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Abstract. We propose a variational model for the irreversible quasi-static evo-
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1. Introduction

We consider a model for the evolution of cracks in brittle materials which contain ex-
tremely fragile parts that allow the fracture to develop along highly irregular paths. We
settle the problem in the framework of quasi-static evolutions and of Griffith’s theory. The
first refers to the fact that loads are assumed to vary so slowly in time to let the body be in
equilibrium at any instant, so that we can neglect any inertial and viscous effect. According
to Griffith’s theory the crack advance is the result of the competition between the elastic
energy released in the process of crack opening and the energy spent to create new crack. In
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an isotropic homogeneous material this energy is usually seen as proportional to the newly
created crack surface, and the proportionality constant is the material fracture toughness.

Variational models for the crack growth based on this idea were first introduced by Franc-
fort and Marigo in [24]. The evolution is typically obtained through an approximation
procedure based on time discretization in which the approximating solutions solve suitable
incremental minimum problems. The first complete mathematical analysis of a continuous-
time formulation of such a model in the case of two-dimensional antiplane linear elasticity
was given in [19] under the assumption that the cracks are compact connected sets of finite
length. This result has then been extended to plane elasticity [13], to a larger functional
space [25], to finite elasticity [17, 18]. An important feature of these models is that the path
followed by the crack during its evolution is not prescribed, it is instead the result of energy
minimization.

The involved energy functional can be written as

W(u,K) + S(u,K) ,

where W(u,K) and S(u,K) represent the bulk elastic energy and the dissipated surface
energy, respectively, associated to a displacement u and a crack K .

For simplicity we now focus on the antiplane shear case in the framework of linear elas-
ticity. The reference configuration is then represented by an open bounded subset Ω of R2 ,
and for a brittle isotropic solid the elastic energy and the dissipated energy are of the form

W(u,K) =

∫
Ω\K
|∇u|2dx and S(u,K) =

∫
K

κ(x)dH1(x) ,

respectively.
So far Griffith’s model has mainly been studied assuming that the material fracture

toughness κ is bounded both from above and from below:

(1.1) 0 < β1 ≤ κ(x) ≤ β2 < +∞

at every point x of the body. By (1.1), S(u,K) amounts to consider as admissible cracks
only sets of finite one-dimensional Hausdorff measure. In [19] the admissible cracks are com-
pact sets having an a priori bounded number of connected components and finite length,
and the displacements are Sobolev functions out of the crack, while in [25, 17] the displace-
ments belong to suitable spaces of SBV -type and the cracks are rectifiable sets related to
the jump sets of the displacements.

In order to validate Griffith’s model in a wider range of possibilities, one should be able
to treat cases in which (1.1) is violated. In the context of homogenization, the extremal case
when the material toughness is infinite in some parts of the material was investigated, e.g.,
in [20, 4].

In our work, instead, we are interested in the case when the material has extremely fragile
parts, so that the bound from below in (1.1) is not guaranteed anymore. The crack tends
to develop in the most fragile zone, since it is energetically convenient. The low toughness
coefficient allows the crack to grow quite a lot in length, without paying so much in terms of
dissipated energy; the consequence is a very irregular crack, concentrated in the fragile zone.
In the limit as κ(x) vanishes in some part of the body, the crack is no longer one-dimensional
as in [19]: its dimension might increase at values strictly higher than 1, and we are led to
consider surface dissipation energies of the form

(1.2) S̃(u,K) =

∫
K

κ̃(x) dHd(x) ,

where K is a d -dimensional curve and Hd is the d-dimensional Hausdorff measure. It is
worth to notice that, in agreement with Griffith’s principle, the dissipated energy S̃(u,K) is
still proportional to the number of molecular bonds which are broken to get the fracture. By
a Γ-convergence result, we show how evolutions with dissipated energy of the type (1.2) can
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be seen as the limit regime of quasi-static evolutions in materials whose brittleness increases
in some parts. This also shows that the SBV approach for the Griffith’s model is not
omnicomprehensive, since jump sets of SBV /GSBV functions are always 1-rectifiable.

Different materials, like glass and ceramics, present highly irregular crack surfaces, as
reported in several experimental papers, see, e.g., [6, 34]; the fracture shows roughness
characteristics suggesting that the appropriate model for it might be given by a fractional
Hausdorff dimensional set rather than by a “smooth” surface. Furthermore in the analysis of
real cracks different scales seem to play a role and patterns of various dimension emerge [8].
Theoretical aspects of fracture mechanics in this framework have been developed by, e.g.,
[5, 7, 12, 36], among many others.

In this paper, starting from the original formulation in [19], we enlarge the class of
admissible cracks to include curves of fractional Hausdorff dimension, as for instance the well-
known von Koch curve. The curves we consider need not have the same Hausdorff dimension;
they may also intersect each other, provided that the dimension of the intersection is strictly
less than the dimension of any of the involved curves (see Subsection 2.2 for the precise
definition of the class C of admissible cracks). The price to pay is that, at least at this
stage, these curves along which the fracture develops are assigned.

In the energetic framework for rate-independent processes introduced by Mielke, see,
e.g. [30], we prove the existence of a quasi-static evolution in this class of fractures with
fractional dimension; more precisely, we show that there exists an irreversible crack evolution
satisfying at each instant global stability and energy balance. To our knowledge, the present
work is the first attempt to extend the variational approach to fracture evolution in order
to encompass fractional dimensional cracks.

The paper is organized as follows: in Section 2 we describe the setting of the problem and
recall some definitions and preliminary results, while in Section 3 we define the irreversible
quasi-static evolution and state the main result of the paper, Theorem 3.3. Based on a careful
study of the geometrical, topological and metric properties of our class C of admissible cracks
carried out in Section 4, we are able to prove in Section 5 the existence of a quasi-static
evolution (Theorem 3.3). In Section 6 we explain how our model represents a limit case
when the lower bound in (1.1) is violated. In Section 7 we discuss the extension of quasi-
static fracture evolutions with cracks of fractional dimension to the nonlinear and linearized
cases. Finally, the Appendix contains the construction of a “good” parametrization for the
von Koch curve.

2. Setting of the problem

In this section we introduce the class of admissible fractional dimensional cracks and the
precise functional setting for the displacements.

2.1. Reference configuration. Let us fix a bounded connected open subset Ω of R2 with
Lipschitz boundary. It will represent the reference configuration of a brittle elastic body in
the antiplane shear case. We also fix a relatively open (nonempty) subset ∂DΩ of ∂Ω, on
which we will impose a Dirichlet boundary condition. We set ∂NΩ = ∂Ω \ ∂DΩ; on it a
homogeneous Neumann boundary condition will be assumed (in a weak sense).

2.2. Admissible cracks. We consider as admissible cracks compact subsets of curves of
non-integer Hausdorff dimension having an a priori bounded number of connected compo-
nents. First, let us recall that, for every d > 0, the d-dimensional Hausdorff measure Hd
is defined as

Hd(A) = m(d) sup
δ>0

inf
{∑
i∈I

(diamAi)
d : Ai are measurable sets, A ⊂ ∪iAi,diamAi ≤ δ

}
,

where m(d) = 2−dΓ( 1
2 )d/Γ(d2 + 1), with Γ denoting here the Euler function.
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The curves we have in mind are of the following type: given d ∈ (1, 2), let γ : [0, 1]→ R2

be a continuous curve such that for some constants c, L > 0 it holds

(2.1)
1

c
|a− b|1/d ≤ |γ(a)− γ(b)| ≤ c|a− b|1/d

and

(2.2) Hd(γ(a, b)) = L(b− a)

for any 0 ≤ a < b ≤ 1.
If K := γ([0, 1]), then 0 < Hd(K) < +∞ .
As an explicit example of a set K of the above form, in the Appendix we will construct

a natural parametrization for the von Koch curve, for which d = log 4/ log 3.

Remark 2.1. By (2.1), the function γ : [0, 1] → K is invertible with continuous inverse.
Hence, if K is a compact connected subset of K there exist a, b ∈ [0, 1] such that K =
γ([a, b]) .

We fix a finite number of sets K1 , . . . ,KM contained in Ω with the property that, for
each m ∈ {1, . . . ,M} , there exists dm ∈ [1, 2[ such that Km is parametrized by a continuous
function γm : [0, 1] → Km satisfying (2.1) with d = dm and some positive constants cm ,
Lm , and

(2.3) Hdm(γm([a, b])) = Lm(b− a) ∀a, b ∈ [0, 1] .

Moreover we assume that

(2.4) dim(Km1 ∩ Km2) < min{dim(Km1) ,dim(Km2)} ∀m1 6= m2 .

The class Cp of admissible cracks is

Cp :=
{
K ⊂

M⋃
m=1

Km : K nonempty compact set with at most p connected components
}
.

Note that each connected component of an admissible crack K may contain “pieces” of
different Hausdorff dimension.

On this class we will consider the convergence with respect to the Hausdorff distance.
Recall that given any two compact subsets K1,K2 ⊂ Ω, the Hausdorff distance between
them is defined as

distH(K1,K2) := max

{
sup
x∈K1

dist(x,K2), sup
y∈K2

dist(y,K1)

}
,

with the convention that dist(x,Ø) = diam Ω and sup Ø = 0.
For simplicity of notation in the following discussions, we define the set function

(2.5) L(K) := Hd1(K ∩ K1) + . . .+HdM (K ∩ KM ) .

Notice that, by (2.4),

Hdm(K ∩ Km) = Hdm
(
K \

⋃
n 6=m

Kn
)

for any subset K and m = 1, . . . ,M .

