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Abstract

In this paper, we study nonlocal gradients and their relationship to classical gradients.
As the nonlocality vanishes we demonstrate the convergence of nonlocal gradients to their
local analogue for Sobolev and BV functions. As a consequence of these localizations we give
new characterizations of the Sobolev and BV spaces that are in the same spirit of Bourgain,
Brezis, and Mironsecu’s 2001 characterization. Integral functionals of the nonlocal gradient
with proper growth are shown to converge to a corresponding functional of the classical
gradient both pointwise and in the sense of Γ-convergence.

1 Introduction and main results

For a given Ω ⊂ RN that is open, bounded and sufficiently smooth, our interest in this paper is
focused on the linear nonlocal operator

Gρu(x) := p.v.N

ˆ
Ω

u(x)− u(y)

|x− y|
x− y
|x− y|

ρ(x− y) dy

= lim
ε→0

N

ˆ
Ω\B(x,ε)

u(x)− u(y)

|x− y|
x− y
|x− y|

ρ(x− y) dy, (1.1)

whenever it exists for almost every x ∈ Ω. Here, the kernel ρ is a nonnegative integrable radial
function and u ∈ L1(Ω) is a scalar valued function. By definition, Gρu(x) is a directed weighted
difference quotient of u at x, and as such we call Gρu(x) a nonlocal gradient of u at x and the
operator Gρ the nonlocal gradient operator. The use of “gradient” for Gρ is motivated by the fact
that, as we will see shortly, it approximates the classical gradient operator as the nonlocality
vanishes.

In recent years, nonlocal “differential” operators like (1.1) have appeared in a number of ap-
plications, most notably in the modeling of discontinuous physical, biological and social quanti-
ties. We mention, for instance, some in image processing [4] and [16, 17], the peridynamic model
of continuum mechanics [13, 23, 24] and nonlocal diffusion [3, 18]. Various nonlocal operators
have also been used implicitly in a number of works such as [5, 6], [8, 9, 25], [13, 14], and [3], for
example. A basis to our work is the nonlocal vector calculus developed by Du et al in [14] that
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provides a framework to rigorously analyze nonlocal differential operators and their relationship
to corresponding classical operators.

Our contribution in this paper is a further development of the analysis of nonlocal gradient
operators that is initiated in [14]. Chief among them is a rigorous justification of the “local-
ization” of Gρu(x) to the classical gradient ∇u(x), as one might expect, where the topology of
localization depends on the functional space of the underlying field. In fact, we will demonstrate
that such localization is possible for smooth function spaces and Sobolev spaces in their respec-
tive strong topologies (local uniform convergence in the former and strong Lp convergence in the
latter), while for the space of functions of bounded variation, this localization is possible in the
strict topology of measures. Not surprisingly, as a corollary of the localization result, we obtain
yet another characterization of Sobolev and BV spaces. This characterization is in the same
spirit of existing derivative-free characterizations of Sobolev and BV spaces, see [5, 6, 12, 19].
We will also present a Γ-convergence result for some integral functionals of nonlocal gradients.

To state our main results precisely, we adopt the framework of Bourgain, Brezis, and Miron-
secu [5] and introduce a sequence of kernels forming an approximation of the identity that
facilitate the localization mechanism. Let ρn be a sequence of radial functions, ρn(x) = ρ̂n(|x|),
that satisfy 

ρn ≥ 0,
´
RN ρn(x) dx = 1, and

limn→∞
´
|x|>δ ρn(x) dx = 0 for all δ > 0.

(1.2)

For each n ≥ 1, denote Gnu := Gρnu. With formal computation Gilboa and Osher in [17] noted
that

Gnu(x) = ∇u(x) + error,

while this relationship was made rigorous by Du, Gunzburger, Lehoucq and Zhou in [14], where
it was shown that if u ∈ H1(RN ;Rd), then

Gnu→ ∇u (1.3)

in L2(RN ;Rd×N ) as n→∞. In addition, distributional localization of various nonlocal differen-
tial operators to their corresponding local differential operators is demonstrated in [14].

It is not clear how one would extend the techniques of [14] to obtain localization in strong
topologies for functions in the Sobolev spaces W 1,p(Ω) (p 6= 2) or the space of functions of
bounded variation BV (Ω). In the case of (1.3), the use of the Fourier transform on the Hilbert
space H1(RN ;Rd) seems to preclude application in the non-Hilbert setting. Meanwhile, the dis-
tributional localizations occur in a very weak topology, giving convergence for smooth functions
which are compactly supported. In fact, this result, combined with a nonlocal integration by
parts formula that relates Gρ with a yet to be defined nonlocal divergence operator, allows one
to deduce weak (or weak-star) convergence of the nonlocal gradients to their local counterpart
when the underlying function is in a Sobolev or BV space. However, convergence in stronger
topologies requires more subtle analysis.

We will shortly mention our localization results for smooth, Sobolev, and BV functions.
First, a remark is in order as to the definition of the nonlocal gradient for functions in these
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spaces. If u ∈ C1(Ω) it can easily be checked that y 7→ |u(y)−u(x)|
|x−y| ρ(y − x) ∈ L1(Ω) for almost

all x ∈ Ω, and therefore not only is the principle value integral (1.1) well-defined, it agrees with
the Lebesgue integral. More generally, it is a consequence of the analysis of Bourgain, Brezis,
and Mironescu [5] (see also Lemma 2.1) that this continues to hold for functions in W 1,p(Ω) and
BV (Ω). Therefore, the following theorems recording the localization properties of the nonlocal
gradient for functions in these spaces can be understood with the nonlocal gradient as a Lebesgue
integral.

Theorem 1.1 Suppose that Ω ⊂ RN is open, bounded, and sufficiently smooth. Assume also
that 1 ≤ p <∞ and ρn satisfy (1.2). Then the following holds.

a) For any u ∈ C1(Ω), Gnu → ∇u locally uniformly as n → ∞. If u ∈ C1
c (Ω), then the

convergence is uniform.

b) For any u ∈W 1,p(Ω), Gnu→ ∇u in Lp(Ω;RN ) as n→∞.

A similar result holds for BV functions which is stated below.

Theorem 1.2 Let Ω ⊂ RN be open, bounded, and smooth. Assume ρn satisfy (1.2) and that
u ∈ BV (Ω). Consider the sequence of vector-valued Radon measures µn = GnuLN . Then
µn → Du strictly as measures. That is,

µn
∗
⇀ Du

weakly-star in
(
C0(Ω;RN )

)′
and

|µn|(Ω)→ |Du|(Ω).

In the above theorem the variation measure |µ| is defined for any open subset A of Ω as

|µ|(A) = sup

{ˆ
A
φ · dµ : φ ∈ C0(Ω;RN ), Supp(φ) ⊂ A, ‖φ‖L∞(Ω) ≤ 1

}
.

The above localization results will be used to characterize Sobolev and BV functions in terms of
the asymptotics of their nonlocal gradients. For one direction of this characterization, we make
use of the assumption that u ∈ W 1,p(Ω) or u ∈ BV (Ω) and deduce that Gρu is well-defined
before applying the above theorems. However, for the converse, we relax our assumptions on
the existence of the nonlocal gradient as a Lebesgue integral or even as a principle value integral
and make use of a broader distributional definition of the operator Gρu for arbitrary u ∈ L1(Ω).
To make this precise, let us introduce the nonlocal operator defined by

(Dρ)iφi(x) = −p.v. N
ˆ

Ω

φi(x) + φi(y)

|x− y|
xi − yi
|x− y|

ρ(x− y) dy

for any φ = (φ1, φ2, . . . , φN ) measurable. Then we define the nonlocal divergence as

Dρφ(x) =

N∑
i=1

(Dρ)iφi(x) = −p.v. N
ˆ

Ω

φ(x) + φ(y)

|x− y|
· x− y
|x− y|

ρ(x− y) dy.
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For smooth vector fields this operator is related to the classical divergence operator (hence the
name) and is the adjoint of the nonlocal gradient operator. Moreover, as will be shown in the
next section, for all x ∈ Ω, and φ ∈ C∞c (Ω;RN ),

|Dρφ(x)| ≤ 3N‖∇φ‖L∞(Ω)‖ρ‖L1(Rd). (1.4)

Definition 1.3 Given u ∈ L1(Ω), we define the distribution nonlocal gradient Gρu as

〈Gρu,φ〉 := −
ˆ

Ω
u(x)Dρφ(x) dx, ∀φ ∈ C∞c (Ω;RN ).

This definition echoes the notion of distributional derivatives, and in fact, inequality (1.4) implies
that Gρu is a distribution, since

|〈Gρu,φ〉| ≤ 3N‖∇φ‖L∞(Ω)‖ρ‖L1(Rd)‖u‖L1(Ω).

The following theorem shows that this notion of distributional nonlocal gradient agrees with the
nonlocal gradient whenever it is well-defined as a Lebesgue integral, and therefore for Sobolev
and BV functions.

