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1. Introduction and statement of the result

In recent years much effort has been devoted to the classification of self-similar solutions
of geometric flows. Some of the most interesting examples are gradient Ricci solitons . These
are Riemannian manifolds satisfying

Ric +∇2f = λg ,

for some λ ∈ R and some smooth function f defined on Mn. In particular, if λ > 0, the soliton
is called shrinking and it generates an ancient self-similar solution to the Ricci flow with finite
extinction time. In dimension three, a complete classification of gradient Ricci shrinkers was
given by Ivey [6] in the compact case and by Perelman [11], Ni-Wallach [10] and Cao-Chen-
Zhu [2] in the complete case. In higher dimension the situation is much more complicated. In
fact, due to the lack of the Hamilton-Ivey pinching estimates, which ensure the nonnegativity
of the sectional curvatures in dimension three, there exist examples of “exotic” shrinking
Ricci solitons in both the compact and the noncompact case (for a general overview on Ricci
shrinkers, we refer the reader to [1]). In dimension four, under the assumption of bounded
nonnegative curvature operator, the most significant classification result has been obtained
by Naber [9], where he proves that any noncompact Ricci shrinker of this type is isometric to
R4 or to a finite quotient of either S2 × R2 or S3 × R. In higher dimension we would like to
mention the following result due to Petersen-Wylie [12].

Theorem 1.1 (Petersen-Wylie [12]). A complete, noncompact, rectifiable, gradient shrinking
Ricci soliton with bounded curvature, nonnegative radial sectional curvature, and nonnegative
Ricci curvature is rigid.

To understand the statement, we recall that a soliton is called rectifiable if |∇f | is constant
along the connected components of the regular level sets of f and it is called rigid if, for
some k ∈ {0, . . . , (n − 1)}, its universal cover, endowed with the lifted metric and the lifted
potential function, is isometric to the Riemannian product Nk × Rn−k, where Nk is a k-
dimensional Einstein manifold and f = λ

2 |x|
2 on the Euclidean factor. We also recall that g

has nonnegative radial sectional curvature if Rm(E,∇f,E,∇f) ≥ 0 for every vector field E
orthogonal to ∇f .
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In this paper we consider the following perturbation of the Ricci soliton equation

Ric +∇2f = ρRg + λg , (1.1)

where (Mn, g) is a Riemannian manifold, λ ∈ R, ρ ∈ R \ {0} and f is a smooth function on
Mn which will be called potential. Solutions to this equation are called gradient ρ-Einstein
solitons and were first considered in [4], where various classification results have been obtained,
in particular in the steady case λ = 0.

As in the case of Ricci solitons, it is easy to see that ρ-Einstein solitons give rise to self-
similar solutions to a perturbed version of the Ricci flow, the so called Ricci-Bourguignon
flow

∂

∂t
g = −2(Ric− ρRg) .

In a forthcoming paper, we will develop the parabolic theory for these flows, which was first
considered by Bourguignon in [7]. Here we just remark that we can prove short time existence
for every −∞ < ρ < 1/2(n− 1). However, as far as the subject of our investigation are self-
similar solutions, every value of ρ can, in principle, be considered. In particular, we point out
that the case ρ = 1/2(n − 1) corresponds to a metric flowing with velocity proportional to
its Schouten tensor. In this case, it was proved in [4] that every three-dimensional Schouten
shrinker is rigid.

The main result of the present paper is the following theorem.

Theorem 1.2. Let (Mn, g), with n ≥ 3, be a complete, noncompact, gradient shrinking ρ-
Einstein soliton with 0 < ρ < 1/2(n − 1). If g has bounded curvature, nonnegative radial
sectional curvature, and nonnegative Ricci curvature, then (Mn, g) is rigid.

As it is evident, the statement is the precise analogous of the aforementioned result of
Petersen and Wylie. We emphasize the remarkable fact that, in our case, we do not need
any symmetry assumption. In fact, the rectifiability can be deduced from the structural
equation (1.1), as it is proved in [4].

2. Preliminaries on gradient ρ-Einstein solitons

First of all, we show that gradient ρ-Einstein solitons give rise to solutions of the Ricci-
Bourguignon flow

∂

∂t
g = −2(Ric− ρRg) . (2.1)

Although the proof is quite similar to the classical one for Ricci solitons, we include it for the
convenience of the reader.

By a complete gradient ρ-Einstein soliton, we mean a complete Riemannian manifold (M, g)
with a potential f such that ∇gf is complete and (1.1) holds.

Theorem 2.1. If (M, g0, f0) is a complete gradient ρ-Einstein soliton with constant λ, then
there exist

i. a family of metrics g(t), solution of the Ricci-Bourguignon flow (2.1), with g(0) = g0,
ii. a family of diffeomorphisms φ(t, · ) : M →M , with φ(0, · ) = idM ,

iii. a family of functions f(t, · ) : M → R with f(0, · ) = f0(·),
defined for every t such that τ(t) := −2λt+1 > 0. These families have the following properties:
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1. the family φ(t, · ) is generated by the vector field ∇g0f0 eventually scaled by the inverse
of τ(t)

∂φ

∂t
(t, · ) =

1

τ(t)
(∇g0f0)(φ(t, · )) , (2.2)

