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Abstract

We investigate the regularity of the marginals onto hyperplanes for sets of finite perimeter.
We prove, in particular, that if a set of finite perimeter has log-concave marginals onto a.e.
hyperplane then the set is convex. Our proof relies on measuring the perimeter of a set through
a Hilbertian fractional Sobolev norm, a fact that we believe has its own interest.

1 Introduction

Let ϕ : Rn → [0,+∞) be a log-concave function, that is, ϕ is of the form e−V for some convex
function V : Rn → R∪{+∞}. A well-known consequence of the Prékopa-Leindler inequality states
that the marginals of ϕ onto any hyperplane are log-concave (see for instance [6, Sections 10-11]):
more precisely, for any direction e ∈ S

n−1 let πe : Rn → e⊥ denote the orthogonal projection onto
the hyperplane e⊥ := {x ∈ R

n : e · x = 0}, and define

ϕe : e⊥ → R, ϕe(x) :=

∫

R

ϕ(x+ te) dt.

Then ϕe is log-concave, i.e., ϕe = e−We for some convex function We : e⊥ ≃ R
n−1 → R ∪ {+∞}.

In particular, if E is a convex set and we denote by 1E the characteristic function of E (that is
1E(x) = 1 if x ∈ E, 1E(x) = 0 if x 6∈ E), then 1E is log-concave, which implies that, for any
e ∈ S

n−1,

we : e⊥ → R, we(x) :=

∫

R

1E(x+ te) dt (1.1)

is log-concave. Actually, by the Brunn-Minkowski inequality, an even stronger result is true, namely
we is concave. (We refer to [6] for more details.)

In [5], Falconer proved that a converse of the previous statements is true: if a compact set E
has concave marginals onto a.e. hyperplane e⊥, then it is convex. The aim of this paper is to show
that (under rather weak regularity assumptions on E) this converse statement is still true under
weaker assumptions on the marginals: namely, we prove that if the marginals have convex support
and are uniformly Lipschitz strictly inside their support, then the set is convex. In particular, this
implies that if a set has log-concave marginals onto a.e. hyperplane e⊥ then it is convex. As we
will also discuss below, this fact is false if we do not restrict to characteristic functions of sets:
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it is possible to construct examples of functions whose marginals are log-concave (actually, even
concave) but the functions themselves are not.

To state our result, let us introduce some notation. Given a Borel set E, let we be as in (1.1),
and define the set Ae := {we > 0} ⊂ e⊥. (Notice that if we is log-concave then Ae is convex.)
Also, for any δ > 0 we set Aδ

e
:= {x ∈ Ae : dist(x, ∂Ae) ≥ δ}. We recall that a set E is of finite

perimeter if the distributional derivative ∇1E of 1E is a finite measure, that is

∫

Rn

|∇1E | <∞.

Also, we use Hk to denote the k-dimensional Hausdorff measure. Here is our main result:

Theorem 1.1. Let E ⊂ R
n be a bounded set of finite perimeter and assume that Ae is convex for

Hn−1-a.e. e ∈ S
n−1. Suppose further that we is locally Lipschitz inside Ae for Hn−1-a.e. e ∈ S

n−1

and the following uniform bound holds: for any δ > 0 there exists a constant Cδ such that

|∇we| ≤ Cδ a.e. inside Aδ
e
, for Hn−1-a.e. e ∈ S

n−1.

Then E is convex (up to a set of measure zero).

Notice that, since log-concave functions are Lipschitz in the interior of their support, our as-
sumption is weaker than asking that we is log-concave for Hn−1-a.e. e ∈ S

n−1. Hence our theorem
implies the following:1

Corollary 1.2. Let E ⊂ R
n be a bounded set of finite perimeter and assume that, for Hn−1-a.e.

e ∈ S
n−1, we is log-concave. Then E is convex (up to a set of measure zero).

In light of the fact that marginals of log-concave functions are log-concave, one may wonder if
the corollary above may be generalized to functions, that is, whether the fact that ϕ : Rn → [0,+∞)
has log-concave marginals implies that ϕ is log-concave. Unfortunately this stronger result is false.
To see this, consider ϕ := 1B1 − εψ, where ψ : Rn → R is a smooth radial non-negative func-
tion supported in a small neighborhood of the origin. Since the marginals of 1B1 are positive and
uniformly concave near the origin, it is easy to see that the marginals of ϕ are concave for ε > 0
sufficiently small (hence, in particular, they are log-concave), but of course ϕ is not log-concave.

