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Abstract. We establish well-posedness of a class of first order Hamilton-Jacobi equation
in geodesic metric spaces. The result is then applied to solve a Hamilton-Jacobi equation in
the Wasserstein space of probability measures, which arises from the variational formulation
of a compressible Euler equation.

1. Introduction

Let (X, d) be a complete metric space and a geodesic space. We are interested in a class
of minimization problem which includes in particular the following:∫ T

0

(1

2
|x′|2 − V (x)

)
dr

where V : X 7→ R is uniformly continuous and bounded from above, x = x(t) ∈ AC([0, T ];X)
is an absolutely continuous path in X, and

|x′|(t) := lim
s→t

d(x(s), x(t))

|s− t|
denotes its metric derivative. See Chapter 1, Ambrosio, Gigli and Savaré [2] for definitions
and properties of absolutely continuous curves in metric spaces. Given U0 : X → R, we
define

U(t, x) := sup
{
U0(z(t))−

∫ t

0

(1

2
|z′|2(r)− V (z(r))

)
dr : z(0) = x, z(·) ∈ AC([0, t];X)

}
.

Then U solves a Hamilton-Jacobi equation, formally written as

∂tU(t, x) =
1

2
|DxU(t, x)|2 + V (x),(1.1)

where the slope (also called local Lipschitz constant) for a function f : X 7→ R is defined as

|Df |(x) := lim sup
y→x

|f(y)− f(x)|
d(y, x)

.(1.2)

We are interested in a well-posedness theory for (1.1) and related equations. To fix the ideas
and to separate difficulties of different nature, we do not pursue generality and only focus on
the case of V with uniformly continuity in balls of finite radius, with possible growth to −∞
at certain rate with respect to the metric distance, and uniformly bounded from above. The
case V = 0 is of special interest, as the corresponding U then defines a Hopf-Lax semigroup
which has applications to transportation inequalities in abstract metric space settings. Point-
wise solution of (1.1) has been considered in Chapters 7 and 22 of Villani [31], in Section 3
of Ambrosio, Gigli and Savaré [3], Gozlan, Roberto and Samson [26]. The pointwise solution
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is sufficient for the purpose of the applications considered in these references. However, as is
known in the case even when X ⊂ Rd, it is not good enough to ensure uniqueness for (1.1).
Here we will generalize the notion of viscosity solution to metric space setting and develop
a well-posedness theory.

The theory of viscosity solutions for (first order) Hamilton-Jacobi equation in infinite di-
mensions was initiated by Crandall and Lions [10]. One of the structural assumption is that
X is a Hilbert space, or slightly more generally, certain Banach space with smooth norm.
However, recent applications start to witness a situation where X is space of probability
measures. This includes examples in statistical mechanics [4, 18], optimal control and prob-
ability [15, 16], classical game theory [8, 9], fluid mechanics [19, 20, 14, 17, 21, 22], and
mean-field games (we refer to [7] for a compilation of references). In sections 2 and 3 of
this article, we extend the first order viscosity theory to general metric spaces setting by
exploring maximum principles of the Hamiltonian operator. Other alternatives exist. For
instance, [24, 29] emphasize a formulation on path (hence the Lagrangian) by considering
a sub-class of the Hamiltonians considered here. During the preparation of this article, we
also received a preprint from the authors of [22] where their last section considers a related
Cauchy problem using ideas of the same kind as in the first three sections of this article.
Definition of viscosity solution is given for general Hamiltonians but well-posedness is treated
for the case of H(x, p) = H(p) and H(x, p) = H(p) + f(x) only. Using Perron’s method,
solution is constructed implicitly. There is no convexity on p assumption on H. In this
article, under a rather general structural assumption on H in (1.5), we treat Hamiltonians
with much more general x-dependence. Growth estimate of solution is also provided. Our
assumption implies that p 7→ H(x, p) is convex. However, the existence part of our well-
posedness result is explicitly constructed using dynamical programming and value functions.
Moreover, the proof of our uniqueness result does not critically rely on such convexity as-
sumption. Finally, in Section 4, we give well-posedness for the resolvent equation relative to
a special Hamiltonian in space of probability measures. Such issue, in the form of Cauchy
problem, had been considered by [19, 22, 27] but no well-posedness was given. In particular,
the relation between the metric definition of viscosity solution and a possible definition in
Wasserstein space used in the above references was left open. See the concluding comments
at the end of section 7 in [22]. We settle this issue in Section 4. We mention that, although
we only treat the resolvent problem in detail, in principle the Cauchy problem should follow
similarly.

The spirit of this article is closer to parts I, II and III of [10], but different than the
rest of that series. By this, we mean that our Hamiltonian will only depend on f through
|Df |. There is no notion of 〈Df(x), v(x)〉x for some velocity field v, which requires a notion
of duality. This feature unfortunately excludes the examples in [5, 18, 14, 17]. However,
at least in the case where X is space of probability measures, many such problems can be
treated effectively by another method different than the one discussed here [15, 16, 18].
That method is closer in spirit to parts IV, V, VI, VII of [10]. Further generalization of the
viscosity method to more general models in metric space settings is worthwhile.

The rest of this introduction summarizes well-posedness results for resolvent type and
Cauchy problem of Hamilton-Jacobi equations in metric spaces. Detailed developments are
given in Sections 2 and 3. In Section 4, we apply these results to an example concerning
the variational formulation of a compressible Euler equation and derive well-posedness for
an associated Hamilton-Jacobi equation in the space of probability measures.

2



Acknowledgement. Both authors acknowledge the support of the ERC ADG GeMeThNES.
The second author also thanks the hospitaliy of the Classe di Scienze, Scuola Normale Su-
periore di Pisa, Italy, and of the Mathematics Department of Ecole Normale Supérieure de
Lyon, France, during his sabbatical leave. He also acknowledges support by the LABEX
MILYON (ANR-10-LABX-0070) of Université de Lyon, France.
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1.1. Basic setup. We assume that (X, d) is a complete metric space and a geodesic space
in the following sense: for every x, y ∈ X, there exists a continuous curve z : [0, 1]→ X such
that

z(0) = x, z(1) = y, d(z(s), z(t)) = (t− s)d(x, y), ∀0 ≤ s ≤ t ≤ 1.(1.3)

In fact, from the above identity, we conclude that z(·) has to be a constant-speed curve,
namely

|z′|(r) = d(x, y), for all r ∈ (0, 1).(1.4)

See also Remark 1.8 for more general assumptions on X.
We set R̄ := [−∞,+∞], R+ = [0,∞) and use the notation Br(x) and Br(x) respectively

for open and closed balls. Let BUC(X;R) denote the space of bounded uniformly continuous
functions on X, LSC(X; R̄) (respectively USC(X; R̄)) denote the space of lower (respectively,
upper) semi-continuous functions on X, Mu(X; R̄) denote the space of measurable functions
from X 7→ R̄ which are bounded from above.

If g : X 7→ R̄ and ζ : X 7→ [0,∞], g is called with growth at most ζ if for some constant
C ∈ R+ it holds

|g(x)| ≤ C(1 + ζ(x)), for all x ∈ X.

Let L := L(x, q) : X× R+ 7→ R̄, we define H : X× R+ 7→ R̄ by

H(x, p) := sup
q≥0

(
pq − L(x, q)

)
, ∀p ≥ 0.(1.5)

For notational convenience, we also introduce an extension of H allowing p < 0:

H̄(x, p) := sup
q≥0

(
pq − L(x, q)

)
, ∀p ∈ R.

We fix a basepoint x̄ in X and assume:

Condition 1.1.

(1) L is lower semicontinuous from X× [0,∞) into R ∪ {+∞} and inf L > −∞.
(2) `(q) := infx∈X L(x, q) is super-linear, namely

lim
q→+∞

`(q)

q
= +∞.

(3) Either L(·, q) ≡ +∞ or it is real-valued and continuous.
3



(4) For each R > 0, there is a local modulus ωR(r) : R+ 7→ R ∪ {+∞} (i.e. ωR is
continuous at r = 0 and ωR(0) = 0) and some constant CR > 0 such that: for every
x, y ∈ BR(x̄) and for every q ≥ 0 with L(x, q) <∞, there exists q′ ≥ 0 satisfying

|q − q′|
1− inf L+ `(q)

≤ CRd(x, y),

and

L(y, q′)− L(x, q)

1− inf L+ `(q)
≤ ωR(d(x, y)).

(5) There exists q0 > 0 such that L(·, q0) is finite on bounded sets: we denote by ζ : R+ 7→
R+ and a non-negative, non-decreasing continuous function ζ : R+ 7→ R+ such that

L(x, q0) ≤ ζ(d(x, x̄))
)
, ∀x ∈ X.(1.6)

Moreover, there exists a nondecreasing non-negative function β ∈ C1(R+) which
grows to infinity faster than ζ (i.e. lim

r→+∞
β(r)/(1 + ζ(r)) = +∞) such that

sup
x∈X, x 6=x̄

H
(
x, |Dxβ ◦ d(·, x̄)|

)
= sup

x∈X, x 6=x̄
H
(
x, β′(d(x, x̄))

)
<∞.

Remark 1.2. (1) In most cases, Condition 1.1(4) can be verified by taking q′ = q. By doing
so, the first inequality is trivially satisfied. In the model case when L(x, q) = l(q) − V (x),
it is sufficient to have V bounded from above, l bounded from below and V be uniformly
continuous in bounded regions. Note that the l does not need to be continuous.
(2) The motivation for the growth estimate type Condition 1.1(5) is more involved to explain.
We offer the following example to illustrate its usefulness and limitation.

Example 1.3. Consider the case

L(x, q) := l(q)− V (x), q ≥ 0, H(x, p) := h(p) + V (x), p ≥ 0.

where h(p) := supq≥0[qp − l(q)] is non-decreasing in p ≥ 0. Assume that l : R+ 7→ R ∪
{+∞} is super-linear and lower semi-continuous, and that V is bounded from above and
uniformly continuous in balls of finite radius. Then Conditions 1.1(1)-(4) are all satisfied.
In addition, we assume that l is not trivial: there exists q0 > 0 such that l(q0) <∞. Then,
Condition 1.1(5) is satisfied in the following important situations:

(a) V is bounded: supX |V | <∞. In this case, one can just take

ζ(r) := sup
x∈X

L(x, q0), β(r) = r.

(b) There exist C0, C1 > 0, θ ∈ (0, 1) such that

V (x) ≥ −C0 − C1d
θ(x, x̄).

In this case, we can take ζ(r) = l(q0) +C0 +C1r
θ and β(r) = r. Then it follows that

H
(
x, β′(d(x, x̄))

)
= V (x) + h(1) ≤ sup

x∈X
V (x) + h(1) <∞.

(c) There exist C0, C1, C2, C3 > 0, 0 ≤ θ2 ≤ θ1 such that

−C0 − C1d
1+θ1(x, x̄) ≤ V (x) ≤ C2 − C3d

1+θ2(x, x̄),(1.7)
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and that

lim
r→+∞

h(rθ3)

r1+θ2
= 0, ∃ some θ3 > θ1.(1.8)

In this case, we can take ζ(r) = l(q0) + C0 + C1r
1+θ1 , β(r) = r1+θ3 . Then

H
(
x, β′(d(x, x̄))

)
= V (x) + h(dθ3(x, x̄))

≤ C2 − C3d
1+θ2(x, x̄) + h(dθ3(x, x̄))

≤ sup
r≥0

(C2 − C3r
1+θ2 + h(rθ3)) <∞.

More specifically, focusing on the example of

l(q) =
|q|2

2
, h(p) =

|p|2

2
,

then (1.8) is implied by

θ1 < θ3 <
1 + θ2

2
.(1.9)

Assume that (1.7) holds with

0 ≤ θ2 ≤ θ1 < 1, 2θ1 < 1 + θ2.

Then one can always find such a θ3, implying (1.7) and (1.8), consequently Condi-
tion 1.1.5.

It is important to note that the above conditions allow the case of

H(x, p) = |p|+ V (x), p ≥ 0,

which arises if we take L(x, q) = l(q)− V (x) with

l(1) := 0, l(q) = +∞,∀q 6= 1,

or

l(q) := 0,∀q ∈ [0, 1], l(q) = +∞,∀q ∈ (1,∞).

Note that the function H(x, p) in (1.5) is only defined for p ≥ 0.

There are two types of equations that we are interested in.

1.2. Resolvent equation. For α > 0 and h ∈ BUC(X), we define the value function

f(x) := sup
{∫ ∞

0

e−r/α
(h(z)

α
− L(z, |z′|)

)
dr : z(·) ∈ ACloc(R+;X), z(0) = x

}
.(1.10)

We expect that f formally solves the equation

f(x)− αH
(
x, |Df(x)|

)
= h(x).(1.11)

To make this precise, we proceed in several steps. First, we define two collections of test
functions D0, D1 ⊂ C(X). By D0, we mean the class of functions of the following form

ϕ(·) := λ−1
(d2(·, y)

2δ
+ κβ ◦ d(·, x̄) + εd(·, x0)

)
(1.12)

where λ > 1, y, x0 ∈ X, and δ > 0, κ, ε ≥ 0 are free parameters, while the function β is the
one in Condition 1.1(5). We further denote Dλ,κ,ε

0 the subset of functions in D0 built with
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parameters λ, κ and ε, we define an operator Hλ,κ,ε
0 which formally estimates H(x, |Dϕ(x)|)

from above

Hλ,κ,ε
0 ϕ(x) := H

(
x,

1

λ

(∣∣∣Dd2(·, y)

2δ
(x)
∣∣∣+ κβ′ ◦ d(x, x̄) + ε

))
ϕ ∈ Dλ,κ,ε

0 .

By D1, we mean the collection of test functions of the form

ψ(·) := −d2(x, ·)
2δ

− κβ ◦ d(·, x̄)− εd(·, y0),(1.13)

where β is still the same function, x, y0 ∈ X, and δ > 0, κ, ε ≥ 0. Denoting by Dκ,ε
1 the

subset of functions in D1 built with parameters κ and ε, we define another operator Hκ,ε
1

which formally estimates H(y, |Dψ(y)|) from below

Hκ,ε
1 ψ(y) := H̄

(
y,
∣∣∣Dd2(x, ·)

2δ
(y)
∣∣∣− κβ′ ◦ d(y, x̄)− ε

)
ψ ∈ Dκ,ε

1 .

Notice the scaling parameter λ > 1 presents only in D0, and that the two collections of
test functions are of opposite signs.

