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Abstract

Given a Tonelli Hamiltonian H : T ∗M → R of class Ck, with k ≥ 4, we prove the
following results: (1) Assume there is a critical viscosity subsolution which is of class Ck+1

in an open neighborhood of a positive orbit of a recurrent point of the projected Aubry
set. Then, there exists a potential V : M → R of class Ck−1, small in C2 topology, for
which the Aubry set of the new Hamiltonian H + V is either an equilibrium point or a
periodic orbit. (2) For every ε > 0 there exists a potential V : M → R of class Ck−2,
with ‖V ‖C1 < ε, for which the Aubry set of the new Hamiltonian H + V is either an
equilibrium point or a periodic orbit. The latter result solves in the affirmative the Mañé
density conjecture in C1 topology.
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1 Introduction

In this paper, the sequel of [8], we continue our investigation on how to close trajectories in the
Aubry set by adding a small potential, as suggested by Mañé (see [11, 8]). More precisely, in
[8] we proved the following: Let H : T ∗M → R be a Tonelli Hamiltonian of class Ck (k ≥ 2)
on a n-dimensional smooth compact Riemannian manifold without boundary M . Then we can
“close” the Aubry set in the following cases:
(1) Assume there exist a recurrent point of the projected Aubry set x̄, and a critical viscosity
subsolution u, such that u is a C1 critical solution in an open neighborhood of the positive
orbit of x̄. Suppose further that u is “C2 at x̄”. Then, for any ε > 0 there exists a potential
V : M → R of class Ck, with ‖V ‖C2 < ε, for which the Aubry set of the new Hamiltonian
H + V is either an equilibrium point or a periodic orbit.
(2) If M is two dimensional, the above result holds replacing “C1 critical solution + C2 at x̄”
by “C3 critical subsolution”.

The aim of this paper is twofold: first of all, we want to extend (2) above to arbitrary
dimension (Theorem 1.1 below), and to prove such a result, new techniques and ideas (with
respect to the ones introduced in [8]) are needed. Then, as a by-product of these techniques,
we will show the validity of the Mañé density Conjecture in C1 topology (Theorem 1.2 below).

For convenience of the reader, we will recall through the paper the main notation and as-
sumptions, referring to [8] for more details.

In the present paper, the space M will be a smooth compact Riemannian manifold without
boundary of dimension n ≥ 2, and H : T ∗M → R a Ck Tonelli Hamiltonian (with k ≥ 2), that
is, a Hamiltonian of class Ck satisfying the two following properties:

(H1) Superlinear growth: For every K ≥ 0, there is a finite constant C∗(K) such that

H(x, p) ≥ K‖p‖x + C∗(K) ∀ (x, p) ∈ T ∗M.

(H2) Strict convexity: For every (x, p) ∈ T ∗M , the second derivative along the fibers ∂2H
∂p2 (x, p)

is positive definite.

We say that a continuous function u :M → R is a critical viscosity solution (resp. subsolution)
if u is a viscosity solution (resp. subsolution) of the critical Hamilton-Jacobi equation

H
(
x, du(x)

)
= c[H] ∀x ∈M, (1.1)
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where c[H] denotes the critical value of H. Denoting by SS1 the set of critical subsolutions
u : M → R of class C1, we recall that, thanks to the Fathi-Siconolfi Theorem [7] (see also [8,
Subsection 1.2]), the Aubry set can be seen as the nonempty compact subset of T ∗M defined
by

Ã(H) :=
⋂

u∈SS1

{
(x, du(x)) |x ∈M s.t. H(x, du(x)) = c[H]

}
.

Then the projected Aubry set A(H) can be defined for instance as π∗(Ã(H)
)
, where π∗ : T ∗M →

M denotes the canonical projection map. We refer the reader to our first paper [8] or to the
monograph [5] for more details on Aubry-Mather theory.

As we said above, the aim of the present paper is to show that we can always close an Aubry
set in C2 topology if there is a critical viscosity subsolution which is sufficiently regular in a
neighborhood of a positive orbit of a recurrent point of the projected Aubry set: Let x ∈ A(H),
fix u : M → R a critical viscosity subsolution, and denote by O+(x) its positive orbit in the
projected Aubry set, that is,

O+(x) :=
{
π∗(φHt (x, du(x))

)
| t ≥ 0

}
. (1.2)

A point x ∈ A(H) is called recurrent if there is a sequence of times {tk} tending to +∞ as
k → ∞ such that

lim
k→∞

π∗(φHtk(x, du(x))) = x.

As explained in [8, Section 2], since x ∈ A(M), both definitions of O+(x) and of recurrent point
do not depend on the choice of the subsolution u. From now on, given a potential V :M → R,
we denote by HV the Hamiltonian HV (x, p) := H(x, p) + V (x). The following result extends
[8, Theorem 2.4] to any dimension:

Theorem 1.1. Assume that dimM ≥ 3. Let H : T ∗M → R be a Tonelli Hamiltonian of class
Ck with k ≥ 4, and fix ε > 0. Assume that there are a recurrent point x̄ ∈ A(H), a critical
viscosity subsolution u :M → R, and an open neighborhood V of O+

(
x̄
)
such that u is at least

Ck+1 on V. Then there exists a potential V :M → R of class Ck−1, with ‖V ‖C2 < ε, such that
c[HV ] = c[H] and the Aubry set of HV is either an equilibrium point or a periodic orbit.

As a by-product of our method, we show that we can always close Aubry sets in C1 topology:

Theorem 1.2. Let H : T ∗M → R be a Tonelli Hamiltonian of class Ck with k ≥ 4, and fix
ε > 0. Then there exists a potential V : M → R of class Ck−2, with ‖V ‖C1 < ε, such that
c[HV ] = c[H] and the Aubry set of HV is either an equilibrium point or a periodic orbit.

Let us point out that in both results above we need more regularity on H with respect to
the assumptions in [8]. This is due to the fact that here, to connect Hamiltonian trajectories,
we do a construction “by hand” where we explicitly define our connecting trajectory by taking
a convex combination of the original trajectories and a suitable time rescaling (see Proposition
2.1). With respect to the “control theory approach” used in [8], this construction has the
advantage of forcing the connecting trajectory to be “almost tangent” to the Aubry set, though
we still need the results of [8] to control the action, see Subsection 4.4.

By Theorem 1.1 above and the same argument as in [8, Section 7], we see that the Mañé
Conjecture in C2 topology for smooth Hamiltonians (of class C∞) is equivalent to the1:

Mañé regularity Conjecture for viscosity subsolutions. For every Tonelli Hamiltonian
H : T ∗M → R of class C∞ there is a set D ⊂ C∞(M) which is dense in C2(M) (with respect
to the C2 topology) such that the following holds: For every V ∈ D, there are a recurrent point

1Although the “Mañé regularity Conjecture for viscosity subsolutions” could be stated as in [8, Section 7]
using Ck topologies, we prefer to state it with C∞ because the statement becomes simpler and nicer.
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x̄ ∈ A(H), a critical viscosity subsolution u : M → R, and an open neighborhood V of O+
(
x̄
)

such that u is of class C∞ on V.

The paper is organized as follows: In Section 2, we refine [8, Propositions 3.1 and 4.1] by
proving that we can connect two Hamiltonian trajectories with small potential with a state
constraint on the connecting trajectory. In Section 3, we prove a refined version of the Mai
Lemma with constraints which is essential for the proof of Theorem 1.2. Then the proofs of
Theorems 1.1 and 1.2 are given in Sections 4 and 5, respectively.

2 A connection result with constraints

2.1 Statement of the result

Let n ≥ 2 be fixed. We denote a point x ∈ Rn either as x = (x1, . . . , xn) or in the form
x = (x1, x̂), where x̂ = (x2, . . . , xn) ∈ Rn−1. Let H̄ : Rn × Rn → R be a Hamiltonian2 of class
Ck, with k ≥ 2, satisfying (H1), (H2), and the additional hypothesis

(H3) Uniform boundedness in the fibers: For every R ≥ 0 we have

A∗(R) := sup
{
H̄(x, p) | |p| ≤ R

}
< +∞.

Note that, under these assumptions, the Hamiltonian H̄ generates a flow φH̄t which is of class
Ck−1 and complete (see [6, corollary 2.2]). Let τ̄ ∈ (0, 1) be fixed. We suppose that there exists
a solution (

x̄(·), p̄(·)
)
:
[
0, τ̄
]
−→ Rn × Rn

of the Hamiltonian system {
˙̄x(t) = ∇pH̄

(
x̄(t), p̄(t)

)
˙̄p(t) = −∇xH̄

(
x̄(t), p̄(t)

) (2.1)

on
[
0, τ̄
]
satisfying the following conditions:

(A1) x̄0 =
(
0, ˆ̄x0

)
:= x̄(0) = 0n and ˙̄x(0) = e1;

(A2) x̄τ̄ =
(
τ̄ , ˆ̄xτ̄

)
:= x̄(τ̄) =

(
τ̄ , 0n−1

)
and ˙̄x(τ̄) = e1;

(A3)
∣∣ ˙̄x(t)− e1

∣∣ < 1/2 for any t ∈
[
0, τ̄
]
;

(A4) det
(

∂2H̄
∂p̂2

(
x̄τ̄ , p̄τ̄

))
+ p̄τ̄1 det

(
∂2H̄
∂p2

(
x̄τ̄ , p̄τ̄

))
6= 0 (where p̄τ̄ := p̄

(
τ̄
)
).

For every (x0, p0) ∈ Rn × Rn satisfying H̄(x0, p0) = 0, we denote by(
X
(
· ; (x0, p0)

)
, P
(
· ; (x0, p0)

))
: [0,+∞) −→ Rn × Rn

the solution of the Hamiltonian system{
ẋ(t) = ∇pH̄

(
x(t), p(t)

)
ṗ(t) = −∇xH̄

(
x(t), p(t)

) (2.2)

satisfying
x(0) = x0 and p(0) = p0.

2Note that we identify T ∗(Rn) with Rn × Rn. For that reason, throughout Section 2 the adjoint variable p
will always be seen as a vector in Rn.
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Since the curve x̄(·) is transverse to the hyperplane Πτ̄ :=
{
x =

(
τ̄ , x̂
)
∈ Rn

}
at time τ̄ ,

there is a neighborhood V0 of
(
x̄0, p̄0 := p̄(0)

)
in Rn × Rn such that the Poincaré mapping

τ : V0 → R with respect to the section Πτ̄ is well-defined, that is, it is of class Ck−1 and
satisfies

τ
(
x̄0, p̄0

)
= τ̄ and X1

(
τ(x0, p0); (x0, p0)

)
= τ̄ ∀ (x0, p0) ∈ V0. (2.3)

Our aim is to show that, given
(
x1 = (0, x̂1), p1

)
and

(
x2 = (0, x̂2), p2

)
such that H̄(x1, p1) =

H̄(x2, p2) = 0 which are both sufficiently close to (x̄0, p̄0), there exists a time T f close to
τ(x1, p1), together with a potential V : Rn → R of class Ck−1 whose support and C2-norm are
controlled, such that the solution

(
x(·), p(·)

)
: [0, T f ] → Rn × Rn of the Hamiltonian system{

ẋ(t) = ∇pH̄V (x(t), p(t)) = ∇pH̄(x(t), p(t))
ṗ(t) = −∇xH̄V (x(t), p(t)) = −∇xH̄(x(t), p(t))−∇V (x(t))

(2.4)

starting at
(
x(0), p(0)

)
= (x1, p1) satisfies(

x(T f ), p(T f )
)
=
(
X
(
τ(x2, p2); (x2, p2)

)
, P
(
τ(x2, p2); (x2, p2)

))
,

and x(·) is constrained inside a given “flat” set containing both curves

X
(
· ; (x1, p1)

)
:
[
0, τ(x1, p1)

]
−→ Rn and X

(
· ; (x2, p2)

)
:
[
0, τ(x2, p2)

]
−→ Rn.

(Roughly speaking, x(·) will be a convex combination of X
(
· ; (x1, p1)

)
and X

(
· ; (x2, p2)

)
.)

We denote by L̄ : Rn×Rn → R the Lagrangian associated to H̄ by Legendre-Fenchel duality,
and for every (x0, p0) ∈ Rn × Rn, T > 0, and every C2 potential V : Rn → R, we denote by
AV

(
(x0, p0);T

)
the action of the curve γ : [0, T ] → Rn defined as the projection (onto the x

variable) of the Hamiltonian trajectory t 7→ φH̄V
t (x0, p0) : [0, T ] → Rn × Rn, that is

AV

(
(x0, p0);T

)
:=

∫ T

0

L̄V

(
π∗
(
φH̄V
t (x0, p0)

)
,
d

dt

(
π∗
(
φH̄V
t (x0, p0)

)))
dt

=

∫ T

0

L̄

(
π∗
(
φH̄V
t (x0, p0)

)
,
d

dt

(
π∗
(
φH̄V
t (x0, p0)

)))
−V

(
π∗
(
φH̄V
t (x0, p0)

))
dt,

where L̄V = L̄− V is the Lagrangian associated to H̄V := H̄ + V . Moreover, we denote by(
XV

(
· ; (x0, p0)

)
, PV

(
· ; (x0, p0)

))
: [0, T ] → Rn × Rn

the solution to the Hamiltonian system (2.4) starting at (x0, p0). Finally, for every r > 0 we
set

C
((
x0, p0

)
; τ(x0, p0); r

)
:=
{
X
(
t; (x0, p0)

)
+ (0, ŷ) | t ∈

[
0, τ(x0, p0)

]
, |ŷ| < r

}
, (2.5)

and for every xf =
(
τ̄ , x̂f

)
,

∆
(
(x0, p0); τ(x0, p0);xf

)
:=
〈
P
(
τ(x0, p0); (x0, p0)

)
, xf −X

(
τ(x0, p0); (x0, p0)

)〉
.

We also introduce the following sets, which measure how much our connecting trajectory leave
the “surface” spanned by the trajectories X

(
· ; (x1, p1)

)
and X

(
· ; (x2, p2)

)
: given K1, η > 0 we

define
R1
((
x1, p1

)
;
(
x2, p2

)
;K1

)
:= R

((
x1, p1

)
;
(
x2, p2

)
;K1

)
∩ E1, (2.6)
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B2
((
x2, p2

)
; η
)
:= B

((
x2, p2

)
; η
)
∩ E2, (2.7)

where

R
((
x1, p1

)
;
(
x2, p2

)
;K1

)
:=

⋃
(t1,t2)∈K

[
X
(
t1; (x1, p1)

)
, X
(
t2; (x2, p2)

)]
(2.8)

(here and in the sequel, [z1, z2] denotes the segment joining two points z1, z2 ∈ Rn),

K :=
{(
t1, t2

)
|
∣∣t2 − t1

∣∣ < K1

(
|x2 − x1|+ |p2 − p1|

)
, tj ∈

[
0, τ(xj , pj)

]
, j = 1, 2

}
, (2.9)

B
((
x2, p2

)
; η
)
:=

⋃
t∈[0,τ(x2,p2)]

{
z |
∣∣z −X

(
t; (x1, p1)

)∣∣ ≤ η
}
, (2.10)

E1 :=
{(
t, ẑ
)
| t ∈

[
0, τ̄ /2

]
, ẑ ∈ Rn−1

}
, E2 :=

{(
t, ẑ
)
| t ∈

[
τ̄ /2, τ̄

]
, ẑ ∈ Rn−1

}
. (2.11)

We are now ready to state our result.

Proposition 2.1. Let H̄ : Rn × Rn → R be a Hamiltonian of class Ck, with k ≥ 4, satisfying
(H1)-(H3), and let

(
x̄(·), p̄(·)

)
:
[
0, τ̄
]
→ Rn × Rn be a solution of (2.2) satisfying (A1)-(A4)

on both subintervals
[
0, τ̄ /2

]
and

[
τ̄ /2, τ̄

]
, i.e., (A1)-(A4) hold both when we replace τ̄ by τ̄ /2,

and when replacing 0 by τ̄ /2 (with obvious notation). Moreover, assume that H̄(x̄0, p̄0) = 0.
Then there are δ̄, r̄, ε̄ ∈ (0, 1) with B2n

(
(x̄0, p̄0), δ̄

)
⊂ V0, and K > 0, such that the fol-

lowing property holds: For every r ∈
(
0, r̄
)
, ε ∈

(
0, ε̄
)
, σ > 0, and every x1 =

(
0, x̂1

)
, x2 =(

0, x̂2
)
, p1, p2 ∈ Rn satisfying∣∣x̂1∣∣, ∣∣x̂2∣∣, ∣∣p1 − p̄0

∣∣, ∣∣p2 − p̄0
∣∣ < δ̄, (2.12)

∣∣x1 − x2
∣∣, ∣∣p1 − p2

∣∣ < rε, (2.13)

H̄
(
x1, p1

)
= H̄

(
x2, p2

)
= 0, (2.14)

|σ| < r2ε, (2.15)

there exist a time T f > 0 and a potential V : Rn → R of class Ck−1 such that:

(i) Supp(V ) ⊂ C
((
x1, p1

)
; τ(x1, p1); r

)
;

(ii) ‖V ‖C2 < Kε;

(iii)
∣∣T f − τ(x1, p1)

∣∣ < Krε;

(iv) φH̄V

T f

(
x1, p1

)
= φH̄τ(x2,p2)

(
x2, p2

)
;

(v) AV

(
(x1, p1);T f

)
= A

(
(x1, p1); τ(x1, p1)

)
+∆

(
(x1, p1); τ(x1, p1);X

(
τ(x2, p2); (x2, p2)

))
+

σ;

(vi) for every t ∈ [0, T f ],

XV

(
t;
(
x1, p1

))
∈ R1

((
x1, p1

)
;
(
x2, p2

)
;K
)
∪ B2

((
x2, p2

)
;K
(∣∣(x2, p2)− (x1, p1)

∣∣2 + |σ|
))
.
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As we will see in the next subsection, the proof of Proposition 2.1 offers an alternative proof
for [8, Proposition 3.1] in the case of Hamiltonians of class at least C4. Before giving the proof,
we recall that the Lagrangian L̄ : Rn×Rn → R associated with H̄ by Legendre-Fenchel duality
has the same regularity as H̄ and satisfies:

p = ∇vL̄(x, v) ⇐⇒ v = ∇pH̄(x, p) (2.16)

for all x, v, p ∈ Rn.

2.2 Proof of Proposition 2.1

First, let us forget about assertion (v). That is, we will first show how to connect two Hamilto-
nian trajectories by a potential of class Ck−1 satisfying assertions (i)-(iv) and “to some extent”
(vi), and then we will take care of (v).

For every x ∈ Rn, denote by S(x) ⊂ Rn the set of vectors p ∈ Rn such that H̄(x, p) = 0,
and define

Λ(x) :=
{
∇pH̄(x, p) | p ∈ S(x)

}
.

Then we define the function λx : Rn \ {0} → R by

λx(v) := inf
{
s > 0 | sv ∈ Λ(x)

}
∀ v ∈ Rn \ {0},

so that by (2.16) we have

H̄
(
x,∇vL̄

(
x, λx(v)v

))
= 0 ∀x ∈ Rn, v ∈ Rn \ {0}. (2.17)

Consider now the map
H : (x, v, λ) 7−→ H̄

(
x,∇vL̄(x, λv)

)
.

We observe that it is of class Ck−1, and since by assumption H̄(x̄0, p̄0) = 0 we have

H
(
x̄(t), ˙̄x(t), 1

)
= H̄

(
x̄(t),∇vL̄

(
x̄(t), ˙̄x(t)

))
= H̄ (x̄(t), p̄(t)) = 0 ∀ t ∈

[
0, τ̄
]
.

Moreover, by uniform convexity of L̄ in the v variable and (A3),

∂H
∂λ

(
x̄(t), ˙̄x(t), 1

)
=

〈
∇pH̄

(
x̄(t), p̄(t)

)
,
∂2L̄

∂v2
(
x̄(t), ˙̄x(t)

)
˙̄x(t)

〉
=

〈
˙̄x(t),

∂2L̄

∂v2
(
x̄(t), ˙̄x(t)

)
˙̄x(t)

〉
> 0.

Therefore, there exist V an open neighborhood of the set{(
x̄(t), ˙̄x(t)

)
| t ∈

[
0, τ̄
]}

⊂ Rn × Rn

and a function λ : V → (1/2, 3/2) of class Ck−1 such that

H
(
x, v, λ(x, v)

)
= 0 ∀ (x, v) ∈ V.

By uniform convexity of the sets Λ(x) and by (2.17), we deduce

λx(v) = λ(x, v) ∀ (x, v) ∈ V.

Now, let us fix a smooth function φ : [0, 1] → [0, 1] satisfying

φ(s) = 0 for s ∈ [0, 1/3], φ(s) = 1 for s ∈ [2/3, 1],

7



and fix W0 ⊂ V0 an open neighborhood of
(
x̄0, p̄0

)
such that

φL̄t
(
x,∇vL̄(x, p)

)
∈ V ∀ t ∈

[
0, τ(x, p)

]
, ∀ (x, p) ∈ W0.

Given x1 =
(
0, x̂1

)
, x2 =

(
0, x̂2

)
, p1, p2 ∈ Rn such that

(
x1, p1

)
,
(
x1, p2

)
∈ W0 and H̄

(
x1, p1

)
=

H̄
(
x2, p2

)
= 0, we set

τ1 := τ
(
x1, p1

)
, τ2 := τ

(
x2, p2

)
,{

x1(t) := X
(
t; (x1, p1)

)
p1(t) := P

(
t; (x1, p1)

) ∀ t ∈ [0, τ1],

{
x2(t) := X

(
t; (x2, p2)

)
p2(t) := P

(
t; (x2, p2)

) ∀ t ∈ [0, τ2].

Then we define a trajectory y(·) :
[
0, τ1

]
→ Rn of class Ck which connects x1(0) to x2(τ2):

y(t) :=

(
1− φ

(
t

τ1

))
x1(t) + φ

(
t

τ1

)
x2
(
τ2

τ1
t

)
∀ t ∈

[
0, τ1

]
. (2.18)

We observe that, a priori, the above curve will not be the projection of a Hamiltonian trajec-
tory of (2.4) for some potential V . However, we can slightly modify it so that it becomes a
Hamiltonian trajectory of (2.4) for a suitable V which will be constructed below.

To achieve this, let α :
[
0, τ1

]
→ [0,+∞) be defined as

α(t) :=

∫ t

0

1

λy(s)
(
ẏ(s)

) ds ∀ t ∈
[
0, τ1

]
. (2.19)

We observe that α is strictly increasing and of class Ck. Let θ :
[
0, T f := α(τ1)

]
→
[
0, τ1

]
denote its inverse, which is of class Ck as well, and satisfies

θ̇(t) = λy(θ(t))
(
ẏ(θ(t))

)
∀ t ∈ [0, T f ].

Then, we define a new trajectory x(·) : [0, T f ] → Rn of class Ck connecting x1(0) to x2(τ2):

x(t) := y
(
θ(t)

)
∀ t ∈ [0, T f ]. (2.20)

We claim that x(t) is the projection of a Hamiltonian trajectory of (2.4) for some potential V
satisfying (i)-(ii). Indeed, first of all we have

ẋ(t) = θ̇(t)ẏ
(
θ(t)

)
= λy(θ(t))

(
ẏ(θ(t))

)
ẏ
(
θ(t)

)
∈ Λ

(
y
(
θ(t)

))
= Λ(x(t)) ∀ t ∈ [0, T f ],

which means that the adjoint trajectory p(·) : [0, T ] → Rn (of class Ck−1) given by

p(t) := ∇vL̄
(
x(t), ẋ(t)

)
∀ t ∈ [0, T f ],

satisfies

ẋ(t) = ∇pH̄
(
x(t), p(t)

)
, H̄

(
x(t), p(t)

)
= 0 ∀ t ∈ [0, T f ]. (2.21)

We now define the function u : [0, T f ] → Rn (of class Ck−2) by

u(t) := −ṗ(t)−∇xH̄
(
x(t), p(t)

)
= − ∂2L̄

∂x∂v

(
x(t), ẋ(t)

)
· ẋ(t)− ∂2L̄

∂v2
(
x(t), ẋ(t)

)
· ẍ(t)

−∇xH̄
(
x(t),∇vL̄

(
x(t), ẋ(t)

))
. (2.22)

By construction we have {
ẋ(t) = ∇pH̄(x(t), p(t))
ṗ(t) = −∇xH̄(x(t), p(t))− u(t),

(2.23)
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(
x(0), p(0)

)
=
(
x1, p1)

)
,

(
x(T f ), p(T f )

)
=
(
x2(τ2), p2(τ2)

)
. (2.24)

As in the proof of [8, Proposition 3.1], we now want to show that assertion (iii) is satisfied,
and that we can construct a potential V such that ∇V (x(t)) = u(t), and which satisfies both
assertions (i) and (ii). To this aim, we first compute the first derivative of u on [0, T f ]:

u̇(t) = − ∂3L̄

∂x2∂v

(
x(t), ẋ(t)

)
· ẋ(t) · ẋ(t)− 2

∂3L̄

∂x∂v2
(
x(t), ẋ(t)

)
· ẍ(t) · ẋ(t)

− ∂2L̄

∂x∂v

(
x(t), ẋ(t)

)
· ẍ(t)− ∂3L̄

∂v3
(
x(t), ẋ(t)

)
· ẍ(t) · ẍ(t)

−∂
2L̄

∂v2
(
x(t), ẋ(t)

)
· x(3)(t)− ∂2H̄

∂x2

(
x(t),∇vL̄

(
x(t), ẋ(t)

))
· ẋ(t)

− ∂2H̄

∂p∂x

(
x(t),∇vL̄

(
x(t), ẋ(t)

)) [ ∂2L̄
∂x∂v

(
x(t), ẋ(t)

)
· ẋ(t) + ∂2L̄

∂v2
(
x(t), ẋ(t)

)
· ẍ(t)

]
.

