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Abstract. In this paper we complete the work started with [29], in which the present
paper was announced, in order to set a unified theory of the irrigation problem. In
particular, we show the equivalence of the various formulations introduced so far as
well as a new one introduced here. Moreover we formalize several geometric and
analytical concepts which play an important role in the theory and may deserve an
intrinsic interest in themselves.
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1. Introduction

In recent years Optimal Transportation Theory has become an active area of interest
and it has reached deep results involving different branches of mathematical analysis
(see the seminal works [26], [31], [36], the more recent [1], [2], [18], [19], [23] and the
comprehensive books [39], [40]). In this context, starting from [37], [27], a variant of
the Monge-Kantorovitch transport problem leading to variational models describing
ramified structures has been investigated. The starting point in this theory relies on
the concavity properties of the model function cost |x|α, involved in the functionals,
with 0 < α < 1. The first idea in this direction is due to Gilbert ([24], [25]) and in [37]
a continuous version of this problem is studied in the framework of geometric measure
theory, i.e. the minimization problem for a functional defined on flat chains while in
[27] the proposed functional is defined on families of curves parametrized on a set Ω
equipped with a probability measure or, equivalently, as remarked in [3] and [5] where
other formulations have been proposed, for measures defined on a space of curves.
Many papers concerned with one of the previous formalization of the problem ([3], [4],
[5],[6]) contain results which cannot be directly applied to the other contexts, although
they can almost always be adapted with a minor effort. In this situation, one obviously
feels the necessity of establishing a general enough theory to cast the various results in
a common and unified setting.
The aim of this paper relies in establishing such a general theory for irrigation problems
completing the first step achieved in [29], in which we promised to answer completely
the question of the equivalence of the approaches in [27], [3] and in [24], [37], in the
present work.
To this aim it is necessary to establish some orderings and equivalences between particle
motions (see Definition 2.2 below). Some of these relations are deduced from analo-
gous concepts regarding orbits and this leads us to deal with the general problem of
transferring binary relations from a points set to the corresponding space of probability
measures (this is achieved in Subsection 3.1). We will consider other relations which
are connected to the notion of density. Subsequently, we will introduce the irrigation
problem in its various formulations and we will establish some geometrical properties
in the same spirit of [15] (in Subsection 4.5 we introduce the flow order which is crucial
to study the no-cycle property). Finally we will show the equivalence of the various
irrigation models.
Some of the concepts introduced here have been considered by other authors using the
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same name and different but substantially equivalent definitions. We have preferred to
make the paper self-contained rather than using previously established results, indeed
in some cases these would not directly apply to our context. Some general properties,
more or less available in literature, such as the inversion of the integration order in
spaces with a non σ-finite measure, which we have employed in the paper and which
seem useful for understanding some concepts, have been grouped for the reader’s con-
venience in an articulated appendix.

2. Preliminary results and main notation

2.1. Measure theoretic tools. Let X be a Polish space, we denote by P(X) the
space of the probability measures defined on X (see [14]). Moreover, we denote by
Π(µ, ν) ⊂ P(X × Y ) the set of the probability measures on X × Y with marginals µ
and ν, that is, for π ∈ Π(µ, ν), we have p0

#π = µ, p1
#π = ν, where p0 : (x, y) 7→ x and

p1 : (x, y) 7→ y are the projections. A measure π ∈ Π(µ, ν) is called a transport plan
and Π(µ, ν) is the set of the transport plans between µ and ν.
Let us recall that, by applying Skorokhod convergence Theorem (see [14, Theorem
11.7.5], [5, Theorem A.8]) to a constant sequence of probability measures, one can
deduce that any probability measure can be parametrized on any probability space
endowed with a non-atomic measure, i.e. µ = f#µΩ, where µ ∈ P(X), f : Ω → X
and (Ω, µΩ) is a non-atomic probability space. We shall refer to the mapping f as to
a lagrangian parametrization of µ on the reference space Ω.

Let X be a Polish space and let Cb(X) be the space of bounded and continuous
real-valued functions defined on X. B(RN) denotes the set of the Borel subsets of RN .

Definition 2.1. A sequence (νn)n∈N in P(X) is narrowly convergent to ν ∈ P(X), in
symbols νn ⇀ ν, if

lim
n→∞

∫
X

fdνn =

∫
X

fdν ∀f ∈ Cb(X).

Let Γ be the space of the orbits, i.e. absolutely continuous maps γ : I → RN

defined on a generic interval I ⊂ R, equipped with the topology of the locally uniform
convergence and let Γc be the subspace of Γ constituted by the orbits defined on a
compact interval I. Sometimes we will use the symbol ΓI instead of Γ to the aim of
distinguishing the interval I.

Let us recall the notion of microscopic motion introduced in [29].

Definition 2.2. Let Σ = P(Γ) be the space of probability measures on Γ, we shall call
microscopic motion or, equivalently, particle motion any σ ∈ Σ.

For every t ∈ I, let pt : ΓI → X be given by pt(γ) = γ(t) and let σ ∈ P(ΓI) be a
given microscopic motion. Then for every t ∈ I, by setting

σ̃(t) = (pt)#σ, (2.1)
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we get the macroscopic motion σ̃ : I → P(X) induced by the particle motion σ. When
no confusion is possible we shall write, with a clear abuse of notation, σ instead of σ̃
also to denote the macroscopic motion induced by σ, as for instance in the following
definition.

Definition 2.3. Let µ, ν ∈ P(X) be two given measures. We shall say that σ ∈ Σ is
an admissible motion between µ and ν on the interval I = [a, b] if σ(a) = µ, σ(b) = ν.
Let ΣI(µ, ν) denote the set of the admissible σ and Σ(µ, ν) be the union of ΣI(µ, ν) for
all the closed bounded intervals I ⊂ R.

We can obtain a lagrangian parametrization of σ ∈ Σ by using a measurable map
χ̂ : Ω → Γ. Actually, assigning χ̂ is equivalent to give a measurable map χ : Ω× I →
χ(p, t) ∈ X such that for a.e. material point p ∈ Ω, χp : t 7→ χ(p, t) is absolutely
continuous. Indeed, χ is induced by χ̂ by setting χ(p, t) = [χ̂(p)](t) and, conversely, χ̂
is induced by χ as the map from Ω to Γ defined by χ̂ : p→ χp. Then we shall say that
χ : Ω× I → RN is a lagrangian parametrization of σ if

σ = χ̂#µΩ. (2.2)

If χ : Ω × I → RN is a lagrangian parameterization of σ, Ω′ ⊂ Ω and I ′ ⊂ I, the
restriction of χ to Ω′× I ′, denoted by χ|Ω′×I′

, induces the particle motion σ′ which will
be called a sub-motion of σ.

Let (Ω, µ) be any measure space, we shall often use the symbol
∫

(Ω,µ)
f(x)dx with

the same meaning of the more usual
∫

Ω
f(x)dµ(x).

2.2. Truncations and restrictions. If σ ∈ ΣI is given, let τ : Γ → I be a σ-
measurable function, which in the sequel will be called a truncation mapping. Given
γ ∈ ΓI , we consider the two complementary truncations γ1 (left truncation), γ2 (right
truncation), defined as follows.

γ1(t) =

{
γ(t) if t ≤ τ(γ)
γ(τ) if t > τ(γ),

(2.3)

γ2(t) =

{
γ(τ) if t < τ(γ)
γ(t) if t ≥ τ(γ).

(2.4)

Moreover, for any γ ∈ Γ such that τ(γ) ∈ I, we set bτ (γ) = γ(τ(γ)), which will be
called breaking point. For any given truncation mapping τ : Γ → R, we set

piτ (γ) = γi, i = 1, 2. (2.5)

It is readily seen that the mappings piτ : Γ → Γ are Borel measurable. Then, given a
particle motion σ, the measures

σi = (piτ )#σ, i = 1, 2, (2.6)
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will be called complementary truncations of σ. The previous operation can be iterated,
leading to multiple complementary truncations. Indeed, if for instance two truncation
mappings τ1 ≤ τ2 are given, we can split a particle motion σ into the three comple-
mentary truncations σ1, σ2 and σ3 consecutively operating with the two truncation
mappings.

If σ ∈ Σ is a microscopic motion, we can consider the restriction σs of σ to the
constant orbits {γ ∈ Γ | γ(t) = const. ∀t ∈ I} and set σm = σ − σs as the restriction
of σ to the non constant orbits. With this notation we can split σ as

σ = σs + σm. (2.7)

3. General tools

3.1. Extension of binary relations to probability measures. In this section we
shall be concerned with the extension of binary relations defined between a pair of
Polish spaces X, Y to the spaces of probability measures P(X),P(Y ). Notice that
any space X can be considered as a subspace of P(X) through the identification of a
generic point x with the Dirac measure δx. Therefore any binary relation on a pair
of measure spaces P(X), P(Y ) trivially induces a relation between X and Y by a
restriction. So, when a relation between P(X) and P(Y ) is given, we shall use it,
with the same symbol, also as a relation between X and Y . On the other hand, the
pointwise extension of a relation from points to measures spaces will be introduced in
this section, as specified in the following definition.

