d, v0) is a local minimizer for F̂ε0 for every volume d > 0.

The same is true also for Fε0 , since the energies Fε0 and F̂ε0 differ only by a constant value:

Fε0 = F̂ε0 + (b− aε0).
We can now conclude the proof: let δ > 0 be such that the flat configuration minimizes the

energy Fε0 among all competitors (g, v) ∈ X ′ such that |Ωg| = d , 0 < ‖g − d‖∞ < δ , and
‖∇v −∇v0‖L∞(Ω′;MN ) < δ . Then for every such (g, v) we have

Fc(d, v0) =

∫
Q×(0,d)

W (∇v0) dz + ψc(0, 1) =

∫
Q×(0,d)

W (∇v0) dz + ψC(0, 1)

= FC(d, v0) = Fε0(d, v0) ≤ Fε0(g, v) ≤ FC(g, v) ≤ Fc(g, v),

where the first inequality follows from the local minimality of the flat configuration for Fε0 , the
second one from ψε ≤ ψC and the last one using ψC ≤ ψc . From the previous chain of inequalities
the conclusion follows. �

Remark 7.6. If W is as in Theorem 6.6 and under the assumptions of Theorem 7.5, we conclude
that for every d > 0 the flat configuration satisfies the isolated local minimality property stated
in Theorem 6.6.

8. Appendix

8.1. Fractional Sobolev spaces. We collect in this section some auxiliary results concerning
fractional Sobolev spaces which are needed in Section 5. The statements are the same as in [18,
Section 8.1], rephrased to consider also the case of dimension N = 3.

Fix a periodic function h ∈ C1
#(Q), h > 0. We denote by c0 a positive constant such that

minQ h ≥ c0 . We recall that the Gagliardo seminorm of a function ϑ on Γh is defined as

[ϑ]s,p,Γh :=
(∫

Γh

∫
Γh

|ϑ(z)− ϑ(w)|p

|z − w|N−1+sp
dHN−1(z) dHN−1(w)

) 1
p

for 0 < s < 1 and 1 < p <∞ , and that ϑ ∈W s,p(Γh) if

‖ϑ‖W s,p(Γh) := ‖ϑ‖Lp(Γh) + [ϑ]s,p,Γh <∞.

We denote by W s,p
# (Γh) the subspace of functions ϑ ∈ W s,p(Γh) whose periodic extension to

Γ#
h belongs to W s,p

loc (Γ#
h ), endowed with the same norm. The dual spaces of W s,p(Γh) and of

W s,p
# (Γh) are denoted by W−s,

p
p−1 (Γh) and W

−s, p
p−1

# (Γh), respectively. When p = 2 we switch

to the notation Hs(Γh) for W s,2(Γh) (and similarly for the other spaces).

Remark 8.1. We remark that, if −1 < t ≤ s < 1 and p > 1, the space W s,p(Γh) is continuously
imbedded in W t,p(Γh). This follows directly from the definition.

Theorem 8.2. If −1 ≤ t ≤ s ≤ 1 , q ≥ p and s− N−1
p ≥ t− N−1

q , then W s,p(Γh) is continuously

imbedded in W t,q(Γh) . The imbedding constant depends only on s , t , p , q and on the C1 -norm
of h .
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In particular, it follows that if N ≤ 3 then H1(Γh) is continuously imbedded in Lq(Γh) for every
q ≥ 1. The proof of the theorem follows from [21, Theorem 1.4.4.1] by a change of variables, and
taking into account Remark 8.1. The following theorem, which follows from [21, Theorem 1.5.1.2],
deals with the trace operator on Γh .

Theorem 8.3. There exists a continuous linear operator T : W 1,p(Ωh)→W 1− 1
p ,p(Γh) such that

Tu = u|Γh whenever u is continuous on Ωh . The norm of T is bounded by a constant depending
only on p , c0 , and on the C1 -norm of h .

Denoting by W 1,p
# (Ωh) the space of functions u ∈ W 1,p(Ωh) whose periodic extension to Ω#

h

belongs to W 1,p
loc (Ω#

h ), we have in particular that, if u ∈ W 1,p
# (Ωh), then Tu ∈ W

1− 1
p ,p

# (Γh).
Conversely, we have the following extension theorem.

Theorem 8.4. For every ϑ ∈W 1− 1
p ,p

# (Γh) there exists u ∈W 1,p
# (Ωh) such that Tu = ϑ and

‖u‖W 1,p(Ωh) ≤ C‖ϑ‖
W

1− 1
p
,p

(Γh)
, (8.1)

where C depends only on p , c0 , and on the C1 -norm of h .

