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Abstract

We study the minimization problem for the Yang-Mills energy under �xed bound-

ary connection in supercritical dimension n ≥ 5 . We de�ne the natural function

space AG in which to formulate this problem in analogy to the space of integral cur-

rents used for the classical Plateau problem. The space AG can be also interpreted

as a space of weak connections on a �real measure theoretic version� of re�exive

sheaves from complex geometry.

We prove the weak closure result which ensures the existence of energy-minimizing

weak connections in AG .
We then prove that any weak connection from AG can be obtained as a L2 -limit of

classical connections over bundles with defects. This approximation result is then

extended to a Morrey analogue.

We prove the optimal regularity result for Yang-Mills local minimizers. On the way

to prove this result we establish a Coulomb gauge extraction theorem for weak cur-

vatures with small Yang-Mills density. This generalizes to the general framework of

weak L2 curvatures previous works of Meyer-Rivière and Tao-Tian in which respec-

tively a strong approximability property and an admissibility property were assumed

in addition.
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1 Introduction

1.1 A nonintegrable Plateau problem

1.1.1 The classical Plateau problem

Consider a smooth simple closed curve γ in R3 . The classical Plateau problem can be
formulated as follows:

�Find a surface Σ ⊂ R3 with boundary γ of smallest area�. (1.1)

Part of the problem is giving a suitable meaning to the terms �surface�, �boundary� and
�area�, in such a way as to extend the classical notions from a smooth setting to one
where a minimizer is assured to exist. The parametric approach to problem (1.1) consists
in considering immersed images of the unit disk:

Let u : D2 → R3 be a smooth immersion

such that u|∂D2 is a parameterization of γ .

One then looks for minimizers of the following area functional, de�ned in terms of coor-
dinates x, y on D2 :

A(u) :=

ˆ
D2

|∂xu× ∂yu|dxdy .

An immediate di�culty which arises is the fact that the functional A(u) has a large sym-
metry group: for all φ belonging to the group of orientation-preserving di�eomorphisms
of D2 , i.e. for any immersion u as above there holds

A(u) = A(u ◦ φ) for all φ ∈ Gplat = Di�+(D2) . (1.2)

This in�nite-dimensional symmetry group Gplat is responsible for possible loss of com-
pactness of area-minimizing sequences of maps. It is then required to break this in�nite
dimensional symmetry in order to hope for minimizing sequences to have some com-
pactness. A now classical strategy introduced by J. Douglas and T. Radò consists in
minimizing a more coercive functional, the Dirichlet energy E , for which

A(u) ≤ E(u) :=
1

2

ˆ
D2

|Du|2

instead of the area A with equality if and only if the parametrization of the immersed
disc u is conformal. Such change has the e�ect of providing �good� minimizing sequences
for A(u) (so-called Coulomb immersions).
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1.1.2 A nonintegrable analogue of the Plateau problem

Consider a smooth compact Riemannian n-manifold M with boundary and let G be
a compact connected simply connected nonabelian Lie group with Lie algebra g . We
assume that a principal G-bundle P → ∂M is �xed over the boundary of M . On P
we consider a G-invariant connection ω , which corresponds to an equivariant horizontal
n-plane distribution Q (see [32] for notations and de�nitions).

Analogously to the Plateau problem, we may then ask which is the �most integrable�
extension of P,Q to a horizontal distribution on a principal G-bundle over M . By Frobe-
nius' theorem, the condition for integrability in this case is that for any two horizontal
G-invariant vector �elds X, Y , their lie bracket [X, Y ] be again horizontal. The L2 -
error to integrability of an extension of Q over M can be measured by taking vertical
projections V of [Xi, Xj] for Xi, Xj varying in an orthonormal basis of Q :ˆ

M

∑
i,j

|V([Xi, Xj])|2 . (1.3)

Note that F (X, Y ) = V([X, Y ]) is known to be a tensor, and F is nothing but the
curvature of the connection.

From now on we will work on the associated vector bundle E → M corresponding
to the adjoint representation of G and we identify the connection form with a covariant
derivative ∇ on E . In a trivialization we have the local expression

∇ loc
= d+ A ,

where A is a g-valued 1-form on a given chart of M . The structure equation relating
curvature to connection takes the form

F
loc
= dA+ A ∧ A (1.4)

in a trivialization. Here ∧ represents a tensorization of the usual exterior product of forms
with the Lie bracket on g . In this setting the L2 -error in integrability (1.3) is identi�ed
with the Yang-Mills energy, which we consider as being a functional of the connection ∇ :

YM(∇) :=

ˆ
M

|F∇|2 . (1.5)

We observe that, similarly to the area functional in the Plateau problem, YM has again
a large invariance group given by changing coordinates in the �bers via G . The corre-
sponding group

G := {g : M → G} (1.6)

acts on the curvature form F =
∑
Fijdxi ∧ dxj via

Fij 7→ g−1Fijg, |F | 7→ |g−1Fg| = |F | ,
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where we used the fact that the canonical norm on the Lie algebra g is given by the
Killing form (see again [32]).

1.2 Natural spaces of connections and the critical dimension n =
4

The natural function spaces in which to consider the minimization of YM are identi�ed
by considering the local form of the structure equation (1.4). The curvature form F is
naturally required to be L2 in order for the energy to be �nite. In the abelian situation
G = U(1) there holds A∧A = 0 and

´
|F∇|2 =

´
|dA|2 hence W 1,2 is a natural space to

consider for the connection forms A . In a non-abelian framework the situation is more
delicate due to the nonlinearity A ∧ A . Assuming A ∈ W 1,2 the linear term dA of (1.4)
belongs to L2 , but the L2 control of the quadratic nonlinearity A ∧ A requires a priori
A ∈ L4 .

In dimensions n ≤ 4 the norm inequality underlying the Sobolev embedding W 1,2 →
L4 implies that we have both dA and A∧A in L2 . This embedding is not valid anymore
in dimensions n ≥ 5 , which are called supercritical dimensions.

Going back to the critical dimension n = 4 or to subcritical dimensions, K. K. Uhlen-
beck [51] has proved the local existence of good gauges, similar to conformal parametriza-
tions in the classical plateau problem, in which the L2 -norm of F controls the W 1,2 norm
of A by optimizing the more coercive functional

ˆ (
|F∇|2 + |d∗A|2

)
≥
ˆ
|F∇|2 .

The class in which to formulate this Yang-Mills minimization problem is in this case
the space of connections over classical bundles E → M which in each chart for some
trivialization have connection forms A belonging to W 1,2

loc :

A1,2(E) := {∇ connection on E →M s.t. in some W 2,2-gauge A ∈ W 1,2
loc } . (1.7)

The following result permits to solve the Yang-Mills-Plateau problem in this case:

Theorem 1.1 ([51],[45],[43],[37]). Let M be a compact Riemannian 4-manifold and E →
M a classical vector G-bundle. Consider a sequence of connections ∇k ∈ A1,2(E) such
that their curvature forms Fk are equibounded in L2 and such that we have the weak
convergence

Fk ⇀ F in L2 .

Then F is the curvature form of a connection ∇ ∈ A1,2(Ẽ) where Ẽ →M is a classical
vector G-bundle (possibly di�erent than E ).
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The proof of theorem 1.1 combines the local extraction of Coulomb gauges satisfying

d∗A = 0

together with a covering argument and a point removability result. We introduce the
following space, where M4 is a compact riemannian manifold, A is a g-valued 1-form
and F is a g-valued 2-form:

AG(M4) :=

 A ∈ L2, FA
D′
= dA+ A ∧ A ∈ L2 ∈ L2 ,

and loc. ∃ g ∈ W 1,2(M4, G) s.t. Ag ∈ W 1,2
loc

 ,

where Ag := g−1dg + g−1Ag is the expression of A after the gauge change g . Note that⋃
E→M4

A1,2(E) = AG(M4) ,

where the union is over all smooth G-bundles E →M4 .

One obtains as a direct consequence of Theorem 1.1 the following result:

Theorem 1.2. Let M be a compact Riemannian 4-manifold with boundary and let φ be
the connection form of a smooth connection on a classical G-bundle E∂ → ∂M . Con-
sider the space AG,φ(M) consisting of all connections ∇ ∈ AG(M) for bundles E whose
restrictions over ∂M are equal to E∂ and such that the restriction of ∇ to E∂ is locally
gauge-equivalent to d+ φ. Then the following holds:

inf

{ˆ
M

|F |2 : F
D′
= dA+ A ∧ A, A ∈ AG,φ(M)

}
(1.8)

is achieved and the minimizer is the connection form corresponding to a smooth connection
over a classical G-bundle Ẽ →M .

1.3 Supercritical dimension n = 5

As noted above, dimensions n ≥ 5 are more challenging because the nonlinearity of the
structure equation (1.4) is not controlled by the linear part anymore in the �natural�
Sobolev scpace W 1,2 . The following question was at the origin of the present work:

Question 1. Which is the correct replacement for the spaces A1,2(E) in dimension n ≥
5?

For the clarity of the presentation we restrict in this work to the case of dimension 5
and to an euclidean setting. The extension of all our results to higher dimensions n > 5 as
well as to general Riemannian manifolds will be done in a forthcoming work [40]. One of
the main achievements of the present work is to provide the following ad hoc replacement
of A1,2 in supercritical dimension:
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De�nition 1.3 (Weak connections in dimension 5). For two L2 connection forms A,A′

over B5 we write A ∼ A′ if there exists a gauge change g ∈ W 1,2(B5, G) such that
A′ = g−1dg + g−1Ag . The class of all such L2 connection forms A′ is denoted [A]. We
denote the class of L2 weak connections on singular bundles over M as follows:

AG(B5) :=


[A] : A ∈ L2, FA

D′
= dA+ A ∧ A ∈ L2

∀p ∈M a.e. r > 0, ∃A(r) ∈ AG(∂Br(p))

i∗∂Br(p)A ∼ A(r)

 .

The fact that AG is the correct function space for the variational study of YM in
5-dimensions is a consequence of the following result:

Theorem 1.4 (sequential weak closure of AG ). Let [Ak] ∈ AG(B5) be a sequence of
connections such that the corresponding curvature forms Fk are equibounded in L2(B5)
and converge weakly to a 2-form F . Then F corresponds to [A] ∈ AG(B5).

De�nition 1.3 and Theorem 1.4 are inspired by the slicing approach to the closure the-
orem for recti�able currents, initially introduced by B. White [53], R. L. Jerrard [29] and
used by L. Ambrosio and B. Kirchheim [3] for their striking proof of the closure theorem
for recti�able currents in metric spaces. The idea behind this approach is that a current
is recti�able when its slices via level sets of Lipschitz functions give a metric bounded
variation (MBV , for short) function with respect to the �at metric between the sliced
currents.
The closure theorem for recti�able currents corresponds then to a compactness result for
MBV functions, valid when the oscillations of slices are controlled via the overlying total
mass functional for sequences of weakly convergent currents. This mass-�niteness con-
dition was weakened by R. M. Hardt and T. Rivière [23], who introduced the notion of
recti�able scans.

In [38] the authors used the ideas coming from the theory of scans for de�ning the
class of weak Lp curvatures over U(1)-bundles and proving the weak closure theorem
relevant for minimizing the p-Yang-Mills energy

´
M
|F |p in supercritical dimension 3 for

1 < p < 3/2 (see also [31]). This class of weak curvatures is identi�ed via Poincaré du-
ality with the class of Lp vector �elds on 3-dimensional manifolds having integer �uxes
through �almost all spheres�.

The new di�culty with respect to such result is mentioned in Section 1.6 and amounts
to the justi�cation of the existence of gauges g : B5 → G which are W 1,2 -controlled
and solve an ODE of the form ∂tg = −Ag where A is a connection form corresponding
to [A] ∈ AG(B5) . Such existence result is based on the strong approximation result of
Theorem 1.8.
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1.4 The Yang-Mills-Plateau problem in dimension n = 5: a de�-

nition of weak traces

Since an element [A] ∈ AG(B5) is only assumed to be in L2 it seems a priori problematic
to de�ne its trace on ∂B5 in order to pose the Yang-Mills Plateau problem in AG(B5) and
take advantage of the Sequential Weak Closure Theorem 1.4. To obtain a suitable notion
of trace, the following idea introduced in [35] is used. Consider the slice equivalence class
distance

dist([A], [A′]) := min{‖A− g−1dg − g−1A′g‖L2(S4) : g ∈ W 1,2(S4, G)} .

Consider the boundary connection φ as a special slice and impose an oscillation bound
for nearby slices. More precisely, we have the following de�nition:

De�nition 1.5 (boundary trace for B5 ). For a given connection form φ ∈ A1,2(S4) we
de�ne the space of weak connection classes [A] over B5 having trace in the class [φ] as
follows:

AφG(B5) := AG(B5) ∩

{
[A] s.t. for r ↑ 1, r /∈ N

there holds dist([A(r, 0)], [φ])→ 0 .

}
, (1.9)

where N is a Lebesgue-null set and A(r, 0) is the a.e.-de�ned L2 form τ ∗rA on S4 obtained
by pulling back A via the homothety τr : S4 → ∂Br(0).

The following result whose proof is similar to the one for the abelian case [35] guar-
antees that AφG(B5) is the right space on which to de�ne the analogue of (1.8):

Theorem 1.6 (properties of the trace). The classes AφG(B5) satisfy the following prop-
erties:

1. (closure) for any 1-form φ ∈ AG(S4), the class AG,ϕ(B5) is closed under sequential
weak L2 -convergence of the corresponding curvature forms F .

2. (nontriviality) if φ, ψ are 1-forms in AG(S4) such that [φ] 6= [ψ] as gauge-
equivalence classes, then AφG,(B5) ∩ AψG(B5) = ∅.

3. (compatibility) for any smooth connection 1-form φ, ∇ is a connection of a
classical bundle over the �nitely punctured ball E → B5 \ {p1, . . . , pk} satisfying
i∗S4A ∈ [φ] if and only if the corresponding connection form A belongs to AφG(B5).

Combining now Theorem 1.4 and Theorem 1.6 we obtain the following, which is one
of the main results of the present work:

Theorem 1.7 (Yang-Mills-Plateau solution in dimension 5). For all φ ∈ AG(S4)
there exists a minimizer [A] ∈ AφG(B5) to the following Yang-Mills Plateau problem:

inf

{ˆ
B5

|F |2 : F
D′
= dA+ A ∧ A, [A] ∈ AφG(B5)

}
. (1.10)

The analogous result for the case of G = U(1) was proved in [35] using the result [38].
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1.5 Naturality of the space AφG
Our aim now is to establish a regularity result for solutions to the Yang-Mills Plateau
problem as given by Theorem 1.7, corresponding to the regularity result of Theorem 1.2
in dimension n = 4 .

The proof of the partial regularity of solutions to (1.10) goes through a more torough
description of our space AG(B5) as being the L2 -closure of the space of connections which
are smooth away from a set of isolated points. More precisely, we introduce the class

R∞,φ(B5) :=


F corresponding to some [A] ∈ AφG(B5) s.t.

∃k,∃a1, . . . , ak ∈ B5, F = F∇ for a smooth connection∇

on some smooth G-bundle E → B5 \ {a1, . . . , ak}

 . (1.11)

The strong approximation will occur with respect to the following geometric distance:

distF (F, F ′) := min{‖F − g−1Fg‖L2(B5) : g : B5 → G measurable} . (1.12)

We then have the following:

Theorem 1.8 (Naturality of AφG ). Let [A] ∈ AφG(B5) and let F ∈ L2 be the connection
form of an L2 representative A of [A]. Then there exist curvature forms Fk corresponding
to connection forms Ak , [Ak] ∈ R∞,φ(B5) such that

Ak → A in L2, Fk → F in L2 .

In particular there holds

distF (Fk, F )→ 0, as k →∞ .

The strategy of proof of Theorem 1.8 is based on the strong approximation procedure
that F. Bethuel introduced for his approximation results [7] for Sobolev maps into man-
ifolds. However recall the fact that as discussed above, unlike the case of Sobolev maps
(where ‖du‖Lp controls ‖u‖Lp∗ ), here ‖F‖L2 does not control the connection form. Hence
the strategy for �lling the �good cubes� di�ers completely from the one available in the
case of Sobolev maps and requires a completely new argument.
Pushing the comparison with the case of Sobolev maps into manifolds further, the corre-
sponding weak closure result for Sobolev maps in W 1,p(Bm, Nn) for instance is a direct
consequence of Rellich-Kondrachov's theorem, whereas in our case the analogous result,
Theorem 1.4 for weak connections, required a substantial amount of work.
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1.6 Some consequences on weak solutions to ODE

The application of the strong density theorem 1.8 in the proof of the weak closure result
theorem 1.4 goes through the result of the next proposition, which is of independent
interest: the ODE (1.13) can be solved in W 1,2(B5, G) provided the �eld A is given by a
connection form A with [A] ∈ AG(B5) .

