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Abstract We study zero-sum dynamic games with deterministic transitions and alternating moves of the
players. Player 1 aims at reaching a terminal set and minimising a possibly discounted running and final
cost. We propose and analyse an algorithm that computes the value function of these games extending
Dijkstra’s algorithm for shortest paths on graphs. We also show the connection of these games with
numerical schemes for differential games of pursuit-evasion type, if the grid is adapted to the dynamical
system. Under suitable conditions we prove the convergence of the value of the discrete game to the value
of the differential game as the step of approximation tends to zero.
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1 Introduction

In this paper we study two-person zero-sum dynamic games where the players move a state variable in
a finite state space X . Each action has a (possibly discounted) positive cost for player 1, that he pays
to player 2, which depends on the position and actions. Player 1 aims at reaching a given terminal set
Xf and once this is done the game is finished and a final cost is incurred. We adopt a rule of alternating
moves that gives an informational advantage to player 1.

Our purpose is to provide an efficient algorithm to compute the value. We follow an approach inspired
by the classical Dijkstra algorithm (Dijkstra 1959) for finding shortest paths in finite graphs, which has
running time O(e+ v log v) if a suitable data structure is used, where v, e denote respectively the number
of vertices and edges, see Fredman and Tarjan (1987). The algorithm we propose updates the approximate
value function only in the immediate neighbours of those nodes where the value is already computed, thus
reducing the computation time, and converges in a finite number of steps. In particular, if the running
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F-75013, Paris, France.
E-mail: pablo.maldonado@imj-prg.fr



2 Martino Bardi, Juan Pablo Maldonado López

and terminal costs are constant the algorithm is single-pass as Dijkstra’s, namely, the value function is
computed only once in each node.

Our assumptions are designed to cover discrete approximations of generalised pursuit-evasion differen-
tial games (Bardi and Soravia 1991, Bardi, Falcone, and Soravia 1994, Bardi, Bottacin and Falcone 1995;
see also the surveys by Bardi, Falcone, and Soravia 1999, Cardaliaguet, Quincampoix, and Saint-Pierre
1999, and the references therein) if the grid of the numerical scheme is suitably adapted to the controlled
dynamical system. We describe this connection and prove a convergence result of the value of the discrete
game to the value of the differential game as the step of approximation tends to zero.

Our motivation comes from the so-called Fast Marching Methods (briefly, FMM) for Hamilton-Jacobi
equations with convex Hamiltonian arising in deterministic control and front propagation problems, intro-
duced in Tsitsikilis (1995) and Sethian (1996) and developed by Sethian (1999), Sethian and Vladimirsky
(2003), Cristiani (2009), Andrews and Vladimirsky (2014), see also the references therein and Cacace,
Cristiani, and Falcone (2014) for some recent improvements. These numerical methods approximate time-
optimal control in continuous time and space with a fully discrete Bellman equation on a grid, and then
rely on the classical Dijkstra algorithm for an efficient solution of the discrete approximation. We recall
that the methods based on Dynamic Programming have several good properties, especially robustness,
but they face the well-known ”curse of dimensionality”. A large amount of research in the last twenty
years was devoted to overcoming this difficulty in some cases and FMM played an important role for
problems with positive costs. We refer to McEneaney (2006), Cacace, Cristiani, Falcone, and Picarelli
(2012), and the references therein for other approaches.

Recently various forms of FMM were also proposed for solving some Hamilton-Jacobi-Isaacs equations
arising from differential games (Cristiani and Falcone 2006, von Lossow 2007, Grüne and Junge 2008,
Cristiani 2009), with possible applications to the stabilization of perturbed systems and to front propaga-
tion problems with non-convex Hamiltonian. They approximate the continuous problem with a discrete
Isaacs equation on a grid. Grüne and Junge (2008) also perform a convergence analysis under conditions
somewhat different from ours (in particular, the running cost may depend on the control of only one of
the players and there is no discount factor, see Remark 5). Our paper contributes to the rigorous founda-
tion of these methods by giving a general theoretical justification for using Dijkstra-type algorithms for
discrete dynamic games, including cases of discounted costs. We remark, however, that some questions of
practical importance are yet to be addressed, particularly those related to the computational complexity
and the efficient implementation of the algorithm we propose.