Theorem 1.4 (Nonlocal integration by parts) Suppose that u ∈ L1(Ω) and |u(x)−u(y)|
|x−y| ρ(x−

y) ∈ L1(Ω× Ω). Then Gρu ∈ L1(Ω;RN ) and for any φ ∈ C1
c (Ω;RN )ˆ

Ω
Gρu(x) · φ(x) dx = −

ˆ
Ω
u(x)Dρφ(x) dx. (1.5)

In this case, by definition, the distribution Gρu is precisely the function Gρu.
As a consequence of the above theorem we have the following theorem characterizing Sobolev
spaces, along with the continuity of (nonlinear) integral functionals of the nonlocal gradient.

Theorem 1.5 Let Ω ⊂ RN be open, bounded, and sufficiently smooth. Assume ρn satisfy (1.2)
and that u ∈ Lp(Ω) for some 1 < p < ∞. Then u ∈ W 1,p(Ω) if and only if the sequence of
distributions {Gnu} is a bounded sequence in Lp(Ω;RN ). Moreover, if f is continuous satisfying
the growth condition |f(z)| ≤ C(1 + |z|p) (C > 0), then

lim
n→∞

ˆ
Ω
f(Gnu) dx =

ˆ
Ω
f(∇u) dx. (1.6)

We remark that when |u(x)−u(y)|
|x−y| ρn(x−y) ∈ L1(Ω×Ω) for all n, by Theorem 1.4, Gnu = Gnu.

Moreover, applying Holder’s inequalityˆ
Ω
|Gnu|p dx ≤ Np

ˆ
Ω

ˆ
Ω

|u(x)− u(y)|p

|x− y|p
ρn(x− y) dydx. (1.7)

In [5] and [19], the finiteness of the limit of the right hand side in (1.7) was shown to be a
necessary and sufficient condition for u ∈W 1,p(Ω). Theorem 1.5 states that the finiteness of the
limit of the left hand side (which is smaller) can used to test if u ∈ W 1,p(Ω). Moreover, when
using the quantity on the right hand side, Bourgain, Brezis and Mironescu [5] had shown that
in the limit one recovers a constant multiple of the Lp-norm of ∇u, while we recover the exact
Lp-norm of ∇u by using the left hand side. In these aspects our characterization is tighter.

When p = 1, the corresponding theorem characterizes the space of functions of bounded
variation, see also [12].
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Theorem 1.6 Let Ω ⊂ RN be open, bounded, and sufficiently smooth. Assume ρn satisfy (1.2),
and that u ∈ L1(Ω). Then u ∈ BV (Ω) if and only if the sequence of distributions {Gnu} is a
bounded sequence in L1(Ω;RN ). In this case, in addition to strict convergence, Gnu converges
to Du in the stronger sense

lim
n→∞

ˆ
Ω

√
1 + |Gnu|2 dx =

ˆ
Ω

√
1 + |Dau|2 dx+ |Dsu|(Ω). (1.8)

As a consequence,

lim
n→∞

ˆ
Ω
f(Gnu(x))dx =

ˆ
Ω
f(Dau) dx+

ˆ
Ω
f∞

(
dDsu

d|Dsu|

)
d|Dsu| (1.9)

for any continuous f that is convex (or concave) with at most linear growth, |f(z)| ≤ C(1 + |z|),
for some C > 0 and for all z ∈ RN .

In the above theorem we have used the Radon-Nikodým decomposition Du = DauLN +Dsu
where Dau is the approximate gradient of u and Dsu is singular with respect to the Lebesgue
measure. We have also used the notation dDsu

d|Dsu| to represent the Radon-Nikodým derivative of

Dsu with respect to its total variation |Dsu|. Finally, the function f∞ is the recession function
of f , for any z ∈ Rd is defined as

f∞(z) := lim sup
t→∞

f(tz)

t
.

The convergence (1.8) is precisely 〈·〉− strict convergence of measures introduced in [20]. Equa-
tion (1.9) holds for bounded continuous functions f (in this case f∞ ≡ 0) as well as f continuous
and 1-homogeneous where f∞ ≡ f , see [20, Theorem 5] and [1, Lemma 2.2].

As the above results demonstrate, the consideration of integral functionals of the nonlocal
gradient allows one to obtain general theorems concerning the convergence of energies of the
nonlocal gradient to the corresponding local energy as the nonlocality vanishes. More than this
pointwise convergence of energies, we also have the following result on the Γ-convergence of the
nonlocal energies.

Theorem 1.7 Let 1 < p <∞ and suppose Ω ⊂ RN is open, bounded, and smooth. Assume ρn
satisfy (1.2) and fp satisfies

c|z|p ≤ fp(z) ≤ C(1 + |z|p). (1.10)

Then

Γ−Lp(Ω)- lim
n→∞

ˆ
Ω
fp(Gnu) dx =


ˆ

Ω
f∗∗p (∇u) dx, u ∈W 1,p(Ω)

+∞ otherwise

where f∗∗ is the greatest convex function on RN majorized by f , and the Γ-limit is taken with
respect to the strong topology of Lp(Ω).

In the case p = 1, a similar closed form Γ-limit will also be obtained, see Section 4.
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Remark 1.8 The above localization results for nonlocal gradients give the complete analogy
to the localization and characterization results for nonlocal functionals initiated by Bourgain,
Brezis, and Mironescu [5]. In particular, in this paper we show the nonlocal gradient analogy to
localization in and characterization of Sobolev spaces [5], of BV spaces [12], and in the sense of
Γ-convergence [22].

Finally, we remark that nonlocal gradients can be defined for vector fields as well, naturally
extending the definition (1.1) as (see [14] for more)

Gnu(x) := Np.v.

ˆ
Ω

[u(x)− u(y)]

|x− y|
⊗ [x− y]

|x− y|
ρn(x− y) dy.

All of the above theorems remain valid for vector fields, with the exception of Theorem 1.7.
This is particularly interesting, since there have been no nonlocal characterizations of the space
of functions of Bounded Variation in the vector-valued setting. We should note, however, that
there is a nonlocal characterization of the space of functions of Bounded Deformation, see [21].

The organization of the remainder of the paper is as follows. In Section 2, we show that the
principle value integral definition of nonlocal gradients can be understood as a Lebesgue integral
for weakly differentiable functions. We will also prove several results concerning the nonlocal
divergence operator, as well as to demonstrate a proof of Theorem 1.4, nonlocal integration by
parts. In Section 3, we will prove the localization theorems stated in the introduction, as well
as our results concerning the characterization of Sobolev and BV spaces. Finally, in Section
4, we conclude the paper with the proof of two theorems asserting the Γ-convergence of the
nonlocal energies to the relaxation of the local energy, treating the cases 1 < p < +∞ and p = 1
separately.

2 Nonlocal calculus

2.1 Nonlocal gradient operator

Our approach to localization is based on approximation by smooth functions of Sobolev and BV
functions in the strong and strict topology, respectively. For Sobolev functions, this involves
taking advantage of the uniform boundedness of the linear operator Gnu and the density of
smooth functions, while for BV functions the result becomes more technical, requiring a careful
upper bound of the total variation. We record a lemma that is essentially in [5], if not for the
presence of Gρ.

Lemma 2.1 Suppose that Ω ⊂ RN is open, bounded, and sufficiently smooth, ρ(z) ∈ L1(RN )
and 1 ≤ p < ∞. Then the operator Gρ : W 1,p(Ω) → Lp(Ω;RN ) is a bounded operator with the
estimate

‖Gρu‖Lp ≤ C‖ρ‖L1‖∇u‖Lp , for all u ∈W 1,p(Ω)

Similarly Gρ : BV (Ω)→ L1(Ω;RN ) with the estimate

‖Gρu‖L1(Ω) ≤ C‖ρ‖L1 |Du|(Ω), for all u ∈ BV (Ω).

Here, C = C(p,N,Ω) > 0.
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Proof. Applying Hölder’s inequality and [5][Theorem 1] we obtain

ˆ
Ω

(ˆ
Ω

|u(x)− u(y)|
|x− y|

ρ(x− y) dy

)p
dx

≤
ˆ

Ω

[ˆ
Ω

|u(x)− u(y)|p

|x− y|p
ρ(x− y) dy

] [ˆ
Ω
ρ(x− y) dy

] p
p′

dx

≤ ‖ρ‖p−1
L1

ˆ
Ω

ˆ
Ω

|u(x)− u(y)|p

|x− y|p
ρ(x− y) dydx

≤ C(p,Ω)‖ρ‖p
L1‖∇u‖pLp(Ω),

The above estimate implies that

ˆ
Ω
|Gρu(x)|p dx ≤ Np

ˆ
Ω

(ˆ
Ω

|u(x)− u(y)|
|x− y|

ρ(x− y) dy

)p
dx ≤ NpC(p,Ω)‖ρ‖p

L1‖∇u‖pLp(Ω).

The subsequent statement for BV functions follows from the density of C∞(Ω) ∩W 1,1(Ω) in
BV with respect to the strict convergence.

In the case of functions satisfying a Lipschitz condition, we have the following estimate.

Lemma 2.2 If u ∈ Lip(Ω), the set of Lipschitz functions, then Gρu ∈ L∞(Ω;RN ) and

||Gρu||L∞ ≤ N‖ρ‖L1 Lip(u; Ω).