Corollary 1.9 (controlled solutions to the radial gauge �xing ODE). Assume that to
[A] ∈ AG(B5) there corresponds a connection form A and a curvature form FA , both
of which are in L2(B5), as in the de�nition of AG(B5). If ρ is the radial coordinate
ρ(x) = 1 − |x| on B5 then for �xed t ∈ [0, 1[ there exists a solution g ∈ W 1,2(B5, G) to
the following ODE: {

∂ρg = −Aρg on B1 \ B1−t ,
g(ω, 0) = id for ω ∈ S4 .

(1.13)

In particular the form Ag := g−1dg + g−1Ag is still L2 and has zero component in the
direction ∂/∂ρ and the formula

FAg = g−1FAg (1.14)

holds in the sense of distributions, once we de�ne, FAg :
D′
= dAg + Ag ∧ Ag .

This result should be compared to the theory of [13] and [2], [12] where Lipschitz solu-
tions g : [0, T ]×Rd → Rd to the nonlinear ODE ∂tg(x, t) = X(t, g(x, t)) are found, under
the requirement that X ∈ L∞, divX ∈ L∞ . In that case the existence result is based on
the theory of renormalized solutions for the related PDE. In our setting the ODE (1.13) is
linear and the requirement for g to be a renormalized solution appears in the form (1.14)
and follows from the fact that g is ensured to be W 1,2 . On the other hand we don't need
the incompressibility condition (see e.g. the de�nition of a regular Lagrangian �ow in [12]).

What allows this new result is the fact that while in the cited works the existence is
ensured by approximating the driving �eld X by smooth ones through a molli�cation,
in our case the regularization is done via Theorem 1.8, which is better adapted to the
geometry of the �ows. Therefore �nding a nonlinear generalization of the above result
could help improving the theory of weak �ows.

1.7 Coulomb gauge extraction result for weak curvatures with

small densities

We �rst improve the result of Theorem 1.8 to an approximation result for Morrey curva-
tures, reading as follows:

Theorem 1.10 (Morrey counterpart of Theorem 2.10). There exist constants C, ε1 with
the following properties. Let F be the curvature form corresponding to an L2 connection
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form A with [A] ∈ FZ(B5). Assume that

sup
x,r

1

r

ˆ
Br(x)

|F |2 < ε1 . (1.15)

Then we can �nd curvature forms F̂k corresponding to smooth connection forms Âk such
that

‖F̂k − F‖L2(B5) → 0 , (1.16)

‖Âk − A‖L2(B5) → 0 , (1.17)

and

sup
x,r

1

r

ˆ
Br(x)

|F̂k|2 < Cε1 . (1.18)

We recall that the Morrey norms of a function f are de�ned as follows:

‖f‖Mk,p
α (Bn) :=

(
sup

x∈Bn,r>0

1

rn−αp

ˆ
Br(x)

|f |p
) 1

p

.

Thus the above theorem asserts that for curvature forms which are M0,2
2 -small on B5 ,

Theorem 1.8 can be re�ned to ensure uniform M0,2
2 bounds for the curvatures of the

approximating smooth connections, as well as the strong L2 -convergence of the connection
forms.
Continuing the previous approximation result with the Coulomb gauge extraction method
of [34] for admissible connections or the one of [47] for smooth connections in Morrey
spaces, we have the following generalization of these results to our space AG which is
clearly much larger than the space of admissible connections:

Theorem 1.11 (Coulomb gauge extraction in Morrey norm). There exist constants ε, C
depending only on the dimension such that the following holds. Let F be a weak curvature
corresponding to an L2 connection form A with [A] ∈ AG(B5) and assume that

sup
x,r

1

r

ˆ
Br(x)

|F |2 := ‖F‖2
M0,2

2 (B5)
≤ ε .

Then there exists a gauge change g ∈ W 1,2(B5, G) such that the transformed connection
form Ag = g−1dg + g−1Ag satis�es

d∗Ag = 0 in B5 , (1.19)〈
Ag,

∂

∂r

〉
= 0 on ∂B5 , (1.20)

(
sup
x,r

1

r

ˆ
Br(x)

|Ag|4
) 1

4

+

(
sup
x,r

1

r

ˆ
Br(x)

|DAg|2
) 1

2

≤ C‖F‖M0,2
2 (B5) . (1.21)
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1.8 ε-regularity result for stationary weak curvatures in AG(B5)

The main result of [34] together with Theorem 1.11 gives the ε-regularity:

Theorem 1.12 (ε-regularity). There exists a constant ε > 0 such that the following holds.
Let F be a weak curvature corresponding to an L2 connection form A with [A] ∈ AG(B5),
such that for all smooth perturbations η ∈ C∞0 (B5,∧1B5 ⊗ g) there holds

d

dt

ˆ
B5

|FA+tη|2
∣∣∣∣
t=0

= 0 (1.22)

and such that for all vector �elds X ∈ C∞0 (B5,R5) the function φt := id+ tX satis�es

d

dt

ˆ
B5

|φ∗tFA|2
∣∣∣∣
t=0

= 0 . (1.23)

Assume that
1

r

ˆ
Br(x0)

|F |2 ≤ ε .

Then F is the curvature form of a smooth connection over Br/2(x0).

Because of the above theorem we can also extend the regularity result of [34]:

Corollary 1.13 (partial regularity for stationary weak curvatures). Let F be a weak
curvature corresponding to an L2 connection form A with [A] ∈ AG(B5), satisfying (1.22)
and (1.23).
Then there exists a closed set K ⊂ B5 such that H1(K) = 0 and locally around every
point in B5 \K there exist a gauge change such that Ag is a smooth form.

1.9 Optimal regularity result for Yang-Mills Plateau minimizers

Since we work in the natural class AφG(B5) in which a Yang-Mills minimizer exists ac-
cording to Theorem 1.7, we may then apply Federer dimension reduction techniques and
obtain:

Theorem 1.14 (optimal partial regularity for Yang-Mills-Plateau minimizers). Let φ be
a smooth g-valued connection 1-form over ∂B5 . Then the minimizer of

inf
{
‖FA‖L2(B5) : [A] ∈ AG,φ(B5)

}
belongs to R∞φ (B5), i.e. the corresponding class [A] ∈ AG,φ(B5) has a representative
which is locally smooth outside a �nite set.
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An analogue of this result was proven by a completely di�erent, combinatorial tech-
nique in [36] for the case of U(1)-curvatures.

The result of Theorem 1.14 is optimal in the following sense. Recall that in [22] it was
proven that there exist smooth boundary data for harmonic maps u : B3 → S4 such that
the energy-minimizing harmonic map would need to have a bounded from below number
of singularities. By a similar procedure it is possible to �nd smooth connection forms φ
on bundles over ∂B5 for which the minimizers of (1.10) are forced to have singularities.
Therefore in general (even in the case when the connection corresponding to φ does not
have nontrivial topology) we cannot expect the minimizers of (1.10) to be smooth, and
the optimal regularity space for them is thus R∞φ (B5) .

1.10 Further remarks and conjectures

Note that the requirement (1.22) for all η ∈ C∞0 (B5,∧1B5 ⊗ g) is equivalent to the fact
that the equation

d(∗F ) + [∗F,A] = 0 (1.24)

holds in the sense of distributions. We say that [A] ∈ AG(B5) is a weak Yang-Mills con-
nection if (1.24) holds in the sense of distributions.

The related works [34], [49], [47] proved regularity results analogous to our Corollary
1.13 under stronger assumptions, e.g. requiring the limit connection to be approximable
in some sense. Our main contribution in this direction is indeed the approximability
Theorem 1.10, which allows to extend such results to the space of weak connections on
singular bundles AG(B5) .

As a consequence of our strong convergence result as in Theorem 1.10 we obtain the
following

Proposition 1.15 (Bianchi identity for weak curvatures). Assume that A,F are the L2

curvature and connection forms corresponding to a weak connection class [A] ∈ AG(R5).
Then the equation

dAF := dF + [F,A] = 0 (1.25)

holds in the sense of distributions.

Take now G = U(n) . Observe that in this case we have1

d (tr(F )) = 0 in D′(B5) ,

1 This was not the case for the space of weak U(1) -curvatures FZ(B3) introduced in [38].
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but if [A] ∈ R∞(B5) then it is not true anymore, as in the smooth case, that the form
d (tr(F ∧ F )) representing the second Chern classis equal to zero. We have indeed

d (tr(F ∧ F )) = 8π2

k∑
i=1

diδai in D′(B5) ,

where

di =

ˆ
∂Br(ai)

tr(F ∧ F ) ∈ Z

represent the degrees of topological singularities situated at the points a1 . . . , ak . For a
general element [A] ∈ AG(B5) one can then ask �how many� such topological singularities
exist.
Following the procedure of [31], [30] (in which our approximation theorem is stated as a
conjecture) one obtains using the new result of Theorem 1.8 the following:

Theorem 1.16 (see [30],[31]). If F is a curvature form of a connection A with [A] ∈
AG(B5) then there exists a recti�able integral 1-current I such that

∂I =
1

8π2
d(tr(F ∧ F )), M(I) ≤ C‖F‖L2(B5).

where C is a universal constant.

Following the seminal works of Brezis, Coron and Lieb [10] and of Giaquinta, Modica
and Sou£ek [19], we can de�ne the relaxed energy for connection classes [A] ∈ AG(B5)
in terms of their curvature form F as a supremum is taken over 1-Lipschitz functions ξ
over B5 :

YMrel(F ) :=

ˆ
B5

|F |2 + sup
|dξ|∞≤1

[ˆ
B5

dξ ∧ tr(F ∧ F )−
ˆ
S4

ξ tr(F ∧ F )

]
. (1.26)

In [26] it was proven that the minimization of YMrel over R∞,φ(B5) presents a gap
phenomenon analogous to the celebrated one in the theory of harmonic maps [9], [8].
We expect the relaxed energy to be lower-semicontinuous in AG(B5) , in particular it is
natural to ask :

∀φ ∈ AG(S4) is inf
AφG(B5)

YMrel(FA) achieved ?

Using the relaxed energy

YMrel(F,G) =

ˆ
B5

|F |2 + sup
|dξ|∞≤1

ˆ
B5

dξ ∧ [tr(F ∧ F )− tr(G ∧G)] ,

and following the main lines of [42] one should be able to construct weak Yang-Mills
curvatures F corresponding to [A] ∈ AG(B5) of arbitrarily small Yang-Mills energy and
such that the topological singular set is dense:

spt (d (tr(F ∧ F ))) = B5 .
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In other words, one should be able to construct everywhere discontinuous Yang-Mills con-
nections.

We may de�ne AG(Bn) in a stratifying way : by requiring that A ∈ L2 , F ∈ L2 and
for all centers x and almost all radii r > 0 the restriction i∗∂Br(x)A belongs, up to measur-

able gauge and rescaling, to AG(Sn−1) . This de�nition extends to compact Riemannian
n-manifolds by requiring A to be locally equivalent to a form in AG(Bn) .

We prove in a future work [40] that the techniques and proofs of our main results in the
present paper extend to general compact riemannian manifolds and to higher dimension.
It is then natural to adress the regularity conjecture made by Tian [49] for Ω-self dual
curvatures to our AG -type spaces:

Conjecture 1 (Tian's regularity conjecture). Assume Ω is a closed di�erential
(n − 4)-form on a compact n-dimensional Riemannian manifold M . Curvature forms
corresponding to classes [A] ∈ AG(M) satisfying Ω ∧ F = ∗F have a singular set of
Hausdor� dimension ≤ n− 6.

Since Ω-instantons belonging to AG are stationary, up to now we can only prove using
Corollary 1.13 that Hn−4(sing(F )) = 0 . The resolution of this conjecture would be of
particular geometric interest on Calabi Yau 4-folds where Ω is a parallel form invariant
by the special holonomy (see [16] and [49]).

1.11 Plan of the paper

The paper is organized as follows.
In Section 2 we prove the approximation results of Theorem 1.8 and of Theorem 1.10.

In Section 3 we prove an extension of the point removability result in dimension 4 which
is analogous to the result of [51] but relaxes the hypotheses that the connections are
Yang-Mills, utilizing instead the theory from [43] based on lorentz space techniques and
on the Coulomb gauge equation. This allows to obtain compactness result for general
sequences of connections, which was not present in the literature before, and is needed in
the proof of weak closure of section 4.
In Section 4 we prove Proposition 1.9 and the weak closure theorem 1.4.
In Section 5 we prove the regularity results of Theorem 1.12, Corollary 1.13 and Theorem
1.14. At the beginning of the section we include a short proof of Proposition 1.15.
In Section 6 we prove the properties of the trace stated in Theorem 1.6.
The Appendix A is dedicated to a modi�cation of the Coulomb gauge extraction of K.
Uhlenbeck [51] which is needed in Section 2 for the proof of the approximation under
Morrey norm smallness of Theorem 1.10.

14



2 Approximation of nonabelian curvatures in 5 dimen-

sions

In this section we prove the fact that weak curvatures F corresponding to classes [A] ∈
AG(B5) can be strongly approximated up to gauge by smooth curvatures on bundles with
�nitely many defects. We consider the class

R∞(B5) :=


F curvature form s.t. ∃k,∃a1, . . . , ak ∈ B5,

F = F∇ for a smooth connection∇

on some smooth G-bundle E → B5 \ {a1, . . . , ak}

 . (2.1)

2.1 Approximation on balls with small boundary energy

In this section we prove the extension result which will help to de�ne our approximating
connections. We consider the scale r = 1 .

Proposition 2.1. Let F ∈ L2(B5
2,∧2R5 ⊗ g) and A ∈ L2(B5

2,∧1R5 ⊗ g) be such that in
the sense of distributions

F = dA+ A ∧ A on B5
2 .

Fix also a constant F̄ ∈ ∧2R5 ⊗ g and a constant Ā ∈ ∧1R5 ⊗ g. There exists a constant
ε0 > 0 independent of the other choices such that if

ˆ
S4

|F |2 < ε0,

ˆ
S4

|A|2 < ε0, |Ā|2 < ε0

then there exists Â ∈ L2(B5
2,∧1R5 ⊗ g) and ĝ : B5 → G such that:

• i∗S4Â = i∗S4A and Â = A outside B5 ,

• ĝ(Â) is smooth in the interior of B5 ,

• there holds

‖dÂ+ Â ∧ Â− F̄‖2
L2(B5) . ε0(‖F̄‖2

L2(B5) + ‖F‖2
L2(S4)) + ‖F − F̄‖2

L2(S4) . (2.2)

and
‖Â− Ā‖L2(B5) ≤ C‖A− Ā‖L2(S4) . (2.3)

Moreover we have that

• If F ∈ AG then FÂ ∈ AG ,
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• If Ui ⊂ B5
2 is open and i∗S4A is continuous on Ui ∩ S4 then Â, ĝ are continuous on

Ui ∩ B5 .

Proof. Step 1. Coulomb gauge on the boundary. Let g be the change of gauge g given
by Theorem A.1 such that{

d∗S4π(Ag) = d∗S4(g−1dg + π(g−1Ag)) = 0 ,

‖Ag‖W 1,2(S4) ≤ C(‖F‖L2(S4) + ‖A‖L2(S4)) .
(2.4)

From the equation de�ning Ag , namely

Ag = g−1dg + g−1Ag ,

we obtain (in our notation we identify 1-forms and vector �elds using the metric)

∆S4g = d∗S4(g Ag − Ag)

= dg · Ag + (g − id) d∗S4Ag + d∗S4Ag

−d∗S4 [(A− Ā) g]− d∗S4 [Ā (g − id)]− d∗S4Ā

= dg · Ag + (g − id) d∗S4Ag − d∗S4 [(A− Ā) g]− d∗S4 [Ā (g − id)] +

+d∗S4

(
5∑

k=1

i∗S4dxk

 
S4

〈i∗S4(Ā− Ag), i∗S4dxk〉

)

= dg · Ag + (g − id) d∗S4Ag − d∗S4 [(A− Ā) g]− d∗S4 [Ā (g − id)] +

+5
5∑

k=1

xk

 
S4

〈i∗S4(Ā− g−1Ag), i∗S4dxk〉 ,

where in the last row we used the fact that
´
S4〈i∗S4(g−1dg), i∗S4dxk〉 = 0 . Note that if ḡ

is the average of g on S4 taken in R5 , then using the mean value formula there exists
x ∈ S4 such that |g(x) − ḡ| ≤ C‖g − ḡ‖L2 and up to changing g to gg0 where g0 is a
constant rotation, we may also assume g(x) = id . Now by elliptic estimates and using
the embedding W−1,2 → L4/3 and the Hölder estimate ‖ab‖L4/3 ≤ ‖a‖L2‖b‖L4 we deduce:

‖dg‖2
L2(S4) . ‖dg‖2

L2‖Ag‖2
L4 + ‖g − id‖2

L4‖Ag‖2
L4

+ ‖A− Ā‖2
L2 + ‖g − id‖2

L4‖Ā‖2
L2 + ‖Ā− A‖2

L2‖g − id‖2
L2 .