The assumption that E is of finite perimeter is technical, and it is likely that our result could be
true without this assumption. However, finite perimeter plays an important role in the proof, which

1To be precise, since the bound on the Lipschitz constant of a convex function depends on its L∞ norm in a
slightly larger domain, the bound on the Lipschitz constant for a log-concave function depends on a lower bound on
the function itself in a slightly larger domain. Although in general there is no universal bound for a general class
of log-concave functions, in our case all the functions we arise as marginals of a bounded set, which implies that
Aek → Ae whenever ek → e (a way to see this is to observe that Ae coincides with the projection onto e

⊥ of the
convex hull of the set of the density one points of E, see the proof of Theorem 1.1 in Section 4). Thanks to this fact it
is not difficult to show that, if all the functions we are log-concave, then for any δ > 0 there exists a constant cδ > 0
such that we ≥ cδ inside Aδ

e
for Hn−1-a.e. e ∈ S

n−1. In particular this implies that the assumptions of Theorem 1.1
are satisfied.
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is based on measuring the perimeter using a fractional Hilbertian Sobolev norm of a smoothing of
1E .

2 To formulate that result, we introduce some further notation.
For notational convenience, we will say that a . b if there exists a dimensional constant C such

that a ≤ Cb, and a ≃ b if a . b and b . a.
Consider the 1/2 Sobolev norm, defined by

‖u‖2
H1/2 :=

∫

Rn

∫

Rn

|u(x) − u(y)|2
|x− y|n+1

dy dx. (1.2)

This norm can be used to measure the perimeter as follows:

Theorem 1.3. Let E ⊂ B1 ⊂ R
n have finite perimeter. Let γn be the standard Gaussian in R

n,

γn,ε(x) :=
1

εn
γn(x/ε), and ϕε := 1E ∗ γn,ε. Then

lim sup
ε→0

1

| log ε|‖ϕε‖2H1/2 ≃ lim inf
ε→0

1

| log ε| ‖ϕε‖2H1/2 ≃
∫

Rn

|∇1E |,

i.e., the ratios of these quantities are bounded above and below by positive dimensional constants.

We have not investigated the connection, if any, between our norm and the notion of fractional
perimeter introduced in [3] and whose relationship to the classical perimeter can be found in [1, 4].
Our norm is somewhat different in the spirit. On the one hand, as our norm is quadratic, the anal-
ysis performed in [4, 1] does not apply in our situation. On the other hand, the Hilbert structure
allows us to exploit Fourier transform techniques.

As we shall see, Theorem 1.1 in n dimensions follows easily from the case n = 2. In two
dimensions the result says that if almost every marginal is supported on an interval and is uniformly
Lipschitz in its interior, then the set is convex up to set of measure zero. The strategy of the proof is
the following. Consider E ⊂ R

2. Given θ ∈ [0, π], set wθ := weθ
where eθ = (cos(θ), sin(θ)). If E is

smoothly bounded, but not convex, then one expects that for some direction θ, the derivative of the
marginal wθ is infinite at some interior point of (the convex hull of) its support (see Figure 1.1).
For domains that merely have finite perimeter, the quantity that diverges is, roughly speaking,
a suitable localized version of

∫ ∫

|w′
θ(t)|2dt dθ. We make this quantitative by considering the

mollification ϕε of 1E .
More precisely, given a bounded set of finite perimeter E, and ϕε as in Theorem 1.3 above, we

show that
‖ϕε‖2H1/2 . | log(ε)| as ε→ 0,

and a localized version of Theorem 1.3 saying that

1

| log(ε)|

∫

Br(x0)

∫

Br(x0)

|ϕε(x)− ϕε(y)|2
|x− y|n+1

dy dx (1.3)

controls from above the perimeter of E inside Br/2(x0) as ε→ 0.

2To our knowledge, this is the first time that a Hilbertian norm is used to measure the perimeter of a set, and we
believe that this fact has its own interest.
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E

wθ

eθ

Figure 1.1: If E is a smooth non-convex set, for a.e. θ the marginal wθ has infinite derivative at some

interior point. However, it is easy to check that this argument fails when E is not smooth (consider for

instance a disk with a small square removed from its interior). Still, we can show that some suitable integral

quantity has to blow-up.

We then focus on the case n = 2 and, by use of the Fourier transform, show that (1.3) is
majorized by

1

| log(ε)|

∫ π

0

∫

R

ψ(t)2|w′
θ ∗ γ1,ε|2(t) dt dθ, (1.4)

where ψ : R → R is a suitable smooth cut-off function. Now, the fact that | log ε| → ∞ as ε → 0
shows that the measures

1

| log(ε)| |w
′
θ ∗ γ1,ε|2(t) dt dθ

concentrate near the points where w′
θ is infinite, which (under our assumption on wθ) is contained

inside the union over θ of the boundaries of the support of wθ, and this latter set corresponds to
the boundary of the support of the projections of the convex hull of E. Then, if E is not convex,
it is not difficult to see that this information is incompatible with the fact that the expression
in (1.3) controls from above the perimeter of E at every point (in particular, at points on the
reduced boundary of E which are inside the support of the convex hull), proving the result. Once
the theorem is proved in two dimensions, the higher dimensional case follows by a slicing argument.