We now state the 3-dimensional version of [18, Theorem 8.6].

Theorem 8.5. Let N = 3 . For every u ∈W 1,p
# (Ωh) and for i = 1, 2∥∥∥ ∂u

∂zi
ν3
h −

∂u

∂z3
νih

∥∥∥
W
− 1
p
,p

# (Γh)
≤ C‖∇u‖Lp(Ωh;R3)

where C depends only on p , c0 , and on the C1 -norm of h .

Proof. Assume u ∈ C2(Ωh). Given ϕ ∈ W
1
p ,

p
p−1

# (Γh) we consider an extension in W
1, p
p−1

# (Ωh)

(still denoted by ϕ), according to Theorem 8.4. We may also assume, by increasing the constant
in (8.1), that ϕ(x, 0) = 0. Then∫

Γh

( ∂u
∂z1

ν3
h −

∂u

∂z3
ν1
h

)
ϕdH2 =

∫
Γh

ϕ
(
− ∂u

∂z3
, 0,

∂u

∂z1

)
· ν dH2

=

∫
Ωh

div
(
−ϕ ∂u

∂z3
, 0, ϕ

∂u

∂z1

)
dz =

∫
Ωh

∇u ·
( ∂ϕ
∂z3

, 0,− ∂ϕ
∂z1

)
dz

≤ ‖∇u‖Lp(Ωh;R3)‖∇ϕ‖
L

p
p−1 (Ωh;R3)

≤ C ‖∇u‖Lp(Ωh;R3)‖ϕ‖
W

1
p
,
p
p−1 (Γh)

and this shows the claim in the case i = 1. The case i = 2 is similar, and an approximation
argument concludes the proof of the theorem. �

We conclude this section with two lemmas which will be used several times in the proof of
Theorem 5.2. The proof of the first one follows directly from the definition of the Gagliardo
seminorm.

Lemma 8.6. Let p > 1 and let u be a smooth function. Then:

(i) if a ∈ C0,α(Γh) with α > 1
p , then ‖ua‖

W
− 1
p
,p

(Γh)
≤ C‖a‖C0,α(Γh)‖u‖

W
− 1
p
,p

(Γh)
, for some

constant C depending only on p , α and on the C1 -norm of h ;
(ii) if Φ : Γh → Φ(Γh) is a C1 -diffeomorphism, then ‖u◦Φ−1‖

W
− 1
p
,p

(Φ(Γh))
≤ C‖u‖

W
− 1
p
,p

(Γh)
,

for some constant C depending only on p and on the C1 -norms of Φ and of Φ−1 .

Lemma 8.7. Let N ≤ 3 and α > 1
2 . If ϕ ∈ H1(Γh) and u ∈ C0,α(Ωh;MN ) , then

‖ϕu‖
H

1
2 (Γh;MN )

≤ C‖ϕ‖H1(Γh)‖u‖C0,α(Ωh;MN )

for some constant C depending only on α and on the C1 -norm of h .
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Proof. We can bound the Gagliardo H
1
2 -seminorm of ϕu as follows: choosing q > 2 such that

(2α− 1)q > 2N − 2, adding and subtracting the term ϕ(z)u(w) and using Hölder inequality, we
have[

ϕu
]2

1
2 ,2,Γh

≤ 2

∫
Γh

∫
Γh

|ϕ(z)− ϕ(w)|2|u(w)|2

|z − w|N
dHN−1(z) dHN−1(w)

+ 2

∫
Γh

∫
Γh

|ϕ(z)|2|u(z)− u(w)|2

|z − w|N
dHN−1(z) dHN−1(w)

≤ 2 ‖u‖2∞‖ϕ‖2
H

1
2 (Γh)

+ 2‖u‖2C0,α

∫
Γh

∫
Γh

|ϕ(z)|2|z − w|2α−N dHN−1(z) dHN−1(w)

≤ 2 ‖u‖2
C0,α(Ωh;MN )

[
‖ϕ‖2

H
1
2 (Γh)

+ ‖ϕ‖2Lq(Γh)H
N−1(Γh)

2
q

(∫
Γh

∫
Γh

|z − w|
q(2α−N)
q−2 dHN−1(x) dHN−1(y)

) q−2
q

]
.