Definition 1.4 (Resolvent equation). A function f is called a viscosity sub-solution to

(1.11), if for each ϕ ∈ Dλ,κ,ε
0 , and for each x0 ∈ X such that (f −ϕ)(x0) = supx∈X(f −ϕ)(x),

we have

α−1(f − h)(x0) ≤ (Hλ,κ,ε
0 ϕ)∗(x0),

where g∗ denotes upper semicontinuous envelope of g. Analogously, a function f is called
a viscosity super-solution to (1.11), if for each ψ ∈ Dκ,ε

1 , and for each y0 ∈ X such that
(ψ − f)(y0) = supy∈X(ψ − f)(y), we have

α−1(f − h)(y0) ≥ (Hκ,ε
1 ψ)∗(y0),

where g∗ denotes the lower semicontinuous envelope of g.

The specific form of the functions in D0 and D1 is motivated by Ekeland’s perturbed
optimization principle, which does not need compactness or local compactness of the space
(Proposition 5.1 in the Appendix). As a matter of fact, if the ambient space is compact one
can work fixing the parameters κ = ε = 0, and if bounded closed sets are compact, one can
work with ε = 0. Suppose that sub- and super-solutions are at most growth of ζ ◦ d(·, x̄),
where β has a slower growth than ζ (as in Condition 1.1(5)), then such principle guarantees
that, with every given δ, κ, ε, we can always choose x0 such that it becomes the global strict
maximum of f − ϕ. The case of ψ is similar.

Our first result is:

Theorem 1.5. The value function f defined in (1.10) is the only continuous viscosity solu-
tion of (1.11) with growth at most ζ ◦ d(·, x̄).

This proof is a combination of Lemma 2.3 and Lemma 2.15.

1.3. The Cauchy problem in finite time [0, T ]. Let h ∈ BUC(X). We define

U(t, x) := sup
{
h(x(t))−

∫ t

0

L(x, |x′|)dr : x(·) ∈ AC([0, t];X), x(0) = x
}
.(1.14)

Formally, it solves the Cauchy problem written as

∂tU(t, x) = H
(
x, |DxU |(t, x)

)
, for t ∈ (0, T ], U(0, x) = h(x).(1.15)
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We make this precise, developing a well-posedness theory by extending viscosity solution
techniques.

We extend the classes of test functions in D0, D1 by adding a time variable. The set D̂λ,κ,ε
0

consists of test functions

ϕ := ϕ(t, x) = φ(t) + ϕ(x)(1.16)

where φ : [0, T ] 7→ R is Lipschitz and ϕ ∈ Dλ,κ,ε
0 . We denote D̂0 := ∪λ>1,κ,ε>0D̂

λ,κ,ε
0 . Similarly,

the class D̂κ,ε
1 consists of

ψ := ψ(s, y) = φ(t) + ψ(y)(1.17)

where φ is locally Lipschitz and ψ ∈ Dκ,ε
1 . The class D̂1 is defined analogously. For locally

Lipschitz function φ : [0, T ] 7→ R, we denote

∂+
t φ(t) := lim sup

s→t

φ(s)− φ(t)

s− t
, ∂−t φ(t) := lim inf

s→t

φ(s)− φ(t)

s− t
.

Definition 1.6 (Cauchy Problem). Let U : [0, T ]× X 7→ R̄.
U is called a viscosity sub-solution to (1.15), if

(a) (Initial condition) For all C ∈ R+ it holds

lim sup
t→0+

sup
{x∈X: ζ◦d(x,x̄)≤C}

(
U(t, x)− h(x)

)
≤ 0.

(b) For each ϕ ∈ D̂λ,κ,ε
0 and for each (t0, x0) ∈ (0, T ]× X such that

(U − ϕ)(t0, x0) = sup
[0,T ]×X

(U − ϕ),

we have (
(−∂−t +Hλ,κ,ε

0 )ϕ
)∗

(t0, x0) ≥ 0.

U is called a super-solution to (1.15), if

(a) (Initial condition) For all C ∈ R+ it holds

lim inf
s→0+

inf
{y∈X: ζ◦d(y,x̄)≤C}

(
U(s, y)− h(y)

)
≥ 0.

(b) For each ψ ∈ D̂κ,ε
1 and for each (s0, y0) ∈ (0, T ]× X such that

(ψ − U)(s0, y0) = sup
[0,T ]×X

(ψ − U),

we have (
(−∂+

s +Hκ,ε
1 )ψ

)
∗
(s0, y0) ≤ 0.

If U is both a sub- and super- solution, then it is called a solution.

Theorem 1.7 (Cauchy problem). Suppose that h ∈ BUC(X). Then the function U defined
in (1.14) is continuous, bounded from above, and has growth at most ζ ◦ d(·, x̄) from below.
It is also the unique continuous viscosity solution to (1.15) satisfying the above properties.

The proof is a combination of Lemma 3.5 and Lemma 3.8.
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Remark 1.8 (Length spaces). It is interesting to remark that the geodesic assumption
can be relaxed to a length space assumption, namely for all x, y ∈ X the infimum of the
length of continuous curves joining x to y is equal to d(x, y). For proper spaces (i.e. when
closed balls are compact) the two notions are equivalent, but in general geodesic is strictly
stronger than length. In all proofs suffices to replace geodesics with curves having almost
minimal length to obtain, with minor modifications, the same results. The key property
|D−d2(·, y)|(x) = d(x, y) (see Lemma 2.1) we use of the slope of the distance function is still
true for length spaces with minor modifications in the proof, see for instance [28, Lemma 2.8].

2. The resolvent problem

2.1. Slope estimates. We introduce two more notions of slope

|D+f |(x) := lim sup
z→x

(f(z)− f(x))+

d(z, x)
, |D−f |(x) := lim sup

z→x

(f(z)− f(x))−

d(z, x)
.

We use convention 0/0 = 0. It follows that |Df |(x) = max{|D+f |(x), |D−f |(x)}. The
following is an elementary but important property of geodesic spaces (see also Remark 1.8),
which we will use critically in the proof of comparison principle for viscosity solutions. We
include the proof for the reader’s convenience.

Lemma 2.1. ∣∣∣D+
x

d2

2
(x, y)

∣∣∣ ≤ d(x, y),
∣∣∣D−x d2

2
(x, y)

∣∣∣ = d(x, y).

Hence ∣∣∣Dx
d2

2
(x, y)

∣∣∣ = d(x, y).

Proof. Fix x, y ∈ X. By triangle inequality,∣∣∣d2(z, y)− d2(x, y)
∣∣∣ = (d(z, y) + d(x, y))

∣∣∣d(z, y)− d(x, y)
∣∣∣ ≤ (d(z, y) + d(x, y))d(z, x).

Hence |D±x d2(x, y)| ≤ 2d(x, y).
Next, we prove that |D−x d2(x, y)| ≥ 2d(x, y). We only need to prove the case when

d(x, y) > 0. Take w(t) to be a constant speed geodesic with

w(0) = x, w(1) = y, d(w(s), x) = sd(x, y), d(w(s), y) = (1− s)d(x, y).

Then
d2(y, x)− d2(y, w(s))

d(w(s), x)
=

d2(x, y)(1− (1− s)2)

sd(x, y)
= 2d(x, y)− sd(x, y)

and taking the limit as s ↓ 0 provides the inequality. �

2.2. Comparison principles. Let λ > 1, δ, κ, ε ∈ (0, 1) and y, x0 ∈ X. We consider test
functions ϕ(x) of the form (1.12). Then

|Dϕ(x)| ≤ 1

λ

(
d(x, y)

δ
+ κβ′ ◦ d(x, x̄) + ε

)
.
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Therefore, since p 7→ H(x, p) is non-decreasing in p ≥ 0, we get

λ
(
Hλ,κ,ε

0 ϕ
)∗

(x) ≤ lim sup
x̂→x

λH
(
x̂,

1

λ

(d(x̂, y)

δ
+ κβ′ ◦ d(x̂, x̄) + ε

))
= lim sup

x̂→x
sup
q≥0

(
(
d(x̂, y)

δ
+ κβ′ ◦ d(x̂, x̄) + ε)q − λL(x̂, q)

)
≤ sup

q≥0

(
(
d(x, y)

δ
+ κβ′ ◦ d(x, x̄) + ε)q − λL(x, q)

)
.

In deriving the last step, we used the fact that `(q) is super-linear in q and that (x, q) 7→
L(x, q) is lower semicontinuous.

Similarly, for ψ(y) of the form (1.13) with the parameters x, y0 and ε, δ, κ, we may use
|Dd2(·, y)| = 2d(·, y) to get

(Hκ,ε
1 ψ)∗(y) ≥ sup

q≥0

[(d(x, y)

δ
− κβ′ ◦ d(y, x̄)− ε

)
q − L(y, q)

]
.

Lemma 2.2. Assume that positive parameters κ, λ, R are fixed with 1+4κ < λ, and consider
functions ϕδ ∈ D0, ψδ ∈ Dκ,δ

1 built with these parameters and y = yδ for ϕδ, x = xδ for ψδ.
Then, if xδ, yδ ∈ BR(x̄) and limδ d

2(xδ, yδ)/δ = 0, one has

lim sup
δ→0+

(
λ(Hλ,κ,δ

0 ϕδ)
∗(xδ)− (Hκ,δ

1 ψδ)∗(yδ)
)

≤ (λ− 1− 2κ) max{0,− inf L}+ 2κ sup
x∈X

H
(
x, β′ ◦ d(x, x̄)

)
.

Proof. Using the above estimates, suffices to estimate from above, uniformly in q as δ ↓ 0,
the difference(

(
d(xδ, yδ)

δ
+ κβ′ ◦ d(xδ, x̄) + δ)q− λL(xδ, q)

)
−
(

(
d(xδ, yδ)

δ
− κβ′ ◦ d(yδ, x̄)− δ)q̂−L(yδ, q̂)

)
,

choosing conveniently q̂ in terms of q. Writing it in the more convenient form

d(xδ, yδ)

δ
(q − q̂) + κβ′ ◦ d(xδ, x̄)q + κβ′ ◦ d(yδ, x̄)q̂ + δ(q + q̂)− λL(xδ, q) + L(yδ, q̂)

and using Condition 1.1(4) for the choice of q̂, we can further estimate

CR
d2(xδ, yδ)

δ

(
1− inf L+ L(xδ, q)

)
+ κβ′ ◦ d(xδ, x̄)q + κβ′ ◦ d(yδ, x̄)q

+κβ′ ◦ d(yδ, x̄)CRd(xδ, yδ)
(

1− inf L+ `(q)
)

+ 2δq + δCRd(xδ, yδ)
(

1− inf L+ `(q)
)

+ωR(d(xδ, yδ))
(

1− inf L+ `(q)
)
− (λ− 1)L(xδ, q).

Now we see that in this expression the leading term is L(xδ, q), which appears with the neg-
ative factor (1−λ), while in all other terms q appears either linearly or with an infinitesimal
factor times `(q), which is smaller than L(xδ, q). Therefore, this proves that we can restrict
ourselves to a set of uniformly bounded q’s. Hence, taking limits, by our assumptions on xδ
and yδ, we have only to take care of the terms

(2.1) κβ′ ◦ d(xδ, x̄)q + κβ′ ◦ d(yδ, x̄)q − (λ− 1)L(xδ, q).

Now, adding and subtracting 2κL(xδ, q), we reach the conclusion. �
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We are now ready to prove a comparison principle, under the assumptions of Condition 1.1.

Lemma 2.3 (Comparison principle). Let f ∈ USC(X;R) be an upper semicontinuous sub-
solution to (1.11) with h replaced by h0 ∈ Cb(X), with growth from above at most ζ ◦ d(·, x̄).
Let f ∈ LSC(X;R) be a lower semicontinuous super-solution to (1.11) with h replaced by
h1 ∈ Cb(X), with growth from below at most ζ ◦ d(·, x̄).
If either h0 or h1 are uniformly continuous, it holds

sup(f − f) ≤ sup(h0 − h1).

Proof. Let λ > 1, κ > 0 be fixed, with λ > 1 + 4κ; we will take limits with respect to these
parameters only at the end of the proof, so we ignore this dependence, emphasizing instead
the dependence on δ. Let

Ψδ(x, y) := λf(x)− f(y)− 1

2δ
d2(x, y)− κβ ◦ d(x, x̄)− κβ ◦ d(y, x̄), ∀x , y ∈ X,

where β is the one in Condition 1.1(5). By the growth conditions on the sub- and super-
solutions, supX×X Ψδ <∞. In particular, we can find x̄δ and ȳδ ∈ X such that

Ψδ(x̄δ, ȳδ) ≥ sup
X×X

Ψδ − δ.(2.2)

By the above mentioned Ekeland’s perturbed optimization principle (applied in X× X with
the distance d(x1, y1) + d(x2, y2) between pairs (x1, y1), (x2, y2)), we can then further find
a point (xδ, yδ) ∈ X × X with d(x̄δ, xδ) + d(ȳδ, yδ) ≤ 1 such that (xδ, yδ) is the strict global
maximum Mδ of

(x, y) 7→ Ψδ(x, y)− δd(x, xδ)− δd(y, yδ).

In particular,

Ψδ(x̄δ, ȳδ) ≤ Ψδ(xδ, yδ) + δd(x̄δ, xδ) + δd(ȳδ, yδ) ≤ Ψδ(xδ, yδ) + δ.(2.3)

Consequently, since Mδ = Ψδ(xδ, yδ), we get

Mδ ≤ sup
X×X

Ψδ ≤Mδ + 2δ.(2.4)

The growth assumptions on f and f and β (with respect to ζ) imply

(2.5) R = Rκ,λ := sup
δ∈(0,1)

d(xδ, x̄) + d(yδ, x̄) <∞.

Notice that sup Ψδ ≤ sup Ψδ′ for 0 < δ < δ′; consequently (2.4) gives Mδ ≤ Mδ′ + 2δ′ for
0 < δ < δ′, so that Mδ has a limit as δ ↓ 0. Evaluating Ψδ on the diagonal and using (2.4)
give that the limit is finite. On the other hand, using (xδ, yδ) as an admissible point in the
maximization of Ψ2δ and (2.4) gives

M2δ −Mδ ≥
( 1

2δ
− 1

4δ

)
d2(xδ, yδ)− 4δ,

so that

(2.6) lim
δ↓0

1

δ
d2(xδ, yδ) = 0.

Set ϕ as in (1.12) with y replaced by yδ, x1 by xδ. Then

(f − ϕ)(xδ) = sup
X

(f − ϕ),

10



so that, by viscosity sub-solution property, we have

λ
f − h0

α
(xδ) ≤ λ(Hλ,κ,δ

0 ϕ)∗(xδ).

Similarly, set ψ as in (1.13) with x replaced by xδ, y1 by yδ. Then

(ψ − f)(yδ) = sup
X

(ψ − f),

so that, by viscosity super-solution property, we have

f − h1

α
(yδ) ≥ (Hκ,δ

1 ψ)∗(yδ).