Now, let S0 be the subset of W0 defined by

S0 :=
{(
x0, p0

)
∈ W0 |x0 =

(
0, x̂0

)
, H̄
(
x0, p0

)
= 0
}
,

which we can assume to be an open submanifold of R2n of dimension 2n − 2 and of class Ck.
Since H̄ (and so also L̄) is of class Ck with k ≥ 4, it is easily checked that the mapping

Q : S0 × S0 × [0, 1] −→ R× R× Rn × Rn((
x1, p1

)
,
(
x2, p2

)
, s
)

7−→
(
T f , θ(sT f )− sτ1, u

(
sT f

)
, u̇(sT f )

)
is of class C1 (recall that T f = α(τ1), where τ1 = τ(x1, p1) and α was defined in (2.19)).
Therefore, since

Q
((
x0, p0

)
,
(
x0, p0

)
, s
)
=
(
τ
(
x0, p0

)
, 0, 0, 0

)
∀ s ∈ [0, 1], ∀

(
x0, p0

)
∈ S0,

(as in this case λy(t)(ẏ(t)) ≡ 1), there exists a constant K > 0 such that, for every pair(
x1, p1

)
,
(
x2, p2

)
∈ S0, it holds∣∣T f − τ1

∣∣ ≤
∣∣Q ((x1, p1), (x2, p2), 0)−Q

((
x1, p1

)
,
(
x1, p1

)
, 0
)∣∣

≤ K
(∣∣x2 − x1

∣∣+ ∣∣p2 − p1
∣∣) , (2.25)

and analogously∣∣∣∣θ(t)− τ1

T f
t

∣∣∣∣ ≤ K
(∣∣x2 − x1

∣∣+ ∣∣p2 − p1
∣∣) ∀ t ∈

[
0, T f

]
, (2.26)

∥∥u∥∥
C1 ≤ K

(∣∣x2 − x1
∣∣+ ∣∣p2 − p1

∣∣) . (2.27)

Furthermore, we notice that differentiating the second equality in (2.21) yields〈
∇xH̄

(
x(t), p(t)

)
, ẋ(t)

〉
+
〈
∇pH̄

(
x(t), p(t)

)
, ṗ(t)

〉
= 0 ∀ t ∈ [0, T f ],

which together with the first equality in (2.21) and with (2.22) gives〈
u(t), ẋ(t)

〉
= 0 ∀ t ∈ [0, T f ]. (2.28)

We observe that inequality (2.25) proves assertion (iii), while (2.26) yields

x(t) ∈ R
((
x1, p1

)
;
(
x2, p2

)
;K
)

∀ t ∈ [0, T f ], (2.29)
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that is the first part of (vi). Furthermore, inequality (2.27) is reminiscent of [8, Equation
(3.36)], while (2.28) corresponds [8, Equation (3.37)]. Hence, as in the proof of [8, Proposition
3.1] we can apply [8, Lemma 3.3] together with (2.23) and (2.24) to deduce the existence of
δ̄, ρ̄, ε̄ ∈ (0, 1) small, and a constant K > 0, such that for every pair

(
x1, p1

)
,
(
x2, p2

)
∈ S0

satisfying (2.12)-(2.14) there exist a time T f > 0 and a potential V : Rn → R of class Ck−1

such that assertions (i)-(iv) of Proposition 2.1 hold, and morever (2.29) is satisfied.

Now, it remains to control the action, and to achieve this we proceed as in the proof of [8,
Proposition 5.2]: first we divide the interval

[
0, τ̄
]
into two subintervals

[
0, τ̄/2

]
and

[
τ̄ /2τ̄

]
.

Then we use the construction above on
[
0, τ̄ /2

]
to connect(

x1, p1
)

to φH̄τ1/2(x2,p2)

(
x2, p2

)
on some time interval [0, T f

1 ] with T f
1 ∼ τ̄ /2, where τ1/2 denotes the Poincaré mapping with

respect to the hyperplane Πτ̄/2 :=
{
x =

(
τ̄ /2, x̂

)
∈ Rn

}
. As in [8, Proposition 3.1(v)] (see in

particular [8, Remark 3.4]), one can show that the action default is quadratic, that is,∣∣∣AV

(
(x1, p1);T f

1

)
− A

(
(x1, p1); τ1/2(x

1, p1)
)

− ∆
(
(x1, p1); τ1/2(x

1, p1);X
(
τ1/2(x

2, p2); (x2, p2)
))∣∣∣ (2.30)

≤ K
∣∣∣φH̄τ1/2(x2,p2)(x

2, p2)− φH̄τ1/2(x1,p1)(x
1, p1)

∣∣∣2 ≤ K̃
∣∣(x2, p2)− (x1, p1)

∣∣2
for some uniform constant K̃ > 0. Hence, up to choosing ε̄ sufficiently small so that K̃ε̄ ≤ 1,
we can apply [8, Proposition 4.1] to connect

φH̄τ1/2(x2,p2)

(
x2, p2

)
to φH̄τ(x2,p2)

(
x2, p2

)
,

and, at the same time, fit the action by an amount σ + O
(∣∣(x2, p2)− (x1, p1)

∣∣2) so that (v)

holds. We observe that [8, Equation (4.19)] shows that the potential Ṽ needed to achieve this
second step (which is constructed again using [8, Lemma 3.3]) satisfies the bound ‖∇Ṽ ‖∞ ≤
K̄
(∣∣(x2, p2)− (x1, p1)

∣∣2 + |σ|
)
. Thus, a simple Gronwall argument shows that this construction

produces a connecting trajectory XV

(
· ;
(
x1, p1

))
: [0, T ] → Rn which satisfies (2.29) on the

first interval
[
0, T f

1

]
, and

XV

(
t;
(
x1, p1

))
∈ B2

((
x2, p2

)
;K ′

(∣∣(x2, p2)− (x1, p1)
∣∣2 + |σ|

))
∀ t ∈

[
T f
1 , T

f
]
,

for some uniform constant K ′ > 0.
This concludes the proof of Proposition 2.1.

2.3 A refined connecting result with constraints

Our aim is now to obtain a refined version of Proposition 2.1, where:

1) ε̄ ∈ (0, 1) is not necessarily small;

2) the support of V is still contained in a “cylinder” around the initial trajectory (see Propo-
sition 2.1(i)), but now the section of the cylinder is a given convex set which is not a ball.

Indeed, this refined version is a key step in the proof of Theorem 1.2.
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Given two points y1, y2 ∈ Rn−1 and λ > 0, we denote by Cylλ0
(
y1; y2

)
⊂ Rn−1 the convex

set defined by

Cylλ0
(
y1; y2

)
:=

⋃
s∈[0,1]

Bn−1
(
(1− s)y1 + sy2, λ

∣∣y1 − y2
∣∣) (2.31)

=
{
y ∈ Rn−1 |dist

(
y, [y1, y2]

)
< λ

∣∣y1 − y2
∣∣},

where dist
(
· , [y1, y2]

)
denotes the distance function to the segment [y1, y2]. Let Π

0 denote the

hyperplane Π0 :=
{
x =

(
0, x̂
)
∈ Rn

}
. If ū : Rn → R is a function of class C1,1, then for every

x1, x2 ∈ Π0 and λ > 0 small enough, we define the set Cylλ[0,τ̄ ]
(
x1;x2

)
⊂ Rn as

Cylλ[0,τ̄ ]
(
x1;x2

)
:=
{
X
(
t; (x,∇ū(x))

)
|x = (0, x̂) ∈ Π0, x̂ ∈ Cylλ0

(
x̂1, x̂2

)
, t ∈

[
0, τ

(
x,∇ū(x)

)]}
.

(Recall that τ(·, ·) denotes the Poincaré mapping with respect to Πτ̄ , see (2.3).) Observe that
this definition of “cylinder” is slightly different from the one in (2.5). Indeed, in (2.5) we were
considering, for every time t ≥ 0, a (n−1)-dimensional ball around the trajectory X

(
t; (x0, p0)

)
.

Here, we take a (n − 1)-dimensional convex set around the segment [x̂1, x̂2] at time t = 0 and
we let it flow. The reason for this choice is the following: since ε̄ will not be assumed to be
small (or equivalently, λ will not be assumed to be large), the trajectories starting from the
two points x1 and x2 which we want to connect could exit from a cylinder like the one in (2.5).
Hence, the definition of Cylλ[0,τ̄ ]

(
x1;x2

)
ensures that both trajectories (and also the connecting

one) will remain inside it.
Finally, given x1, x2 ∈ Π0 and λ > 0 small enough, we also define an analogous version of C

as in (2.5):

Cλ
[0,τ̄ ]

(
x1;x2

)
:=

{
X

(
t;

(
x1 + x2

2
,∇ū

(
x1 + x2

2

)))
+ (0, ŷ)

∣∣∣
t ∈
[
0, τ

(
x1 + x2

2
,∇ū

(
x1 + x2

2

))]
, ŷ ∈ Cylλ0

(
x̂1, x̂2

)}
.

We are now ready to state our refinement of Proposition 2.1.

Proposition 2.2. Let H̄ : Rn × Rn → R be a Hamiltonian of class Ck, with k ≥ 4, satisfying
(H1)-(H3), and let

(
x̄(·), p̄(·)

)
:
[
0, τ̄
]
→ Rn×Rn be a solution of (2.2) satisfying (A1)-(A4) on

both subintervals
[
0, τ̄/2

]
and [τ̄ /2, τ̄ ]. Let U be an open neighborhood of the curve Γ̄ := x̄

([
0, τ̄
])

and ū : U → R be a function of class C1,1 such that

H̄
(
x,∇ū(x)

)
≤ 0 ∀x ∈ U . (2.32)

Let λ1, λ2, λ3, λ4, λ5 ∈ (0, 1) be such that

λ1 < λ2 < λ3 < λ4 < λ5, (2.33)

and assume that for any x1 =
(
0, x̂0

)
, x2 =

(
0, x̂2

)
∈ Π0 with

(
{0} × Cylλ5

0

(
x̂1; x̂2

))
⊂ U , the

following inclusions hold:

Cylλ1

[0,τ̄ ]

(
x1;x2

)
⊂ Cλ2

[0,τ̄ ]

(
x1;x2

)
, (2.34)

Cλ3

[0,τ̄ ]

(
x1;x2

)
⊂ Cylλ4

[0,τ̄ ]

(
x1;x2

)
. (2.35)

11



Then there are δ̄, r̄ ∈ (0, 1) and K > 0 such that the following property holds: For any r ∈
(
0, r̄
)

and any x1 =
(
0, x̂1

)
, x2 =

(
0, x̂2

)
∈ Π0 satisfying∣∣x̂1∣∣, ∣∣x̂2∣∣ < δ̄, (2.36)

∣∣x1 − x2
∣∣ < r, (2.37)

H̄
(
xj(t),∇ū

(
xj(t)

))
= 0 ∀ t ∈

[
0, τ
(
xj , pj

)]
, j = 1, 2, (2.38)

with
pj := ∇ū(xj), xj(t) := X

(
t;
(
xj , pj

))
∀ t ∈

[
0, τ
(
xj ,∇ū(xj)

)]
, j = 1, 2,

there exist a time T f > 0 and a potential V : Rn → R of class Ck−1 such that:

(i) Supp(V ) ⊂ Cylλ4

[0,τ̄ ]

(
x1;x2

)
;

(ii) ‖V ‖C2 < K;

(iii) ‖V ‖C1 < Kr;

(iv)
∣∣T f − τ(x1, p1)

∣∣ < Kr;

(v) φH̄V

T f

(
x1, p1

)
= φH̄τ(x2,p2)

(
x2, p2

)
;

(vi) for any τ ∈ [0, τ̄ ], t ∈ [0, τ(x1, p1)] and tV ∈ [0, T f ] such that

XV

(
tV ; (x

1, p1)
)
, X
(
t; (x1, p1)

)
∈ Πτ ,

it holds: |tV − t| ≤ K
∣∣x1 − x2

∣∣ and∣∣∣AV

((
x1, p1

)
; tV
)
− A

((
x1, p1

)
; t
)

−
〈
∇ū
(
X
(
t; (x1, p1)

))
, XV

(
tV ; (x

1, p1)
)
−X

(
t; (x1, p1)

)〉∣∣∣ ≤ K
∣∣x1 − x2

∣∣2 ;
(vii) AV

((
x1, p1

)
;T f

)
= ū

(
π∗(φH̄τ(x2,p2)(x

2, p2)
))

− ū
(
x1
)
.

Proof of Proposition 2.2. We proceed as in the proof of Proposition 2.1. First of all, we forget
about assertions (vi) and (vii). By the construction that we performed in the first part of the
proof of Proposition 2.1 (when we connected the two trajectories, without taking care of the
action), there are K1, δ̄ > 0 such that, for any x1, x2 ∈ Π0 and any p1, p2 ∈ Rn with∣∣x̂1∣∣, ∣∣x̂2∣∣, ∣∣p1 − p̄0

∣∣, ∣∣p2 − p̄0
∣∣ < δ̄ (2.39)

and

H̄
(
x1, p1

)
= H̄

(
x2, p2

)
= 0, (2.40)

there exist a time T f > 0, a curve x(·) : [0, T f ] → Rn of class Ck, and a function u : [0, T f ] → Rn

of class Ck−2, such that the following properties are satisfied (see the proof of Proposition 2.1,
up to Equation (2.29)):

(a) x(t) = X
(
t; (x1, p1)

)
, for every t ∈

[
0, δ̄
]
;

(b) x(t) = X
(
t; (x2, p2)

)
, for every t ∈

[
T f − δ̄, T f

]
;
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(c) u = 0 on
[
0, δ̄
]
∪
[
T f − δ̄, T f

]
;

(d)
∣∣T f − τ1

∣∣ < K1

(∣∣x2 − x1
∣∣+ ∣∣p2 − p1

∣∣);
(e)

∥∥u∥∥
C1 < K1

(∣∣x2 − x1
∣∣+ ∣∣p2 − p1

∣∣);
(f)

〈
u(t), ẋ(t)

〉
= 0, for every t ∈ [0, T f ];

(g) x(t) ∈ R
((
x1, p1

)
;
(
x2, p2

)
;K1

)
for every t ∈ [0, T f ].

Fix x1 6= x2 ∈ Π0 satisfying (2.36)-(2.37) for some r ∈ (0, r̄) where r̄ will be choosen later. Set

x0 :=
x1 + x2

2
, p0 := ∇ū(x0), v :=

x2 − x1∣∣x2 − x1
∣∣ . (2.41)

Define the trajectories X0(·), X1(·), X2(·) : [0,+∞) → Rn by

Xi(t) := X
(
t; (xi, pi)

)
∀ t ≥ 0, i = 0, 1, 2.

By the construction performed in the proof of Proposition 2.1, for |x2 − x1| small enough there
exist a constant K2 > 0 (depending on the Lipschitz constant of ∇ū) and three functions
ν : [0, T f ] → [0, 1], t1 : [0, T f ] → [0, τ1], t

2 : [0, T f ] → [0, τ2], such that

x(t) = ν(t)X1
(
t1(t)

)
+
(
1− ν(t)

)
X2
(
t2(t)

)
∀ t ∈ [0, T f ]

and ∣∣t2(t)− t1(t)
∣∣ < K2

∣∣x2 − x1
∣∣ ∀ t ∈ [0, T f ]. (2.42)

Now, for every i = 1, · · · , 4, denote by N v
i the norm on Rn−1 whose unit ball is given by

B
Nv

i
1 :=

{
y ∈ Rn−1 | N v

i (y) < 1
}
= Cylλi

0

(
−v
2
;
v

2

)
,

with v defined in (2.41). Then

N v
i (v) =

1
1
2 + λi

=
2

1 + 2λi
≤ 2,

and by (2.33)
N v

4 < N v
3 < N v

2 < N v
1 .

Let us observe that the map t 7→ X0
1 (t) = X0(t) · e1 is strictly increasing, so we can define the

Ck function θ by the relation

X0
1

(
θ(s)

)
= s ∀ s ∈ [0, τ̄ ].

By construction, there holds

x(t), X0
(
θ(x1(t))

)
∈ Πx1(t) := Π0 + x1(t)e1 ∀ t ∈ [0, T f ].
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Let t ∈ [0, T f ] be fixed. We have

N v
2

(
x̂(t)− X̂0

(
θ(x1(t))

))
= N v

2

(
ν(t)X̂1

(
t1(t)

)
+
(
1− ν(t)

)
X̂2
(
t2(t)

)
− X̂0

(
θ(x1(t))

))
= N v

2

(
ν(t)

[
X̂1
(
t1(t)

)
− X̂0

(
θ(X1

1 (t
1(t)))

)]
+
(
1− ν(t)

)[
X̂2
(
t2(t)

)
− X̂0

(
θ(X2

1 (t
2(t)))

)]
+ν(t)X̂0

(
θ(X1

1 (t
1(t)))

)
+
(
1− ν(t)

)
X̂0
(
θ(X2

1 (t
2(t)))

)
− X̂0

(
θ(x1(t))

))
≤ ν(t)N v

2

(
X̂1
(
t1(t)

)
− X̂0

(
θ(X1

1 (t
1(t)))

))
+
(
1− ν(t)

)
N v

2

(
X̂2
(
t2(t)

)
− X̂0

(
θ(X2

1 (t
2(t)))

))
+N v

2

(
ν(t)X̂0

(
θ(X1

1 (t
1(t)))

)
+
(
1− ν(t)

)
X̂0
(
θ(X2

1 (t
2(t)))

)
− X̂0

(
θ(x1(t))

))
.

Thanks to (2.34), both points X1
(
t1(t)

)
and X2

(
t2(t)

)
belong to Cλ2

[0,τ̄ ]

(
x1, x2

)
, which implies

ν(t)N v
2

(
X̂1
(
t1(t)

)
− X̂0

(
θ(X1

1 (t
1(t)))

))
+
(
1− ν(t)

)
N v

2

(
X̂2
(
t2(t)

)
− X̂0

(
θ(X2

1 (t
2(t)))

))
≤
∣∣x1 − x2

∣∣.
Furthermore, we notice that

X̂0
(
θ(x1(t))

)
= X̂0

(
θ
(
X2

1 (t
2(t)) + ν(t)

(
X1

1 (t
1(t))−X2

1 (t
2(t))

))
=

(
X̂0 ◦ θ

)(
X2

1 (t
2(t))

)
+ ν(t)

〈
∇
(
X̂0 ◦ θ

)(
X2

1 (t
2(t))

)
, X1

1 (t
1(t))−X2

1 (t
2(t))

〉
+O
(∣∣∣X1

1 (t
1(t))−X2

1 (t
2(t))

∣∣∣2),
which gives

ν(t)X̂0
(
θ(X1

1 (t
1(t)))

)
+
(
1− ν(t)

)
X̂0
(
θ(X2

1 (t
2(t)))

)
− X̂0

(
θ(x1(t))

)
= ν(t)

[(
X̂0 ◦ θ

)(
X1

1 (t
1(t))

)
−
(
X̂0 ◦ θ

)(
X2

1 (t
2(t))

)
−
〈
∇
(
X̂0 ◦ θ

)(
X2

1 (t
2(t))

)
, X1

1 (t
1(t))−X2

1 (t
2(t))

〉]
+O
(∣∣∣X1

1 (t
1(t))−X2

1 (t
2(t))

∣∣∣2)
= O

(∣∣∣X1
1 (t

1(t))−X2
1 (t

2(t))
∣∣∣2).

Combining all such estimates together, thanks to (e), (2.42), and Gronwall’s Lemma, we obtain
the existence of a constant K3 such that

N v
2

(
x̂(t)− X̂0

(
θ(x1(t))

))
≤
∣∣x1 − x2

∣∣+K3

∣∣x1 − x2
∣∣2. (2.43)

This means that, if r > 0 is sufficiently small, then

N v
3

(
x̂(t)− X̂0

(
θ(x1(t))

))
<
∣∣x1 − x2

∣∣,
14



that is,
x(t) ∈ Cλ3

[0,τ̄ ]

(
x1;x2

)
∀ t ∈ [0, T ].

By (2.35), this gives
x(t) ∈ Cylλ4

[0,τ̄ ]

(
x1;x2

)
∀ t ∈ [0, T ].

Define the function Γ :
[
0, τ̄
]
× Rn−1 → Rn by

Γ(t, ẑ) := x

(
tT f

τ̄

)
+ (0, ẑ) ∀ (t, ẑ) ∈

[
0, τ̄
]
× Rn−1, (2.44)

where x(·) is the trajectory associated to the control u (see (a)-(g) above). Since x1(0) = 0
and x1(T

f ) = τ̄ , we can easily check that Γ is a Ck diffeomorphism from
[
0, τ̄
]
× Rn−1 onto[

0, τ̄
]
× Rn−1. Let µ̄ > 0 be small enough so that(

1 + 3µ̄
)
N v

3 < N v
2 ,

and let N be a norm in Rn−1, which is smooth on Rn−1 \ {0}, and such that(
1 + 3µ̄

)
N v

3 <
(
1 + 2µ̄

)
N < N v

2 on Rn−1 \ {0}.

By (2.43), if r̄ > 0 is small enough, then

Γ
([

0, τ̄
]
×BN

µ|x1−x2|

)
⊂ Cλ3

[0,τ̄ ]

(
x1;x2

)
⊂ Cylλ4

[0,τ̄ ]

(
x1, x2

)
. (2.45)

The following lemma is a simplified version of [8, Lemma 3.3] for general norms. For sake of
completeness, its proof is given in Appendix B.

Lemma 2.3. Let N : Rn−1 → R be a norm which is smooth on Rn−1 \ {0}, fix τ̄ , δ, r ∈ (0, 1)
with 3r ≤ δ < τ̄ , and let ṽ =

(
ṽ1, . . . , ṽn

)
:
[
0, τ̄
]
→ Rn be a function of class Ck−2 with k ≥ 3

satisfying

ṽ(t) = 0n ∀ t ∈ [0, δ] ∪ [τ̄ − δ, τ̄ ] (2.46)

and

ṽ1(t) = 0 ∀ t ∈
[
0, τ̄
]
. (2.47)

Then there exist a constant C > 0, independent of r and v, and a function W : Rn → R of
class Ck−1, such that the following properties hold:

(i) Supp(W ) ⊂ [δ/2, τ̄ − δ/2]×BN
2r/3 ⊂ R× Rn−1;

(ii) ‖W‖C1 ≤ C
(
‖ṽ‖∞ + ‖ ˙̃v‖∞

)
;

(iii) ‖W‖C2 ≤ C
(
1
r‖ṽ‖∞ + ‖ ˙̃v‖∞

)
;

(iv) ∇W
(
t, 0n−1

)
= ṽ(t) for every t ∈

[
0, τ̄
]
.

Define the function ṽ =
(
ṽ1, . . . , ṽn

)
:
[
0, τ̄
]
→ Rn by

ṽ(t) :=
(
dΓ
(
t, 0n−1

))∗(
u

(
tT f

τ̄

))
∀ t ∈

[
0, τ̄
]
. (2.48)

The function ṽ is Ck−2; in addition, thanks to (f) and (2.44), for every t ∈
[
0, τ̄
]
we have

ṽ1(t) = 0 and ṽi(t) = ui

(
tT f

τ̄

)
∀ i = 2, . . . , n.
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Hence, thanks to (c), ṽ satisfies both (2.46) and (2.47), so we can apply Lemma 2.3 and
obtain a function W : Rn → R of class Ck−1 satisfying assertions (i)-(iv) of Lemma 2.3 with
r := µ̄|x1 − x2| ∈ (0, 1). Define the Ck−1 potential V : Rn → R by

V (x) =

{
W
(
Γ−1(x)

)
if x ∈ Γ

([
0, τ̄
]
×BN

µ̄|x1−x2|

)
0 otherwise.

We leave the reader to check that, if r̄ is small enough, then assertions (i)-(v) of Proposition
2.2 are satisfied.

Now it remains to show how control the action (assertion (vii)) and to show the bound in
(vi). We proceed as in the proof of Proposition 2.1: first, we divide the interval

[
0, τ̄
]
into two

subintervals
[
0, τ̄ /2

]
and

[
τ̄ /2τ̄

]
. Then, we use the construction above on

[
0, τ̄ /2

]
to connect(

x1, p1
)
=
(
x1,∇ū(x1)

)
to

(
x1/2, p1/2

)
=
(
x1/2,∇ū(x1/2)

)
:= φH̄τ1/2(x2,p2)

(
x2, p2

)
.

on some time interval [0, T f
1 ] with T f

1 ∼ τ̄ /2, where τ1/2 denotes the Poincaré mapping with

respect to the hyperplane Πτ̄/2 :=
{
x =

(
τ̄ /2, x̂

)
∈ Rn

}
. As in [8, Proposition 3.1(v)] (see also

[8, Remark 3.4]), one can show that the action default is quadratic, see (2.30):∣∣∣AV

(
(x1, p1);T f

1

)
− A

(
(x1, p1); τ1/2(x

1, p1)
)

− ∆
(
(x1, p1); τ1/2(x

1, p1);X
(
τ1/2(x

2, p2); (x2, p2)
))∣∣∣

≤ K
∣∣∣φHτ1/2(x2,p2)(x

2, p2)− φHτ1/2(x1,p1)(x
1, p1)

∣∣∣2 ≤ K̃
∣∣(x2, p2)− (x1, p1)

∣∣2
Now, thanks to assumptions (2.32) and (2.38), it is not difficult to check that

∆
(
(x1, p1); τ1/2(x

1, p1);X
(
τ1/2(x

2, p2); (x2, p2)
))

=
〈
∇ū
(
π∗(φHτ1/2(x1,p1)(x

1, p1)
))
, x1/2 − π∗(φHτ1/2(x1,p1)(x

1, p1)
)〉
,

A
(
(x1, p1); τ1/2(x

1, p1)
)
= ū

(
π∗(φHτ1/2(x1,p1)(x

1, p1)
))

− ū(x1).

