SYMMETRY RESULTS FOR NONLINEAR ELLIPTIC OPERATORS
WITH UNBOUNDED DRIFT
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ABSTRACT. We prove the one-dimensional symmetry of solutions to elliptic equations
of the form —div(e€®a(|Vu|)Vu) = f(u)e®® under suitable energy conditions. Our
results hold without any restriction on the dimension of the ambient space.
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1. INTRODUCTION

In this paper we study the one-dimensional symmetry of solutions to nonlinear equations
of the following type:

(1) div(a(|Vu|)Vu) + a(|Vul) (VG(z), Vu) + f(u) = 0,
or in a more compact form
2) —div(eS @ a(|Vul) V) = (1)),

where f € CH(R)!, G € C2(R") and a € C'((0,4+00)). We also require that the function

loc
a satisfies the following structural conditions:

(3) a(t) >0 for any t € (0, +00),
(4) a(t)+d'(t)t >0 for any t € (0,+00).

Observe that the general form of (2) encompasses, as very special cases, many elliptic
singular and degenerate equations. Indeed, if G = 0 and a(t) = t*72, 1 < p < +o0,
or a(t) = 1/v/1+ t? then we obtain the p-Laplacian and the mean curvature equations

A.F. and M.N. are supported by the ERC grant EPSILON - Elliptic Pde’s and Symmetry of Interfaces
and Layers for Odd Nonlinearities. M.N. and A.P. acknowledge partial support by the CaRiPaRo project
Nonlinear Partial Differential Equations: models, analysis, and control-theoretic problems.

1One could consider functions f which are only locally lipschitz continuous, as in [9]. To avoid inessential
technicalities, we do not treat this case here.
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respectively. Moreover, if a(t) = 1 and G(z) = —|z|?/2 equation (1) boils down to the
classical Ornstein-Uhlenbeck operator for which we refer to [1] and the references therein.

To prove the one-dimensional symmetry of solutions we follow the approach introduced
in [5] and further developed in [9]. Following [5, 9, 3], we define A : R" — Mat(nxn),A\; €
CO((0,+00)), A\g € C°(R?") as follow

) Aal©)i= (s + allehm. tor any 1< k<,
(6) A (t) :=a(t) +d'(t)t for any t >0

and

(7) Ag(z) := maximal eigenvalue of V2G(z).

Definition 1.1. We say that u is a weak solution to (1) if u € C1(R"),

® | @9 Vo)~ fujp dn =0 ve e CLRY)

and either (A1) or (A2) is satisfied, where :
(A1) {Vu =0} = 0.
(A2) a € C°([0,+)) and

the map t — ta(t) belongs to C([0,400)).

Notice that (8) is well-defined, thanks to (A1) or (A2).
Notice also that weak solutions to (1) are critical points of the functional

) I(u) = / (A(Tul) + F(w))du

where F'(t) = —f(t), du = e“@)dz and

A(t) :—/0 a(|r|)rdr.

The regularity assumption u € C*(R") is always fulfilled in many important cases, like
those involving the p-Laplacian operator or the mean curvature operator. For instance,
when a(t) = P72, 1 < p < +o0, any distribution solution u € VVllo’f(R”) N L (R™) is of

class C1, by the well-known results in [16, 22]). In light of this, and in view of the great
generality of the function a, it is natural to work in the above setting.

Definition 1.2. Let h € L}, (R") and let u be a weak solution to (1). We say that u is
h—stable if

10) [ (AT Vo)~ L@ du> [ allTubhe? du o€ CUR),

n

Remark 1.3. When a(t) = 1, Definition 1.2 boils down to the h—stability condition
introduced in [2, 3].

When h = 0, then u satisfies the classical stability condition [5, 9, 11, 10], and we simply
say that u is stable. In particular, every minimum point of the functional (9) is a stable
solution to (1).
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Let us also point out that, in view of (A1) or (A2), the integral
() [ (AT, V) = w6~ a(Val e dn
is well defined.? In particular, under the condition (A2) the function A can be extended
by continuity at the origin, by setting Apr(0) := a(0)dpk.