2. the metric g(t) is given by pull-back through φ(t, · ) and rescaling through τ(t)

g(t) = τ(t)φ(t, ·)∗g0 , (2.3)

3. the function f(t) is given as well by pull-back, namely

f(t, ·) = (f0 ◦ φ)(t, · ) . (2.4)

Proof. We set τ(t) = −2λt+1. As ∇g0f0 is a complete vector-field, there exists a 1-parameter
family of diffeomorphisms φ(t, · ) : M →M generated by the time dependent family of vector
fiels X(t, · ) := 1

τ(t) ∇
g0f0(φ(t, · )), for every t such that τ(t) > 0. We also set f(t, ·) =

(f0 ◦ φ)(t, · ) and g(t) = τ(t)φ(t)∗g0. We compute

∂

∂t
g(t) = − 2λ

τ(t)
g(t) + τ(t)

∂

∂t
φ(t, ·)∗g0 .

By the definition of the Lie derivative, we have that ∂
∂tφ(t, ·)∗g0 = L(φ(t)−1)∗

∂
∂t
φ(t,·)φ(t, ·)∗g0 .

On the other hand, equation (2.2) implies that

∂φ

∂t
(t, · ) =

1

τ(t)
(∇g0f0)(·) =

1

τ(t)
φ(t, · )∗∇g(t)f(t, · ) ,

where we used the fact that φ(t, ·)∗∇g0f0 = ∇φ(t,·)∗g0φ(t, ·)∗f0 = ∇g(t)f(t, ·). Combining
these two facts, we have that

∂

∂t
g(t) = − 2λ

τ(t)
g(t) +

1

τ(t)
L∇g(t)f(t,·)g(t) .

Having this at hand, we compute

−Ric(g(t)) = φ(t, ·)∗(−Ric(g0)) = φ(t, ·)∗
(

1

2
L∇g0f0g0 − λ g0 − ρR(g0) g0

)
=

1

2

(
1

τ(t)
L∇g(t)f(t,·)g(t) − 2

τ(t)
λ g(t)

)
− ρ

τ(t)
R(τ(t)−1g(t)) g(t)

=
1

2

∂

∂t
g(t) − ρ

τ(t)
R(τ(t)−1g(t)) g(t)

and we observe that R(τ(t)−1g(t)) = τ(t) R(g(t)). In other words, we have obtained

∂

∂t
g(t) = −2 [ Ric(g(t)) − ρR(g(t)) g(t) ] ,

and the proof is complete. �

In particular, we have obtained that shrinking solitons generate ancient solutions, which
blow up at t = 1/2λ.

We pass now to describe a fundamental property of the gradient ρ-Einstein solitons, namely
the rectifiability. To do that, we recall from [4, Lemma 2.2 and Theorem 3.1] the following
fundamental identities for the gradient ρ-Einstein solitons. We also report the proof, for the
convenience of the reader.
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Lemma 2.2. Let (Mn, g, f), n ≥ 3, be a gradient ρ-Einstein soliton. Then, the following
identities hold true.

∆f = (nρ− 1)R + nλ , (2.5)(
1− 2(n− 1)ρ

)
∇R = 2Ric(∇f, · ) , (2.6)(

1− 2(n− 1)ρ
)
∆R = 〈∇R,∇f〉+ 2(ρR2 − |Ric|2 + λR) , (2.7)

dR⊗ df = df ⊗ dR . (2.8)

Proof. Taking the trace of equation (1.1), we obtain

R + ∆f = nρR + λn ,

which is equation (2.5). Taking the divergence of equation (1.1), we obtain

∇iRij +∇i∇i∇jf = ρ∇iRgij .
Using the formula for the commutation of the derivatives, we get

1

2
∇jR +∇j∇i∆f + Rijip∇pf = ρ∇jR .

Up to rearranging the terms, this is equivalent to(
1

2
− ρ
)
∇jR +∇j∆f + Rjp∇pf = 0 .

If we substitute equation (2.5), in the identity above, we arrive to

(1− 2(n− 1)ρ)∇R = 2 Ric(∇f, · ) ,
that is, equation (2.6). If we take the divergence of equation (2.6), we get

(1− 2(n− 1)ρ) ∆R = 2∇iRip∇pf + 2Rip∇i∇pf
= ∇pR∇pf + 2Rip(ρRgip + λgip − Rip)

= 〈∇R | ∇f〉+ 2(ρR2 + λR− |Ric|2) .
This proves equation (2.7). Taking the covariant derivative of equation (2.6), we obtain

(1− 2(n− 1)ρ)∇i∇jR = 2∇iRjp∇pf + 2Rjp∇i∇pf .
By the symmetry of the Hessian, we deduce that

0 = (1− 2(n− 1)ρ) (∇i∇jR − ∇j∇iR)

= 2 (∇iRjp −∇jRip)∇pf + 2 (Rjp∇i∇pf − Rip∇j∇pf) .

Taking the covariant derivative of equation (1.1) and rotating indices, we infer that

∇iRjp −∇jRip = ∇j∇i∇pf −∇i∇j∇pf + ρ∇iR gjp − ρ∇jR gip

= Rjipk∇kf + ρ (∇iR gjp −∇jR gip) .

Substituting this expression in the previous formula, we get

0 = 2Rjipk∇kf∇pf + 2ρ(∇iR∇jf −∇jR∇if) + 2(Rjp∇i∇pf − Rip∇j∇pf) .