Moreover, since ū is C1,1 on U , if Kū denotes a bound for the Lipschitz constant of ∇ū, we also
have ∣∣∣ū(x1/2) − ū

(
π∗(φHτ1/2(x1,p1)(x

1, p1)
))

−
〈
∇ū
(
π∗(φHτ1/2(x1,p1)(x

1, p1)
))
, x1/2 − π∗(φHτ1/2(x1,p1)(x

1, p1)
)〉∣∣∣

≤ Kū

∣∣x1/2 − π∗(φHτ1/2(x1,p1)(x
1, p1)

)
〉
∣∣2.

Hence, combining the above estimates, we get

AV

(
(x1, p1);T f

1

)
= ū(x1/2)− ū(x1) +O

(∣∣(x2, p2)− (x1, p1)
∣∣2).

Furthermore, we observe that (2.38) implies∫ τ(x2,p2)

τ1/2(x2,p2)

L̄

(
φH̄V
t (x2, p2),

d

dt

(
π∗
(
φH̄V
t (x2, p2)

)))
= ū

(
π∗(φHτ(x2,p2)(x

2, p2)
))

− ū(x1/2).

Hence, for r̄ sufficiently small, we can apply [8, Proposition 4.1] on
[
τ̄ /2, τ̄

]
to compensate any

default of action of the order O
(
|(x2, p2)− (x1, p1)|2

)
, so that (vii) holds.
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Finally, for any τ ∈ [0, τ̄ ], t ∈ [0, τ(x1, p1)] and tV ∈ [0, T f ] such that

XV

(
tV ; (x

1, p1)
)
, X
(
t; (x1, p1)

)
∈ Πτ ,

thanks to [8, Remark 3.4, Equations (3.47)-(3.48)] and the C1,1-regularity of ū, the above
argument shows the validity of (vi), which concludes the proof.

Remark 2.4. We supposed that assumptions (A1)-(A4) hold on both subintervals
[
0, τ̄ /2

]
and

[τ̄ /2, τ̄ ]. If instead we fix 0 < ν̄1 < ν̄2 < τ̄ and assume that (A1)-(A4) hold on both subinter-
vals [ν̄1, ν̄2], [ν̄2, τ̄ ], then there exist δ̄, r̄ ∈ (0, 1) and K > 0 such that the property stated in
Proposition 2.2 is satisfied with

Supp(V ) ⊂ Cylλ4

[0,τ̄ ]

(
x1;x2

)
∩H[ν̄1,τ̄ ],

where H[ν̄1,τ̄ ] :=
{
z =

(
z1, ẑ

)
∈ Rn | z1 ∈ [ν̄1, τ̄ ]

}
. Indeed, arguing as above, we first construct a

potential supported on H[ν̄1,ν̄2] to connect the trajectories, and then a potential supported on
H[ν̄2,τ̄ ] to compensate the action (of course, δ̄, r̄, and K depend on both ν̄2 − ν̄1 and τ̄ − ν̄2).

3 A Mai Lemma with constraints

The aim of this section is to prove some refined versions of the Mai Lemma. Let us recall that
the classical Mai Lemma was introduced in [10] to give a new and simpler proof of the closing
lemma in C1 topology (this consists in showing that, given a vector field X with a recurrent
point x, one can find a vector field Y close to X in C1 topology which has a periodic orbit
containing x). In our case, we already used the classical Mai Lemma in [8] to “close” the Aubry
set, assuming the existence of a critical subsolution which is a C2 critical solution in an open
neighborhood of a positive orbit of a recurrent point of the projected Aubry set. Here, since in
the statement of Theorem 1.1 we only assume to have a smooth subsolution, we have relevant
information on u only on the Aubry set. Hence, by using a Taylor development, we can still
get some information in directions “tangent” to the Aubry set, but we have no controls in the
orthogonal directions. For this reason, we need to prove a refined Mai Lemma where we connect
two points by remaining “almost tangent” to a given subspace, see Lemma 3.4 below.

For proving our refined Mai Lemma, it will be useful to first recall the classical result.

3.1 The classical Mai Lemma

Let {Ei} be a countable family of ellipsoids in Rk, that is, a countable family of compact sets
in Rk associated with a countable family of invertible linear mappings Pi : Rk → Rk such that

Ei =
{
v ∈ Rk | |Pi(v)| ≤ ‖Pi‖

}
,

where
∥∥Pi

∥∥ denotes the operator norm of Pi. For every x ∈ Rk, r > 0 and i ∈ N, we call
Ei-ellipsoid centered at x with radius r the set defined by

Ei(x, r) :=
{
x+ rv | v ∈ Ei

}
=
{
x′ | |Pi(x

′ − x)| < r‖Pi‖
}
.

We note that such an ellipsoid contains the open ball B(x, r). Given an integer N ≥ 2, we call
1/N -kernel of Ei(x, r) the ellipsoid Ei(x, r/N). The Mai lemma can be stated as follows (see
also [8, Subsection 5.3, Figure 4])3:

3Note that in [8, Lemma D.1] we stated it in a slightly weaker form. However, in order to be able to prove
Lemmas 3.2 and 3.4, we need the full statement of [10, Theorem 2.1].
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Lemma 3.1 (Mai Lemma). Let N ≥ 2 be an integer. There exist a real number ρ ≥ 3 and an
integer η ≥ 2, which depend on the family {Ei} and on N only, such that the following property
holds: For every finite ordered set X = {x1, . . . , xJ} ⊂ Rk, every x ∈ Rk and every δ > 0
such that B(x, δ/4)∩X contains at least two points, there are two points xj , xl ∈ X ∩B(x, ρδ)
(j > l) and η points z1, . . . , zη in B(x, ρδ) satisfying:

(i) z1 = xj , zη = xl;

(ii) for any i ∈ {1, . . . , η − 1}, the point zi+1 belongs to the 1/N -kernel of Ei(zi, ri), where ri
is the supremum of the radii r > 0 such that

Ei(zi, r) ∩
(
∂B(x, ρδ) ∪ (X \ {xj , xl})

)
= ∅.

The purpose of the next two subsections is to refine the construction of the points z1, . . . , zη,
and to show that, under additional assumption on X, these points can be chosen to belong to
a Lipschitz submanifold of Rk.

3.2 A first refined Mai Lemma

Our first goal is to provide a lower bound on the radii of the ellipsoids Ei(zi, ri)’s. This will be
very important for the proof of Lemma 4.1, which is one of the key steps for proving Theorem
1.1.

Given an ellipsoid Ei and a set X ⊂ Rk, we denote by disti(·, X) the distance function to
the set X with respect to Ei, that is

disti(z,X) := inf
{
r ≥ 0 |Ei(z, r) ∩X 6= ∅

}
∀ z ∈ Rk. (3.1)

The following result is a slight improvement of Lemma 3.1:

Lemma 3.2. Let N ≥ 2 be an integer. There exist a real number ρ̄ ≥ 3 and an integer η ≥ 3,
which depend on the family {Ei} and on N only, such that the following property holds: For
every finite ordered set X = {x1, . . . , xJ} ⊂ Rk, every x ∈ Rk, and every r > 0 such that
X ∩B(x, r) contains at least two points, there are η points z1, . . . , zη in Rk and (η− 1) positive
real numbers r̄1, . . . , r̄η−1 satisfying:

(i) there exist j, l ∈ {1, . . . , J}, with j > l, such that z1 = xj and zη = xl;

(ii) ∀ i ∈ {1, . . . , η − 1}, Ei

(
zi, r̄i

)
⊂ B

(
x, ρ̄r

)
;

(iii) ∀ i ∈ {1, . . . , η − 1}, Ei

(
zi, r̄i

)
∩
(
X \ {xj , xl}

)
= ∅;

(iv) ∀ i ∈ {1, . . . , η − 1}, zi+1 ∈ Ei

(
zi, r̄i/N

)
;

(v) ∀ i ∈ {1, . . . , η − 1}, r̄i ≥ disti
(
zi, X

)
.

Observe that, while in the classical Mai Lemma 3.1 one has η ≥ 2, in the statement above
η ≥ 3. Indeed, as we will show below, with a simple argument one can always count one of the
points twice so that η ≥ 3. This is done because, for the application we have in mind, we would
otherwise need to distinguish between the case η = 2 and η ≥ 3

Proof. Let us apply Lemma 3.1 to the family {Ei} and N : there exist ρ ≥ 3 and an integer
η ≥ 2 such that assertions (i)-(ii) of Lemma 3.1 are satisfied. Set

ρ̄ := 13 ρ max
{
‖Pi‖‖P−1

i ‖ | i = 1, . . . , η − 1
}
,
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and let us show that we can choose positive numbers r̄i (i = 1, . . . , η − 1) so that assertions
(i)-(v) are satisfied. Let X = {x1, . . . , xJ} be a finite ordered set in Rk, fix a point x ∈ Rk,
and let r > 0 be such that X ∩ B(x, r) contains at least two points. By construction of ρ and
η, there exist η points z1, . . . , zη in B(x, 4ρr) such that assertions (i)-(ii) of Lemma 3.1 are
satisfied. Now, for every i = {1, . . . , η − 1} denote by r′i the supremum of the radii r > 0 such
that Ei(zi, r) ∩

(
∂B
(
x, ρ̄r

)
∪X

)
= ∅, that is

r′i := disti
(
zi, ∂B(x, ρ̄r) ∪X

)
.

Note that

z1 ∈ Ei

(
zi,
∣∣z1 − zi

∣∣) ⊂ Ei

(
zi,
∣∣z1 − x

∣∣+ ∣∣zi − x
∣∣)

⊂ Ei (zi, 8ρr)

⊂ B
(
zi, 8ρr‖Pi‖‖P−1

i ‖
)

⊂ B
(
x, 8ρr‖Pi‖‖P−1

i ‖+ 4ρr
)

⊂ B
(
x, 12ρr‖Pi‖‖P−1

i ‖
)
.

Therefore, by definition of ρ̄ and the fact that z1 ∈ X, we deduce that

Ei

(
zi, r′i

)
∩ ∂B

(
x, ρ̄r

)
= ∅.

Two cases appear, depending whether r′i is larger or smaller than ri, where

ri := disti

(
zi, ∂B(x, ρ̄r) ∪

(
X \ {z1, zη}

))
is as in Lemma 3.1(ii).
Case I: r′i < ri. Set r̄i := ri. Then, since ρ̄ > ρ we necessarily have either z1 ∈ Ei

(
zi, ri

)
or

zη ∈ Ei

(
zi, ri

)
, so that r̄i ≥ disti(zi, X).

Case II: r′i ≥ ri. Set r̄i := r′i. Then, by construction, the set Ei

(
zi, r̄i

)
∩X is nonempty, and

we deduce as above that r̄i ≥ disti(zi, X).

Finally, we notice that if the number η given by the Mai Lemma 3.1 is equal to 2, then we can
set η = 3, z3 := z2, and choose any radius r̄2 > 0 sufficiently small so that E2(z2, r̄2)∩X = {z2}
and E2(z2, r̄2) ⊂ B(x, ρ̄r).

3.3 A constrained Mai Lemma

As we explained above, we will need a version of the Mai Lemma where the sequence of points
z1, . . . , zη “almost” lies inside a given vector subspace, which, roughly speaking, represents the
“tangent space” to a set A at a given point. More precisely, let A ⊂ Rk be a compact set and
assume that the origin is a cluster point. We recall that the paratingent space of A at 0 is the
vector space defined as

Π0(A) := Span

{
lim
i→∞

xi − yi
|xi − yi|

| lim
i→∞

xi = lim
i→∞

yi = 0, xi ∈ A, yi ∈ A, xi 6= yi ∀ i
}
.

The aim of this subsection is twofold: first, in Lemma 3.3 we show that inside a small ball
Br around 0 the set A is contained inside a Lipschitz graph ΓA with respect to Π0(A), with a
Lipschitz constant going to 0 as r → 0. Then, in Lemma 3.4 we show that if the ordered set
of points X is contained inside A, then the sequence z1, . . . , zη provided by Mai Lemma can be
chosen to belong to ΓA.

In the statement below, for simplicity of notation we set Π := Π0(A). Let d be the dimension
of Π, and denote by Π⊥ the orthogonal space to Π in Rk. We denote by ProjΠ the orthogonal
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projection onto the space Π in Rk, and set HA := ProjΠ(A). Finally, for any r, ν > 0 we define
the cylinder

C(r, ν) :=
{
(h, v) ∈ Π×Π⊥ | |h| < r, |v| < ν

}
.

Lemma 3.3. There exist a radius rA > 0 and a Lipschitz function ΨA : Π ∩ B̄rA → Π⊥ such
that the following properties hold:

(i) A ∩ C(rA, rA) ⊂ graph(ΨA)|BrA
:=
{
h+ΨA(h) | h ∈ Π ∩BrA

}
;

(ii) h+ΨA(h) belongs to A ∩ C(rA, rA) for every h ∈ HA ∩BrA ;

(iii) For any r ∈ (0, rA), let LA(r) > 0 denote the Lipschitz constant of ΨA on Π ∩Br. Then
limr↓0 LA(r) = 0.

In particular, ΨA(0) = 0, ΨA is differentiable at 0, and ∇ΨA(0) = 0.

Proof. We claim that, if r > 0 is sufficiently small, then there exists a function ψ : HA∩Br 7→ Π⊥

such that A ∩ C(r, r) ⊂ graph(ψ)|Br . Moreover, ψ is Lipschitz on HA ∩ Br, and its Lipschitz
constant converges to 0 as r → 0.

To prove the claim, let {h1l }, {h2l } ⊂ HA be two sequences converging to 0, and for any l ∈ N
take vectors v1l , v

2
l ∈ Π⊥ such that x1l := h1l + v1l , x

2
l := h2l + v2l ∈ A. We observe that

x1l − x2l
|x1l − x2l |

=
h1l − h2l√∣∣h1l − h2l
∣∣2 + ∣∣v1l − v2l

∣∣2 +
v1l − v2l√∣∣h1l − h2l
∣∣2 + ∣∣v1l − v2l

∣∣2 =: gl + wl,

where gl ∈ Π and wl ∈ Π⊥. Hence, since by definition of Π any cluster point of
x1
l−x2

l

|x1
l−x2

l |
belongs

to Π, we necessarily have that wl → 0 as l → ∞, or equivalently

lim
l→∞

al√
1 + a2l

= 0, with al :=

∣∣v1l − v2l
∣∣∣∣h1l − h2l
∣∣ .

Since the function s 7→ s√
1+s2

is strictly increasing, we deduce that al → 0 as l → ∞.

Observe that by choosing h1l = h2l for all l ∈ N, the above argument shows that, if r > 0 is
sufficiently small, then for every h ∈ Π with |h| < r there is at most one v = v(h) ∈ Π⊥ such
that h + v ∈ A. So, we can define a function ψ : HA ∩ Br 7→ Π⊥ by ψ(h) := v(h) for every
h ∈ HA ∩Br, and the fact that∣∣ψ(h1l )− ψ(h2l )

∣∣∣∣h1l − h2l
∣∣ =

∣∣v1l − v2l
∣∣∣∣h1l − h2l
∣∣ → 0 as l → ∞

for any sequences {h1l }, {h2l } ⊂ HA converging to 0 proves that ψ is Lipschitz on HA ∩ Br,
with Lipschitz constant converging to 0 as r → 0. Consequently, there is r̄ > 0 such that
ψ : HA ∩ Br̄ → Π⊥ is Lipschitz and valued in Br̄, which proves assertions (i) and (ii). To
conclude, it remains to extend the function ψ : HA ∩ Br̄ → Π⊥ to a global Lipschitz function
ΨA : Π ∩Br̄ → Π⊥ which satisfies (iii).

For every r ∈ (0, r̄), let λ(r) denote the Lipschitz constant of ψ on HA ∩Br, and recall that
λ(r) → 0 as r → 0. Let ψ1, . . . , ψk−d denote the coordinates of ψ. For every r ∈ (0, r̄), each
coordinate ψj is a λ(r)-Lipschitz function from HA ∩Br onto R. For every j = 1, . . . , k− d and
any integer l ≥ 1, we define ψl

j : Π → Π⊥ by

ψl
j(x) := min

{
ψj(y) + λ

(
2−lr̄

)
|y − x| | y ∈ HA ∩B2−lr̄

}
∀x ∈ P.

It is easily checked that the function ψl
j is λ

(
2−lr̄

)
-Lipschitz on Π for any j, l, and moreover

ψl
j = ψj on HA ∩B2−lr̄. (3.2)
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Let {Il}l≥1 be the sequence of intervals in R defined by

Il :=
(
2−l−1r̄, 21−lr̄

)
.

The family {Il} forms a locally finite covering of the open interval (0, r̄). Let {ρl} be a smooth
approximation of unity in (0, r̄) associated with the covering {Il} such that∣∣ρ′l(r)∣∣ ≤ C2l, (3.3)

for some constant C > 0 independent of l. Finally, define the function Ψ =
(
Ψ1, . . . ,Ψk−d

)
:

Π ∩ B̄r̄ → Π⊥ by

Ψj(x) :=
∞∑
l=1

ρl+1

(
|x|
)
ψl
j(x) ∀x ∈ Π ∩ B̄r̄, j = 1, . . . , k − d.

We claim that ΨA := Ψ satisfies assumption (iii). Indeed, consider first a point x ∈ B̄r̄ which
satisfies |x| ∈

(
2−l̄−1r̄, 2−l̄r̄

)
for some integer l̄ ≥ 2. Then

ρl+1

(
|x|
)
= 0 ∀ l /∈ {l̄ − 1, l̄}.

so that by (3.2) we get

Ψj(x) = ρl̄
(
|x|
)
ψl̄−1
j (x) + ρl̄+1

(
|x|
)
ψl̄
j(x) =

(
ρl̄
(
|x|
)
+ ρl̄+1

(
|x|
))
ψj(x) = ψj(x).

By the arbitrariness of x, this gives

Ψ = ψ on HA ∩Br̄/4. (3.4)

In addition, if x ∈ Br̄/4 ∩ {2−l̄−1r̄ ≤ |x| ≤ 2−l̄r̄) is a point at which all functions ψl
j are

differentiable (since all functions ψl
j are Lipschitz, by Rademacher’s Theorem almost every

point satisfies this assumption), then for any vector h ∈ Rd we have

〈∇Ψj(x), h〉 = ρl̄
(
|x|
)
〈∇ψl̄−1

j (x), h〉+ ρl̄+1

(
|x|
)
〈∇ψl̄

j(x), h〉

+
ρ′
l̄

(
|x|
)
ψl̄−1
j (x)

|x|
〈x, h〉+

ρ′
l̄+1

(
|x|
)
ψl̄
j(x)

|x|
〈x, h〉.

Using (3.3) together with the fact that ψl
j is λ

(
2−lr̄

)
-Lipschitz and satisifies ψl

j(0) = ψ(0) = 0,
we obtain ∣∣∇Ψj(x)

∣∣ ≤ λ(21−l̄r̄
)
+ λ
(
2−l̄r̄

)
+ C2l̄λ

(
21−l̄r̄

)
|x|+ C2l̄+1λ

(
2−l̄r̄

)
|x|

≤ λ(21−l̄r̄
)
+ λ
(
2−l̄r̄

)
+ Cr̄λ

(
21−l̄r̄

)
+ 2Cr̄λ

(
2−l̄r̄

)
≤ λ(21−l̄r̄

)
(2 + 3Cr̄) .

Hence, recalling that λ(21−l̄r̄
)
→ 0 as l → ∞, we conclude that ΨA := Ψ satisfies assertion (iii)

on BrA , with rA := r̄/4.

We are now ready to prove our constrained version of the Mai Lemma. We assume that a
countable family of ellipsoids {Ei} in Rk is given, and that A ⊂ Rk is a compact set having the
origin as a cluster point. If rA > 0 and ΨA : Π ∩BrA → Π⊥ are given by the previous lemma,
we set

ΓA := graph(ΨA) =
{
h+ΨA(h) | h ∈ Π ∩BrA

}
.

Recall that LA : [0, rA) → [0,+∞) denotes the Lipschitz constant of ΨA|Br , and that LA(r) → 0
as r → 0. The following constrained version of the Mai lemma holds:
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Lemma 3.4. Let N̂ ≥ 2 be an integer. There exist a real number ρ̂ ≥ 3, an integer η ≥ 3,
and a radius r̂ ∈ (0, rA), depending on the family {Ei}, on N̂ and on the function LA only,
such that the following property holds: For every r ∈ (0, r̂) and every finite ordered set Y =
{y1, . . . , yJ} ⊂ Rk such that Y ⊂ A and Y ∩Br contains at least two points, there are η points
ŷ1, . . . , ŷη in Rk and (η − 1) positive real numbers r̂1, . . . , r̂η−1 satisfying:

(i) there exist j, l ∈ {1, . . . , J}, with j > l, such that ŷ1 = yj and ŷη = yl;

(ii) ∀ i ∈ {1, . . . , η}, ŷi ∈ ΓA ∩Bρ̂r;

(iii) ∀ i ∈ {1, . . . , η − 1}, Ei

(
ŷi, r̂i

)
⊂ Bρ̂r;

(iv) ∀ i ∈ {1, . . . , η − 1}, Ei

(
ŷi, r̂i

)
∩
(
Y \ {yj , yl}

)
= ∅;

(v) ∀ i ∈ {1, . . . , η − 1}, ŷi+1 ∈ Ei

(
ŷi, r̂i/N̂

)
;

(vi) ∀ i ∈ {1, . . . , η − 1}, r̂i ≥ disti
(
ŷi, Y

)
/4.

Proof. For every i, let Pi : Rk → Rk be the linear map associated to the ellipsoid Ei, and let
P̄i : Π → Pi(Π) be the restriction of Pi to Π. Since Pi is invertible, P̄i is an invertible linear
map from Π ' Rd into Pi(Π) ' Rd. Define the countable family of ellipsoids {Ēi} in Π ' Rd

by

Ēi :=
{
h ∈ P |

∣∣P̄i(h)
∣∣ < ∥∥P̄i

∥∥},
where

∥∥P̄i

∥∥ denotes the operator norm of P̄i. Let us apply the refined Mai Lemma 3.2 in Π ' Rd

with the family {Ēi} and N := 4N̂ . Then, there exist a real number ρ̄ ≥ 3 and an integer η ≥ 3
such that all properties of Lemma 3.2 are satisfied. Set

ρ̂ := max
{(

2 +
∥∥P−1

i

∥∥∥∥P̄i

∥∥) ρ̄ | i = 1, . . . , η − 1
}
.

We want to show that if r̂ ∈ (0, rA) is small enough, then assertions (i)-(vi) above hold.
Let Y = {y1, . . . , yJ} be a finite set in Rk such that Y ⊂ A, and Y ∩ Br contains at least

two points for some r ∈ (0, r̂), where r̂ will be chosen later. For every j = 1, . . . , J we set

xj := ProjΠ(yj).

Then the set X = {x1, . . . , xJ} is a finite subset of Π such that X ∩ (Π ∩Br) contains at least
two points. Hence we can apply Lemma 3.2 to find η points z1, . . . , zη ∈ Π and (η− 1) positive
real numbers r̄1, . . . , r̄η−1 satisfying:

(a) there exist j, l ∈ {1, . . . , J}, with j > l, such that z1 = xj and zη = xl;

(b) ∀ i ∈ {1, . . . , η − 1}, Ēi

(
zi, r̄i

)
⊂ Bρ̄r;

(c) ∀ i ∈ {1, . . . , η − 1}, Ēi

(
zi, r̄i

)
∩
(
X \ {xj , xl}

)
= ∅;

(d) ∀ i ∈ {1, . . . , η − 1}, zi+1 ∈ Ēi

(
zi, r̄i/(4N̂)

)
;

(e) ∀ i ∈ {1, . . . , η − 1}, r̄i ≥ disti
(
zi, X

)
.