We can now state our main symmetry results:

Theorem 1. Assume G € C*(R") and h € L}, .(R") with h > A\g. Let u € C*(R") N
C%({Vu # 0}) with Vu € H. _(R™) be a h—stable weak solution to (1). Assume that there
exists C > 0 such that
(12) A (t) < Cal(t) VYt >0,
and one of the following conditions hold

(a) there exists Cy > 1 such that fBR a(|Vul)|Vul2du < CoR? for any R > Cy,

(b) n =2 and u satisfies a(|Vu|)|Vu|?e® € L>(R?).

Then u is one-dimensional, i.e. there exists w € S* 1 and ug : R — R such that

(13) u(z) = up({w,x)) Vo e R"™
Moreover,
(14) {((h(z)L, — V?G(z))Vu,Vu) =0 Vz € R,

In particular, if ug is not constant, there are C and g of class C? such that
(15) G(z) = C({w, z)) + g(a'),
where 2’ := x — (w,x) w and A\g(z) = h(x) = C"((w,x)) for all x € R™.

Remark 1.4. Paradigmatic examples satisfying the assumption (12) are the p-Laplacian
operator, for any p € (1,+00), and the generalized mean curvature operator obtained by

1
setting a(t) := (1 4+t9) ¢, with ¢ > 1.

Theorem 2. Let G(x) := —|z|?/2, a(t) := t*=2 withp > 1 and let u € CL(R?")NW L2 (R")
be a monotone weak solution to (1), i.e., such that
(16) Oiu(z) >0 VzreR"

for some i € {1,...,n}.
Suppose that u satisfies either (a) or (b) in Theorem 1. Then wu is one-dimensional.

1
Moreover, if either p =2 or a(t) := (1 +t?) ¢« with ¢ > 1, then the same conclusion holds
for every monotone weak solution v € C*(R™) N L>(R™).

Theorem 3. Let u be a bounded weak solution to
(17) Au— (xz,Vu) + f(u) =0
with Morse index k. Then,

2 ¢fr. also [9, footnote 1 at p. 742 and footnote 2 at page 743].
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(i) if k < 2 then u is one-dimensional;
(ii) if 3 < k < n then w is a function of at most k — 1 variables, i.e. there exists
C € Mat((k —1) x n) and ug : R¥=! — R such that

(18) u(x) = up(Cx) Vo e R"™

2. A GEOMETRIC POINCARE INEQUALITY

We start by recalling the following Lemma which has been proved in [9].

Lemma 2.1. For any & € R™\ {0}, the matriz A(§) is symmetric and positive definite
and its eigenvalues are A1(|€]), -+, A (€]), where A1 is as in (6) and \;(t) = a(t) for every
1=2,...,n. Moreover,

(19) (A©),€) = €M (€],

and

(200 O<(AV =W),(V =W)) = (AV,V) + (AW, W) = 2(A)V, W),
for any V,W € R™ and any € € R™\ {0}.

Lemma 2.2. Let u € C*(R") N C*({Vu # 0}) with Vu € H} (R"™) be a weak solution to
(1). Then for anyi=1,...,n, and any ¢ € CL(R"™) we have

e) [ (AT V) - al|Vul) (Va, V(G — f(wuip dp =0,

Proof. By Lemma 2.2 in [9] we have

(22) the map = — W(z) := a(|Vu(z)|)Vu(z) belongs to T/Vllo’cl(R”,R"),
therefore, since ) € C2(R™) we get

(23) Wel € WoH(R™, R™).

By Stampacchia’s Theorem (see, e.g. [18, Theorem 6:19]), we get 0;(We®) = 0 for almost
any z € {We% =0} = {W = 0}, that is

Oi(WeG) =0

for almost any x € {Vu = 0}. In the same way, by Stampacchia’s Theorem and (A2), it can
be proven that Vu,;(x) = 0, and hence A(Vu(z))Vu;(z) = 0, for almost any z € {Vu = 0}.
Moreover, the following relation holds (see [9] for the proof)

(24) i (We) = (A(Vu)Vu,; + a(|Vu|) VuG;)e®  on {Vu # 0},
and thanks to the previous observations

(25) i(We) = (A(Vu)Vu; + a(|Vu|)VuGi)e®  a.e. in R™.
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Applying (8) with ¢ replaced by ; and making use of (23) and (25), we obtain
0= [ a(Vul) (Vu, Vi) + Fla)es d
—— [ (A(V0)Vui 9¢) + al|Val) (Vu, Vi) G s
-/ f(w)uip + f(u)pGi du
—— [ (A(V0) Vi, Vi) + (| V) (Vs V(0G)

- /n —a(|Vul) (Vu, VG;) o + f(u)uip + f(u)pG; du.