Utilizing the Sobolev inequality ‖g − id‖L4 . ‖dg‖L2 and the facts that

‖Ag‖2
L4 . ‖F‖2

L2 + ‖A‖2
L2 . ε0 ,

‖Ā‖2
Lp . ε0 ,
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we absorb the terms not containing A− Ā from the right hand side to the left hand side.
For ε0 > 0 small enough we thus obtain

‖dg‖L2(S4) ≤ C‖A− Ā‖L2 . (2.5)

We have using (2.5) and the fact that F is constant

ˆ
S4

|g−1i∗S4Fg − i∗S4F |2 ≤ 4 |F |2
ˆ
S4

|g − id|2 . ε0 ‖F‖2
L2(B5

2) .

Since FAg = g−1 F g , using the previous identity we obtain

ˆ
S4

|FAg − i∗S4F |2 . ε0 ‖F‖2
L2(B5) +

ˆ
S4

|F − i∗S4F |2 . (2.6)

Using now the last line of (2.4) we obtain

ˆ
S4

|FAg − dAg|2 ≤
ˆ
S4

|Ag|4 . ‖F‖4
L2(S4) + ‖A‖4

L2(S4) .

Combining this with (2.6) we obtain

´
S4 |dAg − i∗S4F |2 . ε0 ‖F‖2

L2(B5) +
´
S4 |F − i∗S4F |2+

+‖F‖4
L2(S4) + ‖A‖4

L2(S4) .
(2.7)

Step 2. Extension to the interior. For any 1-form η in W 1,2(S4) we denote by η̃ the
unique solution of the following minimization problem

inf

{ˆ
B5

|dC|2 + |d∗R5C|2 dx5 C ∈ W 1,2(∧1B5) i∗S4C = η

}
. (2.8)

A classical argument shows that it is uniquely given by
d∗R5 η̃ = 0 in B5 ,

d∗R5 (dη̃) = 0 in B5 ,

i∗S4 η̃ = η on ∂B5 ,

(2.9)

and one has
‖η̃‖L5(B5) ≤ C ‖∇η̃‖W 3/2,2(B5) ≤ C ‖η‖W 1,2(S4) . (2.10)

Let

B :=
∑
i<j

Fij
xi dxj − xj dxi

2
. (2.11)
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Observe that {
d∗R5B = 0 in B5 ,

d∗R5 (dB) = 0 in B5 .

Thus B is the solution to (2.8) for its restriction to the boundary : i∗S4B

˜i∗S4B = B .

Observe that < B, dr >≡ 0 and d∗R5B = 0 therefore

d∗S4 (i∗S4B) ≡ 0 on S4 . (2.12)

We apply the same extension technique η 7→ η̃ to η = π(Ag) obtaining a 1-form π̃(Ag)
satisfying the analogues of (2.9). We also de�ne the constant 1-form

Ag :=
5∑

k=1

dxk

 
S4

〈Ag, i∗S4dxk〉

and we note
Ãg = π̃(Ag) + Ag .

Step 3. Estimates on the extended curvatures. Note that dπ(Ag) = dAg since Ag is
constant. Using (2.5), (2.12) and (2.7) we have that by Hodge inequality

‖π(Ag)− i∗S4B‖2
W 1,2(S4) ≤ C

´
S4 |d(π(Ag)− i∗S4B)|2

=
´
S4 |dAg − i∗S4F |2 ≤ C ε0 ‖F‖2

L2(B5)+

+C
´
S4 |F − i∗S4F |2 + C ‖F‖4

L2(S4) + C ‖A‖4
L2(S4) .

(2.13)

Combining now (2.10) and (2.13) we obtain

‖dÃg − F‖2
L2(B5) = ‖dπ̃(Ag)− F‖2

L2(B5)

≤ C
´
S4 |d(Ag − i∗S4B)|2 ≤ C ε0 ‖F‖2

L2(B5)+

+C
´
S4 |F − i∗S4F |2 + C ‖F‖4

L2(S4) + C ‖A‖4
L2(S4) .

(2.14)

Using (2.10) again, we obtain

‖Ãg ∧ Ãg‖2
L2(B5) . ‖Ãg‖4

L4(B5) ≤ ‖Ag‖4
W 1,2(S4) ≤ C ‖F‖4

L2(S4) + C ‖A‖4
L2(S4) . (2.15)

Combining (2.14) and (2.15) we obtain

‖dÃg + Ãg ∧ Ãg − F‖2
L2(B5) ≤ C ε0 ‖F‖2

L2(B5)+

+C
´
S4 |F − i∗S4F |2 + C ‖F‖4

L2(S4) + C ‖A‖4
L2(S4) .

(2.16)
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Step 4. Correcting the restriction on the boundary. Extend now g radially in B5 and
denote by ĝ this extension. We have using (2.5)

´
B5 |ĝ−1F ĝ − F |2 ≤ 4 |F |2

´
B5 |ĝ − id|2 dx5

≤ C ‖F‖2
L2(B5)

´
S4 |g − id|2 ≤ C ε0 ‖F‖2

L2(B5) .
(2.17)

Combining (2.16) and (2.17) gives

‖dÃg + Ãg ∧ Ãg − ĝ−1F ĝ‖2
L2(B5) ≤ C ε0 ‖F‖2

L2(B5)+

+C
´
S4 |F − i∗S4F |2 + C ‖F‖4

L2(S4) + C ‖A‖4
L2(S4) .

Denote Â := (Ãg)ĝ−1 := ĝÃgĝ−1 + ĝd ĝ−1 . Observe that with this notation one has

FÂ = ĝ FAg ĝ
−1 .

This one form Â extends A in B5 , there is a gauge in which it is smooth and we have
the desired estimate (2.2). Note also that i∗S4 [Â = i∗S4(Ãg)ĝ−1 ] = (i∗S4Ãg)ĝ−1 = i∗S4A . Then

de�ne Â = A, ĝ = g outside B5 . Since i∗S4(Â−A) = 0 we obtain via integration by parts
that the distributional expression of FÂ is L2 .
Step 5. Verifying the compatibility conditions. We notice that if i∗S4A is C0 on Ui ∩ S4

then so is any of its Coulomb gauges g by Proposition 2.2 below and thus the radial
and harmonic extensions Â, ĝ are continuous up to the boundary, verifying our second
compatibility statement.
For the �rst statement, suppose given S = ∂B(x, ρ) such that i∗SA ∈ AG(S) , i∗SF ∈ L2 .
De�ne S+ := S ∩ B5 . Consider a local W 1,2 gauge gi on a chart Ui of S intersecting
∂S+ such that g+(i∗S+Â) is W 1,2 on Ui . Then giĝ

−1(Ãg) is W 1,2 on Ui ∩S+ and has the

same trace as gi(A) on ∂S+ . Thus gi(Â) is also W 1,2 on the whole of Ui as desired.
Step 6. Veri�cation of (2.3). We now use the formula for Â from the previous step, as
well as the estimates (2.15) and (2.5) to prove the following sequence of estimates:

‖Â− Ā‖2
L2(B5) .

ˆ
B5

|dĝ|2 + ‖ĝ − id‖2
L4(L4)‖Ā− Ãg‖2

L4(B5)

. (1 + ε0)
(
‖dg‖2

L2(S4) + ‖g − id‖2
L4(S4)

)
. ‖A− Ā‖L2(S4) .

This concludes the proof.

The following result was used in Step 5 above:

Proposition 2.2 ([30] Prop. 3.4). , Suppose that B is a smooth connection on a 4-
dimensional manifold M and that AC = g−1dg + g−1Bg is a W 1,2 Coulomb gauge then
also g (and thus BC ) is smooth.
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The proof of the above proposition goes as follows: by Lorentz space theory (see [43])
we obtain that if AC , B ∈ W 1,2, d∗AC = 0 then g ∈ W 2,2 ∩C0 (this is analogue to the 2-
dimensional Wente lemma). This regularity for g allows to apply classical elliptic theory
to the elliptic system issued from d∗(g−1dg) = d∗(g−1ACg) and to conclude by bootstrap.

2.1.1 Approximation under a smallness condition on F only

In this section we state a modi�cation of Proposition 2.1 which can be applied when only
a bound on F and not one on A is available. This modi�cation will prove useful for
Theorem 1.10.

Proposition 2.3 (modi�ed version of Prop. 2.1). Let F ∈ L2(B5
2,∧2R5 ⊗ g) and A ∈

L2(B5
2,∧1R5 ⊗ g) be such that in the sense of distributions

F = dA+ A ∧ A on B5
2 .

Fix also a constant F̄ ∈ ∧2R5 ⊗ g. There exists a constant ε0 > 0 independent of the
other choices such that if ˆ

S4

|F |2 < ε0

then there exists Â ∈ L2(B5
2,∧1R5 ⊗ g) and ĝ : B5 → G such that:

• i∗S4Â = i∗S4A and Â = A outside B5 ,

• ĝ(Â) is smooth in the interior of B5 ,

• there holds
‖dÂ+ Â ∧ Â‖2

L2(B5) . ‖F‖2
L2(S4) (2.18)

and
‖Â‖L2(B5) ≤ ‖F‖2

L2(S4) + ‖A‖2
L2(S4) . (2.19)

Proof. We follow the proof of Proposition 2.1, with slightly less re�ned estimates.
Step 1. Classical Coulomb gauge on the boundary. Let g be the Coulomb gauge as
constructed by Uhlenbeck [51], i.e. such that{

d∗S4Ag = d∗S4(g−1dg + g−1Ag) = 0 ,

‖Ag‖W 1,2(S4) ≤ C‖F‖L2(S4) .

We deduce using the de�nition of Ag that

‖dg‖2
L2(S4) ≤ C

(
‖Ag‖2

L2(S4) + ‖A‖2
L2(S4)

)
. ‖F‖2

L2(S4) + ‖A‖2
L2(S4) .
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Steps 2-3. Estimates for the extensions. We de�ne B as in Proposition 2.1 and Ãg

will be the similar extension of Ag . By elliptic and Hodge estimates using the fact that
d∗S4Ãg = 0 we obtain

‖dÃg‖L2(B5) . ‖F‖2
L2(S4)

and
‖Ãg ∧ Ãg‖L2(B5) ≤ ‖Ãg‖4

L4(B5) . ‖Ag‖4
L4(S4) . ε0‖F‖2

L2(S4) .

These estimate give
‖FÃg‖

2
L2(B5) . ‖F‖2

L2(S4) .

Step 4. Correcting the extension on the boundary. We consider the harmonic extension
g̃ to g . Note that W 1,2(B5, G) is the strong W 1,2 -closure of C∞(B5, G) since π2(G) = 0 ,
therefore the extension exists and is smooth. We also have the estimates

‖g̃ − id‖2
L2(B5) . ‖dg̃‖2

L2(S4) . ‖dg‖2
L2(S4) . ‖F‖2

L2(S4) + ‖A‖2
L2(S4) ,

thus if we de�ne Â = g̃Ãgg̃−1 + g̃dg̃−1 it follows that

‖Â‖2
L2(B5) . ‖Ãg‖2

L2(B5) + ‖dĝ‖2
L2(B5

. ‖F‖2
L2(S4) + ‖A‖2

L2(S4) .

2.2 Smoothing in 4-dimensions

Before applying the above extension result we will always use the following classical result
for p = 2, n = 4, X = S4 :

Lemma 2.4. Let p ≥ n/2 and let A be a W 1,p connection over an n-dimensional
manifold X . Let K be a (possibly empty) compact set on which A is C0 . Then there
exists a sequence Aη of C0 connections over X such that Aη|K = A|K and

lim
η→0
‖Aη − A‖W 1,p(X) = 0 and lim

η→0
‖FAη − FA‖W 1,p(X) = 0 .

Proof. If we had just functions f, fη : X → ∧1Rn ⊗ g in our statement, then the result
would be classical (even without the restriction on p) and it would su�ce to mollify f in
order to obtain approximants fη = f ∗ ρη where ρη is a scale-η smooth molli�er.
The problem which we face is just the fact that A is not globally de�ned: we have instead
local expressions Ai in the chart Ui , and we must mollify Ai to Ai,η for which Ai,η =
g−1
ij dgij + g−1

ij Aj,ηgij := gij(Aj,η) are still true. We use a partition of unity (θi)i adapted
to the charts Ui and de�ne ρη(x) = η−nx ρ(x/ηx) , where ηx := min{η, dist(x,K)/2} . Then
we de�ne

(Aη)i = θiAi ∗ ρη +
∑
i′ 6=i

θi′gii′(Ai′ ∗ ρη) .
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By the cocycle condition gii′gi′j = gij we obtain the desired (Aη)i = gij((Aη)j) . The
derivatives of θi enter the estimate of ‖Aη−A‖W 1,p(X) introducing a possibly huge L

∞ fac-
tor, however this factor is independent on η . We therefore have limη→0 ‖Ai,η−Ai‖W 1,p = 0 .
The restriction on the exponent p is needed in to prove the convergence of curvatures.
This is based on the following inequality:

‖FA − FB‖Lp . ‖dA− dB‖Lp + ‖(A−B) ∧ A‖Lp + ‖(A−B) ∧B‖Lp
. ‖DA−DB‖Lp + ‖A−B‖L2p(‖A‖L2p + ‖B‖L2p) .

We are able to conclude using the W 1,p -convergence of the Aη because we have the
Sobolev embedding W 1,p ↪→ L2p valid precisely when p ≥ n/2 . We leave the details of
the proof to the reader.

2.3 Good grids and good balls

In order to detect the regions where to apply the approximation step of the previous section
we construct controlled families of balls which depend on F and on its L2 connection A
and are used for the approximation.

2.3.1 Good grids

We thus de�ne our basic object:

De�nition 2.5. Assume that Λ ⊂ R5 is a discrete set and 1 < α < 2 is a constant
such that the balls B1(p), p ∈ Λ cover R5 and for each p ∈ Λ the only ball of the form
Bα(q), q ∈ Λ covering p is the one with q = p. Fix a scale r > 0. A collection of balls
Bi = Bri(xi) with ri ∈ [r, αr] and {xi} = rΛ∩B5 will be called a grid of balls of scale r .

Λ, α ∈]1, 2[ as above can be found, e.g. we may take Λ to be a body-centered cubic
lattice:

Λ = β−1
[
2Z5 ∪ ((1, . . . , 1) + 2Z5)

]
, α ∈]1, 2/β[, β ∈]

√
5/2, 2[ .

α,Λ will be �xed from now on; their only role is to ensure that for any choice of ri in
the allowed the balls of the grid cover B5 . We can choose the ri above such that a good
control on the boundary of our grids is available:

Proposition 2.6. Let F ∈ L2(B5,∧2R5 ⊗ g) and A ∈ L2(B5,∧1R5 ⊗ g). For each �xed
scale r > 0 pick the �nitely many radii ri ∈ [r, αr] uniformly and independently at ran-
dom.

There exist a constant C depending only on the dimension and a modulus of continuity
o(r) depending only on F such that at �xed r the following hold with positive probability:

r
∑
i

ˆ
∂Bi

|F |2 ≤ C

ˆ
B5

|F |2 , (2.20)
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r
∑
i

ˆ
∂Bi

|A|2 ≤ C

ˆ
B5

|A|2 (2.21)

and, with the notation F i :=
ffl
Bαr(xi)

F ,

r
∑
i

ˆ
∂Bi

|F − F i|2 ≤ o(r) , (2.22)

r
∑
i

ˆ
∂Bi

|A− Ai|2 ≤ o(r) . (2.23)

Proof. Since the annuli Bαr(xi)\Br(xi) can be divided into N families having no overlaps
we obtain ˆ αr

r

(∑
i

ˆ
∂Bρ(xi)

|F |2
)
dρ . ‖F‖2

L2(B5) ,

therefore for randomly picked ri ∈ [r, αr]

r
∑
i

ˆ
∂Bri (xi)

|F |2 . ‖F‖2
L2(B5)

with probability ≥ 1−X , where C depends on X , which in turn will be �xed later. This
will give (2.22), (2.23). The same reasoning can be applied also to A and we obtain that
uniformly chosen ρ ∈ [r, 2r] satis�es a (2.21) with probability ≥ 1−X .