Here disti : Rd → R denotes the distance function with respect to Ēi (see (3.1)). Note that
property (b) implies

|zi|, r̄i ≤ ρ̄r ∀ i = 1, . . . , η − 1. (3.5)

For every i ∈ {1, . . . , η} we set

ŷi := zi +ΨA(zi) and r̂i :=
r̄i
∥∥P̄i

∥∥
2‖Pi‖

.
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We now show that, with these choices, all assertions (i)-(vi) hold true.
First, if r̂ is such that ρ̄r ≤ ρ̄r̂ < rA, then each ŷi belongs to ΓA, so that (i) and (ii) are

satisfied. Moreover, taking r̂ smaller if necessary, we can assume that ΨA is 1-Lipschitz on Bρ̄r̂.
Hence, if y ∈ Rk belongs to Ei

(
ŷi, r̂i

)
for some i ∈ {1, . . . , η − 1}, using (3.5) we get

|y| ≤
∣∣y − ŷi

∣∣+ ∣∣ŷi∣∣
<

∥∥P−1
i

∥∥∣∣Pi

(
y − ŷi

)∣∣+ 2|zi|
≤ r̂i

∥∥P−1
i

∥∥∥∥Pi

∥∥+2ρ̄r

≤ r̄i
2

∥∥P−1
i

∥∥∥∥P̄i

∥∥+2ρ̄r

≤
(∥∥P−1

i

∥∥∣∣P̄i

∥∥ρ̄+ 2ρ̄
)
r ≤ ρ̂r.

so that also (iii) holds true.
Let us now prove (iv). We argue by contradiction and we assume that there exists a point

ym, with m 6∈ {j, l}, which belongs to Ei

(
ŷi, r̂i

)
for some i ∈ {1, . . . , η − 1}, that is,∣∣Pi

(
ym − ŷi

)∣∣ < r̂i‖Pi‖. (3.6)

We now observe that the points ŷi and ym can be written as

ŷi = zi +ΨA(zi) and ym = xm +ΨA(xm),

for some zi, xm ∈ Π satisfying

|zi| ≤ ρ̄r ≤ ρ̂r̂ and |xm| ≤ ρ̂r ≤ ρ̂r̂.

Therefore (3.6) gives∣∣P̄i

(
xm − zi

)∣∣ =
∣∣Pi

(
xm − zi

)∣∣
=

∣∣Pi

(
ym − ŷi

)
− Pi

(
ΨA(xm)−ΨA(zi)

)∣∣
< r̂i‖Pi‖+ ‖Pi‖ |ΨA(xm)−ΨA(zi)|
≤ r̂i‖Pi‖+ ‖Pi‖L

(
ρ̂r̂
)∣∣xm − zi

∣∣
≤ r̄i

2

∥∥P̄i

∥∥+ ‖Pi‖L
(
ρ̂r̂
)∥∥P̄−1

i

∥∥∣∣P̄i

(
xm − zi

)∣∣,
which implies ∣∣P̄i

(
xm − zi

)∣∣ ≤ r̄i

2
(
1− L

(
ρ̂r̂
)
‖Pi‖

∥∥P̄−1
i

∥∥)∥∥P̄i

∥∥.
Consequently, if r̂ > 0 is chosen sufficiently small so that

L
(
ρ̂r̂
)
‖Pi‖

∥∥P̄−1
i

∥∥ < 1/3 ∀ i = 1, . . . , η − 1, (3.7)

then
∣∣P̄i

(
xm − zi

)∣∣ ≤ (3r̄i/4)∥∥P̄i

∥∥, which means that the set X \{xj , xl} intersects the ellipsoid

Ēi

(
zi, 3r̄i/4

)
, a contradiction to (c). This proves that if r̂ is small enough, then assertion (iv)

is satisfied.
We now observe that, due (d) and the fact that ‖P̄i‖ ≤ ‖Pi‖, for every i = 1, . . . , η − 1 we
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have ∣∣Pi

(
ŷi+1 − ŷi

)∣∣ =
∣∣Pi

(
zi+1 +ΨA(zi+1)

)
−Pi

(
zi +ΨA(zi)

)∣∣
≤

∣∣P̄i

(
zi+1 − zi

)∣∣+ ∣∣Pi

(
ΨA(zi+1)−ΨA(zi)

)∣∣
≤ r̄i

4N̂

∥∥P̄i

∥∥+ ‖Pi‖L
(
ρ̂r̂
)∣∣zi+1 − zi

∣∣
≤ r̄i

4N̂

∥∥P̄i

∥∥+ ‖Pi‖L
(
ρ̂r̂
)∥∥P̄−1

i

∥∥∣∣P̄i

(
zi+1 − zi

)∣∣
≤ r̄i

4N̂

∥∥P̄i

∥∥+ ‖Pi‖L
(
ρ̂r̂
)∥∥P̄−1

i

∥∥∥∥P̄i

∥∥ r̄i
4N̂

≤ r̂i

2N̂

(
1 + L

(
ρ̂r̂
)∥∥P̄−1

i

∥∥‖Pi‖
)∥∥Pi

∥∥.
Hence, by (3.7) we get ∣∣Pi

(
ŷi+1 − ŷi

)∣∣ ≤ 2

3N̂
r̂i‖Pi‖ <

r̂i

N̂
‖Pi‖,

that is, the point ŷi+1 belongs to the ellipsoid Ei

(
ŷi, r̂i/N̂) for every i = 1, . . . , η − 1, which

proves (v).
Finally, fix i ∈ {1, . . . , η − 1} and choose xm = xm(i) ∈ X such that

d̄i := disti(zi, X) = disti(zi, xm) = inf
{
r ≥ 0 |xm ∈ Ēi(zi, r)

}
.

Recall that ŷi = zi +ΨA(zi) and that ym := xm +ΨA(xm) belong to Y . In addition∣∣Pi

(
ŷi − ym

)∣∣ =
∣∣Pi

(
zi +ΨA(zi)

)
−Pi

(
xm +ΨA(xm)

)∣∣
≤

∣∣P̄i

(
zi − xm

)∣∣+ ∣∣Pi

(
ΨA(zi)−ΨA(xm)

)∣∣ (3.8)

≤ d̄i
∥∥P̄i

∥∥+ L
(
ρ̂r̂
)
‖Pi‖

∣∣zi − xm
∣∣

≤ d̄i
∥∥P̄i

∥∥+ L
(
ρ̂r̂
)
‖Pi‖

∣∣ŷi − ym
∣∣,

so that ∣∣ŷi − ym
∣∣ ≤

∥∥P−1
i

∥∥∣∣Pi

(
ŷi − ym

)∣∣
≤

∥∥P−1
i

∥∥(d̄i∥∥P̄i

∥∥+ L
(
ρ̂r̂
)
‖Pi‖

∣∣ŷi − ym
∣∣).

Hence, if r̂ > 0 is small enough we get

∣∣ŷi − ym
∣∣ ≤ d̄i

∥∥P−1
i

∥∥∥∥P̄i

∥∥
1− L

(
ρ̂r̂
)∥∥P−1

i

∥∥‖Pi‖
≤ 2d̄i

∥∥P−1
i

∥∥∥∥P̄i

∥∥,
which combined with (3.7) and (3.8) gives∣∣Pi

(
ŷi − ym

)∣∣ ≤ d̄i
∥∥P̄i

∥∥+ L
(
ρ̂r̂
)
‖Pi‖

∣∣ŷi − ym
∣∣ ≤ d̄i

(
1 + 2L

(
ρ̂r̂
)
‖Pi‖

∥∥P̄−1
i

∥∥)∥∥P̄i

∥∥ < 2d̄i
∥∥P̄i

∥∥.
Thus by (e) we obtain

disti
(
ŷi, Y

)
≤
∣∣Pi

(
ŷi − y

)∣∣
‖Pi‖

≤
2d̄i
∥∥P̄i

∥∥
‖Pi‖

≤
2r̄i
∥∥P̄i

∥∥
‖Pi‖

= 4r̂i,

which yields (vi) and concludes the proof.
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4 Proof of Theorem 1.1

4.1 Introduction

Let H and L be a Hamiltonian and its associated Lagrangian of class Ck, with k ≥ 4, and let
ε ∈ (0, 1) be fixed. Without loss of generality, up to adding a constant to H we may assume
that c[H] = 0. We proceed as in the proof of [8, Theorems 2.1 and 2.4]: our goal is to find a
potential V : M → R of class Ck−1 with ‖V ‖C2 < ε, together with a C1 function v : M → R
and a curve γ : [0, T ] →M with γ(0) = γ(T ), such that the following properties are satisfied:

(P1) HV

(
x, dv(x)

)
≤ 0, ∀x ∈M ;

(P2)
∫ T

0
LV (γ(t), γ̇(t)) dt = 0.

Indeed, as explained in [8, Subsection 5.1], these two properties imply that c(HV ) = 0 and that
γ([0, T ]) is contained in the projected Aubry set of HV . Then, from this fact the statement of
the theorem follows immediately by choosing as a potential V −W , where W : M → R is any
smooth function such that W = 0 on Γ, W > 0 outside Γ, and ‖W‖C2 < ε− ‖V ‖C2 .

As in the proof of [8, Theorems 2.1 and 2.4], we can assume that the Aubry set Ã(H) does
not contain an equilibrium point or a periodic orbit (otherwise the proof is almost trivial, see
[8, Subsection 5.1]), and we fix x̄ ∈ A(H) as in the statement of Theorem 1.1. By assumption,
we know that there is a critical subsolution u :M → R and an open neighborhood V of O+(x̄)
such that u is at least Ck+1 on V. We set p̄ := du(x̄) and define the curve γ̄ : R →M by

γ̄(t) := π∗
(
φHt
(
x̄, p̄
))

∀ t ∈ R.

4.2 A review on how to close the Aubry set

In this subsection we briefly recall the construction performed in the proof of [8, Theorem 2.1],
in particular the arguments in [8, Subsection 5.3].

Given ε > 0 small, we fix a small neighborhood Ux̄ ⊂M of x̄, and a smooth diffeomorphism
θx̄ : Ux̄ → Bn(0, 1), such that

θx̄(x̄) = 0n and dθx̄(x̄)
(
˙̄γ(0)

)
= e1.

Then, we choose a point ȳ = γ̄(t̄) ∈ A(H), with t̄ > 0, such that, after a smooth diffeomorphism
θȳ : Uȳ → Bn(0, 2), θȳ(ȳ) = (τ̄ , 0n−1) and all assumptions (A1)-(A4) of Subsection 2.1 are
satisfied at (τ̄ , 0n−1)

4. We denote by ū : Bn(0, 2) → R the Ck+1 function given by ū(z) :=
u
(
θ−1
ȳ (z)

)
for z ∈ Bn(0, 2), and by H̄ : Bn(0, 2) × Rn → R the Hamiltonian of class Ck

associated with the Hamiltonian H through θ. Finally, we recall that Π0 is the hyperplane
passing through the origin which is orthogonal to the vector e1 in Rn, Π0

r := Π0 ∩Bn(0, r) for
every r > 0, and Πτ̄ := Π0 + τ̄ e1, where τ̄ ∈ (0, 1) is small but fixed.

We now fix r̄ > 0 small enough, and we use the recurrence assumption on x̄ to find a time
Tr̄ > 0 such that π∗(φHTr̄

(x, du(x))
)
∈ θ−1

x̄

(
Π0

r̄

)
. Then, we look at the set of points

W :=
{
w0 := θx̄(x̄), w1 := θx̄

(
γ̄(t′1)

)
, . . . , wJ := θx̄

(
γ̄(Tr̄)

)}
⊂ Π0 ∩ A ⊂ Π0 ' Rn−1 (4.1)

(see [8, Equation (5.18)]) obtained by intersecting the curve

[0, Tr̄] 3 t 7→ γ̄(t) := π∗(φHt (x̄, du(x̄)))
4As shown in [8, Subsection 5.2] such a point always exists, see also Subsection 5.2 below.
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with θ−1
x̄

(
Π0

δ̄/2

)
, where r̄ � δ̄ � 1 (more precisely, δ̄ ∈ (0, 1/4) is provided by [8, Proposition

5.2]). We also consider the maps Φi : Π0
δi

→ Π0
δ̄/2

corresponding to the i-th intersection

of the curve t 7→ π∗
(
φHt (θ−1

x̄

(
w), du(θ−1

x̄ (w))
))

with θ−1
ȳ (Π0

δ̄/2
) (see [8, Equation (5.14)] and

thereafter). Under our assumptions here, all the maps Φi are C
1. Hence, we define the ellipsoids

Ei associated to Pi = DΦi(0n−1), and we apply the classical Mai Lemma 3.1 to X = W with
N ∼ 1/ε. In this way, we get a sequence of points ŵ1, . . . , ŵη in Π0

ρ̂r̄ connecting wj to wl (see
[8, Subsection 5.3, Properties (p5)-(p8)]), where ρ̂ ≥ 3 is fixed and depends on ε but not on r̄.

Then, we use the flow map to send the points θ−1
x̄ (ŵi) onto the “hyperplane” Sȳ := θ−1

ȳ

(
Π0

δ̄/2

)
in the following way (see [8, Subsection 5.3, Figure 5]):

z0i := θȳ (Φi(ŵi)) , zi := P(z0i ), z̃0i := θȳ (Φi(ŵi+1)) , z̃i := P(z̃0i ), (4.2)

where P is the Poincaré mapping from Π0
1/2 to Πτ̄

1 (see [8, Lemma 5.1(ii)]).

Applying now [8, Proposition 5.2], we can find C2-small potentials Vi, supported inside some
suitable disjoints cylinders (see [8, Subsection 5.3, Property (p9)]5), which allow to connect z0i
to z̃i with a control on the action like in Proposition 2.1(v), for some small constants σi still to
be chosen. Then the closed curve γ̃ : [0, tf ] →M is obtained by concatenating γ1 : [0, t̃η] →M
with γ2 : [t̃η, tf ] →M , where

γ2(t) := π∗
(
φHt−t̃η

(
θ−1
ȳ (z0η), du

(
θ−1
ȳ (z0η)

)))
connects θ−1

ȳ (z0η) to x,

while γ1 is obtained as a concatenation of 2η − 1 pieces: for every i = 1, . . . , η − 1, we use the
flow (t, z) 7→ π∗ (φH+V

t (z, du(z))
)
to connect θ−1

ȳ (z0i ) to θ
−1
ȳ (z̃i) on a time interval [t̃i, t̃i + T f

i ],

while on [0, t̃1] and on [ti + T f
i , ti+1] (i = 1, . . . , η − 1) we just use the original flow (t, z) 7→

π∗ (φHt (z, du(z))
)
to send, respectively, θ−1

x̄ (ŵ1) onto θ
−1
ȳ (z01) and θ

−1
ȳ (z̃i) onto θ

−1
ȳ (z0i+1). (See

[8, Subsection 5.3] for more detail.) Moreover, as shown in [8, Subsection 5.4], one can choose
the numbers σi so that

|σi| ≤ Kū|z̃i − zi|2 ≤ 2Kū|z̃0i − z0i |2 (4.3)

(hereKū := ‖ū‖C2(B(0,2)), see [8, Equations (5.27) and (5.28)], and we used that P is 2-Lipschitz,
see [8, Lemma 5.1(ii)]), and ∫ T

0

LV

(
γ̃(t), ˙̃γ(t)

)
dt = 0

(which corresponds to property (P2) above).
Finally, using the characteristic theory for solutions to the Hamilton-Jacobi equation to-

gether with the estimates on the potential V , one can add another small potential, which
vanishes together with its gradient on γ, so that one is able to construct a C1,1 critical viscosity
subsolution of HV ≤ 0 as in (P1) above, see [8, Subsection 5.5]. This concludes the argument
in the proof of [8, Theorem 2.1].

4.3 Preliminary step

The above construction works well for instance when we have a critical subsolution which is
a C2 solution to the Hamilton-Jacobi equation in a neighborhood of the positive orbit O+

(
x̄
)

(see (1.2)), since we can control the action along all curves t 7→ π∗(φHt (x, du(x))
)
in terms of

u when x is close to x̄ (see [8, Paragraph 5.4]). However, since now we only have a smooth
critical subsolution, we want to apply a refined version of the strategy used in [8, Theorem 2.4]:
we define the nonnegative Ck-potential V0 : V → R by

V0(x) := −H
(
x, du(x)

)
∀x ∈ V,

5This is the analogous of property (π̃12) in Subsection 4.4 below.
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so that u is a solution of

H
(
x, du(x)

)
+ V0(x) = 0 ∀x ∈ V. (4.4)

As in the proof of [8, Theorem 2.4] (see [8, Subsection 6.1]), the idea is to use the argument
described in the previous subsection to find a small potential Vε which allows to close the orbit
O+
(
x̄
)
(since it belongs also to “the Aubry set of the Hamiltonian H + V0”

6), and then to
replace V0 by another potential V1 : M → R, which has small C2-norm and such that “the
Aubry sets of H + V0 + Vε and H + V1 + Vε coincide” (see [8, Subsection 6.2]). In order to
be able to apply this strategy in the current situation and to construct such a potential V1,
we will need to refine the argument described above in order to obtain finer properties on the
“connecting” curve γ1.

Let us recall that, by the proof of [8, Theorem 2.1] outlined above, fixed ε > 0 small, for
any small radius r̄ > 0 there exist an open set U = Uȳ ⊂ V, a potential Vε :M → R of class Ck,
a function v :M → R of class C1,1, and a closed curve γ : [0, tf ] →M , such that γ is obtained
concatening two curves

γ1 :
[
0, t̃η

]
−→M and γ2 :

[
t̃η, tf

]
−→M,

and, moreover, all the following properties are satisfied (recall that Γ̄1 := γ̄
(
[0, t̄η

]
) for some

suitable time t̄η > 0, see the proof of [8, Theorem 2.1] and [8, Subsection 6.1] for more details):

(π̃1)
∥∥Vε∥∥C2 < ε/2.

(π̃2) Supp (Vε) ⊂ U .

(π̃3) H
(
x, dv(x)

)
+ V0(x) = 0 for every x ∈ V \ U .

(π̃4) H
(
x, dv(x)

)
+ V0(x) + Vε(x) ≤ 0 for every x ∈ U .

(π̃5)
∫ tf
0
L
(
γ(t), γ̇(t)

)
− V0

(
γ(t)

)
− Vε

(
γ(t)

)
dt = 0.

(π̃6) For every t ∈
[
t̃η, tf

]
, γ2(t) ∈ A(H).

(π̃7) dist
(
γ1(t), Γ̄1

)
≤ Kr̄ for all t ∈

[
0, t̃η

]
.

Assume for a moment that V0 is defined everywhere on M . Then, as we explained above, this
implies that the closed curve γ : [0, tf ] → M belongs to A(H + V0 + Vε). However, although
Vε is small in C2-norm, there is no reason for

∥∥V0∥∥C2(V)
to be small. This is why we have to

replace it with a potential V1 as described above. In [8, Subsections 6.2 and 6.3], the above
properties (π̃1)-(π̃7) were sufficient to construct such a V1 when M is two dimensional, but in
this case they are not enough. Indeed, (π̃7) tells us that γ1 is close to a set Γ̄1 which we know to
be included in the projected Aubry set of H (since x̄, and so the whole curve γ̄, are contained
in A(H)).

Since x̄ is recurrent, in the two dimensional case this information allows to deduce that V0 is
very small, together with its derivative up to order 2, on γ1 (see [8, Equation (6.2) and Remark
6.2]). Then, this fact together with the fact that V0 vanishes with its gradient on γ2 (since γ2
in contained in A(H)) allows to replace V0 with a new potential V1 as above.

Unfortunately, in higher dimension (π̃7) is not enough: even if we know that γ1 is close to
a set Γ̄1 where V0 vanishes, this does not allow to get a control on all second derivatives, but
only in the directions which are “tangent” to the Aubry set. Hence, it is important that the
connecting curve γ1 “almost” belongs to such directions.

For this reason, in the next subsection we will use our “constrained” results proved in
Sections 2 and 3 to slightly modify the argument outlined in Subsection 4.2 and get a refined
version of property (π̃7). Then, an improvement of [8, Lemma 6.1] (see Lemma 4.1 below) will
allow to conclude as in [8, Theorem 2.4].

6Note that, since V0 is well-defined only on V, the Hamiltonian H + V0 is not defined on M .
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4.4 Refinement of connecting trajectories

The goal of this subsection is to use Proposition 2.1 and Lemma 3.4 to slightly modify the
argument in the proof of [8, Theorem 2.1] and get a refined version of (π̃7).

With the same notation as in Subsection 4.2, set

A := θx̄

(
A(H) ∩ Ux̄

)
∩Π0

1 ⊂ Π0.

By assumption, the origin is a cluster point of A. As in Section 3.3, we define the paratingent
space to A at the origin as

Π := Π0(A) = Span

{
lim
i→∞

vi − wi

|wi − wi|
| lim

i→∞
vi = lim

i→∞
wi = 0, vi ∈ A, wi ∈ A, vi 6= wi ∀ i

}
.

The vector space Π has dimension d ≥ 1 and is contained in Π0 ' Rn−1. Hence, from Lemma
3.3 there exist a radius rA > 0 and a Lipschitz function ΨA : Π ∩ B̄rA → Π⊥ ⊂ Π0 such that,
if we denote by ΓA the graph of ΨA, then

(pA1) A ∩
{
(h, v) ∈ Π×Π⊥ | |h| < rA, |v| < rA

}
⊂ ΓA.

(pA2) For any r ∈ (0, rA), the Lipschitz constant LA(r) of ΨA|Br satisfies limr↓0 LA(r) = 0.

Hence, if we first choose rA � δ̄ (with δ̄ to be chosen below, and which will be given by
Proposition 2.1) and then r̄ � r0/ρ̂ := min{rA, r̂}/ρ̂, with r̂, ρ̂ as in the constrainted Mai
Lemma 3.4, since the set W defined in (4.1) is contained inside A we can apply Lemma 3.4 to
obtain that all points ŵ1, . . . , ŵη connecting ŵ1 = wj to ŵη = wl belong to the graph ΓA.

As a consequence, if for r > 0 small we denote, respectively, by W(r) and WA(r) the image
under the flow of Π0

ρ̂r and ΓA ∩Π0
ρ̂r for η laps, that is7,

W(r) :=
{
π∗
(
φHt

(
θ−1
x̄ (w), du

(
θ−1
x̄ (w)

)))
|w ∈ Π0

ρ̂r, t ∈
[
0, τη(w)

]}
,

WA(r) :=
{
π∗
(
φHt

(
θ−1
x̄ (w), du

(
θ−1
x̄ (w)

)))
|w ∈ ΓA ∩Π0

ρ̂r, t ∈
[
0, τη(w)

]}
,

then, by to the construction of γ outlined in Subsection 4.2 and (π̃6),

(π̃8) γ1(t) ∈ WA(r̄) for every t ∈
[
0, t̃1

]
∪
[
t̃1 + T f

1 , t̃2
]
∪ . . . ∪

[
t̃η−1 + T f

η−1, t̃η
]
.

(π̃9) For every t ∈
[
t̃η, tf

]
,

γ2(t) ∈ W(r0) =⇒ γ2(t) ∈ WA(r0).

(Recall that r0 = min{rA, r̂}).

Let us recall that the points z0i and z̃i are defined in (4.2). In particular, since θ−1
x̄ (w1), θ

−1
x̄ (wη) ∈

A(H), there holds:

(π̃10) θ−1
ȳ (z01), θ

−1
ȳ (z0η) ∈ A(H).

As explained in Subsection 4.2, in the proof of [8, Theorem 2.1] the two states
(
z0i ,∇ū(z0i )

)
and(

z̃i,∇ū(z̃i)
)
are connected using [8, Proposition 5.2] for every i = 1, . . . , η − 1. Here, we need

the connecting trajectories (seen in Rn) to stay very close to the graph WA(r̄). To this aim,

7Here, according to the notations of the proof of Theorem [8, Theorem 2.1] (see in particular [8, Equation
(5.14)]), τη denotes the η-th Poincaré time mapping τη : Π0

δη
→ (0,+∞), i.e., τη(0) is the η-th time when the

curve t 7→ φH
t

(
x̄, du(x̄)

)
intersects the hyperplane θ−1

ȳ (Π0
δ̄/2

) (recall that x̄ = θ−1
x̄ (0)), and

φH
τη(z)

(
z, du(z)

)
∈ θ−1

ȳ

(
Π0

δ̄/2

)
∀ z ∈ θ−1

x̄

(
Π0

ρ̂r̄

)
.
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Figure 1: By using Proposition 2.1, we can connect z0i to z̃i using a trajectory which almost belongs to

the “surface” spanned by the original trajectories, and then we compensated the action by remaining

in a O
(∣∣z̃0i − z0i

∣∣2)-neighborhood of the second trajectory.

since H + V0 is of class Ck with k ≥ 4, we can apply Proposition 2.1: for every i = 1, . . . , η− 1
we denote by ci :

[
t̃i, t̃i + T f

i

]
→ Bn(0, 2) the connecting trajectories of class Ck−1provided by

Proposition 2.18, and we set

γ1(t) := θ−1
ȳ

(
ci(t)

)
∀ t ∈

[
t̃i, t̃i + T f

i

]
.

Thanks to Proposition 2.1(vi) and the bound on the constants σi provided by (4.3) we get:

(π̃11) There exists a uniform constant K > 0 such that, for every i = 1, . . . , η − 1,

ci(t) ∈ R1
i ∪ B2

i ∀ t ∈
[
t̃i, t̃i + T f

i

]
,

where R1
i and B2

i are defined as

R1
i := R

((
z0i , dū(z

0
i )
)
;
(
z̃0i , dū(z̃

0
i )
)
;K
∣∣z̃0i − z0i

∣∣2) ∩ E1,

B2
i := B

((
z̃0i , dū(z̃

0
i )
)
;K
∣∣z̃0i − z0i

∣∣2) ∩ E2,

with R,B, E1, E2 as in (2.6)-(2.11).