We note that Rjipk∇kf∇pf = 0, as the curvature tensor is antisymmetric in the last two
indices while ∇kf∇pf is symmetric. Again from equation (1.1), we obtain that

Rjp∇i∇qf = (ρR + λ)Rjpgiq − RjpRiq

and thus
2(Rjp∇i∇pf − Rip∇j∇pf) = 2(ρR + λ)(Rij − Rij) = 0 .
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Substituting again, we finally get

0 = ρ (∇iR∇jf −∇jR∇if) .

Using the fact that ρ 6= 0, we deduce equation (2.8) and the lemma is proved. �

Following [4], we notice that whenever |∇f | 6= 0 the gradient of the scalar curvature ∇R
is proportional to ∇f . In fact, if p ∈ M is a point such that ∇f(p) 6= 0, we let V ∈ TpM be
any vector which is orthogonal to ∇f . By equation (2.8), we get

〈∇R |V 〉 |∇f |2 = 〈∇R | ∇f〉 〈∇f |V 〉 = 0 , (2.9)

and hence 〈∇R |V 〉 = 0 at p. From this we deduce that the same is true for ∇|∇f |. In fact,
from the structural equation (1.1), we infer that

〈∇|∇f |2 |V 〉 = 2∇2f (∇f, V ) (2.10)

= (2ρR + 2λ) 〈∇f |V 〉 − 2Ric (∇f, V )

= −(1− 2(n− 1)ρ) 〈∇R |V 〉 = 0 ,

where in the last equality we have used equation (2.6). In particular, we have obtained the
following theorem.

Theorem 2.3 ([4] Catino-Mazzieri). Every gradient ρ-Einstein soliton is rectifiable.

Now, we turn our attention to the regularity of gradient ρ-Einstein solitons. We recall that,
in harmonic coordinates, one has

Ric = −1

2
∆(gij) +Qij(g

−1, ∂g) , (2.11)

where Q is a quadratic form in the coefficients of g−1 and the first derivatives of the coefficients
of g.

Theorem 2.4. Let (Mn, g, f), n ≥ 3, be a gradient ρ-Einstein soliton, with ρ /∈ {1/n, 1/2(n−
1)}. Then, in harmonic coordinates, the metric g and the potential function f are real ana-
lytic.

Proof. We note that taking the divergence of equation (1.1) we get

∇j∇j∇if = −∇jRij + ρ∇iRgij = −1

2
∇iR + ρ∇iR .

Thus, using equation (2.6), we obtain

−∆∇f =
1− 2ρ

1− 2(n− 1)ρ
Ric(∇f, ·) .

To prove our statement, it is useful to consider the system{
Ric + ∇2f − λ g − ρR g = 0

−∆∇f −
(

1−2ρ
1−2(n−1)ρ

)
Ric(∇f, · ) = 0 ,

with respect to the unknowns (g,∇f). According to (2.11), we have that in harmonic coor-
dinates the scalar curvature is given by

R = −1

2
gij∆(gij) + gijQij(g, ∂g) .
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Thus, the linearization of the previous system in the direction of (h,W ) ∈ S2T ∗M ⊕ TM is
given by 

−1

2
grs

∂2hij
∂xr∂xs

+
ρ

2
gklgrs

∂2hkl
∂xr∂xs

gij + l.o.t. = 0

−grs ∂2Wi

∂xr∂xs
+

1− 2ρ

2− 4(n− 1)ρ
grs

∂2hij
∂xr∂xs

∇jf + l.o.t. = 0 ,

where l.o.t denotes terms involving onlyW , h or their first derivatives. Therefore, the principal
symbol σζ : S2T ∗M ⊕ TM → S2T ∗M ⊕ TM is given by

(h,W ) 7−→ σζ(h,W ) =

(
1

2
|ζ|2g(h− ρ(trgh)g) , |ζ|2gW − Lζh

)
,

where Lζh is some linear function of h. If σζ(h,W ) = 0 and ζ 6= 0, then h = ρ(trgh)g and
thus

trgh = ρn trg h ,

that is trgh = 0 or ρn = 1. The latter implies that ρ = 1/n, which is excluded by our
hypothesis, whereas the former gives h = 0, since h = ρ(trgh)g and by definition ρ 6= 0.
Consequently, if σζ(h,W ) = 0, then we must have h = 0, which implies W = 0. This shows
that, if ρ 6= 1/n and ζ 6= 0, the symbol σζ is an automorphism of S2T ∗M ⊕ TM and this in
turn implies that the linearization of the system is elliptic.