Fix now smooth approximants Gk to F as a function in L2(B5,Λ2R2 ⊗ g) : assume
that ˆ

B5

|Gk − F |2 ≤ 1

k
.

Take o∞(r) = mink ok(r) for ok(r) := 1
k

+ r2‖Gk‖C1 . For r such that o∞(r) = ok(r) we
apply the above argument to Gk − F and obtain

r
∑
i

ˆ
∂Bri (xi)

|Gk − F |2 .
ˆ
B5

|Gk − F |2

with probability ≥ 1−X . Let Ḡk
i :=

ffl
Bαr(xi)

Gk . By a straightforward computation and
by Jensen's inequality we have, independently of r ,

r
∑
i

ˆ
∂Bri (xi)

|Ḡk
i − F̄ |2 .

∑
i

ˆ
Bαr(xi)

|Ḡk
i − F̄i|2

.
∑
i

ˆ
Bαr(xi)

|Gk − F |2

.
1

k
.
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We then estimate by triangle inequality between F, F̄ , Ḡk, Gk

r
∑
i

ˆ
∂Bri (xi)

|F − F̄i|2 .
1

k
+ r

∑
i

ˆ
∂Bri (xi)

|Gk − Ḡk
i |2 . o∞(r) .

This shows (2.22) once we take o(r) = C o∞(r) . We proceed similarly to obtain also
(2.23) with probability higher than X . For each r each one of the events (2.20), (2.21),
(2.22), (2.23) fails with probability ≤ X thus their intersection fails with probability
≤ 4X . We thus choose X > 1/4 and conclude the proof.

The conditions obtained via Proposition 2.6 are contemporarily valid for a positive
probability on uniformly chosen radii, thus the new condition of having a W 1,2 represen-
tative of the connection class on each ∂Bρ(xi) keeps them valid too.

2.3.2 Good grids for Morrey curvatures

We denote ‖ · ‖M the following Morrey norm:

‖f‖2
M := sup

x,r

1

r

ˆ
Br(x)

|f(y)|2dy .

We next extend the statement of Proposition 2.6 to a situation where we have a Morrey
control on F :

Proposition 2.7 (extension of Prop. 2.6). Consider a grid as in De�nition 2.5. Let
F ∈ L2(B5,∧2R5 ⊗ g) and A ∈ L2(B5,∧1R5 ⊗ g). For each �xed scale r > 0 pick the
�nitely many radii ri ∈ [r, αr] uniformly and independently at random.

There exist a constant C depending only on the dimension and a modulus of continuity
o(r) depending only on F such that at �xed r we have (2.22), (2.23) and the following,
with positive probability:

ˆ
∂Bi

|F |2 ≤ C
1

ri

ˆ
Bi

|F |2 for all i (2.24)

and ˆ
∂Bi

|A|2 ≤ C
1

ri

ˆ
Bi

|A|2 for all i . (2.25)

Remark 2.8. In particular if ‖F‖2
M < ∞ then we directly obtain from (2.24) that

‖F‖2
L2(∂Bi)

≤ C‖F‖2
M .
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Proof. We note that in the end of the proof of Proposition 2.6 we had obtained that the
estimates (2.22) and (2.23) hold contemporarily with probability at least 1−2X . In other
words the estimates hold once we choose rk/r ∈ Ik ⊂ [1, α] and

∏
k |Ik| > 1 − 2X . In

particular all of the Ik satisfy
1 ≥ |Ik| ≥ 1− 2X . (2.26)

We then obtain by Chebychev's inequality that

|YC,k| :=

∣∣∣∣∣
{
ρ :

ˆ
∂Bρ(xk)

|F |2 > C

αr

ˆ
Bαr(xk)

|F |2
}∣∣∣∣∣ ≤ αr

C
(2.27)

by recalling that α is bounded from above depending only on the dimension and using
(2.26) we see that there exists a choice

C ∼ 1

1− 2X

which will ensure that for each k there holds |YC,k| ≤ |Ik|r/2 . Since the number of balls
is �nite, with positive probability for each k we have (2.22), (2.23) and

ˆ
∂Bρ(xk)

|F |2 ≤ C

αr

ˆ
Bαr(xk)

|F |2 ,

which implies (2.24). We may similarly ensure (2.25) as well, up to increasing C by a
controlled factor.

2.3.3 Good and bad balls

We intend to apply Proposition 2.1 to Bi belonging to grids as in Proposition 2.6, for F,A
as in the de�nition of AG(B5) and for F̄ = F̄i on Bi with the notations of Proposition
2.6. In this situation (rescaled versions of) the estimates of Proposition 2.1 are valid for
all but few �good� balls. We start by �xing the de�nition of �good� and �bad�:

Lemma-De�nition 2.9. Fix a constant δ > 0 and a scale r > 0. Let A,F,Bi, o(r) be
as in Proposition 2.6. We say that Bi is a δ -good ball with respect to A,F, o(r) if the
following bounds hold: ˆ

∂Bi

|F |2 ≤ δ , (2.28)

1

r2

ˆ
∂Bi

|A|2 ≤ δ , (2.29)

1

r2

ˆ
∂Bi

|F − F i|2 ≤ o(r) , (2.30)
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1

r2

ˆ
∂Bi

|A− Ai|2 ≤ o(r) . (2.31)

In this case we will denote Gr the set of good balls and Br the set of the remaining (so-
called �bad�) balls of scale r .

The cardinality of Br can then be estimated as follows:

#Br .
‖F‖L2(B5)

δr
+
‖A‖L2(B5)

δr3
+

1

r
.

In particular the total volume of the bad balls vanishes as r → 0.

Proof. The second statement follows from the �rst because the volume of each bad ball
is ∼ r5 . To prove the estimate on #Br we separately estimate the sets Bi of cubes for
which (gi) fails.
Using Proposition 2.6 we then obtain

δ#B1 .
∑
Bi∈B1

ˆ
∂Bi

|F |2 . 1

r

ˆ
B5

|F |2 ,

δr2#B2 .
∑
Bi∈B2

ˆ
∂Bi

|A|2 ≤ 1

r

ˆ
B5

|A|2 ,

o(r)#B3 .
∑
Bi∈B3

ˆ
∂Bi

|F − F i|2 ≤
o(r)

r
,

o(r)#B4 .
∑
Bi∈B4

ˆ
∂Bi

|A− Ai|2 ≤
o(r)

r
.

Since B = ∪4
i=1Bi we obtain the desired result.

Going back to the r scale by pull backing all forms to the good ball Ci
r using the

dilation map x→ r−1x , denoting Âr = r−1
∑5

j=1 Âj(r
−1x) dxj ,

´
Cir
|dÂr + Âr ∧ Âr − F |2 dx5 ≤ C δ

´
Cir
|F |2 dx5+

+C r
´
∂Cir
|F − i∗∂CirF |

2 dvol∂Cir + C r δ
´
∂Cir
|F |2 dvol∂Cir .

Summing up over the good balls - index i - using (2.20) and (2.22) we �nally obtain the
desired estimate ∑

i∈G

ˆ
Cir

|dÂr + Âr ∧ Âr − F |2 dx5 ≤ C δ + or(1) .
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2.3.4 Good balls in the Morrey case

We now provide a version of the previous results useful for the approximation with bounds
on Morrey norms. The relevant new feature is that there exists a constant ε1 depending
only on the underlying manifold (in our case B5 ) such that when the Morrey norm of F
satis�es

‖F‖2
M(B5) ≤ ε1 , (2.32)

from Remark 2.8 we automatically have the conditionˆ
S4

|F |2 < ε0 .

In this case we will nevertheless �x δ > 0 much smaller than ε0 , depending on r . The
gain of the Morrey bound will be that under condition (2.32) are able to apply Proposition
2.3 in order to perform a controlled smooth extension on δ -bad balls.

2.4 Proof of Theorem 1.8

We are going to prove the following result:

Theorem 2.10. Let F be the distributional curvature corresponding to an L2 connection
form A with [A] ∈ AφG(B5). Then there exist Fn ∈ R∞,φ(B5) such that

‖F − Fn‖L2(B5) → 0, as n→ 0 .

Moreover we can also insure at the same time

‖A− An‖L2(B5) → 0, as n→ 0 .

Proof. The proof consists in giving an �approximation algorithm� for F , which is divided
into several steps. After each step the approximant connection obtained at that point will
be denoted by Â , therefore this notation represents di�erent connection forms at di�erent
steps of the approximation.

Step 1

Start with F,A as in the de�nition of AG(B5) and �x r > 0 . Apply Proposition 2.6 and
choose well behaved radii ri such that (2.20), (2.21) and (2.22) hold. We may also assume
that i∗∂BiA ∈ AG(∂Bi) for each i , as remarked immediately after Proposition 2.6.

Step 2

Apply De�nition-Lemma 2.9 and de�ne the families Gr,Br with respect to the data from
Step 1 and for a small constant δ > 0 to be �xed later.
The family Gr can be partitioned into subfamilies of disjoint balls G1, . . . ,GN , where N
depends only on the discrete set Λ and on the constant α �xed in De�nition 2.5.
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Step 3

Fix Bi = B(xi, ri) ∈ G1 . Let (i∗∂BiA)gBi ∈ AG(∂Bi) , as in the de�nition of AG(∂Bi) .

De�ne then ABi := τ ∗BiA,FBi := τ ∗BiF , where τ : B5 → Bi is the homothety τ(x) =
xi + rix . From the estimates (2.28), (2.29) we obtainˆ

S4

|FBi |2 < δ,

ˆ
S4

|ABi |2 < δ .

We require δ to be smaller than the constant ε0 of Proposition 2.1. Combining with
(2.31) and requiring r to be su�ciently small, we also obtain

|Āi|2 < ε0 .

We may thus apply Proposition 2.1 to A = ABi , F = FBi , F̄ = F̄i, Ā = Āi . We then pull
back the approximants to Bi via τ

−1
Bi

and we denote the resulting approximant connection

by Â . The error estimate (2.2) of Proposition 2.1 becomes:

‖dÂ+ Â ∧ Â− F̄i‖2
L2(Bi)

. δ‖F̄i‖2
L2(Bi)

+ δr‖F‖2
L2(∂Bi)

+ r‖F − i∗∂BiF̄i‖
2
L2(∂Bi)

.

Step 4: iteration

Iterate Step 3 for all Bi ∈ G1 . Since such balls are disjoint, the local replacements of A,F
by Â, FÂ are done independently. The total error that we obtain at the end is, using the
estimates of Proposition 2.6,

‖FÂ − F‖
2
L2(B5) .

∑
Bi∈G1

‖F − F̄i‖2
L2(Bi)

+ δ
∑
Bi∈G1

‖F̄i‖2
L2(Bi)

+

+ δr
∑
Bi∈G1

‖F‖2
L2(∂Bi)

+ r
∑
Bi∈G1

‖F − i∗∂BiF̄i‖
2
L2(∂Bi)

. δ‖F‖L2(B5) + o(r) +
∑
Bi∈G1

‖F − F̄i‖2
L2(Bi)

.

Note that in particular the total L2 -error of averages satis�es

e1 :=
∑
i

|Bi|
∣∣∣∣ 
B(xi,2r)

FÂ −
 
B(xi,2r)

F

∣∣∣∣2 ≤ N‖FÂ − F‖
2
L2(B5) .

Step 5: iteration

We iterate Step 4. More precisely, we start with Â0 = A and at step k ≥ 1 we use the
balls from family Gk to approximate the curvature FÂk−1 obtained from step k − 1 . At
step k we use the constants

F̄ k
i :=

 
B(xi,2r)

FÂk−1 .
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Denote the new error introduced on the averages by ek , analogously as e1 above. Note
that each Bi intersects a �nite number of other balls (this number depends only on Λ, α
from De�nition 2.5). Therefore the total error after the �nal step k = N is

‖FÂN − F‖
2
L2(B5) .

N∑
k=1

‖FÂk − FÂk−1‖2
L2(B5)

. Nδ‖F‖L2(B5) +No(r) +
N∑
k=1

ek

. C(N)

(
δ‖F‖L2(B5) + o(r) +

∑
i

‖F − F̄i‖2
L2(Bi)

)
,

where the last sum is taken over all the balls Bi of our grid and C(N) depends just on
Λ, α from De�nition 2.5. Since for any L2 function f there holds

lim
|h|→0

ˆ
|f(x+ h)− f(x)|2dx = 0

we deduce that ∑
i

‖F − F̄i‖2
L2(Bi)

= o′(r)→ 0 as r → 0

as well. Thus we have the following �nal estimate on our approximation:

‖FÂN − F‖
2
L2(B5) . δ‖F‖L2(B5) + o(r) + o′(r) .

Note that as a result of Proposition 2.1 we also have that ÂN is continuous on the interior
of ∪{Bi : Bi ∈ Gr} .

Step 6

We extend Â on a bad ball Bj ∈ Br as follows. First apply Lemma 2.4 to Â and to the
compact K := ∂Bj ∩ ∪Gr to obtain Aη on ∂Bj such that Aη = A on K and Aη is C0 .

Then we use the radial projection πj : Bj \ {xj} → ∂Bj and de�ne Âj := π∗jAη . We have
the following estimate, using Step 5:

‖FÂj‖
2
L2(Bj)

. r
(
‖FÂj − FÂ‖

2
L2(∂Bj)

+ ‖FÂ‖
2
L2(∂Bj)

)
. r(oη + ‖FÂ − F̄j‖

2
L2(∂Bj)

) + ‖F‖2
L2(Bj)

.
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Step 7: iteration

We iterate Step 6 for all bad balls. Since we modify at most N times the connection on
each ball, the �nal bound for the connection Â obtained after this process is still∑

Bj∈Br

‖FÂ‖
2
L2(Bj)

. roη + o(r) + ‖F̄‖2
L2(∪Br) .

The total error which we obtain is as follows:

‖FÂ − F‖
2
L2(B5) .

∑
Bi∈Gr

‖FÂ − F‖
2
L2(Bi)

+
∑
Bj∈Br

‖FÂ − F‖
2
L2(Bj)

. δ‖F‖L2(B5) + o(r) + o′(r) + roη + o(r) + ‖F‖2
L2(∪Br) .

For r, δ, η small enough the �rst terms become as small as desired. The last term converges
to zero by dominated convergence: indeed | ∪ Br| → 0 as r → 0 by Lemma 2.9 and the
function χ∪BrF is dominated by F ∈ L2 .

Step 8

From the previous step we have Â such that ‖FÂ−F‖L2(B5) ≤ 1
2k

and Â is C0 outside the
centers of bad balls by construction (see Step 3 and Step 6, and recall that by De�nition
2.5 the ball Bj ⊂ Bαr(xj) does not cover xi for j 6= i). We now mollify Â outside this
�nite set of centers, and we obtain the wanted curvature FAk ∈ R∞ .

By a similar reasoning we also insure ‖An − A‖L2(B5) → 0 utilizing (2.3) instead of
(2.2) as above.

Utilizing the fact that the construction of Proposition 2.1 and the radial extension on
the bad balls do not a�ect the boundary condition on our balls we obtain the approxima-
tion also in R∞,φ(B5) for weak connections in AφG(B5) .

2.5 Proof of Morrey approximation Theorem 1.10

We now provide the modi�cations needed to prove the Theorem 1.10 along the same steps
as Theorem 2.10.

2.5.1 Strategy of L2 approximation

It is enough to prove that for each �xed ε > 0 we may �nd a smooth approximating
curvature F̂ which is closer than ε to F in L2 -norm and satis�es (1.18). To do this, we
use the division into good and bad cubes like in the previous section and the construction
for F̂ proceeds as in the proof of Theorem 2.10 with the following modi�cations:
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• In Step 1 we use Proposition 2.7 instead of Proposition 2.6.

• In Step 2 we further partition also the family of δ -bad balls Br into disjointed
subfamilies B1, . . . ,BN .

• In Step 3 we keep also track of the error estimate (2.3) of Proposition 2.1, which
reads:

‖Â− Āi‖L2(Bi) ≤ Cr‖A− Āi‖L2(∂Bi) .