Moreover, for r̄ small enough, Proposition 2.1(i) gives that the Ck−1-potential Vε : M → R
used to connect the trajectories satisfies:

(π̃12) Supp(Vε ◦ θ−1
ȳ ) ⊂

⋃η−1
i=1 Ci ⊂ W(r0), where

Ci := C
((
z0i ,∇ū(z0i )

)
; τ
(
z0i ,∇ū(z0i )

)
, r̂i

)
,

with r̂i ∈ (0, ρ̂r̄) the radii provided by Lemma 3.4.

Recall now that N̂ ∼ 1/ε. More precisely, we can choose N̂ ∈ (K/ε,Kε + 1) ∩ N with K a
sufficiently large constant (see [8, Equation (5.16)]) so that, thanks to Lemma 3.4(v)-(vi), each
radius r̂i satisfies:

(π̃13)
∣∣z̃0i − z0i

∣∣ < r̂i ε and r̂i ≥ dist(z0i , Z)/8, where Z :=
{
z = (0, ẑ) ∈ Π0

ρ̂r̂ | θ
−1
ȳ (z) ∈ A(H)

}
We also recall that, by construction of γ1 and γ2, there holds (see [8, Subsection 5.3, Claim 2]):

(π̃14)
(
γ2
([
t̃η, tf

])
∪ γ1

([
0, t̃1

])
∪
⋃η−1

i=1 γ1

([
t̃i + T f

i , t̃i+1

]))
∩ Ci = ∅ for all i = 1, . . . , η − 1.

8When applying Proposition 2.1 we get a potential Vε of class Ck−1, so the Hamiltonian trajectories are of
class Ck−1 as well.
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4.5 Modification of the potential V0 and conclusion

In the previous subsection we found a potential Vε and a closed curve γ : [0, tf ] → M such
that (π̃1)-(π̃14) hold, and γ is “contained in the projected Aubry set for H + V0 + Vε” (this is
a bit informal, since V0 is only defined on V). As we already said before, although Vε is small
in C2-norm, there is no reason for

∥∥V0∥∥C2(V)
to be small. The idea is therefore the following:

first of all, by choosing r̄ sufficiently small we can ensure that the curve γ is as close as we want
to A(H) (see (π̃7)). Now, since V0 ≥ 0 vanishes on A(H), we can ensure that both V0 and
∇V0 are small in a neighborhood of γ. Moreover, since V0 attains its minimum on A(H), the
negative part of ∇2V0 can also be made as small as we wish. The strategy is then to find a new
potential V1 :M → R of class Ck−1 such that the following properties are satisfied:

(π̃15)
∥∥V1∥∥C2 < ε/2.

(π̃16) V1(x) ≤ V0(x), for every x ∈ V.

(π̃17) V1(x) ≤ 0, for every x ∈M \ V.

(π̃18) V1
(
γ(t)

)
= V0

(
γ(t)

)
, for every t ∈ [0, tf ].

Assuming that we are able to do this, Theorem 1.2 follows as in [8, Subsection 6.2]. Hence we
are left with the construction of V1, which we perform in the next subsection.

4.6 Construction of the potential V1

In this section, since the construction is already very involved, in order to avoid notational
complications which may obscure the ideas behind the construction of V1, we perform some
change of coordinates. Since H is of class at least Ck, u of class at least Ck+1, and V0 is of class
Ck, the flow map (t, z) 7→ φHt

(
z, du(z)

)
is of class Ck−1. Hence, fixed a small radius r0 > 0, we

can construct a Ck−1 diffeomorphism Φ from W := {z |dist(z, Γ̄1) ≤ r0} to (0, η)×Bn−1
r0 ⊂ Rn,

depending on ε and r0, so that we reduce to the following simplified situation9:

(π̂1) γ̄1 is a segment of the form

Γ̄1 :=
{(
t, 0n−1

)
| t ∈ [0, η]

}
.

(π̂2) W is a long thin cylinder along Γ̄1, that is, W := (0, T )×Br0 .

9The diffeomorphism Φ has to:

- transform a finite number of integral curves into straight lines, see (π̂1);

- for t ∈ [i, i+1/20], let the connecting trajectory from z0i to z̃i lie in the rectangle [i, i+1/20]× [vi, vi+1],
see (4) (compare with (xi) above, where the trajectory lies in Ri).

This can be done, for instance, by first straightening the trajectories of (t, z) 7→ φH
t

(
z, du(z)

)
with the inverse

of the flow map (which will be of class Ck−1) and then modifying the connecting trajectory to make it lie in a
plane (though the construction is a bit tedious).

There is, however, a simple possible way to avoid this construction, which has as the only drawback the need
for H to be of class Ck with k ≥ 5, and to finally produce a potential of class Ck−2, instead of Ck−1 (which,
however, is irrelevant for the purpose of proving the Mañé conjecture in C1-topology). This amounts to repeat
the argument in Proposition 2.1 by:

- First, use a Ck diffeomorphism Φ to transform the integral trajectories starting from x1 and x2 into
straight segments.

- Then, connect the straigthened trajectories using the same formula as in the proof of Proposition 2.1 (i.e.,
considering a convex combination of them as in (2.18), and then reparameterizing the time as in (2.20)).

Observe however that, since Φ is Ck, the transformed Hamiltonian will only be Ck−1 (since the p-variable
transforms through dΦ), and so the potential provided by Proposition 2.1 will be only of class Ck−2.
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(π̂3) The points z0i , z̃
0
i and z̃i from the previous subsections are given by

z0i =
(
i, vi

)
, z̃0i =

(
i, vi+1

)
, z̃i =

(
i+ 1/10, vi+1

)
,

for some sequence v1, . . . , vη ∈ Bn−1
ρ̂r̄ ⊂ Rn−1.

(π̂4) The set Γ1 := γ1
(
[0, t̃η

])
has the form

Γ1 = I0 ∪
( ⋃

i=1,...,η−1

Ii

)
∪
( ⋃

i=1,...,η−1

Ci

)
,

where

I0 := [0, 1]× {v1}, Ii :=
[
i+ 1/10, i+ 1

]
× {vi+1}, i = 1, . . . , η − 1,

Ci := ci
(
[i, i+ 1/10]

)
⊂
{(
s, v
)
| s ∈

[
i, i+ 1/20

]
, v ∈

[
vi, vi+1

]}
∪
( ⋃

s∈[i+1/20,i+1/10]

B
((
s, vi+1

)
,K
∣∣vi+1 − vi

∣∣2)),
where ci are the (constrained) connecting curves (which are of class Ck−1).

(π̂5) For any r > 0 small, the set WA(r) has the form

WA(r) =
{
(t, w) |w ∈ ΓA ∩Π0

ρ̂s, t ∈ [0, η]
}
.

(π̂6) z01 , z
0
η ∈ S(r̄) ∩ {V0 = 0} (thanks to (π̃10)).

(π̂7) There exist radii ri > 0 such that, for all i = 1, . . . , η − 1,

Bn−1(vi, ri) ⊂ Bn−1
ρ̄r̄ , ri ≥ dist

(
vi,Z

)
/8, |vi+1 − vi| ≤

ri
32
,

where Z := Bn−1
r0 ∩ {V0 = 0} (by (π̃13), for ε small enough).

(π̂8) The curve γ2 never intersects the set

Q :=

η−1⋃
i=1

( ⋃
s∈[i,i+1]

Bn
((
s, vi

)
, ri

))
(as a consequence of (π̃14)).

We further remark that, since the function g := V0 ◦ Φ−1 is of class Ck−1 (with k − 1 ≥ 3),
nonnegative, vanishes on Γ̄1, it satisfies:

(π̂9) For all (t, w) ∈ W, there holds:∣∣g(t, w)∣∣ ≤ K ′|w|2,
∣∣∇g(t, w)∣∣ ≤ K ′|w|, Hess g(t, w) ≥ −K ′|w|In,

for some constant K ′ > 0, which depends on ε but not on r̄.

Moreover, by definition of Π as the paratingent space of the projected Aubry set at x̄ in the
direction orthogonal to Γ̄1, thanks to (π̂5) above it is easily seen that the paratingent space of
A(H) at every point of z ∈ Γ̄1 in the direction orthogonal Γ̄1 coincides with Π. Hence, since
∇V0 is at least C2 and vanishes on the Aubry set, Hess g vanishes in the directions of Π along
Γ̄1, which gives
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(π̂10)
∥∥Hess g(t, w)|Π∥∥ ≤ K ′|w| for all (t, w) ∈ W.

As observed above, the diffeomorphism Φ depends on ε and r0, which are small but fixed
constants. Hence, if now we are able to construct a compactly supported potential G : (0, η)×
Bn−1

r0 → R which satisfies the analogous of (π̃16)-(π̃18) above and with a C2-norm as small as
we wish, then V1 := G ◦ Φ will satisfy (π̃15)-(π̃18).

Now, if Π = Rn−1, then (π̂10) corresponds to [8, Equation (6.2)] with g in place of V0 and
ω(r) = K ′r. So, the construction of V1 becomes the same as in the two dimensional case and
we easily conclude by [8, Lemma 6.1]. On the other hand, if dim(Π) ∈ {1, . . . , n− 2} then the
construction of V1 relies on the following result, whose proof is postponed to Appendix A:

Lemma 4.1. Given n ≥ 3, real numbers r0, K̄ > 0, and an integer η ≥ 3, consider the cylinder
C := [0, η]×Bn−1

r0 . Let g : C → R be a nonnegative function of class Cl with l ≥ 3, Π ⊂ Rn−1 be
a vector space of dimension d ∈ {1, . . . , n−2}, Π⊥ its orthogonal in Rn−1. Let Ψ : Π∩Bd

r0 → Π⊥

be a Lipschitz function whose graph is denoted by Γ, and whose Lipschitz constant on Π ∩ B̄d
r

is denoted by L(r), for every r ∈ (0, r0). Assume that L(r) → 0 as r → 0, and there exists a
positive constant K̄ such that∥∥Hess g(x)|Π∥∥ ≤ K̄r ∀x ∈ [0, η]×Bn−1

r , r ∈ (0, r0) (4.5)

Hess g(x) ≥ −K̄rIn ∀x ∈ [0, η]×Bn−1
r , r ∈ (0, r0). (4.6)

Define the set Z ⊂ Bn−1
r0 as

Z :=
{
v ∈ Bn−1

r0 ∩ Γ | g(s, v) = 0 ∀ s ∈ [0, η]
}
.

Then, for every ε′, K̄ ′ > 0 there exists a (small) radius r > 0 such that the following holds: For
every set of points v1, . . . , vη ∈ Rn−1 such that

v1, vη ∈ Γ ∩ Z ∩Bn−1
r , v2, . . . , vη−1 ∈ Γ ∩Bn−1

r , (4.7)

and every set of real numbers r1, . . . , rη−1 ∈ (0, r) such that

Bn−1
(
vi, ri

)
⊂ Bn−1

r , (4.8)

ri ≥ dist
(
vi,Z

)
/8, (4.9)

∣∣vi+1 − vi
∣∣ ≤ ri/32, (4.10)

and every set of Cl curves {c1(·), . . . , cη−1(·)} with

ci(·) :
[
i, i+ 1/10

]
−→ C

satisfying ∣∣c̈i(s)∣∣ ≤ K̄ ′ ∀ s ∈
[
i, i+ 1/10

]
, (4.11)

ci(i) = (i, vi), ci(i+ 1/10) =
(
i+ 1/10, vi+1

)
, (4.12)

and

Ci := ci
(
[i, i+ 1/10]

)
⊂
{(
s, v
)
| s ∈

[
i, i+ 1/20

]
, v ∈

[
vi, vi+1

]}
⋃ ( ⋃

s∈[i+1/20,i+1/10]

B
((
s, vi+1

)
, K̄
∣∣vi+1 − vi

∣∣2)), (4.13)

there exists a function G : C → R of class Cl such that:
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(a) Supp (G) ⊂ C;

(b) ‖G‖C2(C) < ε′;

(c) G(x) ≤ g(x) for every x ∈ C;

(d) G(x) = g(x) for every x ∈ S ⊂ C, with

S := I0 ∪
( ⋃

i=1,...,η−1

Ii

)
∪
( ⋃

i=1,...,η−1

Ci

)
,

where I0 := [0, 1]× {v1} and Ii :=
[
i+ 1/10, i+ 1

)
× {vi+1} for every i = 1, . . . , η − 1;

(e) G(x) = 0 for every x ∈ ([0, η]×Z) ∩
((
[0, η]× Γ

)
\ Q
)
, with

Q :=

η−1⋃
i=1

( ⋃
s∈[0,η]

Bn
((
s, vi

)
, ri

))
.

Let us remark that properties (c) and (d) imply that ∇G = ∇g on S, while (e) ensures that
G = g = 0 on γ2 (compare with (π̂7) above). Hence, by choosing ε′ in (b) sufficiently small
and defining V1 := G ◦Φ, we obtain a potential which satisfies (π̃15)-(π̃18). This concludes the
proof of Theorem 1.1.

5 Proof of Theorem 1.2

As already explained at the end of [8, Section 2], the rough idea of choosing a time T � 1 such
that π∗ (φHT (x̄, du(x̄))) is sufficiently close to x̄, and then “closing” the trajectory in one step,
does not work if one want to use a potential which is small in C2 topology. However, since now
we only want the C1 norm of V to be small, we can use this strategy. Hence, as we will see, the
“connecting part” of the construction becomes much easier (in particular, we do not need to
use Mai Lemma). On the other hand, the construction of a critical subsolution becomes more
involved. Indeed, since now we do not control the C2 norm of the potential V that we use
to connect the orbit, the Hamilton-Jacobi equation associated to H + V may have conjugate
points along the connecting trajectory. In order to prevent this, we will add a second potential
which has the feature to make the characteristics fall apart, so that regularity of solutions to
the Hamilton-Jacobi equations propagates on some uniform time interval, see Lemma 5.5(vi).
Thanks to this result, we will be able to construct a global critical visocsity subsolution, which
will allow to conclude the proof.

5.1 Introduction

Let H : T ∗M → R be a Tonelli Hamiltonian of class Ck, with k ≥ 4, and let ε ∈ (0, 1) be fixed.
Without loss of generality, up to adding a constant to H, we can assume that c[H] = 0. Let L
denote the Lagrangian associated to H. As in the proof of Theorem 1.1 (see Subsection 4.1 and
[8, Subsection 5.1]), it suffices to find a potential V : M → R of class Ck−2 with ‖V ‖C1 < ε, a
continuous function v : M → R, and a curve γ : [0, T ] → M with γ(0) = γ(T ), such that the
following properties are satisfied:

(P1) v is a viscosity subsolution of HV

(
x, dv(x)

)
= 0 ∀x ∈M .

(P2)
∫ T

0
LV (γ(t), γ̇(t)) dt = 0.
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From now on, we assume that the Aubry set Ã(H) does not contain an equilibrium point or a
periodic orbit, and we fix x̄ a recurrent point of the projected Aubry set10. We also fix, thanks
to Bernard’s Theorem [2] (see also [8, Subsection 1.2]), a critical subsolution u : M → R of
class C1,1. Moreover, we set p̄ := du(x̄) and define the curve γ̄ : R →M by

γ̄(t) := π∗
(
φHt
(
x̄, p̄
))

∀ t ∈ R.

5.2 Preliminary step

As in [8, Subsection 5.2], we claim that there is a time t̄ > 0 such that

d

dt

{
u
(
φHt
(
x̄, p̄
))}

|t=t̄
=
〈
du
(
γ̄(t̄)

)
, ˙̄γ
(
t̄
)〉

≥ 0. (5.1)

Indeed, arguing by contradiction and assuming that

d

dt

{
u
(
φHt
(
x̄, p̄
))}

=
〈
du
(
γ̄(t)

)
, ˙̄γ(t)

〉
< 0 ∀ t > 0,

one obtains

u
(
γ̄(T )

)
− u(x̄) = u

(
γ̄(T )

)
− u
(
γ̄(0)

)
=

∫ T

0

〈
du
(
γ̄(t)

)
, ˙̄γ(t)

〉
dt ≤ −c0 < 0 ∀T ≥ 1,

which is absurd since x̄ is recurrent.

We now proceed as in the proof of [8, Theorem 2.1]. We set ȳ := γ̄(t̄) and fix τ̄ ∈ (0, 1).
Note that ȳ is a recurrent point of A(H), and there exist an open neighborhood Uȳ of ȳ in M
with x̄ /∈ Uȳ, and a smooth diffeomorphism

θȳ : Uȳ → Bn(0, 2),

such that
θȳ(ȳ) = (τ̄ , 0n−1) and

〈
dθȳ(ȳ), ˙̄γ(t̄)

〉
= e1. (5.2)

Denote by Π0 the hyperplane passing through the origin which is orthogonal to the vector e1
in Rn and set

Πτ := τe1 +Π0, Π0
r := Π0 ∩Bn(0, r), Πτ

r := Πτ ∩Bn
(
τe1, r

)
∀ τ ∈ R, r > 0. (5.3)

The Hamiltonian H : T ∗M → R is sent, via the smooth diffeomorphism θȳ, onto a Hamiltonian
H̄ of class Ck on Bn(0, 2)×Rn, and the critical subsolution u :M → R is sent via θȳ onto the
C1,1 function ū : Bn(0, 2) → R,

ū(z) := u
(
θ−1
ȳ (z)

)
∀ z ∈ Bn(0, 2),

which is a C1,1 subsolution of the Hamilton-Jacobi equation associated with H̄, that is,

H̄
(
z,∇ū(z)

)
≤ 0 ∀ z ∈ Bn(0, 2). (5.4)

We set
Ā := θȳ

(
A(H) ∩ Uȳ

)
.

10Since the Aubry set is a compact invariant set which is invariant under the Lagrangian flow, it necessarily
contains recurrent points. Indeed, one can use for instance Zorn Lemma to find a minimal invariant subset, and
then minimality implies that all orbits are dense in such a subset.
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We observe that the Hamiltonian H̄ can be seen as the restriction of a Hamiltonian H̄
defined on Rn × Rn satisfying (H1)-(H3). For every z0 ∈ Π0

1, let us denote by(
Z
(
· ; z0

)
, Q
(
· ; z0

))
: [0,+∞) −→ Rn × Rn

the solution of the Hamiltonian system{
ż(t) = ∇qH̄

(
z(t), q(t)

)
q̇(t) = −∇zH̄

(
z(t), q(t)

) (5.5)

on [0,+∞) satisfying
z(0) = z0 and q(0) = ∇ū(z0).

Observe that, by (5.1) and (5.2), Q1

(
0, θȳ(ȳ)

)
=
〈
du(ȳ), ˙̄γ(t̄)

〉
≥ 0 and (A4) holds. Moreover,

by taking τ̄ ∈ (0, 1/10) sufficiently small, we may assume that Z
(
t; z0

)
belongs to Bn(0, 2) for

every z0 ∈ Π0
1 and t ∈

[
0, 5τ̄

]
, and that the Hamiltonian trajectory(

z̄(·), q̄(·)
)
:=
(
Z
(
· ; 0n

)
, Q
(
· ; 0n

))
=
(
θȳ
(
γ̄(t+ t̄− τ̄)

)
,
(
dθȳ(γ̄(t+t̄−τ̄))θ

−1
ȳ

)∗
du
(
γ̄(t+ t̄− τ̄)

))
(5.6)

satisfies (A1)-(A4) over the time intervals [τ̄ , 3τ̄ /2] and [3τ̄ /2, 2τ̄ ] (see (5.1)).
For every 0 ≤ a < b, let us denote by H[a,b] the vertical slice defined by

H[a,b] :=
{
z =

(
z1, ẑ

)
∈ Rn | z1 ∈ [a, b]

}
.

Up to reducing again τ̄ , we can also assume that the following holds11:

Lemma 5.1. The following properties are satisfied:

(i) For every τ ∈ (0, 5τ̄ ], the Poincaré time mapping Tτ : Π0
1/2 → R

Z
(
Tτ (z0); z0

)
= π∗

(
φH̄Tτ (z0)

(
z0,∇ū(z0)

))
∈ Πτ

1 ∀ z0 ∈ Π0
1/2,

is well-defined and Lipschitz;

(ii) for every τ ∈ (0, 5τ̄ ], the Poincaré mapping Pτ defined by

P : Π0
1/2 → Πτ

1

z0 7−→ P(z0) := Z
(
Tτ (z0); z0

)
is 2-Lipschitz;

(iii) the following inclusion holds for every τ ∈ (0, 5τ̄ ]:{
Z
(
t; z0

)
| z0 ∈ Π0

3/8, t ∈
[
0, Tτ (z0)

]}
⊂ [0, τ ]×Bn−1(0n−1, 1/2);

(iv) the viscosity solution ū0 to the Dirichlet problem{
H̄
(
z,∇ū0(z)

)
= 0 in ∈ Bn(0, 1) ∩H[0,5τ̄ ],

ū0 = ū on Π0
1,

(5.7)

is of class C1,1.

In the next section we state a series of lemmas which are crucial for the proof of Theorem
1.2. The proofs of some of them are postponed to Appendix C.

11Property (iv) is a consequence of the results proved in [4]: it states that the solution of (5.7) obtained by
characteristics is locally of class C1,1 (since ū is itself of class C1,1). We refer the reader to [3, 4, 13] for more
details about the method of characteristics.
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5.3 Preparatory lemmas

Our first lemma follows from [1, Remarque 6.3.3]. It states that, given a finite set of points,
we can always find two of them which are “far enough” from the others. For the sake of
completeness, we provide its proof in Appendix C.1.

Lemma 5.2. Let r > 0 and Y be a finite set in Rm such that Br/12 ∩ Y contains at least

two points. Then, there are y1 6= y2 ∈ Y such that the cylinder Cyl
1/3
0

(
y1; y2

)
(see (2.31)) is

included in Br and does not intersect Y \
{
y1, y2

}
.

As in Subsection 2.3, for every pair z01 =
(
0, ẑ01

)
, z02 =

(
0, ẑ01

)
∈ Π0

1/8 and every λ >

0, τ ∈ (0, 5τ̄ ], we define the cylinders Cylλ[0,Tτ ]

(
z01 ; z

0
2

)
, Cλ

[0,Tτ ]

(
z01 ; z

0
2

)
along the trajectories

Z
(
· ; z01

)
, Z
(
· ; z02

)
as

Cylλ[0,Tτ ]

(
z01 ; z

0
2

)
:=

{
Z
(
t; z0

)
| z0 = (0, ẑ0), ẑ0 ∈ Cylλ0

(
ẑ01 ; ẑ

0
2

)
, t ∈

[
0, Tτ (z0)

]}
.

and

Cλ
[0,Tτ ]

(
z01 ; z

0
2

)
:=

{
Z

(
t;

(
z01 + z02

2

))
+ (0, ẑ)

∣∣∣ t ∈ [0, Tτ (z01 + z02
2

)]
, ẑ ∈ Cylλ0

(
ẑ01 ; ẑ

0
2

)}
, (5.8)

where the convex set Cylλ0
(
ẑ01 ; ẑ

0
2

)
is defined as in (2.31). The proof of the following lemma is

given in Appendix C.2.

Lemma 5.3. Given 0 < λ1 < λ2 < λ3 < λ4, if τ̄ ∈ (0, 1/10) is sufficiently small, then for
every pair z01 =

(
0, ẑ01

)
, z02 =

(
0, ẑ01

)
∈ Π0

1/8 the following inclusions hold:

Cylλ1

[0,T5τ̄ ]

(
z01 ; z

0
2

)
⊂ Cλ2

[0,T5τ̄ ]

(
z01 ; z

0
2

)
⊂ Cλ3

[0,T5τ̄ ]

(
z01 ; z

0
2

)
⊂ Cylλ4

[0,T5τ̄ ]

(
z01 ; z

0
2

)
.

Given a potential V̄ : Rn → R of class at least C2 and T > 0, we denote by(
ZV̄

(
· ; z0

)
, QV̄

(
· ; z0

))
: [0, T ] → Rn × Rn

the solution of the Hamiltonian system{
ż(t) = ∇qH̄V̄ (z(t), q(t)) = ∇qH̄(z(t), q(t))
q̇(t) = −∇zH̄V̄ (z(t), q(t)) = −∇zH̄(z(t), q(t))−∇V̄ (z(t))

(5.9)

starting from
(
z0,∇ū(z0)

)
. Moreover, we denote by AV̄

(
z0;T

)
the action of the curve ZV̄

(
· ; z0

)
:

[0, T ] → Rn, that is,

AV̄

(
z0;T

)
:=

∫ T

0

L̄V̄

(
ZV̄

(
t; z0

)
, ŻV̄

(
t; z0

))
dt

=

∫ T

0

L̄
(
ZV̄

(
t; z0

)
, ŻV̄

(
t; z0

))
− V̄

(
ZV̄

(
t; z0

))
dt.