Recalling (8), applied with ¢ replaced by ¢G;, we obtain the thesis.

0

JFrom now on, we use A and a, as a short-hand notation for A(Vu) and a := a(|Vul)

respectively.

In the following result we prove that every monotone solution to (1) is indeed h—stable.

Lemma 2.3. Assume that u is a weak solution to (1) and that there exists i € {1,..

such that

(26) u;j = Oju(z) >0 VreR"
then u is h—stable, with

(Vu(z), VGi(z))

h(zx) := (@)

.,n}

Proof. Let ¢ € C°(R™) and 1 := ¢?/u;. We use (20) with V := ¢©Vu;/u; and W := Ve

to obtain that
2

2
ui? (AVu;, Vi) — % (AVu;, Vau;) < (AVp, Vi) .

,From this and Lemma 2.2 we get

(27) 0= / (AVu;, V) — a (Vu, VG;) ¥ — f(u)uih dp

p ¥’ ¢’
= /2u- (AVu;, V) — 2 (AVu;, Vu;) — a - (Vu, VG;) — f'(u)p? du

o?
< / (AVp, V) — a; (Vu,VG;) — f’(u)g@2 dp.

)

Notice that we can apply Lemma 2.2 since, in view of (26), u has no critical points and

thus it is of class C?, by the classical regularity results.

O

The following Lemma can be proved using the same tecniques implemented in [9, Lemma

2.4],
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Lemma 2.4. Let h € L} (R"). Let u € C*(R") N C*({Vu # 0}) with Vu € H}_(R") be

loc

a h—stable weak solution to (1). Then, (10) holds for any p € H}(B) and for any ball
B C R™. Moreover, under the assumptions of Lemma 2.2,

29 [ (A0 Vi) - al|Vul) (Va, V(G — f(wuip dp =0,
foranyi=1,....,n, any p € HY(B) and any ball B C R".

Proposition 2.5. Let h € Li, (R") and u € CY(R")NC*({Vu # 0}) with Vu € H} (R™)
be a h—stable weak solution to (1). Then, for every ¢ € CL(R™) it holds

(29) / a(|Vul)h()|Vul?e? du < / Vul? (AV, Vo) + a(|Vul) (V2GVu, Vu) ¢
R™ R

+o* [ (AVIVul, VIVul) = D (A(Va) Vs, Vi) |d

i=1
Proof. We start observing that by Stampacchia’s Theorem, since p << L", we get
(30) V|Vul|(z) =0 p—ae xz € {|Vul =0}
(31) Vuj(z) =0 p—ae € {|Vul =0} C {u; =0},

forany j = 1,...,n. Let ¢ € C}(R") and i = 1,...,n. Using (21) with test function w;?
and summing over 1 = 1,...,n we get

(32)

[ 3 A0V, Vi)~ @) [VuP? d = [ al(Ful) (V26T Tu) o du

" =1 R™

Using (10) with test function |Vu|e (note that this choice is possible thanks to Lemma
2.4) we then get

(33)

[ a9ubh@)vule du< [ {(ATu@)V(Talp). V(Vale) - 70| Vul? du

- / Vul? (AVp, V) du + / 7 (AV|Vul, V|Vu])
NG {Vu#0}

+ 20| Vul (AV, V|Vul) — f'(u)|Vul*¢? dp
and by (32) we conclude that
(34)

[ allvubh@IVuPe? du< [ [VuP (496, Tohdpt [ al(Tul) (V6T Tu) P
R Rn {Vuz£0}

+/ ¢2[<AV|VU|,V|Vu|> -3 <A(vu)vui,vui>}du.
{Vuz0}

i=1
which is the thesis. O
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Remark 2.6. Letting