We remark that the notion of nonlocal gradient is not restricted to functions that have some
form of classical derivatives. Depending on the severity of the singularity on ρ, Gρu may be
well-defined as a Lebesgue integral even for discontinuous functions. Indeed, the space BV (Ω)
includes discontinuous functions. More generally, for s ∈ (0, 1) one may take ρ(z) = |z|−N+(1−s).
For this ρ, an estimate similar to the proof of Lemma 2.1 shows that Gρu ∈ L1(Ω;RN ) for any
u ∈W s,1(Ω) with the estimate

‖Gρu‖L1(Ω) ≤ C|u|W s,1 .

2.2 Nonlocal divergence and integration by parts

We recall the definition of the nonlocal divergence operator given in the introduction:

(Dρ)φ(x) = −p.v. N
ˆ

Ω

φ(x) + φ(y)

|x− y|
· x− y
|x− y|

ρ(x− y) dy.

Lemma 2.3 Suppose that φi is measurable. Then for x ∈ Ω such that φi(x) < ∞, we have
(Dρ)iφi(x) <∞ if and only if (Gρ)iφi(x) <∞.

Proof. Fix x ∈ Ω and let 0 < δ(x) = dist(x, ∂Ω). For any ε ∈ (0, δ(x)), we have that

− χ[ε,∞)(|x− y|)
φi(x) + φi(y)

|x− y|
xi − yi
|x− y|

ρ(x− y) + 2φi(x)χ[ε,δ(x))(|x− y|)
xi − yi
|x− y|2

ρ(x− y)

= χ[ε,∞)(|x− y|)
φi(x)− φi(y)

|x− y|
xi − yi
|x− y|

ρ(x− y)− 2φi(x)χ[δ(x),∞)(|x− y|)
xi − yi
|x− y|2

ρ(x− y)
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Multiplying by N , integrating both sides in y we obtain

−N
ˆ

Ω\B(x,ε)

φi(x) + φi(y)

|x− y|
xi − yi
|x− y|

ρ(x− y) dy = N

ˆ
Ω\B(x,ε)

φi(x)− φi(y)

|x− y|
xi − yi
|x− y|

ρ(x− y) dy

− 2N

ˆ
Ω

φi(x)χ[δ(x),∞)(|x− y|)
xi − yi
|x− y|2

ρ(x− y) dy.

(2.1)

Now we let ε→ 0 to obtain

(Dρ)i φi(x) = (Gρ)i φi(x)− 2N φi(x)

ˆ
Ω

χ[δ(x),∞)(|x− y|)
xi − yi
|x− y|2

ρ(x− y)dy (2.2)

Equation (2.2) gives a formula for the nonlocal divergence operator in terms of the nonlocal
gradient and will be crucial in establishing some useful estimates later. When Ω = RN and
ρ is compactly supported in a ball, (2.2) is derived in [14, Lemma 5.1] and used to establish
localization in H1(RN ).

Corollary 2.4 For any φ ∈ C1
c (Ω;RN ), Dρφ ∈ L∞(Ω). Moreover,

‖(Dρ)iφi‖L∞(Ω) ≤ 3N‖∇φi‖L∞(Ω)‖ρ‖L1 .

Proof. We use equation (2.2) to prove the corollary. By Lemma 2.2, |(Gρ)iφi| ≤ N‖∇φi‖L∞(Ω)‖ρ‖L1 ,
and therefore it suffices to estimate the second term in the right hand side of (2.2). To that end,
corresponding to x ∈ Ω, choose ξ(x) ∈ [Ω \ supp(φi)] ∩B(x, δ(x)). Then φi(ξ(x)) = 0 and so

φi(x)

ˆ
Ω
χ[δ(x),∞)(|x−y|)

xi − yi
|x− y|2

ρ(x−y)dy =

ˆ
Ω
χ[δ(x),∞)(|x−y|)φi(x)−φi(ξ(x))

xi − yi
|x− y|2

ρ(x−y)dy

Using the estimate |x− ξ(x)| ≤ δ(x) ≤ |x− y| when δ(x) ≤ |x− y|, we have∣∣∣∣ ˆ
Ω
χ[δ(x),∞)(|x− y|)φi(x)− φi(ξ(x))

xi − yi
|x− y|2

ρ(x− y)dy

∣∣∣∣
≤ ‖∇φi‖L∞(Ω)

ˆ
Ω
χ[δ(x),∞)(|x− y|)

|x− ξ(x)||xi − yi|
|x− y|2

ρ(x− y)dy ≤ ‖∇φi‖L∞(Ω)‖ρ‖L1 .

This completes the proof.

Remark 2.5 Equation (2.1) also give us the useful estimate

sup
ε>0,x∈Ω

∣∣∣∣∣−N
ˆ

Ω\B(x,ε)

φi(x) + φi(y)

|x− y|
xi − yi
|x− y|

ρ(x− y) dy

∣∣∣∣∣ ≤ 3N‖∇φi‖L∞(Ω)‖ρ‖L1 . (2.3)

The next lemma state a further relation between the nonlocal divergence and classical di-
vergence as the nonlocality vanishes.

Lemma 2.6 Suppose that ρn are given by (1.2). Define Dn := Dρn . Then for each φ =
(φ1, φ2, . . . , φN ) ∈ C1

c (Ω;RN ), we have the following convergences.
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a) (Uniform convergence)

lim
n→∞

‖Dnφ− Tr(Gnφ)‖L∞(Ω) = 0, where Tr(Gnφ) =
N∑
i=1

(Gn)iφi .

b) (Localization) As a consequence, for any 1 ≤ p ≤ ∞

lim
n→∞

‖Dnφ− divφ‖Lp(Ω) = 0.

Proof. To prove part a) we recall equation (2.2) that relates (Dn)iφi and (Gn)iφi, we see that
for all x ∈ Ω \ Supp(φ),

(Dn)i φi(x)− (Gn)i φi(x) = 0. (2.4)

On the other hand, for all x ∈ Supp(φ), using the fact that δ(x) = dist(x, ∂Ω) ≥ γ =
dist(Supp(φ), ∂Ω), and

ˆ
Ω
χ[δ(x),∞)(|x− y|)

xi − yi
|x− y|2

ρn(x− y)dy =

ˆ
Ω
χ[γ,∞)(|x− y|)

xi − yi
|x− y|2

ρn(x− y)dy,

we obtain that

| (Dn)i φi(x)− (Gn)i φi(x)| ≤ 2N

γ
‖φ‖L∞(Ω)

ˆ
|z|>γ

ρn(z)dz.

It then follows from above that

‖ (Dn)i φi − (Gn)i φi‖L∞(Ω) ≤
2N

γ
‖φ‖L∞(Ω)

ˆ
|z|>γ

ρn(|z|)dz → 0, as n→∞ (2.5)

To prove part b) we note that the case p = +∞ follows from (2.5), equation (2.4), and part a) of
Theorem 1.1 which will be proved in the next section, while the fact that Ω is bounded implies
that this holds for all 1 ≤ p <∞.

Finally, we prove the nonlocal integration by parts given in Theorem 1.4 that gives an
important relationship between the two nonlocal operators.

Proof of Theorem 1.4. Let us begin by observing that, on the one hand, since
|u(y)−u(x)|
|x−y| ρ(y−x) ∈ L1(Ω×Ω), Lebesgue’s dominated convergence theorem and Fubini’s theorem

imply that

1

N

ˆ
Ω
Gρu(x) · φ(x) dx = lim

ε→0

ˆ
Ω

ˆ
Ω\B(x,ε)

u(x)− u(y)

|x− y|
x− y
|x− y|

ρ(x− y) · φ(x) dydx

= lim
ε→0

ˆ
Ω×Ω\{|x−y|<ε}

u(x)− u(y)

|x− y|
x− y
|x− y|

ρ(x− y) · φ(x) dLN2
(x, y).
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On the other hand, using the estimate (2.3), again by Lebesgue’s dominated convergence theo-
rem,

− 1

N

ˆ
Ω
u(x)Dρφ(x) dx = lim

ε→0

ˆ
Ω

ˆ
Ω\B(x,ε)

u(x)
N∑
i=1

φi(x) + φi(y)

|x− y|
xi − yi
|x− y|

ρ(x− y) dydx

= lim
ε→0

ˆ
Ω×Ω\{|x−y|<ε}

u(x)
N∑
i=1

φi(x) + φi(y)

|x− y|
xi − yi
|x− y|

ρ(x− y) dLN2
(x, y).

Thus, to prove the lemma, it suffices to establish equality on the set {Ω × Ω \ {|x − y| < ε}},
where the singularity of the kernel is removed, and for clarity of presentation we omit this from
the integral symbols that follow.

Working with the ith component of the nonlocal gradient, we have
ˆ
u(x)− u(y)

|x− y|
xi − yi
|x− y|

ρ(x− y)φi(x) dLN2
(x, y)

=

ˆ
u(x)φi(x)

|x− y|
xi − yi
|x− y|

ρ(x− y) dLN2
(x, y)−

ˆ
u(y)φi(x)

|x− y|
xi − yi
|x− y|

ρ(x− y) dLN2
(x, y).