Using first (2.2), then (2.3) and the above mentioned sub- and super- solution bounds,
choosing x = y we get

λf(x)− f(x)− 2κβ ◦ d(x, x̄)− 2δ ≤ Ψδ(x, x)− 2δ ≤ Ψδ(x̄δ, ȳδ)− δ ≤ Ψδ(xδ, yδ)

≤ λf(xδ)− f(yδ)

≤ λh0(xδ)− h1(yδ) + α
(
λ(Hλ,κ,δ

0 ϕ)∗(xδ)− (Hκ,δ
1 ψ)∗(yδ)

)
.

Without loss of generality, we assume that h1 is uniformly continuous with a modulus ωh1
(otherwise the argument is similar), so that the last term above does not exceed

(λ− 1) sup
X
|h0|+ sup

X
(h0 − h1) + ωh1(d(xδ, yδ))) + α

(
λ(Hλ,κ,δ

0 ϕ)∗(xδ)− (Hκ,δ
1 ψ)∗(yδ)

)
.

Noting (2.5) and (2.6), we can first let δ ↓ 0 and then use the estimate in Lemma 2.2, letting
κ→ 0 and finally λ ↓ 1. �

2.3. Semigroup property and some estimates. First, we give some growth estimate on
the f := fα in (1.10).

For h ∈ Mu(X; R̄), the space of measurable functions which are bounded from above, we
define

Tth(x) := sup
{
h(z(t))−

∫ t

0

L(z(r), |z′|(r))dr : z ∈ AC([0, t];X), z(0) = x
}

(2.7)

for every t ≥ 0. From the boundedness from below of L, we know that Tth is well defined
and that

Tt : Mu(X; R̄) 7→Mu(X; R̄).

Lemma 2.4 (Semigroup property). For s, t ≥ 0 it holds

TsTtf = Ts+tf, f ∈Mu(X; R̄).

In addition,

Tt(h+ c) = (Tth) + c, ∀h ∈Mu(X; R̄), c ∈ R,
Tth ≤ Ttg, whenever h ≤ g, h, g ∈Mu(X; R̄).

Finally, T is a a contraction in B(X):

sup
X
|Tth1 − Tth2| ≤ sup

X
|h1 − h2|, h1, h2 ∈ B(X).
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Proof. Since the concatenation of two absolutely continuous paths gives another absolutely
continuous path, the standard proof for the semigroup property in the case of X = Rd

transfers verbatim. Note that existence of optimal paths is not needed, using ε-optimal ones
is sufficient. For more details, one can adapt the proof of Lemma 5.7 and the first two parts
of Proposition 5.8 in [17] to the current setting. �

Lemma 2.5 (Dynamic programming). The function fα defined in (1.10) satisfies

fα(x) = sup
{∫ t

0

e−s/α
(h(z(s))

α
− L(z(s), |z′|(s))

)
ds+ e−t/αfα(z(t)) :

z(·) ∈ AC([0, t];X), z(0) = x
}
, ∀x ∈ X.

Proof. It follows from similar arguments as in the proof of semigroup property. �

Next, we give some local Lipschitz estimate on fα.

Lemma 2.6 (Local Lipschitz estimate). If supX |h| < ∞, then fα is continuous. More
precisely, we have the local Lipschitz estimate

|fα(x)− fα(y)| ≤ (ed(x,y)/(q0α) − 1)
(

2 sup
X
|h| − α inf L+ αζ(d(x̄, x) + d(x, y) + d(y, x̄))

)
,

where q0 > 0 and ζ are given in (1.6).

Proof. Let x 6= y ∈ X. First, by Condition 1.1(5), there exists q0 such that `(q0) < ∞.
Take z = z(r) to be a constant speed geodesic between x and y in time interval (0, δ) with
q0δ := d(x, y):

z : [0, δ] 7→ X, z(0) = x, z(δ) = y, |z′| ≡ q0 in (0, δ).

By dynamic programming, we have

fα(x) ≥
∫ δ

0

e−r/α

α
h(z(r))dr −

∫ δ

0

e−r/αL(z, |z′|)dr + e−δ/αfα(z(δ)).

Then

fα(y)− fα(x) ≤ (eδ/α − 1)fα(x) + (eδ/α − 1) sup
z∈X
|h(z)|

+α(eδ/α − 1) sup
r∈[0,δ]

L(z(r), q0).

By (1.6), for r ∈ [0, δ],

L(z(r), q0) ≤ ζ ◦ d(z(r), x̄) ≤ ζ ◦
(
d(x̄, x) + d(x, z(r)) + d(z(r), y) + d(y, x̄)

)
.

�

Lemma 2.7. For any x ∈ X we have

inf
X
h− αζ ◦ (d(x, x̄)) ≤ fα(x) ≤ sup

X
h− α inf L,

where ζ is the function in (1.6).
12



Proof. For every absolutely continuous path z, −L(z, |z′|) ≤ − inf L, giving the upper bound
estimate of f .

For the lower bound, by Condition 1.1(5), let q0 be the positive number appearing in
(1.6) holds. For x ∈ X \ {x̄}, we construct a path z(·) ∈ AC(R+;X) as follows: let δ :=
d(x, x̄)/q0 > 0 and define z(r) to be the constant speed geodesic with z(0) = x, z(δ) = x̄,
|z′|(r) ≡ q0. Then on r ∈ [δ, 2δ], we let z(r) := z(2δ− r) be the reversal of the path in [0, δ];
and we continue this process to define a locally absolutely continuous path in R+. It follows
in particular, except for r = kδ for k = 0, 1, 2, . . .,

L(z(r), |z′|(r)) = L(z(r), q0) ≤ ζ ◦ d(z(r), x̄) ≤ ζ ◦ d(x, x̄).

Therefore

f(x) ≥ inf
X
h−

∫ ∞
0

e−r/αL(z(r), q)dr ≥ inf
X
h−

∫ ∞
0

e−r/αζ ◦ d(z(r), x̄)dr

≥ inf
X
h− αζ ◦ (d(x, x̄)).

If x = x̄ we use the continuity of f to conclude. �

Following the same proof of Lemma 2.7, we also have the following estimates for Tt.

Lemma 2.8. For each h ∈Mu(X, R̄), t ≥ 0 and x ∈ X it holds

inf
Br(x)

h− tζ ◦ d(x, x̄) ≤ Tth(x) ≤ sup
X
h− t inf L,

where r := d(x, x̄).

The function ϕ of the form (1.12), defining D0, are never bounded from above, unless X
has finite diameter. For each x ∈ X, we introduce the following localization: for M > 0, let
ηM ∈ C1(R+) be such that 0 ≤ η′M(r) ≤ 1, and

ηM(r) = r, r ≤M, ηM(r) = 2M, r ≥ 3M.(2.8)

Using ηM we define

ϕM(x) = ηM ◦ ϕ(x).(2.9)

Then, since ϕM ≤ 2M , ϕM is bounded from above. Moreover, |Dϕ(x)| = |DϕM(x)| whenever
ϕ(x) < M .

Lemma 2.9 (Upper estimate for the generator). For ϕ ∈ Dλ,κ,ε
0 of the form (1.12) and

x ∈ X, it holds

lim sup
t→0+

t−1
(
TtϕM(x)− ϕM(x)

)
≤ (Hλ,κ,ε

0 ϕ)∗(x) ∀M > ϕ(x).

Proof. Since ϕM is locally Lipschitz it is well known and easy to check (see for instance [2,
Theorem 1.2.5]) that |DϕM | is a strong upper gradient of ϕM , namely |ϕM(a) − ϕM(b)| ≤∫ b
a
|DϕM |(z(r))|z′|(r)dr for all z ∈ AC([a, b];X). Consequently, for each t > 0 and x ∈ X, we
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can find z = zt ∈ AC([0, t];X) with z(0) = x such that

TtϕM(x)− ϕM(x) ≤ t2 + ϕM(z(t))− ϕM(z(0))−
∫ t

0

L(z(r), |z′|(r))dr

≤ t2 +

∫ t

0

(
|DϕM(z(r))||z′|(r)− L(z(r), |z′|(r))

)
dr

≤ t2 +

∫ t

0

(
H(·, |DϕM |(·))

)∗
(z(r))dr,

where H is defined in (1.5). From the first inequality in the above,∫ t

0

`(|z′|(r))dr ≤
∫ t

0

L(z(r), |z′|(r))dr ≤ t2 + ϕM(z(t))− TtϕM(x) ≤ CM ,

where CM > 0 is independent of t ∈ [0, 1]. Note that (e.g. Theorem 1.1.2 [2]),

d(z(s), x) = d(z(s), z(0)) ≤
∫ s

0

|z′|(r)dr ≤
∫ t

0

|z′|(r)dr, ∀s ∈ [0, t].

By super-linearity growth assumption on ` we get

lim
t→0+

sup
0≤s≤t

d(zt(s), x) = 0.

Hence

lim sup
t→0+

t−1
(
TtϕM(x)− ϕM(x)

)
≤
(
H(·, |DϕM |(·))

)∗
(x).

Since |DϕM |(x) = η′M ◦ ϕ(x)|Dϕ|(x), for M > ϕ(x) we obtain |DϕM |(x) = |Dϕ|(x) and the
conclusion follows. �

Lemma 2.10 (Lower estimate for the generator). For ψ ∈ Dκ,ε
1 and y ∈ X, we have

lim inf
t→0+

t−1
(
Ttψ(y)− ψ(y)

)
≥ Hκ,ε

1 ψ(y).

Proof. Fix y ∈ X and q ≥ 0. For each t > 0, we consider those x ∈ X on sphere of radius qt
to center y:

qt = d(x, y).

Because X contains more than one point and it is a geodesic space, when t is small enough,
one can always find such x ∈ X. We select a constant-speed geodesic z satisfying

z : [0, t] 7→ X, z(0) = y, z(t) = x, |z′| ≡ q in (0, t).

Recall that

ψ(·) := −d2(·, x)

2δ
− κβ ◦ d(·, x̄)− εd(·, y1).

By the definition of Tt and by optimizing x over the sphere,

Ttψ(y)− ψ(y) ≥ sup
z

(ψ(z(t))− ψ(y)

d(x, y)
d(x, y)−

∫ t

0

L(z(r), q)dr
)

= sup
x∈X:d(x,y)=tq

(ψ(x)− ψ(y)

d(x, y)

)∫ t

0

qdr −
∫ t

0

L(z(r), q)dr.
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Using rough estimate |Dd(·, z)| ≤ 1, we have that

(2.10) lim sup
s→0+

sup
x∈X:d(x,y)=s

(ψ(x)− ψ(y)

d(x, y)

)
≥
∣∣∣Dd2(x, ·)

2δ
(y)
∣∣∣− κβ′ ◦ d(y, x̄)− ε.

Since

sup
0≤r≤t

d(z(r), y) ≤ d(z(t), y) ≤ d(x, y)→ 0, as t→ 0,

if `(q) <∞ we can use condition 1.1(3) to get

lim inf
t→0+

t−1
(
Ttψ(y)− ψ(y)

)
≥ q
(∣∣∣Dd2(x, ·)

2δ
(y)
∣∣∣− κβ′ ◦ d(y, x̄)− ε

)
− L(y, q).

Optimizing over q ≥ 0 yields

lim inf
t→0+

t−1
(
Ttψ(y)− ψ(y)

)
≥ H̄

(
y,
∣∣∣Dd2(x, ·)

2δ
(y)
∣∣∣− κβ′ ◦ d(y, x̄)− ε

)
.

�

2.4. Existence of viscosity solutions. Let fα be defined according to (1.10). We note
that fα has growth estimates as in Lemma 2.7.

Lemma 2.11. For all x ∈ X it holds

lim sup
t→0+

t−1
(
Ttfα(x)− fα(x)

)
≤ α−1(fα(x)− h(x)).

Proof. By definition of Ttfα, for each t ∈ (0, 1) there exists an absolutely continuous path
z = zt in [0, t] with z(0) = x such that

Ttfα(x) ≤ t2 + fα(z(t))−
∫ t

0

L(z(r), |z′|(r))dr.

This implies, together with definition of `,

(2.11) sup
t∈[0,1]

∫ t

0

`(|z′|(r))dr ≤ sup
t∈[0,1]

∫ t

0

L(z(r), |z′|(r))dr ≤ sup
X
fα − inf

0≤t≤1
Ttfα(x) + 1 <∞.

In addition, combine the above upper estimate of Ttfα with dynamical programming principle
(Lemma 2.5), we have

Ttfα(x)− fα(x)

t

≤ t− 1

t

∫ t

0

e−r/α

α
h(z(r))dr +

1

t

∫ t

0

(e−r/α − 1)L
(
z(r), |z′|(r)

)
dr +

1− e−t/α

t
f(z(t))

≤ t− 1

t

∫ t

0

e−r/α

α
h(z(r))dr +

1− e−t/α

t
fα(z(t)) + inf L

(
α

1− e−t/α

t
− 1
)
.

Note that (e.g. [2, Theorem 1.1.2])

d(z(s), x) = d(z(s), z(0)) ≤
∫ s

0

|z′|(r)dr ≤
∫ t

0

|z′|(r)dr, ∀s ∈ [0, t].

In view of (2.11) and super-linearity assumption on `, we have

lim
t→0+

sup
0≤s≤t

d(zt(s), x) = 0,
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implying (by the continuity of h and fα)

lim sup
t→0+

Ttfα(x)− fα(x)

t
≤ − 1

α
h(x) +

1

α
fα(x).

�

Lemma 2.12. If fα is defined according to (1.10), then

lim inf
t→0+

t−1
(
Ttfα(x)− fα(x)

)
≥ α−1(fα(x)− h(x)).

Proof. By Lemma 2.5, for each t ∈ (0, 1), there exists an absolutely continuous path z = zt
with z(0) = x such that

fα(x) ≤ t2 +

∫ t

0

e−r/α

α
h(z(r))−

∫ t

0

e−r/αL(z(r), |z′|(r))dr + e−t/αfα(z(t)).(2.12)

Combined with the definition of Ttfα, this gives

e−t/αTtfα(x) ≥ fα(x)− t2 +

∫ t

0

(e−r/α − e−t/α)L(z(r), |z′|(r))dr −
∫ t

0

e−r/α

α
h(z(r))dr.

Then

1

t

(
Ttfα(x)− fα(x)

)
≥ et/α − 1

t
fα(x)− tet/α − (inf L)(1 + α

1− et/α

t
)

−1

t

∫ t

0

e(t−r)/α

α
h(z(r))dr.

Similar to the proof in Lemma 2.11, from (2.12), we have that

sup
t∈[0,1]

∫ t

0

`(|z′|(r))dr ≤ sup
t∈[0,1]

∫ t

0

L(z(r), |z′|(r))dr <∞,

which implies

lim
t→0+

sup
0≤s≤t

d(zt(s), x) = 0.