We conclude the introduction with some further references on zero-sum discrete dynamic games.
Some of such games related to ours are the planning problems against Nature in LaValle (2006), the
reachability games studied in Alfaro et al. (2007), and the robust shortest path problems of the very
recent paper by Bertsekas (2015); all these references study also some numerical algorithms related to
Dijkstra. Moreover, if the players move simultaneously and use random strategies, the game becomes a
special case of the zero-sum stochastic games introduced in the seminal paper of Shapley (1953). Several
algorithms have also been proposed to compute the value function of stochastic games, starting with the
value iteration algorithm in Shapley (1953). Some variants designed to accelerate the convergence can
be found in the survey by Filar and Vrieze (1991), the more recent paper by Raghavan and Syed (2003)
and the references therein, and in Kushner (2004), where a Gauss-Seidel procedure for value iteration is
studied. The extension of Dijkstra-type algorithms to general stochastic games with simultaneous moves
is an interesting open problem.

2 The discrete dynamic game

2.1 The model

Let X be a finite set belonging to an Euclidean space Rd, representing the state space of a system and
whose elements we call nodes. Let A,B be finite sets where the players choose their controls. For a
function S : X ×A×B → X define the trajectory x• = x•(x, a•, b•) recursively by

xn+1 = S(xn, an, bn), x0 = x. (1)

Let Xf ⊂ X , denote a terminal set of nodes (which player 1 wishes to attain) and let γ ∈ (0, 1] be a
discount factor. We introduce the running and terminal cost
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` : X ×A×B → R, 0 < `0 ≤ `(x, a, b) ≤ L, ∀(x, a, b) ∈ X ×A×B (2)

g : Xf → R, g0 ≤ g(x) ≤ g1,∀x ∈ Xf (3)

and additionally define the arrival time n̂ : X ×AN ×BN → R by

n̂(x, a•, b•) =

{
min{n ∈ N : xn ∈ Xf}, if {n ∈ N : xn ∈ Xf} 6= ∅

+∞ else,

where xn is the trajectory of (1) corresponding to the control sequences a•, b•. To alleviate the notation,
we will often write n̂ instead of the more explicit n̂(x, a•, b•) when no confusion arises. We have then the
following total cost functional J : X ×AN ×BN → R

J(x, a•, b•) :=

n̂−1∑
n=0

`(xn, an, bn)γn + γn̂g(xn̂),

where the discount factor γ satisfies 0 < γ ≤ 1. Observe that if n̂ = +∞ the cost is finite for γ < 1 and
+∞ for γ = 1 (i.e., no discount). Player 1 chooses a• ∈ AN and player 2 chooses b• ∈ BN. The aim of
player 1 is to minimize the cost functional, whereas player 2 has the opposite goal.

We assume that both players observe each other’s actions and the state x•.
We refer to G = G 〈X ,Xf , S,A,B, `, g, γ〉 as the game.

2.2 The lower value function

We consider an information pattern where player 1 is informed in advance of the action that player 2
will play at each time. Although not realistic in many situations, this is relevant in the discretization of
the lower value of a differential game, as we will see in Section 3, and also in the case of discrete robust
control problems, where player 2 represents a disturbance.

Definition 1 A map α : BN → AN is a non anticipating strategy for player 1 if

bn = b̃n, ∀n ≤ m =⇒ α[b•]n = α[b̃•]n, ∀n ≤ m.
Denote with A the set of non anticipating strategies for player 1. The definition of the set B of non
anticipating strategies for player 2 is completely analogous.

This allows us to introduce the lower value function

V −(x) := inf
α∈A

sup
b•∈BN

J(x, α[b•], b•).

The following result follows from familiar arguments, see for instance Chapter 8, Theorem 3.18 in Bardi
and Capuzzo-Dolcetta (1997).

Proposition 1 The lower value function satisfies

V −(x) = inf
α∈A

sup
b•∈BN

{
k∧n̂−1∑
n=0

`(xn, α[b•]n, bn)γn + γk∧n̂V −(xk∧n̂)

}
, ∀k ∈ N, (4)

V −(x) = max
b∈B

min
a∈A

{
`(x, a, b) + γV −(S(x, a, b))

}
, ∀x /∈ Xf , (5)

V −(x) = g(x), ∀x ∈ Xf . (6)

The first equality (4) is the well known dynamic programming property. By taking k = 1 in (4) one can
easily prove (5). The last equality (6) follows directly from the definition.

The following form of the dynamic programming property will be useful later.