Now, interchanging the roles of x and y in the second integral, using symmetry of the integration
domain, we have

−
ˆ
u(y)φi(x)

|x− y|
xi − yi
|x− y|

ρ(x− y) dLN2
(x, y) =

ˆ
u(x)φi(y)

|x− y|
xi − yi
|x− y|

ρ(x− y) dLN2
(x, y),

and therefore,
ˆ
u(x)− u(y)

|x− y|
xi − yi
|x− y|

ρ(x− y)φi(x) dLN2
(x, y) =

ˆ
φi(x) + φi(y)

|x− y|
xi − yi
|x− y|

ρ(x− y)u(x) dLN2
(x, y).

Summing from i = 1, . . . , N , completes the proof of the lemma.

3 Localization of nonlocal gradients

In this section we will study the localization results for nonlocal gradients asserted in the intro-
duction and their application in characterizing Sobolev and BV spaces.

3.1 The convergence of nonlocal gradients to their local analogue

We assume that we have a sequence of radial function ρn satisfying (1.2). Let us first prove the
following useful lemma.

Lemma 3.1 Let

cin(x) :=

ˆ
Ω

(xi − yi)2

|x− y|2
ρn(x− y) dy. (3.1)

Then Ncin(x)→ 1 pointwise, and the convergence is uniform on compact sets.
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Proof. Let K ⊂ Ω be compact, and define γ := dist(K, ∂Ω). We compute, for x ∈ K,∣∣Ncin(x)− 1
∣∣ =

∣∣∣∣N ˆ
Ω

(xi − yi)2

|x− y|2
ρn(x− y) dy − 1

∣∣∣∣
≤

∣∣∣∣∣N
ˆ
|x−y|≤γ

(xi − yi)2

|x− y|2
ρn(x− y) dy − 1

∣∣∣∣∣+

∣∣∣∣∣N
ˆ
|x−y|>γ

(xi − yi)2

|x− y|2
ρn(x− y) dy

∣∣∣∣∣
≤

∣∣∣∣∣
ˆ
|h|≤γ

ρn(h) dh− 1

∣∣∣∣∣+

∣∣∣∣∣N
ˆ
|h|>γ

ρn(h) dh

∣∣∣∣∣ . (3.2)

Note that in the third inequality, we have used the fact that ρ is radial to write as
ˆ
B(x,γ)

(xi − yi)2

|x− y|2
ρn(x− y) dy =

1

N

ˆ
B(0,γ)

ρn(h) dh.

The right hand side of (3.2) is now independent of x, and so letting n→∞, we obtain uniform
convergence on K.

We now proceed to prove Theorem 1.1, which asserts the local uniform convergence of the
nonlocal gradient to the gradient whenever the underlying function is smooth on the closed set.

Proof of part a) of Theorem 1.1. Let u ∈ C1(Ω) and K ⊂ Ω be compact. We will
show that Gnu(x) → ∇u(x) uniformly for x ∈ K as n → ∞. By Lemma 3.1, we know that
Ncin(x)→ 1 uniformly for x ∈ K as n→∞, which implies that it suffices to show that for each
i from 1 to N , the quantity

J in(x) :=

∣∣∣∣N ˆ
Ω

u(x)− u(y)

|x− y|
(xi − yi)
|x− y|

ρn(x− y) dy −Ncin(x)
∂u

∂xi
(x)

∣∣∣∣
tends to zero uniformly for x ∈ K as n→∞. Rewriting J in using the definition (3.1) of cin, we
have

J in(x) =

∣∣∣∣∣N
ˆ

Ω

u(x)− u(y)− ∂u
∂xi

(x)(xi − yi)
|x− y|

(xi − yi)
|x− y|

ρn(x− y) dy

∣∣∣∣∣ .
Let ε > 0 be arbitrary. Choose δ small so that∣∣∣∣ ∂u∂xi (x)− ∂u

∂xi
(y)

∣∣∣∣ < ε whenever |x− y| < δ

Then

J in(x) ≤

∣∣∣∣∣N
ˆ
B(x,δ)

u(x)− u(y)− ∂u
∂xi

(x)(xi − yi)
|x− y|

(xi − yi)
|x− y|

ρn(x− y) dy

∣∣∣∣∣
+

2N

δ

(
‖u‖L∞(Ω) + ‖∇u‖L∞(Ω)

) ˆ
|x−y|≥δ

ρn(x− y) dy

Using mean value theorem, for every y ∈ B(x, δ), there exist ξ(x, y) ∈ B(x, δ) such that

u(x)− u(y) =
∂u

∂xi
(ξ(x, y))(xi − yi),
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which implies the estimate

J in(x) ≤ Nε
ˆ
|z|<δ

ρn(|z|) dz +
2N

δ

(
‖u‖L∞(Ω) + ‖∇u‖L∞(Ω)

) ˆ
|z|≥δ

ρn(|z|) dz

From the last estimate we obtain that

lim
n→∞

sup
x∈K

J in(x) ≤ Nε,

and sending ε→ 0, the result is demonstrated.
If u ∈ C1

c (Ω), then denoting γ = dist(∂Ω,Supp(u)), we have from what we established above

sup
x∈Ωγ/2

J in(x)→ 0, as n→∞

where Ωγ/2 is the set of points in Ω that are at least γ/2 distance away from the boundary. For
points x ∈ Ω \ (Ωγ/2), we have

J in(x) ≤ 2N

γ
‖u‖L∞(Ω)

ˆ
|z|≥γ/2

ρ(|z|) dz

which converges to 0, uniformly in x, as n→∞.
In the proof of the above theorem, we have used the differentiability and boundedness of

u, along with the fact that the derivative is continuous to establish local uniform convergence.
Assuming only that u ∈ Lip(Ω), a similar proof implies that the nonlocal gradient localizes
to the differential of u at any point of differentiability, i.e. pointwise almost everywhere by
Rademacher’s theorem.

Theorem 3.2 Let Ω ⊂ RN be open, assume ρn satisfy (1.2), and that u ∈ Lip(Ω). Then

Gnu→ ∇u

for LN almost every x ∈ Ω as n→∞.

Having proven the localization result for smooth functions, along with the density estimate
established in Lemma 2.1, we can now prove part b) of Theorem 1.1, which asserts the Lp strong
convergence of the nonlocal gradients to the weak gradient of a Sobolev function.

Proof of part b) of Theorem 1.1. We will use standard density arguments to prove the
theorem.

Step 1. The theorem holds true for v ∈ C2(Ω). Indeed, for any τ > 0, choose δ small enough
that |Ω \ Ωδ| < τ, where Ωδ = {x ∈ Ω : dist(x, ∂Ω) > δ}. Then

‖Gnv −∇v‖pLp(Ω) =

ˆ
Ωδ

|Gnv(x)−∇v(x)|pdx+

ˆ
Ω\Ωδ

|Gnv(x)−∇v(x)|pdx.

Applying part a) of Theorem 1.1, the first integral goes to 0, as n → ∞. On the other hand,
applying Lemma 2.2,ˆ

Ω\Ωδ
|Gnv(x)−∇v(x)|pdx ≤ 2p‖∇v‖pL∞ |Ω \ Ωδ| ≤ 2p‖∇v‖pL∞τ.
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That is, for any τ > 0
lim
n→∞

‖Gnv −∇v‖pLp(Ω) ≤ 2p‖∇v‖pL∞τ,

obtaining the convergence.
Step 2. Let u ∈ W 1,p(Ω). We use the fact that C2(Ω) is dense in W 1,p(Ω), since Ω is

sufficiently regular. Given τ > 0 small, we can find v ∈ C2(Ω) such that

‖∇u−∇v‖pLp(Ω) ≤ τ.

Then by Lemma 2.1, there exists C independent of n such that

‖Gnu− Gnv‖pLp(Ω) = ‖Gn(u− v)‖pLp(Ω) ≤ Cτ

for all n. Then for each n we have

‖Gnu−∇u‖Lp(Ω) ≤ ‖Gnu− Gnv‖Lp(Ω) + ‖Gnv −∇v‖Lp(Ω) + ‖∇v −∇u‖Lp(Ω).

Taking the limit as n→∞ and applying Step 1, combined with the above estimates, we obtain

lim
n→∞

‖Gnu−∇u‖Lp(Ω) ≤ (C + 1)τ,

completing the proof of the theorem.
For BV functions the following lemma gives an estimate for the variation measure µn asso-

ciated with Gnu applied on open subset of Ω. We notice that this estimate is a tighter one than
that obtained in Lemma 2.1.

Lemma 3.3 Suppose that Ω is open and bounded with sufficiently smooth boundary, and A b Ω
is an open subset. Then if u ∈ BV (Ω), then there exists a sequence of positive numbers αn =
αn(u,Ω, A), such that for each n ≥ 1,

|µn|(A) = sup
φ∈Cc(A;RN )

‖φ‖L∞(Ω)≤1

∣∣∣∣ˆ
A
Gnu(x) · φ(x) dx

∣∣∣∣ ≤ (|Du|(Ω) + αn, ).