The paper is organized as follows. In Section 2 we prove Theorem 1.3 and a local version, valid
in all dimensions, showing that (1.3) controls the perimeter. Then, in Section 3 we majorize (1.3)
by (1.4) in dimension 2. Finally, in Section 4 we prove Theorem 1.1.
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1262411. DJ was partially supported by NSF Grant DMS-1069225. Most of this work has been
done during AF’s visit at MIT in the Fall 2012, and during DJ’s visit at UT Austin in January
2013. Both authors acknowledge the warm hospitality of these institutions.
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2 A Hilbert norm for sets of finite perimeter

In this section we prove Theorem 1.3. This argument is valid in any dimension. Let us recall that
u ∈ BV (Rn) if its distributional derivative ∇u is a finite measure, and

‖u‖BV :=

∫

Rn

|∇u| = |∇u|(Rn).

Given a set E of finite perimeter, there is a suitable notion of boundary, called the reduced boundary
and denoted by ∂∗E, such that the following is true:

∫

Rn

|∇1E | = Hn−1(∂∗E),

and for any x ∈ ∂∗E the following hold:

Hn−1(∂∗E ∩Br(x)) ≃ rn−1 as r → 0 (2.1)

and there exists a unit vector ν(x) (called inner measure theoretical normal to E at x) such that

1

|Br|

∫

Br

|1E(x+ y)− 1R+(ν(x) · y)| dy → 0. as r → 0 (2.2)

Furthermore, ν is a Hn−1-measurable function of x ∈ ∂∗E. (We refer to [2, Sections 3.3 and 3.5]
or [7, Chapters 12 and 15] for more details.)

Lemma 2.1. Let u ∈ BV (Rn) be supported in the unit ball B1. Assume |u| ≤ 1, and set uε :=
u ∗ γn,ε. Then there is a dimensional constant C such that

‖uε‖2H1/2 ≤ C| log(ε)|
∫

Rn

|∇u|, 0 < ε < 1/2.

Proof. We begin by showing that

‖uε‖2H1/2 ≤ C

∫ ∞

ε

∫

Rn

|∂tut|2 dx dt, ut = u ∗ γn,t. (2.3)

Indeed recall that, in Fourier space, the H1/2 norm can be expressed as

‖uε‖2H1/2 = c

∫

Rn

|ξ||ûε(ξ)|2 dξ

for some positive dimensional constant c.3 Furthermore,

∂tûε+t(ξ) = ∂t
(

e−(t+ε)2|ξ|2
)

û(ξ) = −2(t+ ε)|ξ|2e−(t2+2εt)|ξ|2ûε(ξ),

3This follows from the fact that the Fourier transform of |x|−(n+1) is given by c|ξ| (c > 0), which can be easily
proven by homogeneity.
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thus, using the fact that the Fourier transform is an isometry in L2, up to a multiplicative constant
we get

∫ ∞

ε

∫

Rn

|∂tut|2 dx dt =
∫ ∞

0

∫

Rn

(t+ ε)2|ξ|4e−2(t2+2εt)|ξ|2 |ûε(ξ)|2 dξ dt.

Moreover,
∫ ∞

0
(t+ ε)2|ξ|4e−2(t2+2εt)|ξ|2 dt ≥

∫ ∞

ε
t2|ξ|4e−8t2|ξ|2 dt+

∫ ε

0
ε2|ξ|4e−8εt|ξ|2 dt

=

∫ ∞

ε|ξ|
s2|ξ|2e−8s2 ds

|ξ| +
∫ ε2|ξ|2

0
ε2|ξ|4e−8s2 ds

ε|ξ|2

≥ c|ξ|.

(If ε|ξ| ≤ 1, the first integral majorizes |ξ|, and if ε|ξ| ≥ 1, then the second integral majorizes |ξ|.)
Therefore, (2.3) follows.

Next, using the formula above for ∂tû1+t(ξ) (i.e., ε = 1) and integrating over t ∈ [1,∞), we
have, up to a multiplicative constant,

∫ ∞

2

∫

Rn

|∂tut|2 dx dt =
∫

Rn

∫ ∞

1
(t+ 1)2|ξ|4e−2(t2+2t)|ξ|2 dt |û1(ξ)|2 dξ

and
∫ ∞

1
(t+ 1)2|ξ|4e−2(t2+2t)|ξ|2 dt ≤

∫ ∞

0
4t2|ξ|4e−t2|ξ|2 dt = c|ξ|.

Hence, since γn,1 is a smooth rapidly decaying function and u is bounded by 1 and supported in
the unit ball, we have4

∫ ∞

2

∫

Rn

|∂tut|2 dx dt ≤ C‖u ∗ γn,1‖2H1/2 ≤ C‖u‖2L2 ≤ C‖u‖L1

for some dimensional constant C. Finally, again using that u is supported in the unit ball, the
Sobolev inequality for BV functions [2, Chapter 3.4] implies that the L1 norm of u is controlled by
the total variation of its derivative, thus giving

∫ ∞

2

∫

Rn

|∂tut|2 dx dt ≤ C

∫

Rn

|∇u|. (2.4)

We turn next to the integral from ε to 2. Recall that since γn,t(x) :=
1
tn γn(x/t), the time derivative

of ut can be written as

∂tut(x) = ∂t

∫

Rn

u(x− tz)γn(z) dz = −
∫

Rn

∇u(x− tz) · zγn(z) dz.