From Proposition 2.2 applied on
[
0, 2τ̄

]
, and Remark 2.4 applied with ν̄1 = τ̄ and ν̄2 = 3τ̄ /2,

we immediately get the following result:

Lemma 5.4. There are δ̄ ∈ (0, 1/8) and K > 0 such that the following property holds: For
every z01 =

(
0, ẑ01

)
, z02 =

(
0, ẑ01

)
∈ Π0

δ̄
∩ Ā, there are T̄ f > 0 and a potential V̄0 : Rn → R of

class Ck−1 such that:
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(i) Supp
(
V̄0
)
⊂ Cyl

1/9
[0,T2τ̄ ]

(
z01 ; z

0
2

)
∩H[τ̄ ,2τ̄ ];

(ii)
∥∥V̄0∥∥C1 < K

∣∣z01 − z02
∣∣;

(iii)
∥∥V̄0∥∥C2 < K;

(iv)
∣∣T̄ f − T2τ̄ (z01)

∣∣ < K
∣∣z01 − z02

∣∣;
(v) φ

H̄V̄0

T̄ f

(
z01 ,∇ū(z01)

)
= φH̄T2τ̄ (z0

2)

(
z02 ,∇ū(z02)

)
;

(vi) for any τ ∈ [0, τ̄ ], t ∈ [0, T2τ̄ (z01)] and tV̄0
∈ [0, T̄ f ] such that Z(t; z01), ZV̄0

(tV̄0
; z01) ∈ Πτ ,

it holds:
∣∣tV̄0

− t
∣∣ ≤ K

∣∣z01 − z02
∣∣ and∣∣∣AV̄0

(
z01 ; tV̄0

)
− A

(
z01 ; t

)
−
〈
∇ū
(
Z(t; z01)

))
, ZV̄0

(tV̄0
; z01)− Z(t; z01)

〉∣∣∣ ≤ K
∣∣z01 − z02

∣∣2 ;
(vii) ū

(
ZV̄0

(
T2τ̄ (z02); z02

))
= ū

(
z01
)
+ AV̄0

(
z01 ; T̄

f
)
.

In particular, thanks to (i),

(viii) for every t ∈ [0, T̄ f − T2τ̄ (z02) + T5τ̄ (z02)],

ZV̄0

(
t; z01

)
∈ Cyl

1/9
[0,T5τ̄ ]

(
z01 ; z

0
2

)
.

Unfortunately, though the above lemma is enough to connect trajectories, we will need a
strengthened version of that result which ensures that the viscosity solution constructed by
characteristics is of class C1,1 in a neighborhood of the connecting trajectory (this fact will be
needed in Subsection 5.5 to construct a global critical viscosity subsolution). The proof of the
following result is given in Appendix C.3.

1/3

1/3

1

z2
0

z1
0

Supp (V0)
_

Supp (V1)
_

Π0 Πτ/2 Πτ
_ _

Π2τ
_

Π4τ
_

Cyl[0,   4τ]
 (z1;z2)_ 0 01/3

Figure 2: By adding to V0 a non-positive potential V1 which vanishes together with his gradient along

the connecting trajectory ZV̄0

(
· ; z01

)
, we can ensure that the characteristics associated to H̄V̄0+V̄1

do

not cross near ZV̄0

(
· ; z01

)
, so that the viscosity solution to the Dirichlet problem (5.10) is C1,1 in a

uniform neighborhood of ZV̄0

(
· ; z01

)
.
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Lemma 5.5. Taking τ̄ ∈ (0, 1/10) smaller if necessary, there exist δ̃ ∈ (0, δ̄) (with δ̄ given by
Lemma 5.4) and K̃ > 0 such that the following property holds: For every z01 =

(
0, ẑ01

)
, z02 =(

0, ẑ01
)
∈ Π0

δ̃
∩Ā, let T̄ f > 0 and V̄0 : Rn → R be as in Lemma 5.4. Then there exists a potential

V̄1 : Rn → R of class Ck−2such that:

(i) Supp
(
V̄1
)
⊂ Cyl

1/3
[0,T4τ̄ ]

(
z01 ; z

0
2

)
∩H[τ̄/2,4τ̄ ];

(ii) V̄1 ≤ 0;

(iii) V̄1
(
ZV̄0

(
t; z01

))
= 0 and ∇V̄1

(
ZV̄0

(
t; z01

))
= 0 for every t ∈

[
0, 5τ̄

]
;

(iv)
∥∥V̄1∥∥C1 < K̃

∣∣z01 − z02
∣∣;

(v)
∥∥V̄1∥∥C2 < K̃;

(vi) the viscosity solution ūV̄0+V̄1
to the Dirichlet problem{

H̄
(
z,∇ūV̄0+V̄1

(z)
)
+ V̄0(z) + V̄1(z) = 0 in Bn(0, 1) ∩H[0,5τ̄ ],

ūV̄0+V̄1
= ū on Π0

1,
(5.10)

is of class C1,1 on Cyl
1/4
[0,T5τ̄ ]

(
z01 ; z

0
2

)
, with a C1,1-norm bounded by K̃;

(vii)
∣∣ūV̄0+V̄1

(
ZV̄0+V̄1

(t; z01)
)
− ū
(
ZV̄0+V̄1

(t; z01)
)∣∣ ≤ K̃

∣∣z01 − z02 |2 for all t ∈ [0, T̄ f ].

In particular, thanks to (i), (iii), and Lemma 5.4,

(viii) φ
H̄V̄0+V̄1

T̄ f

(
z01 ,∇ū(z01)

)
= φH̄T2τ̄ (z0

2)

(
z02 ,∇ū(z02)

)
;

(ix) ū
(
Z
(
T2τ̄ (z02); z02

))
= ū

(
z01
)
+ AV̄0+V̄1

(
z01 ; T̄

f
)
;

(x) for every t ∈ [0, T̄ f − T2τ̄ (z02) + T5τ̄ (z02)],

ZV̄0+V̄1
(t; z01) = ZV̄0

(
t; z01

)
∈ Cyl

1/9
[0,T5τ̄ ]

(
z01 ; z

0
2

)
.

5.4 Closing the Aubry set and the action

Let δ̄ > 0 be as in Lemma 5.4, and set

Sȳ := θ−1
ȳ

(
Π0

δ̄/2

)
.

Let r ∈
(
0, δ̄/2

)
be fixed, and set z0 := 0n = θȳ

(
γ̄
(
t̄− τ̄

))
∈ Π0

r/12. Since ȳ = (γ̄(t̄)) is recurrent,

there exists t0 > 0 such that

z′0 := θȳ
(
γ̄
(
t̄− τ̄ + t0

))
∈ Π0

r/12.

From Lemma 5.1(i), the set of nonnegative times

T :=
{
t ∈
[
0, t0

]
| γ̄
(
t̄− τ̄ + t

)
∈ Sȳ

}
is finite. Set

Y :=
{
θȳ

(
γ̄
(
t̄− τ̄ + t

))
| t ∈ T

}
⊂ Ā.

Thanks to Lemma 5.2, there are z01 =
(
0, ẑ01

)
, z02 =

(
0, ẑ01

)
∈ Π0

r ∩ Ā ⊂ Π0
δ̄/2

∩ Ā and t1, t2 ≥ 0

with:
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Figure 3: Using Lemma 5.2, we can find two points z01 , z
0
2 ∈ Π0

r ∩ Ā such that Cyl
1/3
0

(
ẑ01 ; ẑ

0
2

)
⊂ Π0

r is

disjoint from Y \
{
ẑ01 , ẑ

0
2

}
.

(p1) z01 = γ̄
(
t̄− τ̄ + t1

)
and z02 = γ̄

(
t̄− τ̄ + t2

)
.

(p2) t1 > t2 + τ̄ .

(p3) Cyl
1/3
0

(
ẑ01 ; ẑ

0
2

)
⊂ Π0

r and Cyl
1/3
0

(
ẑ01 ; ẑ

0
2

)
∩
(
Y \

{
ẑ01 , ẑ

0
2

})
= ∅.

Note that the latter property, together with the definition of Cylλ[0,T5τ̄ ]

(
z01 ; z

0
2

)
, implies

(p4) for every t ∈ T \ {t1, t2} and every s ∈
[
0, T5τ̄

(
θȳ
(
γ̄
(
t̄− τ̄ + t

)))]
,

θȳ

(
γ̄
(
t̄− τ̄ + t+ s

))
/∈ Cyl

1/3
[0,T5τ̄ ]

(
z01 ; z

0
2

)
.

By Lemmas 5.4 and 5.5, there exist a time T̄ f > 0 and a potential V̄ := V̄0 + V̄1 : Rn → R of
class Ck−2 such that:

(p5) Supp (V̄ ) ⊂ Cyl
1/3
[0,T4τ̄ ]

(
z01 ; z

0
2

)
∩H[τ̄/2,4τ̄ ].

(p6) ‖V̄ ‖C1 < K
∣∣z01 − z02

∣∣.
(p7)

∣∣T̄ f − T2τ̄ (z01)
∣∣ < K

∣∣z01 − z02
∣∣.
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(p8) φ
H̄V̄

T̄ f

(
z01 ,∇ū(z01)

)
= φH̄T2τ̄ (z0

2)

(
z02 ,∇ū(z02)

)
.

(p9)
∣∣ūV̄ (ZV̄ (t; z

0
1)
)
− ū
(
ZV̄ (t; z

0
1)
)∣∣ ≤ K̃

∣∣z01 − z02 |2 for all t ∈ [0, T̄ f ].

(p10) ū
(
Z
(
T2τ̄ (z02); z02

))
− ū
(
z01
)
= AV̄

((
z01 ,∇ū(z01)

)
; T̄ f

)
.

Define the Ck−2 potential V :M → R by

V (x) :=

{
0 if x /∈ Uȳ

V̄
(
θȳ(x)

)
if x ∈ Uȳ,

and the curve γ :
[
0, T :=

(
t1 −

(
t2 + τ̄

))
+ T̄ f

]
→M by

γ(t) :=

{
θ−1
ȳ

(
ZV̄

(
t; z01

))
if t ∈

[
0, T̄ f

]
γ̄
(
t2 + τ̄ + t− T̄ f

)
if t ∈

[
T̄ f , T

]
.

By construction and the fact that γ̄ ∈ A(H), it is easily checked that γ(T ) = γ(0), ‖V ‖C1 < Kr,
and ∫ T

0

LV

(
γ(t), γ̇(t)

)
dt = 0.

This solves the problem (P2) by choosing r small enough. It remains to construct a continuous
function v :M → R satisfying (P1).

5.5 Construction of a critical viscosity subsolution

The aim of this subsection is to modify the potential V constructed above so that the action
of γ is still zero, and we can find a critical viscosity subsolution of HV (x, dv(x)) = 0, see (P1).

Recall that ū : Bn(0, 2) → R is a function of class C1,1 (obtained by looking at u in the
chart induced by θȳ) satisfying

H̄
(
z,∇ū(z)

)
≤ 0 ∀ z ∈ Bn(0, 2) (5.11)

(see Lemma 5.1(iv)), and that ūV̄ := ūV̄0+V̄1
: Cyl

1/4
[0,T5τ̄ ]

(
z01 ; z

0
2

)
⊂ Bn(0, 2) → R is a function of

class C1,1, with its C1,1-norm bounded independently of z01 and z02 , satisfying

ūV̄ = ū on Π0
1 (5.12)

and

H̄
(
z,∇ūV̄ (z)

)
+ V̄0(z) + V̄1(z) = 0 ∀ z ∈ Cyl

1/4
[0,T5τ̄ ]

(
z01 ; z

0
2

)
(5.13)

(see Lemma 5.5). The idea is to “glue” these two functions together, to obtain a C1,1-function

û which coincides with ū on Bn(0, 2) \ Cyl1/4[0,T5τ̄ ]

(
z01 ; z

0
2

)
, and solves

H̄V̄+W̄ (z,∇û(z)) ≤ 0 on Bn(0, 2),

where W̄ : Bn(0, 2) → R is a potential of class Ck−1, small in C1 topology, supported inside

Cyl
1/4
[0,T5τ̄ ]

(
z01 , z

0
2

)
, and which vanishes together with its gradient on the connecting trajectory

ZV̄ ( · ; z01) = ZV̄0+V̄1
( · ; z01) (see Figure 4 below). If we are able to do so, then it suffices to define

V (x) :=

{
0 if x /∈ Uȳ

V̄
(
θȳ(x)

)
+ W̄

(
θȳ(x)

)
if x ∈ Uȳ,
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v :=

{
u if x /∈ Uȳ

û
(
θȳ(x)

)
if x ∈ Uȳ,

to obtain that both (P1) and (P2) are satisfied, which will conclude the proof of Theorem 1.2.

To perform the above construction, we first apply a change of coordinates of class Ck−1 so
that

(π1) Z(t; z01,2) = z01,2 + te1 for all t ∈ [0, 1], where z01,2 :=
z0
1+z0

2

2 .

In particular, all cylinders Cλ
[0,Tτ ]

(
z01 ; z

0
2

)
have the form

Cλ
[0,Tτ ]

(
z01 ; z

0
2

)
= [0, τ ]× Cylλ0

(
ẑ01 ; ẑ

0
2

)
(see (5.8)). Moreover, since ∇ū0 is Lipschitz (see Lemma 5.1(iv)) and

Ż(t; z0i ) = ∇qH̄
(
Z(t; z0i ),∇ū0

(
Z(t; z0i )

))
, i = 1, 2,

using Gronwall’s Lemma and (π1) we easily obtain the existence, a constant K0 > 0, such that,
if we denote by Ẑ(t; z1i ) the last (n− 1)-coordinates of Z(t; z1i ), then∣∣ ˙̂Z(t; z0i )∣∣ ≤ K0

∣∣z01 − z02
∣∣ ∀ t ∈

[
0, 5τ̄

]
, i = 1, 2. (5.14)

Moreover, since the connecting trajectory ZV̄ (t; z
0
1) is constructed by interpolating between

Z(t, z01) and Z(t, z02) (up to a quadratic term), it is not difficult to check that there exists a
constant K ′

0 such that

(π2)
∣∣ ˙̂ZV̄ (t; z

0
1)
∣∣ ≤ K ′

0

∣∣z01 − z02
∣∣ for all t ∈ [0, 5τ̄].

We now assume that τ̄ is sufficiently small so that, using Lemma 5.3, we have

Cyl
1/9
[0,T5τ̄ ]

(
z01 ; z

0
2

)
⊂ C1/8

[0,T5τ̄ ]

(
z01 ; z

0
2

)
⊂ C1/5

[0,T5τ̄ ]

(
z01 ; z

0
2

)
⊂ Cyl

1/4
[0,T5τ̄ ]

(
z01 ; z

0
2

)
. (5.15)

In particular, thanks to Lemma 5.4(viii) and (π1), we have

(π3) ZV̄ (t; z
0
1) ∈ C1/8

[0,T5τ̄ ]

(
z01 ; z

0
2

)
for all t ∈

[
0, 5τ̄

]
.

Furthermore, since Supp
(
V̄0
)
⊂ H[τ̄ ,2τ̄ ] and z01 , z

0
2 ∈ Ā, by (5.12), Lemma 5.4(i) and Lemma

5.5, the following holds:

(π4) ū
(
ZV̄ (t; z

0
1)
)
= ūV̄

(
ZV̄ (t; z

0
1)
)
and ∇ū

(
ZV̄ (t; z

0
1)
)
= ∇ūV̄

(
ZV̄ (t; z

0
1)
)
on H[0,τ̄ ] ∪H[2τ̄ ,5τ̄ ].

Moreover, the fact that ∇ū(z01) = ∇ūV̄ (z01) together with (p6) and a simple Gronwall argument
(see for instance [8, Lemma 5.5 and Equation (5.37)]) implies∣∣Z(t; z01)− ZV̄ (t; z

0
1)
∣∣+ ∣∣∇ū(Z(t; z01))−∇ūV̄

(
ZV̄ (t; z

0
1)
)∣∣ ≤ K

∣∣z01 − z02
∣∣,

which combined with the Lipschitz regularity of ∇ū and (p9), implies

(π5) for all t ∈ [0, T f ], ∣∣∇ū(ZV̄ (t; z
0
1)
)
−∇ūV̄

(
ZV̄ (t; z

0
1)
)∣∣ ≤ K

∣∣z01 − z02
∣∣.

All in all, (p9), (π4), and (π5), together with the C1,1-regularity of ū− ūV̄ on the set

C1/5
[0,T5τ̄ ]

(
z01 ; z

0
2

)
⊂ Cyl

1/4
[0,T5τ̄ ]

(
z01 ; z

0
2

)
,

(see (5.15)) imply the following important estimate:

41



(π6) there exists K̄ > 0 such that∣∣ūV̄ − ū
∣∣ ≤ K̄

∣∣z01 − z02
∣∣2, ∣∣∇ūV̄ −∇ū

∣∣ ≤ K̄
∣∣z01 − z02

∣∣ on C1/5
[0,T5τ̄ ]

(
z01 ; z

0
2

)
.

Now, let Θ : Bn(0, 2) → [0, 1] be a smooth function such that{
Θ(z) = Θ(z1) = 1 if z1 ∈ [τ̄ /2, 4τ̄ ],
Θ(z) = Θ(z1) = 0 if z1 ∈ [0, τ̄ /4] ∪ [9τ̄ /2, 5τ̄ ],

and define ũ : C1/5
[0,T5τ̄ ]

(
z01 ; z

0
2

)
→ R by

ũ(z) := Θ(z)ūV̄ (z) +
(
1−Θ(z)

)
ū(z) ∀ z ∈ C1/5

[0,T5τ̄ ]

(
z01 ; z

0
2

)
.

Observe that ũ is of class C1,1 on the cylinder C1/5
[0,T5τ̄ ]

(
z01 ; z

0
2

)
.

Let us define the set Γ1 by

Γ1 :=
{
ZV̄ (t; z

0
1) | t ∈

[
0, 5τ̄

]}
,

and denote by dist( · ,Γ1) the distance function to the curve Γ1. The following result holds:

Lemma 5.6. There exists a constant K̃ > 0 such that

H̄V̄

(
z,∇ũ(z)

)
≤ 0 ∀ z ∈ C1/5

[0,T4τ̄ ]

(
z01 , z

0
2

)
∩
(
H[0,τ̄/4] ∪H[9τ̄/2,5τ̄ ]

)
,

H̄V̄

(
z,∇ũ(z)

)
≤ K̃dist

(
z,Γ1

)2 ∀ z ∈ C1/5
[0,T4τ̄ ]

(
z01 , z

0
2

)
∩H[τ̄/4,9τ̄/2].

Proof. Since V̄ = 0 on Bn(0, 2) \Hτ̄2,4τ̄ , we have ũ = ū on Bn(0, 2)∩
(
H[0,τ̄/4] ∪H[9τ̄/2,5τ̄ ]

)
and

the first statement follows from (5.11).

Concerning the second part, observe that since ũ = ūV̄ on C1/5
[0,T4τ̄ ]

(
z01 , z

0
2

)
∩ H[τ̄/2,4τ̄ ], by

(5.13) we have

H̄V̄

(
z,∇ũ(z)

)
≤ 0 ≤ K̃dist

(
z,Γ1

)2 ∀ z ∈ C1/5
[0,T5τ̄ ]

(
z01 , z

0
2

)
∩H[τ̄/2,4τ̄ ].

Finally, since
∇ũ = Θ∇ūV̄ + (1−Θ)∇ū+∇Θ(ūV̄ − ū),

and V̄ = 0 on Bn(0, 2)∩
(
H[τ̄/4,τ̄ ] ∪H[4τ̄ ,9τ̄/2]

)
, by (5.11), (5.13), and the convexity of H̄ in the

q variable we get

H̄V̄

(
z,∇ũ(z)

)
≤ Θ(z)H̄V̄

(
z,∇ūV̄ (z)

)
+
(
1−Θ(z)

)
H̄
(
z,∇ū(z)

)
+K ′∣∣ūV̄ (z)− ū(z)

∣∣
≤ K ′∣∣ūV̄ (z)− ū(z)

∣∣ ∀ z ∈ C1/5
[0,T5τ̄ ]

(
z01 , z

0
2

)
∩
(
H[τ̄/4,τ̄/2] ∪H[4τ̄ ,9τ̄/2]

)
,

where K ′ is a constant depending only on ∂H̄
∂q and ∇Θ. Thanks to (π1), (π3), (π4), and the

C1,1-regularity of both ū and ūV̄ , we have∣∣ūV̄ (z)− ū(z)
∣∣ ≤ Kdist

(
z,Γ1

)2 ∀ z ∈ C1/5
[0,T4τ̄ ]

(
z01 , z

0
2

)
∩
(
H[τ̄/4,τ̄/2] ∪H[4τ̄ ,9τ̄/2]

)
,

which concludes the proof.
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We now consider Φ : Bn(0, 2) 7→ [0, 1] a smooth cut-off function such that{
Φ(z) = Φ(ẑ) = 1 if ẑ ∈ Cyl

1/7
0

(
ẑ01 ; ẑ

0
2

)
,

Φ(z) = Φ(ẑ) = 0 if ẑ 6∈ Cyl
1/6
0

(
ẑ01 ; ẑ

0
2

)
,

and satisfying ∣∣∇Φ
∣∣ = ∣∣∇ẑΦ

∣∣ ≤ KΦ∣∣z01 − z02
∣∣ , ∣∣D2Φ

∣∣ ≤ KΦ∣∣z01 − z02
∣∣2 , (5.16)

for some constant KΦ independent of z01 and z02 . Then, we define

û(z) := Φ(z)ũ(z) +
(
1− Φ(z)

)
ū(z) ∀ z ∈ C1/5

[0,T5τ̄ ]

(
ẑ01 ; ẑ

0
2

)
.

z2
0

z1
0

Π0 Πτ/2
_

Πτ
_

Π2τ Π4τ
_

Π9τ/2
_

Supp (V0 )
_

Supp (V1 )
_

u
_

u = uV

_ _^ u = u
_

^

_

Π5τ
_

Figure 4: The function û is obtained by interpolating (using a cut-off function) between ū (the critical

viscosity for H̄) and ūV̄ (the viscosity solution for H̄V̄0+V̄1
) inside the cylinder C1/5

[0,T5τ̄ ]

(
ẑ01 ; ẑ

0
2

)
. Since

V1 ≤ 0, the function ū is a viscosity subsolution to H̄V̄0+V̄1
(z,∇ū(z)) ≤ 0 outside C1/5

[0,T5τ̄ ]

(
ẑ01 ; ẑ

0
2

)
. So,

we can find a non-positive potential W̄ , small in C1 topology and supported inside C1/5

[0,T5τ̄ ]

(
ẑ01 ; ẑ

0
2

)
,

such that H̄V̄0+V̄1+W̄ (z,∇û(z)) ≤ 0 on the whole ball Bn(0, 2).

Observe that û = ū outside C1/5
[0,T5τ̄ ]

(
ẑ01 ; ẑ

0
2

)
. Moreover, thanks to (5.16), (π6), and the fact

that both ū and ũ are of class C1,1 on C1/5
[0,T5τ̄ ]

(
ẑ01 , ẑ

0
2

)
(with a uniform bound on their C1,1-

norm), also the function û is of class C1,1 on C1/5
[0,T5τ̄ ]

(
ẑ01 , ẑ

0
2

)
, with a bound on its C1,1-norm

independent of z01 and z02 . Hence, similarly to Lemma 5.6 above, we can prove the following:

Lemma 5.7. There exists a constant K̂ > 0 such that

H̄V̄

(
z,∇û(z)

)
≤ 0 ∀ z ∈ C1/5

[0,T5τ̄ ]

(
z01 ; z

0
2

)
∩
(
H[0,τ̄/4] ∪H[9τ̄/2,5τ̄ ]

)
,

H̄V̄

(
z,∇û(z)

)
≤ K̂dist

(
z,Γ1

)2 ∀ z ∈ C1/5
[0,T5τ̄ ]

(
z01 ; z

0
2

)
∩H[τ̄/4,9τ̄/2].

Before proving the above lemma, let us show how it allows to conclude the whole construction

and to obtain (P1). Let us define W̄ : C1/5
[0,T5τ̄ ]

(
ẑ01 ; ẑ

0
2

)
→ R a non-positive potential of class Ck−1

such that
W̄ (z) = −K̂dist

(
x,Γ1

)2 ∀ z ∈ C1/6
[0,T5τ̄ ]

(
z01 ; z

0
2

)
∩H[τ̄/4,9τ̄/2],
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Supp
(
W̄
)
⊂ Cyl

1/5
[0,T5τ̄ ]

(
ẑ01 ; ẑ

0
2

)
, and ‖W̄‖C1 ≤ K̂ ′∣∣z01 − z02

∣∣
for some universal constant K̂ ′. (Observe that dist( · ,Γ1) is of class Ck−1 on C1/5

[0,T4τ̄ ]

(
z01 ; z

0
2

)
,

for
∣∣z01 − z02

∣∣ small enough.) Moreover, outside Cyl
1/6
[0,T5τ̄ ]

(
ẑ01 ; ẑ

0
2

)
it holds V̄ = V̄1 ≤ 0, W ≤ 0,

and û = ū. So we clearly have

H̄V̄+W̄

(
z,∇û(z)

)
≤ 0 on Bn(0, 2).

Furthermore, W̄ vanishes on Γ1, and thanks to (p6)∥∥V̄ + W̄
∥∥
C1≤ (K + K̂ ′)

∣∣z01 − z02
∣∣.

This concludes the construction by choosing
∣∣z01 − z02

∣∣ sufficiently small.

Proof of Lemma 5.7. The first estimate is obvious, since û = ũ = ū on C1/5
[0,T5τ̄ ]

(
z01 ; z

0
2

)
∩(

H[0,τ̄/4] ∪H[9τ̄/2,5τ̄ ]

)
.

For the second one, we observe that by (π3)∣∣z01 − z02
∣∣ ≤ 72 dist(z,Γ1) ∀ z ∈ C1/5

[0,T5τ̄ ]

(
z01 , z

0
2

)
\ C1/7

[0,T5τ̄ ]

(
z01 , z

0
2

)
.