Definition 3.1. (Pointwise extension of relations) Let R ⊂ X × Y , µ ∈ P(X), ν ∈
P(Y ) be given. We say that µR̃ν if there exists π ∈ Π(µ, ν) concentrated on R.

According to the previous definition, we shall say that any binary relationR ⊂ X×Y
induces a relation R̃ on the probability measures on such spaces.

Remark 3.2. It is easily seen that R̃ is a real extension ofR in the sense that restricted
to pair of points (identified with Dirac masses) agrees with R. On the contrary, if we
pointwise extend to a pair of measure spaces the restriction to the points of a given

relation R, defined between P(X) and P(Y ), we obtain a relation R̃ which can be
different from R. We shall widely see in the following (see, for instance, Theorem 3.62

below) meaningful examples in which one of the two inclusions R ⊂ R̃ or R̃ ⊂ R holds
true.

Remark 3.3. It is readily seen that the following properties hold true.

µ1R̃ν1 and µ2R̃ν2 =⇒ (t1µ1 + t2µ2)R̃(t1ν1 + t2ν2) ∀t1, t2 ∈ R; (3.8)

R1 ⊂ R2 =⇒ R̃1 ⊂ R̃2. (3.9)
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Proposition 3.4. Let R ⊂ X × Y , µ ∈ P(X), ν ∈ P(Y ) be given and let (Ω, µΩ) be a
given reference space. Then µRν if and only if there exist two lagrangian parameteri-
zations f : Ω → X and g : Ω → Y of µ and ν respectively such that for µΩ-a.e. p ∈ Ω
(f(p), g(p)) ∈ R, i.e. f(p)Rg(p).

Proof. Assume there exist f, g as above, then we take the map k : Ω → X × Y such
that k(p) = (f(p), g(p)) for a.e. p ∈ Ω. So let π = k#µΩ. To prove the converse
implication, let π ∈ Π(µ, ν) be concentrated on R and let k : Ω → X × Y be a
lagrangian parametrization of π on Ω, k = (k1, k2). Then we take f = k1 and g = k2.
Since π is concentrated on R then for µΩ-a.e. p ∈ Ω f(p)Rg(p). �

Let (Xn)n∈N be a sequence of Polish spaces, for every n let Rn ⊂ Xn×Xn+1 be given
and let X =

∏
i∈NXi. Let pn, pn,m be the projection operators defined on X by

pn : (x1, . . . , xn, . . .) 7→ xn ∈ Xn, pn,m : (x1, . . . , xn, . . .) 7→ (xn, xm) ∈ Xn ×Xm.

A sequence of transport plans π̃ = (π1, π2, . . . , πn, . . .) ∈ P(X1 ×X2)× P(X2 ×X3)×
. . .P(Xn ×Xn+1)× . . . will be said a compatible chain if, for every i ∈ N \ 0, p1

#(πi) =

p0
#(πi+1). Let us recall that a multiple plan (see [2],[29]) is a measure π ∈ P(X).
By [2, Lemma 5.3.4], given any compatible chain of transport plans (π1, π2, . . . , πk, . . .),

there exists a multiple plan π ∈ P(X) such that for every n ∈ N pn,n+1
# π = πn ∈

Π(µn, µn+1), where the measures µn are the marginals of π, i.e. µn = pn#π.
By keeping this notation we state the next assertion which extends Proposition 3.4.

Proposition 3.5. Let (µn)n∈N be a sequence of measures such that for every n ∈ N
µnRnµn+1 for a given (Rn)n∈N. Then for any given reference space (Ω, µΩ) there exists
a sequence (fn)n∈N of lagrangian parameterizations of the measures (µn)n∈N such that
for every n ∈ N and for µΩ-a.e. p ∈ Ω we have fn(p)Rnfn+1(p).

Proof. Since, for every n, µnRnµn+1, by Definition 3.1 there exists a transport plan
πn ∈ Π(µn, µn+1) concentrated on Rn. By virtue of the above mentioned [2, Lemma
5.3.4] we take a multiple plan π ∈ P(X) such that, for every n ∈ N \ 0, pn,n+1

# π = πn,
then we take a lagrangian parametrization of π on Ω denoted by k and for every natural
n we set fn = pn ◦ k. It is easy to see that (fn)n∈N is as required. �

Remark 3.6. The construction in the previous proof also says that ∀n ∈ N (fn, fn+1)
is a parameterization of the transport plan πn. If anyone of these transport plans is
assigned, then such an information is a meaningful completion of the thesis.

Lemma 3.7. Let (πn)n∈N be a sequence of multiple plans in P(X) such that the se-
quences of marginals (pi#πn)n∈N are compact. Then (πn)n∈N has a narrowly converging
subsequence.

Proof. For every i, let µin = pi#πn. Since (µin)n∈N is compact, by applying Prokhorov
Theorem ([2, Theorem 6.1.1]) we know that, for every ε > 0, there exists a compact
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set Ci ⊂ Xi such that µin(Xi \ Ci) < ε
2i for every n ∈ N. Now, for every i we set

Ai =
∏

j Yj, with Yj = Xj if j 6= i and Yj = Xi \ Ci if j = i. Then, for every n and

for every i, we have πn(Ai) = µin(Xi \ Ci) < ε
2i . We set C =

∏
iCi. C is compact and

X \ C =
⋃
iAi. Therefore we get that, for every n ∈ N, πn(X \ C) < ε and thus, by

applying again Prokhorov Theorem, we get the thesis. �

Proposition 3.8. For every n ∈ N let µ1
nR̃1

nµ
2
nR̃2

nµ
3
n . . . R̃k−1

n µkn . . . be a sequence of

measures in the spaces P(X1), . . . ,P(Xk), . . . and related by Ri
n ⊂ Xi × Xi+1. We

suppose that µin ⇀ µi for every i ∈ N. Then, by passing to a subsequence, there exist
lagrangian parameterizations (f in)n∈N of the measures (µin)n∈N and f i of the measure
µi such that, for every i, f in → f i a.e. and for every n and for every i: f in(p)Ri

nf
i+1
n (p)

for a.e. p.

Proof. For every n ∈ N, by virtue of [2, Lemma 5.3.4] we take a multiple plan
πn ∈ P(X) such that, for every i, pi,i+1

# πn ∈ Π(µin, µ
i+1
n ) is concentrated on Ri

n. By
Lemma 3.7 we have that, by passing to a subsequence, πn ⇀ π. By Skorohod Theorem
there exist (ϕn)n∈N and ϕ, which are lagrangian parameterizations of (πn)n∈N and π
respectively, such that ϕn → ϕ a.e.. By taking, ∀n ∈ N f in = pi ◦ ϕn and f i = pi ◦ ϕ,
we get the thesis. �

Now we study some properties of the extension to probability measures of orderings.
Firstly we observe that the antisymmetry property alone does not pass to the extension
to probability measures, while it is preserved for closed relations when the transitivity
property also holds, as we shall see later.

Example 3.9. Let A = {p1, p2, p3}. We consider the following (cyclic order) relation

R = {(p1, p2), (p2, p3), (p3, p1), (p1, p1), (p2, p2), (p3, p3)},
which is antisymmetric. Let

µ1 =
1

2
δp1 +

1

2
δp2 , µ2 =

1

2
δp1 +

1

2
δp3 .

We have that µ1R̃µ2 by taking π ∈ Π(µ1, µ2) defined by π = 1
2
(δp1⊗ δp1)+ 1

2
(δp2⊗ δp3).

Moreover, we have that µ2R̃µ1 by taking π = 1
2
(δp3 ⊗ δp1) + 1

2
(δp1 ⊗ δp2) ∈ Π(µ2, µ1).

Thus {(µ1, µ2), (µ2, µ1)} ⊂ R̃ and so R̃ is not antisymmetric.

Proposition 3.10. Let R ⊂ X × Y be closed. Then R̃ is closed with respect to the
narrow convergence.

Proof. Let (µn)n∈N ⊂ P(X) and (νn)n∈N ⊂ P(Y ) be two sequences such that ∀n ∈ N
µnR̃νn. Let us suppose that µn ⇀ µ and νn ⇀ ν narrowly. By Lemma 3.7 we know
that there exists πn ∈ Π(µn, νn), concentrated on R, which has a narrowly converging
subsequence to some π ∈ Π(µ, ν). Moreover, πn being concentrated on the closed set
R, we can conclude that also π is concentrated on R and so µR̃ν. �



IRRIGATION PROBLEMS 8

Proposition 3.11. Let R ⊂ X × Y be transitive. Then R̃ is transitive.