2.3. Admissible displacements. In the antiplane shear case the body undergoes a defor-
mation of the form

(x1, x2, x3) ∈ Ω× R 7→ (x1, x2, x3 + u(x1, x2))

so that we are led to consider only the out-of-plane component of the displacement, the
scalar function u : Ω→ R . In this situation, if on ∂DΩ we impose a bounded displacement
g ∈ H1(Ω)∩L∞(Ω), by a truncation argument we may deduce that minimizers of the elastic
energy W(u,K) =

∫
Ω\K |∇u|

2dx belong to the Sobolev space H1(Ω \K). However, in our
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setting the cracks K ∈ Cp are so irregular that even if they do not disconnect the domain,
the H1 regularity of the boundary datum is not necessarily inherited by the admissible
displacements. Therefore we will consider g ∈ H1(Ω) (not necessarily bounded) and we will
use for the displacements the Deny-Lions space introduced in [21], defined, for any open set
A ⊂ R2 , by

L1,2(A) := {u ∈ L2
loc(A) : ∇u ∈ L2(A;R2)} .

Notice that if A is an open set with Lipschitz boundary then L1,2(A) = H1(A) (see [29,
Corollary 1.1.11]); moreover the set

{∇u : u ∈ L1,2(A)}

is closed in L2(A;R2) (see [29, Section 1.1.13]).
To give a precise mathematical meaning to the fact that the boundary value of the

displacement is imposed, we need to use fine properties of functions in the Deny-Lions space
related to the notion of capacity, for which we refer to [22, 27, 37]. Let us only recall that
if B is a bounded open set in R2 , the capacity of an arbitrary subset E of B is defined as

cap(E,B) := inf
u∈UBE

∫
B

|∇u|2 dx ,

where UBE is the set of all functions u ∈ H1
0 (B) such that u ≥ 1 a.e. in a neighbourhood

of E .
In the sequel we shall use the expression quasi-everywhere on E , abbreviated as q.e.

on E , to indicate that a property holds on a set E except a subset of capacity zero, while
we shall use the abbreviation a.e. on E when referring to the Lebesgue measure.

We remind also that any function u ∈ L1,2(A) admits a quasi-continuous representative
ũ (cf, e.g., [22, 27, 37]) that can be extended up to the Lipschitz part ∂LA of the boundary
of A ; moreover, if un → u strongly in H1(A), then a subsequence of (ũn) converges to ũ q.e.
in A ∪ ∂LA . We shall always identify each function u ∈ L1,2(A) with its quasi-continuous
representative ũ .

Throughout the paper, given a function u ∈ L1,2(Ω\K) for some K of null L2 measure,
we always extend ∇u to Ω by setting ∇u = 0 a.e. on K . We stress that, however, ∇u
is the distributional gradient of u only in Ω \K and, in general, it does not coincide in Ω
with the gradient of an extension of u .

We denote by (·|·) and ‖ · ‖ the scalar product and the norm in L2(Ω;R2).

3. Irreversible quasi-static evolution

For every compact set K ∈ Cp and every g ∈ H1(Ω) we consider the minimum elastic
energy of the unfractured part of the body, given by

(3.1) E(g,K) := min
v∈V(g,K)

∫
Ω\K
|∇v|2dx ,

where

(3.2) V(g,K) := {v ∈ L1,2(Ω \K) : v = g q.e. on ∂DΩ } .

According to Griffith’s theory, the dissipation energy is proportional to the “length” of the
crack, i.e. to the number of broken atomic bonds; in our setting it is given by the functional
L defined in (2.5). Consequently, the total energy of the system is

(3.3) E(g,K) := E(g,K) + L(K) .

Remark 3.1. The minimum problem (3.1) admits a solution u ∈ V(g,K). Indeed, by
standard arguments on the minimization of quadratic forms it is easy to see that u is a
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solution of (3.1) if and only if it solves the problem

(3.4)


∆u = 0 in Ω \K
u = g on ∂DΩ

∂u
∂ν = 0 on K ∪ ∂NΩ .

Due to the irregularity of K it is clear that the Neumann boundary condition cannot be
satisfied in the classical sense. By a solution of (3.4) we mean a function u which satisfies
the following conditions:

(3.5)

{
u ∈ L1,2(Ω \K) , u = g q.e. on ∂DΩ ,

(∇u|∇z) = 0 ∀z ∈ L1,2(Ω \K) , z = 0 q.e. on ∂DΩ .

The existence of a solution is assured by the Lax-Milgram lemma. We underline that
uniqueness is guaranteed only in the connected components of Ω \ K whose boundary
intersects ∂DΩ; in the connected components for which this is not the case, the solution can
be any arbitrary constant, therefore uniqueness is lost. However, ∇u is always unique.
Moreover, the map g 7→ ∇u is linear from H1(Ω) into L2(Ω \ K;R2) and satisfies the
estimate ∫

Ω\K
|∇u|2 dx ≤

∫
Ω

|∇g|2 dx .

Given a time-dependent boundary displacement t 7→ g(t), we consider quasi-static evo-
lutions of global minimizers, for which an irreversibility condition and an energy balance
condition hold.

Definition 3.2. Given T > 0 and g ∈ AC([0, T ];H1(Ω)), we say that a map K : [0, T ]→ Cp
is an irreversible quasi-static evolution on [0, T ] with imposed boundary condition g if it
satisfies the following conditions:

(I) irreversibility: K(s) ⊆ K(t) for 0 ≤ s ≤ t ≤ T ,
(GS) global stability: for every t ∈ [0, T ]

E(g(t),K(t)) ≤ E(g(t),K)

for every K ∈ Cp , K ⊇ K(t),
(EB) energy balance: for every s, t with 0 ≤ s < t ≤ T

E(g(t),K(t)) = E(g(s),K(s)) + 2

∫ t

s

(∇u(τ)|∇ġ(τ))dτ ,

where u(τ) is a solution of the minimum problem (3.1) which defines E(g(τ),K(τ)).

This derivative-free form of the problem is an energetic formulation in the sense of Mielke
[30], in which the irreversibility condition can be enclosed in the description of the process
by means of the so-called dissipation distance.

We now state the main result of the paper.

Theorem 3.3. Let T > 0 and g ∈ AC([0, T ];H1(Ω)) . Let p ≥ 1 and K0 ∈ Cp . Then there
exists an irreversible quasi-static evolution K : [0, T ]→ Cp such that K0 ⊆ K(0) and

(3.6) E(g(0),K(0)) ≤ E(g(0),K)

for every K ∈ Cp with K ⊇ K0 .
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4. Properties of sets in Cp and lower semicontinuity of L

In this section we prove some geometrical, topological and metric properties for the
class Cp , the lower semicontinuity of the functional L , and an approximation result for sets
in Cp that will play an important role in the proof of the global minimality conditions (GS)
and (3.6). We begin by showing the (sequential) compactness of the class Cp .

Proposition 4.1. If (Kn) is a sequence in Cp , then there exists a subsequence which con-
verges to a set K ∈ Cp in the Hausdorff distance.

Proof. By Blaschke’s Selection Theorem (see, e.g., [3]), there exists a subsequence converging
to a nonempty compact set K . As all Kn are contained in the union K1∪ . . .∪KM , also the
limit K is. By a simple contradiction argument one proves that the number of connected
components of K is at most p . �

We now establish some results on the lower semicontinuity of the Hausdorff measures Hd
(and of the functional L) with respect to the Hausdorff convergence in Cp .

Proposition 4.2. Let (Kn) be a sequence of closed connected nonempty subsets of K1

converging to K in the Hausdorff metric. Then for every open set U ⊂ Ω it holds

(4.1) Hd1(K ∩ U) ≤ lim inf
n→+∞

Hd1(Kn ∩ U).

Proof. The set K1 ∩ U is made of at most countable many connected components K̂i , of
the form

K̂i = γ1(Ii)

with Ii ⊂ [0, 1] an interval, and Ii ∩ Ij = Ø for i 6= j .

Let Kn = γ1([an, bn]) and K = γ1([a, b]) . Then Kn∩K̂i = γ1([an, bn]∩Ii) and K∩K̂i =
γ1([a, b] ∩ Ii). By the Hausdorff convergence and (2.1) (with d = d1 ) we have an → a and
bn → b .

For every i ∈ N , by (2.3) it holds

Hd1(K ∩ K̂i) = lim
n→+∞

Hd1(Kn ∩ K̂i).

Therefore for every N ∈ N we have

Hd1(K ∩
N⋃
i=1

K̂i) =

N∑
i=1

Hd1(K ∩ K̂i) =

N∑
i=1

lim
n→+∞

Hd1(Kn ∩ K̂i)

= lim
n→+∞

Hd1(Kn ∩
N⋃
i=1

K̂i)

≤ lim inf
n→+∞

Hd1(Kn ∩ U).

As N →∞ , we obtain (4.1). �

Proposition 4.3. Let (Kn) be a sequence in C1 converging to K in the Hausdorff metric.
Then

L(K) ≤ lim inf
n→+∞

L(Kn) .

Proof. For simplicity, we consider the case M = 2. We have to prove that

Hd1(K ∩ K1) +Hd2(K ∩ K2) ≤ lim inf
n→+∞

(
Hd1(Kn ∩ K1) +Hd2(Kn ∩ K2)

)
.

If either Kn ⊂ K1 for all n large enough, or Kn ⊂ K2 , the result follows by Proposi-
tion 4.2 with U = Ω.

Assume now that Kn \ K1 6= Ø 6= Kn \ K2 for all n large. We first prove that

(4.2) Hd1(K \ K2) ≤ lim inf
n→+∞

Hd1(Kn \ K2) .
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For every ε > 0, consider the open set

Uε := {x ∈ R2 : dist(x,K2) < ε} .

Let V be an open set with V ⊂⊂ R2 \ Uε , and define δ := dist(V, ∂Uε). We claim that
the number of connected components C of Kn \ Uε that intersect V is uniformly bounded
with respect to n . Indeed, if C ∩ ∂Uε 6= Ø, then by (2.1) and the fact that C ⊂ K1 it is

L1

c1
δd1 ≤ Hd1(C) ≤ L1.