Proposition 2 Let Xf ⊂ X̃ ⊂ X and let ñ denote the arrival time to X̃ , i.e. ñ = ñ(x, a•, b•) = inf{n ∈
N : xn ∈ X̃}. Then

V −(x) = inf
α∈A

sup
b•∈BN

{
ñ−1∑
n=0

`(xn, α[b•]n, bn)γn + γñV −(xñ)

}
.
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Proof This is a direct consequence of the dynamic programming property (4) since ñ ≤ n̂.

Lemma 1 For any x ∈ X there exists (α∗, b∗•) ∈ A×BN such that V −(x) = J(x, α∗[b∗•], b
∗
•) and

V −(x) =

k∑
n=0

`(xn, α
∗[b•]n, b

∗
n)γn + γkV −(xk), ∀ k ≤ n̂(x, α∗[b∗•], b

∗
•), (7)

where xn = xn(x, α∗[b∗•], b
∗
•).

Proof The construction of the optimal pair (α∗, b∗•) is based on the classical feedback synthesis from the
Isaacs equation. Choose F : X ×B → A such that

F (y, b) ∈ argmina∈A
{
`(y, a, b) + γV −(S(y, a, b))

}
.

For any sequence b ∈ BN define y•[b] and α∗[b]n := F (yn, bn) by

yn+1 = S(yn, F (yn, bn), bn), y0 = x.

Then the inf in the definition of V −(x) is attained at α∗ ∈ A, whereas supb•∈BN J(x, α∗[b•], b•) is attained
at any b∗ ∈ BN such that b∗n ∈ G(yn[b∗]) for all n, where

G(y) := argmaxb∈B min
a∈A

{
`(y, a, b) + γV −(S(y, a, b))

}
.

The calculations are standard and can be found, e.g., in Chapter 8, Theorem 3.21, of Bardi and Capuzzo-
Dolcetta (1997).

2.3 The algorithm

The following algorithm computes the lower value function:

Require: n = 0,Acc0 := Xf , W0(x) := +∞,∀x ∈ X , V −0 (x) = g(x),∀x ∈ Xf
while Accn 6= X do

for x ∈ X \Accn, b ∈ B do
An(x, b) := {a ∈ A : S(x, a, b) ∈ Accn}

end for
Consn := {x ∈ X \Accn : An(x, b) 6= ∅ ∀b ∈ B}
while Consn 6= ∅ do

Wn+1(x) := maxb∈B mina∈An(x,b){`(x, a, b) + γV −n (S(x, a, b))},∀x ∈ Consn
Accn+1 := Accn ∪ argminWn+1

V −n+1(x) := Wn+1(x),∀x ∈ argminWn+1

V −n+1(x) := V −n (x),∀x ∈ Accn
n← n+ 1

end while
end while

The notations introduced in the algorithm have the following meaning

– Accn is the set of nodes accepted at the step n, at such nodes the tentative value is not re-computed
in the next steps;

– An(x, b) ⊆ A is the set of controls that take the state x to Accn if player 2 uses the control b;
– Consn is the set of nodes considered at the step n, they are the nodes from which player 1 can reach

Accn no matter what player 2 does;
– x ∈ argminWn+1 if Wn+1(x) = minX Wn+1, such nodes become accepted at step n+ 1.

Note that Accn is strictly increasing as long as Consn 6= ∅, so the algorithm terminates in a finite
number N of steps. The terminal step N of the algorithm is defined as the minimal integer such that

either ConsN = ∅ or AccN = X ,

and it cannot exceed the cardinality of X \ Xf , i.e.,

N ≤ |X \ Xf |.
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Denote also with R the set of nodes from which player 1 can reach the terminal set for any behavior of
player 2, i.e.,

R := {x ∈ X : inf
α∈A

sup
b•∈BN

n̂(x, α[b•], b•) < +∞}.

It is easy to see that
AccN = R,

i.e., the algorithm identifies the set R reachable by the the first player.
The main result of this section states that the algorithm indeed computes the value function. It

requires the following additional assumption in the discounted case γ < 1 (see Remark 3 below for a
discussion about this condition).

Condition 1 For γ < 1 and all n ≤ N

L

n−1∑
j=0

γj + γng1 ≤
`0

1− γ
.

Proposition 3 Assume either γ = 1, or γ < 1 and Condition 1. Then, for any n ≤ N ,

V −n (x) = V −(x), for all x ∈ Accn

and the algorithm converges in Nsteps to the value function V − on the reachability set R.