Now the last integral is finite by the choice of q , and the conclusion follows since H1(Γh) is
continuously imbedded in Lq(Γh) for every q . �

8.2. Invertibility of the linear system appearing in Lemma 5.3. The final part of the
second step in the proof of Lemma 5.3 requires to invert the relations determined by an 18 × 18
linear system which we can write explicitly as

ξ = Mσ,

where ξ and σ are the column vectors

ξ :=
(
ϑ111, ϑ311, ϑ112, ϑ212, ϑ312, ϑ121, ϑ321, ϑ122, ϑ222,ϑ322, ϑ131, ϑ331,

ϑ132, ϑ232, ϑ332, η13, η23, η33

)T
,

σ :=
(
σ111, σ121, σ131, σ221, σ231, σ331, σ112, σ122, σ132,σ222, σ232, σ332,

σ113, σ123, σ133, σ223, σ233, σ333

)T
,

and M is the matrix


ν3
g 0 −ν1

g 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 ν3

g 0 0 −ν1
g 0 0 0 0 0 0 0 0 0 0 0 0

0 ν3
g −ν2

g 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 ν3

g −ν2
g 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 ν3
g −ν2

g 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 ν3

g 0 −ν1
g 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 ν3
g 0 0 −ν1

g 0 0 0 0 0 0
0 0 0 0 0 0 0 ν3

g −ν2
g 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 ν3
g −ν2

g 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 ν3

g −ν2
g 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 ν3
g 0 −ν1

g 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 ν3

g 0 0 −ν1
g

0 0 0 0 0 0 0 0 0 0 0 0 0 ν3
g −ν2

g 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ν3

g −ν2
g 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ν3
g −ν2

g

0 0 a1 0 b1 c1 0 0 d1 0 e1 f1 0 0 g1 0 h1 i1
0 0 a2 0 b2 c2 0 0 d2 0 e2 f2 0 0 g2 0 h2 i2
0 0 a3 0 b3 c3 0 0 d3 0 e3 f3 0 0 g3 0 h3 i3


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The coefficients in the last three rows of M are defined by

aj :=
∑3
k=1 Cjk11ν

k
g , bj :=

∑3
k=1 Cjk12ν

k
g , cj :=

∑3
k=1 Cjk13ν

k
g ,

dj :=
∑3
k=1 Cjk21ν

k
g , ej :=

∑3
k=1 Cjk22ν

k
g , fj :=

∑3
k=1 Cjk23ν

k
g ,

gj :=
∑3
k=1 Cjk31ν

k
g , hj :=

∑3
k=1 Cjk32ν

k
g , ij :=

∑3
k=1 Cjk33ν

k
g ,

for j = 1, 2, 3, so that the corresponding equations are exactly the equalities (5.11). In order to
invert the relations determined by the previous system, we claimed that the determinant of M
equals (ν3

g )12 detQg , where Qg is the 3× 3 matrix defined by (5.7).
We present here the Mathematica code which allows us to check this equality. We first define

the 18 × 18 matrix M : here the variables n1n1n1, n2n2n2 and n3n3n3 stand for the components ν1
g , ν

2
g , ν

3
g

of the normal vector, and the variables CijhkCijhkCijhk for the coefficients Cijhk of the tensor. We then
define the matrix Qg introduced in (5.7), whose entries are indicated by qijqijqij, and we compute its
determinant (multiplied by (ν3

g )12 ). Finally we evaluate the difference between the determinant

of M and (ν3
g )12 detQg , which turns out to be zero.

The Mathematica code is the following.