Hence the number of these connected components is at most c1/δ
d1 . If C ∩ ∂Uε = Ø, then

C ⊂ K1 \ K2 and it is a connected component of Kn , so that actually C = Kn .
Let F 1

n , . . . , F
Nn
n be the connected components of Kn \ Uε which intersect V . Up to

subsequences, we can assume that Nn = N ≤ 1 + c1/δ
d1 for every n and F in → F i in the

Hausdorff metric, for i = 1, . . . , N . Notice that

K ∩ V ⊂ F 1 ∪ . . . ∪ FN .

Indeed, if x ∈ K ∩ V there exists xn ∈ Kn converging to x . For n large enough, xn ∈ V ,
so that xn ∈ F inn for some i ∈ {1, . . . , N} . Therefore, there exists i such that in = i for
infinitely many n , hence x ∈ F i .

By the fact that F in and F i verify the hypotheses in Proposition 4.2 and the curves F in
are pairwise disjoint, we have

Hd1(K ∩ V ) ≤
N∑
i=1

Hd1(F i) ≤
N∑
i=1

lim inf
n→+∞

Hd1(F in)

≤ lim inf
n→+∞

Hd1(F 1
n ∪ . . . ∪ FNn ) ≤ lim inf

n→+∞
Hd1(Kn \ Uε)

≤ lim inf
n→+∞

Hd1(Kn \ K2) .

As V ↗ R2 \ K2 , we obtain (4.2).
Of course, in an analogous way we can prove that

Hd2(K \ K1) ≤ lim inf
n→+∞

Hd2(Kn \ K1) .

Being Hdj (K1 ∩ K2) = 0 for j = 1, 2 by (2.4), we can conclude that

Hd1(K ∩ K1) +Hd2(K ∩ K2) =Hd1(K \ K2) +Hd2(K \ K1)

≤ lim inf
n→+∞

Hd1(Kn \ K2) + lim inf
n→+∞

Hd2(Kn \ K1)

≤ lim inf
n→+∞

(
Hd1(Kn \ K2) +Hd2(Kn \ K1)

)
= lim inf
n→+∞

(
Hd1(Kn ∩ K1) +Hd2(Kn ∩ K2)

)
.

The general case can be proved similarly. �

Corollary 4.4. Let (Kn) be a sequence in Cp that converges in the Hausdorff metric to a
set K , and let U ⊂ Ω be an open set. Then

(4.3) L(K ∩ U) ≤ lim inf
n→+∞

L(Kn ∩ U) .

Proof. For simplicity we consider the case when M = 2 and the sets Kn are connected. We
have to show that for every open set U ⊂ Ω it holds

(4.4) Hd1(K∩K1∩U)+Hd2(K∩K2∩U) ≤ lim inf
n→+∞

(Hd1(Kn∩K1∩U)+Hd2(Kn∩K2∩U)) .
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Consider V1 and V2 open sets, such that V1 ⊂⊂ V2 ⊂⊂ U . Arguing as in the proof
of Proposition 4.3, the number of connected components F 1

n , . . . , F
Nn
n of Kn ∩ V2 which

intersect V1 is uniformly bounded. As before, we can assume that Nn = N and

K ∩ V1 ⊂ F 1 ∪ . . . ∪ FN

where F i is the limit of F in in the Hausdorff metric, for i = 1, . . . , N . Observe that the
sequences (F in) satisfy the hypotheses of Proposition 4.3. Then we have

Hd1(K ∩ K1 ∩ V1) +Hd2(K∩K2 ∩ V1) ≤
N∑
i=1

Hd1(F i ∩ K1) +Hd2(F i ∩ K2)

≤
N∑
i=1

lim inf
n→+∞

(
Hd1(F in ∩ K1) +Hd2(F in ∩ K2)

)
≤ lim inf
n→+∞

(
Hd1

( N⋃
i=1

F in ∩ K1

)
+Hd2

( N⋃
i=1

F in ∩ K2

))
≤ lim inf
n→+∞

(
Hd1(Kn ∩ K1 ∩ U) +Hd2(Kn ∩ K2 ∩ U)

)
.

As V1 ↗ U , we obtain (4.4). �

Corollary 4.5. Let (Kn) be a sequence in Cp converging to K in the Hausdorff metric.
Let (Hn) be a sequence of compact sets converging to H in the Hausdorff metric. Then

L(K \H) ≤ lim inf
n→+∞

L(Kn \Hn) .

Proof. For every ε > 0, let Uε := {x ∈ R2 : dist(x,H) < ε} . Since, for n large, Hn ⊂ Uε ,
it is Kn \ Uε ⊂ Kn \Hn . By Corollary 4.4 with U = R2 \ Uε , we have

L(K \ Uε) ≤ lim inf
n→+∞

L(Kn \ Uε) ≤ lim inf
n→+∞

L(Kn \Hn).

The thesis follows letting ε→ 0. �

We need to establish a connection between some topological and measure properties of
elements in Cp , which will be useful in the proof of Theorem 5.1 on the continuity of
minimizers of (3.1) as K varies in Cp .

Lemma 4.6. Let K ∈ C1 with L(K) = 0 . Then K = {x} .

Proof. For simplicity, assume M = 2. If K ⊂ K1 or K ⊂ K2 the conclusion follows from
Remark 2.1 and (2.3).

Assume now that

(4.5) K \ K1 6= Ø 6= K \ K2

and let

Uε := {x ∈ R2 : dist(x,K2) < ε} .
Notice that there exists ε > 0 such that K \Uε 6= Ø. Indeed, otherwise K ⊂

⋂
ε>0 Uε = K2

which contradicts K \ K2 6= Ø. As K ∩ K2 6= Ø we have also K ∩ Uε/2 6= Ø. Since K is
connected we deduce that there exists a connected subset C of K which intersects both ∂Uε
and ∂Uε/2 (otherwise K would have at least two connected components). Then C ⊂ K1

and diamC > ε/2. By (2.3) we have Hd1(C) > 0, in contradiction with L(K) = 0. This
shows that (4.5) cannot happen, therefore either K \ K1 = Ø or K \ K2 = Ø, which is the
situation considered at the beginning of the proof. �

Lemma 4.7. For every l > 0 there exists a constant Cl > 0 such that, if K ∈ C1 with
diamK > l , then L(K) > Cl .
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Proof. By contradiction, assume that there exists l > 0 such that, for every n ∈ N , there
exists Kn ∈ C1 , with diamKn > l and L(Kn) ≤ 1/n .

Up to subsequences, by Proposition 4.1 we can assume that (Kn) converges to a set
K ∈ C1 in the Hausdorff metric. By the lower semicontinuity of L (Proposition 4.3), we
have

L(K) ≤ lim inf
n→+∞

L(Kn) = 0 .

Then Lemma 4.6 implies that K is a singleton: K = {z} .
On the other hand, since diamKn > l there exists xn, yn ∈ Kn with

(4.6) |xn − yn| > l .

By Hausdorff convergence it is xn, yn → z , which is clearly a contradiction to (4.6). �

In [32, §2.2] the following definition is given.

Definition 4.8. A closed set A ⊂ R2 is locally connected if for every ε > 0 there exists
δ > 0 such that, for any two points x, y ∈ A with |x− y| < δ we can find a continuum (i.e.
compact connected set) B with x, y ∈ B ⊂ A , diamB < ε .

Lemma 4.9. If K ∈ Cp then K is locally connected.

Proof. We follow the proof of [14, Lemma 1]. It is enough to prove the result for a single
connected component of K , since we can choose δ in Definition 4.8 smaller than the dis-
tance between two connected components. Assume by contradiction that K is not locally
connected; hence there exists ε > 0 such that for every n ∈ N there exist xn , yn ∈ K
with |xn − yn| < 1

n with the property that any continuum B ⊂ K connecting xn to yn
must have diamB > ε . Note that such an ε is necessarily less than diamK . Up to subse-
quences, we may assume that limn xn = limn yn = z ∈ K , xn ∈ Km1

, and yn ∈ Km2
. Then

z ∈ Km1 ∩ Km2 .

For n large enough xn, yn ∈ B(z, ε2 ). Let X̃n be the connected component of K∩B(z, ε2 )

that contains xn and Ỹn the one containing yn . Then X̃n ∩ Ỹn = Ø (otherwise X̃n ∪ Ỹn
would be a continuum connecting xn and yn of diameter less than ε), therefore either

z /∈ X̃n or z /∈ Ỹn . Assume z /∈ X̃n for infinetely many indices n . As K is connected and

diamK > ε , X̃n ∩ ∂B(z, ε2 ) 6= Ø. Since xn → z , for n large enough X̃n ∩ B(z, ε4 ) 6= Ø.

Thus diam X̃n > ε/4 and by Lemma 4.7, we have L(X̃n) > Cε > 0 for every n . Since,

except for a finite number, the sets X̃n are pairwise disjoint we deduce that L(K) = +∞ ,
which is impossible since K ∈ Cp . �

The following approximation results for sets in Cp are in the spirit of [19, Lemmas 3.5-
3.8]. In case their proof is only slightly different, we remark the differences and refer to [19]
for the core of it.

Lemma 4.10. Let p, q ≥ 1 . Let (Hn) be a sequence in Cp converging to H in the Hausdorff
metric, and let K ∈ Cq be such that H ⊂ K . Then there exists a sequence (Kn) in Cq such
that it converges to K in the Hausdorff metric, Hn ⊂ Kn and L(Kn \Hn)→ L(K \H) .

Its proof is a direct consequence of Lemma 4.14 below, for which we need some prelimi-
naries.

Lemma 4.11. Let (Hn) be a sequence in Cp converging to H in the Hausdorff metric, with

H ∈ C1 . Then there exist a sequence (Ĥn) in C1 such that Hn ⊂ Ĥn , Ĥn → H in the

Hausdorff metric and L(Ĥn \Hn)→ 0 .