By continuity of h,

lim inf
t→0+

1

t

(
Ttfα(x)− fα(x)

)
≥ α−1fα(x)− α−1h(x).

�

Lemma 2.13. The function fα in (1.10) is a viscosity super-solution to (1.11).

Proof. Let ψ ∈ Dκ,ε
1 , hence continuous and bounded from above. Let x ∈ X be such that

(ψ − fα)(x) = supX(ψ − fα), then by Lemma 2.4 we get

Ttψ(x)− ψ(x) = Tt(ψ(·)− ψ(x))(x) ≤ Tt(fα(·)− fα(x))(x) = Ttfα(x)− fα(x), t ≥ 0.

Combined with results in Lemmas 2.10 and 2.11, we get Hκ,ε
1 ψ(x) ≤ (f(x)− h(x))/α. �

Lemma 2.14. The function fα in (1.10) is a viscosity sub-solution to (1.11).
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Proof. Let ϕ be of form (1.12) which is locally Lipschitz continuous, bounded from below.
Let x ∈ X be such that (fα−ϕ)(x) = supX(fα−ϕ) and choose M ≥ supX fα− fα(x) +ϕ(x).
Then, we claim that sup(fα − ϕM) ≤ sup(fα − ϕ). Indeed, by our choice of M we have

fα(y)−M ≤ f(x)− ϕ(x) ∀y ∈ X

and fα(y) −M ≥ fα(y) − ϕM(y) wherever ϕM(y) 6= ϕ(y). Since ϕM(x) = ϕ(x), it follows
that

(fα − ϕ)(x) = (fα − ϕM)(x) = sup
X

(fα − ϕM).

Now, similar to the proof of Lemma 2.13,

Ttfα(·)− fα(x) ≤ TtϕM(·)− ϕM(x).

Combined with Lemma 2.12 and Lemma 2.9, we get

α−1(fα − h)(x) ≤ lim inf
t→0+

1

t

(
TtϕM(x)− ϕM(x)

)
≤ (H0ϕ)∗(x).

�

In summary, we proved the

Theorem 2.15 (Existence). The function fα defined by (1.10) is continuous, bounded from
above and has at most ζ ◦ d(·, x̄) growth to −∞. It is the unique viscosity solution to (1.11)
in the class of functions satisfying these bounds.

3. The Cauchy problem

3.1. Further estimates on the time dependent value function.

Lemma 3.1. For every h ∈ BUC(X) and t ≥ 0, we have

lim sup
s→0+

sup
BR(x̄)

(
Tt+sh(x)− Tth(x)

)
≤ 0, ∀R ∈ R+.

Proof. From (2.7) and the semigroup identity Ts+t = TsTt in Lemma 2.4, there exists ẑ :=
ẑs,t,x ∈ AC([0, s+ t];X) such that ẑ(0) = x and

Tt+sh(x)− Tth(x) ≤ s+ h(ẑ(t+ s))− h(ẑ(t))−
∫ t+s

t

L(ẑ, |ẑ′|)dr

≤ s+ h(ẑ(t+ s))− h(ẑ(t))− s inf L.

In addition, the first inequality above implies that, for s ∈ [0, 1],∫ t+s

t

`(|ẑ′|)dr ≤
∫ t+s

t

L(ẑ, |ẑ′|)dr

≤ 1 + h(ẑ(t+ s))− h(ẑ(t))− Tt+sh(x) + Tth(x)

≤ 1 + 4 sup
X
|h| − t inf L+ (t+ s)ζ ◦ d(x, x̄),

where we used Lemma 2.8 in obtaining the last line. Using the super-linear growth of `,

lim
s→0+

sup
r∈[0,s], x∈BR(x̄)

d(ẑs,t,x(t+ r), ẑs,t,x(t)) = 0, ∀R ∈ R+,

implying (by the uniform continuity of h) the conclusion. �
17



Lemma 3.2. Let h ∈ BUC(X) and t ≥ 0, then Tth is locally uniformly continuous (i.e.
uniformly in balls of finite radius).

Proof. Since T0h = h, we only need to prove the case t > 0. For each x ∈ X, there exists
z := zt,x,ε ∈ AC([0, t];X), z(0) = x such that

Tth(x) ≤ ε+ h(z(t))−
∫ t

0

L(z, |z′|)dr.

Then for any s ≥ 0 and every ẑ ∈ AC((0, t+ s);X) with ẑ(0) = y, we have

Tth(x)− Tth(y) = Tth(x)− Ts+th(y) + Ts+th(y)− Tth(y)

≤ ε+ h(z(t))− h(ẑ(s+ t))−
∫ t

0

L(z, |z′|)dr

+

∫ s

0

L(ẑ, |ẑ′|)dr +

∫ s+t

s

L(ẑ, |ẑ′|)dr

+Ts+th(y)− Tth(y).

Next, we choose a special s := d(x, y)/q0 where q0 > 0 satisfies `(q0) < ∞ (whose existence
is ensured by Condition 1.1(5)) and a special ẑ such that in time interval (s, s+ t):

ẑ(r + s) = z(r), ∀r ∈ [0, t],

and in time interval (0, s): ẑ ∈ AC([0, s];X) is a constant speed geodesic connecting x to y:

ẑ(0) = y, ẑ(s) = x, |ẑ′| ≡ d(x, y)

s
.

Then

Tth(x)− Tth(y) ≤ ε+

∫ d(x,y)/q0

0

L(ẑ(r), q0)dr + Ts+th(y)− Tth(y)

≤ ε+ ζ(d(x, y) + d(x, x̄))
d(x, y)

q0

+
(
Ts+th(y)− Tth(y)

)
.

Using the result in Lemma 3.1, we conclude. �

Lemma 3.3. For every h ∈ BUC(X) and t ≥ 0,

lim inf
s→0+

inf
BR(x̄)

(
Ts+th(x)− Tth(x)

)
≥ 0, ∀R ∈ R+.

Proof. Let g = Tth, then g is bounded from above with possible growth to −∞ at most at
the rate of ζ ◦d(·, x̄) (Lemma 2.8), moreover, g is locally uniformly continuous (Lemma 3.2).
Therefore, using Ts+t = TsTt, we only need to prove

lim inf
s→0+

inf
BR(x̄)

(
T (s)g(x)− g(x)

)
≥ 0, ∀R ∈ R+.(3.1)

Let q0 > 0 be such that `(q0) < ∞, whose existence is ensured by Condition 1.1(5).
Suppose z ∈ X \ {x̄}. Then by triangle inequality

d(x, x̄) ∨ d(x, z) ≥ 1

2
d(z, x̄) > 0, ∀x ∈ X.

Take

ε0 :=
1

2q0

d(z, x̄) > 0.
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Then whenever s < ε0, for every x ∈ X,

d(x, x̄) ∨ d(x, z) ≥ q0ε0 > q0s,

implying existence of y 6= x such that d(x, y) = q0s. Let w : [0, s] 7→ X be a constant-speed
geodesic with w(0) = x, w(s) = y, |w′| ≡ q0 in (0, s). Then for each x fixed with d(x, x̄) ≤ R,

Tsg(x)− g(x) ≥ g(w(s))− g(w(0))−
∫ s

0

L(w(r), |w′|(r))dr

≥ g(y)− g(x)− sζ(d(x, x̄) + d(x, y)).

Noticing that s → 0+ implies that d(x, y) → 0+, by local uniform continuity of g, the
conclusion follows. �

Lemma 3.4. Let h ∈ BUC(X) and let U be defined according to (1.14). Then U ∈ C([0, T ]×
X).

Proof. Since

|U(s+ t, x)− U(t, y)| = |Ts+th(x)− Tth(y)|
≤ |Ts+th(x)− Tth(x)|+ |Tth(x)− Tth(y)|,

the conclusion follows from Lemma 3.1, Lemma 3.2 and Lemma 3.3. �

3.2. Comparison principle.

Lemma 3.5. Let U ∈ USC([0, T ]×X;R) be an upper semicontinuous sub-solution to (1.15)
with initial data U(0, x) = U0(x). Moreover, suppose that it has growth from above at most
ζ◦d(·, x̄). Let V ∈ LSC([0, T ]×X;R) be a lower semicontinuous super-solution to (1.15) with
initial data and V (0, y) = V0(y). Suppose that V has growth from below at most ζ ◦ d(·, x̄).
Then

sup
X

(U − V )(t, ·) ≤ sup
X

(U0 − V0), ∀t ∈ [0, T ].

Proof. The idea of the proof is identical to the resolvent equation case in Lemma 2.3. There-
fore, we only highlights details which are different.

Let λ > 1, c > 0, κ > 0 be fixed and define

Ψδ(t, x; s, y) = λ
(
U(t, x)− ct

)
− V (s, y)− d2(x, y)

2δ
− 1

2δ
|s− t|2− κβ ◦ d(x, x̄)− κβ ◦ d(y, x̄).

With all the above parameters fixed, by the Ekeland’s principle, we can find (tδ, xδ; sδ, yδ)
which is the global strict maximum of

(t, x; s, y) 7→ Ψδ(t, x; s, y)− δd(x, xδ)− δd(y, yδ)− δ|t− tδ| − δ|s− sδ|.

Moreover, similar relations to (2.2), (2.3) and (2.4) hold:

sup
([0,T ]×X)2

Ψδ ≤ Ψδ(tδ, xδ, sδ, yδ) + 2δ.(3.2)

By the growth condition on U and V and the relation between β and ζ as formulated in
Condition 1.1.5,

R := Rλ,κ,c := sup
δ∈(0,1)

d(xδ, x̄) + d(yδ, x̄) <∞.
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Moreover,

lim
δ→0+

(1

δ
d2(xδ, yδ) +

1

δ
|tδ − sδ|2

)
= 0.

Without loss of generality, selecting a subsequence if necessary,

lim
δ→0+

sδ = lim
δ→0+

tδ =: r∗.

First, suppose that r∗ > 0. Then when δ small enough, we can always assume tδ > 0, and
sδ > 0. Set

ϕ(t, x) := ct+ λ−1
(d2(x, yδ)

2δ
+

1

2δ
|t− sδ|2 + κβ ◦ d(x, x̄) + δd(x, xδ) + δ|t− tδ|

)
∈ D̂0.

Then

(U − ϕ)(tδ, xδ) = sup
[0,T ]×X

(
U − ϕ

)
.

By viscosity sub-solution property, we have

c+
tδ − sδ
δ
− δ ≤ λ(Hλ,κ,δ

0 ϕ)∗(xε).

Similarly, set

ψ(s, y) := −d2(xδ, y)

2δ
− 1

2δ
|s− tδ|2 − κβ ◦ d(y, x̄)− δd(y, yδ)− δ|s− sδ| ∈ D̂1.

Then

(ψ − V )(sδ, yδ) = sup
[0,T ]×X

(
ψ − V

)
,

and by viscosity super-solution property,

tδ − sδ
δ

+ δ ≥ (Hκ,δ
1 ψ)∗(yδ).

Consequently

c− 2δ ≤ λ(H0ϕ)∗(xδ)− (Hκ,δ
1 ψ)∗(yδ).

Using the estimate in Lemma 2.2 and proceed as in the proof of Lemma 2.3, we have

0 < c ≤ lim inf
λ→1+

lim inf
κ→0+

lim inf
δ→0+

(
λ(H0ϕ)∗(xδ)− (H1ψ)∗(yδ)

)
≤ 0.

The above contradiction leads us to conclude that the earlier assumption r∗ > 0 cannot be
incorrect, hence r∗ = 0.

Now suppose r∗ = 0. For each (t, x) ∈ [0, T ]× X, by (3.2) and the definition of Ψ,

λ
(
U(t, x)− ct

)
− V (t, x)− 2κβ ◦ d(x, x̄)− 2δ = Ψ(t, x; t, x)− 2δ

≤ Ψ(tδ, xδ; sδ, yδ) ≤ λ
(
U(tδ, xδ)− ctδ

)
− V (sδ, yδ).

Taking limits first as δ ↓ 0, then as λ ↓ 1 and eventually as c ↓ 0 on both sides, we get

U(t, x)− V (t, x) ≤ sup
X

(
U0 − V0

)
.

�
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3.3. Existence. Let h ∈ BUC(X). By Lemma 3.4, the function U in (1.14) is continuous,
by Lemma 2.8, it is bounded from above with possible growth to −∞ with rate at most
ζ ◦ d(·, x̄).

Lemma 3.6. The function U is a super-solution to (1.15).

Proof. First of all, Lemma 3.3 (in the case of t = 0) verifies the initial condition part of

viscosity super-solution. To verify the other part of super-solution property, we let ψ ∈ D̂κ,ε
1

and (s0, y0) ∈ (0, T ]× X be such that

U(s, y)− U(s0, y0) ≥ ψ(s, y)− ψ(s0, y0), ∀(s, y) ∈ [0, T ]× X.

By the semigroup, the order preserving and the translation invariance properties of T
(Lemma 2.4), for 0 < r < s0,

0 = U(s0, y0)− U(s0, y0) = Tr

(
U(s0 − r, ·)− U(s0, y0)

)
(y0)

≥ Tr

(
ψ(s0 − r, ·)− ψ(s0, y0)

)
(y0).

In order to conclude, we only need to prove

lim inf
r→0+

1

r
Tr

(
ψ(s0 − r, ·)− ψ(s0, y0)

)
(y0) ≥ (−∂+

s +Hκ,ε
1 )ψ(s0, y0).

Note that by the form of ψ = ψ(s, y) in (1.17),

ψ(s0 − r, y)− ψ(s0, y) = φ(s0 − r)− φ(s0) ≥ −r(∂+
s φ)(s0) + o(r).

Combining the above with Lemma 2.10, we conclude.
�

Lemma 3.7. The function U is a sub-solution to (1.15).

Proof. The proof is almost symmetric with respect to that of Lemma 3.6, except a truncation
argument, which we highlight next.

Lemma 3.1 implies that the initial condition of viscosity sub-solution is satisfied. Let
ϕ ∈ D̂0. We assume that there exists (t0, x0) ∈ (0, T ]× X such that

ϕ(s, y)− ϕ(s0, y0) ≥ U(s, y)− U(s0, y0), ∀(s, y) ∈ [0, T ]× X.(3.3)

The function ϕ is not bounded from above, hence we cannot simply apply the semigroup T
on it. However, for each M > 0, we can always find a η = ηM ∈ C2(R) with 0 ≤ η′ ≤ 1
satisfying (2.8) and define a localized version ϕM of ϕ according to (2.9). By choosing M
large enough, we will have the conclusion of Lemma 2.9, in addition, (3.3) holds with ϕ
replaced by ϕM . Then, repeating the same procedure as in the proof of Lemma 3.6 gives the
sub-solution property. �

Combine the above results, we have the following

Lemma 3.8. Let h ∈ BUC(X). Then the function U in (1.14) is a continuous viscosity
solution to (1.15) with initial data U(0, x) = h(x). U is bounded from above and grows to
−∞ at most at the rate of ζ ◦ d(·, x̄).
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4. Application to a compressible Euler equation

Let X := P2(Rd) be the space of probability measures on Rd with finite second moment,
and let d(ρ, γ) denote the 2-Wasserstein so that, (X, d) is a complete and geodesic metric
space (chapter 7 of [2]). Unlike other parts of this article, we use ρ, γ to denote typical
elements in X. We choose ρ̄ ∈ X as an arbitrary but fixed probability measure with smooth
and compactly supported Lebesgue density. It plays the role of the base point x̄.