Proof. Let µ1R̃µ2 and µ2R̃µ3. Then there exist π1 ∈ Π(µ1, µ2) and π2 ∈ Π(µ2, µ3) both
concentrated on R. Since R is transitive, the composition π3 = π1⊗π2 is concentrated
on R (see [29, Section 1.2]) and so we get µ1R̃µ3. �

Definition 3.12. Let X be a Polish space and let ≤ be a given ordering. We shall say
that ≤ is compatible with the topology of X if it is closed and satisfies the condition

If for every n ∈ N xn ≤ zn ≤ yn and limnxn = limnyn = z then zn → z. (3.10)

Proposition 3.13. Let X be a Polish space and let ≤ be a closed ordering. If (xn)n∈N
is any monotone increasing sequence with respect to ≤, that is, for every n, xn ≤ xn+1,
and xn → x, then x = supn xn.

Proof. For every fixed n ∈ N and for any large m ∈ N we have xn ≤ xm, then by
passing to the limit with respect to m we get, by the closeness of the ordering, xn ≤ x
for every n ∈ N. So x is an upper bound. Moreover, if for every n ∈ N xn ≤ y, by
passing to the limit, we get x ≤ y. Thus x is the least upper bound of the sequence
and the thesis follows. �

Theorem 3.14. Let π ∈ P(X ×X) be concentrated on a closed transitive relation R
and such that p0

#π = p1
#π. Then π is concentrated on R∩R−1.

Proof. Let us suppose that π is not concentrated on R−1. In such a case, since X is
a Polish space (so it has a countable basis) there exists z̄ ∈ R \ R−1 such that every
neighborhood W of z̄ has a positive measure π(W ) > 0. By the closeness of R−1 we
can choose W = W1 ×W2 such that W1 ∩W2 = ∅ and W ∩R−1 = ∅ and, by applying
Ulam Theorem ([14, Theorem 7.1.4]), we can find two compact sets U, V ⊂ X such
that U × V ⊂ W and π(U × V ) > 0. Let Ṽ = V ∪ R(V ) be the stable part with
respect to R generated by V . Since U ∩ V ⊂ W1 ∩W2 = ∅ and (U × V ) ∩ R−1 = ∅,
we get U ∩ Ṽ = ∅. Since V is compact and R is closed then Ṽ is closed and therefore
measurable. We deduce

(p1
#π)(Ṽ ) = π(X × Ṽ ) ≥ π(U × Ṽ ) + π(Ṽ × Ṽ ) > π(Ṽ × Ṽ ), (3.11)

since π(U × Ṽ ) ≥ π(U × V ) > 0. On the other hand,

π(Ṽ × Ṽ ) = π(Ṽ ×X)− π(Ṽ × (X \ Ṽ )).

Now π(Ṽ × (X \ Ṽ ) = 0, since π is concentrated on the transitive relation R which has

empty intersection with
(
Ṽ × (X \ Ṽ )

)
because R(Ṽ ) ⊂ Ṽ . Then we get

π(Ṽ × Ṽ ) = (p0
#π)(Ṽ ),

in contradiction to (3.11) since we have assumed p0
#π = p1

#π. �



IRRIGATION PROBLEMS 9

Let f, g : Ω → X, we shall say that fRg if f(p)Rg(p) for µΩ-a.e. p ∈ Ω. In the next
statement, let R be as in the previous theorem.

Corollary 3.15. Let f, g : Ω → X be two lagrangian parameterizations of µ ∈ P(X)
such that fRg for a given closed transitive relation R. Then f(p)R−1g(p) for µΩ-a.e.
p ∈ Ω.

Proof. Just apply Theorem 3.14 to the transport plan (f, g)#µΩ. �

Corollary 3.16. Let π ∈ P(X ×X) be concentrated on a closed transitive relation R
and such that p1

#πR̃p0
#π. Then π is concentrated on R∩R−1.

Proof. Let µ = p0
#π, ν = p1

#π. By Proposition 3.5 and Remark 3.6 let f, h, g : Ω → X
be three lagrangian parameterizations such that f#µΩ = h#µΩ = µ, g#µΩ = ν, satis-
fying fRg, gRh and such that (f, g) is a parameterization of π. Then, by transitivity,
fRh holds so, by Corollary 3.15 (f, h) ∈ R−1 and, by transitivity, (g, f) ∈ R i.e.
(f, g) ∈ R ∩R−1. Since (f, g) parametrizes π we get the thesis. �

Corollary 3.17. Let R ⊂ X × X be a closed transitive relation. Then R̃ ∩ R−1 =
R̃ ∩ R̃−1.

Proof. Let (µ, ν) ∈ R̃ ∩ R̃−1 and let π be a transport plan concentrated on R such
that p0

#π = µ, p1
#π = ν. Then by Corollary 3.16 π is concentrated on R∩R−1 and so

(µ, ν) ∈ ˜R∩ R−1. This proves one of the inclusions, the other one trivially follows by
(3.9). �

Proposition 3.18. Let ≤ be a closed ordering in X ×X, then its extension to proba-
bility measures is a closed ordering with respect to the narrow convergence topology.

Proof. By Proposition 3.10 and Proposition 3.11 we just have to prove that the ex-
tended ≤ remains antisymmetric. This last property trivially follows from Corol-
lary 3.17. �

Proposition 3.19. Let ≤ be a compatible ordering with the topology of X. Then its
extension to the probability measures is a compatible ordering with the narrow conver-
gence topology of P(X).

Proof. We are going to prove (3.10) for the extension of the ordering to the probability
measures. Let us suppose that λn ≤ νn ≤ µn for every n ∈ N and that λn, µn ⇀ µ.
Using Lemma 3.8, for every n ∈ N we find fn, gn, hn which are respectively lagrangian
parameterizations of λn, µn, νn, satisfying fn ≤ gn ≤ hn and such that fn → f , hn → h,
where f and h are both lagrangian parameterizations of µ. By passing to the limit
as n → ∞ we get f ≤ h and by applying Corollary 3.15 we get f(p) = h(p) for
µΩ-a.e. p. Then for µΩ-a.e. p the sequences fn(p) and hn(p) both converge to f(p)
and, since for every n fn(p) ≤ gn(p) ≤ hn(p), by (3.10) we get gn(p) → f(p) for
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µΩ-a.e. p. By applying Skorohod Theorem ([14, Theorem 11.7.2]) we finally obtain
νn = gn#

µΩ ⇀ f#µΩ = µ. �

3.2. Density functions and tracks. We shall denote by # the counting measure
and by 1A the characteristic function of the set A.

Definition 3.20. For every γ ∈ ΓI and for H1 a.e. x ∈ RN we define the multiplicity
function

mγ(x) = # {t ∈ I | γ(t) = x}
and the affiliation function aγ(x) = 1γ(I)(x) = inf(mγ(x), 1).

Let us introduce the following set

Γ0 = {γ ∈ Γ | mγ < +∞, H1− a.e.}. (3.12)

We shall often work with curves γ ∈ Γ0. Many times this fact will not represent a real
restriction. Indeed, since absolutely continuous curves defined on a compact interval
have a finite total length, by the Area Formula [21, Theorem 3.2.6] we have

Γc ⊂ Γ0. (3.13)

So in particular every γ ∈ Γ is locally in Γ0.

Theorem 3.21. The mapping (γ, x) 7→ mγ(x) is a Borel measurable function on Γ×
RN .

Proof. Let δ > 0 be fixed and let T ⊂ I be a given compact subset. For any given
γ ∈ ΓI and x ∈ RN we define

Sδ,T (γ, x) = {X ⊂ γ−1(x) ∩ T | ∀y, z ∈ X, y 6= z : |y − z| ≥ δ},

mδ,T (γ, x) = sup
X∈Sδ,T (γ,x)

#X.

Then we have mγ(x) = supδ,T mδ,T (γ, x). We claim that for every δ, T , the mapping
(γ, x) 7→ mδ,T (γ, x) is upper semicontinuous in the product topology. Indeed, let
(γ̄, x̄) ∈ Γ × RN and k ≤ lim sup(γ,x)→(γ̄,x̄)mδ,T (γ, x). We choose a sequence (γn, xn)
such that (γn, xn) → (γ̄, x̄) and mδ,T (γn, xn) ≥ k. Notice that for every n ∈ N there
exists Xn = {t1n, . . . , tkn} ⊂ T such that |tin − tjn| ≥ δ for every i 6= j and xn = γn(t

i
n)

for every i = 1, . . . , k. Since T is a compact set, by passing (k times) to subsequences
we get, for every i, tin → ti ∈ T . By definition of locally uniform convergence we have
γn(t

i
n) → γ̄(ti), that is xn → γ̄(ti) and, since xn → x̄, we get γ̄(ti) = x̄. If i 6= j by

passing to the limit we also have |ti − tj| ≥ δ. Then we obtain mδ,T (γ̄, x̄) ≥ k and
so mδ,T is upper semicontinuous and therefore measurable. Finally, the multiplicity
function turns out to be the supremum of a countable family of measurable functions
mδ,T and so it is measurable. �
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Notice that, since aγ = inf{mγ, 1}, aγ is also measurable. Let σ ∈ Σ be given, we
introduce the following functions

mσ(x) =

∫
(Γ,σ)

mγ(x) dγ, (3.14)

aσ(x) =

∫
(Γ,σ)

aγ(x) dγ. (3.15)

Obviously by the above definition we have aσ(x) = σ({γ ∈ Γ | x ∈ γ(I)}).