Proof Observe that for n = 0 the conclusion holds by definition. It suffices to prove that V −1 (x) = V −(x)
for x ∈ Acc1 since by Proposition 2, if we know V − on X̃ = Acc1, then we can obtain V − as the value
of the new problem with Xf replaced by X̃ and g by V −|X̃ and thus conclude by induction.

Observe first that V −1 (x) ≥ V −(x) follows easily from the definitions. Now for

x̄ ∈ argminx∈Cons1W1(x)

consider the optimal pair (α∗, b∗•) ∈ A × BN provided by Lemma 1 and the corresponding optimal
trajectory xn starting from x̄, that is,

xn+1 = S(xn, α
∗[b∗•]n, b

∗
n), x0 = x̄,

V −(x̄) = J(x̄, α∗[b∗•], b
∗
•).

If n̂(x̄, α∗[b∗•], b
∗
•) = 1 then by (5) V −(x̄) = W1(x̄) = V −1 (x̄), which is the desired conclusion. If, instead,

n̂ := n̂(x̄, α∗[b∗•], b
∗
•) > 1 we will distinguish two cases.

– Case γ = 1. From (7) and ` > 0 we have that

V −(x̄) =

n̂−2∑
n=0

`(xn, α
∗[b•]n, b

∗
n) + V −(xn̂−1) > V −(xn̂−1).

On the other hand, we have an optimal pair strategy-control and corresponding optimal trajectory
starting from xn̂−1 that reaches Xf in one step. Then V −(xn̂−1) = W1(xn̂−1) and so

V −(xn̂−1) = W1(xn̂−1) ≥W1(x̄) = V −1 (x̄) ≥ V −(x̄)

which is a contradiction.
– Case γ < 1.

Assume first n̂(x̄, α∗[b∗•], b
∗
•) < +∞. As above, the construction of the optimal pair strategy-control of

Lemma 1 implies V −(xn̂−1) = W1(xn̂−1). Then (7) gives

V −(x̄) =

n̂−2∑
n=0

`(xn, α
∗[b•]n, b

∗
n)γn + γn̂−1V −(xn̂−1)

=

n̂−2∑
n=0

`(xn, α
∗[b•]n, b

∗
n)γn + γn̂−1W1(xn̂−1)

≥
n̂−2∑
n=0

`(xn, α
∗[b•]n, b

∗
n)γn + γn̂−1W1(x̄)

≥
n̂−2∑
n=0

`(xn, α
∗[b•]n, b

∗
n)γn + γn̂−1V −(x̄).
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Then,

V −(x̄)(1− γn̂−1) ≥ `0
1− γn̂−1

1− γ
=⇒ V −(x̄) ≥ `0

1− γ
.

If, instead, n̂(x̄, α∗[b∗•], b
∗
•) = +∞, the same inequality holds. On the other hand, since

V −1 (x̄) ≤ L+ γg1 (8)

we get the inequality V −1 (x̄) ≤ V −(x̄) by Condition 1. To complete the proof by induction we claim
that

V −n (x̄) ≤ L
n−1∑
j=0

γj + γng1,

which gives the inequality V −n (x̄) ≤ V −(x̄) by Condition 1. The claim is also proved by induction: for
n = 1 it is (8), and

V −n+1(x̄) ≤ L+ γmaxV −n ≤ L+ γ

L n−1∑
j=0

γj + γng1

 = L

n∑
j=0

γj + γn+1g1.

2.4 Remarks and some open problems

Remark 1 The main advantage of our algorithm is that at each step the approximate value function is
updated only on some nodes, namely on Consn. Moreover, at least one of these nodes becomes accepted
and will not be considered in the next steps. In particular, if the costs ` and g are constant (generalized
pursuit-evasion games), then Wn+1 is constant on Consn and all considered nodes are accepted. In other
words, the value function is computed only once on each node, which considerably speeds up the algorithm
in comparison to iterative methods. Algorithms with this property are often called single-pass.

Remark 2 If we stop the algorithm before it terminates, say at ñ < N , Proposition 3 says that we have
anyway computed the value function in the set Accñ, which may be enough for some practical problems
with very large grids.

Remark 3 Condition 1 requires that the range of values of the running cost ` and the size of the terminal
cost g are not too large compared with 1/(1− γ). It essentially says that, if player 1 is on a node where
he can reach Xf , it is convenient for him to do so even if the cost of the steps of this path are high,
rather than following forever a trajectory with cheap running costs. For any ` and g verifying (2) and
(3) the condition is satisfied for γ sufficiently close to 1. It is satisfied also for all γ ∈ (0, 1) in discounted
pursuit-evasion games, where ` ≡ 1 and g ≡ 0.