4A possible way to show that ‖u ∗ γn,1‖
2
H1/2 ≤ C‖u‖2L2 is to use that ‖f‖2

H1/2 ≤ ‖f‖L2‖∇f‖L2 for all smooth
rapidly decaying functions f (this can be easily proved in Fourier space), and to observe that

‖u ∗ γn,1‖L2 ≤ ‖u‖L2 , ‖u ∗ ∇γn,1‖L2 ≤ C‖u‖L2 .
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It follows from Fubini’s theorem that
∫

Rn

|∂tut| dx ≤ C

∫

Rn

|∇u|.

We can also write

∂tut(x) = ∂t

∫

Rn

u(x− z)
1

tn
γn

(

z

t

)

dz = −1

t

∫

Rn

u(x− z)

[

nγn

(

z

t

)

+∇γn
(

z

t

)

· z
t

]

dz

tn

= −1

t

∫

Rn

u(x− tz)
[

nγn(z) +∇γn(z) · z
]

dz

from which, along with |u| ≤ 1, we get

‖∂tut‖∞ ≤ C

t
.

Thus
∫

Rn

|∂tut|2 dx ≤ C

t

∫

Rn

|∇u|. (2.5)

Combining (2.3), (2.4), and (2.5), we conclude that

‖uε‖2H1/2 .

∫ ∞

ε

∫

Rn

|∂tut|2 dx dt

≤
(

C +

∫ 2

ε

C

t
dt

)
∫

Rn

|∇u| ≤ C| log ε|
∫

Rn

|∇u|, 0 < ε < 1/2,

as desired.

We now show that the norm (1.2) controls the perimeter locally.

Lemma 2.2. Let E be a set of finite perimeter, and let ϕε be as in Theorem 1.3. Fix x0 ∈ ∂∗E.
Then, for any r0 > 0,

lim inf
ε→0

1

| log(ε)|

∫

Br0(x0)

∫

Br0 (x0)

|ϕε(x)− ϕε(y)|2
|x− y|n+1

dx dy & Hn−1(Br0/2(x0) ∩ ∂∗E).

Proof. For x ∈ ∂∗E define

Dk(x) := sup
j≥k

1

|B2−j |

∫

B
2−j

|1E(x+ y)− 1R+(ν(x) · y)| dy,

Let δ > 0 be a small dimensional constant (to be fixed later). Let

Fm := {x ∈ ∂∗E : Dm(x) ≤ δ}.

Then
Fm ⊂ Fm+1 and

⋃

m

Fm = ∂∗E
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by (2.2). Furthermore, Fm is Hn−1-measurable because ν is Hn−1-measurable. Therefore, we can
choose m sufficiently large that

Hn−1(Br0/2(x0) ∩ Fm) ≥ 1

2
Hn−1(Br0/2(x0) ∩ ∂∗E).

Fix m as above, set ρ = 2−m, and suppose that
√
ε < ρ/100. Fix r ∈ (100ε,

√
ε). By a standard

covering argument5 there are N = Nr disjoint balls Br(xj), j = 1, . . . , Nr, such that xj ∈ Fm ∩
Br0/2(x0), and

Nr & Hn−1(Br0/2(x0) ∩ ∂∗E)/rn−1. (2.6)

We now want to estimate from below
∫

x,y∈Br0(x0), r/4≤|x−y|≤r/2

|ϕε(x)− ϕε(y)|2
|x− y|n+1

dx dy.

Since the balls Br(xj) are disjoint we have

∫

x,y∈Br0 (x0), r/4≤|x−y|≤r/2

|ϕε(x)− ϕε(y)|2
|x− y|n+1

dx dy

≥
N
∑

j=1

∫

Br/2(xj)∩{ν(xj)·(x−xj)≥r/10}
dx

∫

Br/2(xj)∩{ν(xj )·(y−xj)≤−r/10}∩{r/4≤|x−y|≤r/2}
dy

|ϕε(x)− ϕε(y)|2
|x− y|n+1

.