Remark 3.22. Let us observe that, by the linearity of the integral with respect to
the measure, if σ = λ1σ1 + λ2σ2, by (3.14) (3.15) we have mσ = λ1mσ1 + λ2mσ2 and
aσ = λ1aσ1 + λ2aσ2.

Definition 3.23. (Track) Let σ ∈ Σ be given. We shall say that T ⊂ RN is a track of
σ if H1(γ(I) \ T ) = 0 for σ-a.e. γ ∈ Γ.

We observe that (unless σ is concentrated on constant orbits) the set of the tracks is a
filter. In particular, if T1 and T2 are two tracks of σ, then T1 ∩ T2 is a track of σ too.

Definition 3.24. (Non-spread particle motions) We shall say that σ ∈ Σ is a non-
spread particle motion if there exists a H1 σ-finite track of σ.

We set

Σ0 = {σ ∈ Σ | σ non-spread,mσ < +∞ H1−a.e.}. (3.16)

Note that the condition mσ < +∞ H1−a.e. in the above definition holds on the
whole RN . The following proposition shows, in particular, that we just need to check
it on any track.

Proposition 3.25. Let σ ∈ Σ be given and let T be a Borel track for σ. Then mσ(x) =
0 for H1 a.e. x ∈ RN \ T .

Proof. By Definition 3.23 and by Integration Order Inequality (Theorem B.5), we com-
pute ∫

RN\T
mσ(x)dH1 =

∫
RN\T

(∫
(Γ,σ)

mγ(x)dγ

)
dH1

≤
∫

(Γ,σ)

(∫
RN\T

mγ(x)dH1

)
dγ = 0.

�

Proposition 3.26. If σ ∈ Σ0 then σ is concentrated on Γ0.
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Proof. Since σ is a non-spread particle motion it admits a track T =
⋃
n Tn with

H1(Tn) < +∞, Tn ⊂ Tn+1 ∀n ∈ N. Observe that for H1-a.e. x̄ ∈ T there is m ∈ N
and k ∈ R so that x̄ ∈ Tm and mσ(x̄) ≤ k. Let n = max{m, k}, x̄ ∈ Sn = {x ∈
Tn |mσ(x) ≤ n}. Hence T =

⋃
n Sn up to a H1 negligible set. Since ∀n ∈ N we have

by Fubini Theorem∫
(Γ,σ)

(∫
Sn

mγ(x)dH1

)
dγ =

∫
Sn

mσ(x)dH1 ≤ nH1(Tn) < +∞,

then for σ-a.e. γ ∈ Γ, mγ(x) < +∞ for H1-a.e. x ∈ Sn. Therefore σ is concentrated
on Γ0. �

Proposition 3.27. Let σ ∈ Σ be non-spread. Then the set

T0 = {x ∈ RN | mσ(x) > 0}

is a Borel track for σ and it is a minimal track of for set inclusion modulo an H1-
negligible set.

Proof. Let T be a σ-finite track for σ. The σ-finiteness of T allows the use of Fubini
Theorem to get ∫

(Γ,σ)

(∫
T\T0

mγ(x)dH1

)
dγ =

∫
T\T0

mσ(x)dH1 = 0.

Thus, for σ a.e. γ ∈ Γ, we have
∫
T\T0

mγ(x)dH1 = 0. The minimality of T0 follows

from Proposition 3.25. Indeed, if T ′ is any other track, T ∩ T ′ is a σ−finite track
and therefore it is a Borel track modulo a negligible set. So, by Proposition 3.25,
T0 ⊂ T ∩ T ′ ⊂ T ′, modulo a negligible set. �

Theorem 3.28. (Dominated density convergence) Let (σn)n∈N ⊂ Σ be a sequence of
non-spread particle motions. Let us suppose that there exists a H1-measurable mapping
a : RN → R+ with

∫
RN a(x) dH1 < +∞ so that, for every n ∈ N, aσn ≤ a. If σn ⇀ σ,

then σ is a non-spread particle motion.

Proof. For any fixed ε > 0, since a ∈ L1, there exists a compact subset Aε ⊂ RN with
H1(Aε) < +∞ (see [33, Theorem 27]), such that∫

RN\Aε

a(x)dH1 ≤ ε. (3.17)

Then, for every n ∈ N, by Proposition D.12 we have

∫
(Γ,σn)

H1(γ(I) \ Aε) dγ =

∫
RN\Aε

aσn(x)dH1 ≤
∫

RN\Aε

a(x)dH1 ≤ ε. (3.18)
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Since σn ⇀ σ, by Proposition D.8, (3.18) and by Theorem C.3, we get∫
(Γ,σ)

H1(γ(I) \ Aε) dγ ≤ lim inf
n

∫
(Γ,σn)

H1(γ(I) \ Aε) dγ ≤ ε.

Now we take an infinitesimal sequence (εn)n∈N ad set A =
⋃
nAεn . Notice that A is a

H1 σ-finite set. Then, for every n ∈ N we have∫
(Γ,σ)

H1(γ(I) \ A) dγ ≤
∫

(Γ,σ)

H1(γ(I) \ Aεn) dγ ≤ εn.

From εn → 0 we can conclude that A is a track and so σ is non-spread. �

3.3. Scaling and density relations.

3.3.1. Scaling orderings.

Definition 3.29. Let I1, I2 ⊂ R be two given intervals of positive measure. Let ϕ :
I1 → I2 be a given function. We define the mapping ϕ∗ : ΓI2 → ΓI1 as ϕ∗(γ2) = γ2 ◦ ϕ
for every γ2 ∈ ΓI2.

Definition 3.30. Let I1, I2 ⊂ R be two given intervals. We shall denote by Φ(I1, I2)
the set of monotone functions ϕ : I1 → I2 such that inf ϕ = inf I2, supϕ = sup I2.

Remark 3.31. Assume, as we will do in this section, that I1, I2 ⊂ R are bounded
intervals. This is not a restriction since it can be always achieved by a nonlinear home-
omorphic scaling. In order to define Φ(I1, I2) it is not restrictive to assume that if one of
the two intervals contains one of its extreme points then the other one enjoys the same
property (the same extreme point if ϕ is increasing, the other one if ϕ is decreasing).
Indeed, if I1, for instance, has a minimum and ϕ is, for instance, monotone increasing,
by definition of Φ(I1, I2) we have inf I2 = inf ϕ = ϕ(min I1) ∈ I2. Conversely, if I2 has
a minimum we have min I2 = inf I2 = inf ϕ = limt→inf I1 ϕ(t). So ϕ can be considered
to be defined on I1 ∪ {inf I1} In particular, if one of the two intervals is compact so is
the other one. We will assume that this is always the case from now on in this section,
adding this requirement to the definition of Φ(I1, I2).

Definition 3.32. (Scaling ordering on curves) Let γ1 : I1 → RN and γ2 : I2 → RN .
We say γ1 ≤S γ2 if there exists a monotone increasing map ϕ ∈ Φ(I1, I2), such that
γ1 = γ2 ◦ ϕ = ϕ∗(γ2).

Remark 3.33. If the two intervals are compact (see the previous remark) and γ1 ≤S γ2,
by the definition of Φ(I1, I2) γ1 and γ2 have the same boundary values.

Let us point out that, in spite of its name, the relation ≤S is not an ordering since
it only satisfies the reflexivity and transitivity properties. Hence we are led to define
the following equivalence classes which allow to deal with an ordering.
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Definition 3.34. (Scaling equivalence on curves) We shall say that two curves γ1, γ2

are scaling equivalent, in symbols γ1
∼=S γ2, if γ1 ≤S γ2 and γ2 ≤S γ1.

We shall denote by T the quotient topological space of Γ with respect to ∼=S and we
shall call oriented trajectories the elements of T . For any γ ∈ Γ, the equivalence class
of γ will be denoted by [γ]S.

Notice that the relation ≤S induces an ordering on T . We shall say that any mapping
c : Γ → R is strictly monotone increasing with respect to ≤S if for every γ1, γ2 ∈ Γ such
that γ1 ≤S γ2 we have c(γ1) ≤ c(γ2) and, if in addition c(γ1) = c(γ2), then γ2 ≤S γ1.
If c is monotone increasing with respect to ≤S then it is constant on the equivalence
classes above introduced and therefore it can be identified with an increasing map
defined on the quotient space T .

The analogous version of definitions 3.32, 3.34 can be formulated in terms of particle
motions as follows.

Definition 3.35. (Uniform scaling relation on particle motions) Let σ1 ∈ P(ΓI1) and
σ2 ∈ P(ΓI2). We say that σ1 ≤S σ2 if there exists ϕ ∈ Φ(I1, I2) such that σ1 = ϕ∗#σ2.

Definition 3.36. (Uniform scaling equivalence of particle motions) We shall say that
two particle motions σ1 and σ2 are uniform scaling equivalent, in symbols σ1

∼=S σ2, if
σ1 ≤S σ2 and σ2 ≤S σ1.