M =



n3 0 −n1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 n3 0 0 −n1 0 0 0 0 0 0 0 0 0 0 0 0

0 n3 −n2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 n3 −n2 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 n3 −n2 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 n3 0 −n1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 n3 0 0 −n1 0 0 0 0 0 0

0 0 0 0 0 0 0 n3 −n2 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 n3 −n2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 n3 −n2 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 n3 0 −n1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 n3 0 0 −n1

0 0 0 0 0 0 0 0 0 0 0 0 0 n3 −n2 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 n3 −n2 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 n3 −n2

0 0 a1 0 b1 c1 0 0 d1 0 e1 f1 0 0 g1 0 h1 i1

0 0 a2 0 b2 c2 0 0 d2 0 e2 f2 0 0 g2 0 h2 i2

0 0 a3 0 b3 c3 0 0 d3 0 e3 f3 0 0 g3 0 h3 i3



;M =



n3 0 −n1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 n3 0 0 −n1 0 0 0 0 0 0 0 0 0 0 0 0

0 n3 −n2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 n3 −n2 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 n3 −n2 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 n3 0 −n1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 n3 0 0 −n1 0 0 0 0 0 0

0 0 0 0 0 0 0 n3 −n2 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 n3 −n2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 n3 −n2 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 n3 0 −n1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 n3 0 0 −n1

0 0 0 0 0 0 0 0 0 0 0 0 0 n3 −n2 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 n3 −n2 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 n3 −n2

0 0 a1 0 b1 c1 0 0 d1 0 e1 f1 0 0 g1 0 h1 i1

0 0 a2 0 b2 c2 0 0 d2 0 e2 f2 0 0 g2 0 h2 i2

0 0 a3 0 b3 c3 0 0 d3 0 e3 f3 0 0 g3 0 h3 i3



;M =



n3 0 −n1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 n3 0 0 −n1 0 0 0 0 0 0 0 0 0 0 0 0

0 n3 −n2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 n3 −n2 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 n3 −n2 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 n3 0 −n1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 n3 0 0 −n1 0 0 0 0 0 0

0 0 0 0 0 0 0 n3 −n2 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 n3 −n2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 n3 −n2 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 n3 0 −n1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 n3 0 0 −n1

0 0 0 0 0 0 0 0 0 0 0 0 0 n3 −n2 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 n3 −n2 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 n3 −n2

0 0 a1 0 b1 c1 0 0 d1 0 e1 f1 0 0 g1 0 h1 i1

0 0 a2 0 b2 c2 0 0 d2 0 e2 f2 0 0 g2 0 h2 i2

0 0 a3 0 b3 c3 0 0 d3 0 e3 f3 0 0 g3 0 h3 i3



;

DM = Det[M ];DM = Det[M ];DM = Det[M ];

a1 = C1111n1 + C1211n2 + C1311n3;a1 = C1111n1 + C1211n2 + C1311n3;a1 = C1111n1 + C1211n2 + C1311n3;

b1 = C1112n1 + C1212n2 + C1312n3;b1 = C1112n1 + C1212n2 + C1312n3;b1 = C1112n1 + C1212n2 + C1312n3;

c1 = C1113n1 + C1213n2 + C1313n3;c1 = C1113n1 + C1213n2 + C1313n3;c1 = C1113n1 + C1213n2 + C1313n3;

d1 = C1121n1 + C1221n2 + C1321n3;d1 = C1121n1 + C1221n2 + C1321n3;d1 = C1121n1 + C1221n2 + C1321n3;

e1 = C1122n1 + C1222n2 + C1322n3;e1 = C1122n1 + C1222n2 + C1322n3;e1 = C1122n1 + C1222n2 + C1322n3;

f1 = C1123n1 + C1223n2 + C1323n3;f1 = C1123n1 + C1223n2 + C1323n3;f1 = C1123n1 + C1223n2 + C1323n3;

g1 = C1131n1 + C1231n2 + C1331n3;g1 = C1131n1 + C1231n2 + C1331n3;g1 = C1131n1 + C1231n2 + C1331n3;

h1 = C1132n1 + C1232n2 + C1332n3;h1 = C1132n1 + C1232n2 + C1332n3;h1 = C1132n1 + C1232n2 + C1332n3;
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i1 = C1133n1 + C1233n2 + C1333n3;i1 = C1133n1 + C1233n2 + C1333n3;i1 = C1133n1 + C1233n2 + C1333n3;

a2 = C2111n1 + C2211n2 + C2311n3;a2 = C2111n1 + C2211n2 + C2311n3;a2 = C2111n1 + C2211n2 + C2311n3;

b2 = C2112n1 + C2212n2 + C2312n3;b2 = C2112n1 + C2212n2 + C2312n3;b2 = C2112n1 + C2212n2 + C2312n3;

c2 = C2113n1 + C2213n2 + C2313n3;c2 = C2113n1 + C2213n2 + C2313n3;c2 = C2113n1 + C2213n2 + C2313n3;