Because inside Br/2(xj) the set E is very close in L1 to the hyperplane {ν(xj) · (x − xj) ≥ 0}
(since Dm(xj) ≤ δ) and r ≥ 100ε, we deduce that, provided δ is chosen sufficiently small (the
smallness depending only on the dimension), |ϕε(x) − ϕε(y)| & 1 on a substantial fraction of the
latter integrals (since ϕε is close to the characteristic function of E, and thus to the characteristic
function of the hyperplane). Thus, since |x − y| ≤ r/2 and both x and y vary inside some sets
whose measure is of order rn, we get

N
∑

j=1

∫

Br/2(xj)∩{ν(xj)∩(x−xj)≥r/10}
dx

∫

Br/2(xj)∩{ν(xj)∩(y−xj )≤−r/10}
dy

|ϕε(x)− ϕε(y)|2
|x− y|n+1

& Nrr
n−1 & Hn−1(Br0/2(x0) ∩ ∂∗E),

where the last inequality follows by (2.6). Thus, we proved that for any r ∈ (100ε,
√
ε)

∫

x,y∈Br0 (x0), r/4≤|x−y|≤r/2

|ϕε(x)− ϕε(y)|2
|x− y|n+1

dx dy & Hn−1(Br0/2(x0) ∩ ∂∗E).

5If {Br(xj)}1≤j≤Nr is a maximal disjoint family of balls with xj ∈ Fm ∩Br0/2(x0), then
⋃

1≤j≤Nr
B3r(xj) covers

Fm ∩ Br0/2(x0), and by the definition of Hn−1 (see [2, Section 2.8] or [7, Chapter 3]) we get

Hn−1(Fm ∩Br0/2(x0)) ≤ Cn

Nr∑

j=1

(3r)n−1 = Cn3
n−1

Nr r
n−1

,

where Cn > 0 is a dimensional constant.
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Hence, choosing r = 4−k and letting k vary between ℓ1 := ⌊− log4(
√
ε)⌋+1 and ℓ2 := ⌊− log4(100ε)⌋,

for ε sufficiently small we get

∫

Br0(x0)

∫

Br0 (x0)

|ϕε(x)− ϕε(y)|2
|x− y|n+1

dx dy ≥
ℓ2
∑

k=ℓ1

∫

x,y∈Br0(x0), 4−k/4≤|x−y|≤4−k/2

|ϕε(x)− ϕε(y)|2
|x− y|n+1

dx dy

& (ℓ2 − ℓ1)Hn−1(Br0/2(x0) ∩ ∂∗E)

& | log(ε)|Hn−1(Br0/2(x0) ∩ ∂∗E)

as desired.

Proof of Theorem 1.3. The upper bound in Theorem 1.3 follows from Lemma 2.1, and the lower
bound follows from Lemma 2.2 letting x0 = 0, r0 = 4.

3 The H
1/2 norm expressed in terms of the marginals

Here we show that the H1/2(R2) norm of a function is equal (up to constants) to the average of
the H1(R2) norm of its marginals, and then we prove a localized version of this identity.6 The
arguments in this section are specific to the case n = 2.

Given a smooth rapidly decaying function ϕ : R2 → R, for any θ ∈ [0, π] we define the marginal

wθ(t) :=

∫

R

ϕ
(

Rθ(t, s)
)

ds, (3.1)

where Rθ : R
2 → R

2 denotes the counterclockwise rotation by an angle θ around the origin.

3.1 A global identity

We claim that the norm
∫ π

0

∫

R

|w′
θ|2(t) dt dθ

is equivalent to the H1/2 norm of ϕ.
To prove this, we first compute the Fourier transform of wθ. We denote by eθ := Rθe1 =

(cos θ, sin θ). Then

ŵθ(τ) :=

∫

R

wθ(t)e
itτ dt =

∫

R2

ϕ
(

Rθ(t, s)
)

eitτ dt ds

=

∫

R2

ϕ
(

Rθx
)

eiτe1·x dx =

∫

R2

ϕ(x)ei(τeθ)·x dx = ϕ̂
(

τeθ
)

,

(3.2)

where (by abuse of notation) we used ŵ and ϕ̂ to denote respectively the Fourier transform on R

and on R
2.

6The global identity (3.3) is a well-known fact in the theory of Radon transform, and can be found, for instance,
in the proof of Theorem 5.1 on page 43 of [8]. We thank Sigurdur Helgason for providing us with this reference.

9



Thanks to the formula above and the fact that the Fourier transform is an isometry in L2, we
get (up to a multiplicative constant)

∫ π

0

∫

R

|w′
θ|2(t) dt dθ =

∫ π

0

∫

R

|τ |2|ŵθ|2(τ) dτ dθ =
∫ π

0

∫

R

|τ |2|ϕ̂|2
(

τeθ
)

dτ dθ.

It is now easy to check that the last integral is simply an integration in polar coordinates, so by
setting ξ := τeiθ (so that |τ | = |ξ| and dξ = |τ | dτ dθ) we get

∫ π

0

∫

R

|w′
θ|2(t) dt dθ = c

∫

R2

|ξ| |ϕ̂|2(ξ) dξ = c̄

∫

R2

∫

R2

|ϕ(x)− ϕ(y)|2
|x− y|3 dy dx (3.3)

for some dimensional constant c̄ > 0, which proves the claim.