• The above estimate propagates through Step 4 where we obtain

‖Â− A‖2
L2(B5) .

∑
Bi∈G1

‖A− Āi‖2
L2(∂Bi)

.

• In Step 5 this and (2.23) gives

‖ÂN − A‖2
L2(B5) .

∑
i

‖A− Āi‖2
L2(B5) = o′(r) .

• In Step 6 we still apply Lemma 2.4 but we replace the radial extension by the
application of Proposition 2.3 to the groups of bad balls Bk constructed in Step 2.
This is allowed by the hypothesis ‖F‖2

M < ε0 and by the discussion of Section 2.3.4.
After this procedure on each bad ball Bj we obtain the estimate

‖FÂ‖
2
L2(Bj)

. r(oη + ‖F‖2
L2(∂Bj)

) .

We similarly have the estimate for Â :

‖Â‖2
L2(Bj)

. r(oη + ‖A‖2
L2(∂Bj)

) .

• In Step 7 we then collect the contributions from all bad balls like in Steps 4-5. We
use the properties stated in Proposition 2.7 to obtain∑

Bj∈Br

‖FÂ‖
2
L2(Bj)

. roη + o(r) + ‖F‖L2(∪Br) + ‖A‖L2(∪Br) ,∑
Bj∈Br

‖Â‖2
L2(Bj)

. roη + o(r) + ‖F‖L2(∪Br) + ‖A‖L2(∪Br) ,

and by the same dominated convergence reasoning as in Step 7 of Theorem 2 we
obtain (1.16) and (1.17).

• Step 8 proceeds exactly as in Theorem 2.

We now prove the bounds (1.18) for F̂ constructed as above. We need to estimate

1

ρ

ˆ
Bρ(x)

|F̂ |2

uniformly in ρ, x . We consider separately the cases ρ & r and ρ� r .
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2.5.2 The case ρ & r

In this situation we simply estimateˆ
Bρ(x)

|F̂ |2 ≤
∑
i

ˆ
Bρ(x)∩Bi

|F̂ |2 ≤
∑

i:Bαr(xi)∩Bρ(x)6=∅

ˆ
Bi

|F̂ |2

In this case we use the fact that the cover {Bi} had the bounded intersection property,
the fact that α is bounded and the fact that as a consequence of Prop. 2.1 or Prop. 2.3
(depending on the balls involved), ‖F̂‖L2(Bi) . ‖F‖L2(Bi) thus

ˆ
Bρ(x)

|F̂ |2 .
ˆ
Bcρ(x)

|F̂ |2 .
ˆ
Bcρ(x)

|F |2 .

By de�nition of Morrey norm, we continue with

1

ρ

ˆ
Bρ(x)

|F̂ |2 . 1

ρ

ˆ
Bcρ(x)

|F |2 . c‖F‖2
M ,

which �nishes the proof.

2.5.3 The case ρ� r

In this case we will use elliptic regularity for the proof. We note the following scale-
invariant inequalities valid for the harmonic extensions:

‖dÃg‖2
L5/2(Bri )

≤ C

ˆ
∂Bri

|dAg|2 , ‖Ãg‖4
L5(Bri )

≤ C

ˆ
∂Bri

|Ag|4 .

If Bρ(x) ⊂ Bi then for an application of Step 3 or 6 on Bi we can thus write:

‖F̂‖2
L2(Bρ(x) =

ˆ
Bρ(x)

|dÃg + Ãg ∧ Ãg|2

.
ˆ
Bρ(x)

|dÃg|2 +

ˆ
Bρ(x)

|Ãg|4

. |Bρ|
1
5

(ˆ
Bρ(x)

|dÃg|5/2
) 4

5

+ |Bρ|
1
5

(ˆ
Bρ(x)

|Ãg|5
) 4

5

. ρ

[(ˆ
Bi

|dÃg|5/2
) 4

5

+

(ˆ
Bi

|Ãg|5
) 4

5

]

. ρ

(ˆ
∂Bri

|dAg|2 +

ˆ
∂Bri

|Ag|4
)

. ρ(1 + ε0)‖F‖2
L2(∂Bi)

,
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where in the �rst equality we used the gauge-invariance of F̂ , making the gauge change
ĝ irrelevant, and in the last estimate we use the results of Propositions 2.1, (2.3).

The desired estimate then follows similarly to the case ρ & r . In the general case
Bρ(x) ∩ Bi 6= ∅ we have to just replace Bρ(x) by Bρ(x) ∩ Bi and the same estimates

work. We note that the number of steps of type 3 or 6 in which we modify F̂ over Bρ(x)
is bounded above by a constant C(N) which ultimately depends only on the dimension.
�

3 Coulomb gauges and point removability in 4 dimen-

sions

In this section we prove an improved point removability result based on [43].

3.1 Uhlenbeck Coulomb gauge

In [50] Uhlenbeck proved the following point removability result:

Theorem 3.1 ([50], Thm. 4.6). Let ∇ be a Yang-Mills connection in a bundle P over
B4 \ {0}. If the L2 norm of the curvature F of ∇ is �nite, then there exists a gauge in
which the bundle P extends to a smooth bundle P̃ over B4 and the connection ∇ extends
to a smooth Yang Mills connection ∇̃ in B4 .

We recall that for a connection which in local coordinates is written ∇ = d+A , being
Yang-Mills means that the curvature F = FA satis�es in the weak sense

d∗AFA = 0 . (3.1)

The regularity theory of Uhlenbeck allows to prove that W 1,2 Yang-Mills connections
d + A on trivial bundles are smooth up to a gauge change in the balls Bρ(x) such that´
Bρ(x)

|F |2 < ε0 for a constant ε0 independent of A,F . This uses the regularity theory

for the nonlinear (in A) equation (3.1), which when F does not have much energy and
A is in Coulomb gauge can be seen as an elliptic system.

Therefore the main step in the proof of Theorem 3.1 is the proof that we can �nd a
global gauge extending over a neighborhood of the origin, in which the connection is W 1,2

so that the elliptic regularity can be applied. In Uhlenbeck [50] the elliptic regularity of
equation (3.1) is used on B \ {0} in order to provide the needed estimates on concentric
annuli. We will describe here how to proceed without this regularity.
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Using a result from [43] we obtain that the analogue of Theorem 3.1 holds without the
assumption that (3.1) holds. It appears that this result is not present in the literature,
although it is hinted at in [5]. We will prove the following

Theorem 3.2 (Point removability [50] with no Yang-Mills assumption). Let ∇ be a W 1,2

connection in a bundle P over B4 \ {0}. If the L2 norm of the curvature F of ∇ is
�nite, then there exists a gauge in which the bundle P extends to a smooth bundle P̃ over
B4 and the connection ∇ extends to a W 1,2 connection ∇̃ in B4 .

Theorem 3.2 allows to prove weak compactness for sequences of W 1,2 connections with
curvatures bounded in L2 , again removing the assumption that the limit is Yang-Mills
present in [45], [15]. The strategy in the paper [45] was to consider minimizing sequences
An ∈ A1,2(E) for the Yang-Mills functional and prove that their connections converge
locally weakly in W 1,2 while the curvatures converge locally weakly in L2 , outside a �nite
set of �bad points� where the curvature energy density concentrates. This allowed to
obtain that the limit (which corresponds to a Yang-Mills minimizer) is Yang-Mills outside
those points. The point removability theorem 3.1 which worked under the Yang-Mills
assumptions then provided a way for extending the limit bundle and connection over each
bad point. Note that here is the only instance where the assumption of having an energy
minimizing sequence was used in [45]. We can thus use our improved Theorem 3.2 to
immediately obtain:

Theorem 3.3 (Bubbling [45] for general sequences). Assume that An ∈ A1,2(E) on a
smooth bundle E over a smooth compact Riemannian 4-manifold M . If ‖FAn‖L2 ≤ C
for all n then up to extracting a subsequence we have that An converge locally weakly in
W 1,2 to a connection A∞ ∈ A1,2(Ẽ) over a possibly di�erent bundle.

3.2 Coulomb gauges and Lorentz-improved regularity

We recall that the connection form A and the curvature form F are related in local
coordinates by the distributional equation F = dA+A∧A . Recall that by Hodge theory
the di�erential DA is controlled via dA and d∗A . It is then heuristically clear that if
we desire a control on DA via the curvature we must therefore have some restrictions
on d∗A . The estimates coming from the nonlinear elliptic system corresponding to d, d∗

replaces the control via equation (3.1) as used in [51]. We recall the celebrated result of
K. K. Uhlenbeck which is our starting point.

Theorem 3.4 ([51], Thm. 1.3). There exists a constant ε0 as follows. Assume that
d + A is the local expression of a connection of a trivial bundle E → Ω over a compact
Riemannian 4-manifold Ω such that A ∈ W 1,2

loc and the curvature F := FA satis�es

ˆ
Ω

|F |2 ≤ ε0 . (3.2)
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Then there exists a gauge g ∈ W 2,2
loc (Ω) such that the transformed connection form

Ag = g−1dg + g−1Ag

satis�es
d∗Ag = 0 on Ω

and is controlled by the curvature:

ˆ
Ω

|DAg|2 +

ˆ
Ω

|Ag|4 ≤ C

ˆ
Ω

|F |2 . (3.3)

This result allows us to �nd controlled gauges in concentric dyadic annuli around the
origin. To patch together the gauges of two overlapping annuli we use the following result,
for which we use the techniques of [43] Thm. IV.1.

Proposition 3.5. , Suppose that A and B = g−1dg + g−1Ag are connection forms
corresponding to two gauge-related connections belonging to A1,2(E) where E → Ω is a
trivial bundle over a domain Ω ⊂ R4 such that

d∗A = d∗B = 0 .

If A,B ∈ W 1,2 then the gauge change g is W 2,2∩C0 . Moreover for some ḡ ∈ G we have
the bound

‖g − ḡ‖L∞∩W 2,2 . ‖A‖2
W 1,2 + ‖B‖2

W 1,2 . (3.4)

Proof. From
dg = gB − Ag ,

since multiplication is continuous from W 1,2 × (W 1,2 ∩ L∞) to W 1,2 ↪→ L(4,2) it follows
that dg ∈ W 1,2 ↪→ L(4,2) and

‖dg‖L(4,2) . ‖A‖W 1,2 + ‖B‖W 1,2 .

From the above equation and using d∗A = d∗B = 0 and identifying 1-forms with vector
�elds we obtain

∆g = d∗dg = dg · A−B · dg ,

where both terms are products of elements of L(4,2) therefore belong to L(2,1) . We have

‖∆g‖L(2,1) . ‖dg‖L(4,2)(‖A‖L(4,2) + ‖B‖L(4,2)) . ‖A‖2
L(4,2) + ‖B‖2

L(4,2) .

By the continuous embeddings W 2,(2,1) ↪→ W 1,(4,1) ↪→ L∞ valid in 4 dimensions, we
obtain

‖g − g̃‖L∞∩W 2,2 . ‖A‖2
L(4,2) + ‖B‖2

L(4,2) := (∗) ,
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where g̃ is the average of g done in the space RN , N = k× k in which the manifold G is
embedded as group of matrices. Since g ∈ G a.e., we also have

distRN (g̃, G) . (∗) ,

therefore there exists ḡ ∈ G such that

‖g − ḡ‖L∞ . (∗) . ‖A‖2
W 1,2 + ‖B‖2

W 1,2 ,

as desired. Note that W 1,2 connections in 4-dimensions can be approximated by smooth
connections in W 1,2 -norm (see Lemma 2.4 ). By applying the above result on balls Bρ(x)
with ρ→ 0 for a.e. x , we obtain that g ∈ C0 too.

Notation: from now on we denote by Sk the spherical shell B2−2k \B2−2k−3 .

Lemma 3.6. There exists a constant δ > 0 such that if
´
Sk
|F |2 ≤ δ then the bundle E is

trivial over Sk and there exists a gauge g over Sk in which the connection corresponding
to F is represented by a W 1,2 form Ak which satis�es

d∗Ak = 0, ‖DAk‖L2(Sk) + ‖Ak‖L4(Sk) ≤ ‖F‖L2(Sk) . (3.5)

Proof. Without loss of generality let k = 0 , because the norms of F , A and DA appear-
ing in (3.5) have the same scaling. We cover S0 by two charts U+, U− which are tubular
neighborhoods of opposite half-shells. In U± the connection has the local expression A± .
Since the bundle is trivial over U± we can apply Theorem 3.4 and up to a change of gauge
A± satis�es (3.5).

On U+ ∩ U− there exists g such that A+ = g−1dg + g−1A−g . By Proposition 3.5 we
have that g ∈ C0 and for some ḡ ∈ G there holds

‖g − ḡ‖L∞ . δ2 . (3.6)

in particular it is not possible for g to realize a nontrivial homotopy class [U+ ∩ U−, G] ,
provided δ2 ≤ CG for some CG depending on the topology of G . Therefore it is possible
to extend g in a Lipschitz way over U− and we �nd a global trivialization over the whole
of S0 . Applying Theorem 3.4 again we �nd A0 as in (3.5).

3.3 Proof of Theorem 3.2

Proof. The bundle is non-smooth just at the origin, therefore we may work replacing
B1(0) by a ball Bρ(0) with ρ > 0 on which

´
Bρ
|F |2 < δ . In other words we don't loose

any generality if we assume
´
B1(0)
|F |2 < δ . We �x δ later, but it will be smaller than the

constant δ of Lemma 3.6 and than the constant ε0 of theorem 3.4.
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We apply Lemma 3.6 and we start with the connections Ak de�ned on Sk and satis-
fying (3.5). On each Sk+1 ∩ Sk there is a gauge change gk such that

Ak+1 = g−1
k dgk + g−1

k Akgk . (3.7)

By Proposition 3.5 there exist ḡk ∈ G such that

‖gk − ḡk‖L∞∩W 2,2 . ‖Ak‖2
W 1,2 + ‖Ak+1‖2

W 1,2 . (3.8)

Now we propagate the gauge along the increasing Sk 's. In order to cancel the contribu-
tions of the approximating constant gauges ḡk , we de�ne for example Ā1 = ḡ0A1ḡ

−1
0 =

ḡ−1
0 (A1) = ḡ−1

0 ◦ g0(A0) . This means that Ā1 di�ers from A0 on S1 ∩ S0 just by a small
gauge. Similarly de�ne

Āk := h̄k(Ak), h̄k :=
k−1∏
i=0

ḡ−1
i .

We use the Āk 's as a reference to de�ne a global gauge. De�ne g̃k on Sk+1 ∩ Sk to be
such that Āk+1 = g̃k(Āk) , i.e.

g̃k := h̄−1
k ḡ−1

k gkh̄k . (3.9)

The g̃k 's are better than the gk 's because they don't contain the gauge jumps ḡk . From
(3.8) and (3.5), by multiplying by constants, i.e. by isometries of G , we have

‖g̃k − id‖L∞∩W 2,2(Sk∩Sk+1) = ‖gk − ḡk‖L∞∩W 2,2(Sk∩Sk+1) (3.10)

.
ˆ
Sk

|F |2 +

ˆ
Sk+1

|F |2 .

Next extend g̃k radially on S−k := B2−2k−3 \ B2−2k−4 and on S+
k := B2−2k+1 \ B2−2k . Call

this extension ˜̃gk . Note that ∑
k≥1

ˆ
Sk

|F |2 ≤ δ . (3.11)

Because of (3.11), (3.11) and because the radial extension is tame enough there holds:

‖̃̃gk − id‖L∞∩W 2,2(S−k ∪S
+
k ) ≤ δ .

Let δ be small enough so that˜̃gk = expid(ϕk), ‖ϕk‖L∞∩W 2,2(S−k ∪S
+
k ∪Sk) ∼ ‖̃̃gk−id‖L∞∩W 2,2(S−k ∪S

+
k ∪Sk) .

This is possible because exp−1
id is well-behaved near the identity.

We create a family of cuto� functions similar to the one used in Littlewood-Paley decom-
positions. Consider a function η(r) which is smooth, decreasing, equal to 0 for r > 2
and to 1 for r < 1 . We can assume |η′| ≤ 2 . Then de�ne ψk(x) := η(22k|x|)−η(22k+4|x|)
and consider ϕ̃k := ψkϕk . We have

‖ϕ̃k‖L∞ ≤ ‖ϕk‖L∞(Sk) ,

‖D2ϕ̃k‖L2 . ‖D2ϕk‖L2(Sk) + ‖dψk‖L4‖dϕk‖L4(Sk) + ‖D2ψk‖L2‖ϕk‖L∞(Sk)

. ‖ϕk‖L∞∩W 2,2(Sk) .
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By extending g̃k via exp(ϕ̃k) we obtain a continuous extension of g̃k on Sk ∪ S−k ∪ S
+
k

which still satis�es the same estimates as ˜̃gk . Use the notation ĝk . We then de�ne on
B4 \ {0}

λ :=
∞∏
i=0

ĝk .