Proof. Without loss of generality, we may assume that all the sets Hn have exactly q ≤ p

connected components H1
n, . . . H

q
n with Hi

n converging to H̃i in the Hausdorff metric, for

i = 1, . . . , q , with H̃i ∈ C1 ; of course, H = H̃1 ∪ . . . ∪ H̃q .
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Being H connected, there exists a finite set of indices (σi)1≤i≤l such that {σ1, . . . , σl} =

{1, . . . , q} and H̃σi ∩ H̃σi+1 6= Ø for every i = 1, . . . , l− 1. Fixed a point xi ∈ H̃σi ∩ H̃σi+1

for every i = 1, . . . , l−1, consider xin ∈ Hσi
n and yin ∈ H

σi+1
n with xin, y

i
n → xi as n→ +∞ .

Fix i ∈ {1, . . . , l} . For every m = 1, . . . ,M , let

Im := {n ∈ N : xin ∈ Km}.

For m with Im infinite, it is xi ∈ Km . For such indices m and for every n ∈ Im consider the
arc Xi

n ⊂ Km connecting xin and xi . Then, by (2.2) and (2.1), we have that Hdm(Xi
n) ≤

cm|xin − xi|dm , with cm independent of i and n . Hence Hdm(Xi
n)→ 0 as n→ +∞ .

Similarly, defined Jm for the points yin , we choose the sets Y in . Finally we set

Ĥn := Hn ∪
l−1⋃
i=1

Xi
n ∪

l−1⋃
i=1

Y in .

By Lemma 4.7 we obtain that Xi
n and Y in converge to {xi} in the Hausdorff metric, so that

Ĥn → H ; in addition L(Ĥn \Hn)→ 0. Finally, being

Ĥn = Hσ1
n ∪X1

n ∪ Y 1
n ∪Hσ2

n ∪ . . . ∪Hσl−1
n ∪X l−1

n ∪ Y l−1
n ∪Hσl

n ,

the sets Ĥn are connected and contained in
⋃
m=1,...,M Km , i.e Ĥn ∈ C1 . �

Lemma 4.12. If C is a connected subset of K1 ∪ . . . ∪ KM , then L(C) = L(C) .

Proof. For simplicity, we assume M = 2. If C ⊂ K1 , then by Remark 2.1 C = γ1(I), where
I ⊂ [0, 1] is an interval of the form (a, b), [a, b), (a, b] or [a, b] . By (2.2), the thesis follows.
The case C ⊂ K2 is analogous.

For every ε > 0 let Uε := {x ∈ Ω : dist(x,K2) < ε} . Arguing as in the proof of
Proposition 4.3, the number of connected components F of C \K2 such that F ∩K2 6= Ø 6=
F \Uε is finite, say Nε . Note that C \Uε ⊂

⋃Nε
i=1 F i . In addition, by construction Fi ⊂ K1 ,

Fi ∩ Fj = Ø for i 6= j , and Hd1(F i) = Hd1(Fi) by the previous part. Then we have

Hd1(C \ Uε) ≤
Nε∑
i=1

Hd1(F i) =

Nε∑
i=1

Hd1(Fi) ≤ Hd1(C \ K2) .

As ε→ 0, we obtain Hd1(C \ K2) ≤ Hd1(C \ K2); hence the equality holds.
Similarly, we have Hd2(C \ K1) ≤ Hd2(C \ K1). Recalling the definition (2.5) of L ,

and (2.4), the thesis follows. �

Lemma 4.13. Let K ∈ C1 and H ⊂ K be a compact set with p ≥ 2 connected components
H1, . . . ,Hp . Then there exists a family of indices (σj)0≤j≤l , with {σ0, . . . , σl} = {1, . . . , p} ,

and a family (Γj)0≤j≤l of connected components of K \ H , such that Γj connects Hσj−1

with Hσj for 1 ≤ j ≤ l .

Proof. It is enough to argue as in [19, Lemma 3.7], noticing that: by Lemma 4.9 the set
K is locally connected; by Lemma 4.12 it is L(Cn) = L(Cn), where Cn are defined in the
cited result. �

Lemma 4.14. Let (Hn) be a sequence in Cp converging to H in the Hausdorff metric, and
let K ∈ C1 be such that H ⊂ K . Then there exists a sequence (Kn) in C1 such that (Kn)
converges to K in the Hausdorff metric, Hn ⊂ Kn and L(Kn \Hn)→ L(K \H) .

Proof. Following the lines of [19, Lemma 3.8], apply Lemma 4.13, Lemma 4.11, Lemma 4.12
and Corollary 4.5 instead of Lemma 3.7, Lemma 3.6, Proposition 2.5 and Corollary 3.4 in
[19], respectively. In the construction of the sets corresponding to Xj

n , Y jn and Zin in [19],
it is enough to argue as in Lemma 4.11. �
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5. Proof of the main result

In this section we prove the existence of a quasi-static evolution for cracks in Cp , satisfying
the global minimality condition and the energy balance (Theorem 3.3), by the usual time
discretization procedure. We therefore follow the steps of [19].

We shall need the following result on the convergence of the minimum points of prob-
lems (3.1) corresponding to converging sequences in Cp .

Theorem 5.1. Let (Kn) be a sequence in Cp converging to K in the Hausdorff distance,
and let (gn) be a sequence in H1(Ω) which converges to g strongly in H1(Ω) . Let un be a
solution of the minimum problem

E(gn,Kn) = min
v∈V(gn,Kn)

∫
Ω\Kn

|∇v|2 dx ,

and let u be a solution of the minimum problem (3.1)

E(g,K) = min
v∈V(g,K)

∫
Ω\K
|∇v|2 dx ,

where V(gn,Kn) and V(g,K) are defined by (3.2). Then ∇un → ∇u strongly in L2(Ω;R2) .

Proof. The proof can be done in the same manner as for [19, Theorem 5.1], as long as we
check that the key facts therein are satisfied. The first one lies in the application of [19,
Theorem 4.3], for which the set K needs to be locally connected; in our case this is assured
by Lemma 4.9.

The second important step is the following: given any x ∈ Ω, an open rectangle V
containing x and an open set U ⊂⊂ V , we need to bound uniformly the number of connected
components of V ∩ Kn which meet U . We can argue in the following way. Let l =
dist(U, ∂V ) and let C be a connected component of V ∩Kn which meets U . If C∩∂V 6= Ø,
then diamC ≥ l and by Lemma 4.7 there exists a constant Cl such that L(C) ≥ Cl . Being
L(Kn) ≤ λ , the number of those connected components is smaller than λ/Cl . If C∩∂V = Ø,
then C is a connected component of Kn , and there are at most p of them.

Having established these two key issues, the proof carries on as in the cited result, based
on the construction of a harmonic conjugate for u . �

Given δ > 0, we denote by Nδ the largest integer such that δNδ ≤ T ; for 0 ≤ i ≤ Nδ , let
tδi := iδ and gδi := g(tδi ). The sets Kδ

i are defined inductively as a solution to the following
minimization problem

(5.1) min
K

{
E(gδi ,K) : K ∈ Cp , K ⊇ Kδ

i−1

}
,

where we set Kδ
−1 := K0 .

Lemma 5.2. There exists a solution of the minimum problem (5.1).

Proof. Assume by induction that Kδ
i−1 ∈ Cp . Consider a minimizing sequence (Kn) of

problem (5.1). By Proposition 4.1, we may assume that (up to a subsequence) (Kn) con-
verges in the Hausdorff distance to some compact set K ∈ Cp which contains Kδ

i−1 . For

every n let un be a solution of the minimum problem (3.1) which defines E(gδi ,Kn).
By Theorem 5.1 the sequence (∇un) converges strongly in L2(Ω;R2) to ∇u , where u is

a solution of the minimum problem (3.1) which defines E(gδi ,K). As by Corollary 4.4

L(K) ≤ lim inf
n
L(Kn) ,

we conclude that E(gδi ,K) ≤ lim infn E(gδi ,Kn). Since (Kn) is a minimizing sequence, this
proves that K is a solution of the minimum problem (5.1). �



QUASI-STATIC GROWTH OF BRITTLE FRACTURES OF FRACTIONAL DIMENSION 13

We define now the piecewise constant functions gδ , Kδ , and uδ on [0, T ] by setting
gδ(t) := gδi = g(tδi ), Kδ(t) := Kδ

i , and uδ(t) := uδi for tδi ≤ t < tδi+1 , where uδi is a solution

of the minimum problem (3.1) which defines E(gδi ,K
δ
i ).

Lemma 5.3. There exists a positive function ρ(δ) , converging to zero as δ → 0 , such that

(5.2) ‖∇uδj‖2 + L(Kδ
j ) ≤ ‖∇uδi ‖2 + L(Kδ

i ) + 2

∫ tδj

tδi

(∇uδ(t)|∇ġ(t)) dt+ ρ(δ)

for 0 ≤ i < j ≤ Nδ .

Proof. Let us fix an integer r with i ≤ r < j . From the absolute continuity of g we have

gδr+1 − gδr =

∫ tδr+1

tδr

ġ(t) dt ,

where the integral is a Bochner integral for functions with values in H1(Ω). This implies
that

(5.3) ∇gδr+1 −∇gδr =

∫ tδr+1

tδr

∇ġ(t) dt ,

where the integral is a Bochner integral for functions with values in L2(Ω;R2).
As uδr + gδr+1 − gδr ∈ L1,2(Ω\Kδ

r ) and uδr + gδr+1 − gδr = gδr+1 q.e. on ∂DΩ\Kδ
r , we have

(5.4) E(gδr+1,K
δ
r ) ≤ ‖∇uδr +∇gδr+1 −∇gδr‖2 + L(Kδ

r ) .

By the minimality of uδr+1 and by (5.1) it is

(5.5) ‖∇uδr+1‖2 + L(Kδ
r+1) = E(gδr+1,K

δ
r+1) ≤ E(gδr+1,K

δ
r ) .