d2 = C2121n1 + C2221n2 + C2321n3;d2 = C2121n1 + C2221n2 + C2321n3;d2 = C2121n1 + C2221n2 + C2321n3;

e2 = C2122n1 + C2222n2 + C2322n3;e2 = C2122n1 + C2222n2 + C2322n3;e2 = C2122n1 + C2222n2 + C2322n3;

f2 = C2123n1 + C2223n2 + C2323n3;f2 = C2123n1 + C2223n2 + C2323n3;f2 = C2123n1 + C2223n2 + C2323n3;

g2 = C2131n1 + C2231n2 + C2331n3;g2 = C2131n1 + C2231n2 + C2331n3;g2 = C2131n1 + C2231n2 + C2331n3;

h2 = C2132n1 + C2232n2 + C2332n3;h2 = C2132n1 + C2232n2 + C2332n3;h2 = C2132n1 + C2232n2 + C2332n3;

i2 = C2133n1 + C2233n2 + C2333n3;i2 = C2133n1 + C2233n2 + C2333n3;i2 = C2133n1 + C2233n2 + C2333n3;

a3 = C3111n1 + C3211n2 + C3311n3;a3 = C3111n1 + C3211n2 + C3311n3;a3 = C3111n1 + C3211n2 + C3311n3;

b3 = C3112n1 + C3212n2 + C3312n3;b3 = C3112n1 + C3212n2 + C3312n3;b3 = C3112n1 + C3212n2 + C3312n3;

c3 = C3113n1 + C3213n2 + C3313n3;c3 = C3113n1 + C3213n2 + C3313n3;c3 = C3113n1 + C3213n2 + C3313n3;

d3 = C3121n1 + C3221n2 + C3321n3;d3 = C3121n1 + C3221n2 + C3321n3;d3 = C3121n1 + C3221n2 + C3321n3;

e3 = C3122n1 + C3222n2 + C3322n3;e3 = C3122n1 + C3222n2 + C3322n3;e3 = C3122n1 + C3222n2 + C3322n3;

f3 = C3123n1 + C3223n2 + C3323n3;f3 = C3123n1 + C3223n2 + C3323n3;f3 = C3123n1 + C3223n2 + C3323n3;

g3 = C3131n1 + C3231n2 + C3331n3;g3 = C3131n1 + C3231n2 + C3331n3;g3 = C3131n1 + C3231n2 + C3331n3;

h3 = C3132n1 + C3232n2 + C3332n3;h3 = C3132n1 + C3232n2 + C3332n3;h3 = C3132n1 + C3232n2 + C3332n3;

i3 = C3133n1 + C3233n2 + C3333n3;i3 = C3133n1 + C3233n2 + C3333n3;i3 = C3133n1 + C3233n2 + C3333n3;

q11 = C1111n1n1 + C1212n2n2 + C1313n3n3 + (C1112 + C1211)n1n2+q11 = C1111n1n1 + C1212n2n2 + C1313n3n3 + (C1112 + C1211)n1n2+q11 = C1111n1n1 + C1212n2n2 + C1313n3n3 + (C1112 + C1211)n1n2+

(C1113 + C1311)n1n3 + (C1213 + C1312)n2n3;(C1113 + C1311)n1n3 + (C1213 + C1312)n2n3;(C1113 + C1311)n1n3 + (C1213 + C1312)n2n3;

q12 = C1121n1n1 + C1222n2n2 + C1323n3n3 + (C1122 + C1221)n1n2+q12 = C1121n1n1 + C1222n2n2 + C1323n3n3 + (C1122 + C1221)n1n2+q12 = C1121n1n1 + C1222n2n2 + C1323n3n3 + (C1122 + C1221)n1n2+

(C1123 + C1321)n1n3 + (C1223 + C1322)n2n3;(C1123 + C1321)n1n3 + (C1223 + C1322)n2n3;(C1123 + C1321)n1n3 + (C1223 + C1322)n2n3;

q13 = C1131n1n1 + C1232n2n2 + C1333n3n3 + (C1132 + C1231)n1n2+q13 = C1131n1n1 + C1232n2n2 + C1333n3n3 + (C1132 + C1231)n1n2+q13 = C1131n1n1 + C1232n2n2 + C1333n3n3 + (C1132 + C1231)n1n2+