Remark 4 If γ = 1, we can add a final step to the algorithm by setting V −N+1(x) := W0(x) = +∞ for all

x ∈ X \AccN , so V −N+1(x) = V −(x) for x ∈ X \R and we have convergence on the whole state space X .
On the other hand, if γ < 1 the algorithm gives no information on the value V − outside R.

Remark 5 If γ = 1, ` ≡ 1, and g ≡ 0, the problem for player 1 is finding the path of shortest length that
reaches Xf , whereas player 2 seeks to make such length the longest possible (generalized pursuit-evasion).
If, in addition, there is no player 2, i.e., B is a singleton, the problem reduces to the shortest path and
the algorithm of this section is the classical Dijkstra algorithm.

In reachability games there is no running cost and all the states in Xf have the same cost. Then
the algorithm is essentially the same as Algorithm 2 in Alfaro et al. (2007), where the set Accn+1 is
updated by Accn+1 := Accn ∪ Consn. Then the reachability set R is computed exactly as in the above
generalized pursuit-evasion game, although here the length of the path is not of interest. When the moves
are alternating, this algorithm runs in a linear time with respect to the size of the game.

A Dijkstra-type algorithm is also analysed in Grüne and Junge (2008) for the upper value (see next
remark) of a game with γ = 1 and running cost `(x, a) independent of the cost of the maximizing player.
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Remark 6 The results of this section can be adapted to the upper value function

V +(x) := sup
β∈B

inf
a•∈AN

J(x, a•, β[a•]),

where B is the set of non-anticipating strategies for the second player, defined in the obvious symmetric
way. The algorithm is slightly simpler: An(x, b) must be replaced with

A′n(x) := {a ∈ A : S(x, a, b) ∈ Accn ∀b ∈ B}.

Then Consn = {x ∈ X \Accn : A′n(x) 6= ∅} and Wn+1 now is

Wn+1(x) := min
a∈A′n(x)

max
b∈B
{`(x, a, b) + γV −n (S(x, a, b))},∀x ∈ Consn.

Note that in general V −(x) < V +(x), so the choice between them depends on the model one has in
mind. For instance, if the game is the discretization of a control system where player a wants to reach
a target in minimum time and b represents a disturbance, the lower value models the case that the
controller can observe the disturbance and design his control strategy accordingly. Therefore the upper
value is more appropriate for a worst case analysis of this problem, and this is in fact the choice in LaValle
(2006), Grüne and Junge (2008), and Bertsekas (2015).

In the approximation of continuous problems the choice between lower and upper value may become
less important. In fact, we will see in the next Section that the informational advantage disappears in the
continuum limit of discrete approximations of differential games, under suitable assumptions, see Remark
12.

Remark 7 It would be interesting to study the model of Section 2.1 in the case of simultaneous moves,
where players select their actions randomly. This falls within the theory of stochastic games initiated by
Shapley (1953) (for more recent accounts, see the book by Filar and Vrieze (1996) or Chapter 5 in Sorin
(2002) , although the transition map S is deterministic here. Even in the case of deterministic transitions,
there are algebraic obstructions that make the extension of our approach difficult, see for instance the
first example provided by Parthasarathy and Raghavan (1981). In their example, the data of the problem
consist of rational numbers but the value is irrational. The authors suggest that any algorithm that
terminates in a finite number of steps, such as ours, would require that the data and the value of the
game remain in the same ordered field. See, for instance, Filar and Vrieze (1996) for several classes of
games with this so-called ordered field property.

Remark 8 The adaptation of the algorithm to the case of stochastic transitions presents several additional
difficulties. For a single player the Dijkstra algorithm was extended to the stochastic case in Bertsekas
(2001) if there exists a consistently improving optimal policy. A deeper study of the causality properties
needed in stochastic shortest path problems with one controller is in Vladimirsky (2008). As hinted in
the preceding remark, the case of zero-sum two-person stochastic games appears completely open.

3 Discretisation of differential games

Consider a continuous-time dynamical system controlled by two players

y′(t) = f(y(t), a(t), b(t)), y(0) = x, (9)

where f : Rd × A×B → R is Lipschitz with respect y, and A,B are given finite sets, as in the previous
section. The admissible controls for the players are

Ã := {a : [0,+∞)→ A, measurable} , B̃ := {b : [0,+∞)→ B, measurable} .