Lugz ={y e R" [ u(y) = u(z)},
we denote by Vru the tangential gradient of u along L, , N {Vu # 0}, and by ki,...,kp—1
the principal curvatures of L, , N {Vu # 0}.By Lemma 2.3 in [9] we obtain

(35)

(AV|Vul, VIVul) — 3 (A(V)Vuy, Vui) = a[|V\VuH2 -3 ]Vu,-ﬂ — | V||V | Va2
i=1 i=1
and using (6) we get

(36) (AV|Vul, V|Vul) = > (A(Vu) Vi, Vi)
i=1

= ~XIVr[Vul2 = a|Vu) (3 [Vl = V7| Tul 2 = V] Vul[?)
=1

Notice that the quantity

> IVu? = |VIVul? = [V |Vul|?
=1

has a geometric interpretation, in the sense that it can be expressed in terms of the
principal curvatures of level sets of u. More precisely, the following formula holds (see
[9, 20, 21])

n n—1

(37) > IVl = [VIVul? = Vo Vul* = |Vu* Y k2 on Ly. N {Vu # 0},
i=1 j=1

so that (34) becomes

n—1
/{V Loy a(|VU|)h($)’Vu|2<p2 + [>\1|VT|VU||2 + (l(|VuD|Vu|2 Z kﬂ c)02

j=1
— a(|Vu|) (V2GVu, Vu) ¢* du

< / (AVp, Vi) [Vul2dp.
R’I’L

Rearranging the terms, we obtain

n—1
/ a(|Vul) ((h(z)I = V*G)Vu, Vu) ¢* + [Al\vT\qu? +a(|Vul)|[Vu* > kﬂ v? du
{Vu0} j=1
(38)

< / (AVp, Vo) [Vul*dp,
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where I € Mat(n x n) denotes the identity matrix.
Notice that from (38) we also obtain

(39) / a(|Val) {(h(2)] — V2G)Vu, V) o dps < / (AV 5, Vo) [Vl ?d.
(Vus£0} R"

3. ONE-DIMENSIONAL SYMMETRY OF SOLUTIONS

In this section we will use (38) to prove several one-dimensional results for solutions
to (1), following the approach introduced in [5] and then developed in [9]. Notice that,
more recently, a similar approach has also been used to handle semilinear equations in
riemannian and subriemannian spaces (see [6, 7, 8, 12, 13, 19]) and also to study prob-
lems involving the Ornstein-Uhlenbeck operator [2], as well as semilinear equations with
unbounded drift [3].

The following Lemma is proved in [9, 13].
Lemma 3.1. Let g € L{° (R™,[0,+00)) and let ¢ > 0. Let also, for any 7 > 0,

loc

(40) n(r) = /B g(z)dx.
Then, for any 0 <r < R,
g() /R n(r) 1
41 2 dx < —
“ Jou, T < e+ g

Proof of Theorem 1. Let us fix R > 0 (to be taken appropriately large in what follows)
and x € R™ and let us define

1 if xze B g
(42) pla) = 208BED if 2 e Br\ B g
0 if eR"\ Bg,
where Br :={y € R" | |y| < R}. Obviously ¢ € Lip(R") and
XVR R(x)
\V4 < Oyt~
VAN g (R

for suitable Cy > 0. Hence for every R > e, (38) together with h > Ag yields
(43)

n—1
[ vl s aVapVal Y] du< [ (AT, V) [Vuld
{VU#O}(‘IBR ]:1 Rn
therefore, by (12)
(44)
n—1
[ eVl V) Val Y] < (1+0) [ a(9u|VeP TuPdu
{VU#O}HBR j=1 Rn

< (14+C)C3 / a(|Vul|)|Vul|?
N BR\B 5

log(R)? 2

dp
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Applying Lemma 3.1 with g = a(|Vu|)|Vu|?e® and ¢ = 2, and recalling that
/ a(|Vul)|[Vul?du < CoR?