If (g,∇f) have C2-regularity in harmonic coordinates, we can apply Morrey’s interior
regularity theorem [8, Theorem 6.7.6] and since our system of equations is analytic in both its
dependent and independent variables, the solutions are real analytic as well. We observe that
in general (g,∇f) could be only C1,α after passing to harmonic coordinates. To overcome
this difficulty, we apply Theorem 9.19 in [5] to the components of the system, to obtain that
(g,∇f) are in fact C2,α. �

3. Estimates on the growth of the potential function

In this section we consider shrinking solitons with bounded non-negative scalar curvature,
namely R ≥ 0 and |R| ≤ K, for some positive constant K. To proceed, we observe that,
in force of the rectifiability of the gradient ρ-Einstein solitons (see Theorem 2.3), either f is
constant on M or there exists a hypersurface Σ0 ⊂M , which is a connected component of a
regular level set of f . We also recall that, in the latter case, the potential function f , as well
as the scalar curvature R and the function |∇f |, only depends on the signed distance r to Σ0,
a priori only in a suitable neighborhood of it. On the other hand, since f is real analytic, we
have that the level sets where |∇f | = 0 cannot accumulate, unless f is constant. Hence, as
soon as a regular level set exists, we have that f only depends on the signed distance to Σ0

on the whole manifold. Of course, the same is true for R and |∇f |.
The goal of this section is to prove that either f is constant, or we have an estimate of the

following type

A ( |r|+B )2 ≥ f(r) ≥ C ( |r| −D )2 ,

where A,B,C and D are positive real constants. We start with the following lemma, whose
proof is not as direct as in the Ricci soliton case, due to the lack of the Hamilton’s identity.
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Lemma 3.1. Let (Mn, g, f) be a gradient shrinking ρ-Einstein soliton with ρ > 0, R ≥ 0 and
such that |R| ≤ K, for some positive constant K. Then, either f is constant or there exist
positive real constants a±, b±, c± and d±, such that

c+f(r)− d+ ≤ |∇f |2(r) ≤ a+f(r) + b+ , for r ≥ 0,

c−f(r)− d− ≤ |∇f |2(r) ≤ a−f(r) + b− , for r ≤ 0,

where r is the signed distance to a connected component Σ0 ⊂M of some regular level set of
f . The constants which appear in the estimates are possibly depending on Σ0.

Proof. Let us assume that f is not constant. Then, there exist a point p0, such that |∇f |(p0) >
0. We now let Σ0 be the connected component of the level set {f = f(p0)}, which contains the
point p0. By Theorem 2.3, we have that |∇f | is constant along Σ0. Therefore, Σ0 is regular.
According to the discussion above, we let r be the signed distance to Σ0. The orientation of
r is the one which insures 〈∇f |∇r〉 ≥ 0 around Σ0.

We consider now the function a+f−|∇f |2, with a+ > 0. If we compute its derivative along
∇f , we get

〈∇(a+f − |∇f |2)|∇f〉 = a+|∇f |2 − 2∇2f(∇f,∇f)

= a+|∇f |2 + 2Ric(∇f,∇f)− 2ρR|∇f |2 − 2λ|∇f |2

= (a+ − 2λ− 2ρR)|∇f |2 + (1− 2(n− 1)ρ)〈∇R|∇f〉 ,
where the last equality was obtained by equation (2.6) together with (1.1). Therefore, one
has

〈∇(a+f − |∇f |2 − (1− 2(n− 1)ρ)R) | ∇f〉 = (a+ − 2λ− 2ρR)|∇f |2 .
If R ≤ K, for some real constant K, then it is enough to choose a+ > 2λ + 2ρK to obtain
that the function Φ = a+f −|∇f |2− (1−2(n−1))ρR is increasing in the direction of ∇f . We
let now q be a point in M such that there exists an integral curve γ : [0, L]→M of ∇f with
γ(0) ∈ Σ0 and γ(L) = q. Integrating the function Φ ◦ γ on [0, L] and using the computation
above, it is immediate to see that Φ(q) ≥ Φ(γ(0)). With a small abuse of notation, we can
consider Φ as a function of r and the last inequality can be written as Φ(r) ≥ Φ(0), for every
r ≥ 0. By the definition of Φ, we obtain, for every r ≥ 0, the estimate

|∇f |2(r) ≤ a+f(r)− (1− 2(n− 1)ρ)R− Φ(0) ≤ a+f(r) + b+ ,

where we used the fact that |R| < K and we set b+ = |(1−2(n−1)ρ)K|+ |Φ(0)|. To proceed,
we consider now the function |∇f |2− c+f , with c+ > 0, and we compute its radial derivative,
namely

〈∇(|∇f |2 − c+f)|∇f〉 = 2∇2f(∇f,∇f)− c+|∇f |2

= −2Ric(∇f,∇f) + (2λ− c+)|∇f |2 + 2ρR|∇f |2

≥ −(1− 2(n− 1)ρ)〈∇R,∇f〉+ 2ρR|∇f |2 ,
provided c+ ≤ 2λ. Therefore, we have that

〈∇(|∇f |2 − c+f + (1− 2(n− 1)ρ)R) | ∇f〉 = 2ρR |∇f |2 ≥ 0 ,

since R ≥ 0 and ρ ≥ 0. Reasoning as before, we set now Ψ = |∇f |2 − c+f + (1− 2(n− 1)ρ)R
and we get Ψ(r) ≥ Ψ(0), for every r ≥ 0. In other words, since R is bounded, there exists a
positive constant d+, possibly depending on ρ, Ψ(0) and the scalar curvature bound K, such
that, for every r ≥ 0, the following inequality holds

|∇f |2(r) ≥ Ψ(0) + c+f(r)− (1− 2(n− 1)ρ)R(r) ≥ c+f(r)− d+ .
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So far, we have obtained the desired estimate provided r ≥ 0, namely

c+f(r)− d+ ≤ |∇f |2(r) ≤ a+f(r) + b+ ,

To obtain the analogous estimates, in the case r ≤ 0, it is sufficient to compute the derivatives
of the functions a−f − |∇f |2 and |∇f |2 − c−f along the vector field −∇f , and to check that
it is possible to choose the positive constants a−, b−, c− and d− in such a way that

c−f(r)− d− ≤ |∇f |2(r) ≤ a−f(r) + b− .