Remark 3.37. We shall see in the following (Theorem 3.65) that, for σ1, σ2 ∈ Σ0,
σ1
∼=S σ2 means that we can find a monotone change of variable ϕ such that σ1 = ϕ∗#σ2

and σ2 = (ϕ−1)∗#σ1 for any ϕ−1 in the inverse class (see the next subsection) of ϕ.

As just observed in the beginning of Subsection 3.1, the scaling ordering on curves
can be regarded as the restriction to the curves of the uniform scaling on the particle
motions, while according to Definition 3.1, another relation on the space of particle
motions is provided by the above introduced pointwise extension.

Definition 3.38. (Extension of scaling ordering to particle motions) The pointwise
extension of ≤S to the particle motions will be denoted by ≤S̃ and will be called fiberwise
scaling relation.

Definition 3.39. (Fiberwise scaling equivalence on particle motions) The pointwise
extension of the scaling equivalence to the particle motions will be called fiberwise scaling
equivalence and will be denoted by ∼=S̃.

Remark 3.40. We can easily deduce from Remark 3.33 that, if σ1 and σ2 are compa-
rable by ≤S and σ1 ∈ Σ(µ, ν) then also σ2 ∈ Σ(µ, ν).

We shall see in the sequel (Proposition 3.42) that when I1 and I2 are compact then
≤S is closed and therefore by Proposition 3.17 two particle motions σ1 and σ2 are
scaling equivalent if and only if σ1 ≤S̃ σ2 and σ2 ≤S̃ σ1. We shall also see that this last
conclusion holds true even when I1 and I2 are not compact if σ1, σ2 ∈ Σ0.
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3.3.2. Monotone change of variables. Let us point out a few facts about the monotone
functions ϕ : I1 → I2

Lemma 3.41. Let I1, I2 ⊂ R be two given intervals with I2 compact and ∀n ∈ N let
ϕn : I1 → I2 be a monotone function. Then (ϕn)n∈N admits a pointwise converging
subsequence.

Proof. Let us assume, by passing to a subsequence, that the functions are monotone
increasing (or decreasing with a similar argument). By a diagonal selection we can
extract from (ϕn)n∈N a converging subsequence to a function ϕ defined on (Q∩I1)∪E,
where E is the set of the (eventual) extrema of I1 which belong to I1. This function ϕ
admits an extension to I1 defined as

ϕ̄(t) = sup{ϕ(q) | q ∈ (Q ∩ I1) ∪ E, q ≤ t}
which is monotone increasing and so it is continuous except at most a countable set.
Let t ∈ I1 a continuity point for ϕ̄. Fix ε > 0, there exist q1, q2 ∈ (Q ∩ I1) ∪E, q1 ≤ t,
q2 ≥ t such that ϕ is defined on q1, q2 and ϕ(q1) > ϕ(q2) − ε. Now, we know that
ϕn(q1) → ϕ(q1) and ϕn(q2) → ϕ(q2) and so we get by monotonicity

lim inf
n

ϕn(t) ≥ lim
n
ϕn(q1) = ϕ(q1) > ϕ(q2)− ε ≥ ϕ̄(t)− ε,

lim sup
n

ϕn(t) ≤ lim
n
ϕn(q2) = ϕ(q2) < ϕ(q1) + ε ≤ ϕ̄(t) + ε.

Then limn ϕn(t) = ϕ̄(t) out of a countable set D (the set of discontinuity points of
ϕ̄). Finally, a further diagonal selection argument allows to extract a subsequence also
converging on D. �

Proposition 3.42. Assume I1, I2 ⊂ R are compact intervals. Then the relation ≤S

on the curves is closed with respect to the locally uniform convergence.

Proof. For every n ∈ N let γ1
n = γ2

n◦ϕn and suppose that γ1
n → γ1, γ

2
n → γ2 (locally)

uniformly. By applying Lemma 3.41 to the sequence (ϕn)n∈N , since I2 is compact, we
have that there exists ϕ ∈ Φ(I1, I2) such that, for every t ∈ I1, ϕn(t) → ϕ(t). Then
γ2

n(ϕn(t)) → γ2(ϕ(t)) which means γ1
n(t) → γ2(ϕ(t)) pointwise. Since γ1

n(t) → γ1(t)
locally uniformly we get γ1 = γ2 ◦ ϕ, so γ1 ≤S γ2. �

Remark 3.43. Observe that ≤S is not closed if I1 and I2 are not compact. Indeed,
let us consider γ : [0, 1[→ RN and ∀n ∈ N set γn : [0, 1[→ RN ,

γn(t) =

{
γ(0) if t ∈ [0, 1− 1

n
]

γ(nt− n+ 1) if t ∈ [1− 1
n
, 1[.

It is readily seen that for every n ∈ N: γ ≤S γn. By passing to the limit we have that
γn converges to the curve γ̄ which takes the constant value γ(0) and thus γ 6≤S γ̄.

Proposition 3.44. Assume I1, I2 ⊂ R are compact intervals. Then the relation ≤S̃ is
closed in the narrow convergence with respect to the locally uniform convergence on Γ.
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Proof. The thesis follows by Proposition 3.10. �

As it is well known, any monotone (for instance, increasing) function a.e. defined
on an interval I1 of R represents an equivalence class of monotone functions which
agree almost everywhere except for a countable set. In particular, the functions ϕ−,
ϕ+, respectively defined as the lower semicontinuous and upper semicontinuous (or,
equivalently, left and right continuous) envelopes of ϕ, belong to the equivalence class
of ϕ. Thus for every t ∈ I1: ϕ−(t) ≤ ϕ(t) ≤ ϕ+(t). Moreover, for any such ϕ we
can define the inverse equivalence class ϕ−1, to which belong in particular the left and
right inverses ϕ−1

− and ϕ−1
+ given by ϕ−1

− (s) = sup{t ∈ I1 | ϕ(t) < s}, ϕ−1
+ (s) = inf{t ∈

I1 | ϕ(t) > s} (where sup ∅ = inf I1 and inf ∅ = sup I1. They belong to I1 whenever
ϕ ∈ Φ(I1, I2) and they need to be assumed, thanks to Remark 3.31).

Lemma 3.45. Let ϕ be as above. Then, for every t ∈ I1 we have ϕ−1
− ◦ ϕ(t) ≤ t ≤

ϕ−1
+ ◦ ϕ(t) and for every s ∈ I2 we have ϕ− ◦ ϕ−1(s) ≤ s ≤ ϕ+ ◦ ϕ−1(s).

Proof. The left inequality follows by observing that by definition ϕ−1
− (ϕ(t)) ≤ t if and

only if for every s > t: ϕ(s) ≥ ϕ(t) and this is true since ϕ is an increasing function.
The other inequalities are proved in a similar way. �

Lemma 3.46. Let γ1 ∈ ΓI1, γ2 ∈ ΓI2 such that γ1 ≤S γ2 with a monotone change of
variable ϕ ∈ Φ(I1, I2), i.e. γ1 = γ2◦ϕ. If, for every t ∈ I1, γ2 is constant on the interval
[ϕ−(t), ϕ+(t)], then for any ϕ−1 in the inverse class of ϕ, γ2 = γ1 ◦ ϕ−1 = γ2 ◦ ϕ ◦ ϕ−1

and so, in particular, γ2 ≤S γ1.

Proof. For every s ∈ I2, by Lemma 3.45, s, ϕ(ϕ−1(s)) ∈ [ϕ−(ϕ−1(s)), ϕ+(ϕ−1(s))] on
which γ2 is required to be constant. So γ2(s) = γ2(ϕ(ϕ−1(s))) = γ1(ϕ

−1(s)). �

Remark 3.47. Let us observe that, on the contrary, the final conclusion stating that
also γ2 ≤S γ1 does not imply that γ2 is constant on the interval [ϕ−(t), ϕ+(t)] neither
that γ1 = γ2 ◦ ϕ−1. Indeed, let us consider, for instance, the case γ1(t) = γ2(t) = sin t
and

ϕ(t) =

{
t if t ≤ 0
t+ 2π if t > 0.

In such a case, obviously, we have γ1 = γ2 ◦ ϕ and also γ2 = γ1 ◦ ϕ 6= γ1 ◦ ϕ−1.

3.3.3. Monotonicity of the length. We shall make use of the notation introduced in
Appendix D. In particular, for any γ ∈ ΓI we need to use the local orbit-length lγ
defined in (D.54) and the total length L(γ) defined in (D.55).