Hence, since û = ũ on C1/7
[0,T5τ̄ ]

(
z01 , z

0
2

)
, by Lemma 5.6 it suffices to prove

H̄V̄0+V̄1

(
z,∇û(z)

)
≤ K̂

∣∣z01 − z02
∣∣2 ∀ z ∈

(
C1/5
[0,T5τ̄ ]

(
z01 , z

0
2

)
\ C1/7

[0,T5τ̄ ]

(
z01 , z

0
2

))
∩H[τ̄/4,9τ̄/2].

As in the proof of Lemma 5.6 we observe that

∇û = Φ∇ũ+ (1− Φ)∇ū+∇Φ(ũ− ū).

Moreover, by the convexity of H̄ in the q variable, Lemma 5.6, (5.11), Lemma 5.4(i), and

Lemma 5.5(iii)-(v), for every z ∈
(
C1/5
[0,T4τ̄ ]

(
z01 , z

0
2

)
\ C1/7

[0,T5τ̄ ]

(
z01 , z

0
2

))
∩H[τ̄/4,9τ̄/2] we have

H̄V̄

(
z,Φ(z)∇ũ(z) +

(
1− Φ(z)

)
∇ū(z)

)
≤ Φ(z)HV̄

(
z,∇ũ(z)

)
+
(
1− Φ(z)

)
HV̄

(
z,∇ū(z)

)
≤ Φ(z)K̃dist

(
z,Γ1

)2
+
(
1− Φ(z)

)
V̄1(z)

≤ K̃dist
(
z,Γ1

)2
.

Hence, we need to estimate∣∣H̄V̄

(
z,∇û(z)

)
− H̄V̄

(
z,Φ(z)∇ũ(z) + (1− Φ(z))∇ū(z)

)∣∣
≤
∣∣ũ(z)− ū(z)

∣∣ ∣∣∣∣∂H̄∂q (z,∇û(z)) · ∇Φ(z)

∣∣∣∣+K ′′∣∣∇Φ(z)
∣∣2∣∣ũ(z)− ū(z)

∣∣2
on
(
C1/5
[0,T5τ̄ ]

(
z01 ; z

0
2

)
\ C1/7

[0,T5τ̄ ]

(
z01 ; z

0
2

))
∩H[τ̄/4,9τ̄/2], where the constant K

′′ depends only on ∂2H̄
∂q2 .

Now, thanks to (π6) and (5.16), we have∣∣∇Φ
∣∣2|ũ− ū|2 ≤

(
KΦK̄

)2 ∣∣z01 − z02
∣∣2 on C1/5

[0,T5τ̄ ]

(
z01 ; z

0
2

)
\ C1/7

[0,T5τ̄ ]

(
z01 ; z

0
2

)
.

Concerning the term ∣∣ũ(z)− ū(z)
∣∣ ∣∣∣∣∂H̄∂q (z,∇û(z)) · ∇Φ(z)

∣∣∣∣ ,
by (π6) it suffices to prove that ∂H̄

∂q

(
z,∇û(z)

)
·∇Φ is bounded by a constant independent of z01

and z02 .
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Let us observe that

∂H̄

∂q

(
ZV̄ (t, z

1
0),∇ūV̄

(
ZV̄ (t, z

1
0)
))

= ŻV̄ (t, z
1
0),

which by (π2), (5.16), and the fact that Φ depends only on ẑ, implies∣∣∣∣∂H̄∂q (ZV̄ (t, z
1
0),∇ū

(
ZV̄ (t, z

1
0)
))

· ∇Φ(z)

∣∣∣∣ ≤ K ′
0KΦ ∀ z, t ∈

[
0, 5τ̄

]
.

Moreover, by (π6)∣∣∣∣∂H̄∂q (ZV̄ (t, z
1
0),∇û

(
ZV̄ (t, z

1
0)
))

− ∂H̄

∂q

(
ZV̄ (t, z

1
0),∇ū

(
ZV̄ (t, z

1
0)
))∣∣∣∣ ≤ K ′′′∣∣z01 − z02

∣∣,
so by the C1,1 regularity of û we get∣∣∣∣∂H̄∂q (z,∇û(z))− ∂H̄

∂q

(
ZV̄ (t, z

1
0),∇ū

(
ZV̄ (t, z

1
0)
))∣∣∣∣ ≤ K1

∣∣z01 − z02
∣∣

for all z ∈ C1/5
[0,T5τ̄ ]

(
z01 , z

0
2

)
and t ∈

[
0, 5τ̄

]
, such that ẐV̄ (t, z

1
0) = ẑ. Hence, combing all together

we obtain∣∣∣∣∂H̄∂q (z,∇û(z)) · ∇Φ

∣∣∣∣ ≤ K ′
0KΦ +K1

∣∣z01 − z02
∣∣ ≤ K ′

0KΦ +K1 on C1/5
[0,T4τ̄ ]

(
z01 , z

0
2

)
,

which concludes the proof.

A Proof of Lemma 4.1

The idea of the proof is the following: thanks to (4.5), (4.9), and using a Taylor expansion,
we get |g| . L(ri)r

2
i and |∇g| . L(ri)ri on Ci. Hence we can apply [8, Lemma 3.3] to find a

function fi such that ‖fi‖C2 . L(ri) and fi = g,∇fi = ∇g on Ci. Finally, subtracting to fi
the function K0dist( · , Ci)

2, with K0 � 1 and using a partition of unity argument, thanks to
(4.6) we can construct a function G with small C2-norm and such that G ≤ g everywhere. We
now perform the construction in details.

Define the curves D1, · · · , Dη−1 as

Di :=
([
i− 2/3, i+ 2/3

]
×Bn−1

r0

)
∩
(
Ii−1 ∪ Ci ∪ Ii

)
, i = 1, · · · , η − 1,

and let {ψi}i=1,··· ,η−1 : C −→ [0, 1] be a family of smooth functions satisfying the following
properties:

(A) for every i = 1, · · · , η − 1, Supp (ψi) ⊂
([
i− 2/3, i+ 2/3

]
× Rn−1

)
∩ C;

(B)
∑η−1

i=1 ψi(x) = 1, for every x ∈ C.

Let r > 0 be a small number to be fixed later. For every i = 1, . . . , η− 1 we define the function
Φi : [−2/3, 2/3]× Rn−1 → Rn (of class Cl−1) by

Φi(t, y) :=

 (i+ t, vi + y) if t ≤ 0
ci(i+ t) + (0, y) if 0 ≤ t ≤ 1/10
(i+ t, vi+1 + y) if t ≥ 1/10,

for every (t, y) ∈ [2/3, i+ 2/3]× Rn−1. Thanks to (4.8)-(4.13), Φi is a diffeomorphism of class
Cl−1 from [−2/3, 2/3]×Rn−1 into [i−2/3, i+2/3]×Rn−1which satisfies the following properties
for r > 0 small enough:
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- Φi

(
[−2/3, 2/3]×

{
0n−1

})
= Di;

-
∥∥Φi

∥∥
C2 ≤ K ′, with K ′ independent of both r and i;

- Φi

(
[2/3, 2/3]×Bn−1(0, ri/2)

)
⊂ Qi, where Qi is defined by

Qi :=

 ⋃
s∈[0,η]

Bn
((
s, vi

)
, ri

) .

Let us define the functions gi : [−2/3, 2/3]×Bn−1
ri/2

→ Rn (of class Cl−1) as

gi(t, y) :=
(
ψig
)
◦ Φi

(
t, 0n−1

)
∀ (t, y) ∈ [−2/3, 2/3]×Bn−1

ri/2
.

Thanks to (4.9), there exists vZi ∈ Z such that ri ≥ |vi−vZi |/8. Hence, using a Taylor expansion
we obtain∣∣∇g(s, λvi + (1− λ)vZi

)
− λHess g

(
s, vZi

)(
vi − vZi

)∣∣
=
∣∣∇g(s, λvi + (1− λ)vZi

)
−∇g

(
s, vZi

)
− λHess g

(
s, vZi

)(
vi − vZi

)∣∣ ≤ K ′′ λ2
∣∣vi − vZi

∣∣2 (A.1)

for every s ∈ [0, η] and λ ∈ [0, 1], where K ′′ is any constant greater than ‖g‖C2 .
By (4.7) and definition of vZi , both vi and v

Z
i belong to Bn−1

2r ∩Γ. So, there are hi, h
Z
i ∈ Bd

2r

such that
vi = hi +Ψ(hi) and vZi = hZi +Ψ(hZi ).

Then, thanks to (4.5), recalling the definition of L(r) and K ′′ we deduce that∣∣Hess g
(
s, vZi

)(
vi − vZi

)∣∣ =
∣∣Hess g(s, vZi ) [(hi − hZi

)
+
(
Ψ(hi)−Ψ(hZi )

)]∣∣
=

∣∣∣Hess g(s, vZi )|Π(hi − hZi
)
+Hess g

(
s, vZi

)(
Ψ(hi)−Ψ(hZi )

)∣∣∣
≤

∣∣∣Hess g(s, vZi )|Π(hi − hZi
)∣∣∣+ ∣∣Hess g

(
s, vZi

)(
Ψ(hi)−Ψ(hZi )

)∣∣
≤ 2K̄r

∣∣hi − hZi
∣∣+K ′′∣∣Ψ(hi)−Ψ(hZi )

∣∣
≤ 2K̄r

∣∣hi − hZi
∣∣+K ′′L(2r)

∣∣hi − hZi
∣∣

≤
(
2K̄r +K ′′L(2r)

) ∣∣vi − vZi
∣∣.

Hence, combining the above estimate with (A.1) and recalling that the points vi belong to
Bn−1

r , we obtain∣∣∇g(s, λvi + (1− λ)vZi
)∣∣ ≤ (2Kr +K ′′L(2r))

∣∣vi − vZi
∣∣λ+K ′′∣∣vi − vZi

∣∣2λ2
≤ (2Kr +K ′′L(2r))

∣∣vi − vZi
∣∣λ+ 2K ′′r

∣∣vi − vZi
∣∣λ2

for every s ∈ [0, η], λ ∈ [0, 1].
Since g(s, vZi ) = 0, integrating the above inequality on [0, 1] yields, for s ∈ [0, η],

g(s, vi) =

∫ 1

0

〈∇g
(
s, λvi + (1− λ)vZi

)
, vi − vZi 〉dλ ≤ K ′′′(r + L(2r))

∣∣vi − vZi
∣∣2,

for some uniform constant K ′′′ > 0. Finally, taking K ′′ larger if necessary, by definition of vZi
and the fact that ∂

∂s (∇g)
(
s, 0n−1) = 0 we finally get

|g(s, vi)| ≤ K ′′(r + L(2r))r2i
|∇g(s, vi)| ≤ K ′′(r + L(2r))ri∣∣ ∂
∂s (∇g)(s, vi)

∣∣ ≤ K ′′r
∀ s ∈ [0, η]. (A.2)
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(Recall that g ∈ Cl with l ≥ 3.) Combining this estimate with (4.10), (4.12), and (4.13), we
easily deduce the existence of a constant K̂ > 0 such that, for every i = 1, . . . , η − 1,

∣∣gi(t, 0n−1

)∣∣ ≤ K̂(r + L(2r))r2i∣∣∇gi(t, 0n−1

)∣∣ ≤ K̂(r + L(2r))ri∣∣ ∂
∂t (∇gi)

(
t, 0n−1

)∣∣ ≤ K ′r

∀ t ∈ [−2/3, 2/3]. (A.3)

The following result follows immediately from [8, Lemma 3.3] applied with ṽ(t) = ∇f(t −
2/3, 0n−1) and τ̄ = 4/3:

Lemma A.1. Let δ, ρ ∈ (0, 1) with 3ρ ≤ δ < 4/3, and let f : [−2/3, 2/3] × Bn−1
ρ → R be a

compactly supported function of class Cm, with m ≥ 2, satisfying

∇f(t, y) = 0n ∀ (t, y) ∈
(
[−2/3,−2/3 + δ]×

{
0n−1

})
∪
(
[2/3− δ, 2/3]×

{
0n−1

})
. (A.4)

Then there exist a universal constant K depending only on the dimension, and a function
F : Rn → R of class Cm, such that the following properties hold:

(i) Supp(F ) ⊂
[
−2/3 + δ/2, 2/3− δ/2

]
×Bn−1

2ρ/3;

(ii) ‖F‖C2 ≤ K
(

1
ρ2

∥∥f(·, 0n−1)
∥∥
∞ + 1

ρ

∥∥∇f(·, 0n−1)
∥∥
∞ +

∥∥ ∂
∂t (∇f)(·, 0n−1)

∥∥
∞

)
;

(iii) ∇F
(
t, 0n−1

)
= ∇f

(
t, 0n−1

)
for every t ∈ [−2/3, 2/3].

Applying the above lemma to f = gi for i = 1, . . . , η − 1 and using (A.3) yields a function
Gi : Rn → R of class Cl−1 satisfying:

(C) Supp(Gi) ⊂
[
−2/3 + δ/2, 2/3− δ/2

]
×Bn−1

ri/3
;

(D) ‖Gi‖C2 ≤ K̃ (r + L(2r));

(E) ∇Gi

(
t, 0n−1

)
= ∇gi

(
t, 0n−1

)
for every t ∈ [−2/3, 2/3].

Hence, thanks to (A)-(E) above, it is easily seen that the function G0 : C → R defined by

G0(x) :=

η−1∑
i=1

Gi

(
Φ−1

i (x)
)

∀x ∈ C

is of class Cl−1 and satisfies (a), (b), (d), and (e) in the statement of the lemma for r sufficiently
small. However, assertion (c) does not necessary hold. To enforce it, fix µ : [0,+∞) → [0, 1] a
smooth function satisfying

µ(r) = 1 for r ∈ [0, 1], µ(r) = 0 for r ≥ 2,

and replace in the above formula each Gi by G̃i : Rn → R, with

G̃i(t) := µ

(
2|y|
ri

)(
Gi(t, y)−M(r + L(2r))|y|2

)
∀ (t, y) ∈ Rn,

where M := (K̄ + K̃), with K̄ as in (4.6) and K̃ as in (D) above. We leave it to the reader to
check that

G(x) :=

η−1∑
i=1

G̃i

(
Φ−1

i (x)
)

∀x ∈ C

satisfies all assumptions (a)-(e) for r > 0 small enough.
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B Proof of Lemma 2.3

Let φ : R → [0, 1] be an even function of class C∞ satisfying the following properties:

(a) φ(s) = 1 for s ∈ [0, 1/3];

(b) φ(s) = 0 for s ≥ 2/3;

(c) |φ′(s)|, |φ′′(s)| ≤ 10 for any s ∈ [0,+∞).

Extend the function ṽ on R by ṽ(t) := 0 for t ≤ 0 and t ≥ τ̄ , and define the function W :[
0, τ̄
]
× Rn−1 → R by

W (t, ẑ) := φ

(
N
(
ẑ
)

r

)[
n−1∑
i=1

∫ ẑi

0

ṽi+1(t+ s) ds

]
∀ (t, ẑ) ∈

[
0, τ̄
]
× Rn−1.

Since ṽ is Ck−2, N is smooth on Rn−1 \ {0}, and φ is smooth and equal 1 on [0, 1/3], it is easy
to check that W is of class Ck−1. Then, since N is positively 1-homogeneous, assertions (i)-(iv)
follow as in the proof of [8, Lemma 3.3]. We leave the details to the interested reader.

C Proofs of Lemmas 5.2, 5.3, 5.5, 5.6

C.1 Proof of Lemma 5.2

We claim that there are y1 6= y2 ∈ Y ∩Br such that the following properties are satisfied:

(1) B
(
y1, 3|y1 − y2|

)
⊂ Br;

(2) for every y ∈ Y ∩ B̄
(
y1, 3|y1 − y2|/2

)
and every y′ ∈ Y \ {y}, there holds

|y′ − y| > |y1 − y2|
2

.

To prove the claim, we define the set ∆ ⊂ Y × Y as

∆ :=
{
(y, y′) ∈

(
Y ∩Br

)
×
(
Y ∩Br

)
|B
(
y, 3|y − y′|

)
⊂ Br and y 6= y′

}
.

Since Br/12 ∩ Y contains at least two points, ∆ is nonempty. Moreover, since Y is finite, ∆ is
finite too. Therefore, there are (y1, y2) ∈ ∆ such that

|y1 − y2| ≤ |y − y′| ∀ (y, y′) ∈ ∆. (C.1)

Since (y1, y2) ∈ ∆, the points y1, y2 are distinct, contained in Y ∩ Br and satisfy assertion (1)
of the claim.

To show that (2) is satisfied, we argue by contradiction. Let y ∈ Y ∩ B̄
(
y1, 3|y1 − y2|/2

)
and y′ ∈ Y \{y} be such that |y− y′| ≤ |y1− y2|/2. Thanks to (1) we have |y1|+3|y1− y2| < r.
Hence

|y| ≤ |y1|+
3|y1 − y2|

2
< r,

|y′| ≤ |y|+ |y′ − y| ≤
(
|y1|+

3|y1 − y2|
2

)
+

(
|y1 − y2|

2

)
≤ |y1|+ 2|y1 − y2| < r,
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B
(
y, 3|y − y′|

)
⊂ B

(
0, |y|+ 3|y − y′|

)
⊂ B

(
0,

(
|y1|+

3|y1 − y2|
2

)
+

(
3|y1 − y2|

2

))
= B

(
0, |y1|+ 3|y1 − y2|

)
⊂ Br.

This shows that (y, y′) belongs to ∆, which contradicts the definition of (y1, y2) and proves the
claim.
It remains to check that the pair y1, y2 satisfies the two properties given in the statement of
Lemma 5.2, namely

Cyl
1/3
0

(
y1; y2

)
⊂ Br and Cyl

1/3
0

(
y1; y2

)
∩
(
Y \

{
y1, y2

})
= ∅.

The inclusion follows from Cyl
1/3
0

(
y1; y2

)
⊂ B

(
y1, 3|y1 − y2|

)
together with (1). For the second

property, by elementary geometry we have

Cyl
1/3
0

(
y1; y2

)
⊂ B

(
y1, |y1 − y2|

)
∪B

(
y2,

|y1 − y2|
3

)
⊂ B̄

(
y1,

3|y1 − y2|
2

)
.

Hence, if by contradiction y ∈ Cyl
1/3
0

(
y1; y2

)
∩
(
Y \

{
y1, y2

})
, then (C.1) implies that y 6∈

B
(
y1, |y1 − y2|

)
, while (2) applied with y′ = y2 gives y 6∈ B

(
y2, |y1 − y2|/2

)
, absurd.

C.2 Proof of Lemma 5.3

Let us first consider the following general setting: let N be a Lipschitz norm on Rn, and let
Y (t, y) denote the flow map of a Lipschitz vector field W :{

Ẏ =W (Y ),
Y (0, y) = y.

Then, differentiating in time N
(
Y (t, y2)− Y (t, y1)

)
and using Gronwall’s lemma, we get

e−MtN
(
y2 − y1

)
≤ N

(
Y (t, y2)− Y (t, y1)

)
≤ eMtN

(
y2 − y1

)
∀ t ≥ 0, (C.2)

where M =M(N ,W ) depends only on the Lipschitz constant of N and W . Now, the proof of
the lemma follows easily.

Indeed, let us show for instance the inclusion

Cylλ1

[0,T5τ̄ ]

(
z01 ; z

0
2

)
⊂ Cλ2

[0,T5τ̄ ]

(
z01 ; z

0
2

)
(C.3)

(the other inclusion being analogous).
As in the proof of Proposition 2.2, let N i denote the norm associated with z01 , z

0
2 and λi:

BN i

1 := Cylλi
0

(
−v
2
;
v

2

)
, v :=

z02 − z01
|z02 − z01 |

.

Observe that the Lipschitz constant of N i is independent of z01 , z
0
2 . Moreover, since λ1 < λ2,

there exists µ > 0 such that
(1 + µ)N 2 ≤ N 1 (C.4)

Now, the inclusion (C.3) is equivalent to show

N 2
(
Z
(
t, z
)
− Z

(
t, z01,2

))
< 1 ∀ z = (0, ẑ), with N 1(z0 − z01,2) < 1, t ∈ [0, T5τ̄ ]. (C.5)

where we set z01,2 := (z01 + z02)/2. Then, since Z
(
t, z
)
is an integral curve of the Lipschitz

vector field z 7→ ∇qH̄(z,∇ū0(z)), (C.5) follows immediately from (C.4) and (C.2), by choosing
τ̄ sufficiently small (the smallness being independent of z01 and z02).
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C.3 Proof of Lemma 5.5

Let us first prove that assertion (vii) follows from assertions (i), (iii), and (vi), together with
Lemma 5.4(vi).

Indeed, by assumption (iii), we have that ZV̄0+V̄1
( · ; z01) = ZV̄0

( · ; z01), the action of the curve
ZV̄0+V̄1

( · ; z01) computed with respect to LV̄0
is the same as the one with respect to LV̄0+V̄1

, and

ZV̄0+V̄1
(Tτ̄ (z01); z01) = Z(Tτ̄ (z01); z01) (since Supp

(
V̄0
)
⊂ Cyl

1/9
[0,T2τ̄ ]

(
z01 , z

0
2

)
∩ H[τ̄ ,2τ̄ ], see Lemma

5.4(i)). Hence, since z01 ∈ Ā and by the theory of characteristics for Hamilton-Jacobi equations
[3, 4, 12], we have (with obvious notation)

ūV̄0+V̄1

(
ZV̄0+V̄1

(t; z01)
)

= ū
(
Z
(
Tτ̄ (z01); z01

))
+ AV̄0+V̄1

(
Z
(
Tτ̄ (z01); z01

)
; t− Tτ̄ (z01)

)
= ū(z01) + A

(
z01 ; Tτ̄ (z01)

)
+ AV̄0

(
Z
(
Tτ̄ (z01); z01

)
; t− Tτ̄ (z01)

)
= ū(z01) + AV̄0

(
z01 ; t

)
.

Moreover,
ū
(
Z(t; z01)

)
= ū(z01) + A

(
z01 ; t

)
.

Hence, Lemma 5.4 (vi) together with assertion (iii) imply that, for any τ ∈ [0, 2τ̄ ], t ∈ [0, T2τ̄ (z01)]
and tV̄0

∈ [0, T̄ f ] such that Z(t; z01), ZV̄0+V̄1
(tV̄0

; z01) ∈ Πτ , there holds∣∣∣ūV̄0+V̄1

(
ZV̄0+V̄1

(tV̄0
; z01)

)
− ū
(
Z(t; z01)

)
−
〈
∇ū
(
Z(t; z01)

)
, ZV̄0+V̄1

(tV̄0
; z01)− Z(t, z01)

〉∣∣∣ ≤ K
∣∣z01 − z02 |2,

which by the C1,1-regularity of ū implies∣∣ūV̄0+V̄1

(
ZV̄0+V̄1

(tV̄0
; z01)

)
− ū
(
ZV̄0+V̄1

(tV̄0
; z01
)∣∣ ≤ K̃

∣∣z01 − z02 |2.

By the arbitrariness of tV̄0
, this proves (vii). We now prove all the other assertions.

First, we notice that, without loss of generality, we can assume that

H̄(z, 0) < 0 ∀ z ∈ H+ ∩Bn
(
0, δ̄0

)
, (C.6)

for some δ̄0 > 0 small enough. Indeed, since γ̄(t) belongs to A(H) and c[H] = 0, by (5.2) we
have

H̄
(
(τ̄ , 0),∇ū(τ̄ , 0)

)
= 0, ∇qH̄

(
(τ̄ , 0),∇ū(τ̄ , 0)

)
= e1.

Then, there exists λ < 1, with |λ−1| small, such that H̄
(
z, λ̄e1

)
< 0 for any z ∈ H+∩Bn(0, δ̄),

for some δ̄0 > 0 small. Hence, if we replace H̄ by the new Hamiltonian H̃ : Rn × Rn → R,

H̃(z, q) := H̄
(
z, q + λ̄e1

)
∀ (z, q) ∈ Rn × Rn,

then H̃ satisfies (C.6). Moreover, any solution to the Hamiltonian system{
ż(t) = ∇qH̃

(
z(t), q(t)

)
q̇(t) = −∇zH̃

(
z(t), q(t)

)
starting from

(
z0, q0

)
satisfies

z(t) = Z0

(
t;
(
z0, q0

))
and q(t) = Q0

(
t;
(
z0, q0

))
− λ̄e1 ∀ t ≥ 0,

where (Z0, Q0) is the Hamiltonian flow associated to H̄. Moreover, the function ũ : Bn(0, 1) ∩
H+ → R defined by

ũ(z) := ū(z)− λ̄z1 ∀ z =
(
z1, ẑ

)
∈ Bn(0, 1) ∩H+,
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is a subsolution of class C1,1 of the Hamilton-Jacobi equation associated with H̃. Thanks to
these facts, it is easy to check that if we can construct two potentials V̄0, V̄1 so that Lemma 5.5
holds with H̃, ũ in place of H̄, ū, then Lemma 5.5 will also be true for H̄, ū. Hence, there is no
loss of generality in assuming that (C.6) for some constant δ̄0 ∈ (0, 1/8).