Moreover, the sequence

αn := C(Ω)
N

γN
‖u‖BV

ˆ ∞
γ

ρ̂n(t) tN−1 dt→ 0, as n→∞,

where γ = dist(A, ∂Ω) > 0.

Proof. It suffices to demonstrate that if u ∈ C∞(Ω) ∩W 1,1(Ω) then the inequality∣∣∣∣ˆ
A
Gnu(x) · φ(x) dx

∣∣∣∣ ≤ (|Du|(Ω) + αn)‖φ‖L∞(Ω), (3.3)

holds for each n. If we can show this, the result will follow for general u ∈ BV (Ω) by density.
To see this, note that the right hand side is continuous with respect to the strict convergence
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while it is a consequence of the integration by parts formula in Theorem 1.4 (and the fact that
Dnφ is uniformly bounded for smooth vector fields) that

u 7→
ˆ
A
Gnu(x) · φ(x) dx

is continuous with respect to strong convergence in L1(Ω).
We now proceed to verify (3.3). First, we notice that

Gnu(x) = N lim
ε→0

ˆ
Ω\B(x,ε)

u(x)− u(y)

|x− y|
x− y
|x− y|

ρn(x− y) dy

= N lim
ε→0

ˆ
Ω\B(x,ε)

[u(x)− u(y)]∇y

(ˆ ∞
|x−y|

ρ̂n(t)

t
dt

)
dy.

Thus, for ε > 0 (and we can take a sequence ε = εj) we may integrate by parts to obtain

ˆ
Ω\B(x,ε)

[u(x)− u(y)]∇y

(ˆ ∞
|x−y|

ρ̂n(t)

t
dt

)
dy

=

ˆ
Ω\B(x,ε)

∇u(y)

ˆ ∞
|x−y|

ρ̂n(t)

t
dtdy +

ˆ
∂Ω

[u(x)− u(ξ)]ν

ˆ ∞
|x−y|

ρ̂n(t)

t
dtdHN−1(ξ)

−
ˆ
∂B(0,ε)

[u(x+ h)− u(x)]
h

|h|

ˆ ∞
ε

ρ̂n(t)

t
dtdHN−1(h).

Therefore, we have ∣∣∣∣ˆ
A
Gnu · φ dx

∣∣∣∣ ≤ I(φ) + II(φ) + III(φ),

where we have defined

I(φ) := N

∣∣∣∣∣
ˆ
A
φ(x) · lim

ε→0

ˆ
Ω\B(x,ε)

∇u(y)

ˆ ∞
|x−y|

ρ̂n(t)

t
dtdydx

∣∣∣∣∣ ,
II(φ) := N

∣∣∣∣∣
ˆ
A
φ(x) · lim

ε→0

ˆ
∂B(0,ε)

[u(x+ h)− u(x)]
h

|h|

ˆ ∞
ε

ρ̂n(t)

t
dtdHN−1(h)dx

∣∣∣∣∣ ,
III(φ) := N

∣∣∣∣∣
ˆ
A
φ ·

ˆ
∂Ω

[u(x)− u(y)]ν

ˆ ∞
|x−y|

ρ̂n(t)

t
dtdHN−1(y)dx

∣∣∣∣∣ .
We claim that

I(φ) ≤ |Du|(Ω)‖φ‖L∞(Ω), II(φ) = 0,

and there are a sequence of positive numbers αn such that

III(φ) ≤ αn‖φ‖L∞(Ω),
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We begin by showing the bound for I(φ). We have

I(φ) =

∣∣∣∣∣N
ˆ
A
φ(x) · lim

ε→0

ˆ
Ω\B(x,ε)

∇u(y)

ˆ ∞
1

ρ̂n(s|x− y|)
s

dsdydx

∣∣∣∣∣ ,
where we have changed variables in the inner integral. Now, since u is smooth and ρn ∈ L1(RN ),
letting ε → 0 (along a sequence) and applying Lebesgue’s dominated convergence theorem, we
obtain

I(φ) ≤ N
ˆ
A
|φ(x)|

ˆ
Ω
|∇u(y)|

ˆ ∞
1

ρ̂n(s|x− y|)
s

dsdydx = ‖φ‖L∞(Ω)

ˆ
Ω
|∇u(y)|ηn(y)dy,

where we have interchanged the order of integration, and introduced

ηn(y) = N

ˆ
A

ˆ ∞
1

ρ̂n(s|x− y|)
s

ds dx.

Note that ‖ηn‖L∞(Ω) ≤ 1. Indeed, by changing variabels z = sx− sy, we have

ηn(y) ≤ N
ˆ ∞

1

1

sN+1

(ˆ
sA−sy

ρ̂n(|z|)dz
)
ds ≤ N

ˆ ∞
1

1

sN+1
ds = 1.

We then conclude that

I(φ) ≤ ‖φ‖L∞(Ω)

ˆ
Ω
|∇u(y)| dy = ‖φ‖L∞(Ω)|Du|(Ω).

Let us show next that II(φ) = 0. Recall that

II(φ) = N

∣∣∣∣∣
ˆ
A
φ(x) · lim

ε→0

ˆ
∂B(0,ε)

[u(x+ h)− u(x)]
h

|h|

ˆ ∞
ε

ρ̂n(t)

t
dtdHN−1(h)dx

∣∣∣∣∣ .
Now, for small ε and all x ∈ A, B(x, ε) b Ω. Therefore, we can find a constant L = L(A, u) such
that |u(x+ h)− u(x)| ≤ Lε, for all h ∈ B(0, ε). As a consequence,

II(φ) ≤ NL|Ω|‖φ‖L∞(Ω) lim
ε→0

[
ε

(ˆ
∂B(0,ε)

dHN−1(h)

)ˆ ∞
ε

ρ̂n(t)

t
dt

]

= NLHN−1(SN−1)|Ω|‖φ‖L∞(Ω) lim
ε→0

εN
ˆ ∞
ε

ρ̂n(t)

t
dt.

since the integral over ∂B(0, ε) makes a contribution of HN−1(SN−1)εN−1. Thus II(φ) = 0 if
we show that

lim
ε→0

εN
ˆ ∞
ε

ρ̂n(t)

t
dt = 0.

This follows from Lebesgue’s dominated convergence theorem, since for almost every t ∈ (0,∞)
fixed we have that

0 ≤ εN ρ̂n(t)

t
χ[ε,∞](t)→ 0
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as ε→ 0, while

εN
ρ̂n(t)

t
χ[ε,∞](t) ≤ ρ̂n(t)tN−1 ∈ L1(0,∞).

Finally, we show that III(φ) ≤ αn‖φ‖L∞(Ω). We recall

III(φ) = N

∣∣∣∣∣
ˆ
A
φ ·

ˆ
∂Ω

[u(x)− u(ξ)]ν(ξ)

ˆ ∞
|x−ξ|

ρ̂n(t)

t
dtdHN−1(ξ)dx

∣∣∣∣∣ .
Now, we estimate the above as

III(φ) ≤ N
ˆ
A
|φ(x)||u(x)|

ˆ
∂Ω

(ˆ ∞
|x−ξ|

ρ̂n(t)

t
dt

)
dHN−1(ξ) dx

+N

ˆ
A
|φ(x)|

ˆ
∂Ω
|u(ξ)|

(ˆ ∞
|x−ξ|

ρ̂n(t)

t
dt

)
dHN−1(ξ) dx

Now, since dist(A, ∂Ω) = γ > 0, the integral involving ρ̂n is bounded, and in fact, for all x ∈ A
and ξ ∈ ∂Ω ˆ ∞

|x−ξ|

ρ̂n(t)

t
dt ≤

ˆ ∞
γ

ρ̂n(t)

t
dt ≤ 1

γN

ˆ ∞
γ

ρ̂n(t) tN−1 dt.

As a result,

III(φ) ≤ N

γN
‖φ‖L∞(Ω)

(ˆ ∞
γ

ρn(t) tN−1 dt

)
×[

|∂Ω|
ˆ

Ω
|u(x)| dx+ |Ω|

ˆ
∂Ω
|u(ξ)|dHN−1(ξ)

]
.

Using the trace theorem for BV functions, we have that

|∂Ω|
ˆ

Ω
|u(x)| dx+ |Ω|

ˆ
∂Ω
|u(ξ)|dHN−1(ξ) ≤ C(Ω)‖u‖BV

from which it follows that

III(φ) ≤ αn‖φ‖L∞(Ω), where αn = C(Ω)
N

γN
‖u‖BV

ˆ ∞
γ

ρ̂n(t) tN−1 dt.

Observe that from the property of the sequence ρn, αn → 0 as n→∞.
The next lemma is a careful estimation of an upper bound for the integral of a sequence of

nonlocal gradients integrated over open subsets of Ω. It is very close in spirit to the work of
Bourgain, Brezis, and Mironescu [5] and Lemma 2.1.