We are given a closed target T ⊆ Rn, and define the first time the trajectory hits T as

tx(a, b) := inf{t : yx(t; a, b) ∈ T },

where yx(·; a, b) is the solution of (9) corresponding to a ∈ Ã and b ∈ B̃, and tx(a.b) := +∞ if the target
is never reached. Consider also the cost functional

J̃(x, a, b) :=

∫ tx

0

l(y(t), a(t), b(t))e−λtdt+ e−λtxg(yx(tx; a, b)), tx = tx(a, b), a ∈ Ã, b ∈ B̃;
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where λ ≥ 0 is the discount rate, and the running and terminal costs l : Rd ×A×B → R and g : T → R
are continuous and bounded, with l > 0.

In differential games non-anticipating strategies for the first player are maps α : B̃ → Ã such that, for
all t > 0, b(s) = b̃(s) for all s ≤ t implies α[b](s) = α[b̃](s) for all s ≤ t. We denote with Γ the set of such
strategies. The lower value function of the game, in the sense of Varaiya, Roxin, Elliott and Kalton, is
defined as

v−(x) := inf
α∈Γ

sup
b∈B̃

J̃(x, α[b], b).

It is well known that under suitable conditions v− coincides with the upper value function and it is
therefore the value of the game, see Remark 12 for more details. It is also known (see, e.g., Chapter VIII
in Bardi and Capuzzo-Dolcetta 1997) that it is a viscosity solution of the (lower) Hamilton-Jacobi-Isaacs
equation

λv− −max
b∈B

min
a∈A

{
f(x, a, b) ·Dv− + l(x, a, b)

}
= 0 in Ω := Rd \ T . (10)

Now take a finite grid X such that X ∩ T 6= ∅, and set Xf := X ∩ T , i.e., the final nodes are those in the
target. Next fix h > 0 and set

S(x, a, b) = x+ hf(x, a, b), `(x, a, b) = hl(x, a, b), γ = e−λh.

Then the dynamic game of Section 2.1 is a natural discretisation of the differential game, with the control
system replaced by its Euler scheme with step h and the integral cost functional replaced by a Riemann
sum. This discretisation is the basis of some semi-Lagrangian approximation schemes for the Hamilton-
Jacobi-Isaacs equation, see, e.g., Bardi, Falcone, and Soravia (1999) and Falcone and Ferretti (2014). In
such schemes one solves the finite difference equation

W (x) = max
b∈B

min
a∈A
{`(x, a, b) + γW (S(x, a, b))} , ∀x ∈ X \ Xf , (11)

with the boundary condition

W (x) = g(x), ∀x ∈ Xf . (12)

Note, however, that in general S(x, a, b) might not be in X , so in the right hand side W is extended
by interpolation among the neighbouring nodes. The main assumption of this section is that the grid is
adapted to the dynamics (with time step h), that is,

S(x, a, b) ∈ X ∀x ∈ X \ Xf , a ∈ A, b ∈ B. (13)

Then W can be computed only on the nodes, without any interpolation procedure.

Proposition 4 Under the assumption (13) the solution W of the discrete Isaacs equation (11) coincides
with the lower value function V − defined in Section 2.2. Thus it can be computed by the algorithm of
Section 2.3.

Proof Under the assumption (13) the discrete Isaacs equation (11) coincides with the one-step Dynamic
Programming Principle (5) satisfied by V −. On the other hand, from (5) one gets the general Dynamic
Programming Principle (4) by induction, and therefore the equality W = V −.

Note that, given a finite set Xf , the dynamics f , and h, a grid adapted to the dynamics can be
constructed, at least in principle, by setting

X0 := Xf , Xn+1 := {x ∈ Rd : S(x, a, b) ∈ Xn, for some a ∈ A, b ∈ B},

iterating a finite number of times, where the set Xn+1 is truncated to a finite set in case it is not finite,
and then erasing all nodes that do not satisfy (11). The practical construction of an adapted grid is quite
difficult in general, and it must exploit the geometry of the target T and of the vector fields. Here we
give only a simple example.
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Example 1 Consider the convex-concave eikonal equation in R2 with Dirichlet boundary conditions

|ux| − δ|uy| = l(x, y) in Ω, u(x, y) = g(x, y) on ∂Ω,

with δ, l > 0 and Ω a rectangle, say Ω = (0, c) × (0, d) (see Bardi and Terrone 2013 for other results on
such equation). An associated differential game can be chosen with dynamics

x′ = a, y′ = b, a ∈ {−1, 0, 1}, b ∈ {−δ, 0, δ}.