Since the reasoning is the same as in the the case r ≥ 0, we left the details to the reader.
This concludes the proof of the lemma. �

We now proceed with another lemma, which contains an estimate on the lower bound for
the potential function f . We will employ a slight variation of the method exposed in [3].

Lemma 3.2. Let (Mn, g, f) be a gradient shrinking ρ-Einstein soliton with ρ > 0, R ≥ 0 and
such that |R| ≤ K, for some positive constant K. Then, either f is constant on M or there
exist positive constants C and D, such that

f(r) ≥ C( |r| −D )2 ,

where r is the signed distance to a connected component Σ0 ⊂M of some regular level set of
f . The constants which appear in the estimate are possibly depending on Σ0.

Proof. From Lemma 3.1, we have that

0 ≤ |∇f |2 ≤ a±f + b±

so, considering g(r) =
√
a±f(r) + b±, we have

|∇g(r)| = a±|∇f |(r)
2g(r)

≤ a±

2
. (3.1)

Now, let p, q ∈ M and let γ be a minimizing geodesic between them, such that γ(0) = p
and γ(s0) = q, with s0 = distg(p, q) > 2. We set now

φ(s) =

 s, s ∈ [0, 1]
1, s ∈ [1, s0 − 1]
s0 − s, s ∈ [s0 − 1, s0] .

By the second variation formula for the energy of γ, we have∫ s0

0
φ2 Ric(γ̇, γ̇) ds ≤ (n− 1)

∫ s0

0
(φ̇)2 ds = 2n− 2 (3.2)

and, by the soliton equation (1.1), we get

Ric(γ̇, γ̇) = λ|γ̇|2 + ρR|γ̇|2 −∇2f(γ̇, γ̇) = λ+ ρR−∇γ̇∇γ̇f .
Therefore, we can write∫ s0

0
φ2Ric(γ̇, γ̇) ds = λ

∫ s0

0
φ2 ds + ρ

∫ s0

0
Rφ2 ds −

∫ s0

0
φ2∇γ̇∇γ̇f ds .

Integrating by parts the last term of the right hand side, we get∫ s0

0
φ2∇γ̇∇γ̇f ds = − 2

∫ 1

0
φ∇γ̇f ds + 2

∫ s0

s0−1
φ∇γ̇f ds .
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The contribution of the interval [1, s0 − 1] does not appear, because φ̇ = 0 on it. Hence,
remembering that ρ > 0 and R ≥ 0, the following estimate holds

λ

∫ s0

0
φ2ds+ ρ

∫ s0

0
Rφ2ds−

∫ s0

0
φ2∇γ̇∇γ̇f ds ≥ λs0 −

4

3
λ+ 2

∫ 1

0
φ∇γ̇f ds− 2

∫ s0

s0−1
φ∇γ̇f ds

≥ λs0 −
4

3
λ−max

[0,1]
|∇γ̇f | − max

[s0−1,s0]
|∇γ̇f | .

Combining this with inequality (3.2), we infer that

max
[s0−1,s0]

|∇γ̇f | ≥ λs0 −
4

3
λ− 2n+ 2− c′ ,

where we set c′ = max[0,1] |∇γ̇f |. Therefore, by Lemma 3.1 and (3.1), we obtain

a±

2
+
√
a±f(q) + b± ≥ max

[s0−1,s0]
|∇γ̇f | ≥ λs0 − c′′ = λdistg(p, q)− c′′ ,

for some positive constant c′′.
Suppose now that f is not a constant function and let Σ0 be as in the statement of the

lemma. If we pick the point p in Σ0, the triangle inequality implies at once that, for every
q ∈M ,

a±

2
+
√
a±f(q) + b± ≥ λ distg(q,Σ0)− c′′ ≥ λ |r(q)| − c′′ ,

where r is the signed distance to Σ0. With the usual abuse of notations, we can write√
a±f(r) + b± ≥ λ |r| − c′′′ ,

where c′′′ = c′′ + max{a+/2, a−/2}.
Squaring this last inequality, we obtain

f(r) ≥ 1

a±
(
(λ|r| − c′′′)2 − b±

)
,

which at once implies that f is bounded from below. On the other hand, we observe that
such a function is defined up to an additive constant. Thus, from now on, we will always
assume minM f > 0, without loss of generality; therefore, there exist positive constants C
and D such that, for every admissible value of r,

f(r) ≥ C ( |r| −D )2 .

This concludes the proof of the lemma. �

The lower bound on f easily implies the following compact version of Lemma 3.1.

Corollary 3.3. Let (Mn, g, f) be a gradient shrinking ρ-Einstein soliton with ρ > 0, R ≥ 0
and such that |R| ≤ K, for some positive constant K. Then, either f is constant or there
exist positive real constants a, b, c and d, such that

cf(r)− d ≤ |∇f |2(r) ≤ af(r) + b ,

where r is the signed distance to a connected component Σ0 ⊂M of some regular level set of
f . The constants which appear in the estimate are possibly depending on Σ0.