From (5.3), (5.4), and (5.5) we obtain

‖∇uδr+1‖2 + L(Kδ
r+1) ≤ ‖∇uδr +∇gδr+1 −∇gδr‖2 + L(Kδ

r ) ≤

≤ ‖∇uδr‖2 + L(Kδ
r ) + 2

∫ tδr+1

tδr

(∇uδr|∇ġ(t)) dt+
(∫ tδr+1

tδr

‖∇ġ(t)‖ dt
)2

≤

≤ ‖∇uδr‖2 + L(Kδ
r ) + 2

∫ tδr+1

tδr

(∇uδ(t)|∇ġ(t)) dt+ σ(δ)

∫ tδr+1

tδr

‖∇ġ(t)‖ dt ,

where

σ(δ) := max
0≤r<Nδ

∫ tδr+1

tδr

‖∇ġ(t)‖ dt −→ 0

by the absolute continuity of the integral. Iterating this inequality for i ≤ r < j we get (5.2)

with ρ(δ) := σ(δ)
∫ T

0
‖∇ġ(t)‖ dt . �

Lemma 5.4. There exists a constant λ , depending only on g and K0 , such that

(5.6) ‖∇uδi ‖ ≤ λ and

M∑
m=1

Hdm(Kδ
i ∩ Km) ≤ λ

for every δ > 0 and for every 0 ≤ i ≤ Nδ .

Proof. As gδi is admissible for the problem (3.1) which defines E(gδi ,K
δ
i ), by the minimality

of uδi we have ‖∇uδi ‖ ≤ ‖∇gδi ‖ , hence ‖∇uδ(t)‖ ≤ ‖∇gδ(t)‖ for every t ∈ [0, T ] . As t 7→ g(t)
is absolutely continuous with values in H1(Ω) the function t 7→ ‖∇ġ(t)‖ is integrable
on [0, T ] and there exists a constant C > 0 such that ‖∇g(t)‖ ≤ C for every t ∈ [0, T ] .
This implies (5.6).

The latter inequality follows now from Lemma 5.3 and from the inequality ‖∇uδ0‖2 +
L(Kδ

0) ≤ ‖∇g(0)‖2 + L(K(0)), which is an obvious consequence of (5.1) for i = 0. �
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At this point we have all the elements to obtain a continuous-time evolution as limit of
discrete-time ones when the time step δ vanishes.

By Helly’s Theorem (see, e.g., [19]), there exists a subsequence of Kδ , not relabelled, and
an increasing function K : [0, T ]→ Cp such that

Kδ(t)→ K(t)

in the Hausdorff metric for every t ∈ [0, T ] .
In the rest of this section, when we write δ → 0, we always refer to the sequence given

above by Helly’s Theorem.
For every t ∈ [0, T ] let u(t) be a solution of the minimum problem (3.1) which defines

E(g(t),K(t)). Then
E(g(t),K(t)) = ‖∇u(t)‖2 + L(K(t)) .

Lemma 5.5. For every t ∈ [0, T ] we have ∇uδ(t)→ ∇u(t) strongly in L2(Ω;R2) .

Proof. As uδ(t) is a solution of the minimum problem (3.1) which defines E(gδ(t),Kδ(t)),
and gδ(t)→ g(t) strongly in H1(Ω), the conclusion follows from Theorem 5.1. �

Lemma 5.6. For every t ∈ [0, T ] we have

(5.7) E(g(t),K(t)) ≤ E(g(t),K) ∀K ∈ Cp , K ⊃ K(t) .

Moreover

(5.8) E(g(0),K(0)) ≤ E(g(0),K) ∀K ∈ Cp , K ⊃ K0 .

Proof. Fix t ∈ [0, T ] . By construction, K(t) is the limit of the sequence (Kδ(t)) in the
Hausdorff metric as δ vanishes. Fix K ∈ Cp with K ⊃ K(t). Applying Lemma 4.10 we
find a sequence (Kδ) in Cp with Kδ ⊃ Kδ(t), such that Kδ → K in the Hausdorff metric
and L(Kδ\Kδ(t))→ L(K\K(t)).

Consider the minimizers vδ and v of the elastic energies corresponding to E(gδ(t),Kδ)
and E(g(t),K), respectively. By Theorem 5.1 we have that ∇vδ → ∇v strongly in
L2(Ω;R2). By the choice of Kδ(t) as minimizers of (5.1), it is E(gδ(t),Kδ(t)) ≤ E(gδ(t),Kδ),
which implies ‖∇uδ(t)‖2 ≤ ‖∇vδ‖2 +L(Kδ\Kδ(t)). By Lemma 5.5 and the properties of the
sequence (Kδ), we obtain ‖∇u(t)‖2 ≤ ‖∇v‖2 + L(K\K(t)). To get (5.7) it is now enough
to add L(K(t)) to both sides of the last inequality.

The proof for (5.8) is similar, exploiting the minimality of Kδ(0) in (5.1) with respect to
all sets K ∈ Cp containing K0 , and applying Corollary 4.5 for the functional L . �

The previous lemma proves the global minimality conditions (GS) and (3.6).
Finally, after a technical result, we will deal with the energy balance (EB), the only

missing property in Theorem 3.3.

Lemma 5.7. For every K ∈ Cp the function E(·,K) : H1(Ω)→ R is of class C1 , and for
every g, h ∈ H1(Ω) it is

(5.9) ∂gE(g,K)[h] = 2(∇u(g,K)|∇h) ,

where u(g,K) is the solution to the minimum problem (3.1).

Proof. Being K fixed, for simplicity of notation we write ug := u(g,K). By linearity, for
every η ∈ R it is ug+ηh = ug + ηuh a.e. in Ω. Then

E(g + ηh,K)− E(g,K) = ‖∇ug+ηh‖2 − ‖∇ug‖2

= 2η (∇ug|∇uh) + η2‖∇uh‖2 = 2η (∇ug|∇h) + η2‖∇uh‖2,

where the last equality is obtained by (3.5) with z = uh − h , since uh − h ∈ L1,2(Ω \K)
and uh − h = 0 q.e. on ∂DΩ. Dividing by η 6= 0 and letting η vanish, we get (5.9).
Finally, the C1 -regularity is consequence of the continuity of the map g 7→ ∇u(g,K) (see
Theorem 5.1). �
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Lemma 5.8. For every s, t with 0 ≤ s < t ≤ T

(5.10) E(g(t),K(t)) = E(g(s),K(s)) + 2

∫ t

s

(∇u(τ)|∇ġ(τ))dτ .

Proof. The strategy is to show that the map t 7→ E(g(t),K(t)) is absolutely continuous on
[0, T ] , with pointwise derivative 2(∇u(t)|∇ġ(t)) for a.e. t ∈ [0, T ] .

Let us fix s, t with 0 ≤ s < t ≤ T , and δ > 0. Applying Lemma 5.3 we obtain

(5.11) ‖∇uδ(t)‖2 + L(Kδ(t)\Kδ(s)) ≤ ‖∇uδ(s)‖2 + 2

∫ tδ

sδ

(∇uδ(τ)|∇ġ(τ)) dτ + ρ(δ) ,

with ρ(δ) converging to zero as δ → 0, where sδ , tδ are the discrete times such that
sδ ≤ s < sδ + δ , tδ ≤ t < tδ + δ . For every τ ∈ [0, T ] we have, by Lemma 5.5, that
∇uδ(τ)→ ∇u(τ) strongly in L2(Ω;R2) as δ → 0, and, by Lemma 5.4, that ‖∇uδ(τ)‖ ≤ λ .
Moreover, by Corollary 4.5 we get

L(K(t)\K(s)) ≤ lim inf
δ→0

L(Kδ(t)\Kδ(s)) ,

so that, passing to the limit in (5.11) as δ → 0, we obtain

(5.12) E(g(t),K(t)) ≤ E(g(s),K(s)) + 2

∫ t

s

(∇u(τ)|∇ġ(τ))dτ .

To prove the opposite inequality note that, by the global stability (GS) of Definition 3.2
we have E(g(s),K(s)) ≤ E(g(s),K(t)), and by Lemma 5.7

E(g(t),K(t))− E(g(s),K(t)) = 2

∫ t

s

(∇u(τ, t)|∇ġ(τ)) dτ ,

where u(τ, t) is a solution of the minimum problem (3.1) which defines E(g(τ),K(t)).
Therefore

(5.13) E(g(t),K(t))− E(g(s),K(s)) ≥ 2

∫ t

s

(∇u(τ, t)|∇ġ(τ)) dτ .

Since for s ≤ τ ≤ t the uniform bounds ‖∇u(τ)‖ ≤ ‖∇g(τ)‖ ≤ C and ‖∇u(τ, t)‖ ≤
‖∇g(τ)‖ ≤ C hold, from (5.12) and (5.13) we obtain∣∣E(g(t),K(t))− E(g(s),K(s))

∣∣ ≤ 2C

∫ t

s

‖∇ġ(τ)‖ dτ ,

which proves the absolute continuity of the map t 7→ E(g(t),K(t)).
Observe that by Theorem 5.1 ∇u(τ, t)→ ∇u(t) strongly in L2(Ω;R2) as τ → t . Dividing

now both (5.12) and (5.13) by t− s and letting s→ t− , we get

lim
s→t−

E(g(t),K(t))− E(g(s),K(s))

t− s
= 2 (∇u(t)|∇ġ(t))

for a.e. t ∈ [0, T ] , and thus the proof is concluded. �

6. Fractional dimensional crack evolution as limit of one-dimensional ones

In this section we show that the energy functional considered in the previous sections
arises as a natural extension of the Griffith setting; indeed, it can be obtained as Γ-limit of
energies involving small toughness coefficients and the H1 -measure restricted to polygonal
approximations of the curves with fractional Hausdorff dimension. We illustrate this idea in
the case of a single curve K .

Let K be a curve of the form K = γ([0, 1]) with γ satisfying (2.1) and (2.2), and
d ∈ (1, 2). For n ∈ N we construct a sequence of polygonal approximations Kn in the
following way: define γn : [0, 1]→ R2 as

γn(s) := γ(i/n) + (ns− i)(γ((i+ 1)/n)− γ(i/n))
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for i/n ≤ s < (i+ 1)/n and i = 0, . . . , n− 1, and set Kn := γn([0, 1]). By (2.1), it is

(6.1) Kn → K
in the Hausdorff metric, as n→ +∞ .