A rectangular grid X = {(jh, kδh) : j = 1, . . . , ch , k = 1, . . . , dδh} is adapted to the dynamics if c
h ,

d
δh ∈ N,

and this occurs for a suitable sequence of steps h going to 0 if cδ/d = m/n for some m,n ∈ N. In fact we
can take h = d

δnK for any K ∈ N, because c
h = mK and d

δh = nK.

The locally uniform convergence of the solution W of the discrete Isaacs equation (11) to the lower
value function v− as h and the mesh size k of the grid X tend to zero was proved in Bardi, Falcone and
Soravia (1994) in the case v− is continuous, T has a Lipschitz boundary, and k/h→ 0, see also Cristiani
and Falcone (2009), the survey by Bardi, Falcone, and Soravia (1999), and the recent book by Falcone and
Ferretti (2014). In the case of discontinuous v− the convergence is weaker and the precise statements are
more technical, see Bardi, Bottacin, and Falcone (1995). For grids adapted to the dynamics it is unlikely
that k/h→ 0 because the space and time step are of the same order. However, the strong property (13)
avoids the interpolation errors and therefore allows to remove such restriction, as we show now.

We consider a sequence hn → 0 and sequences Xn, Xnf = Xn ∩ T , such that Xn is a grid adapted to
the dynamics with time step hn and

∀x ∈ Rd ∃x(n) ∈ Xn such that lim
n
x(n) = x. (14)

We call this an admissible sequence of grids. For each pair hn,Xn we solve the discrete Isaacs equation
(11) with boundary conditions (12) and call Wn its solution. Then we define for x ∈ Ω the viscosity
semi-limits

W (x) := sup

{
lim sup

n
Wn(x(n)) : Xn 3 x(n) → x

}
, W (x) := inf

{
lim inf

n
Wn(x(n)) : Xn 3 x(n) → x

}
.

(15)
Note that they are finite at x if Wn are equibounded in a neighborhood of x.

The following lemma about the semi-limits is a straightforward extension of a standard result in
viscosity theory, see Lemma V.1.6 in Bardi and Capuzzo-Dolcetta (1997).

Lemma 2 Assume Wn : Xn → R are locally equibounded, Xn satisfies (14), φ ∈ C(Ω), and W − φ
attains at y a strict maximum relative to the ball B centered at y with radius r > 0. Choose xn ∈
argmaxXN∩B(Wn − φ). Then there is a subsequence xnk

→ y and such that Wnk
(xnk

) → W (y) as
k →∞.

The next proposition is the main result of this section.

Proposition 5 Assume hn → 0, Xn is an associated admissible sequence of grids, Wn solves (11) on
X = Xn, and the sequence Wn is locally equibounded. Then W and W are, respectively, a viscosity sub-
and supersolution of the Isaacs equation (10).

Proof We prove that W is a subsolution, the statement about W is obtained in a similar way. Take
φ ∈ C1(Ω) such that W − φ attains at y ∈ Ω a strict maximum relative to the ball B centered at y with
radius r > 0. We must prove that

λW (y)−max
b∈B

min
a∈A
{Dφ(y) · f(y, a, b)) + l(y, a, b)} ≤ 0. (16)

Consider the subsequence of maximum points of Wn − φ produced in Lemma 2 and relabel it so that
xn → y and Wn(xn)→W (y). Since xn ∈ Xn \ Xnf , the discrete Isaacs equation (11) gives

Wn(xn) = max
b∈B

min
a∈A
{hnl(xn, a, b) + γnWn(xn + hnf(xn, a, b))} , γn := e−λhn .

Then for all n there exists bn ∈ B such that

γn [Wn(xn)−Wn(xn + hnf(xn, a, bn))] ≤ hnl(xn, a, bn) + (γn − 1)Wn(xn) ∀a ∈ A.
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Since xn is a local maximum point of Wn − φ we have, for hn small enough,

φ(xn)− φ(xn + hnf(xn, a, bn)) ≤Wn(xn)−Wn(xn + hnf(xn, a, bn)).

Combining the last two inequalities gives

min
b∈B

max
a∈A

{
γn
φ(xn)− φ(xn + hnf(xn, a, b))

hn
− l(xn, a, b)

}
≤ γn − 1

hn
Wn(xn)

and letting n→∞ we get

min
b∈B

max
a∈A
{−Dφ(y) · f(y, a, b))− l(y, a, b)} ≤ −λW (y),

which implies the desired inequality (16).