Feng and Nguyen studied in [17] an action, defined on space of paths C([0, T ];X) (with
T ∈ R+), whose minimizers are weak solution to the following system of d-dimensional
compressible Euler equation (Theorem 1.10 in [17]):

∂tρ+ div(ρu) = 0

∂t(ρu) + div(ρu⊗ u) +∇P (ρ) = −ρ∇(φ+ Φ ∗ ρ)− 2ν2ρ∇(
∆
√
ρ

√
ρ
− 1

4
ψ)

P (ρ) = ρF ′(ρ)− F (ρ).

(4.1)

In the above, ρ = ρ(t, x) : R+ ×Rd 7→ R and u = u(t, x) : R+ ×Rd 7→ Rd are the unknowns,
ν > 0 is a given constant and the functions ψ, φ, Φ ∈ C1(R), F ∈ C2(R+) are prescribed.
Precise requirements on ψ, φ, Φ and F can be found in Condition 1.5 of [17]. The term
div(ρu ⊗ u) is understood as a vector whose i-th component is div(ρuui). Associated with
the above equation are Hamilton-Jacobi partial differential equations in X. Well-posedness
for both resolvent formulation as well as Cauchy problem are proved in Theorems 1.13 and
1.14 of [17]. Next, we apply results of this article to study the action, its minimizer and the
associated Hamilton-Jacobi equations in the limiting case ν = 0. To simplify and streamline
the main ideas, we only consider the simpler case of F = 0. We will work under sufficient
regularity assumptions on φ,Φ. Note that if Φ is allowed to be singular, then (4.1) is related
to the Euler-Poisson problem considered in [20].

This section is organized as follow. We first introduce a Riemannian structure to the
Wasserstein space X by following mostly the formalism of Otto [30], and borrowing some
technical results from Ambrosio, Gigli and Savaré [2] to relate metric and differential point of
view. A precise connection is given in Lemma 4.1. Then we show that every action minimizer
is a weak solution to a compressible pressure-less Euler equation (4.7) in distributional
solution sense. Finally, we consider well-posednes for the associated Hamilton-Jacobi partial
differential equations. From a metric space point of view, since (X, d) is a geodesic space,
it is no surprising that our earlier results apply. What we want to show is that there is
another geometric based formulation of the equation. Considerable efforts were given to
versions of such formulation in earlier literature (e.g. [19, 22]), with absence of a uniqueness
result. Making use of the metric level result, we demonstrate that the choice of tangent (and
co-tangent) space structure in these earlier literature is inadequate for adapting the metric
proof of comparison principle. We will explore the geometric tangent cone concept defined in
chapter 12 of [2] to redefine another Hamiltonian. We show that this new one is compatible
with our earlier metric formulation. Well-posedness for the PDE, in the metric as well as as
in the geometric formulations, then follow.

4.1. Lagrangian and existence of action minimizer. There is more than one way of
introducing tangent/co-tangent spaces of X := P2(Rd). Chapter 8 of [2] examines a set of
equivalent ones. We will use one of them (the set Tρ in (4.4)) next to study the problem of
action minimization corresponding to the case ν = 0.
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Let ‖p‖2
1,ρ :=

∫
Rd |∇p|

2dρ for p ∈ C∞c (Rd) and

H1,ρ(Rd) := abstract completion of C∞c (Rd), as a pre-Hilbert space, under ‖ · ‖1,ρ,

H−1,ρ(Rd) := {m ∈ D′(Rd) : ‖m‖−1,ρ <∞},

where

1

2
‖m‖2

−1,ρ := sup
ϕ∈C∞c (Rd)

{〈ϕ,m〉 − 1

2

∫
Rd
|∇ϕ|2dρ}.(4.2)

We also denote

L2
∇,ρ(Rd) := L2

ρ closure of {∇p : p ∈ C∞c (Rd)} ,

Note that

|〈p, q〉1,ρ| ≤ ‖q‖1,ρ‖p‖1,ρ = ‖q‖1,ρ‖∇p‖L2
ρ(Rd), ∀p ∈ C∞c (Rd),

hence the linear operator ∇ can be extended from q ∈ C∞c (Rd) to all q ∈ H1,ρ(Rd). We

denote such extension ∇̂. By Lemma D.34 in Appendix D of [16], for each mi ∈ H−1,ρ(Rd),

we can identify a unique pi ∈ H1,ρ(Rd) such that mi = −div(ρ∇̂pi) ∈ H−1,ρ(Rd) (equivalently

∇̂pi ∈ L2
∇,ρ(Rd)) and

〈m1,m2〉−1,ρ = 〈p1,m2〉H1,ρ(Rd)×H−1,ρ(Rd) = 〈p2,m1〉H1,ρ(Rd)×H−1,ρ(Rd) = 〈∇̂p1, ∇̂p2〉L2
ρ×L2

ρ
.

We refer to chapter 8 of [2] or appendix D.5 of [16] for further properties and relations of
these spaces and we just quote here the elementary inequality

(4.3) ‖div(vρ)‖2
−1,ρ ≤

∫
Rd
|v|2dρ ∀v ∈ L2

ρ(Rd).

Viewing ρ(t, dx)dt as a measure on (0,∞)× Rd, its distributional time derivative ∂tρ(t, dx)
exists. For each t ∈ R+, we define ρ̇(t) as the unique element in D′(Rd) satisfying

〈ϕ, ρ̇〉 :=
d

dt
〈ρ(t), ϕ〉, ∀ϕ ∈ C∞c (Rd),

whenever the right hand side in the above exists. For ρ(·) ∈ AC([0, T ],X), by Theorem
8.3.1 of [2], ∂tρ = −divx(ρv) in the sense of distributions for some v := v(t, x) such that∫

[0,T ]×Rd |v(t, x)|2ρ(t, dx)dt < ∞. In particular, there exists a Lebesgue measure set zero

N ⊂ R+ such that

d

dt
〈ρ(t), ϕ〉 = 〈ϕ,−divx(ρv)〉, t ∈ [0, T ] \ N , ∀ϕ ∈ C∞c (Rd).

Hence we conclude the existence of ρ̇(t) ∈ H−1,ρ(t)(Rd) almost everywhere in t ∈ R+. In
fact, if |ρ′| denotes the metric derivative (with respect to Wasserstein distance) as before,
Theorem 8.3.1 of [2] provides the following more precise result connecting the Riemannian
and metric points of view.

Lemma 4.1. For ρ(·) ∈ AC([0, T ];X), we have ‖ρ̇(r)‖−1,ρ(r) = |ρ′|(r) for a.e. r ∈ (0, T ).

Furthermore, there exist p(r) ∈ H1,ρ(r)(Rd) with v(r) := ∇̂p(r) ∈ L2
∇,ρ(r)(Rd) satisfying

−div(v(r)ρ(r)) = ρ̇(r), ‖v(r)‖L2
ρ(r)

(Rd) = |ρ′|(r) for a.e. r ∈ (0, T ).
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Let

Tρ :=
{

(ρ, p) : p ∈ H1,ρ(Rd)
}
, T := tρ∈XTρ.(4.4)

We define the Lagrangian

L(ρ, p) :=
1

2
‖p‖2

1,ρ − V (ρ), (ρ, p) ∈ T,(4.5)

where

V (ρ) :=

∫
Rd
φ(x)ρ(dx) +

1

2

∫ ∫
Rd×Rd

Φ(x− y)ρ(dx)ρ(dy).

We assume the following throughout this section.

Condition 4.2.

(1) Φ ∈ C1(Rd) is bounded, with globally bounded gradient;
(2) −φ ∈ C(Rd) has compact finite sub-levels with sub-linear growth in the sense that

there exist θ ∈ (0, 1) and C ∈ R+ such that

−φ(x) ≤ C(1 + |x|θ) ∀x ∈ Rd;

(3) φ ∈ C1(Rd), with globally bounded gradient;

The above Lagrangian induces an action function defined on every path ρ(·) ∈ AC([0, T ];X):
let p(r) be chosen according to Lemma 4.1,

A[ρ(·)] :=

∫ T

0

L(ρ(r), p(r))dr(4.6)

=

∫ T

0

(1

2
|ρ′|2 + V (ρ)

)
dr =

∫ T

0

(1

2
‖ρ̇‖2

−1,ρ + V (ρ)
)
dr.

Lemma 4.3 (Existence of an action minimizer). For every ρ0, γ0 ∈ X, there exists a path
ρ(·) ∈ AC([0, T ];X) with ρ(0) = ρ0 and ρ(T ) = γ0 such that

A[ρ(·)] = inf {A[σ(·)] : σ(0) = ρ0, σ(T ) = γ0, σ(·) ∈ AC([0, T ];X)} .

Proof. Let σε(·) ∈ AC([0, T ];X) be ε-optimizers of the action satisfying σε(0) = ρ0 and
σε(T ) = γ0. By Lemma 4.1, there exists uε(t) := uε(t, ·) ∈ L2

∇,σε(t) such that ‖uε(t)‖L2(σε(t)) =

|σ′ε(t)| for a.e. t. Let

mε(t; dx, dξ) := δuε(t,x)(dξ)σε(t, dx).

Then

∂tmε + divx(ξmε) = 0,

and

A[σε(·)] =

∫
r∈[0,T ]

∫
(x,ξ)∈Rd×Rd

∫
y∈Rd

(1

2
|ξ|2 − (φ(x) + Φ(x− y))

)
σε(r; dy)mε(r; dx, dξ)dr.

From supεA[σε(·)] <∞ and the assumption on compact finite sub-levels of −φ, we obtain
that {mε(dr, dx, dξ) := mε(r, dx, dξ) × dr : ε > 0} is tight in the weak convergence of
probability measure topology. Let m0(dr, dx, dξ) be a limit point. Since the time marginal
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is always the Lebesgue measure along the sequence, let σ(r, dx) := m0(r, dx,Rd), we have
the disintegration

m0(dr, dx, dξ) = m0(dξ; r, x)σ(r, dx)dr

allowing us to define a measurable function

u(r, x) :=

∫
Rd
ξm0(dξ; r, x).

Then

∂tσ + divx(σu) = 0.

Using (4.3), Jensen’s inequality and Fatou’s lemma, we get

A[σ(·)] ≤
∫ T

0

(∫
Rd

1

2
|u(r, x)|2σ(r, dx)− V (σ(r))

)
dr

≤
∫

[0,T ]

∫
Rd×Rd

(1

2
|ξ|2 − (φ(x) + Φ ∗ σ(x))

)
m0(r; dx, dξ)dr

≤ lim inf
ε→0+

∫
[0,T ]

∫
Rd×Rd

(1

2
|ξ|2 − (φ(x) + Φ ∗ σε(x))

)
mε(r; dx, dξ)dr

= lim inf
ε→0+

A[σε(·)] = inf{A[σ(·)] : σ(0) = ρ0, σ(T ) = γ0, σ(·) ∈ AC([0, T ];X)}.

�

The following result relates the variational problem we consider to a compressible Eu-
ler equation. Note that this is different than the Cauchy problem of Euler equation where
constructing a mono kinetic solution is much harder (see for instance Gangbo and Westdick-
enberg [23]).

Theorem 4.4. A minimizer of the action A[·], with initial value ρ(0) and terminal value
ρ(T ) exists. Moreover, any such minimizer ρ(·) is a weak (i.e. distributional) solution in
(0, T )× Rd to the following pressure-less compressible Euler equation{

∂tρ+ div(ρu) = 0,
∂t(ρu) + div(ρu⊗ u) + ρ∇(φ+ Φ ∗ ρ) = 0.

(4.7)

Proof. Combined with the existence of minimizer in Lemma 4.3, the arguments in Section 3.2
in [17] can be adapted to give the proof, with some simplifications. Indeed, in the present
case ν = 0, F = 0 and ∇Φ, ∇φ are bounded continuous, so that the a priori estimates in
Lemmas 3.5 and Lemma 3.6 in [17] are not needed anymore. �

4.2. An inadequate choice of Hamiltonian in the case ν = 0. In view of the tangent
space structure, we choose cotangent space

T∗ρ :=
{

(ρ, n) : n ∈ H−1,ρ(Rd)
}
, T∗ := tρ∈XT∗ρ.

C∞c is dense in the tangent space Tρ and the cotangent space T∗ρ ⊂ D′(Rd). For every

(ρ, n) ∈ T∗ρ and p ∈ C∞c (Rd),

〈p, n〉H1,ρ(Rd)×H−1,ρ(Rd) = 〈p, n〉D(Rd)×D′(Rd).

These motivate the following definition of gradient.
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Definition 4.5. Let f : X 7→ R̄ and ρ0 ∈ X. The gradient n := gradf(ρ0) ∈ D′(Rd) is
defined as the unique distribution n such that

〈p, n〉D(Rd)×D′(Rd) = lim
t→0+

1

t
(f(σ(t))− f(σ(0)))

holds for every p ∈ C∞c (Rd) and σ(·) := σp(·) ∈ AC(R+;X) satisfying

∂tσ + div(σ∇p) = 0, σ(0) = ρ0.(4.8)

We define

H(ρ, n) :=
1

2
‖n‖2

−1,ρ + V (ρ), (ρ, n) ∈ X×D′(Rd).

Note that (4.2) variationally defines ‖n‖−1,ρ for all n ∈ D′(Rd). We now define the operator

Hf(ρ) := H(ρ, gradf(ρ)) =
1

2
‖gradf(ρ)‖2

−1,ρ + V (ρ).(4.9)

This is formally the ν = 0 limit of the case considered in [17]. We claim that this is not
the correct analogue of the metric version of Hamiltonians studied earlier. In particular, it
is an open problem to establish comparison principle for viscosity solution of

f − αHf = h.

A few computations will clarify.
We consider the function ρ 7→ 1

2
d2(ρ, γ). First, we introduce some notation from mass

transportation theory. Let πi be a projection from (x1, x2, . . .) ∈ Rd×Rd× . . . onto the i-th
coordinate πi(x1, x2, . . .) := xi. Similarly, we define πi,j(x1, x2, . . .) := (xi, xj) for i 6= j. Let
ρ, γ ∈ X. We denote

Γ(ρ, γ) :=
{
µ ∈ P2(Rd × Rd) : π1

#µ = ρ, π2
#µ = γ

}
and

Γo(ρ, γ) :=
{
µ ∈ Γ(ρ, γ) : d2(ρ, γ) =

∫
Rd×Rd

|x− y|2µ(dx, dy)
}
.