We define the “toughness coefficients”

κin =
L

n |γ((i+ 1)/n)− γ(i/n)|
,

for i = 0, . . . , n − 1, where L = Hd(K), and set κn(x) = κin if x ∈ γn([i/n, (i + 1)/n)).
Finally, we introduce the set-function

Ln(K) :=

∫
K∩Kn

κn(x) dH1(x) .

Lemma 6.1. Let (Kn) be a sequence of compact connected sets such that Kn ⊂ Kn for
every n . Assume that (Kn) converges to K in the Hausdorff metric. Then K is a compact
connected set, contained in K , and

Ln(Kn)→ Hd(K) .

Proof. The set K is compact, connected and contained in K by properties of the Hausdorff
convergence (and (6.1)). For every n , it is Kn = γn([an, bn]) for some an, bn ∈ [0, 1], and
K = γ([a, b]) for a, b ∈ [0, 1]. It is not difficult to verify that an → a and bn → b . Set
in, jn ∈ {0, . . . , 1/n} such that nin ≤ an < n(in + 1) and njn ≤ bn < n(jn + 1), we have

Ln(Kn) = L(jn − (in + 1)) + κinn
∣∣γ(n(in + 1))− γ(an)

∣∣+ κjnn
∣∣γ(bn)− γ(njn)

∣∣ ,
which converges to L(b− a) as n→ +∞ . Being Hd(K) = L(b− a) by (2.2), the lemma is
proved. �

On the other hand, given a compact connected set K ⊂ K , there exists a sequence Kn

of compact connected sets such that Kn ⊂ Kn , Kn → K in the Hausdorff distance and

(6.2) Ln(Kn)→ Hd(K) .

Indeed, being K = γ([a, b]) , it is enough to take

(6.3) Kn := γn([a, b]) .

Then Lemma 6.1 provides (6.2).

Remark 6.2. The length of the approximating polygonals Kn in the previous lemma tends
to infinity:

H1(Kn) ≥
jn∑

h=in+1

|γ(h/n)− γ((h+ 1)/n)|

≥ c−1

jn∑
h=in+1

(1/n)1/d = c−1 L

b− a
n1−1/d + o(1)→ +∞ .

Conversely, the toughness coefficients κn vanish, so that the lower bound in (1.1) is violated:
indeed

sup
i
κin = sup

i

L

n |γ((i+ 1)/n)− γ(i/n)|
≤ c n−(1−1/d) → 0

as n→ +∞ , being d > 1.

We consider the functionals

F (u, g,K) :=


∫

Ω\K
|∇u|2 dx+Hd(K) if K ⊂ K, g ∈ H1(Ω) and u ∈ V(g,K)

+∞ otherwise
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and

Fn(u, g,K) :=


∫

Ω\K
|∇u|2 dx+ Ln(K) if K ⊂ Kn, g ∈ H1(Ω) and u ∈ V(g,K)

+∞ otherwise ,

where V(g,K) is defined in (3.2) for K ⊂ K and similarly when K ⊂ Kn . The two
functionals are related in the following way.

Theorem 6.3. Let (Kn) be a sequence of compact sets with at most p connected components
and Kn ⊂ Kn , and assume it converges to K in the Hausdorff metric. Let (gn) be a
sequence converging to g in H1(Ω) . Then Fn(·, gn,Kn) Γ-converges to F (·, g,K) with
respect to the weak convergence in L2 of the gradients.

The proof of the above theorem will be a consequence of the result below, proved in
[16, Theorem 6.3], and that we rewrite for the ease of the reader. Similar results, con-
cerning Dirichlet and Neumann boundary data, were proved, e.g., in [35] and [11, 10, 14],
respectively.

Theorem 6.4. Let (gn) be a sequence in H1(Ω) converging to g ∈ H1(Ω) , and let (Kn)
be a sequence of compact subsets of Ω converging to K in the Hausdorff metric. Assume
that |Kn| converges to |K| and that Kn have a uniformly bounded number of connected
components. Then the space

Hn :=
{
∇u 1Ω\Kn : u ∈ L1,2(Ω \Kn), u = gn on ∂DΩ

}
converges to

H :=
{
∇u 1Ω\K : u ∈ L1,2(Ω \K), u = g on ∂DΩ

}
in the sense of Mosco [31], i.e. the following two conditions hold:

(M1) for every u ∈ L1,2(Ω \ K) with u = g on ∂DΩ there exists a sequence un ∈
L1,2(Ω \ Kn) with u = gn on ∂DΩ , such that ∇un 1Ω\Kn converges strongly to

∇u 1Ω\K in L2(Ω;R2) ;
(M2) if (hn) is a sequence of indices that tends to +∞ , and (un) is a sequence such that

un ∈ L1,2(Ω\Khn) with un = ghn on ∂DΩ for every n and ∇un 1Ω\Khn converges

weakly in L2(Ω;R2) to ψ , then there exists a function u ∈ L1,2(Ω \K) with u = g
on ∂DΩ and ψ = ∇u 1Ω\K .

Proof of Theorem 6.3. Let us observe immediately that the hypotheses on the Kn and K
in Theorem 6.4 are satisfied: indeed the Kn have at most p connected components and,
since Ln(Kn) < ∞ and Hd(K) < ∞ , it is |Kn| = |K| = 0. Below we apply Theorem 6.4
with Hn = {∇u : u ∈ V(gn,Kn)} and H = {∇u : u ∈ V(g,K)} .

Γ− lim inf inequality. Let u ∈ V(g,K) and let (un) be a sequence such that ∇un⇀∇u
weakly in L2(Ω;R2). We may assume that

(6.4) Fn(un, gn,Kn) ≤ C

for some C > 0 for every n (otherwise the Γ− lim inf inequality is trivially satisfied); hence
un ∈ V(gn,Kn) for every n . By Lemma 6.1 it is

Hd(K) = lim
n→+∞

Ln(Kn) .

Since ∫
Ω\K
|∇u|2 dx ≤ lim inf

n→+∞

∫
Ω\Kn

|∇un|2 dx ,

we get

F (u, g,K) ≤ lim inf
n→+∞

Fn(un, gn,Kn) .
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Γ−lim sup inequality. Consider a function u ∈ V(g,K) and the sequence un ∈ V(gn,Kn)
provided by (M1) in Theorem 6.4. Then ∇un converges to ∇u strongly in L2(Ω;R2) and

F (u, g,K) =

∫
Ω\K
|∇u|2 dx+Hd(K)

= lim
n→+∞

∫
Ω\Kn

|∇un|2 dx+ Ln(Kn) = lim
n→+∞

Fn(un, gn,Kn) .

�

At this point we want to prove that the evolutions described in Theorem 3.3 are indeed
limits of irreversible quasi-static crack evolutions t 7→ (un(t),Kn(t)) (of global minimizers)
whose crack set Kn(t) is 1-dimensional and contained in Kn , with fracture dissipation
energy given by

Ln(Kn(t)) =

∫
Kn(t)

κn(x) dH1(x) .

In analogy to Sections 2 and 3, we define the set

Cnp :=
{
K ⊂ Kn : K nonempty compact set with at most p connected components

}
,

and the energy functional

En(g,K) := min
u∈V(g,K)

∫
Ω\K
|∇u|2dx+ Ln(K) .

The results in [19] (in particular [19, Theorem 7.1]) guarantee the existence of irreversible
quasi-static crack evolutions t 7→ (un(t),Kn(t)) for the total energy En ,with the constraint
Kn(t) ⊂ Kn , Kn(t) having at most p connected components (with p prescribed a priori),
and satisfying conditions analogous to those in Theorem 3.3. More precisely, for every n ,
given K0

n ⊂ Kn and g ∈ AC([0, T ];H1(Ω)), there exists an evolution t ∈ [0, T ] 7→ Kn(t) ⊂
Kn fulfilling the following conditions:

(In ) K0
n ⊆ Kn(τ) ⊆ Kn(t) for 0 ≤ τ ≤ t ≤ T ;

(GSn ) En(g(0),Kn(0)) ≤ En(g(0),K) ∀K ∈ Cnp , K ⊇ K0
n , and for 0 ≤ t ≤ T

En(g(t),Kn(t)) ≤ En(g(t),K) ∀K ∈ Cnp , K ⊇ Kn(t) ;

(EBn ) for every s, t with 0 ≤ s < t ≤ T

En(g(t),Kn(t)) = En(g(s),Kn(s)) + 2

∫ t

s

(∇un(τ)|∇ġ(τ))dτ ,

where un(t) is the unique solution of the minimum problem defining En(g(t),Kn(t)).

Theorem 6.5. For every n ∈ N , let t → Kn(t) be an irreversible quasi-static evolution
satisfying (In ) - (GSn ) - (EBn ) and such that Kn(t) ⊂ Kn for every t ∈ [0, T ] . Then there
exists a subsequence, not relabelled, and an evolution t 7→ K(t) , such that it satisfies the
conditions in Theorem 3.3 and Kn(t) converges to K(t) in the Hausdorff metric for every
t ∈ [0, T ] .

Proof. Monotonicity of the maps t 7→ Kn(t) due to (In ), and Helly’s theorem [19, Theorem
6.3], guarantee the existence of a subsequence (not relabelled) and of an increasing set-
function t 7→ K(t) such that, for every t ∈ [0, T ] , Kn(t) converges to K(t) in the Hausdorff
metric. Since (Kn) converges to K in the Hausdorff metric and Kn(t) ⊂ Kn , it is K(t) ⊂ K .
Moreover K(t) has at most p connected components, so that K(t) ∈ Cp for every t . Hence
condition (I) in Theorem 3.3 is satisfied.

We have to check the global unilateral minimality conditions (3.6) and (GS) at any
instant t . Fix t ∈ [0, T ] and K ∈ Cp with K ⊃ K(t) for t > 0, and with K ⊃ K0 if t = 0.