Br
for R large, we obtain
(45)
2 2%~ 9] 2 (1+C)CoC3 "
M|V |Vull|? + a(|Vu])|Vu| ksl dpy < ——0r—F—= 2/ —dr +1
/{Vu;éO}HBR [ ; ]} log(R)? [ VE I7] }
2(1 + C)CyC?
log(R)

Therefore, sending R — +oo in (45) we get
(46) kj(z) =0 and |V7|Vul|/(z) =0

for every j =1,...,n— 1 and every z € {Vu # 0}. From this and Lemma 2.11 in [9] we
get the one-dimensional symmetry of u.

Let us now suppose n = 2 and a(|Vu|)|Vu|?e® € L>°(R?). Taking in (38) the following
test function

In R? — In |z|
4 = in (1, — ™
(47) ©(r) = max [O,mln < , R >} ,

recalling that h > A¢ and following [9, Cor. 2.6], we then obtain

n—1
/ a(Vul@) o 6
M|V | VulP4a(|Vu) [ Vul? ) k2 |2 d,ugC/ LR [Vl 2eC @ dg
/{WO}OBR[ 9/l o U T 3 ?] o T2 G

for some constant C' > 0. When R — +oo, since a(|Vu|)|Vu|?e“® is bounded, the
r.h.s. term of the previous inequality goes to zero, and we conclude again that w is one-
dimensional.

Assume now that u is not constant. If we take in (39) the same test functions as above,
we get

/Rn a(|Val) {(h(@)L, — V?C(2)) Vi, V) dpa(z) = 0.

Using the fact that u(z) = ug({w, )) and a(t) > 0 we obtain that ((h(z)I, — V2G(z))w,w) =
0 for all = such that u{((w,z)) # 0. Since u is not constant and is a solution to the ellip-
tic equation (1), the set of points such that uy((w,z)) = 0 has zero measure, so, by the
regularity of G we conclude that

{(h(z)I, — VQG(x))w,w> =0 VzeR",
which gives (14) and (15). O
As pointed out in [3], a Liouville type result follows from Theorem 1.
Corollary 3.2. Let G, h,u satisfy the assumptions in Theorem 1. Assume further that
h € C°(R™) and h(z) > \g(z) for some x € R™. Then u is constant.

In particular, if u is a stable solution, that is h = 0, and A\g(x) < 0 for some z € R™,
then wu is constant.
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In the following lemma we give a sufficient condition for a solution w to satisfy condition
(a) in Theorem 1.

Lemma 3.3. Let u be a weak solution to (1). Then, for each ¢ € C}(R"),

(43) /R ol Vul) Ve = - /R al[Vul) (Y, Vi) udp + /R g

In particular, if t — ta(t) € L>®((0,+00)), v € L*¥(R") and p(R™) < +oo then there
exists C' > 0 such that

(49) /R a(|Vu])|Vul2du < C.

Proof. Clearly (48) follows by taking u¢p as test function in (8).

Let us show (49). For every R > 1 let ®p € C*°(R) be such that ®r(t) =1if t < R,
Ppr(t) =0ift > R+1 and ®,(t) < 3 for t € [R, R+ 1], and define ¢(z) := ®r(|z|). Then
V(@) < [@p(Je])] < 3, and (48) yields

/ o|Vul)[Vuldu < 3 / a(|Vu])| Vil fuldpe + / F)luldp < C,
Br Br+1\Br

Bry1
which gives (49) by letting R — +o0.
O

In the rest of the section we fix G(x) = —|z|?/2. We start with a result which follows
directly from Lemma 2.3.

Lemma 3.4. Let G(x) := —|z|?/2 and assume that u is a monotone weak solution to (1),
i.e. there exists i € {1,...,n} such that

(50) diu(x) >0 VxeR",
then u € C%(R™) and u is (—1)—stable.