That is, Γ0 is the collection of probability measures solving the Kantorovich problem (Chap-
ter 6 of [2]).

Let ρ0 ∈ X and p ∈ C∞c (Rd). We define σ := σ(t) as in (4.8) for t ∈ R. Let µ(t) ∈
Γo(σ(t), γ) and µ(t; dx, dy) := µ(t; dy|x)σ(t; dx) be a disintegration of µ with a Borel selec-
tion of µ(t; dy|x), so that the function u below is Borel:

u(t, x) :=

∫
Rd

(x− y)µ(t; dy|x).

Lemma 4.6. Let the p, σ, u be as above. Then d
dt
d2(σ(t), γ) exists for t ∈ R \ N , where N

is some Lebesgue measure zero set, and

d

dt

1

2
d2(σ(t), γ) =

∫
Rd
u(t, x)∇p(x)σ(t, dx) = 〈p,−div(σu)〉, t ∈ R \ N .(4.10)

Moreover, if Γo(ρ0, γ) = {µ0} consists of only one element, then u0 := u(0, x) gives

gradρ0
1

2
d2 = −div(ρ0u0) ∈ H−1,ρ0(Rd).(4.11)
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Proof. The identity (4.10) follows directly from Theorem 8.4.7 in [2]. Since limt→0 d(σ(t), ρ0) =
0, we have d-relative compactness of {µtn} for any sequence tn → 0, whose limit point
has to belong to Γo(ρ0, γ). Suppose that Γo(ρ0, γ) consists of a singleton, it follows that
limt→0+ d(µt,µ0) = 0. Combined with (4.10), we arrive that d2(σ(t), γ) is right differentiable
at t = 0 and (4.10) holds at t = 0. �

We now consider the optimal transportation problem µt ∈ Γo(σ(t), γ) time by time. In
view of the definition of u(t) and µt, by Jensen’s inequality, we have

‖div(σ(t)u(t))‖2
−1,σ(t) ≤

∫
Rd
|u(t, x)|2σ(t, dx)(4.12)

≤
∫
Rd×Rd

|x− y|2µ(t; dx, dy) = d2(σ(t), γ).

for every t ∈ R \ N . We note that, unless µ(t) is given by an optimal transportation map
Tt := Tt(x) (i.e. µ(t; dy|x) = δTt(x)(dy) for x a.e.-σ(t)), the last inequality in (4.12) is a strict
one. Recall that in proving uniqueness of viscosity solution (metric formulation) through the
comparison principle, we made critical use of the identities in Lemma 2.1. The appearance
of a strict inequality in (4.12) suggests that the above notion of gradient of functions in
the space of probability measures is not compatible with metric definition, at least when
Γo(ρ0, γ) is a singleton and ρ0 is not absolutely continuous. Moreover, the previous strategy
of proving comparison principle cannot be replicated, unless ρ is absolutely continuous w.r.t.
Lebesgue measure.

In [19] (Section 3) and [22] (Sections 4 and 6), although a slightly different notion of
viscosity solution is used, the choice of tangent space is still T, hence the notion of sub-
super-gradient which is defined on T∗ bring the same problem as mentioned above.

Note that for the viscosity solutions considered in [17], gradients of test functions are only
evaluated at ρ’s with Lebesgue density. The existence and the uniqueness of the optimal map
T are then guaranteed by Brenier’s theorem (e.g. Theorem 6.2.4 in [2] or Theorem D.25 in
Appendix D of [16]). This can be done because that, when ν > 0, for any path ρ := ρ(t) with
finite action as defined in [17], a priori estimates give the following trajectory regularity:
ρ(t; dx) = ρ(t, x)dx has Lebesgue density for all t > 0. The proof of this property uses
entropy function and related interpolation inequalities. This trajectorial level regularity is
then translated to the Hamiltonian formulation, through the definition of viscosity solutions
in [17], by an appropriate choice of test functions (different than the ones here) with entropy
as part of the perturbation. In the case of ν = 0, however, such feature is lost (e.g. [20]).

Next, we refine the above approach by augmenting the tangent space. We will also use a
different notion of viscosity solution (Definition 4.14) based on sub- and super-differentials
and directly defined on candidate solutions at every point, instead of defined indirectly using
test functions at certain maximum/minimum points (Definition 1.4). This allows us to link
our results next directly with those in literature [19, 22].

4.3. Geometric tangent cone on X and sub-, super-differentials of functions. A
close inspection on the short proof of Lemma 2.1 reveals the following. The tangent space
in previous paragraph does not contain sufficiently many tangent directions to distinguish
among certain paths which are the geodesics used in the metric slope calculations. When we
define differentiation of the ρ 7→ d2(ρ, γ) along these paths, and ρ is singular, the difference
shows up. Next, we will use the geometric tangent cones concept, introduced in sections 12.3
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and 12.4 of [2], to remedy this problem. Then we reformulate a new Hamiltonian. This allows
us to establish a link with the earlier metric slope formulation of the Hamilton-Jacobi PDE,
consequently deriving well-posedness of the new formulation of the equation as a by-product.

Let ρ ∈ X and

G(ρ) :=
{

m := m(dx; dξ) ∈ P2(Rd × Rd) : π1
#m = ρ, (π1, π1 + επ2)#m ∈ Γo(ρ, γ),

for some γ ∈ X, ε > 0
}
.

For each mi ∈ P2(Rd × Rd) with π1
#mi = ρ, i = 1, 2, we define a distance

Dρ(m1,m2) := inf
{∫

Rd×Rd×Rd
|ξ − η|2M(dx; dξ, dη) : M ∈ P2(Rd × Rd × Rd)

π1,2
# M = m1, π

1,3
# M := m2

}
,

and

〈m1,m2〉ρ := max
{∫

Rd×Rd×Rd
(ξ · η)M(dx; dξ, dη) : M ∈ P2(Rd × Rd × Rd),

π1,2
# M = m1, π

1,3
# M := m2

}
.

When m1 = m2 = m = m(dx; dξ), the above maximum is trivially attained at

M(dx; dξ, dη) := δξ(dη)m(dx, dξ).

Hence

‖m‖2
ρ := 〈m,m〉ρ =

∫
Rd
|ξ|2m(dx; dξ).

We now define

Tanρ := G(ρ)
Dρ(·,·)

, Tan := tρ∈XTanρ.(4.13)

Recall that Tρ is identified using H1,ρ. By Theorem 12.4.4 of [2], Tρ ⊂ Tanρ, via the

embedding q 7→ (Id × ∇̂q)#ρ. The embedding of Tρ to Tanρ is isometric and one-to-one
when ρ has Lebesgue density. However, in general, the inclusion can be strict.

We note that, as definitions, the notations ‖m‖ρ and 〈m1,m2〉ρ remain valid for general
m,m1,m2 ∈ P2(Rd×Rd) with common first marginal measure ρ, they do not have to be in
G(ρ). We will use the notations in such more general context later.

Definition 4.7. [Fréchet super- and sub-differentials] Let f : X 7→ R̄ and that ρ ∈ X be
a point such that |f(ρ)| < ∞. We denote super-, sub-differentials and differential of f at
ρ respectively by ∂+

ρ f := ∂+f(ρ), ∂−ρ f := ∂−f(ρ), and ∂ρf := ∂f(ρ). These are subsets of

{n ∈ P2(Rd × Rd) : π1
#n = ρ} satisfying the following.

We say that n ∈ ∂+
ρ f if there exists a modulus of continuity ωn such that, for every ρ1 ∈ X

and every M ∈ P2((Rd)3) such that (π1, π1 + π2)#M ∈ Γo(ρ, ρ1) and π1,3
# M = n, we have

f(ρ1)− f(ρ) ≤
∫

(Rd)3
(ξ · η)M(dx; dξ, dη) + d(ρ, ρ1)ωn(d(ρ, ρ1)).(4.14)
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Analogously, we say that n ∈ ∂−ρ f if there exists a modulus of continuity ωn such that,

for every ρ1 ∈ X and every M ∈ P2((Rd)3) with (π1, π1 + π2)#M ∈ Γo(ρ, ρ1) and π1,3
# M ∈

Γo(ρ, ρ1), we have

f(ρ1)− f(ρ) ≥
∫

(Rd)3
(ξ · η)M(dx; dξ, dη) + d(ρ, ρ1)ωn(d(ρ, ρ1)).(4.15)

Finally, we define

∂ρf := ∂+
ρ f ∩ ∂−ρ f.

The definitions above are closely related to the ones in Definition 10.3.1 in [2] and in
Chapter 5 of Gigli [25]. Let µ ∈ Γo(ρ, γ),

n1 := (π1, (π1 − π2))#µ, n2 := (π2, (π1 − π2))#µ.

Then by Lemma 2.1,

‖n1‖ρ = d(ρ, γ) = ‖n2‖γ = |Dρ
1

2
d2(ρ, γ)| = |Dγ(−

1

2
d2(ρ, γ))|,(4.16)

where |Dρ
1
2
d2| and |Dγ

1
2
d2| mean metric slopes, respectively w.r.t. ρ and γ. Next, we show

that n1 ∈ ∂+
ρ

1
2
d2(ρ, γ) and n2 ∈ ∂−γ (−1

2
d2(ρ, γ)). Such result is the key to establishing a

comparison principle for our geometric-based formulation of the Hamilton-Jacobi equation.

Lemma 4.8. The following inclusions hold:

∂+
ρ

1

2
d2(·, γ) ⊃

{
(π1, (π1 − π2))#µ : µ ∈ Γo(ρ, γ)

}
,

∂−γ

(
− 1

2
d2(ρ, ·)

)
⊃

{
(π2, (π1 − π2))#µ : µ ∈ Γo(ρ, γ)

}
.

Proof. The conclusions all follow from Theorem 10.2.2 of [2]. �

Definition 4.9. For any t ∈ R and n ∈ P2(Rd × Rd), we define scalar multiplication

t · n := (π1, tπ2)#n.

For ni ∈ P2(Rd × Rd) we define a multi-valued addition by

n1 ⊕ n2 := {n ∈ P2((Rd)2) : n = (π1, π2 + π3)#N,(4.17)

N ∈ P2((Rd)3), π1,2
# N = n1, π

1,3
# N = n2}.

We also define, for ϕi, i = 1, 2,

∂+
ρ ϕ1 ⊕ ∂+

ρ ϕ2 := ∪ni∈∂+ρ ϕin1 ⊕ n2

and we define ∂−ρ ϕ1 ⊕ ∂−ρ ϕ2 similarly.

It directly follows then

(1) ‖t · n‖ρ = |t|‖n‖ρ,
(2) if n ∈ ∂±ρ f and t > 0, then t · n ∈ ∂±ρ (tf),
(3) if n ∈ n1 ⊕ n2, then

‖n‖ρ ≤ ‖n1‖ρ + ‖n2‖ρ, ‖n1‖ρ ≤ ‖n‖ρ + ‖n2‖ρ.(4.18)

Lemma 4.10. Suppose that ρ := π1
#n1 = π1

#n2 ∈ P2(Rd). Then n1 ⊕ n2 6= ∅.
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Proof. Using conditional probability measures, we can write ni(dx; dηi) = ni(dηi|x)ρ(dx),
i = 1, 2. If we define

N(dx; dη1, dη2) := n1(dη1|x)n2(dη2|x)ρ(dx),

it is immediate to check that n := (π1, π2 + π3)#N ∈ n1 ⊕ n2. �

Lemma 4.11. Let ni ∈ Tanρ, i = 1, 2. Then

(1) n1 ⊕ n2 ⊂ Tanρ;
(2) t · ni ∈ Tanρ, for all t ∈ R (in particular, (−1) · ni ∈ Tanρ).

Proof. These are Propositions 4.25 and 4.29 of Gigli [25]. �

The fact that (−1) · n ∈ Tanρ whenever n ∈ Tanρ leads to a nontrivial consequence that
will help us simplifying later arguments considerably.

Lemma 4.12. Let n ∈ ∂iρf ∩ Tanρ where i ∈ {+,−}. Then ‖n‖ρ ≤ |Df |(ρ).

Proof. We prove the case of n ∈ ∂+
ρ f ∩Tanρ. Then other one follows by noting that n ∈ ∂−ρ f

if and only if (−1) · n ∈ ∂+
ρ (−f) and that |Df |(ρ) = |D(−f)|(ρ).

First, by Lemma 4.11, m := (−1) · n ∈ Tanρ. By the density of G(ρ) in Tanρ, there exist
mk ∈ G(ρ) and Mk ∈ P2((Rd)3) such that, setting

nk := (−1) ·mk,

there holds π1,2
# Mk = (−1) · nk, π1,3

# Mk = n and

lim
k→∞

Dρ(n,nk) = lim
k→∞

∫
(Rd)3
|(−ξ)− η|2Mk(dx; dξ, dη) = 0.

Now, if εk > 0 satisfy the property that (π1, π1 +εkπ
2)#mk is an optimal plan, we can assume

with no loss of generality that εk → 0 (because if this property holds for εk, it holds for all
ε ∈ (0, εk)).

We now define

M̃k := (π1, εkπ
2, π3)#Mk, ρk := (π1 + π2)#(εk ·mk).

Then

(π1, π1 + π2)#M̃k ∈ Γo(ρ, ρk), π1,3
# M̃k = n.

By the definition of super-gradient,

f(ρk)− f(ρ) ≤
∫

(Rd)3
(ξ · η)M̃k(dx; dξ, dη) + d(ρ, ρk)ωn(d(ρ, ρk))

≤ −εk‖nk‖2
ρ + εkDρ(n,nk)‖nk‖ρ + d(ρ, ρk)ωn(d(ρ, ρk))

=
(
− ‖nk‖ρ + Dρ(n,nk)

)
‖εk ·mk‖ρ + d(ρ, ρk)ωn(d(ρ, ρk))

=
(
− ‖nk‖ρ + Dρ(n,nk)

)
d(ρ, ρk) + d(ρ, ρk)ωn(d(ρ, ρk)).

Therefore

‖n‖ρ ≤ lim sup
k→∞

(f(ρ)− f(ρk))
+

d(ρk, ρ)
≤ lim sup

ρ1→ρ, ρ1 6=ρ

|f(ρ1)− f(ρ)|
d(ρ1, ρ)

= |Df |(ρ).
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Lemma 4.13. Let ϕ := ϕ1 + ϕ2, then ∂iρϕ1 ⊕ ∂iρϕ2 ⊂ ∂iρϕ, i ∈ {+,−}.