QUASI-STATIC GROWTH OF BRITTLE FRACTURES OF FRACTIONAL DIMENSION 19

We claim that there exists a sequence (Kn) converging to K in the Hausdorff metric and
such that, for every n , Kn has at most p connected components and Kn(t) ⊂ Kn ⊂ Kn .

By the minimality of Kn(t), corresponding to (GSn ), we have

En(g(t),Kn(t)) ≤ En(g(t),Kn) ,

where Kn is the sequence provided by the claim above. By Theorem 6.3 and the properties
of Γ-convergence (the functionals Fn(·, g(t),Kn) and Fn(·, g(t),Kn(t)) are asymptotically
sequentially coercive; see [15, Chapter 7]) we get the convergence of the minima:

En(g(t),Kn) = min
u∈V(g(t),Kn)

Fn(u, g(t),Kn)→ E(g(t),K) = min
u∈V(g(t),K)

F (u, g(t),K)

and, analogously,

(6.5) En(g(t),Kn(t))→ E(g(t),K(t)) .

The three relations above prove conditions (GS) and (3.6).
The conservation of the energy (EB) follows by (EBn ) and (6.5).

Proof of the claim.
We now illustrate how to construct the sets Kn ; the main issue is to fulfil the condition

on the maximum number of connected components. Let t ∈ [0, T ] be fixed. Assume that

K(t) = γ([a1, b1]) ∪ . . . ∪ γ([aq, bq])

for some q ≤ p , with bi < ai+1 for i = 1, . . . , q − 1. Without loss of generality, we can
assume that the sets Kn(t) have r connected components for every n , more precisely they
are of the form

Kn(t) = γn([an1 , b
n
1 ]) ∪ . . . ∪ γn([anr , b

n
r ])

with bnj < anj+1 for j = 1, . . . , r − 1.

In general, r ≥ q . If r > q we want to substitute the set Kn(t) with a set K̃n(t)
having exactly q connected components, containing Kn(t) and still converging to K(t) in
the Hausdorff metric. The construction can be done in the following way. We firstly observe
that

γn([anin , b
n
in ] ∪ . . . ∪ [anhn , b

n
hn ])→ γ([ai, bi])

in the Hausdorff metric if and only if

anin → ai bnhn → bi anl − bnl−1 → 0

for l = in + 1, . . . , hn .
Let η > 0 be such that ai+1−bi > 3η for all i = 1, . . . , q−1. Set αn1 := an1 and βn1 := bnj

with the index j satisfying
bnj < a2 − η ≤ anj+1 ,

and βnq = bnr . For i = 2, . . . , q − 1 we define the intervals [αni , β
n
i ] = [anj , b

n
h] , where the

indices j, h are such that

bnj−1 < ai − η ≤ anj < bnh ≤ bi + η < anh+1 .

Set
K̃n(t) := γn([αn1 , β

n
1 ]) ∪ . . . ∪ γn([αnq , β

n
q ]) .

By construction, Kn(t) ⊂ K̃n(t) ⊂ Kn and K̃n(t) has q connected components; by the

previous observation, K̃n(t) converges to K(t) in the Hausdorff metric.
Let K ∈ Cp with K ⊃ K(t). It is of the form

K = γ([c1, d1]) ∪ . . . ∪ γ([cs, ds])

for some s ≤ p . Notice that, by inclusion, every interval [ai, bi] is contained in an interval
[cj , dj ] . It is not difficult to verify that the set

Kn := γn([c1, d1]) ∪ . . . ∪ γn([cs, ds]) ∪ K̃n(t)
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fulfils the requests of the claim: it has the same number of connected components as K
(hence less then p), contains Kn(t), is a subset of Kn , and converges to K in the Hausdorff
metric. �

The result above is consistent with the justification of the model, as discussed in the
introduction, when the lower bound in (1.1) is violated (see Remark 6.2). Indeed, where
the material becomes more and more fragile, the H1 measure of the crack is no longer
appropriate for the dissipative term, and it is necessary to introduce fractional Hausdorff
measures in order to take into account the increased roughness of the fracture in the fragile
area.

7. The linearized and nonlinear cases

The results of the previous sections, which for simplicity have been proved in the antiplane
linear setting, can be extended to more general frameworks, in particular to the vectorial
2-dimensional setting, corresponding to the mode I and mode II fracture models, both in
the nonlinear and linearized case.

7.1. Nonlinear elasticity. Our setting can be extended to the case of hyperelastic materi-
als, under suitable assumptions on the nonlinear energy density that guarantee the existence
of global minimizers. We consider both the antiplane and the plane case. We briefly discuss
the main steps.

The bulk energy for a deformation v of the unfractured part of the body Ω \K is given
by the functional ∫

Ω\K
W (x,∇v(x)) dx ,

where W : Ω×RN×2 → R is a given energy density, dependent on the material. Here N = 1
in the antiplane case, with v describing the out-of-plane vertical deformation; N = 2 if v
describes the in-plane deformation.

We assume W to satisfy the following properties:

• W is a Carathéodory function;
• for every x ∈ Ω the function ξ 7→ W (x, ξ) is C1 and quasiconvex, i.e. for every
ξ ∈ RN×2 and for every φ ∈ C1

c (Ω;RN )

1

|Ω|

∫
Ω

W (x, ξ +∇φ(y)) dy ≥W (ξ) ;

• for some constants a0, a1 > 0 and a non-negative function b ∈ L1(Ω) it is

(7.1) a0|ξ|2 ≤W (x, ξ) ≤ a1|ξ|2 + b(x)

for every x ∈ Ω and ξ ∈ RN×2.

Note that for N = 1 quasiconvexity and convexity coincide.
Similarly to (3.2), for every g ∈ H1(Ω;RN ) and K ∈ Cp define the set

VN (g,K) := {w ∈ L1,2(Ω\K;RN ) : w = g q.e. on ∂DΩ}
and consider the functional

W(g,K, v) :=


∫

Ω\K
W (x,∇v(x)) dx if v ∈ VN (g,K)

+∞ otherwise .

Proposition 7.1. Let (gn) be a sequence converging to g in H1(Ω;RN ) . Let (Kn) be a
sequence in Cp converging to K in the Hausdorff metric. Let vn ∈ V(gn,Kn) be such that
(∇vn) converges to ψ weakly in L2(Ω;RN×2) . Then ψ = ∇v for some v ∈ V(g,K) , and

(7.2) W(g,K, v) ≤ lim inf
n→+∞

W(gn,Kn, vn) .
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Proof. The existence of v ∈ V(g,K) with ψ = ∇v is consequence of Theorem 6.4 (when
N = 2, hence vn(x) = (v1

n(x), v2
n(x)), it is enough to apply it to each component v1

n , v2
n ).

Consider a subsequence (vnm) of (vn) such that

lim inf
n→+∞

W(gn,Kn, vn) = lim
m→+∞

W(gnm ,Knm , vnm).

Consider a Lipschitz open set ω ⊂⊂ (Ω \K)∪ ∂DΩ with H1(∂ω ∩ ∂DΩ) > 0. By Hausdorff
convergence, Kn ∩ ω = Ø for n sufficiently large. As ω has a Lipschitz boundary, vn ∈
H1(ω;RN ) for every n . By Rellich theorem and the convergence in H1(Ω;RN ) of (gn)
to g , there exists a subsequence (not relabelled) of (vnm) that converges to v strongly in
L2(ω;RN ). Therefore (vnm) converges to v weakly in H1(ω;RN ) and we can apply the
semicontinuity result [1, Theorem II.4] to obtain∫

ω

W (x,∇v(x)) dx ≤ lim inf
m→+∞

∫
ω

W (x,∇vnm(x)) dx

≤ lim inf
m→+∞

∫
Ω\Knm

W (x,∇vnm(x)) dx

= lim
m→+∞

W(gnm ,Knm , vnm) = lim inf
n→+∞

W(gn,Kn, vn) ,

where the last inequality is due to the fact that W ≥ 0 and ω ⊂ Ω \Knm for m large. As
ω ↗ Ω \K we obtain

W(g,K, v) ≤ lim inf
n→+∞

W(gn,Kn, vn) .

�

Corollary 7.2. For every g,K , the minimum problem

(7.3) min
w∈VN (g,K)

W(g,K,w)

has a solution.

The following result is the counterpart of Theorem 5.1 in the nonlinear setting.

Proposition 7.3. Let (Kn) be a sequence in Cp converging to K in the Hausdorff metric,
and let (gn) be a sequence converging to g in H1(Ω;RN ) . For every n let vn ∈ VN (gn,Kn)
be a minimizer of W(gn,Kn, ·) , and assume that

(7.4) sup
n
W(gn,Kn, vn) < +∞ .

Then, up to subsequences, ∇vn converges to ∇v weakly in L2(Ω;RN×2) , with v ∈ VN (g,K)
which minimizes W(g,K, ·) .

Proof. By (7.4) and (7.1), it results that supn ‖∇vn‖ < +∞ . Hence, up to subsequences,
(∇vn) converges to a function ψ weakly in L2(Ω;RN×2). Theorem 6.4 guarantees the
existence of a function v ∈ VN (g,K) with ∇v = ψ (as before, when N = 2, i.e. vn(x) =
(v1
n(x), v2

n(x)), it is enough to apply it to each component v1
n , v2

n ).
It remains to show that v minimizes W(g,K, ·) in VN (g,K). Let w ∈ VN (g,K); by (M1 )

in Theorem 6.4, there exists a sequence (wn) with wn ∈ VN (gn,Kn) and ∇wn converging to
∇w strongly in L2(Ω;RN×2). Up to subsequences, we can assume that ∇wn(x)→ ∇w(x)
for a.e. x ∈ Ω, so that W (x,∇wn(x)) → W (x,∇w(x)) for a.e. x ∈ Ω; by the growth
assumption (7.1) and the Generalized Dominated Convergence Theorem, we obtain∫

Ω

W (x,∇wn(x)) dx→
∫

Ω

W (x,∇w(x)) dx .