Since ĝk is nonidentity on at most 5 dyadic rings, this product has locally �nitely many
factors di�erent than the identity therefore it is well-de�ned. We also have that since
W 2,2 ∩ L∞ is an algebra

‖λ− id‖L∞∩W 2,2(B
2−2k̄\{0}) .

∑
k≥k̄

‖ĝk − id‖L∞∩W 2,2(B4\{0})

.
∑
k≥k̄

‖g̃k − id‖L∞∩W 2,2(Sk∪S−k ∪S
+
k )

.
∑
k≥k̄

‖g̃k − id‖L∞∩W 2,2(Sk)

.
∑
k≥k̄

ˆ
Sk

|F |2 .

In particular we see that λ → id at zero, therefore the bundle extends, as desired. We
must now prove that in this gauge the connection form Ã is W 1,2 . Recall that if the
gauges would be chosen all equal to g̃k then the connection would become Āk on Sk , and
this is just a constant conjugation of the original Ak as in (3.5). Since the cuto� parts ĝk
on S−k ∪ S

+
k are controlled in W 2,2 ∩ L∞ still by the right hand side of (3.9) we obtain

using (3.11) and the fact that the ĝk have similar estimates as the g̃k that

‖Ã‖2
W 1,2 .

∑
k≥0

(
‖Ak‖2

W 1,2(Sk) + ‖ĝk(Ak−1)‖2
W 1,2(S−k )

+ ‖ĝk(Ak+1)‖2
W 1,2(S+

k )

)
.

∑
k≥0

(
‖Ak‖2

W 1,2(Sk) + ‖ĝk‖2
W 2,2(S−k )

+ ‖ĝk‖2
W 2,2(S+

k )

)
.

∑
k≥0

‖Ak‖2
W 1,2(Sk) +

∑
k≥0

‖Ak‖4
W 1,2(Sk)

. δ + δ2 .

In the last passage we used (3.11) and the inequality between `2 and `4 . This concludes
the proof of Theorem 3.2.
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4 Weak closure for non-abelian curvatures in 5 dimen-

sions

4.1 Ingredients for the proof of Theorem 1.4

We describe here what enters the proof of Theorem 1.4, while making a parallel to the
works [3] and [23] on metric currents and scans, which present analogous de�nitions
of weak objects as sets of slices �connected� via a compatibility condition based on an
overlying integrable quantity (in our case this control comes from the curvature 2-form
F ). Our closure result comes from the interplay of three ingredients:

• A geometric distance on sliced 1-forms: for A,A′ which are L2 connection forms
over S4 we use the gauge-orbit distance

dist([A], [A′]) := min{‖A− g−1dg − g−1A′g‖L2(S4) : g ∈ W 1,2(S4, G)} .

This corresponds to the use of the �at distance for the closure theorem of integral
currents by Ambrosio-Kirchheim [3].

• The fact that the above distance interacts well with our energy at the level of slices,
which follows from Theorem 1.1. More precisely we have that sublevels of A 7→
‖FA‖L2(S4) are dist-compact. In [23] a similar interaction occurs between the �at
distance and the fractional mass of recti�able currents.

• The oscillation control on slices of a �xed weak curvature, obtained via the overlying
2-form F . More precisely, if we identify S4 by homothety with each one of the
spheres S := ∂Bt(x), S ′ := ∂Bt′(x

′) then the pullbacks A(t, x), A(t′, x′) of i∗SA, i
∗
S′A

satisfy
dist([A(t, x)], [A(t′, x′)]) ≤ C‖F‖L2(B5)(|x− x′|+ |t− t′|)1/2 .

In [3] the corresponding fact is the interpretation of recti�ability as a bound of the
metric variation of the slices.

We can �nd L2 -controlled connection forms An corresponding to Fn and obtain a
weak limit A which will be an L2 connection form corresponding to F . The main di�-
culty is to �nd gauges g in which the slices i∗∂Br(x)A become W 1,2

loc .

The above overall strategy is the one which worked in the abelian case G = U(1) as
well and was employed in [38].

We start by identifying the traces on lower dimensional sets ∂Bρ(x0) with elements of
a metric space (Y , dist) where Y = AG(S4)/ ∼ and ∼ is the guage-equivalence relation,
such that we have a local control of the Hölder norm of the slice functions in terms of the
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L2 -norms of the Fn . We will use Proposition 4.1 for this.

Mixing a compactness result for slice functions with respect to the distance on Y with
the weak convergence of the An we will manage to obtain the convergence of a.e. slice to
an element which is gauge-equivalent to an element in Ag(S4) as desired.

4.2 The metric space Y
To prove the weak closure result for AG we use a slicing technique. In the de�nition
of AG we required that any weak connection have a gauge on each slice in which it is
represented by a W 1,2 form. Therefore we consider the following space of possible slice
classes:

Y := AG(S4)/ ∼, (4.1)

where the equivalence relation ∼ on global L2 connections is

A ∼ B if ∃g ∈ W 1,2(S4, G) s.t. g−1dg + g−1Ag = B .

We de�ne the following gauge-invariant function:

�dist�(A,A′) :=

(
inf

{ˆ
S4

|A− g−1dg − g−1A′g|2 : g ∈ W 1,2(S4, G)

}) 1
2

.

For two connection forms A,A′ if gA, gA′ are W
1,2 gauges such that

B = g−1
A dgA + g−1

A AgA, B′ = B = g−1
A′ dgA′ + g−1

A′ A
′gA′

then, since A 7→ g−1dg + g−1Ag is a continuous group action of G ∩W 1,2 on AG(S4) , we
have

�dist�(A,A′) = �dist�(B,B′) .

�dist� then descends to a well-de�ned distance dist([A], [A′]) on equivalence classes of
connection forms. Let

[A] = image of A under the projection AG(S4)→ AG(S4)/ ∼ .

The natural metric to impose on Y is the L2 -distance between (global) gauge orbits (cfr
[15]):

dist([A], [B]) = inf
{
‖A′ −B′‖L2(S4) : A′ ∈ [A], B′ ∈ [B]

}
. (4.2)

On the metric space (Y , dist) we will study the functional

N : Y → R+, N ([A]) =

ˆ
S4

|FA|2 . (4.3)

Note that because the curvature satis�es Fg−1dg+g−1Ag = g−1FAg and since the norm on
2-forms is G-invariant, we have that N ([A]) does not depend on the representative A
employed to compute FA .
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4.3 The slice a.e. convergence

We employ the following abstract theorem. See [23] Thm. 9.1 for the original inspiration.
We use the notation overlapping with the previous section. The goal will be to justify
this overlap in notation subsequently, by proving that the spaces and functions of Section
4.2 satisfy the hypotheses of the theorem.

Proposition 4.1. Consider a metric space (Y , dist) on which a function N : Y → R+

is de�ned. Suppose that the following hypothesis is met:

∀C > 0 the sublevels {N ≤ C} are seq. compact in Y . (H)

Suppose fn : [0, 1]→ Y are measurable maps such that

dist(fn(t), fn(t′)) ≤ C|t− t′|1/2 (4.4)

and that

sup
n

ˆ 1

0

N (fn(t))dt < C .

Then fn have a subsequence which converges pointwise almost everywhere. The limiting
function f also satis�es

dist(f(t), f(t′)) ≤ C|t− t′|1/2,
ˆ 1

0

N (f(t))dt < C .

Proof. We divide the interval [0, 1] in q2 subintervals Iqi of equal length q−2 . For each
n, i , by Chebychev inequality we obtain∣∣∣∣{t ∈ Iqi : N (fn(t)) <

C

q2

}∣∣∣∣ > 0 ,

therefore up to extracting a subsequence, by pigeonhole principle we may assume∣∣∣∣{t ∈ Iqi : ∀nN (fn(t)) <
C

q2

}∣∣∣∣ > 0 .

Consider then
tqi ∈

⋂
n∈N

{N ◦ fn > C/q2} ∩ Iqi .

Since sublevels of N are compact, up to extracting a subsequence we obtain

∀i, n, dist(fn(tqi ), fn+1(tqi )) ≤ 2−n .

Up to extracting a diagonal subsequence

∀i, n, q, dist(fn(tqi ), fn+1(tqi )) ≤ 2−n .
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In particular, using the uniform hölderianity of fn and the triangle inequality, we have
that for all i and for t ∈ Iqi there holds

dist(fn(t), fn+k(t)) ≤ 21−n + q−1 .

Since {tqi}i,q form a dense subset of [0, 1] we deduce that for all t ∈ [0, 1] the sequence
{fn(t)}n is Cauchy thus it has a limit in the completion of Y . By Fatou theorem we
obtain ˆ 1

0

lim inf
n
N (fn(t))dt ≤ C ,

therefore for a.e. t ∈ [0, 1] the sequence N (fn(t)) in bounded. Since the sublevels
of N are compact in Y , for such t the limit of {fn(t)}n belongs to Y . We de�ne thus
f(t) := limn fn(t) and the desired properties follow by Fatou's lemma and by the pointwise
dist-convergence.

4.4 Verifying the hypothesis of Proposition 4.1

We verify that we can apply Proposition 4.1 to our situation, where the goal is to prove
weak closure for the class AG .

4.4.1 The compactness result (H)

We start by verifying the �rst statement of the hypothesis (H) for Y ,N as in Section 4.2:

Proposition 4.2. Let Y be the space of slices as in (4.1) and N : Y → R+ be the norm
of the curvature as in (4.3). Then N has sublevels which are compact with respect to the
distance dist de�ned in (4.2).

Proof. We assume that we are given a sequence of curvatures Fn corresponding to con-
nection form classes [An] , such that

‖Fn‖L2(S4) ≤ C .

The claim of the proposition is that the [An] have a convergent subsequence with respect
to the distance dist.
Up to a global gauge change we may assume that the An are controlled globally in L2

(see Lemma 4.3):
‖An‖L2(S4) . ‖Fn‖L2(S4) .

Up to extracting a subsequence we have that

An ⇀ A∞ , Fn ⇀ F∞ in L2(S4) .

Step 1. Concentration points of the curvature energy and a good atlas. By usual covering
arguments we have that up to extracting a subsequence there exist a �nite number of
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concentration points of the curvature's L2 -energy a1, . . . , aN in S4 . In other words there
holds

∀ε > 0, ρε := lim inf
n→∞

inf

{
ρ > 0, x0 ∈ S4 \ ∪Bε(ai)

ˆ
BS4
ρ (x0)

|Fn|2 ≥ δ

}
> 0 .

The number N of such points is N ≤ C/δ where C is the above L2 -bound on the cur-
vatures.

Up to diminishing ε and ρ := ρε we may suppose ε+ ρε < ρinj(S4) and that the balls
Bε(ai) are disjoint. We can �nd a cover by the balls Bε(ai) and by �nitely many balls
Bρ(xi) such that the maximum number of overlaps of those balls is a universal constant.
The Bρ(xi) 's will be called good balls and they will be simply denoted Bi below.

Step 2. Uhlenbeck Coulomb gauges converge weakly on the good balls. Using Uh-
lenbeck's gauge extraction of Theorem 3.4 on each Bi one �nds a gauge gin such that
Ain := (gin)−1dgin + (gin)−1Ang

i
n ∈ W 1,2 and such that

d∗Ain = 0, ‖Ain‖W 1,2 . ‖Fn‖L2 on Bi .

Therefore up to a diagonal subsequence we also may assume that

Ain → Ai weakly in W 1,2 and strongly in L2 . (4.5)

By interpolation since the gin are bounded in L∞ we see that

gin → gi weakly in W 1,2 and strongly in Lq,∀q <∞ .

This strong convergence in Lq together with the weak convergence of An and of the dgin
in L2 implies that

An = gind(gin)−1 + ginA
i
n(gin)−1 ⇀ gid(gi)−1 + giAi(gi)−1 = A in D′

and by uniqueness of weak limits the Ai obtained above are the local expressions of the
limit A in the limit gauges gi .

Step 3. Point removability and strong global gauge convergence on good part. By
Proposition 3.5 the gauge changes gijn := gjn(gin)−1 needed to pass from Ain to Ajn are
controlled in W 2,2 ∩ C0 . Therefore up to taking a diagonal subsequence we have for all
i, j

gijn → gij weakly in W 2,2, strongly in W 1,2 and locally uniformly in C0 .

In particular we can apply the gauge extension procedure of the proof of Theorem 3.2 both
to gijn and to gij on balls covering any open contractible subset U good in the complement
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of the bad balls Bε(a1), . . . , Bε(aN) , obtaining gauge transformations ggoodn , ggood . We

recall that in this process we multiply gauges by the constants gijn then truncate the error

terms (gijn )−1gijn away from Bi ∩ Bj . We note that up to extracting subsequences we
may assume (by compactness of G and �niteness of the balls intersecting U good ) that the
constants involved also converge:

gijn → gij .

This implies together with (4.5) that on U good

ggoodn (An)→ ggood(A) in L2(U good) .

Step 4. The bad part's contribution. The last part of the proof consists of noticing that
by diminishing ε and by letting U good increase to a set of full measure, we may �nd gauges
gkn = (ggood)−1ggoodn such that

(gkn)−1dgkn + (gkn)−1Ang
k
n → A in L2 outside a set of measure

1

k
.

By extracting a diagonal subsequence we obtain gn such that

g−1
n dgn + g−1

n Angn → A in L2(S4) .

Therefore
dist([An], [A])→ 0 ,

as desired.

4.4.2 The second hypothesis of Proposition 4.1

We now assume given a sequence of weak curvatures Fn corresponding to [An] ∈ AG on
B5 which are bounded in L2 and converge weakly in L2 to a 2-form F . For a �xed center
x0 ∈ B5 and for a radii t ∈ [r, 2r] with r > 0 , the slices of the connections An via spheres
∂Bt(x0) are de�ned and taking values in Y for a.e. t by the assumption that [An] ∈ AG .
We then de�ne (classes of) functions

fn : [r, 2r]→ Y , fn(t) :=
[
i∗∂Bt(x0)An

]
.

Notation: We denote A(s) the slice along ∂Bs(x0) i.e. the pullback of i∗∂Bs(x0)A to S4

via the homothety S4 → ∂Bs(x0) when it exists.

We verify that the fn satisfy the hypothesis (4.4):

Lemma 4.3. Assume that F is the curvature form corresponding to [A] ∈ AG and choose
a representative A which is L2 on B2r(x0) \Br(x0). Then there exists a gauge change g
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such that A′ := g−1dg + g−1Ag has no radial component and such that for a.e. t > t′ ∈
[r, 2r] ˆ

S4

|A′(t)− A′(t′)|2 . 1

r2
|t− t′|

ˆ
Bt(x0)\Bt′ (x0)

|F |2 , (4.6)

for a universal implicit constant.

Proof. We will assume x0 = 0 for simplicity. Note that
ˆ t

t′
‖A(t)‖2

L2(S4)dt =

ˆ
S4

ˆ t

t′
|ρ i∗∂BρA|

2ρ4dρdω .

Use Corollary 1.9 to solve the following ODE in polar coordinates:{
∂ρg(ω, ρ) = −Aρ(ω, ρ)g(ω, ρ), for ρ ∈ [t′, t] ,

g(ω, t′) = id, for all ω ∈ S4 .
(4.7)

It then follows that for A′ = g−1dg + g−1Ag there holds∑
k

xk
ρ
A′k := A′ρ = 0 ,

therefore at (ω, ρ) we write∑
k

xkg
−1Fkig =

∑
k

xk∂kA
′
i −
∑
k

xk∂iA
′
k +

∑
k

xk[A
′
k, A

′
i] = ∂ρ(ρA

′
i) .

In other words
ρ∂ρ (g−1Fg)|∂Bs(x0) = ∂ρ(ρ i

∗
∂BρA

′) .

Integrating in s we have for a.e. t > t′ and then in ω we obtain

ˆ
S4

|t i∗∂BtA
′ − t′ i∗∂Bt′A

′|2 =

ˆ
S4

∣∣∣∣ˆ t

t′
ρ∂ρ (g−1Fg) dρ

∣∣∣∣2
. |t− t′|

ˆ
S4×[t′,t]

ρ2|∂ρ F |2 .