Proof of Theorem 2. We start observing that u is (—1)—stable by Lemma 2.3.
Since V2G(z) = —Id we have

(51) —1 =h(z) = Ag(x) = —1.
If a(t) = t*=2 for some p > 1 then
(52) ME)=@p-1)P2=(p—1a(t) Vt>0

and the conclusion follows by Theorem 1.
1
If a(t) = (1 +t9) « with ¢ > 1 then

1
(53) M) = (14497 — (1449 T 19 <a(t) V>0,
(54) ta(t) <1 Vt>0.
By Lemma 3.3 and (54) there exists C' > 0 such that

(55) /Rn a(|Vu|)|Vul?*du < C.
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Notice that, if a(t) = 1 for every ¢t > 0, by Theorem [17, Theorem 4.1] we have u €
H?(R™, ), so that (55) holds in this case, too.
The conclusion follows by (53), (55) and Theorem 1. O

4. SOLUTIONS WITH MORSE INDEX BOUNDED BY THE EUCLIDEAN DIMENSION

In this section we will focus on the Ornstein-Uhlenbeck operator. More precisely, we
will consider weak solutions u € H'(R™, ) N L>(R") to

(56) Au — (z,Vu) + f(u) =0

where f € C'(R), and we will prove some new symmetry results for solutions with Morse
index k < n. We recall that, by Theorem [17, Theorem 4.1], bounded weak solutions to
(56) satisfy u € H2(R™, u) N L= (R™).

Definition 4.1. A bounded weak solution u to the Ornstein-Uhlenbeck operator has Morse
index k € N if k is the maximal dimension of a subspace X of H'(R™, i) such that

657) Quip) = [ V6P = fu)tdn <0 Ve e X\ {0},

Remark 4.2. Let u be a bounded solution to (56) and let L : H*(R"™, u) — L*(R™, 11) be
the linear operator defined as
(58) L(v) := —Av + (Vv,x) — f (u)v.

Notice that L is self-adjoint in L?(R™, 1) with compact inverse, so that by the Spectral
Theorem [15] there exists an orthonormal basis of L?(R", i1) consisting of eigenvectors of
L, and each eigenvalue of L is real.

Then, v has Morse index k if and only if L has exactly k strictly negative eigenvalues,
repeated according to their geometric multiplicity (see for instance [17, Theorem 4.1]).

The following Proposition is proved in [2, Lemma 3.2].

Proposition 4.3. Let u be a bounded weak solution to (56). If for some i =1,...,n, u;
is not identically zero then it is an eigenfunction of L with eigenvalue —1, i.e.

(59) / (Vuus, Vo) + s — f'(whusp du =0, Vo € H'(B™, o).

We are now in a position to prove Theorem 3.

Proof of Theorem 3. By [17, Theorem 4.1] every bounded weak solution to (56) belongs
to H?(R™, 1), hence u; € H'(R", i) for all i = 1,...,n. Therefore, using (59) with u; as
test function we obtain

(60) Qu(ui) = / |Vu|? — f/(w)uidp = / u? <0, Vi=1,...,n.
R” n

In particular

(61) Qulu;) <0

for every i = 1,...,n such that u; is not identically zero.

Let L be the operator defined in (58). If k£ = 0 then u is stable, hence it is constant by
Corollary 3.2.
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If £ = 1 then, by Remark 4.2 and Proposition 4.3, it follows that —1 is the smallest
eigenvalue of L, that is

(62) i ( /R Vel — () du) = 1.

eeH(R™,p),|ll| 12 gn =1

Using (62) it follows that u is (—1)—stable and therefore, by Theorem 1, w is one-
dimensional.

Assume now 2 < k < n and define S := {i € {1,...,n} | ui(x) # 0, for some z € R"}
and X := span;cg{u;} € H'(R", u). Clearly,

(63) Qu(v) <0 Yve X\ {0}

therefore, by Definition 4.1, X has dimension less or equal than k, i.e. there exists I C S
with |I| > |S| — k such that {u;}ier are linearly dependent [15]. This means that, up to
an orthogonal change of variables, u depends on at most k variables.

Let us assume by contradiction that u is a function of exactly k variables. We claim
that —1 is the smallest eigenvalue of L, as before. Indeed, if this is not the case, then
there exist A < —1 and v € H'(R", 1), with v # 0, such that L(v) = v, therefore, by
the linear independence of eigenvectors associated to different eigenvalues, it follows that
Y := span{u;, v} has dimension equal to k+ 1 and Q,(w) < 0 for every w € Y\ {0} which
is in contradiction with the fact that u has Morse index k. This proves that u is a function
of at most (k — 1) variables, as claimed. O
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