Finally, by the lower semicontinuity result in Proposition 7.1 and by the minimality of the
vn it follows

W(g,K, v) ≤ lim inf
n→+∞

W(gn,Kn, vn) ≤ lim inf
n→+∞

W(gn,Kn, wn) =W(g,K,w) ,
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which proves that v is a minimizer of W(g,K, ·) in VN (g,K). �

For g ∈ H1(Ω;RN ) and K ∈ Cp we define

Enl(g,K) := inf
w∈VN (g,K)

W(g,K,w) + L(K) .

At this point, considering Proposition 7.1, Proposition 7.3 and the lower semicontinuity of
the functional L (see Corollary 4.4), in order to show the existence of a quasi-static crack
evolution in the context of nonlinear elasticity it is sufficient to argue as for Theorem 3.3.
In other words, we can prove the following result:

Theorem 7.4. Let T > 0 and g ∈ AC([0, T ];H1(Ω;RN )) . Let p ≥ 1 and K0 ∈ Cp . Then
there exists a function K : [0, T ]→ Cp such that

(Inl ) K0 ⊆ K(s) ⊆ K(t) for 0 ≤ s ≤ t ≤ T ,

(GSnl ) for every 0 ≤ t ≤ T

Enl(g(t),K(t)) ≤ Enl(g(t),K)

for all K ∈ Cp with K ⊇ K(t) ;
moreover, Enl(g(0),K(0)) ≤ Enl(g(0),K) for all K ∈ Cp with K ⊇ K0 ,

(EBnl ) for every s, t with 0 ≤ s < t ≤ T

Enl(g(t),K(t)) = Enl(g(s),K(s)) +

∫ t

s

(DξW (x,∇v(τ))|∇ġ(τ))dτ ,

where v(τ) is a solution of the minimum problem (7.3) with g(τ) and K(τ) .

7.2. Linearized elasticity. The extension of our model of crack growth to the linearized
case cannot be done in a straightforward way by means of Korn’s inequality: indeed, due
to the irregularity of the crack sets, it cannot be applied. Instead, the key role is played by
the approximation result proved by Chambolle [13, Theorem 1] (see also [9]), which can be
used similarly to Theorem 5.1 in the proof of existence of minimizers for the energy Esym
introduced below. Roughly speaking, [13, Theorem 1] states that if R2 \ Ω has a finite
number of connected components then H1(Ω;R2) is dense in {u ∈ L2

loc(Ω;R2) : e(u) ∈
L2(Ω;R2×2

sym)} . Here

e(u) :=
∇u+ (∇u)T

2

is the symmetrized gradient of u , and R2×2
sym is the space of 2× 2 symmetric matrices.

Let A be a positive definite quadratic form on the space of symmetric matrices, i.e.,
Aξ : ξ ≥ C|ξ|2 for every ξ ∈ R2×2

sym , where “:” denotes the scalar product between matrices,
and C > 0. Combining together [19, Theorem 7.1], [13, Theorem 1] and Theorem 3.3, we
can state that Theorem 3.3 holds true for the energy

(7.5) Esym(g,K) := min
v∈Vsym(g,K)

∫
Ω\K

Ae(v) : e(v) dx+

M∑
m=1

Hdm(K ∩ Km) ,

where

Vsym(g,K) := {v ∈ L2
loc(Ω \K;R2) : e(v) ∈ L2(Ω \K;R2×2

sym), v = g q.e. on ∂DΩ} .

Indeed, the approximation theorem [13, Theorem 1], together with the metric and topological
properties shown in Section 4 and used to extend the results in [19], can be applied in order
to prove the lower semicontinuity of Esym(·, ·) with respect to the convergence of functions
gn to g in H1(Ω) and of sets Kn ∈ Cp to K in the Hausdorff metric, and to construct
appropriate recovery sequences in order to obtain (GS) and (3.6) in Theorem 3.3 with Esym
instead of E , and e(u), e(g) instead of ∇u,∇g in the condition (EB).
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8. Appendix

The von Koch curve, denoted in this subsection by K , represents a significative example
for the class of admissible fractal cracks considered in this paper. Therefore, let us describe
now the constructive iterative process that defines this self-similar fractal starting from the
segment [0, 1]× {0} ⊂ R2 , and provides a parametrization which satisfies (2.1) and (2.2).

With reference to Figure 1, for i = 1, . . . , 4 let Si : R2 → R2 be the unique similitude
that maps the segment [0, 1] × {0} ⊂ R2 into the segment li1 (with length 1/3) and has
positive determinant. It results (see for example [28]) that the von Koch curve is the unique
compact set K such that

K =

4⋃
i=1

Si(K) .

We now construct iteratively a parametrization for the von Koch curve.
Let γ0 : [0, 1]→ R2 be such that γ0([0, s]) = [0, s]× {0} .

Let γ1 : [0, 1] → R2 be a continuous parametrization of the set K̃1 as in Figure 1, such
that γ1(0) = 0 ∈ R2 and H1(γ1([0, s])) = 4

3s . It results that γ1([(i − 1)/4, i/4]) = li1 for
i = 1, . . . , 4.

1
4

1
2

3
4

10

γ1 l11

l31l21

l41K̃1

1
4

1
2

3
4

10

γ2
K̃2

1

Figure 1. The first and second iterations in the construction of the
natural parametrization γ of the von Koch curve.

Iteratively construct the set K̃2 =
⋃
i=1,...,4 Si(K̃1) and its continuous parametrization

γ2 : [0, 1]→ R2 such that γ2(0) = 0 ∈ R2 , H1(γ2([0, s])) =
(

4
3

)2
s and γ2([(i−1)/42, i/42]) =

li2 for i = 1, . . . , 42 .
It results that for any n ∈ N it is

‖γn − γn+1‖∞ =
1

3n+1

√
3

2

and, as consequence, for any n, j ∈ N we have

‖γn − γn+j‖∞ ≤
1

3n
3
√

3

4
.

Therefore the sequence γn is a Cauchy sequence in (C([0, 1];R2), ‖ · ‖∞), and there exists a
continuous function γ : [0, 1]→ R2 such that

(8.1) γn → γ

uniformly on [0, 1].

The sequence of compact sets K̃n converges in the Hausdorff metric to the von Koch
curve K . This fact, together with the uniform convergence (8.1), implies that γ([0, 1]) = K .
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It can be proved that K has Hausdorff dimension

d :=
log 4

log 3

and 0 < Hd(K) < +∞ .
The map γ we just obtained corresponds to the one that in [33] is called natural parametriza-

tion. The following result shows that γ fulfils (2.1) and (2.2).

Proposition 8.1. There exists a constant c > 0 such that for any a, b ∈ [0, 1] the natural
parametrization γ satisfies

(8.2)
1

c
|a− b|1/d ≤ |γ(a)− γ(b)| ≤ c|a− b|1/d

and, for a < b ,
Hd(γ(a, b)) = (b− a)Hd(K) .

Proof. The first statement is proved in [33, Theorem 1].
Concerning the second fact, firstly note that, by construction, the von Koch curve K

and the parametrization γ have the following self-similarity property: for every n ∈ N and
j = 1, . . . , 4n − 1 there exists an affine isometry Φjn : R2 → R2 such that

Φjn

(
γ
( j

4n
,
j + 1

4n

))
= γ

(
0,

1

4n

)
.

For any s, h ∈ [0, 1] let isn, i
h
n ∈ {1, . . . , 4n} be such that

isn
4n
≤ s < isn + 1

4n
and

ihn
4n
≤ h < ihn + 1

4n
.

For n sufficiently large (so that ihn ≥ 2) it is

(s, s+ h) = (s, (isn + 1)/4n) ∪ [(isn + 1)/4n, (isn + ihn)/4n] ∪ ((isn + ihn)/4n, s+ h) .

Then, being the Φjn Lipschitz continuous maps with Lipschitz constant equal to 1, we have

Hd(γ(s, s+ h)) =Hd
(
γ
(
s,
isn + 1

4n

))
+

isn+ihn−1∑
j=isn+1

Hd
(
γ
( j

4n
,
j + 1

4n

))
+Hd

(
γ
( isn + ihn

4n
, s+ h

))
=Hd

(
γ
(
s,
isn + 1

4n

))
+

isn+ihn−1∑
j=isn+1

Hd
(

Φjn

(
γ
( j

4n
,
j + 1

4n

)))
+Hd

(
γ
( isn + ihn

4n
, s+ h

))
=Hd

(
γ
(
s,
isn + 1

4n

))
+

isn+ihn−1∑
j=isn+1

Hd
(
γ
(

0,
1

4n

))
+Hd

(
γ
( isn + ihn

4n
, s+ h

))
=Hd

(
γ
(
s,
isn + 1

4n

))
+ (ihn − 2)Hd

(
γ
(

0,
1

4n

))
+Hd

(
γ
( isn + ihn

4n
, s+ h

))
.

Since γ is (1/d)-Hölder continuous by (8.2), it holds that

Hd
(
γ
(
s,
isn + 1

4n

))
≤ C(d)

(
isn + 1

4n
− s
)
≤ C(d)

1

4n
→ 0

and

Hd
(
γ
( isn + ihn

4n
, s+ h

))
≤ C(d)

(
s+ h−

iisn +Nh
n

4n

)
≤ 2C(d)

1

4n
→ 0
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as n→ +∞ , with C(d) independent of t and h . Hence we obtain

Hd(γ(s, s+ h)) = lim
n→+∞

(ihn − 2)Hd
(
γ
(

0,
1

4n

))
= lim
n→+∞

(1hn − 2)
1

4n
Hd (γ(0, 1)) = hHd(K),

where, in the second equality, we used the self-similiarity property of K , that is, K = γ([0, 1])
contains exactly 4n distinct copies of γ([0, 1/4n]) .

Consider now 0 ≤ a < b ≤ 1. Set s = a and h = b− a in the above argument, the thesis
follows. �
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