3.2 A localized identity

Let ψ : R → R be a smooth compactly supported function. By (3.2) and the properties of the
Fourier transform, we have

∫ π

0

∫

R

ψ(t)2|w′
θ|2(t) dt dθ =

∫ π

0

∫

R

∣

∣

∣

∣

∫

R

ψ̂(τ − σ)σϕ̂(σeθ) dσ

∣

∣

∣

∣

2

dτ dθ.

We now notice that, since ϕ̂(seθ) =
∫

R2 ϕ(x)e
−iseθ ·x dx,

∣

∣

∣

∣

∫

R

ψ̂(τ − σ)σϕ̂(σeθ) dσ

∣

∣

∣

∣

2

=

∫ ∫ ∫ ∫

ψ̂(τ − σ)σϕ(x)e−iσeθ ·xψ̂(τ − υ)υϕ(y)eiυeθ ·y dσ dυ dx dy

=

∫ ∫

ϕ(x)ϕ(y)

∫

ψ̂(τ − σ)σe−iσeθ ·x dσ

∫

ψ̂(τ − υ)υe−iυeθ ·y dυ dx dy

=

∫ ∫

ϕ(x)ϕ(y)[eθ · ∇x]

∫

ψ̂(τ − σ)e−iσeθ ·x dσ[eθ · ∇y]

∫

ψ̂(τ − υ)e−iυeθ ·y dυ dx dy

=

∫ ∫

ϕ(x)ϕ(y)[eθ · ∇x][eθ · ∇y]
(

ψ(eθ · x)ψ(eθ · y)e−iτeθ ·(x−y)
)

dx dy.

Hence, integrating this expression with respect to τ and θ we get

∫ π

0

∫

R

ψ(t)2|w′
θ|2(t) dt dθ

=

∫ π

0

∫

R2

∫

R2

ϕ(x)ϕ(y)[eθ · ∇x][eθ · ∇y]
(

ψ(eθ · x)ψ(eθ · y)δ
(

eθ · (x− y)
)

)

dx dy dθ,

(3.4)

where δ(·) denotes the delta measure. We now claim that

∫ π

0

∫

R2

∫

R2

Φ(x)[eθ · ∇x][eθ · ∇y]
(

ψ(eθ · x)ψ(eθ · y)δ
(

eθ · (x− y)
)

)

dx dy dθ = 0 (3.5)
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for any smooth rapidly decaying function Φ. Indeed, the integral above is equal to the limit of
∫ π

0

∫

BR

∫

R2

Φ(x)[eθ · ∇x][eθ · ∇y]
(

ψ(eθ · x)ψ(eθ · y)δ
(

eθ · (x− y)
)

)

dx dy dθ

as R→ ∞, and the latter integral is equal to

−
∫ π

0

∫

R2

[eθ · ∇xΦ(x)]

(

ψ(eθ · x)
∫

∂BR

ψ(eθ · y)δ
(

eθ · (x− y)
)

ν∂BR
(y) · eθ dH1(y)

)

dx dθ.

Next, we have the majorization

∣

∣

∣
ψ(eθ · y) ν∂BR

(y) · eθ
∣

∣

∣
≤ C

R
for R≫ 1

(since ψ is compactly supported, so |ν∂BR
(y) ·eθ| ≤ C/R on the support of ψ(eθ ·y)). Furthermore,

for each θ, ψ(eθ · y) is supported on portion of the circle ∂BR of length O(1). Thus the integral is
O(1/R), and the claim follows.

By exchanging the roles of x and y, we deduce that (3.5) holds also if we replace Φ(x) by Φ(y).
Hence, by (3.5) applied with Φ(x) = ϕ(x)2 and Φ(y) = ϕ(y)2 we deduce that the expression (3.4)
is equal to
∫ π

0

∫

R2

∫

R2

|ϕ(x)− ϕ(y)|2[eθ · ∇x][eθ · ∇y]
(

ψ(eθ · x)ψ(eθ · y)δ
(

eθ · (x− y)
)

)

dx dy dθ

=

∫

R2

∫

R2

|ϕ(x)− ϕ(y)|2
∫ π

0

(

ψ(eθ · x)ψ(eθ · y)δ′′
(

eθ · (x− y)
)

)

dθ dx dy

+

∫

R2

∫

R2

|ϕ(x) − ϕ(y)|2
∫ π

0

(

[

ψ′(eθ · x)ψ(eθ · y) + ψ(eθ · x)ψ′(eθ · y)
]

δ′
(

eθ · (x− y)
)

)

dθ dx dy

+

∫

R2

∫

R2

|ϕ(x) − ϕ(y)|2
∫ π

0

(

ψ′(eθ · x)ψ′(eθ · y)δ
(

eθ · (x− y)
)

)

dθ dx dy.

We now observe that, by the chain-rule,

δ′
(

eθ · (x− y)
)

=
∂θδ

(

eθ · (x− y)
)

e⊥θ · (y − x)
,

δ′′
(

eθ · (x− y)
)

=
∂θθδ

(

eθ · (x− y)
)

(

e⊥θ · (y − x)
)2 +

∂θδ
(

eθ · (x− y)
)

(

e⊥θ · (y − x)
)(

eθ · (y − x)
) .