Lemma 3.4 Suppose that u ∈ BV (Ω). Then for any open subset A ⊂ Ω such that |Du|(∂A) = 0
we have

lim sup
n→∞

ˆ
A
|Gnu| dx ≤ N |Du|(A).
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Proof. Given u ∈ BV (Ω), [2, Proposition 3.21] implies that we may find an extension ũ ∈
BV (RN ) of u ∈ BV (Ω) with the property that ũ = u in Ω, |Dũ|(∂Ω) = 0, and ũ ∈ BV (RN ).
Then given any η > 0, we have

ˆ
A
|Gnu| dx =

ˆ
A
|Gn ũ|dx ≤ N

ˆ
A

ˆ
Ω

|u(x)− u(y)|
|x− y|

ρn(x− y) dydx

≤ N
ˆ
A

ˆ
Ω\B(x,η)

|u(x)− u(y)|
|x− y|

ρn(x− y) dydx

+N

ˆ
A

ˆ
B(x,η)

|ũ(x)− ũ(y)|
|x− y|

ρn(x− y) dydx,

=: I1
n(u) + I2

n(u).

We show that lim supn→∞ I
1
n(u) = 0, while lim supn→∞ I

2
n(u) ≤ N |Du|(A), and therefore we

will have demonstrated (3.8). To see the former, notice that

N

ˆ
A

ˆ
Ω\B(x,η)

|u(x)− u(y)|
|x− y|

ρn(x− y) dydx ≤ N

η

(
2

ˆ
Ω
|u(x)|dx

)ˆ
|z|≥η

ρn(z)dz

and since u ∈ L1(Ω), this tends to zero a n→∞. Let us now estimate I2
n(u). Note that we can

find a sequence of smooth functions uk ∈ C∞(RN )∩BV (RN ) such that uk → ũ in L1(RN ) and
that

´
U |∇uk|dx → |Dũ|(U), for any open subset U of RN such that |Du|(∂U) = 0. Then by

Fatou’s lemma we have that

I2
n(u) = N

ˆ
A

ˆ
B(0,η)

|ũ(x+ h)− ũ(x)|
|h|

ρn(h) dhdx

≤ lim inf
k→∞

N

ˆ
A

ˆ
B(0,η)

|uk(x+ h)− uk(x)|
|h|

ρn(h) dhdx. (3.4)

We estimate the right hand side to obtain that

N

ˆ
A

ˆ
B(0,η)

|uk(x+ h)− uk(x)|
|h|

ρn(h) dhdx ≤ N
ˆ
A

ˆ
B(0,η)

ˆ 1

0
|∇uk(x+ th)| dt ρn(h) dhdx

= N

ˆ
B(0,η)

ˆ 1

0

ˆ
A
|∇uk(x+ th)| dxdt ρn(h) dh ≤ N

ˆ
(A)η
|∇uk(z)| dz = N |∇uk|((A)η).

where we denoted the open subset A+B(0, η) of RN by (A)η. Letting k →∞, utilizing inequality
(3.4) and the convergence |∇uk|((A)η)→ |Dũ|((A)η) for any η such that |Dũ|(∂(A)η) = 0, which
is again true for all but at most countably many η, we obtain

I2
n(u) ≤ N |Dũ|((A)η), and so lim sup

n→∞
I2
n(u) ≤ N |Dũ|((A)η).

We note that ∩η>0(A)η = A, and |Du|(∂A) = 0 by hypothesis, thus completing the proof.
We are now ready to provide the proof of Theorem 1.2.
Proof of Theorem 1.2. We divide the proof in two steps.

Step 1: Weak-star convergence.
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The weak-star convergence of the measures can be proved applying Theorem 1.4 and Lemma
2.6. To begin with, again, it suffices to show that

lim
n→∞

ˆ
Ω
Gnu · φ dx =

ˆ
Ω
φ · dDu, (3.5)

for all φ ∈ C∞c (Ω;RN ). Now on the one hand, using the uniform bounds on µn = GnuLN given

by Lemma 2.1, we can deduce that up to a subsequence µn
∗
⇀ µ weakly-star in

(
C0(Ω;RN )

)′
to

some µ ∈
(
C0(Ω;RN )

)′
. That is,

lim
n→∞

ˆ
Ω
Gnu(x) · φ(x) dx =

ˆ
Ω
φ · dµ.

On the other hand, from the integration by parts formula, we have

lim
n→∞

ˆ
Ω
Gnu(x) · φ(x) dx = − lim

n→∞

ˆ
Ω
u(x)Dnφ(x) dx

= −
ˆ

Ω
u(x)divφ(x) dx

=

ˆ
Ω
φ(x) · dDu,

where we have used Lebesgue dominated theorem to pass to the limit, after noting that ‖Dnφ‖L∞(Ω)

is uniformly bounded in n by Corollary 2.4. That completes the proof of the weak-star conver-
gence of measures.
Step 2. The convergence of the total variations.

Recalling that the BV -seminorm is lower semicontinuous with the weak-star convergence, it
follows that

|Du|(Ω) ≤ lim inf
n→∞

|µn|(Ω).

Thus to complete the second half of the proof of the theorem, it is enough to show that

lim sup
n→∞

|µn|(Ω) ≤ |Du|(Ω). (3.6)

To that end, let us define the open sets Ωδ = {x ∈ Ω : dist(x, ∂Ω) > δ}. Then we can write

|µn|(Ω) = |µn|(Ωδ) + |µn|(Ω \ Ωδ).

The desired result will be proven if we demonstrate that

lim sup
n→∞

|µn|(Ωδ) ≤ |Du|(Ω), and, (3.7)

lim sup
n→∞

|µn|(Ω \ Ωδ) ≤ N |Du|(Ω \ Ωδ) (3.8)
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for any δ > 0 sufficiently small such that |∂Ωδ| = 0 and |Du|(∂Ωδ) = 0. Inequality (3.6) will
then follow by sending δ → 0 and using the fact that Du = Dũ is a Radon measure with
|Dũ|(∂Ω) = 0.

However, inequality (3.7) follows from Lemma 3.3, by taking A = Ωδ, while the inequality
(3.8) follows from the fact the assumption |∂Ωδ| = 0 so that

|µn|(Ω \ Ωδ) =

ˆ
Ω\Ωδ

|Gnu| dx =

ˆ
Ω\Ωδ

|Gnu| dx = |µn|(Ω \ Ωδ),

to which we can apply Lemma 3.4 with A = Ω \ Ωδ.

3.2 Characterizations of Sobolev and BV Spaces

In this subsection we prove the nonlocal characterization of the Sobolev spaces W 1,p(Ω) for
1 < p <∞ and BV (Ω) when p = 1.

Proof of Theorem 1.5. We remark that if u ∈ W 1,p(Ω) for some 1 ≤ p < ∞ , then we
obtain that (see [5] or Lemma 2.1 for the proof) for all n, Gnu = Gnu and that supn≥1 ‖Gnu‖Lp <
∞. Conversely suppose u ∈ Lp(Ω) and

sup
n≥1
‖Gnu‖Lp <∞.

Then since p > 1, up to a subsequence, Gnu ⇀ v weakly in Lp(Ω;RN ) for some v ∈ Lp(Ω;RN ).
To complete the proof, we will just need to demonstrate that v = ∇u, the distributional deriva-
tive. To that end, for φ ∈ C∞c (Ω;RN ), by definition and Lemma 2.6

ˆ
Ω

v(x) · φ(x) dx = lim
n→∞

ˆ
Ω
Gnu · φ dx = − lim

n→∞

ˆ
Ω
uDnφ dx = −

ˆ
Ω
udiv φ(x) dx.

Once we know that u ∈ W 1,p(Ω), the proof of the convergence of the limit (1.6) follows from
generalized Lebesgue’s dominated convergence theorem using the continuity of f, the strong
convergence of Gnu = Gnu to ∇u in Lp(Ω;RN ) and the inequality

|f(Gnu(x))| ≤ C(1 + |Gnu(x)|p).

That completes the proof.
We now prove the characterization of BV functions.
Proof of Theorem 1.6. Suppose that u ∈ L1(Ω) and that supn≥1

´
Ω |Gnu| dx <∞. Then

up to a subsequence, µn
∗
⇀ µ weakly-star in

(
C0(Ω;RN )

)′
to some µ ∈

(
C0(Ω;RN )

)′
. Arguing

in a similar manner as the proof of Step 1 of Theorem 1.2, one can show that µ = Du.
Once we know that u ∈ BV, we may invoke Theorem 1.2 to conclude that µn → Du strictly

as measures. Then we would like to apply the version of Reshetnyak Continuity Theorem proved
in [20, Theorem 5] to obtain that

lim
n→∞

ˆ
Ω
f(Gnu(x)) dx =

ˆ
Ω
f(Dau) dx+

ˆ
Ω
f∞

(
dDsu

d|Dsu|

)
d|Dsu|
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for any continuous f that is convex (or concave) with at most linear growth, see also [1, Lemma
2.2]. To apply [20, Theorem 5] however, we must first verify (1.8): µn → Du in the 〈·〉-strict
convergence of measures as introduced by [20]. To that end, it suffices to show that

lim
n→∞

ˆ
Ω
g(Gnu) dx =

ˆ
Ω
g(Dau) dx, (3.9)

where g(z) :=
√

1 + |z|2− |z| is non-negative, bounded, and Lipschitz continuous with constant
one. Indeed, (3.9) impliesˆ

Ω

√
1 + |Dau|2 − |Dau| dx = lim

n→∞

ˆ
Ω

√
1 + |Gnu|2 − |Gnu| dx

= lim
n→∞

ˆ
Ω

√
1 + |Gnu|2 dx− |Du|(Ω),

and equation (1.8) would follow from rearranging terms. We remark that the proof of the
convergence (3.9) is essentially a vector version of Lemma 5 of Ponce’s paper [22], and we give
a proof in a similar spirit, mutatis mutandis, by taking advantage of the specific structure of g.