Now we can get the convergence of the scheme under suitable assumptions.

Corollary 1 Assume λ > 0, ∂T is a Lipschitz hypersurface, f is bounded on ∂T ×A×B, hn → 0, Xn
is an associated admissible sequence of grids, and the lower value v− ∈ C(Ω). Then the semilimits (15)
of the solutions Wn of (11) and (12) satisfy

W (x) = W (x) = v−(x) ∀x ∈ Ω. (17)

Proof It is easy to see that for λ > 0 the sequence Wn is uniformly bounded by supRd×A×B |l|/λ+supRd g.
The rest of the proof is similar to that of Theorem 1 in Bardi, Falcone and Soravia (1994) or Theorem
2.3 in Bardi, Falcone and Soravia (1999). In addition to Proposition 5 we use the following boundary
conditions in the viscosity sense:

W ≤ g or λW −max
b∈B

min
a∈A

{
f(x, a, b) ·W + l(x, a, b)

}
≤ 0 on ∂Ω, (18)

W ≥ g or λW −max
b∈B

min
a∈A
{f(x, a, b) ·W + l(x, a, b)} ≥ 0 on ∂Ω.

To prove, for instance, (18), we proceed as in Proposition 5. We take φ ∈ C1(Ω) such that W − φ
attains a strict local maximum at y ∈ ∂Ω. By extracting a subsequence from the sequence of maximum
points of Wn − φ produced in Lemma 2 we can assume that either xn ∈ Xn \ Xnf for all n or xn ∈ Xnf
or all n. In the former case the argument of Proposition 5 gives the inequality (16). In the latter case
g(xn) = Wn(xn)→W (y), and the continuity of g implies W (y) = g(y).

Next we use a comparison principle between a continuous semi-solution of (10) attaining the boundary
data g and a semicontinuous semi-solution of (10) with boundary condition in viscosity sense. It can be
found in Bardi and Capuzzo-Dolcetta (1997) for Ω bounded and in Bardi, Falcone and Soravia (1994)
for Ω unbounded. Here we need the Lipschitz regularity of ∂Ω, the boundedness of f on ∂Ω, and the
fact that, if v− ∈ C(Ω), it solves (10) and v− = g on ∂Ω. Then we get the inequalities

W ≤ v− ≤W in Ω.

Then W = v− = W .

Remark 9 The equality (17) implies the following form of uniform convergence of Wn to v−:
for all ε > 0 and compact set K there exists n and δ > 0 such that

|Wn(x(n))− v−(x)| < ε ∀x ∈ K, x(n) ∈ Xn, n ≥ n, |x(n) − x| < δ,

as it is easy to prove by contradiction.

Remark 10 Proposition 5 and Corollary 1 appear to be new even in the case of a single player, although
the convergence of FMM schemes for Hamilton-Jacobi equations with convex Hamiltonian has been
studied, e.g., in (Sethian and Vladimirsky 2003 and Cristiani 2009).

Remark 11 The case of discontinuous v−, which may occur in control problems lacking small-time control-
lability and in several pursuit-evasion games, could also be treated in the framework of Bardi, Bottacin,
and Falcone (1995).
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Remark 12 The results of this section can be adapted to the upper value of the differential game

v+(x) := sup
β∈∆

inf
a∈Ã

J̃(x, a, β[a]),

where ∆ is the set of non-anticipating strategies for the second player. It is known that v+ satisfies the
upper Hamilton-Jacobi-Isaacs equation

λv+ −min
a∈A

max
b∈B

{
f(x, a, b) ·Dv+ + l(x, a, b)

}
= 0 in Ω := Rd \ T .

If the Isaacs condition holds, namely,

min
a∈A

max
b∈B
{f(x, a, b) · p+ l(x, a, b)} = max

b∈B
min
a∈A
{f(x, a, b) · p+ l(x, a, b)} ∀ p ∈ Rd, x ∈ Ω,

the upper H-J-I equation coincides with (10). By the uniqueness of viscosity solutions to the Dirichlet
problem (see, e.g., [3, 8]), if either v− or v+ is known to be continuous, we get that v− = v+ and the
differential game has a value. In this case the informational advantage of player 1 in the discrete game of
Section 2 vanishes in the continuum limit.
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