Hence, if we integrate by parts in θ so that no derivatives fall onto δ
(

eθ · (x− y)
)

, we get that there

is only one term with
(

eθ ·(x−y)
)−2

, and all the others are smooth functions of θ in a neighborhood

of the support of δ
(

eθ · (x− y)
)

multiplied at most by
(

eθ · (x− y)
)−1

, namely

∫ π

0
[eθ · ∇x][eθ · ∇y]

(

ψ(eθ · x)ψ(eθ · y)δ
(

eθ · (x− y)
)

)

dθ =

∫ π

0

ψ(eθ · x)ψ(eθ · y)
(

eθ · (x− y)
)2 δ

(

eθ · (x− y)
)

dθ

+

∫ π

0

Ψ(θ, x, y)
(

eθ · (x− y)
)δ

(

eθ · (x− y)
)

dθ,

11



where, for any x 6= y, Ψ(θ, x, y) is a smooth function of θ when eθ is almost orthogonal to (x− y)
(that is, near the support of δ

(

eθ · (x− y)
)

). Hence, since δ
(

eθ · (x− y)
)

is a distribution which is
homogeneous of degree −1, we deduce that

∣

∣

∣

∣

∫ π

0

Ψ(θ, x, y)
(

eθ · (x− y)
)δ

(

eθ · (x− y)
)

dθ

∣

∣

∣

∣

≤ C

|x− y|2 ,

and we obtain
∫ π

0

∫

R

ψ(t)2|w′
θ|2(t) dt dθ

=

∫

R2

∫

R2

|ϕ(x) − ϕ(y)|2
∫ π

0

ψ(eθ · x)ψ(eθ · y)
(

eθ · (x− y)
)2 δ

(

eθ · (x− y)
)

dθ

+

∫

R2

∫

R2

|ϕ(x) − ϕ(y)|2O(|x− y|−2) dx dy.

We now observe that, being the expression inside the first integral positive (because ψ(eθ ·x)ψ(eθ ·
y)δ

(

eθ · (x − y)
)

= ψ(eθ · x)2δ
(

eθ · (x − y)
)

), it decreases if we localize it with a cut-off function
χ(x)χ(y). In particular, if the support of χ(x)χ(y) is contained inside the one of ψ(eθ · x)ψ(eθ · y)
for any θ ∈ [0, π], since7

∫ π

0

1
(

eθ · (x− y)
)2 δ

(

eθ · (x− y)
)

dθ =
ĉ

|x− y|3 , ĉ > 0,

we get
∫ π

0

∫

R

ψ(t)2|w′
θ|2(t) dt dθ ≥ ĉ

∫

R2

∫

R2

|ϕ(x)− ϕ(y)|2
|x− y|3 χ(x)χ(y) dx dy

− C

∫

R2

∫

R2

|ϕ(x)− ϕ(y)|2
|x− y|2 dx dy

(3.6)

for any χ : Rn → [0, 1] whose support is contained inside the one of ψ(eθ · x) for any θ ∈ [0, π].

4 Proof of Theorem 1.1

We first prove the result when n = 2.
Let ϕε := 1E ∗ γ2,ε, and let wθ and wθ,ε denote respectively the marginals of 1E and of ϕε

(see (3.1)). Because Gaussian densities tensorize, it is immediate to check that they commute with
marginals, so the following identity holds:

wθ,ε = wθ ∗ γ1,ε.

By (3.3) and Lemma 2.1 we see that

1

| log(ε)|

∫ π

0

∫

R

|w′
θ,ε|2(t) dt dθ =

c̄

| log(ε)|

∫

R2

∫

R2

|ϕε(x)− ϕε(y)|2
|x− y|3 dx dy ≤ C,

7One way to prove this identity is to observe that
∫ π

0
1

(eθ ·(x−y))2
δ (eθ · (x− y)) dθ is homogeneous of degree −3

in x− y, it is invariant under rotations, and it is positive on positive functions.
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so the measures

νε(dt, dθ) :=
|w′

θ,ε|2(t)
| log(ε)| dt dθ, µε(dx, dy) :=

1

| log(ε)|
|ϕε(x)− ϕε(y)|2

|x− y|3 dx dy

are equibounded and they weakly converge (up to a subsequence) to measures ν(dt, dθ) and
µ(dx, dy).