We begin by letting ũ ∈ BV (RN ) be an extension of u ∈ BV (Ω). Now, we want to demon-
strate (3.9), which can be accomplished by showing that g(Gnu) ⇀ g(Dau) weakly in Lp(Ω)
for some 1 < p < +∞ (since |Ω| < +∞ implies that χΩ(x) ∈ Lp′(Ω) for every 1 < p < ∞).
However, from the fact that g is bounded above by one, we deduce that

‖g(Gnu)‖Lp(Ω) ≤ |Ω|
1
p .

This then implies that up to a subsequence g(Gnu) ⇀ v weakly in Lp(Ω), and it remains to show
that v(x0) = g(Dau(x0)) for Lebesgue almost every x0 ∈ Ω. This is a local property, and so it
suffices to show that

lim
ε→0

∣∣∣∣∣
 
B(x0,ε)

v(x)− g(Dau(x)) dx

∣∣∣∣∣ = 0.

Now weak convergence in Lp(Ω) together with the Lipschitz continuity of g imply that

lim
ε→0

∣∣∣∣∣
 
B(x0,ε)

v(x)− g(Dau(x)) dx

∣∣∣∣∣ = lim
ε→0

lim
n→∞

∣∣∣∣∣
 
B(x0,ε)

g(Gnu)− g(Dau(x)) dx

∣∣∣∣∣
≤ lim

ε→0
lim
n→∞

 
B(x0,ε)

∣∣∣∣ˆ
Ω
N
u(x)− u(y)

|x− y|
x− y
|x− y|

ρn(x− y) dy −Dau(x)

∣∣∣∣ dx
Recalling Lemma 3.1, which says that Ncin(x) → 1 uniformly for x ∈ B(x0, ε) if ε > 0 is small,
we have

lim
ε→0

∣∣∣∣∣
 
B(x0,ε)

v(x)− g(Dau(x)) dx

∣∣∣∣∣
= lim

ε→0
lim
n→∞

 
B(x0,ε)

∣∣∣∣ˆ
Ω
N
u(x)− u(y)−Dau(x) · (x− y)

|x− y|
x− y
|x− y|

ρn(x− y) dy

∣∣∣∣ dx,
≤ lim

ε→0
lim
n→∞

 
B(x0,ε)

ˆ
RN

N
|ũ(x)− ũ(y)−Dau(x) · (x− y)|

|x− y|
ρn(x− y) dydx.
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Now, Step 2 in Lemma 5 from [22] demonstrates that

lim
n→∞

 
B(x0,ε)

ˆ
RN

N
|ũ(x)− ũ(y)−Dau(x) · (x− y)|

|x− y|
ρn(x− y) dydx ≤ N 1

|B(x0, ε)|
|Dsu|(B(x0, ε)),

and so we conclude that almost every x0 ∈ RN ,

lim
ε→0

∣∣∣∣∣
 
B(x0,ε)

v(x)− g(Dau(x)) dx

∣∣∣∣∣ ≤ lim
ε→0

N
1

|B(x0, ε)|
|Dsu|(B(x0, ε)) = 0,

where we applied the Besicovitch derivation theorem, using the fact that Dsu is singular with
respect to Lebesgue measure.

We conclude this section by stating and proving a possible characterization of Sobolev and
BV functions as weak limits of bounded sequence un in Lp with a uniformly bounded nonlocal
gradients.

Theorem 3.5 Suppose that 1 < p < ∞ and un is a bounded sequence in Lp(Ω) such that the
distribution Gnun ∈ Lp(Ω;RN ) for each n and satisfies the uniform estimate

sup
n≥1

ˆ
Ω
|Gnun(x)|p dx = K <∞.

Then any weak limit u of un is in W 1,p(Ω). Moreover,

‖∇u‖Lp(Ω) ≤ K.

Proof. Let u be a weak limit of the sequence un in Lp(Ω), and v be a weak limit of Gnun in
Lp(Ω;RN ). We claim that v = ∇u, the distributional derivative of u. To that end, it follows from
application of integration by parts, Theorem 1.4, and Lemma 2.6 that for any φ ∈ C∞c (Ω;RN ),

ˆ
Ω

v(x) · φ(x) dx = − lim
n→∞

ˆ
Ω
Gnun(x) · φ(x) dx

= − lim
n→∞

ˆ
Ω
un(x)Dnφ(x) dx = −

ˆ
Ω
u(x)divφ(x) dx

where in the last equality we used the strong convergence Dnφ → divφ in Lp
′
(Ω) proved in

Lemma 2.6 (part b) (ii)) and the weak convergence of un to u in Lp. The estimate for the
seminorm ‖∇u‖Lp follows from∣∣∣∣ˆ

Ω
u(x) divφ(x) dx

∣∣∣∣ ≤ lim
n→∞

∣∣∣∣ˆ
Ω
Gnun(x) · φ(x) dx

∣∣∣∣ ≤ K‖φ‖Lp′
For BV functions a similar results holds true, though it requires a little more subtlety. Before

we state the theorem for the BV case, let us recall the following lemma, a fact about Radon
measures possessing weak derivatives that are also Radon measures (see [2][Exercise 3.2]).
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Lemma 3.6 Let Ω ⊂ RN is an open set. Suppose that µ and ν = (ν1, ν2, . . . , νN ) are finite
Radon measures in Ω. If for all φ ∈ C1

c (Ω;RN ),

−
ˆ

Ω
div(φ)dµ =

ˆ
Ω
φ · dν, (3.10)

then there exists u ∈ BV (Ω) such that dµ = u(x) dx, and dν = dDu.

The equality (3.10) defines ν as a distributional gradient of µ. The lemma, then, says that if
both µ and its distributional gradient are finite Radon measures, then µ is absolutely continuous
with respect to the Lebesgue measure and that its density is actually in BV (Ω). Then we can
prove the following theorem extending the previous result to the BV case.

Theorem 3.7 Suppose that un ∈ L1(Ω) is a bounded sequence in L1(Ω) such that Gnun ∈
L1(Ω;RN ) and satisfies the uniform estimate

sup
n≥1

ˆ
Ω
|Gnun| dx = K <∞.

Then there exists u ∈ BV (Ω) such that un
∗
⇀ u in the sense of measures and that

|Du|(Ω) ≤ K.

Proof. By assumption, there exists a Radon measures µ and ν such that un
∗
⇀ µ, and

Gnun
∗
⇀ ν, in the sense of measures. Moreover, |µ|(Ω) ≤ supn ‖un‖L1(Ω) < ∞ and for any

φ ∈ C1
c (Ω;RN )

−
ˆ

Ω
divφ(x) dµ = − lim

n→∞

ˆ
Ω
un(x)[divφ(x)−Dnφ(x)]dx− lim

n→∞

ˆ
Ω
un(x)Dnφ(x)dx

= lim
n→∞

ˆ
Ω
φ(x) ·Gnun dx =

ˆ
Ω
φ(x) · dν

where we have used the uniform convergence ‖divφ(x) −Dnφ‖L∞(Ω) → 0 as n → ∞, and the
boundedness of the sequence un in L1(Ω). Applying the previous Lemma 3.6, we see that there
exists u ∈ BV (Ω) with dν = dDu. Moreover, as weak-star limit of Gnun, |Du|(Ω) ≤ K.

4 Gamma convergence of the nonlocal gradient

We conclude the paper with the proof of the Γ-convergence of the nonlocal energies to the
relaxation of their local analogues. Let us first recall the definition of Γ-lower and upper limits
(see [11]), with respect to the Lp(Ω) topology, where we have taken advantage of the fact that
Lp(Ω) is a metric space to give the equivalent sequential definition.

Definition 4.1 Given a bounded open set A ⊂ RN , let Fn be any sequence of functionals Fn :
Lp(A)→ [0,∞]. For each u ∈ L1(A) we set

Γ−Lp(A)- lim inf
n→∞

Fn(u) := min{lim inf
n→∞

Fn(un) : un → u in Lp(A)},

Γ−Lp(A)- lim sup
n→∞

Fn(u) := min{lim sup
n→∞

Fn(un) : un → u in Lp(A)}.
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If Γ−Lp(A)- lim supn→∞ Fn(u) = Γ−Lp(A)- lim infn→∞ Fn(u) for some u ∈ Lp(A) we say that the

sequence Fn Γ-converges at u and denote this common number Γ−Lp(A)- limn→∞ Fn(u).