Lemma 3.48. Let γ1 ∈ ΓI1, γ2 ∈ ΓI2 such that γ1 ≤S γ2. Then mγ1(x) ≤ mγ2(x),
for every x ∈ RN up to a countable set. Moreover, if γ1 = γ2 ◦ ϕ for a monotone
change of variable ϕ ∈ Φ(I1, I2), γ2 ∈ Γ0 and mγ1 = mγ2 H1-a.e., then γ2 is constant
on [ϕ−(t), ϕ+(t)] ⊂ I2 ∀t ∈ I1 and γ2 = γ1 ◦ ϕ−1 for every ϕ−1 in the inverse class of
ϕ, hence γ1

∼=S γ2.
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Proof. Suppose that mγ1(x) > mγ2(x). Then ϕ is not injective on γ−1
1 (x). Indeed, if

t ∈ γ−1
1 (x), then ϕ(t) ∈ γ−1

2 (x). Therefore either mγ1(x) ≤ mγ2(x) or there exist t1 < t2
with t1, t2 ∈ γ−1

1 (x) such that ϕ(t1) = ϕ(t2). Since ϕ is monotone increasing, this last
case implies that ϕ takes a constant value on the interval [t1, t2], then ϕ(t1) ∈ A where
A is at most a countable set. Hence x ∈ γ2(A) which is at most a countable set.
Assume that for some t ∈ I1 ψ1(t) = γ2|[ϕ−(t),ϕ+(t)]

6= const and let us denote by ψ2 the

function γ2 redefined on the interval [ϕ−(t), ϕ+(t)] as the constant value assumed in the
two boundary points (γ2(ϕ−(t)) = γ2(ϕ+(t)) by the continuity of γ1 = γ2 ◦ ϕ). Then
mγ2 = mψ1 +mψ2 H1-a.e. and we have

∫
RN mψ1(x)dH1 > 0, γ1 = ψ2 ◦ϕ. Therefore we

get
mγ1(x) ≤ mψ2(x) = mγ2(x)−mψ1(x) < mγ2(x)

on a set of positive H1 measure. The last assertion follows by Lemma 3.46. �

Corollary 3.49. Assume γ1 ≤S γ2. Then lγ1 ≤ lγ2. In particular we get the strict
monotonicity of the length functional.

Corollary 3.50. Let γ1 ∈ ΓI1, γ2 ∈ ΓI2 such that γ1 ≤S γ2 with a monotone change of
variable ϕ ∈ Φ(I1, I2), i.e. γ1 = γ2 ◦ ϕ. Then L(γ1) ≤ L(γ2). If L(γ1) = L(γ2) < +∞,
or, equivalently, mγ1 = mγ2 H1−a.e., then γ2 is constant on [ϕ−(t), ϕ+(t)] ⊂ I2 ∀t ∈ I1
and γ2 = γ1 ◦ ϕ−1.

By Lemma 3.48 it follows that if γ2 ∈ Γ0 and γ1 ≤S γ2 then γ1 ∈ Γ0.
We can therefore introduce the set

T0 = {[γ]S | γ ∈ Γ0} (3.19)

and note that (see (3.13))

Tc = {[γ]S | γ ∈ Γc} ⊂ T0. (3.20)

Definition 3.51. We shall say that γ1 (equivalently [γ1]S ∈ T ) is minimal for ≤S if
for every γ2 ≤S γ1 we have γ1 ≤S γ2.

Lemma 3.52. Every nonconstant [γ]S ∈ Tc has a representative, still denoted by γ,
enjoying the property that there is no interval I ′ with a positive measure such that
γ(t) = const. on I ′.

Proof. We suppose that γ ∈ ΓI1 , with I1 = [a, b], takes constant values on some
maximal disjoint open sub-intervals Ai ⊂ I1 i = 1, . . . , nj, . . .. Let β = H1(I1\

⋃
iAi) >

0 and ϕ be the mapping from I1 to [0, β] defined as

ϕ : t 7→ H1(It \
⋃
i

Ai), It = {x ∈ I | x ≤ t}.

Since ϕ is continuous, the inverses ϕ−1
− and ϕ−1

+ are injective mappings. For every
s ∈ I2 = [0, β] = ϕ(I1), the open interval ]ϕ−1

− (s), ϕ−1
+ (s)[ is either empty or it is one of
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the intervals Ai on which ϕ is constant. Since γ is constant too on Ai, it results that
γ ◦ϕ−1 is absolutely continuous. Obviously, γ ◦ϕ−1 ≤S γ, moreover γ ◦ϕ−1 ◦ϕ = γ by
Lemma 3.46 and so γ ≤S γ ◦ ϕ−1. Since ϕ(

⋃
iAi) is a countable set, for every interval

of positive length I ′ ⊂ I2, γ cannot be constant on ϕ−1(I ′). �

Proposition 3.53. [γ]S ∈ Tc is minimal if and only if it has an injective representative
or it is constant.

Proof. Let γ : I → RN be a representative as in Proposition 3.52. If γ is not injective
then there exist t1 < t2 in I such that γ(t1) = γ(t2). We set I∗ = I ∩ I − (t2 − t1) and
take the function ϕ : I∗ → I defined as follows

ϕ(t) =

{
t if t ≤ t1
t+ t2 − t1 if t > t1.

Let us consider γ∗ = γ ◦ ϕ. Notice that that γ∗ is continuous, since γ(t1) = γ(t2).
Obviously we have γ∗ ≤S γ. Since γ is not constant on [t1, t2] we have mγ∗ < mγ on a
set of positive H1 measure. Then, by applying Lemma 3.48 we have that the relation
γ ≤S γ

∗ cannot hold and thus γ is not minimal. To prove the reverse implication, let
us assume that γ is an injective map and ψ ≤ γ, then there is an increasing map ϕ
such that ψ = γ ◦ ϕ. Let us notice that, since ψ is continuous and γ is injective, then
ϕ must be continuous. So, by Lemma 3.46 γ = ψ ◦ ϕ−1 ≤S ψ. �

3.3.4. Density orderings.

Definition 3.54. (Density ordering on curves) Let γ1 : I1 → RN and γ2 : I2 → RN .
We say γ1 ≤D γ2 if mγ1(x) ≤ mγ2(x), for H1 a.e. x ∈ RN .

Definition 3.55. (Density equivalence of curves) We shall say that two curves γ1

and γ2 are density-equivalent, in symbols γ1
∼=D γ2, if mγ1(x) = mγ2(x), for H1 a.e.

x ∈ RN .

The analogous version of Definitions 3.54 and 3.55 can be formulated in terms of
particle motions and, according to Subsection 3.1, we shall use the same symbols to
denote such relations.

Definition 3.56. (Density Ordering on particle motions) Let σ1, σ2 ∈ Σ be non-spread
particle motions. We say that σ1 ≤D σ2 if mσ1 ≤ mσ2 for H1 a.e. x.

Remark 3.57. Definition 3.56 is not the only possible way to reformulate Defini-
tion 3.54 in terms of particle motions. Indeed the relation defined by requiring both
mσ1 ≤ mσ2 and aσ1 ≤ aσ2 still agrees with Definition 3.54 in the case of a pair of curves,
since it is readily seen that mγ1 ≤ mγ2 implies aγ1 ≤ aγ2 but in general mσ1 ≤ mσ2

does not imply aσ1 ≤ aσ2 .
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Definition 3.58. (Density equivalence of particle motions) We shall say that two par-
ticle motions σ1 and σ2 are density-equivalent, in symbols σ1

∼=D σ2, if mσ1 = mσ2 for
H1 a.e. x.

According to Definition 3.1, the pointwise extension of the density ordering to the
space of particle motions is given in the following definition.

Definition 3.59. (Extension of density ordering to measures) The pointwise extension
of ≤D to the particle motions will be denoted by ≤D̃ and will be called fiberwise density
relation.

Lemma 3.60. Let σi ∈ Σ for i = 1, 2. If σ1 ≤D̃ σ2 then σ1 ≤D σ2.

Proof. By virtue of Proposition 3.4 we take two lagrangian parameterizations χ̂i, i =
1, 2, such that σi = χ̂i#µΩ and such that for a.e. p ∈ Ω: χ̂1(p) ≤D χ̂2(p). Now,
let mi(p, x) = mγ(x) for γ = χ̂i(p). By Theorem 3.21 the mappings mi are Borel
measurable on Ω× RN . By Theorem B.5 we get from the previous proposition

∫
RN

(mσ1(x)−mσ2(x))
+ dH1 =

∫
RN

(∫
(Ω,µΩ)

m1(p, x)dp−
∫

(Ω,µΩ)

m2(p, x)dp

)+

dH1

≤
∫

RN

(∫
(Ω,µΩ)

(m1(p, x)−m2(p, x))
+ dp

)
dH1

≤
∫

(Ω,µΩ)

(∫
RN

(m1(p, x)−m2(p, x))
+ dH1

)
dp = 0,

which finally gives mσ1(x) ≤ mσ2(x) for H1-a.e. x ∈ RN . �

Lemma 3.61. Let σi ∈ Σ for i = 1, 2. If σ1 ≤S̃ σ2 then σ1 ≤D̃ σ2.

Proof. Assume γ1 ≤S γ2, hence by Lemma 3.48 mγ1 ≤ mγ2 up to a countable set and
then γ1 ≤D γ2. Therefore by (3.9) we get the thesis. �

Theorem 3.62. For any σ1, σ2 ∈ Σ the following implications hold true.