Since |ϕε(x)−ϕε(y)|2

| log(ε)| → 0 as ε→ 0, it follows that the measure µ is concentrated on the diagonal

{x = y}.
Concerning ν, let us denote by (aθ, bθ) the interval {wθ > 0}, and observe that, thanks to our

assumption, there exists a constant C̄δ > 0 such that |w′
θ,ε| ≤ C̄δ inside [aθ + δ, bθ − δ] for all δ > 0,

uniformly in ε and θ. Hence, by integrating νε against a test function f(θ, t) which is zero in a
neighborhood of

S :=
⋃

θ∈[0,π]

{aθ, bθ} × {θ} ⊂ R× [0, π]

and letting ε→ 0 we get
∫

f(t, θ) ν(dt, dθ) = 0,

and by the arbitrariness of f we deduce that ν is concentrated on the closure of S.
We now make the following observation: in (3.6) we have related the local H1/2 norm of ϕ to

another norm which depends only on the marginals of ϕ (up to the lower order term on the second
line of the formula, which anyhow will vanishes when we take ϕ = ϕε and let ε→ 0). The key fact
is that the choice of the origin is completely arbitrary. So, we argue as follows.

Replace E by E(1), the set of its density one points, i.e.,

E(1) :=

{

x ∈ R
n : lim

r→0

|E ∩Br(x)|
|Br|

= 1

}

,

and define C as the convex hull of E(1). If E(1) is not convex, then we can find a point x0 ∈ ∂∗E \∂C
which belongs to the interior of C. Let us fix a system of coordinates so that x0 is the origin. With
this choice, for any θ ∈ [0, π] the set (aθ, bθ) = {wθ > 0} coincides with the projection of C onto
the line in the direction of eθ. This shows that the set S defined above is closed, and because x0
belongs to the interior of C there exists a small constant ρ > 0 such that

[−2ρ, 2ρ] ⊂ (aθ, bθ) ∀ θ ∈ [0, π].

Let us take a cut-off function ψ(t) supported inside [−ρ, ρ], and then choose a cut-off function
0 ≤ χ ≤ 1 such that the support of χ(x)χ(y) is contained inside the one of ψ(eθ ·x)ψ(eθ · y) for any
θ ∈ [0, π], and χ = 1 inside Br0(x0) for some small r0. Then, since ν is concentrated on S, by (3.6)
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applied to wθ,ε and ϕε, Lemma 2.2, (2.1), and the fact that µ is concentrated on {x = y}, we get

0 =

∫ π

0

∫

R

ψ(t)2ν(dt, dθ)

≥ lim inf
ε→0

ĉ

| log(ε)|

∫

Br0 (x0)

∫

Br0 (x0)

|ϕε(x)− ϕε(y)|2
|x− y|3 dx dy

− C

| log(ε)|

∫

R2

∫

R2

|ϕε(x)− ϕε(y)|2
|x− y|2 dx dy

& rn−1
0 − C

∫

R2

∫

R2

|x− y|µ(dx, dy) = rn−1
0 > 0

a contradiction which concludes the proof in the two dimensional case.

For the general case we argue as follows: let π ⊂ R
n be a two dimensional plane passing through

the origin, and for any e ∈ S
n−1 ∩ π consider the projection of E onto the hyperplane e⊥. The

hypothesis on E implies that, if we slice E with some translate πv := π + v (v ∈ R
n) of π, by the

slicing formula (see for instance [7, Theorem 18.11 and Remark 18.13]) the set E ∩πv ⊂ πv ≃ R
2 is

a bounded set of finite perimeter for Hn-a.e. v ∈ R
n. In addition, E ∩ πv satisfies the assumptions

of our theorem with n = 2. Hence, by what we proved above, E ∩ πv coincides with a convex set
up to a set of H2-measure zero.

We now show that E(1) is convex. Fix x, y ∈ E(1) and t ∈ (0, 1), and pick a plane π such that
x− y ∈ π. By the discussion above we deduce that, for Hn-a.e. v ∈ Br(y),

E ∩ πv is equal to a convex set up to a set of H2-measure zero.

Hence, by Fubini’s Theorem we obtain the following: for Hn-a.e. v ∈ Br(y), for H2-a.e. z ∈
Br(y) ∩ E ∩ (E − (x− y)) ∩ πv, the set

[z, z + (x− y)] ∩ E is equal to a segment up to a set of H1-measure zero

(here we use [z, z + (x − y)] to denote the segment from z to z + (x − y)). From this fact and
Fubini’s theorem (again), it follows that

H1
((

[z, z+(x−y)]∩Br(tx+(1− t)y)
)

\E
)

= 0 for Hn-a.e. z ∈ Br(y) ∩ E ∩ (E − (x− y)).
(4.1)

Since both x, y ∈ E(1) we see that

lim inf
r→0

|Br(y) ∩E ∩ (E − (x− y))|
|Br|

≥ 1− lim
r→0

|Br(y) \ E|
|Br|

− lim
r→0

|Br(x) \ E|
|Br|

= 1,

so it follows from (4.1) that

lim
r→0

|Br(tx+ (1− t)y) \ E|
|Br|

= 0,

proving that tx + (1 − t)y ∈ E(1). By the arbitrariness of x, y, t we deduce that E(1) is convex,
concluding the proof.
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