Consider now δ̃ ≤ min{δ̄, δ̄0, 1/K} (to be fixed later), with δ̄ and K as in Lemma 5.4.
Then, given z01 =

(
0, ẑ01

)
, z02 =

(
0, ẑ01

)
∈ Π0

δ̃
, there exist T̄ f > 0, and a potential V̄0 : Rn → R

of class Ck−1, such that assertions (i)-(viii) of Lemma 5.4 are satisfied. In particular, since∣∣z01 − z02
∣∣ ≤ 2δ̃ ≤ 2/K, by Lemma 5.4(ii) we get∥∥V̄0∥∥C1 ≤ 2. (C.7)

To simplify the notation, we set H0(z, q) := H̄V̄0
(z, q). Observe that, if δ̃ is sufficiently

small, then also the Hamiltonian H0 (which is of class Ck−1) satisfies (C.6), that is,

H0(z, 0) < 0 ∀ z ∈ H+ ∩Bn
(
0, δ̄0

)
, (C.8)

Define the trajectory
(
Z(·), Q(·)

)
: [0,+∞) → Rn × Rn associated to H0 by(

Z(t), Q(t)
)
:=
(
ZV̄0

(
t;
(
z01 ,∇ū(z01)

))
, ZV̄0

(
t;
(
z01 ,∇ū(z01)

)))
∀ t ≥ 0, (C.9)

and let T > 0 be the first time such that Z(T ) ∈ Π5τ̄ . The proof of the following result is
postponed to the end of the section12.

Lemma C.1. Up to a change of coordinates Φ of class Ck−2 in an open neighborhood of
Z([0, T ]), with ‖Φ‖C1 and ‖Φ−1‖C1 uniformly bounded (by a constant independent of V̄0, z

0
1 , z

0
2),

we can assume that the following properties are satisfied for every t ∈ [0, T ]:

(i) Z(t) = te1;

(ii) Q(t) = e1;

(iii) ∂2H0

∂z∂q

(
Z(t), Q(t)

)
= 0;

(iv) ∂2H0

∂q1∂q̂

(
Z(t), Q(t)

)
= 0;

(v) ∂2H0

∂q̂2

(
Z(t), Q(t)

)
= In−1.

Now, the strategy is to add to H0 a smooth nonpositive potential W : Rn → R, such that

W
(
Z(t)

)
= 0 and ∇W

(
Z(t)

)
= 0 ∀ t ∈

[
0, T

]
(C.10)

and which is very “concave” along the curve Z
(
[0, T ]

)
in the transversal directions, so that

the “curvature” of the system is sufficiently negative along
(
Z(t), Q(t)

)
, and the characteristics

associated to H0 +W will not cross.
Let us observe that, if W satisfies (C.10) then

(
Z(·), Q(·)

)
is still a trajectory of the Hamil-

tonian system {
ż =

∂H0
W

∂q (z, q)

q̇ = −∂H0
W

∂z (z, q).
(C.11)

12As also noticed in the proof of the Lemma C.1, ‖Φ‖C1 and ‖Φ−1‖C1 actually depend on V0 only through
its C1-norm, which however is uniformly bounded by (C.7).
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where the Hamiltonian H0
W : Rn × Rn → R is defined by

H0
W (p, q) := H0(p, q) +W (z) = H̄(p, q) + V̄0 +W (z) ∀ (z, q) ∈ Rn × Rn.

Given W as above, for every z = (0, ẑ) ∈ Π0
δ̃
(see (5.3)), let us denote by

(
ZW

(
· ; z), QW

(
· ; z)

)
the solution of (C.11) starting at (z,∇ū(z) + νW (z)e1), where νW : Π0

δ̃
→ R is the Lipschitz

function satisfying13

H0
W

(
z,∇ū(z) + νW (z)e1

)
= 0 ∀ z ∈ Π0

δ̃
.

Then, consider the Lipschitz function expV̄0+W : R×Π0
δ̃
→ Rn defined by

expV̄0+W

(
t, z0

)
:= ZV̄0+W

(
t;
(
z0,∇ū(z0) + νV̄0+W (z0)e1

))
∀ t ∈ R, ∀ z0 ∈ Π0

δ̃
.

We claim the following: Assume that there are ρ,C > 0 (with ρ ≤ δ̃) such that expV̄0+W is
injective on the cylinder

[
0, 5τ̄

]
×Π0

ρ and satisfies∣∣expV̄0+W

(
t, z0

)
− expV̄0+W

(
t′, (z0)′

)∣∣
≥ C

(
|t− t′|+ |z0 − (z0)′|

)
∀ (t, z0), (t′, (z0)′) ∈

[
0, 5τ̄

]
×Π0

ρ. (C.12)

Set Ω := expV̄0+W

([
0, 5τ̄

]
×Π0

ρ

)
. Then the viscosity solution of the Dirichlet problem{

H̄
(
z,∇ũ(z)

)
+ V̄0(z) +W (z) = 0 in Ω,

ũ = ū on Π0
ρ,

(C.13)

is of class C1,1, with a C1,1-norm bounded by some constant depending on the constant C
above.

Indeed, if expV̄0+W is injective, then the function ūV̄0+W : Ω → R defined by

ūV̄0+W

(
expV̄0+W

(
t, z0

))
:= ū(z0)

+

∫ t

0

〈
QV̄0+W

(
s;
(
z0,∇ū(z0) + νV̄0+W (z0)e1

))
, ŻV̄0+W

(
s;
(
z0,∇ū(z0) + νV̄0+W (z0)e1

))〉
ds

is of class C1,1 (see [4, 12]), solves (C.13), and its gradient is given by

∇ūV̄0+W

(
expV̄0+W

(
t, z0

))
= QV̄0+W

(
t;
(
z0,∇ū(z0) + νV̄0+W (z0)e1

))
.

Thanks to Gronwall’s Lemma, we deduce easily that if (C.12) holds, then we have a uniform
bound on

∥∥ūV̄0+W

∥∥
C1,1 .

Now, using Lemma C.1(iii), by linearizing (C.11) along
(
Z(·), Q(·)

)
: [0,+∞) → Rn × Rn

we get {
ξ̇(t) = ∂2H0

∂q2

(
Z(t), Q(t)

)
η(t)

η̇(t) = −
(

∂2H0

∂z2

(
Z(t), Q(t)

)
+Hess W

(
Z(t)

))
ξ(t).

(C.14)

13Observe that νW is well-defined: indeed

H̄
(
(τ̄ , 0n−1),∇ū

(
(τ̄ , 0n−1)

))
= 0, ∇qH̄

(
(τ̄ , 0n−1),∇ū

(
(τ̄ , 0n−1)

))
= e1,

and V̄0 + W is small in C1 topology on Π0
δ̃

for δ̃ sufficiently small (the smallness depending on W ), from

which the existence of νW follows immediately from the Implicit Function Theorem. Moreover, νW satisfies
νW

(
(τ̄ , 0n−1)

)
= 0.
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We define W : Rn → R as

W
(
t, ẑ
)
:= −Nφ(t)

2

n−1∑
i=1

ẑ2i ∀
(
t, ẑ
)
∈ R× Rn−1, (C.15)

where N is a large positive constant which will be chosen later, and φ : [0, 4τ̄ ] → [0, 1] is a
smooth function satisfying

φ(t) = 0 ∀ t ∈
[
0, τ̄ /2

]
∪
[
7τ̄ /2, 4τ̄

]
and φ(t) = 1 ∀ t ∈

[
τ̄ , 3τ̄

]
. (C.16)

In this way, W satisfies (C.10) and

Hess W
(
Z(t)

)
= −Nφ(t)

(
0 0
0 In−1

)
. (C.17)

Now, the idea is to take N sufficiently large so to impose a uniform lower bound on the eigen-

values of the symmetric matrix
∂2(H0+W)

∂ẑ2

(
Z(t), Q(t)

)
for t ∈

[
0, 5τ̄

]
. Indeed, this makes the

“curvature not too positive” in the directions transversal to the “geodesic” Z(t), so that “char-
acteristics fall apart” and there are no “conjugate points” along the curve t 7→

(
Z(t), Q(t)

)
on

the time interval
[
0, 5τ̄

]
, provided τ̄ > 0 is sufficiently small.

Observe that, to ensure the absence of conjugate points, we cannot say simply that it suffices
to choose τ̄ sufficiently small. Indeed, given τ̄ > 0, we have constructed V̄0 in Lemma 5.4, and
the C2-norm of V̄0 depends on τ̄ . So, we need to prove that we can choose τ̄ > 0, small but
universals, such that, for any N sufficiently large, characteristics do not cross in a cylinder of
size ρ around

[
0, 5τ̄

]
3 t 7→

(
Z(t), Q(t)

)
. Moreover, ρ may depend on V̄0 but not on N . This is

the aim of the next lemma.

Lemma C.2. Let K be as in Lemma 5.4. If τ̄ > 0 is small enough then, for every N ≥ K,
there exists a radius ρ̄ and c̄ > 0, depending only on K, such that the map

ΨN :
[
0, 5τ̄

]
×Π0

ρ̄ −→ Rn

(t, z0) 7−→ ZW

(
t; z0

)
is injective and satisfies∣∣ΨN

(
t, z0

)
−ΨN

(
t′, (z0)′

)∣∣
≥ c̄

(
|t− t′|+ |z0 − (z0)′|

)
∀
(
t, z0

)
,
(
t′, (z0)′

)
∈
[
0, 5τ̄

]
×Π0

ρ̄. (C.18)

Before proving the above result, let us see how it allows to conclude the proof of Lemma 5.5.
Set N := K, and take δ̃ ≤ min{ρ̄/6, δ̄, δ̄0} (to be chosen), where ρ̄ is given by Lemma C.2, δ̄ is

given by Lemma 5.4, and δ̄0 is as in (C.6). Observe that, if z01 , z
0
2 ∈ Π0

δ̃
, then Cyl

1/4
0

(
z01 , z

0
2

)
⊂

Π0
ρ̄/4. In particular, if τ̄ sufficiently small (the smallness being independent of z10 , z

2
0 and ρ̄),

then Cyl
1/3
[0,T5τ̄ ]

(
z01 , z

0
2

)
⊂
[
0, 5τ̄

]
×Π0

ρ̄/2 (see, for instance, the proof of Lemma 5.3). Then, since

ZV̄0
(t; z01) belongs to Cyl

1/9
[0,T5τ̄ ]

(
z01 , z

0
2

)
for t ∈ [0, T5τ̄ (z01)] (by Lemma 5.4(viii)), it suffices to

consider a cut-off function ϕ̄ which is identically equal to 1 on Cyl
1/4
[0,T5τ̄ ]

(
z01 , z

0
2

)
∩ H[0,4τ̄ ] and

vanishes outside Cyl
1/3
[0,T5τ̄ ]

(
z01 , z

0
2

)
∩H[0,4τ̄ ], and set V̄1 :=Wϕ̄. We leave the reader to check that,

if δ̃ and τ̄ are small enough, then Cyl
1/4
[0,T5τ̄ ]

(
z01 , z

0
2

)
⊂ Cyl

1/3
[0,T4τ̄ ]

(
z01 , z

0
2

)
⊂ expV̄0+W

([
0, 5τ̄

]
×Π0

ρ̄

)
,

and all the assumptions in the statement of Lemma 5.5 are satisfied.

Proof of Lemma C.2. We fix N ≥ K.
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Let us observe that, by Lemma C.1(i)-(ii), it holds

∂2H0

∂z1∂z

(
Z(t), Q(t)

)
=

d

dt

∂H0

∂z

(
Z(t), Q(t)

)
= Q̇(t) = 0 on [0, T ].

Hence, thanks to this fact and Lemma C.1(iv)-(v), the linearized system (C.14) can be written
as {

ξ̇(t) = S(t)η(t)
η̇(t) = R(t)ξ(t).

(C.19)

where S(t), R(t) are n× n symmetric matrices of the form

S(t) =

(
s1(t) 0
0 In−1

)
and R(t) :=

(
0 0

0 R̂(t),

)
. (C.20)

with R̂(t) a (n − 1) × (n − 1) symmetric matrices . Moreover, thanks to our choice of N
and recalling that Supp

(
V̄0
)
⊂ H[τ̄ ,2τ̄ ], we have R̂(t) ≥ −C0In−1 for any t ∈

[
0, T

]
, with

C0 :=
∥∥∥∂2H̄

∂ẑ2

(
Z(t), Q(t)

)∥∥∥
L∞([0,T ])

.

We want to prove that, if ρ > 0 is sufficiently small (the smallness being independent of
both V̄0 and N), then ΨN is injective on

[
0, 5τ̄

]
× Π0

ρ, and satisfies (C.18) for some universal
constant c̄ > 0. Let us first prove, arguing by contradiction and using a compactness argument,
that we can find such ρ, c > 0 when V̄0 and N are fixed (so, a priori ρ and c may depend on
both). Then, we will explain how to remove this dependence.

Let us remark that, since Ż(t) · e1 > 0, there exists a universal constant c0 > 0 such that∣∣ΨN (t)−ΨN (t′)
∣∣ ≥ c0|t− t′|. (C.21)

Hence, if we assume that the statement is false, then there exist two sequences {(tka, ẑka)}, {(tkb , ẑkb )}
in
[
0, 5τ̄

]
×Π0

ρ converging to some point (t̄, 0) ∈
[
0, 5τ̄

]
× {0} such that∣∣ΨN

(
tka, ẑ

k
a

)
−ΨN

(
tkb , ẑ

k
b

)∣∣ < 1

k

(∣∣tka − tkb
∣∣+ ∣∣zka − zkb

∣∣) ∀ k.

Denote by ūN : Bn(0, 1) ∩H[τ̄ ,+∞) → R the viscosity solution to the Dirichlet problem{
H0

W

(
z,∇ūN (z)

)
= 0 in Bn

1 (0) ∩H[0,+∞)

ūN = ū on Π0
1.

By [4], we know that ūN can be extended to a function of class C1,1 on a ball Bn(0, rN ), for
some rN > 0. Moreover, since ū is C1,1, the restriction of ūN to Π0

1 is also C1,1, with a C1,1-

bound independent of V̄0. Concerning the “time regularity”, since Q̇ = −∂H̄
∂z − ∇V0(Z) and

‖V0‖C1 is bounded by 2 (see (C.7)), up to choosing rN smaller the Lipschitz constant of ∇ūN
on Bn(0, rN ) is bounded by a universal constant Kū independent of V̄0 and N .

Set zka := (0, ẑka), z
k
b := (0, ẑkb ), assume with no loss of generality that tka ≥ tkb for all k, and

define zkc := π
(
φ
H0

W

tka−tkb

(
zka ,∇ūN (zka)

))
. Then the following holds: there exists a constant K ′,

independent of V̄0 and N , such that:

(a) zkb , z
k
c ∈ Bn

1 (0) ∩H[τ̄ ,+∞) both converge to 0n as k → ∞;

(b)
∣∣tka − tkb

∣∣ + ∣∣zka − zkb
∣∣ ≤ K ′

∣∣zkb − zkc
∣∣ (this follows from (C.21) and a simple geometric

argument);

(c) the sequence

{
k

∣∣∣ZW

(
tkb ;z

k
b

)
−ZW

(
tkb ;z

k
c

)∣∣∣
|zk

b−zk
c |

}
is bounded;

54



(d) tk → t̄ as k → ∞;

(e) lim supk→∞
|∇ūN(zk

b )−∇ūN(zk
c )|

|zk
b−zk

c |
≤ K ′Kū.

Hence, by considering
(
ξ(0), η(0)

)
an arbitrary cluster point of the sequence{(

zkb − zkc∣∣zkb − zkc
∣∣ , ∇ūN

(
zkb
)
−∇ūN

(
zkc
)∣∣zkb − zkc

∣∣
)}

we deduce the existence of a solution
(
ξ(·), η(·)

)
: [0, t̄] → Rn × Rn to the linearized system

(C.19), satisfying ∣∣ξ(0)∣∣ = 1,
∣∣η(0)∣∣ ≤ K ′Kū and ξ(t̄) = 0n. (C.22)

We now show that the above situation is impossible. Write ξ(0) =
(
ξ1(0), ξ̂(0)

)
, η(0) =(

η1(0), η̂(0)
)
. We distinguish two cases:

(1)
∣∣ξ1(0)∣∣ ≥ 1

2 ;

(2)
∣∣ξ̂(0)∣∣ ≥ 1

2 .

In case (1), we observe that since η̇1(t) = 0 for any t, we have

ξ1(t) = ξ1(0) +

(∫ t

0

s1(σ) dσ

)
η1(0),

and since |η1(0)| ≤ K ′Kū and s1(t) =
∂2H̄
∂q21

(
Z(t), Q(t)

)
is bounded independently of V̄0, ξ1(t)

cannot vanish on some interval [0, t̄], with t̄ > 0 universal. In particular, if we choose τ̄ ≤ t̄/4,
then we get a contradiction.

In case (2), we observe that ξ̂ satisfies
¨̂
ξ(t) = R̂(t)ξ̂(t). So, since R̂ ≥ −C0In−1 we get

d2

dt2

∣∣ξ̂(t)∣∣2
2

=
∣∣ ˙̂ξ(t)∣∣2 + 〈R̂(t)ξ̂(t), ξ̂(t)〉 ≥ −C0

∣∣ξ̂(t)∣∣2,
that is, t 7→

∣∣ξ̂(t)∣∣2e2C0t is convex. Hence∣∣ξ̂(t)∣∣2e2C0t ≥
∣∣ξ̂(0)∣∣2 − 2

(∣∣ ˙̂ξ(0)∣∣ ∣∣ξ̂(0)∣∣− C0

∣∣ξ̂(0)∣∣2)t ≥ ∣∣ξ̂(0)∣∣2 − 2
(
K ′Kū + C0

)
t,

which again implies that ξ1(t) cannot vanish on some interval [0, t̄], with t̄ > 0 universal.
This argument shows that there exists a radius ρ̄ > 0 and a constant c̄ > 0, which a

priori may depend on both N and V̄0, such that ΨN is injective on
[
0, 5τ̄

]
× Π0

ρ̄ and satisfies
(C.18). To show that actually we can choose both ρ̄ and c̄ independently of both N ≥ K and
V̄0 (but of course they will depend on the constant K provided by Lemma 5.4), it suffices to
observe that the compactness argument used above could be repeated with letting at the same
time ρ, c → 0, V̄0 varying inside the class of C2 potentials whose C1-norm is bounded by 2
(see (C.7)) and whose C2-norm is bounded by K, and N varying inside [K,+∞). Indeed, the
change of coordinates provided by Lemma C.1 depends on V̄0 only through its C1-norm, which
is universally bounded (due to (C.7)), while in the compactness argument above the choice of
τ̄ depended only on K.

This concludes the proof.
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Proof of Lemma C.1. Set Bn
(
0, δ̄0

)
+
:= H+ ∩Bn

(
0, δ̄0

)
. From (C.8), the uniform convexity of

H0, and its Ck−1 regularity, for every z ∈ Bn
(
0, δ̄0

)
+
the set

Cz :=
{
q ∈ Rn |H0(z, q) ≤ 0

}
=
{
q ∈ Rn | H̄(z, q) ≤ −V̄0(z)

}
(C.23)

is a bounded uniformly convex set containing 0n of class Ck−1, and the Ck−1-norm of ∂Cz is
independent of V̄0.

For each z ∈ Bn
(
0, δ̄0

)
+
, define the support function ϕ(z, ·) : Rn → R as

ϕ(z, v) := max {〈v, q〉 | q ∈ Cz} ∀ v ∈ Rn.

The function ϕ is of class Ck−1 outside the origin, and homogeneous of degree 1 in the v
variable. Moreover, it is not difficult to check that the curve Z(·) : [0, T ] → Rn defined in (C.9)
satisfies the Euler-Lagrange equations

d

dt

(
∂ϕ

∂v

(
Z(t), Ż(t)

))
=
∂ϕ

∂z

(
Z(t), Ż(t)

)
∀ t ∈ [0, T ]. (C.24)

Indeed, denote by qmax(z, v) ∈ ∂Cz the unique element such that

ϕ(z, v) = 〈v, qmax(z, v)〉 ∀ z ∈ Bn
(
0, δ̄0

)
+
,∀ v ∈ Rn. (C.25)

Then

∂ϕ

∂v
(z, v) = qmax(z, v) and

∂ϕ

∂z
(z, v) = −λ(z, v)∂H

0

∂z

(
z, qmax(z, v)

)
, (C.26)

where λ(z, v) ∈ R satisfies

v = λ(z, v)
∂H0

∂q

(
z, qmax(z, v)

)
= λ(z, v)

∂H̄

∂q

(
z, qmax(z, v)

)
. (C.27)

Furthermore, since by definition
(
Z(·), Q(·)

)
: [0, T ] → Rn is a solution to the Hamiltonian

system {
Ż(t) = ∇qH

0
(
Z(t), Q(t)

)
Q̇(t) = −∇zH

0
(
Z(t), Q(t)

) ∀ t ∈ [0, T ] (C.28)

and satisfies
H0
(
Z(t), Q(t)

)
= 0 ∀ t ∈ [0, T ],

(see (C.9)), for any t ∈ [0, T ] it holds

qmax

(
Z(t), Ż(t)

)
= Q(t), λ

(
Z(t), Ż(t)

)
= 1, ϕ

(
Z(t), Ż(t)

)
= 〈Ż(t), Q(t)〉. (C.29)

Then, by (C.26) we deduce

d

dt

(
∂ϕ

∂v

(
Z(t), Ż(t)

))
=

d

dt

(
qmax

(
Z(t), Ż(t)

))
= Q̇(t)

= −∂H
0

∂z

(
Z(t), Q(t)

)
=
∂ϕ

∂z

(
Z(t), Ż(t)

)
∀ t ∈ [0, T ].

which proves (C.24).
Hence, by applying [9, Lemma 3.1], up a change of variable Φ0 of class Ck−2, the following

properties hold for any t ∈ [0, T ] (the fact that Φ ∈ Ck−2 and both ‖Φ‖C1 and ‖Φ−1‖C1 are
bounded independently of V0 will be discussed at the end of the proof ):
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(a) Z(t) = te1;

(b) Ż(t) = e1;

(c) ϕ
(
Z(t), Ż(t)

)
= 1;

(d) ∂ϕ
∂z

(
Z(t), Ż(t)

)
= 0;

(e) ∂ϕ
∂v̂

(
Z(t), Ż(t)

)
= 0;

(f) ∂ϕ
∂v1

(
Z(t), Ż(t)

)
= 1;

(g) ∂2ϕ
∂z∂v

(
Z(t), Ż(t)

)
= 0;

(h) ∂2ϕ
∂v1∂v̂

(
Z(t), Ż(t)

)
= 0.

We leave the reader to check that, thanks to (C.25)-(C.29), this implies

Q(t) = qmax

(
Z(t), Ż(t)

)
= e1 and

∂2H0

∂q∂z

(
Z(t), Q(t)

)
= 0 ∀ t ∈ [0, T ],

which combined with (a) concludes the proof of assertions (i)-(iv). It remains to perform a new

change of coordinates to get (v). Observe that ∂2H0

∂q̂2 = ∂2H̄
∂q̂2 is positive definite and of class

Ck−2. Let R : [0, T ] →Mn−1(R) be a function of class Ck−2 such that

R(t)
∂2H̄

∂q̂2
(
Z(t), Q(t)

)
R(t)∗ = In−1 ∀ t ∈ [0, T ],

and define Φ : Rn → Rn by

Φ
(
t, ẑ
)
:= (t, R(t)ẑ) ∀ t ∈ [0, T ], ∀ẑ ∈ Rn−1.

We leave the reader to check that, in the new system of coordinates induced by Φ, all assertions
(i)-(v) are satisfied (see also [8, Subsection 4.3]).

Thus, to conclude the proof, we only need to check that the change of variable Φ0 provided
by [9, Lemma 3.1] is of class Ck−2, and the C1-norm of Φ0 and its inverse are both bounded
independently of V0.

Let us recall that Φ0 is obtained as a composition of four change of variables Φj
0, j = 1, 2, 3, 4

(see the proof of [9, Lemma 3.1]):

Φ1
0(z) = z + te1 − Z(t) (so that Z(t) becomes te1);

Φ2
0(z) :=

(
z1 +

n∑
i=2

bi(z1)zi, ẑ
)
, bi(s) := −

∫ s

0

∂ϕ

∂zi

(
σe1, e1

)
dσ;

Φ3
0(z) :=

(
z1 −

n∑
i=2

∂ϕ

∂vi
(0, en)zi, ẑ

)
;

Φ4
0(z) :=

(
z1 −

1

2
〈Mẑ, ẑ〉, B(z1)ẑ

)
,

where M and B are defined as follows: set A(t) := ∂2ϕ
∂v̂2 (te1, e1), E(t) := ∂2ϕ

∂ẑ∂v̂ (te1, e1), and let
X(t) be the solution to the equation

X(t)∗A(t)−A(t)X(t)∗ = E(t)∗ − E(t)
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with least Euclidean norm (as proven in [9, Lemma B.2], the (affine) space of solutions to the
above equation is n(n− 1)/2, so X(t) is well-defined and unique). Then, B(t) is defined as the
solution of {

Ḃ(t) = X(t)B(t),
B(0) = In−1,

and M(t) is the (n− 1)× (n− 1) matrix defined as

M(t) := B(t)∗E(t)∗B(t) +B(t)∗A(t)X(t)B(t).

Since, for any z ∈ Bn(0, δ̄)+, the function V̄0 enters in the definition of the convex sets Cz

only as an additive constant (see (C.23)), it is not difficult to check that ∂2ϕ
∂v̂2 ,

∂2ϕ
∂ẑ∂v̂ depends only

on the C1-norm of V̄0. Hence, since ‖V̄0‖C1 is bounded by 2 (by (C.7)), all maps Φj
0, j = 1, 2, 3, 4,

are bounded in C1 topology together with their inverse, with a bound independent of V̄0. This
concludes the proof.
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