σ1 ≤S σ2 ⇒ σ1 ≤S̃ σ2 ⇒ σ1 ≤D̃ σ2 ⇒ σ1 ≤D σ2. (3.21)

Proof. The first implication easily follows by observing that the uniform scaling re-
lation implies, in particular, the existence of a transport plan concentrated on the
scaling ordering on curves. The second and third implications respectively follow by
Lemma 3.61 and Lemma 3.60 . �

Lemma 3.63. Let σ1 ∈ Σ, σ2 ∈ Σ0, σ1 ≤D̃ σ2 and σ2 ≤D σ1. Then σ1
∼=D̃ σ2.

Proof. By using Theorem 3.62 we get σ1
∼=D σ2, i.e. mσ1 = mσ2 H1-a.e.. Taking into

account that σ2 ∈ Σ0 is a non-spread particle motion, we can apply Fubini Theorem and
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Theorem B.5 so, with the construction and the notation in the proof of Lemma 3.60,∫
(Ω,µΩ)

(∫
RN

(m2(p, x)−m1(p, x)) dH1

)
dp ≤

∫
RN

(∫
(Ω,µΩ)

(m2(p, x)−m1(p, x)) dp

)
dH1

=

∫
RN

(mσ2(x)−mσ1(x)) dH1 = 0.

Hence since m1 ≤ m2, for a.e. p ∈ Ω∫
RN

(m2(p, x)−m1(p, x)) dH1 = 0.

So, for a.e. p ∈ Ω: m2(p, x)−m1(p, x) = 0 for H1 a.e. x ∈ RN , i.e. σ1
∼=D̃ σ2. �

Definition 3.64. (Fiberwise density equivalence of particle motions) The pointwise
extension of ∼=D to the particle motions will be called fiberwise density equivalence and
will be denoted by ∼=D̃.

Let us remark that, though we cannot directly apply Proposition 3.17, by Lemma 3.63
we deduce that ∀σ1, σ2 ∈ Σ0 σ1

∼=D̃ σ2 if and only if mσ1 ≤D̃ mσ2 and mσ2 ≤D̃ mσ1 .

Theorem 3.65. Let σ1 ∈ Σ, σ2 ∈ Σ0, σ1 ≤ σ2, where ≤ denotes any one of the
relations ≤S,≤S̃,≤D̃ and assume σ2 ≤D σ1. Then σ2 ≤ σ1.

Proof. The case σ1 ≤D̃ σ2 is proved in Lemma 3.63, so let us assume σ1 ≤S̃ σ2. By
applying Theorem 3.62 we have σ1 ≤D̃ σ2, so the conclusions of Lemma 3.63 hold true
and so, with the notation in the proof of Lemma 3.60, for a.e. p ∈ Ω: χ̂1(p) ≤S χ̂2(p)
and m2(p, x)−m1(p, x) = 0 for H1 a.e. x ∈ RN . By Proposition 3.26 σ2 is concentrated
on Γ0, then by Lemma 3.48 we get χ̂1(p) ∼=S χ̂2(p) for a.e. p ∈ Ω, hence σ1

∼=S̃ σ2.
Assume σ1 ≤S σ2. By definition σ1 = ϕ∗#σ2, for a continuous and strictly increasing

map ϕ : I → J . By Lemma 3.63 for σ1-a.e. γ ∈ Γ mγ = mϕ∗(γ) and γ ∈ Γ0. So
Lemma 3.48 implies γ = (ϕ−1)∗(ϕ∗(γ)). Therefore σ2 = ϕ−1

# σ1. �

Corollary 3.66. Let σ ∈ Σ0 such that σ is minimal for the relation ≤D on a given
class of competitors Σ′ ⊂ Σ. Then σ is minimal for ≤D̃ Furthermore, if σ is minimal
for ≤D̃ then it is minimal for ≤S̃ and if σ is minimal for ≤S̃ then it is minimal for
≤S.

Proof. We only prove the first one of the above implications, the other ones being
similar. Let σ′ ∈ Σ such that σ′ ≤D̃ σ. Then by applying Theorem 3.62 we get
σ′ ≤D σ and by the minimality of σ with respect to ≤D we deduce σ ≤D σ′. Finally,
by Lemma 3.63 the two conditions σ′ ≤D̃ σ, σ ≤D σ′ simultaneously fulfilled imply
σ ≤D̃ σ′. �



IRRIGATION PROBLEMS 21

3.4. Splitting orbits.

Lemma 3.67. Let σ ∈ Σ be given and let σ1 and σ2 be two complementary truncations
of σ. Then mσ(x) = mσ1(x) +mσ2(x) except at most a countable set.

Proof. Let τ : Γ → I be the truncation mapping inducing σ1 and σ2 (see subsection 2.2).
For a.e. γ ∈ Γ and for every x so that x 6= bτ (γ), we have mγ(x) = mγ1(x) +mγ2(x).
Then we can state that∫

(Γ,σ)

mγ(x) dγ =

∫
(Γ,σ)

mγ1(x) dγ +

∫
(Γ,σ)

mγ2(x) dγ

=

∫
(Γ,σ1)

mγ(x) dγ +

∫
(Γ,σ2)

mγ(x) dγ

except the case x = bτ (γ) for γ belonging to some Γ′ with σ(Γ′) > 0. Since the sets Γ′

are disjoint, so they form at most a countable set, we get the thesis. �

Remark 3.68. Let us observe that the analogous property of the one stated in the
previous lemma holds when dealing with the composition of particle motions, i.e. mσ =
mσ1 +mσ2 when σ is the composition of σ1 and σ2 (see [29, Section 1.2]).

Lemma 3.69. Let x ∈ RN be given. The map τ : ΓI → R defined as

τ : γ 7→ inf{t ∈ I | γ(t) = x},
with τ(γ) = sup I if x 6∈ γ(I), is Borel measurable.

Proof. Let us firstly assume I = [a, b]. Observe that τ is measurable if and only if for
every t̄ ∈]a, b[ the set A = {γ | τ(γ) ≤ t̄} is Borel measurable. Notice that τ(γ) ≤ t̄
means x ∈ γ([a, t̄]). Let us show that the set A = {γ | x ∈ γ([a, t̄])} is measurable.
Indeed γ ∈ A if and only if for every integer h > 0 there exists s ∈ [a, t̄] ∩Q such that
γ(s) ∈ B 1

h
(x). Therefore

A =
⋂
h

⋃
s∈[a,t̄]∩Q

{γ ∈ ΓI |γ(s) ∈ B 1
h
(x)},

which is Borel measurable.
If I is not compact, then I =

⋃
n In with In compact. Let τn be analogously defined,

with I replaced by In. Since τ = inf τn and τ = sup τn (= sup I) on two complementary
Borel subsets of R, τ is Borel measurable. �

Remark 3.70. Let σ ∈ Σ(µ, ν) and x̄ ∈ RN be given. If for σ-a.e. γ ∈ Γ we have
x̄ ∈ γ(I), then we set

τ1(γ) = inf{t ∈ I | γ(t) = x},
τ2(γ) = sup{t ∈ I | γ(t) = x}.
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Then by applying Lemma 3.69 to τ1 and (with trivial changes) to τ2, we can split
σ in the three following complementary truncations (see Section 2.2) σ1 ∈ Σ(µ, δx̄),
σ2 ∈ Σ(δx̄, δx̄), σ3 ∈ Σ(δx̄, ν) and, by Lemma 3.67, we have mσ = mσ1 +mσ2 +mσ3 .

Proposition 3.71. Let σ ∈ Σ, x ∈ RN be given. Assume that x̄ ∈ γ(I) for σ-a.e.
γ ∈ Γ. Then there exist σ′ ∈ Σ and tx ∈ R such that σ ∼=S̃ σ

′ and γ(tx) = x for σ′-a.e.
γ ∈ Γ.

Proof. Assume, without any restriction, I = [0, 1]. Thanks to Lemma 3.69 we define a
map τ : Γ → I by setting for any γ ∈ Γ such that x̄ ∈ γ(I)

τ1(γ) = inf{t ∈ I | γ(t) = x}.
We claim that we can find a fiberwise reparametrization σ′ ∼=S̃ σ in such a way
that every γ is reparametrized on the interval I ′ = [0, 2] so that γ(t) = x for ev-
ery t ∈ [τ 1(γ), τ 1(γ) + 1]. Then the thesis follows by taking tx = 1.
The claim can be achieved, for instance, by employing some above introduced con-
struction. We just need to take the two complementary truncations induced by τ 1 (see
Subsection 2.2) : σi = (piτ1)#σ, i = 1, 2, where the mappings piτ1 are defined in (2.5).
Then we shift σ2 on [1, 2] and take as σ′ the composition of σ1 and σ2, as defined in
[29, Sect. 1.2], by using the transport plan π = (p1

τ1
× p2

τ1
)#σ. �

Remark 3.72. Given x as in Proposition 3.71, the same construction as in the above
proof can be repeated by using the map τ2 : Γ → I, τ2(γ) = sup{t ∈ I | γ(t) = x}.
In this way we get the existence of two points t1, t2 such that the set I1 = {t ∈
I | γ(t) = x, t ≤ t1} is an interval containing t1 as right boundary point and analogously
I2 = {t ∈ I | γ(t) = x, t ≥ t2} is an interval containing t2 as left boundary point, for
σ′−a.e. γ ∈ Γ. We shall use this construction in the sequel.