Given a continuous function fp that satisfies the condition (1.10), 1 < p < ∞, let us introduce
the functionals Fn and F as

Fn(u, p) =


ˆ

Ω
fp(Gnu) dx, if Gnu ∈ Lp(Ω;RN )

∞ otherwise,

and

F (u, p) =


ˆ

Ω
fp(∇u(x)) dx, if u ∈W 1,p(Ω)

∞, otherwise.

By definition (see [11][Chapter 3], for example) the relaxation of F is given by

sc−Lp(Ω)F (u, p) := min
{

lim inf
n→∞

F (un, p) : un → u in Lp(Ω)
}
.

Under the hypothesis we have placed on fp, when 1 < p <∞ a representation sc−Lp(Ω)F (u, p) is

given by, [11][Chapter 3],

sc−Lp(Ω)F (u, p) =


ˆ

Ω
f∗∗p (∇u) dx, when u ∈W 1,p(Ω)

+∞, otherwise,

where f∗∗ is the greatest convex function on RN majorized by f . We now proceed to prove the
Γ-convergence result claimed in the introduction in Theorem 1.7.

Proof of Theorem 1.7. As usual, the Γ-limit consists of two inequalities, a lower bound
and an upper bound. Our technique follows that developed by Ponce in [22], whereby the
problem of verifying a Γ-limit is reduced to the problem of studying the relaxation of a functional.
Let us first show the lower bound

sc−Lp(Ω)F (u, p) ≤ Γ−Lp(Ω)- lim inf
n→∞

Fn(u,Ω). (4.1)

Without loss of generality we may assume that there exists a sequence un → u in Lp(Ω) for
which

lim inf
n→∞

Fn(un, p) <∞.

For any such sequence we may utilize the growth condition (1.10) of fp to deduce that, up to a
subsequence, which we will not relabel,

c

ˆ
Ω
|Gnun|p dx ≤ Fn(un, p) ≤ C. (4.2)

23



Since p > 1, applying Theorem 3.5 we obtain that u ∈ W 1,p(Ω), and Gnun ⇀ ∇u weakly in
Lp(Ω;RN ). Now, using the fact that f∗∗p ≤ fp, we have that

lim inf
n→∞

ˆ
Ω
f∗∗p (Gnun) dx ≤ Γ−Lp(Ω)- lim inf

n→∞
Fn(u, p).

Moreover, since f∗∗p is convex, it is lower semicontinuous with respect to weak convergence, and
thus when p > 1 we have

ˆ
Ω
f∗∗p (∇u) dx ≤ Γ−Lp(Ω)- lim inf

n→∞
Fn(u, p),

which implies the lower bound, recalling the representation for sc−Lp(Ω)F (u, p).
To prove the upper bound

Γ−Lp(Ω)- lim sup
n→∞

Fn(u, p) ≤ sc−Lp(Ω)F (u, p), (4.3)

we pick u ∈W 1,p(Ω), so that by Theorem 1.6, we have the convergence

lim
n→∞

ˆ
Ω
fp(Gnu) dx =

ˆ
Ω
fp(∇u) dx.

Then choosing un = u we conclude

Γ−Lp(Ω)- lim sup
n→∞

Fn(u, p) ≤ lim
n→∞

ˆ
Ω
fp(Gnu) dx =

ˆ
Ω
fp(∇u) dx.

Now, since Γ−Lp(Ω)- lim sup is lower semicontinuous on Lp(Ω) (c.f. [11][Proposition 6.8]), we may
take the lower semicontinuous envelope of the above equation to arrive at the inequality

Γ−Lp(Ω)- lim sup
n→∞

Fn(u, p) ≤ sc−Lp(Ω)F (u, p),

which is precisely inequality (4.3).
We have a similar result when p = 1, though we must define our energies appropriately. We

define

Fn(u, 1) =


ˆ

Ω
f1(Gnu) dx, if Gnu ∈ L1(Ω;RN )

∞ otherwise,

and

F (u, 1) =


ˆ

Ω
f1(∇u(x)) dx, if u ∈ C1(Ω)

∞, otherwise.

Then we have the following theorem connecting the Γ-limit of Fn and the sc−
L1(Ω)

F (u, 1).
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Theorem 4.2 Suppose Ω ⊂ RN is open, bounded, and smooth. Assume ρn satisfy (1.2) and f1

satisfies

c|z| ≤ f1(z) ≤ C(1 + |z|). (4.4)

Then
Γ−
L1(Ω)

- lim
n→∞

Fn(u, 1) = sc−
L1(Ω)

F (u, 1)

where the Γ-limit is taken with respect to the strong topology of L1(Ω).

Let us first note that if u ∈ BV (Ω), then the same argument as Ponce [22][Theorem 8],
which is a consequence of [7][Theorem 4.4.1 and Remark 4.4.4] and [10][Theorem 4.7], implies
the representation

sc−
L1(Ω)

F (u, 1) =

ˆ
Ω
f∗∗1 (Dau) dx+

ˆ
Ω

(f∗∗1 )∞
(
dDsu

d|Dsu|

)
d|Dsu|.

Further, the assumption (4.4) implies that sc−
L1(Ω)

F (u, 1) = +∞ if u ∈ L1(Ω) \BV (Ω).

Proof. We should prove again the inequalities (4.1) and (4.3). Arguing as previously,
from equation (4.2), this time applying Theorem 3.7, we deduce that up to a subsequence

µn := Gnun
∗
⇀ Du for some u ∈ BV (Ω). Then applying Theorem 2.34 in [2] with this choice of

µn and ν = LN allows us to deduce thatˆ
Ω
f∗∗1 (Dau) dx+

ˆ
Ω

(f∗∗1 )∞
(
dDsu

d|Dsu|

)
d|Dsu| ≤ lim inf

n→∞

ˆ
Ω
f∗∗1 (Gnun) dx.

This estimate, along with the inequality

lim inf
n→∞

ˆ
Ω
f∗∗1 (Gnun) dx ≤ Γ−

L1(Ω)
- lim inf
n→∞

Fn(u, 1)

and the representations for sc−
L1(Ω)

F (u, 1) recalled above, we have that the inequality (4.1) is

demonstrated.
To prove inequality (4.3), we note that for u ∈ C1(Ω), by Theorem 1.1, we have the conver-

gence

lim
n→∞

ˆ
Ω
f1(Gnu) dx =

ˆ
Ω
f1(∇u) dx.

Then choosing un = u we conclude

Γ−
L1(Ω)

- lim sup
n→∞

Fn(u, 1) ≤ lim
n→∞

ˆ
Ω
f1(Gnu) dx =

ˆ
Ω
f1(∇u) dx.

Again taking the lower semicontinuous envelope, this time with respect to L1(Ω) strong con-
vergence, using Γ−

L1(Ω)
- lim sup is lower semicontinuous on L1(Ω) (c.f. [11][Proposition 6.8]), we

deduce that

Γ−
L1(Ω)

- lim sup
n→∞

Fn(u, 1) ≤ sc−
L1(Ω)

F (u, 1),

which along with the representation formula we recorded for the right hand side completes the
proof.
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26



[12] J. Dávila. On an open question about functions of bounded variation. Calc. Var. Partial
Differential Equations, 15:519-527, 2002.

[13] Q. Du, M. Gunzburger, R.B. Lehoucq, and K. Zhou. Analysis and Approximation of Non-
local Diffusion Problems with Volume Constraints. SIAM Rev., 54:667-696, 2012.

[14] Q. Du, M. Gunzburger, R.B. Lehoucq, and K. Zhou. A nonlocal vector calculus, nonlocal
volume constrained problems, and nonlocal balance laws. Math. Models Methods Appl. Sci.,
23:493-540, 2013.

[15] L. C. Evans and R. F. Gariepy. Measure theory and fine properties of Functions, CRC Press,
Boca Ration, Fl, 1992.

[16] G. Gilboa and S. Osher. Nonlocal linear image regularization and supervised segmentation.
Multiscale Model. Simul., 6:595-630, 2007.

[17] G. Gilboa and S. Osher. Nonlocal operators with applications to image processing. Multi-
scale Model. Simul., 7:1005-1028, 2008.

[18] M. Gunzburger and R.B. Lehoucq. A nonlocal vector calculus with application to nonlocal
boundary value problems, Multiscale Model. Simul., 8:1581-1598, 2010.

[19] G. Leoni and D. Spector. Characterization of Sobolev and BV spaces, J. Funct. Anal.
261:2926-2958, 2011.

[20] J. Kristensen and F. Rindler. Relaxation of signed integral functionals in BV . Calc. Var.
Partial Differential Equations, 37:29-62, 2010.

[21] T. Mengesha. Nonlocal Korn-type characterization of Sobolev vector fields, Comm. Cont.
Math., 14:1250028, 28pp., 2012.

[22] A. Ponce. A new approach to Sobolev spaces and connections to Γ-convergence. Calc. Var.
Partial Differential Equations, 19:229-255, 2004.

[23] S.A. Silling. Reformulation of elasticity theory for discontinuities and long-range forces. J.
Mech. Phys. Solids, 48:175-209, 2000.

[24] S.A. Silling and R.B. Lehoucq. Convergence of peridynamics to classical elasticity theory.
J. Elasticity 93:13-37, 2008.
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