We are now in the position to prove the following upper bound for the potential function.
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Corollary 3.4. Let (Mn, g, f) be a gradient shrinking ρ-Einstein soliton with ρ > 0, R ≥ 0
and such that |R| ≤ K, for some positive constant K. Then, either f is constant on M or
there exist positive constants A and B, such that

0 < f(r) ≤ A( |r|+B )2 ,

where r is the signed distance to a connected component Σ0 ⊂M of some regular level set of
f . The constants which appear in the estimate are possibly depending on Σ0.

Proof. If f is not constant, by Corollary 3.3, we have that∣∣∇√f ∣∣2(r) =
1

4

|∇f |2(r)
f(r)

≤ 1

4

(
a+

b

f(r)

)
.

Since we are assuming min f > 0, we deduce that
√
f is a Lipschitz function. The conclusion

follows at once. �

We conclude this section with the following proposition, which summarizes the results of
Lemma 3.2 and Corollary 3.4.

Proposition 3.5. Let (Mn, g, f) be a gradient shrinking ρ-Einstein soliton with ρ > 0, R ≥ 0
and such that |R| ≤ K, for some positive constant K. Then, either f is constant on M or
there exist positive constants A,B,C and D, such that

C ( |r| −D )2 ≤ f(r) ≤ A( |r|+B )2 ,

where r is the signed distance to a connected component Σ0 ⊂M of some regular level set of
f . The constants which appear in the estimate are possibly depending on Σ0.

4. Proof of Theorem 1.2

The aim of this section is to show that, under the assumption of Theorem 1.2, the scalar
curvature is a constant function. Since, by Theorem 2.4, the soliton metrics are real analytic
for ρ /∈ {1/n, 1/2(n− 1)}, it is sufficient to prove that R is constant on some open set. As we
will see at the end of the section, this will imply Theorem 1.2.

From now on, we will assume that (Mn, g, f) is a complete, non compact, gradient shrinking
ρ-Einstein soliton with 0 < ρ < 1/2(n− 1), bounded curvature, nonnegative radial sectional
curvature, and nonnegative Ricci curvature. We observe that under these assumptions, if the
potential function f were constant, then, by equation (1.1) and the Bonnet-Myers Theorem,
the manifold would be compact, which is excluded. Hence, there has to exist a regular level set
of f . Reasoning as in the previous section, we let Σ0 ⊂M be a regular connected component
of this level set and we have that f only depends on the signed distance r to Σ0 on the whole
manifold. With a small abuse of notation, we will consider f as a function of r and we will
indicate by f ′, f ′′, . . . the derivatives of f with respect to r. As a consequence, we can express
the gradient and the Hessian of f as

∇f = f ′∇r and ∇2f = f ′∇∇r + f ′′dr ⊗ dr .
We observe that the signed distance r must be unbounded on M . In fact, if this were not

the case, by Proposition 3.5, we would have that f is bounded too. On the other hand, the
Bakry-Emery Ricci tensor Ric +∇2f is bounded from below by λg and this would imply that
M is compact, by [14, Theorem 1.4].
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As a first step we are going to prove that f is a convex function on a set of the form
{|r| ≥ r0}, for some r0 > 0. Following Petersen-Wylie [12], we are going to estimate the two
terms of the Hessian separately. We start with the following lemma.

Lemma 4.1. Let (Mn, g) be a complete noncompact Riemannian manifold and let Σ0 ⊂
M be a regular hypersurface. We denote by r : Mn → R the signed distance to Σ0. If
Rm(E,∇r, E,∇r) ≥ 0 for every E ∈ TpM which is orthogonal to ∇r, then the following
holds.

(1) If r is not bounded from above, then ∇2r is positive semi-definite in the region {r > 0}.
(2) If r is not bounded from below, then ∇2r is negative semi-definite in the region {r < 0}.

Proof. We present the proof only in the first case, since the second one will follow by trivial
adaptations. Let us set S = ∇2r. As |∇r| = 1, then

0 = ∇i(∇jr∇jr) = 2∇i∇jr∇jr = 2Sij∇jr ,

which implies

0 = ∇k(Sij∇jr) = ∇kSij∇jr + SijSjk .

On the other hand it holds

∇kSij −∇iSkj = (∇k∇i −∇i∇k)∇jr = Rkijl∇lr .

Combining these identities, we get

∇kSij∇kr = ∇iSkj∇kr +Rkijl∇lr∇kr = −SjkSki − Rikjl∇lr∇kr . (4.1)

We now let µ be the smallest eigenvalue of S. It is well known that µ is an absolutely con-
tinuous function. Therefore, it is weakly differentiable, its derivative is locally integrable and
the integral along any curve of the derivative coincides almost everywhere with µ. Moreover,
it is differentiable almost everywhere. We want to compute 〈∇µ | ∇r〉, at a point p where µ
and r are differentiable. We recall that the distance function to a submanifold is a Lipschitz
function. In particular r is absolutely continuous and differentiable almost everywhere. For
ε > 0 sufficiently small, we let then γ : (−ε, ε)→M be an integral curve of ∇r with γ(0) = p,
and we introduce the map

u : SpM × (−ε, ε) −→ R , (X, t) 7−→ u(X, t) := Sγ(t)(X̃(t), X̃(t)) ,

where SpM := {X ∈ TpM : |X|2 = 1 } and t 7→ X̃(t) is the parallel transport of X along γ,

with the initial condition X̃(0) = X. Since, for every t ∈ (−ε, ε), the parallel transport yields

an isometry between TpM and Tγ(t)M , we have that |X̃(t)|2 ≡ 1. It follows that

(µ ◦ γ)(t) = umin(t) := min
X∈SpM

u(X, t) .