(C1133 + C1331)n1n3 + (C1233 + C1332)n2n3;(C1133 + C1331)n1n3 + (C1233 + C1332)n2n3;(C1133 + C1331)n1n3 + (C1233 + C1332)n2n3;

q21 = C2111n1n1 + C2212n2n2 + C2313n3n3 + (C2112 + C2211)n1n2+q21 = C2111n1n1 + C2212n2n2 + C2313n3n3 + (C2112 + C2211)n1n2+q21 = C2111n1n1 + C2212n2n2 + C2313n3n3 + (C2112 + C2211)n1n2+

(C2113 + C2311)n1n3 + (C2213 + C2312)n2n3;(C2113 + C2311)n1n3 + (C2213 + C2312)n2n3;(C2113 + C2311)n1n3 + (C2213 + C2312)n2n3;

q22 = C2121n1n1 + C2222n2n2 + C2323n3n3 + (C2122 + C2221)n1n2+q22 = C2121n1n1 + C2222n2n2 + C2323n3n3 + (C2122 + C2221)n1n2+q22 = C2121n1n1 + C2222n2n2 + C2323n3n3 + (C2122 + C2221)n1n2+

(C2123 + C2321)n1n3 + (C2223 + C2322)n2n3;(C2123 + C2321)n1n3 + (C2223 + C2322)n2n3;(C2123 + C2321)n1n3 + (C2223 + C2322)n2n3;

q23 = C2131n1n1 + C2232n2n2 + C2333n3n3 + (C2132 + C2231)n1n2+q23 = C2131n1n1 + C2232n2n2 + C2333n3n3 + (C2132 + C2231)n1n2+q23 = C2131n1n1 + C2232n2n2 + C2333n3n3 + (C2132 + C2231)n1n2+

(C2133 + C2331)n1n3 + (C2233 + C2332)n2n3;(C2133 + C2331)n1n3 + (C2233 + C2332)n2n3;(C2133 + C2331)n1n3 + (C2233 + C2332)n2n3;

q31 = C3111n1n1 + C3212n2n2 + C3313n3n3 + (C3112 + C3211)n1n2+q31 = C3111n1n1 + C3212n2n2 + C3313n3n3 + (C3112 + C3211)n1n2+q31 = C3111n1n1 + C3212n2n2 + C3313n3n3 + (C3112 + C3211)n1n2+
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(C3113 + C3311)n1n3 + (C3213 + C3312)n2n3;(C3113 + C3311)n1n3 + (C3213 + C3312)n2n3;(C3113 + C3311)n1n3 + (C3213 + C3312)n2n3;

q32 = C3121n1n1 + C3222n2n2 + C3323n3n3 + (C3122 + C3221)n1n2+q32 = C3121n1n1 + C3222n2n2 + C3323n3n3 + (C3122 + C3221)n1n2+q32 = C3121n1n1 + C3222n2n2 + C3323n3n3 + (C3122 + C3221)n1n2+

(C3123 + C3321)n1n3 + (C3223 + C3322)n2n3;(C3123 + C3321)n1n3 + (C3223 + C3322)n2n3;(C3123 + C3321)n1n3 + (C3223 + C3322)n2n3;

q33 = C3131n1n1 + C3232n2n2 + C3333n3n3 + (C3132 + C3231)n1n2+q33 = C3131n1n1 + C3232n2n2 + C3333n3n3 + (C3132 + C3231)n1n2+q33 = C3131n1n1 + C3232n2n2 + C3333n3n3 + (C3132 + C3231)n1n2+

(C3133 + C3331)n1n3 + (C3233 + C3332)n2n3;(C3133 + C3331)n1n3 + (C3233 + C3332)n2n3;(C3133 + C3331)n1n3 + (C3233 + C3332)n2n3;

Q =


q11 q12 q13

q21 q22 q23

q31 q32 q33

 ;Q =


q11 q12 q13

q21 q22 q23

q31 q32 q33

 ;Q =


q11 q12 q13

q21 q22 q23

q31 q32 q33

 ;

DQ = n312Det[Q];DQ = n312Det[Q];DQ = n312Det[Q];

ExpandAll[DQ]− ExpandAll[DM]ExpandAll[DQ]− ExpandAll[DM]ExpandAll[DQ]− ExpandAll[DM]
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