We used Jensen's inequality and the fact that the norm is G-invariant. Note that for
ω ∈ S4 there holds

A′(s)(ω) = s i∗∂BsA
′(sω) ,

therefore from above it followsˆ
S4

|A′(t)− A′(t′)|2 . |t− t
′|

(t′)2

ˆ
Bt\Bt′

|F |2 .

Since t′ > r the thesis follows.
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In the end the functions fn(t) which will satisfy (4.4) in our situation will be the slice
functions of the connection forms An(t) in the gauges given by Lemma 4.3. Note that as
a direct consequence of Lemma 4.3 we have also

dist([An(t)], [An(t′)]) .
‖Fn‖L2(B2r\Br)

r
|t− t′|1/2 ≤ ‖Fn‖L

2

r
|t− t′|1/2 . (4.8)

4.4.3 Proof of Corollary 1.9

Proof. By Theorem 1.8 we have a sequence of connections [Ak] ∈ R∞(B5) such that for
some L2 -representatives Ak and for their distributional curvature forms Fk there holds

Ak → A in L2, Fk → F in L2 .

We then solve{
∂ρgk(ω, ρ) = −(Ak)ρ(ω, ρ)gk(ω, ρ) for ω ∈ S4, ρ ∈ [0, t] ,
gk(ω, 0) = id for ω ∈ S4 ,

where the solution gk is now de�ned on all rays ω = const except for the (�nitely many)
ones which contain one of the singular points of Ak . We have then

‖gk‖W 1,2(B\Bt) . ‖(Ak)ρ‖L2(B\Bt) ≤ ‖Ak‖L2(B\Bt) . (4.9)

Up to extracting a subsequence we may assume

gk ⇀ g weakly in W 1,2

and thus gk → g a.e. and strongly in all Lp, p < ∞ by interpolation between L2∗ and
L∞ (recall that gk ∈ L∞ because G is compact). In particular since g−1

k converges in L2

and dgk converges weakly in L2 we have

g−1
k dgk

D′
⇀ g−1dg

and by the above strong convergence results of Ak in L2 and of gk in all Lp, p <∞ we
have

g−1
k Akgk → g−1Ag strongly in Lq, q < 2 .

Therefore we achieve the distributional convergence

Agkk := g−1
k dgk + g−1

k Akgk
D′
⇀ g−1dg + g−1Ag =: Ag .

If we insert the above expression of Ag into the formula for the distributional curvature
FAg = dAg + Ag ∧ Ag we obtain:

FAg = d(g−1dg + g−1Ag) + (g−1dg + g−1Ag) ∧ (g−1dg + g−1Ag)

= −g−1dg ∧ g−1dg − g−1dg ∧ g−1Ag + g−1dA g − g−1Ag ∧ g−1dg

+g−1dg ∧ g−1dg + g−1Ag ∧ g−1dg + g−1dg ∧ g−1Ag + g−1A ∧ Ag
= g−1(dA+ A ∧ A)g = g−1FAg .
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Note that the above formal calculations are actually rigourous due to the facts that
dg ∈ L2 , A ∈ L2 and g, g−1 ∈ L∞ .

4.5 Proof of the Closure Theorem 1.4

We consider a sequence Fn corresponding to [An] ∈ AG(B5) as in Theorem 1.4 and we
construct representatives An such that

ˆ
B5

|An|2 ≤ C

ˆ
B5

|Fn|2 ,

like in Lemma 4.3. We thus have that up to extracting a subsequence there holds

An ⇀ A in L2(B5) . (4.10)

As noted above it su�ces that for all centers x0 and a.e. radius t > 0 the homothety
pullback to S4 of the slice i∗∂BtA of the limit connection form A is in AG(S4) or equiva-
lently corresponds to a class in Y . Fix x0 ∈ B5 and a range of radii [r, 2r] . It is su�cient
to prove that

a.e. s ∈ [r, 2r], A(s) ∈ AG(S4) . (4.11)

We will assume for simplicity that x0 = 0 and we apply Lemma 4.3 obtaining new gauges
for the An in which (4.8) is valid. From now on we are going to work in these gauges
only. For simplicity of notation we still denote the expressions of the An in these gauges
by An . Note that we still obtain the control

‖An‖L2(B2r\Br) . ‖Fn‖L2

if in the proof of Lemma 4.3 for A = An we replace the ODE (4.7) by{
∂ρg(ω, ρ) = −(An)ρ(ω, ρ)g(ω, ρ), for ρ ∈ [s, t] ,

g(ω, s) = id, for all ω ∈ S4 .

for s such that An(s) satis�es

‖An(s)‖L2 .
1

r
‖Fn‖L2 .

Thus we may still suppose that (4.10) holds on B2r \Br . We next prove that in this case
we have a stronger convergence:

Lemma 4.4. Assume that for a sequence of connection forms An ∈ L2(B2r\Br,∧1R5⊗g)
there holds

‖An(t)− An(t′)‖L2(S4) ≤ C|t− t′|1/2
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and that
An ⇀ A weakly in L2 on B2r \Br .

Then there exists a subsequence n′ such that

for a.e. s ∈ [r, 2r] there holds An′(s) ⇀ A(s) weakly in L2(S4) . (4.12)

Proof. The weak convergence hypothesis means that

ˆ
An ∧ β →

ˆ
A ∧ β for all β ∈ L2(B2r \Br,∧3R5 ⊗ g) .

Consider an arbitrary 3-form ω which is L2 on S4 and a test 1-form ϕ(t) on [r, 2r] . By
taking

β := h∗tω ∧ ϕ(t) where ht : S4 → ∂Bt is a homothety

we obtain ˆ 2r

r

ˆ
S4

An(t) ∧ ω ∧ ϕ(t)→
ˆ 2r

r

ˆ
S4

A(t) ∧ ω(x) ∧ ϕ(t) .

If we use the notation

fωn (t) =

ˆ
S4

An(t) ∧ ω ,

then from the �rst hypothesis it follows that

|fωn (t)− fωn (t′)| ≤ ‖An(t)− An(t′)‖L2‖ω‖L2

≤ C|t− t′|1/2‖ω‖L2 .

By Arzelà-Ascoli theorem the fωn have a subsequence which converges uniformly to a
1/2-Hölder function with the same Hölder constant:

sup
t∈[r,2r]

|fωn (t)− fω(t)| → 0 .

By applying this reasoning to a countable L2 -dense subset D of ω 's in L2(S4,∧3TS4⊗g)
and by a diagonal procedure we obtain that

∀ω ∈ D, sup
t∈[r,2r]

|fωn (t)− fω(t)| → 0 .

Since the functionals ω 7→
´
An(t)∧ω are strongly continuous on L2 forms for a.e. t , we

obtain that the above convergence holds on all ω ∈ L2 , completing the proof.

We are now ready to conclude the proof of the weak closure result.
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End of proof of Theorem 1.4: Consider the global weak limit connection form A ∈ L2(B5) .
As said above we prove that a.e. slice of it is in AG(S4) by considering separately the
groups of slices with center x0 and radii in [r, 2r] . We assumed x0 = 0 for simplicity and
we obtained that the An have a weakly convergent subsequence on B2r \Br , therefore we
may apply Lemma 4.4. We obtain up to extracting a subsequence the slicewise a.e. weak
convergence (4.12):

for a.e. s ∈ [r, 2r] there holds An(s) ⇀ A(s) weakly in L2(S4) .

Note that in this case the slicewise weak limit A(s) is indeed the slice of the limit con-
nection.

On the other hand we saw in Section 4.4 that the hypotheses of Proposition 4.1 are
veri�ed for our An therefore we also have up to another subsequence extraction

for a.e. s ∈ [r, 2r] there holds [An(s)]→ [Ad(s)] in (Y , dist) .

We have now to compare the slice A(s) of the weak limit with the dist-limit of slices
Ad(s) . Since

dist([An(s)], [Ad(s)]) = inf
g∈W 1,2(S4,G)

‖g−1dg + g−1An(s)g − Ad(s)‖L2 ,

we obtain a sequence gn(s) ∈ W 1,2(S4, G) such that

gn(s)−1dgn(s) + gn(s)−1An(s)gn(s)− Ad(s)→ 0 strongly in L2 . (4.13)

It follows that
‖dgn(s)‖L2 . ‖Ad(s)‖L2 + ‖An(s)‖L2 .

From
‖An(t)− An(t′)‖L2 ≤ C|t− t′|1/2

and from the fact that for all n there exists s ∈ [r, 2r] such that

‖An(s)‖L2 . ‖Fn‖L2 ≤ C

it follows that An(s) is bounded in L2 . Thus dgn(s) is also bounded in L2 . Thus up to
extracting a subsequence (dependent on t)

dgn(t) ⇀ dg∞(t) weakly in L2 .

Since gn(s) is also bounded in L∞ we obtain by Rellich's theorem and by interpolation
that up to extracting a subsequence n(t)

gn(t)→ g∞(t) in Lq ∀q <∞ .

49



The last two facts together with the convergence An(t)
L2

⇀ A(t) su�ce to prove that

gn(t)−1An(t)gn(t) → g∞(t)−1A(t)g∞(t) in D′(S4) ,

gn(t)−1dgn(t) → g∞(t)−1dg∞(t) in D′(S4) .

This is valid for a.e. t ∈ [r, 2r] . Therefore

Ad(t) = g∞(t)−1dg∞(t) + g∞(t)−1A(t)g∞(t), for a.e. t ∈ [r, 2r] .

Since Ad(t) ∈ AG(S4) , this shows that for a.e. t the slice A(t) of the limit connection
form A belongs to AG(S4) , as desired.

5 Regularity results

This section is devoted to the proofs of Theorem 1.12 and its important Corollary 1.13
and the regularity of minimizers, Theorem 1.14. The structure of the proofs is analogous
to the celebrated theory of harmonic maps, cfr. [46] and the references therein. We apply
our new approximation and extended regularity results in order to complete all the steps
for curvatures in AG(B5) . The analogous results hold on general Riemannian compact
5-manifolds and the proofs can be extended by working in charts and including error
terms corresponding to the fact that the metric is not euclidean.

We start by proving Proposition 1.15, accoding to which the Bianchi identity dAF = 0
is veri�ed by curvature forms F and connection forms A corresponding to [A] ∈ AG(B5) .

Proof of Proposition 1.15: We use the result of Theorem 1.8, namely the existence of a
sequence of connection forms Ak which are L2 and have curvatures Fk also in L2 , such
that [Ak] ∈ R∞(B5) and

Ak → A in L2, Fk → F in L2 .

In particular we have dFk
W−1,2

⇀ dF and
´
B5 ϕ ∧ [Fk, Ak]→

´
B5 ϕ ∧ [F,A] for all C∞c (B5)

test 1-forms φ . This implies in particular that

dAkFk ⇀ dAF in the sense of distributions ,

thus we reduce to prove (1.25) for [A] ∈ R∞(B5) . In this case we see directly from the
classical results that dAF ≡ 0 locally outside the defects a1, . . . , ak of the classical bundle
from the de�nition of R∞ . Since we have that dAF is a tempered distribution, it must
then be locally near ai of the form

∑l
α=0 cαδ

(α)
ai , where δ

(α)
x is the α-th distributional

derivative of the Dirac mass at x . On the other hand, since F ∈ L2 and [A,F ] ∈ L1 we
obtain that dAF ∈ W−1,2

loc near ai . Since we can construct forms φn which are bounded
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in W 1,2 but have values of the �rst l derivatives in ai , larger than n we see that if cα 6= 0
for some α then

C ≥ 〈dAF, φn〉 =
n∑

α=1

cαφ
(α)
n →∞ ,

which is a contradiction. Thus dAF = 0 and this concludes the proof.

5.1 Partial regularity for stationary connections in AG
In this section we show how to bootstrap the results of [34] to the space AG(B5) , in order
to prove the partial regularity result of Corollary 1.13.

The main step is to improve on the result of [34] by removing the smooth approxima-
bility requirement (cfr. Theorem I.3 of [34]). Once this proof is done, the strategy of [34]
can proceed to the proof of Theorem 1.12 and to the regularity result of Corollary 1.13
with no changes.

Proof of Theorem 1.11: In [34] the existence of ε, C for which a gauge g in which (1.19),
(1.20) and (1.21) hold was proved under the assumption that A be strongly approximable
in W 1,2 ∩L4 by connection forms of smooth connections. In particular we may apply the
result of [34] to the connection forms Âk furnished by Theorem 1.10. We obtain gauge
changes gk such that

Ak :=
(
Âk

)
gk

satis�es (1.19),(1.20), (1.21)

with F replaced by Fk . Since Âk
L2

→ A, ‖Ak‖L2 . ‖Fk‖L2 . ‖F‖L2 we obtain

‖dgk‖L2 ≤ C(‖Âk‖L2 + ‖Ak‖L2) ≤ C

therefore up to subsequence we can assume that gk converge pointwise a.e., weakly in
W 1,2 and (by interpolation with L∞ ) in Lp for all p <∞ . Similarly we may assume that
Ak → A∞ in Lq for all q < 2∗ . It follows from the de�ning equation g−1

k dgk + g−1
k Âkgk =

Ak that
g−1
k dgk → g−1

∞ dg∞ strongly in L2 ,

thus we have that
Ag∞ = A∞ ,

in particular g∞ is such that conditions (1.19), (1.20) and (1.21) hold, since they are
stable under strong L2 limits.
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5.2 The regularity of local minimizers of the Yang-Mills energy

in dimension 5

In this section we prove Theorem 1.14, which is a new result since the existence of mini-
mizers and thus the availability of energy comparison techniques was not available before
the introduction of the class AG .

5.2.1 Luckhaus type lemma for weak curvatures

Our aim in this section is to prove the following proposition, using a Luckhaus-type
lemma for interpolating weak connections with L2 -small curvatures while paying a small
curvature cost.

Proposition 5.1. Assume that Fk are curvature forms corresponding to local minimizers
[Ak] ∈ AG(B5) and that Fk ⇀ F weakly in L2 and supk ‖Fk‖L2(B5) ≤ C . Then Fk → F
strongly sin L2 on a smaller ball B5

1
2

, and F is a local minimizer as well.

The main tool for the proof above is the following lemma:

Lemma 5.2 (Luckhaus-type lemma for AG ). Assume that F0, F1 are curvature forms
on B5

t+4ε corresponding to connection forms A0, A1 ∈ AG(Bt+3ε) such that

‖Fα‖L2(Bt+3ε\Bt−2ε) < ε0, ‖At‖L2(Bt+3ε\Bt−2ε) < ε0 . (5.1)

Then there exists a connection form Â corresponding to [Â] ∈ AG(Bt+4ε) such that

Â = A0 on Bt−2ε, Â = A1 on Bt+4ε \ Bt+3ε (5.2)

and
‖FÂ‖L2(Bt+3ε\Bt−2ε) ≤ C‖F0‖L2(Bt+3ε\Bt−2ε) + ‖F1‖L2(Bt+3ε\Bt−2ε) . (5.3)

Proof. Step 1. Good grid of balls. Like in Proposition 2.5 construct a good grid of balls
of scale ε which form a cover of Bt+ε \ Bt and have centers on ∂Bt+ε/2 . Note that since
α ∈]1, 2[ such balls will stay in Bt+3ε \ Bt−2ε .

Step 2. W 1,2 representatives on the boundary of a ball. From now on we will work
on a �xed ball B of the above-de�ned good grid. We want to perform a modi�cation
of the approximation procedure like in the proof of Theorem 1.8. This consists in �rst
interpolating on the boundary ∂B and then extending the interpolant to B . We note
that by the de�nition of AG , for α = 0, 1 we may �nd guages gα ∈ W 1,2(∂B,G) such
that Ãα := g−1

α dgα + g−1
α Aαgα ∈ W 1,2 .
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Step 3. Interpolating gauges and connections on ∂B . By Fubini's theorem and a
pigeonhole principle we may �nd numbers a0 ∈ [0, 1/4], a1 ∈ [3/4, 1] and a universal
constant C such that

‖gα|W 1,2(∂B∩∂Bt+aαε) ≤ C‖gα‖W 1,2(∂B) for α = 0, 1 . (5.4)

We may then use (5.4) and apply Luchkaus' [33] procedure for the extension of W 1,2 maps
into manifolds and �nd g̃ ∈ W 1,2(∂B,G) such that

g̃ = g0 on ∂B ∩ Bt+a0ε ,

g̃ = g1 on ∂B \ Bt+a1ε ,

‖g̃‖W 1,2(∂B∩(Bt+a1ε\Bt+a0ε)
≤ C(‖g0‖W 1,2(∂B∩(Bt+a1ε\Bt+a0ε)

+ ‖g1‖W 1,2(∂B∩(Bt+a1ε\Bt+a0ε)
) .