We observe that, with these definitions, one has 〈∇µ|∇r〉p = d
dt

∣∣
t=0

(µ◦γ) = d
dt

∣∣
t=0

umin. We
claim that

d

dt

∣∣∣
t=0

umin =
∂u

∂t
(Y, 0) ,

where Y ∈ SpM is such that u (Y, 0) = umin(0). By Lagrange’s Theorem, we have that for
every 0 < h < ε there exists ξ ∈ (0, h) such that

umin(h) ≤ u (Y, h) = u (Y, 0) + h
∂u

∂t
(Y, ξ) = umin(0) + h

∂u

∂t
(Y, ξ) .
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Dividing by h, subtracting umin(0) from both sides and letting h tend to zero, we obtain

d

dt

∣∣∣
t=0

umin ≤
∂u

∂t
(Y, 0) ,

since µ was differentiable at p. The other inequality is analogous and it is left to the reader.
Having the claim at hand, we let t 7→ Ỹ (t) be the parallel transport of Y along γ and we

compute

〈∇µ|∇r〉p =
∂u

∂t
(Y, 0) =

d

dt

∣∣∣
t=0

Sγ(·) (Ỹ (·), Ỹ (·)) = ∇γ̇(0)S (Y, Y ) = ∇∇rS (Y, Y ) .

Using (4.1), we finally obtain that, at every point p ∈ {r > 0} where µ and r are differentiable,
it holds

〈∇µ|∇r〉 = ∇∇rS (Y, Y ) = −SjkSkiYjYi − Rikjl∇lr∇krYiYj = −µ2|X|2 − R(Y,∇r, Y,∇r) .
Since we are assuming that R(E,∇r, E,∇r) ≥ 0 for every E ∈ TpM which is orthogonal

to ∇r, we deduce, by the symmetries of the Riemann tensor, that 〈∇µ|∇r〉 ≤ −µ2.
To complete the proof, we assume by contradiction that there exists p0 ∈ {r > 0} such that

µ(p0) < 0 and we let α : [0,+∞) → M be an integral curve of ∇r with α(0) = p0. Notice
that α is defined for every t ≥ 0 because we are supposing that r is not bounded from above
(the variable t differs by r just by an additive constant, namely the distance between p0 and
Σ0). By the absolute continuity of µ, we have that µ(t) < 0, for every t ≥ 0, since

(µ ◦ α)(t) ≤ (µ ◦ α)(0) −
∫ t

0
(µ ◦ α)2(s) ds .

Hence, setting w(t) := −1/(µ ◦ α)(t) > 0, we have that d
dtw ≤ −1, for almost every t ≥ 0.

Integrating from 0 to t, we get w(t) ≤ w(0) − t, which leads us to a contradiction, for large
t. This completes the proof of the lemma. �

In the next proposition, we are going to prove that f is convex at infinity.

Proposition 4.2. Let (Mn, g, f) be a complete, non compact, gradient shrinking ρ-Einstein
soliton with 0 < ρ < 1/2(n − 1), bounded curvature, nonnegative radial sectional curvature,
and nonnegative Ricci curvature. Let Σ0 ⊂M be a connected component of a regular level set
of f and let r : Mn → R be the signed distance to Σ0. Then, the following holds.

(1) If r is not bounded from above, then there exists r0 > 0, such that ∇2f is positive
semi-definite in the region {r ≥ r0}.

(2) If r is not bounded from below, then there exists r0 > 0, such that ∇2f is positive
semi-definite in the region {r ≤ −r0}.

Proof. We present the proof only in the first case, since the second one will follow by trivial
adaptations. By equations (1.1) and the expression of the Hessian of f , we have

f ′′ = −Ric(∇r,∇r) + λ+ ρR .

We claim that Ric(∇r,∇r) → 0, as r → +∞. By Corollary 3.3 and Proposition 3.5, we
have that |∇f |2 = (f ′)2 → +∞, as r → +∞. Thus, f ′(r) has a definite sign, provided r is
large enough. Again by Proposition 3.5, we deduce that f ′(r) > 0, for large enough r. Thus,
by (2.6) in Lemma 2.2, we get

0 ≤ Ric(∇r,∇r) =
Ric(∇f,∇f)

(f ′)2
=

(1− 2(n− 1)ρ)

2

〈∇R | ∇f〉
(f ′)2

=
(1− 2(n− 1)ρ)

2

R′

f ′
,
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for r large enough. To prove the claim, we assume by contradiction that limr→+∞(R′/f ′) = δ ,
for some δ > 0. On the other hand, we have that limr→+∞(R′/f ′) = 0, since R is bounded
and R′ ≥ 0. In particular, there exist two sequences (r̂k)k∈N and (řj)j∈N tending to infinity
for k, j → +∞, such that

lim
k→+∞

(R′/f ′)(r̂k) = δ and lim
j→+∞

(R′/f ′)(řj) = 0 .