Proof. We prove the case of super-gradients only, as the other case follows by symmetry.
Let n = n1 ⊕ n2 ∈ ∂+

ρ ϕ1 ⊕ ∂+
ρ ϕ2 where ni ∈ ∂+

ρ ϕi for i = 1, 2. That is, there exists

N ∈ P2((Rd)3) such that π1,2
# N = n1, π1,3

# N = n2 and

n(dx; dη) =

∫
η2

∫
η1

δη1+η2(dη)N(dx; dη1, dη2).

That is, ∫
x

∫
η2

∫
η1

ϕ(x, η1 + η2)N(dx; dη1, dη2) =

∫ ∫
ϕ(x, η)n(dx; dη).(4.19)

For every ρ1 ∈ X and every M ∈ P2((Rd)3) such that (π1, π1 + π2)#M ∈ Γo(ρ, ρ1) and

π1,3
# M = n, we conclude the lemma by showing that

ϕ(ρ1)− ϕ(ρ) ≤
∫

(Rd)3
(ξ · η)M(dx; dξ, dη) + d(ρ, ρ1)(ωn1 + ωn2)(d(ρ, ρ1)),(4.20)

where ωni
, i = 1, 2 are the modulus appearing in the definition of ni ∈ ∂+

ρ ϕi.

To verify (4.20), we first construct a P ∈ P2((Rd)4) with certain desired properties. First,
using π1,3

# M = n, we decompose

M(dx; dξ, dη) = Mx,η(dξ)n(dx; dη)

and define

P(dx; dξ, dη1, dη2) := Mx,η1+η2(dξ)N(dx; dη1, dη2).

Then,

(π1, π2, π3 + π4)#P = M.(4.21)

Indeed, ∫ ∫ ∫ ∫
φ(x, ξ, η1 + η2)P(dx; dξ, dη1, dη2)

=

∫
x

∫
η2

∫
η1

(∫
ξ

φ(x; ξ, η1 + η2)Mx,η1+η2(dξ)
)
N(dx; dη1, dη2)

=

∫
x

[ ∫
η

(∫
ξ

φ(x; ξ, η)Mx,η(dξ)
)
n(dx; dη)

=

∫
x

∫
η

∫
ξ

φ(x; ξ, η)M(dx; dξ; dη).

In the above, from the first to the second equalities, we used (4.19) by taking

ϕ(x, η) =

∫
ξ

φ(x; ξ, η)Mx,η(dξ).(4.22)

Next, we define

M1(dx; dξ, dη1) := π1,2,3
# P(dx; dξ, dη1) =

∫
η2

Mx,η1+η2(dξ)N(dx; dη1, dη2),
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M2(dx; dξ, dη2) := π1,2,4
# P(dx; dξ, dη2) =

∫
η1

Mx,η1+η2(dξ)N(dx; dη1, dη2).

Then it is immediate to check that

π1,3
# M1 = π1,3

# P = π1,2
# N = n1, π1,3

# M2 = π1,4
# P = π1,3

# N = n2,

while (4.21) gives

(π1, π1 + π2)#Mi = (π1, π1 + π2)#P = (π1, π1 + π2)#M ∈ Γo(ρ, ρ1) i = 1, 2.

With the above properties, writing ωn := ωn1 + ωn2 , we have

ϕ1(ρ1)− ϕ1(ρ) + ϕ2(ρ1)− ϕ2(ρ)

≤
∫

(Rd)3
(ξ · η1)M1(dx; dξ, dη1) +

∫
(Rd)3

(ξ · η)M2(dx; dξ, dη2) + d(ρ, ρ1)ωn(d(ρ, ρ1))

=

∫
(Rd)4

(ξ · (η1 + η2))P(dx; dξ, dη1, dη2) + d(ρ, ρ1)ωn(d(ρ, ρ1))

=

∫
(Rd)3

(ξ · η)M(dx; dξ, dη) + d(ρ, ρ1)ωn(d(ρ, ρ1)).

This establishes the validity of (4.20). �

4.4. Augmented Lagrangian and Hamiltonian, Viscosity solution of a Hamilton-
Jacobi equation in P2(Rd) and uniqueness. Now, we define an augmented Lagrangian

L(m) :=
1

2
‖m‖2

ρ − V (π1
#m), ∀m ∈ Tan.

We also define, for n ∈ P2(Rd × Rd),

H(n) :=
1

2
‖n‖2

ρ + V (π1
#n).

We study well-posedness of a Hamilton-Jacobi partial differential equation formally written
as

f(ρ)− αH(ρ, ∂ρf) = h(ρ),(4.23)

where α > 0 and h ∈ BUC(X). The Cauchy problem formulated using this augmented form
can be treated similarly, we do not pursue details here to avoid repetition.

We define, for every f : X 7→ R,

H0f(ρ) := inf
{

H(n) : n ∈ ∂+
ρ f ∩ Tanρ

}
,(4.24)

H1f(γ) := sup
{

H(n) : n ∈ ∂−γ f ∩ Tanγ
}
.(4.25)

We recall the conventions that inf ∅ = +∞ and sup ∅ = −∞. By density of G(ρ) in Tanρ,
the sup on Tanρ (respectively Tanγ) in the above defining equalities can be replaced by sup
on G(ρ) (respectively by G(γ)).

The restriction of n ∈ Tan in (4.24) and (4.25) deserves an explanation. We observe
that the roles of π1,2

# M and π1,3
# M in Definition 4.7 are not symmetric. In particular, if

n = π1,3
# M 6∈ Tan, then

M(dx; dξ, dη) := δη(dξ)n(dx; dη)
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won’t belong to the admissible class appearing in definition of super- sub- differentials. A
practical significance of the above M is the property that∫

(Rd)3
(ξ · η)M(dx; dξ, dη) = ‖n‖2

ρ, where ρ = π1
#M.

We will use this in the existence of super-solution in Lemma 4.23 near the very end. In
principle, one could have developed a theory without the restriction n ∈ Tan. However, this
will complicate the definition of H0 and H1 requiring the use of measures M with 3 variables
(x; ξ, η), instead of the n with 2-variables (x, ξ).

Definition 4.14 (Viscosity solution using sub, super-differentials). f is a viscosity sub-
solution to (4.23) if f ∈ USC(X;R) and

α−1(f − h)(ρ) ≤ (H0f)∗(ρ), ρ ∈ X;

f is a viscosity super-solution to (4.23) if f ∈ LSC(X;R) and

α−1(f − h)(ρ) ≥ (H1f)∗(ρ), ρ ∈ X.

If f ∈ C(X;R) is both a viscosity sub- as well as super-solution, it is a solution.

We will refer the above equation and its definition of solution as geometric-based formula-
tion. In contrast, we refer to the earlier equation (1.11) in conjunction with Definition 1.4 as
metric-based formulation. We reveal next that uniqueness of the metric based formulation,
which follows from Lemma 2.3, implies uniqueness of the geometric-based formulation.

Let ϕ and ψ be the special test functions in (1.12) and (1.13), and Hλ,κ,ε
0 and Hκ,ε

1 be the
metric-based formulation of Hamiltonians defined in Section 1.2 using the notion of local
slope. Next, we prove an estimate of H0ϕ from above by the Hλ,κ,ε

0 ϕ, and prove another
estimate of H1ψ from below by the Hκ,ε

1 ψ. To be notationally consistent throughout this
section, we always use the probability-measure-space notations, even when dealing with the
metric formulation. Specifically, we recall that a base point ρ̄ ∈ X is chosen. It has smooth
compactly supported Lebesgue density, as defined in the beginning of this section. We also
recall that, for δ, κ, ε > 0,

ϕ(ρ) := λ−1
(d2(ρ, γ)

2δ
+ κβ ◦ d(ρ, ρ̄) + εd(ρ, ρ1)

)
, λ > 1, γ, ρ1 ∈ X,(4.26)

and that

Hλ,κ,ε
0 ϕ(ρ) := H

(
ρ,

1

λ
(
d(ρ, γ)

δ
+ κβ′ ◦ d(ρ, ρ̄) + ε)

)
,

where

H(ρ, p) :=
1

2
p2 + V (ρ), (ρ, p) ∈ X× R+ 7→ R̄.

Similarly,

ψ(γ) := −d2(ρ, γ)

2δ
− κβ ◦ d(γ, ρ̄)− εd(γ, γ1), ρ, γ1 ∈ X,(4.27)

and

Hκ,ε
1 ψ(γ) := H

(
γ, (

d(ρ, γ)

δ
− κβ′ ◦ d(γ, ρ̄)− ε) ∨ 0

)
.

We note that ∂+
ρ d(·, ρ1) is empty at ρ = ρ1. Therefore, ∂+

ρ ϕ and ∂−γ ψ may be empty
when evaluated at some important points, making the use of H0ϕ and H1ψ non-informative

33



at these points. Next, we consider further perturbations which are smooth in the sense of
super- sub-differentials.

Let

dα(ρ, γ) :=
√

d2(ρ, γ) + α, ρ, γ ∈ X, α > 0.

Let α, θ > 0 be small, and βk ∈ [0, 1] with
∑

k βk = 1 and ρk ∈ X where k = 1, 2, . . .. We
build a bump function

∆(ρ) :=
∞∑
k=1

βkd
2(ρ, ρk).(4.28)

and define

(4.29) ϕα,θ(ρ) := λ−1
(d2(ρ, γ)

2δ
+ κβ ◦ dα(ρ, ρ̄) + εdα(ρ, ρ1)

)
+ θ∆(ρ), ∀ρ ∈ X.

By Lemma 4.8 and Lemma 4.11(2), each summand is superdifferentiable and it admits
tangent elements in the superdifferential. By Lemma 4.13 and Lemma 4.11(1), we obtain

∂+
ρ ϕα,θ ∩ Tanρ 6= ∅ ∀ρ ∈ X.

Although there are countable sum of distances in ∆, the conclusions of the above lemmas
still holds when applied to ∆ due to the summability of βks and the special form of sub-
super-differentials identified in Lemma 4.8.

Lemma 4.15. Suppose that limα,θ→0 d(ρα,θ, ρ) = 0 and that supk d(ρ, ρk) ≤M <∞ with M
independent of θ, α. Then

lim sup
α→0+,θ→0+

H0ϕα,θ(ρα,θ) ≤ Hλ,κ,ε
0 ϕ(ρ).

Proof. For notational simplicity, we re-write the ϕα,θ in (4.29) into four terms corresponding
to each of the terms in that expression

ϕα,θ := λ−1(ϕ0 + κϕ1 + εϕ2) + θ∆.

For all n ∈ ∂+
ρ ϕα,θ ∩ Tanρ, invoking Lemma 4.12,

‖n‖ρ ≤
1

λ

(d(ρ, γ)

δ
+ κβ′ ◦ dα(ρ, ρ̄) + ε

)
+ 2θ sup

k=1,2,...
d(ρ, ρk).(4.30)

Since R+ 3 p 7→ H(ρ, p) is nondecreasing, we have

H0ϕα,θ(ρα,θ) := inf
{

H(n) : n ∈ ∂+
ρα,θ

ϕ ∩Tanρα,θ

}
≤ H

(
ρα,θ,

1

λ
(
d(ρα,θ, γ)

δ
+ κβ′ ◦ dα(ρα,θ, ρ̄) + ε) + 2θ sup

k
d(ρα,θ, ρk)

)
.

We conclude by taking the limit. �

Similarly, we construct a smoothly perturbed version of the function ψ in (4.27):

(4.31) ψα,θ(γ) := −d2(ρ, γ)

2δ
− κβ ◦ dα(γ, γ̄)− εdα(γ, γ1)− θ∆(γ).
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Lemma 4.16. Suppose that limα,θ→0 d(γα,θ, γ) = 0 and that supk d(γ, ρk) ≤M <∞ with M
independent of θ, α. Then

lim inf
θ→0+,α→0+

H1ψα,θ(γα,θ) ≥ Hκ,ε
1 ψ(γ).

Proof. We re-write the test function ψ in (4.31) into four terms ψα,θ := ψ0 +κψ1 + εψ2− θ∆,
where in particular, ψ0(γ) = − 1

2δ
d2(ρ, γ).

By Lemmas 4.8 and 4.11(2), for any µ ∈ Γo(ρ, γ) the plan

n0 :=
(
π2,

1

δ
(π1 − π2)

)
#
µ

belongs to ∂−γ ψ0 ∩ Tanγ. Also, Lemma 4.13 provides

n1 ∈
(
∂−γ (κψ1 + εψ2 − θ∆)

)
∩ Tanγ.

Take any n ∈ n0⊕n1 (whose existence is guaranteed by Lemma 4.10). By Lemmas 4.13 and
4.11(1), n ∈ ∂−γ ψα,θ ∩ Tanγ. Additionally, by Lemma 4.12,

‖n1‖γ ≤ |D(κψ1 + εψ2 − θ∆)|(γ) ≤ ε′ := (κβ′ ◦ dα(γ, ρ̄) + ε+ 2θM).

Hence in view of (4.18), we have that ‖n0‖γ ≤ ‖n‖γ + ε′, that is,

‖n‖γ ≥ (‖n0‖γ − ε′) ∨ 0 =
(d(ρ, γ)

δ
− ε′

)
∨ 0.

By monotonicity of R+ 3 p 7→ H(ρ, p),

H1ψα,θ(γ) := sup{H(n̂) : n̂ ∈ ∂−γ ψα,θ ∩ Tanγ}
≥ H(n)

≥ H
(
γ,
(d(ρ, γ)

δ
− κβ′ ◦ dα(γ, ρ̄)− ε− θM

)
∨ 0
)
.

Replace the γ above by γα,θ and taking the limit, the conclusion follows. �

Next, we link Hif , i = 1, 2 with H0ϕα,θ and H1ψα,θ, at those special points ρ, γ appearing
in the maximum principle.

Lemma 4.17. Let f : X 7→ R, α ≥ 0, θ ≥ 0, and ρ0, γ0 ∈ X satisfy

(f − ϕα,θ)(ρ) = sup
X

(f − ϕα,θ), (ψα,θ − f)(γ) = sup
X

(ψα,θ − f).

Then ∂+
ρ ϕα,θ ⊂ ∂+

ρ f and ∂−γ ψα,θ ⊂ ∂−γ f . Consequently, at such ρ and γ we respectively have

H0f(ρ) ≤ H0ϕα,θ(ρ), H1f(γ) ≥ H1ψα,θ(γ).

Proof. By assumption, ϕα,θ(ρ1)−ϕα,θ(ρ) ≥ f(ρ1)− f(ρ) for all ρ1 ∈ X. Hence ∂+
ρ ϕα,θ ⊂ ∂+

ρ f
by the defining inequality of super-differential in Definition 4.7.