We then extend the curvature forms simply by interpolating along meridians, i.e. we �x
an increasing smooth function η : [0, t + 4ε] → [0, 1] such that η ≡ 0 on [0, t − a0ε]
and η ≡ 1 on [t + a1ε, t + 4ε] and for polar coordinates (ω, τ) = x centered at 0 and
(ω, τ) ∈ ∂B we de�ne

Ã(ω, τ) = (1− η(τ))i∗∂BA0 + η(τ)i∗∂BA1 .

As a consequence we obtain

‖Ã‖W 1,2(∂B) ≤ C(‖A0‖W 1,2(∂B) + ‖A1‖W 1,2(∂B)) .

Step 4. Extension on good and bad balls. We use the same notion of good and bad
balls as in Lemma-De�nition 2.9 with the exception that we require the inequalities to
be contemporarily valid for both A0, A1 . The estimates of the mentioned lemma remain
true, up to changing the constants by a universal factor. In the case of a good ball B
the extension of Ã to the interior of B and the construction of ĝ starting from g̃ are
done as in Proposition 2.3. The estimates on g̃, Ã from Step 3 together with the proof
of Proposition 2.3 give, as a consequence of the rescaled versions of (2.18), (2.19), the
estimates

‖dÂ+ Â ∧ Â‖2
L2(B) . ε‖F0‖2

L2(∂B) + ε‖F1‖2
L2(∂B)

and
‖Â‖L2(B) .

∑
α=0,1

(
ε‖Fα‖2

L2(∂B) + ε‖A‖2
L2(∂B)

)
.

If B is a bad ball we directly extend Ã radially inside.

Step 5. Summing up the estimates. The conclusion of our proof consists of repeating
Steps 1-5 and 8 of the proof of Theorem 1.8, i.e. we just jump the part where we perform
the smoothing on the 4-skeleton of our good grid. The estimates from the previous step
and the trivial estimates for the bad balls give then the desired result.
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Proof of Proposition 5.1: Step 1. We divide the interval [1/2, 1− 4ε] in N equal subin-
tervals of lenght 5ε , for 1/N ≤ ε0/C . By pigeonhole principle there exists one of such
intervals I = [t− 2ε, t+ 3ε] ⊂ [1/2, 1] such that up to subsequence we may assume

‖Fk‖L2({x:|x|∈I}) ≤ ε0, ‖F‖L2({x:|x|∈I}) ≤ ε0 .

Step 2. We may reduce to the setting of Lemma 5.2 with F0 = Fk, F1 = F . Let F̂k be
the interpolant produced in the Lemma 5.2. We have the following estimate:

‖F̂k‖L2(Bt+3ε\Bt−2ε) . N−1(‖Fk‖L2(Bt+3ε\Bt−2ε) + ‖F‖L2(Bt+3ε\Bt−2ε)) .

It is easy to check that the curvature F̂k is still in FZ(B5) .

Step 3. We use the fact that Fk is locally minimizing to write the following inequal-
ities:

‖Fk‖2
L2(Bt−2ε)

≤ ‖Fk‖2
L2(Bt+3ε)

≤ ‖F̃k‖2
L2(Bt+3ε)

= ‖F‖2
L2(Bt−2ε)

+ ‖F̂k‖2
L2(Bt+3ε\Bt−2ε)

= ‖F‖2
L2(Bt−2ε)

+ oε(1) .

In particular we see that no energy is lost in the limit on Bt−2ε :

‖Fk‖L2(Bt−2ε) → ‖F‖L2(Bt−2ε) ,

which proves the result.

5.2.2 Dimension reduction for the singular set

This section is devoted to the proof of Theorem 1.14. We use the following de�nition:

De�nition 5.3. We denote by reg(F ) the set of points x such that over some neighborhood
U 3 x there exists a smooth classical G-bundle P → U such that F is the curvature form
of a smooth connection over P . The complement of regF is denoted sing(F ).

Proof of Theorem 1.14: It can be proved (see [49] or [34]) from the monotonicity formula
(see [41]) that for minimizing curvatures F , H1(sing(F )) = 0 . If S := singF and F is
a minimizing curvature we consider now s ≥ 0 for which Hs(S ∩ Ω′) > 0 . Then Hs -a.e.
x0 there holds

lim inf
λ↓0

λ−sHs(S ∩Bλ/2(x0)) > 0 . (5.5)

From the monotonicity formula we have (see [49]) that for any subsequence λi → 0 such
that the blown-up curvature forms Fλi := τ ∗λi,x0

F , the weak limit curvature form F0 is
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radially homogeneous. Here τλ,x is the homothety of factor λ and center x . By Proposi-
tion 5.1 the convergence is also strong and F0 is a minimizer.

Si := singFλi which are the blow-ups of S , satisfy Hs(Si ∩B1/2) = λ−si Hs(S ∩Bλi/2)
thus from (5.5) we obtain

Hs(S0 ∩B1/2) > 0 . (5.6)

As in [49] from the stationarity we deduce that F0 is radial and radially homogeneous.
In particular S0 is also radially invariant, i.e. λS0 ⊂ S0 for λ > 0 . Assume S0 6= {0} . In
particular S0 must then contain a line and in this case H1(S0) > 0 . However since F0 is
still a minimizer this contradicts Corollary 1.13.

The fact that S0 = {0} for blown-up curvatures implies also that for a minimizer F
the singular points do not accumulate. Indeed if xi → x0 were accumulating singular
points, then by carefully choosing the blowup sequence we would be able to obtain F0

such that S0 ⊃ {0, u/4} where u is a unit vector.

6 Consequences of closure and approximability

We will prove here Theorem 1.6 which completes the proof of Theorem 1.7. The proofs
are along the lines of the reasoning [35] done in the case of abelian curvatures.

The distance dist on gauge-equivalence classes of connections is used to compare the
boundary datum with the slices of forms F ∈ AG . We abuse notation and denote by
f(x + ρ) the form (with variable x ∈ S4 ) corresponding to the restriction to ∂B1−ρ of
the form F . This notation is inspired by the analogy to slicing via parallel hyperplanes,
instead of spheres. We then de�ne the class AG,ϕ(B5) via the continuity requirement

dist(f(x+ ρ′), ϕ(x))→ 0, as ρ′ → 0+ . (6.1)

It is clear that the de�nition (6.1) satis�es the nontriviality and compatibility conditions,
since dist(·, ·) is a distance and since for R∞ having smooth boundary datum implies
that in a neighborhood of ∂B5 the slices are smooth up to gauge and converge in the
smooth topology to ϕ . The validity of the well-posedness is a bit less trivial, therefore
we prove it separately.

Theorem 6.1. If Fn ∈ AG,ϕ(B5) are converging weakly in L2 to a form F ∈ AG(B5)
then also F belongs to AG,ϕ(B5).

Proof. By weak semicontinuity of the L2 norm we have that Fn are bounded in this norm,
||Fn||L2(B1\B1−h) ≤ C .

Therefore by Lemma 4.3 the fn are dist-equi-Hölder, so a subsequence (which we do
not relabel) of the fn converges to a slice function f∞ with values in Y a.e.. For all
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ρ′ ∈ [0, ρ] the forms fn(·+ ρ′) are a Cauchy sequence in n , for the distance dist. This is
enough to imply that f∞ is equal to the slice of F . Even if F is just de�ned up to zero
measure sets, it still has a dist-continuous representative. By uniform convergence it is
clear that f still satis�es (6.1).

The same proof also gives an apparently stronger result:

Theorem 6.2. If Fn ∈ AG,ϕn(B5) are converging weakly in L2 to a form F ∈ AG(B5)
then the forms ϕn converge with respect to the distance dist to a form ϕ and also F
belongs to AG,ϕ(B5).

Remark 6.3. The de�nition of the distance can be extended as in [35] and allows to
extend the de�nition of the boundary value to arbitrary domains.

A Controlled gauges on the 4-sphere

Recall that π : L2(S4, g) →
(
Span

{
i∗S4dxk, k = 1, . . . , 5

})⊥
denotes the L2 projection

operator.

In this section we follow the overall structure of the argument from [51] to prove the
following result:

Theorem A.1. There exist constants ε0, C with the following properties. If A ∈ W 1,2(S4, g)
is a (global) connection form over S4 such that the corresponding curvature form F sat-
is�es

‖F‖L2(S4) + ‖A‖L2(S4) ≤ ε0

then there exists a gauge transformation g ∈ W 2,2(S4, G) such that

d∗S4(g−1dg) = d∗S4(π(g−1dg))

and denoting Ag = g−1dg + g−1Ag the new expression of the connection form after the
gauge transformation g there holds

d∗S4 (π (Ag)) = 0 and ‖Ag‖W 1,2(S4) ≤ C(‖F‖L2(S4) + ‖A‖L2(S4)) .

The proof consists in studying the case where the integrability exponent 2 is replaced
by p > 2 �rst, and then obtaining the p = 2 cases as a limit. Note that for p > 2 the
space W 2,p(S4, G) embeds continuously in C0(S4, G) , thus gauges g of small W 2,p -norm
will be expressible as g = exp(v) for some v ∈ W 2,p(S4, g) , due to the local invertibility
of the exponential map exp : G→ g .
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We then consider the space

Ep :=

{
v ∈ W 2,p(S4, g) :

ˆ
S4

vxk = 0, k = 1, . . . , 5

}
where xk are the ambient coordinate functions relative to the canonical immersion S4 →
R5 . In case p > 2 the Banach space Ep is, by the above considerations, the local model
of the Banach manifold

Mp :=

{
g ∈ W 2,p(S4, G) :

ˆ
〈g−1dg, i∗S4dxk〉 = 0, k = 1, . . . , 5

}
.

We then consider the sets

U εp :=
{
A ∈ W 1,p(S4,∧1TS4 ⊗ g) : ‖FA‖L2(S4) + ‖A‖L2(S4) ≤ ε0

}
and their subsets

Vε,Cpp :=


A ∈ U εp : ∃g ∈M2 s.t. d∗S4(π(Ag)) = 0,

‖π(Ag)‖W 1,q ≤ Cq(‖F‖Lq + ‖A‖Lq) for q = 2, p

and ‖F‖L2 + ‖A‖L2 < ε

 .

A.1 Proof of Theorem A.1

Like in [51] we prove theorem A.1 by showing that if ε0 > 0 is small enough then for
p ≥ 2 we may �nd Cp such that

Vε0,Cpp = U ε0p . (A.1)

We are interested in (A.1) just for p = 2 but we use the cases p > 2 in the proof: we
successively prove the following statements.

1. U εp is path-connected.

2. For p ≥ 2 the set Vε,Cpp is closed in W 1,p(S4,∧1TS4 ⊗ g) .

3. For p > 2 there exists Cp, ε0 such that the set Vε0,Cpp is open relative to U ε0p . In
particular (A.1) is true for p > 2 .

4. There exists K such that if g ∈Mp, ‖Ag‖L4 ≤ K and

d∗S4(π(Ag)) = 0, ‖F‖L2 + ‖A‖L2 < ε0

then
‖Ag‖W 1,2 ≤ C2(‖F‖L2 + ‖A‖L2) .

5. The case p = 2 of (A.1) follows from the case p > 2 .
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Proof of step 1

Fix p ≥ 2, ε, A ∈ U εp . We observe that 0 ∈ U εp . Moreover the connection forms At(x) :=
tA(tx) for t ∈ [0, 1] all belong to U εp as well, like in [51].

Proof of step 2

Let Ak ∈ Vε,Cpp be a sequence of connection forms converging in W 1,p to A . Consider

the gauges gk as in the de�nition of Vε,Cpp . We may assume that the Agkk have a weak

W 1,p -limit Ã . The bounds and equation in the de�nition of Vε,Cpp are preserved under
weak limit thus we �nish if we prove that Ã is gauge-equivalent to A via a gauge g ∈Mp .
We note that from dgk = gkA

gk
k − Akgk and the fact that G ⊂ RN is bounded it follows

that ‖dgk‖Lp∗ . ‖A
gk
k ‖W 1,p + ‖Ak‖W 1,p , thus it has a weakly convergent subsequence,

gk
W 1,p∗

⇀ g . Thus we may pass to the limit the gauge change equation and obtain indeed
Ã = Ag and also g ∈Mp .

Proof of step 3

Fix p > 2 and let A ∈ Vε,Cpp . Consider the following data:

g ∈ Mp ,

η ∈ W 1,p(S4,∧1TS4 ⊗ g) .

Consider the following function of such g, η , with values in Lp ∩ {xk, k = 1, . . . , 5}⊥L2 :

NA(g, η) := d∗S4

(
π
(
g−1dg + g−1(A+ η)g

))
= d∗S4

(
g−1dg + π

(
g−1(A+ η)g

))
.

Note that NA(id, 0) = 0 and NA is C1 . We want to apply the implicit function theorem in
order to solve in g the equation NA(g, η) = 0 for η in a W 1,p -neighborhood of id ∈Mp .
The implicit function theorem will imply also that the dependence of g on η will be
continuous. Note that up to order 1 in t there holds exp(tv)±1 ∼ 1 ± tv . Using this
and the fact that Ep is the tangent space to Mp at id we �nd the linearization of NA at
(id, 0) in the �rst variable:

HA(v) := ∂gNA(id, 0)[v]

=
∂

∂t

∣∣∣∣
t=0

[
d∗S4

(
π
(
(exp(tv))−1dexp(tv) + exp(tv)−1(A+ η)exp(tv)

))]
= d∗S4 (dv + π([A, v]))

= d∗S4dv + [π(A), dv] .

In the last passage we utilized the fact that π acts only on the coe�cients of A and thus
π[A, v] = [πA, v] and the fact that d∗S4 [π(A), v] = [d∗S4(π(A)), v] + [π(A), dv] where the
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�rst term vanishes by hypothesis. We see that HA : Ep → Lp ∩ {xk, k = 1, . . . , 5}⊥L2 is
thus given by

HA(v) = ∆S4v + [π(A), dv] .

By elliptic theory and Sobolev and Hölder inequalities in dimension 4 we have

‖HA(v)‖Lp ≥ ‖∆S4v‖Lp − ‖[π(A), dv]‖Lp
≥ cp‖v‖W 2,p − c′p‖π(A)‖L4‖v‖W 2,p .

For c′p/cp‖π(A)‖L4 < 1
2
we �nd that HA is invertible and the thesis follows.

Proof of step 4

We start by observing that since d∗S4(π(Ag)) = 0, 〈g−1dg, i∗S4dxk〉L2 = 0 there holds

d∗S4Ag =
5∑

k=1

5xk

 
S4

〈Ag, i∗S4dxk〉

=
5∑

k=1

5xk

 
S4

〈g−1Ag, i∗S4dxk〉 ,

thus by invariance of the norm and Jensen's inequality

‖d∗S4Ag‖L2 =

ˆ
S4

∣∣∣∣∣
5∑

k=1

5xk

 
S4

〈g−1Ag, i∗S4dxk〉

∣∣∣∣∣
2
 1

2

≤ C

(ˆ
S4

|A|2
) 1

2

= C‖A‖L2 .

By Hodge inequality

‖∇Ag‖L2 . ‖dAg‖L2 + ‖d∗S4Ag‖L2

. ‖F‖L2 + ‖Ag‖2
L4 + ‖A‖L2 .

If ‖Ag‖L4 ≤ K small enough then the second term above is estimated by K‖∇Ag‖L2

which can then be absorbed to the left side of the inequality, giving the desired estimate.

Proof of step 5

We approximate A ∈ U ε02 by smooth Ak in W 1,2 norm. In particular there holds Ak ∈
W 1,p for all p > 2 . We may obtain that Ak ∈ U ε0p = Vε0,Cpp , p > 2 and in particular we
�nd gk ∈Mp such that

‖Agkk ‖L4 . ‖Ak‖W 1,2 . ‖Fk‖L2 + ‖Ak‖L2 . ε0 ,
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where the constants depend only on the exponents p and 2 . By possibly diminishing ε0
we thus achieve ‖Agkk ‖L4 ≤ K for all k . By the closure result of Step 2 for p = 2 we thus
obtain that the same estimate holds for A and for some gauge g ∈M2 and by Step 4 we
conclude that A ∈ Vε0,Kp , as desired. �
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