Without loss of generality, we can assume that (R′/f ′)(r̂k) > δ/2 and (R′/f ′)(řj) < δ/2,
for every k, j ∈ N. We consider the following construction. We pick an element of the second
sequence and we call it řj1 . We then set k1 := min {k ∈ N : r̂k ≥ řj1}. Then, by induction,
we define ji := min {j ∈ N : řj ≥ r̂ki−1

} and ki := min {k ∈ N : r̂k ≥ řji}, for every i ≥ 1.
To fix the ideas, we observe that by construction one has that řj1 < r̂k1 < řj2 < r̂k2 < . . . and
so on. It is now immediate to deduce that the function (R′/f ′) must attain a local interior
maximum between řji and řji+1 , for every i ∈ N. We then let ri be an interior maximum
point for (R′/f ′) in [ řji , řji+1 ]. Hence, we have obtained a sequence (ri)i∈N which tends to
infinity, as i→ +∞ and such that

lim
i→+∞

(R′/f ′)(ri) = δ and 0 = (R′/f ′)′(ri) = [(R′′/f ′)− (R′/f ′)(f ′′/f ′)] (ri) ,

for every i ∈ N. To find a contradiction, we are going to use equation (2.7) in Lemma 2.2,
which in virtue of the rectifiability reads

(1− 2(n− 1)ρ) [ R′′ + R′∆r ] = R′f ′ − 2|Ric|2 + 2ρR2 + 2λR .

As Ric ≥ 0, we have that |Ric|2 ≤ R2. Therefore, since R is bounded, we have that f ′′ is
bounded as well. By (2.5) in Lemma 2.2 and the identity ∆f = f ′′ + f ′∆r, we deduce that
∆r ≤ C, for some positive constant C > 0. Combining all these observations, we obtain that
there exists a constant K > 0 such that, at the ri’s, we have

0 = (1− 2(n− 1)ρ) [ (R′′/f ′)− (R′/f ′)(f ′′/f ′) ]

≥ [ f ′ − (1− 2(n− 1)ρ)C − (1− 2(n− 1)ρ)(f ′′/f ′) ] (R′/f ′) − (K/f ′)

≥ [ f ′ −K − (K/f ′) ] (δ/2) − (K/f ′) .

This contradicts the fact that f ′(ri) → +∞, for i → +∞ and the claim is proven. As a
consequence, we have that f ′′ > 0, for r large enough. Combining this with Lemma 4.1, it is
easy to deduce the statement of the proposition. �

We employ now the previous proposition to show that the scalar curvature is f -subharmonic
at infinity. From this we deduce that R is actually constant on some open set. Hence, by
analyticity, it must be constant everywhere.

Proposition 4.3. Let (Mn, g, f) be a complete, non compact, gradient shrinking ρ-Einstein
soliton with 0 < ρ < 1/2(n − 1), bounded curvature, nonnegative radial sectional curvature,
and nonnegative Ricci curvature. Then the scalar curvature R is constant.

Proof. As in the proof of Lemma 4.1 and Proposition 4.2, we only consider the case where r,
the signed distance to Σ0, is not bounded from above. By Proposition 4.2, we have that, for
r ≥ r0, the Hessian of f is positive semi-definite. Hence, by equation (1.1),

Ric ≤ λg + ρRg .

Writing equation (2.7) as

(1− 2(n− 1)ρ) ∆R = 〈∇R|∇f〉 − 2(Rij − ρRgij − λgij)Rij
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and noticing that, if r is large enough, the term −2(Rij − ρRgij − λgij)Rij is the product of
two nonnegative quantities, we arrive to

(1− 2(n− 1)ρ) [ ∆R− 〈∇R|∇f〉 ] ≥ 2(n− 1)ρ 〈∇R|∇f〉 ≥ 0 ,

for r ≥ r0. So far, we have obtained that R is f -subharmonic at infinity, in the sense that

∆fR ≥ 0 ,

for r ≥ r0. Using the rectifiability, this condition reads

R′′ + R′∆r − R′f ′ ≥ 0 .

As we noticed in the proof of the previous proposition, under our assumptions we have
|Ric|2 ≤ R2 and ∆r ≤ C, for some positive constant C > 0. Combining this with Lemma 3.1
and Proposition 3.5, we deduce that there exists a real number r1 > 0 such that

R′′ ≥ [ f ′ − C ] R′ ≥ 0 ,

for r ≥ r1. In particular, R′(r) ≥ R′(r1) ≥ 0, for every r ≥ r1. Integrating R′, we get

R(r) = R(r1) +

∫ r

r1

R′(s) ds ≥ R(r1) + R′(r1) (r − r1) .

Since R is bounded, the only possibility is that R′(r1) = 0. Replying this argument for every
r2 ≥ r1, we deduce that R is constant in the region { r ≥ r1 }. By the analyticity of R, see
Theorem 2.4, we conclude that R must be constant everywhere. �

We observe now that the previous proposition combined with Theorem 2.3 implies that,
for 0 < ρ < 1/2(n− 1), our ρ-Einstein soliton is actually a rectifiable gradient shrinking Ricci
soliton satisfying all the assumptions in Theorem 1.1 in [12]. Hence, it is rigid and the proof
of Theorem 1.2 is complete.
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