Similarly, f(γ1) − f(γ) ≥ ψα,θ(γ1) − ψα,θ(γ) for all γ1 ∈ X. Hence ∂−γ ψα,θ ⊂ ∂−γ f follows
from definition of sub-differential. �

Combining the above lemmas, we have the following relation between the metric-based
and geometric-based formulations of viscosity solutions.
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Lemma 4.18. Every viscosity sub- (resp. super-) solution to (4.23) in the sense of Defini-
tion 4.14, is a viscosity sub- (resp. super-) solution to (1.11) in the sense of Definition 1.4.

As a consequence, the comparison principle for (1.11) implies the comparison principle
for (4.23).

Proof. We only prove the sub-solution case, the other case is similar.
Let (f − ϕ)(ρ0) = sup

X
(f − ϕ), where ϕ is defined as in (4.26). We write

ϕα := λ−1
(d2(ρ, γ)

2δ
+ κβ ◦ dα(ρ, ρ̄) + εdα(ρ, ρ1)

)
.

Noting dα ≥ d, we have

(f − ϕα)(ρ0) ≥ sup
X

(f − ϕα)− θ.

where

θ := θ(α) :=
κ

λ

(
β ◦ dα(ρ0, ρ̄)− β ◦ d(ρ0, ρ̄)

)
+
ε

λ

(
dα(ρ0, ρ1)− d(ρ0, ρ1)

)
∈ R+.

By applying the Borwein-Preiss variational principle in Proposition 5.2 with ε = θ and
F = f − ϕα, we can now find (βk, ρk) ∈ [0, 1] × X, k = 1, 2, . . . (this sequence may depend
on all the earlier parameters α, θ and ρ0) and ρα,θ ∈ X such that

(f − ϕα,θ)(ρα,θ) = sup
X

(f − ϕα,θ),

where ϕα,θ := ϕα −
√
θ∆ and ∆ is defined as in (4.28):

∆(ρ) :=
∞∑
k=1

βkd
2(ρ, ρk).

Moreover,

sup
k

d(ρk, ρ0) ≤ θ1/4, d(ρ0, ρα,θ) ≤ θ1/4.

Now, combining Lemmas 4.15 and 4.17 the conclusion follows. �

4.5. Existence of viscosity solution for Hamilton-Jacobi PDEs in P2(Rd). In view
of Lemma 4.1, the value function f defined in (1.10) becomes

f(ρ) = sup
{∫ ∞

0

e−r/α
(h(σ(r))

α
− L(σ, σ̇)

)
dr : σ(·) ∈ ACloc(R+;X), σ(0) = ρ

}
.(4.32)

Lemma 4.19. Condition 4.2 implies Condition 1.1.5. Moreover, the value function f is
continuous, bounded from above and has at most sub-linear growth rate to −∞.

Proof. For any 0 < θ < 2,∫
Rd
|x|θdρ ≤

(∫
Rd
|x|2dρ

)θ/2
≤ C(1 + d(ρ, ρ̄))θ.

With the assumptions on φ,Φ in Condition 4.2 and the choice of θ ∈ (0, 1), it follows that
there exist C0, C1 ∈ R+ such that

−C0(1 + d(ρ, ρ̄))θ ≤ V (ρ) ≤ C1.

Hence we may choose ζ(r) = C(1 + rθ) for some C ∈ R+ and β(r) = r to verify Condi-
tion 1.1.5.
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The continuity on f follows from Lemma 2.6, while the growth estimates follows from
Lemma 2.7. �

We already know, through Theorem 2.15, that f is a viscosity solution to the metric
formulation of Hamilton-Jacobi equation (1.11). Next, we show that it is also a viscosity
solution to (4.23) as given in the sense, a priori stronger, of Definition 4.14. First, we observe
the following small time behavior of semigroup Tt. Denote

Cφ,Φ := ‖∇φ‖L∞ + ‖∇Φ‖L∞ .
Under Condition 4.2, supρ |DρV | ≤ Cφ,Φ. Then we have the following.

Lemma 4.20. Let f : X 7→ R be an arbitrary Borel function which is bounded from above.
Then for each t > 0 and ρ0 ∈ X with f(ρ0) > −∞, we can find ρ1 := ρ1,t ∈ X satisfying

d2(ρ0, ρ1) ≤ Cf t, t ∈ [0, 1](4.33)

where Cf is a constant only depending on f , such that

Ttf(ρ0)− f(ρ0) ≤ t2 + f(ρ1)− f(ρ0)− tL
(
ρ0,

d(ρ0, ρ1)

t

)
+ Cφ,Φ

√
Cf t
√
t.(4.34)

Proof. For every absolutely continuous curve ρ(·),∫ t

0

(V (ρ(s))− V (ρ(0)))ds ≤ Cφ,Φ

∫ t

0

∫ s

0

|ρ′|(r)drds ≤ tCφ,Φ

∫ t

0

|ρ′(r)|dr.

Recall L(ρ, q) = q2/2− V (ρ), we denote

Lt(ρ, q) := L(ρ, q)− tCφ,Φq.
Then

Ttf(ρ0)− f(ρ0)

= sup
{
f(ρ(t))− f(ρ(0))−

∫ t

0

L(ρ0, |ρ′|(s))ds

+

∫ t

0

(V (ρ(s))− V (ρ0))ds : ρ(·) ∈ AC([0, t];X), ρ(0) = ρ0

}
≤ sup

{
f(ρ(t))− f(ρ0)−

∫ t

0

Lt(ρ0, |ρ′|(s))ds : ρ(·) ∈ AC([0, t];X), ρ(0) = ρ0

}
= sup

ρ1∈X

{
f(ρ1)− f(ρ0)− tLt

(
ρ0,

d(ρ0, ρ1)

t

)}
,

where the last line follows from convexity of Lt in q ∈ R+.
Since f is bounded from above and L(ρ0, q) = q2/2−V (ρ0), we can always restrict the ρ1s

in the last maximization problem to satisfy (4.33), uniformly in t in bounded time interval.
Hence the conclusion (4.34) follows. �

Lemma 4.21. The value function f in (4.32) is a continuous viscosity sub-solution to (4.23)
in the sense of Definition 4.14.

Proof. In view of Lemma 2.12, we only need to show that for the value function f and every
ρ0 ∈ X, we have

lim inf
t→0+

1

t

(
Ttf(ρ0)− f(ρ0)

)
≤ (H0f)(ρ0).(4.35)
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Without loss of generality, we assume ∂+
ρ0
f is non-empty, otherwise by convention, inf over

the empty set is +∞, hence H0f(ρ0) = +∞ and the above inequality holds trivially. We
apply the estimate in Lemma 4.20. For each fixed t > 0 and the ρ1 := ρ1,t appearing in
that lemma, let n ∈ ∂+

ρ0
f and let M ∈ P2((Rd)3) such that (π1, π1 + π2)#M ∈ Γo(ρ, ρ1) and

π1,3
# M = n. From (4.34) and the defining relation of super-differential, we have

Ttf(ρ0)− f(ρ0) ≤ t2 + ‖n‖ρ0d(ρ0, ρ1,t) + d(ρ0, ρ1,t)ωn(d(ρ0, ρ1,t))− tL
(
ρ0,

d(ρ0, ρ1,t)

t

)
+ Ct

√
t

= t2 + t
[(
‖n‖ρ0 + ωn(d(ρ0, ρ1,t))

)d(ρ0, ρ1,t)

t
− L

(
ρ0,

d(ρ0, ρ1,t)

t

)]
+ Ct

√
t

≤ t2 + Ct
√
t+ t

1

2

(
‖n‖ρ0 + ωn(d(ρ0, ρ1,t))

)2

+ tV (ρ0).

Consequently (4.35) follows. �

Next, we also establish a scaling property for the defining inequality in super-differentials.
Recall that, for γ0 ∈ X, m ∈ G(γ0) means that ε > 0 such that (π1, π1 + επ2)#m is optimal
between its first marginal, namely γ0, and its second marginal, namely (π1 + επ2)#m.

Lemma 4.22. Let f : X 7→ R, γ0 ∈ X, m ∈ G(γ0) and n0 ∈ ∂−γ0f . Given ε > 0 such that

(π1, π1 + επ2)#m is an optimal plan, we define

γ(t) := (π1 + tπ2)#m, t ∈ [0, ε].(4.36)

Then γ(t) is a constant speed geodesic between γ(0) = γ0 and γ(ε) and there exists a modulus
of continuity ωn0 satisfying this property: for all M0 ∈ P((Rd)3) such that π1,2

# M0 = m and

π1,3
# M0 = n0, there holds

f(γ(t))− f(γ0) ≥ t

∫
Rd×Rd×Rd

(ξ · η)M0(dy; dξ, dη) + d(γ0, γ(t))ωn0(d(γ0, γ(t))), ∀t ∈ [0, ε].

Proof. The fact that γ(t) is a constant speed geodesic is well-known, see e.g. Lemma 7.2.1
of [2]. For t ∈ [0, ε] we define Mt := (π1, tπ2, π3)#M0. Then π1,3

# Mt = n0 and

(π1, π1 + π2)#Mt = (π1, π1 + tπ2)#M0 ∈ Γo(γ0, γ(t)).

Consequently, by definition of sub-differential of f ,

f(γ(t))− f(γ0) ≥
∫

(Rd)3
(ξ · η)Mt(dy; dξ, dη) + d(γ0, γ(t))ωn0(d(γ0, γ(t)))

= t

∫
(Rd)3

(ξ · η)M0(dy; dξ, dη) + d(γ0, γ(t))ωn0(d(γ0, γ(t))).

�

Lemma 4.23. The value function f in (4.32) is a continuous viscosity super-solution to
(4.23) in the sense of Definition 4.14.

Proof. In view of Lemma 2.11, we only need to verify that for the value function f and every
γ0 ∈ X, we have

lim sup
t→0+

1

t

(
Ttf(γ0)− f(γ0)

)
≥ (H1f)(γ0).
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Let n0 ∈ ∂−γ0f (if no such n0 exists by convention the sup over the empty set is −∞, hence
H1f(γ0) = −∞ and the above inequality holds trivially). Let m ∈ G(γ0), let ε > 0 be such
that (π1, π1 +επ2)#γ0 is an optimal plan, and define γ(t) as in (4.36). Since γ(t) is a constant
speed geodesic,

|γ′|(t) = ε−1d(γ0, γ(ε)) = ‖m‖γ0 , 0 < t < ε.

Taking this into account, by the definition of Tt in (2.7), we also have

Ttf(γ0)− f(γ0) ≥ f(γ(t))− f(γ0)−
∫ t

0

(1

2
‖m‖2

γ0
− V (γ(s))

)
ds.

Now, let M0 ∈ P((Rd)3) be such that π1,2
# M0 = m and π1,3

# M0 = n0. From Lemma 4.22,
for all t ∈ [0, ε] we conclude that

f(γ(t))− f(γ0) ≥ t
(∫

(Rd)3
(ξ · η)M0(dy; dξ, dη) + ε−1d(γ0, γ(ε))ωn0(d(γ0, γ(t)))

)
.

Consequently, the lower semicontinuity of V give

lim sup
t→0+

1

t

(
Ttf(γ0)− f(γ0)

)
≥

∫
(Rd)3

(ξ · η − 1

2
|ξ|2)M0(dy; dξ, dη) + V (γ0).

Now we make the extra assumption that n0 ∈ ∂−γ0f ∩ Tanγ0 . If the slightly stronger
condition n0 ∈ ∂−γ0f ∩G(γ0) holds, then taking

M0(dx; dξ, dη) := δη(dξ)n0(dx; dη),

(which is admissible since π1,2
# M0 = n0 ∈ G(γ0)) and noting∫

(Rd)3
(ξ · η − 1

2
|ξ|2)M0(dy; dξ, dη) =

∫
(Rd)3

1

2
|η|2M0(dx; dξ, dη) =

1

2
‖n0‖2

γ0
,

the conclusion follows. In the general situation n0 ∈ Tanγ0 , if mn ∈ G(γ0) converge to n0 we

construct Mn
0 satisfying π1,2

# Mn
0 = mn, π1,3

# = n0 and use the fact that

lim
n→∞

∫
(Rd)3

(ξ · η − 1

2
|ξ|2)Mn

0 (dy; dξ, dη) =
1

2
‖n0‖2

γ0

to conclude. �

In summary, we have

Lemma 4.24. The value function f is a viscosity solution to both (4.23) and (1.11).

4.6. Well-posedness of Hamilton-Jacobi PDE in P2(Rd). In view of the comparison
result in Lemma 4.18, we conclude with the following.

Theorem 4.25. The value function f is the unique continuous viscosity solution with at most
sub-linear growth, both to the metric-based formulation (1.11) as well as to the geometric-
based formulation (4.23).

In principle, we can also treat the Hamilton-Jacobi PDE associated with Vlasov-Monge-
Ampére equation as described in the last section of [1], using the same methodology. We do
not pursue details here further.
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5. Appendix - perturbed optimization principles

Let (Y, dY ) be a complete metric space and let F : Y 7→ R ∪ {−∞} be an upper semi-
continuous function, 6≡ −∞, uniformly bounded from above.

Proposition 5.1 (Ekeland). Let ε > 0 and y0 ∈ Y be such that

F (y0) ≥ sup
y∈Y

F (y)− ε.

Then there exist yε ∈ Y such that

F (yε) ≥ F (y0), dY (yε, y0) ≤ 1, F (y) < F (yε) + εdY (y, yε), ∀y 6= yε.

In particular, yε is the global strict (hence unique) maximum of y 7→ F (y)− εdY (y, yε).

Proof. The Proposition is an adaptation of Theorem 1 in Ekeland [13]. �

Proposition 5.2 (Borwein-Preiss). Let ε > 0 and y0 ∈ Y be such that

F (y0) ≥ sup
y∈Y

F (y)− ε.

Then there exist yk ∈ Y, yε ∈ Y and non-negative numbers βk with
∑∞

k=1 βk = 1 such that

lim
k→∞

dY (yk, yε) = 0, sup
k=1,2,...

dY (yk, yε) ≤ ε1/4, dY (yε, y0) ≤ ε1/4,

F (yε) ≥ sup
y∈Y

F (y)− ε, F (yε)−
√
ε∆(yε) ≥ F (y)−

√
ε∆(y) ∀y ∈ Y,

where

∆(y) := ∆{βk,yk}(y) :=
∞∑
k=1

βkd
2
Y (y, yk).

Proof. The conclusion is an adaptation of Theorem 2.6, estimates (2.8), (2.13) and (2.14)
in its proof, and Remark 2.7, all of Borwein-Preiss [6], in the special case where p = 2,
λ = ε1/4. �

In the above result, we have

|∆(yε)| ≤
∑
k

βkd
2
Y (yε, yk) ≤

√
ε.

In particular, we also have

|D∆|(yε) ≤ 2
∑
k

βkdY (yε, yk) ≤ 2ε1/4.
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