Remark 3.73. The construction in the proof of Proposition 3.71 can be easily iterated.
If σ-a.e. γ is such that γ(tγ1) = x and γ(tγ2) = y for tγ1 < tγ2 , by using the same technique
one can find tx < ty (not depending on γ) such that for every γ γ(tx) = x and γ(ty) = y,
for σ′−a.e. γ ∈ Γ.

Lemma 3.74. Let σ ∈ Σ and x, y, z ∈ RN be given and let

Γ′ = {γ ∈ Γ | ∃ t1 < t2 : γ(t1) = x, γ(t2) = y},
Γ′′ = {γ ∈ Γ | ∃ t2 < t3 : γ(t2) = y, γ(t3) = z},

Γ′′′ = {γ ∈ Γ | ∃ t1 < t2 < t3 : γ(t1) = x, γ(t2) = y, γ(t3) = z}.
Then if σ(Γ′) > 0, σ(Γ′′) > 0 there exists σ̄ ∼=D σ such that σ̄(Γ′′′) > 0.

Proof. Let σ′, σ′′ be two Borel positive measure, respectively concentrated on Γ′ and
Γ′′, satisfying the inequality σ′+σ′′ ≤ σ and such that σ′(Γ) = σ′′(Γ) > 0. (We can take
σ′ = c1σ Γ′, σ′′ = c2σ Γ′′ with c1, c2 such that c1 + c2 ≤ 1 and c1σ(Γ′) = c2σ(Γ′′)).
We have σ = σ′ + σ′′ + (σ − (σ′ + σ′′)), we set p0

#σ
′ = µ′, p1

#σ
′ = ν ′, p0

#σ
′′ = µ′′,
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p1
#σ

′′ = ν ′′. By arguing as in the final argument of the proof of Proposition 3.71, we
can split σ′ as σ′ = σ′1 ⊗ σ′2 with σ′1 ∈ Σ(µ′, δy) and σ′2 ∈ Σ(δy, ν

′). Analogously we
have σ′′ = σ′′1 ⊗ σ′′2 with σ′′1 ∈ Σ(µ′′, δy) and σ′′2 ∈ Σ(δy, ν

′′).
We set

σ̄ = σ′1 ⊗ σ′′2 + σ′′1 ⊗ σ′2 + σ − (σ′ + σ′′).

It is easy to see that σ′1 ⊗ σ′′2 ∈ Σ(µ′, ν ′′), σ′′1 ⊗ σ′2 ∈ Σ(µ′′, ν ′) and σ − (σ′ + σ′′) ∈
Σ(µ − (µ′ + µ′′), ν − (ν ′ + ν ′′)). Thanks to the additivity of the multiplicity function
(see Remark 3.70), the equivalence between σ and σ̄ follows. �

3.5. Length Parameterizations. In the following, for a sake of simplicity and also in
view of successive applications, we assume that I ⊂ R contains the minimum, though
with slight modifications one can consider a general interval by fixing an initial point.
On the other side, in order to allow the scaling equivalence between ΓI and ΓR+ we
shall assume I is half-open at the right end. Otherwise we shall reparametrize the
curves on R+ = R+ ∪ {+∞} rather than R+ (see Remark 3.31).

Definition 3.75. Let us define the mapping L : ΓI → ΓR+ which associates to any
curve γ ∈ ΓI , with length L(γ), the curve L (γ) ∈ [γ]S which has | d

ds
L (γ)(s)| = 1 a.e.

in [0, L(γ)] (so it takes a constant value on [L(γ),+∞[).

Notice that for every γ1, γ2 ∈ [γ]s we have L (γ1) = L (γ2), so L can be considered
as defined on the oriented trajectories. The main result of this section is the follow-
ing theorem whose proof will follow as an immediate consequence of the subsequent
lemmas.

Theorem 3.76. The mapping L : ΓI → ΓR+ is Borel measurable.

Lemma 3.77. Let I, J ⊂ R be two given intervals and let (ϕn)n∈N be any given sequence
of continuous (increasing) functions from J to I and let (γn)n∈N ⊂ ΓI be a given
sequence of orbits. If ϕn → ϕ and γn → γ locally uniformly, then ϕ∗n(γn) → ϕ∗(γ).

Proof. Let (tn)n∈N ⊂ J be such that tn → t ∈ J . Then ϕn(tn) → ϕ(t) and so γn ◦
ϕn(tn) → γ ◦ ϕ(t), i.e. ϕ∗n(γn) → ϕ∗(γ). �

Let J, I ⊂ R be two given intervals. We consider a finite partition of J in subintervals
Ji, namely J =

⋃
i Ji and we set li = |Ji| for every i. Moreover, for every i let ci ∈ R

be given so that |I| =
∑

i cili. We consider the piecewise linear function ϕ from J to I
such that for every i the slope is equal to ci on the interval Ji.

Remark 3.78. We assume without any restriction (see Remark 3.31) that I is always
bounded, while, to the aim of taking J = R+, we let J be unbounded on one side and,
if J is not bounded below, then in the partition we must take the first length l1 = +∞
and the corresponding coefficient c1 = 0. Analogously we must proceed with the last
index when J is not bounded above.
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For every k ∈ N we take a partition of J in disjoint intervals having length lki , so
|J | =

∑
i l
k
i , then we take cki so that

∑
i c
k
i l
k
i = |I| and ϕk : J → I as above.

Lemma 3.79. Let cki → ci and lki → li as k →∞. Then ci and li determine ϕ : J → I
such that ϕ∗k(γ) → ϕ∗(γ) for every γ ∈ ΓI .

Proof. Since cki → ci and lki → li for every i, then ϕk → ϕ locally uniformly and so, by
Lemma 3.77 ϕ∗k(γ) → ϕ∗(γ), for every γ ∈ ΓI . �

Let I ⊂ R and γ ∈ ΓI be given. For any fixed n ∈ N, let us consider a partition of I
into n subintervals Ii with the same measure. Let J = R+, li = L(γ|Ii) for i = 1, . . . , n
and ln+1 = +∞, as in Remark 3.78. Let us denote by ϕ̄n the piecewise linear function
from J to I under the choice ci = (nli)

−1|I|, for i = 1, . . . , n and cn+1 = 0. For every
γ ∈ ΓI we set Ln(γ) = ϕ̄∗n(γ). Let us prove the following result.

Lemma 3.80. For every γ ∈ ΓI : Ln(γ) → L (γ) as n→ +∞ .

Proof. Let γ ∈ ΓI be fixed. Let ε > 0, by the absolute continuity of γ there exists
δ > 0 such that the restriction γ|I′ of γ to the intervals I ′ such that |I ′| < δ satisfies
L(γ|I′) < ε. Let n > δ−1|I|, then for every i li ≤ ε and so for every s, t ∈ I we have

|ϕ̄∗n(γ)(s)− ϕ̄∗n(γ)(t)| ≤ |s− t|+ 2ε. (3.22)

By the last estimate we deduce that the sequence (ϕ̄∗n(γ))n∈N is equicontinuous. By
applying Lemma 3.41 we get, by passing to a subsequence, that ϕ̄n pointwise converges
to some increasing function ϕ. So ϕ∗n(γ) pointwise converges to ϕ∗(γ) and by the
equicontinuity the convergence is locally uniform. By (3.22) ϕ∗(γ) is a 1-Lipschitz
function. By taking the converging subsequence from dyadic partitions of the interval
I, by the definition of length functional we get L(ϕ∗(γ)) ≥ L(γ). So, since ϕ∗(γ) is
constant for t ≥ L(γ), |(ϕ∗(γ))′| = 1 on [0, L(γ)] and therefore ϕ∗(γ) = L (γ). �

Let n ∈ N be given as before, for any fixed k ∈ N let us partition R+ in subintervals
Aj with |Aj| ≤ 1

k
∀j and let lki be the middle point of the interval Aj which contains li.

Then we take cki = (nlki )
−1|I|. Let us define ϕkn analogously to ϕn with the coefficients

ci replaced by cki , moreover let us define L k
n (γ) = (ϕkn)

∗(γ).

Lemma 3.81. For every k, n ∈ N, L k
n is a measurable map.

Proof. Since the length functional is l.s.c., for any given i ≤ n and for any j, the set
of the curves γ such that L(γ|Ii) ∈ Aj is Borel measurable. So ΓI can be partitioned
as the union of a sequence of disjoint Borel measurable sets on which the coefficients
cki are fixed. Then the thesis follows from the continuity of the maps ϕ∗, a particular
case of Lemma 3.77. �

Lemma 3.82. L k
n → Ln pointwise as k → +∞.

Proof. Since lki → li and cki → ci as k → ∞, by applying Lemma 3.79 we have
ϕ∗k(γ) → ϕ∗(γ), namely L k

n → Ln. �
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Proof of Theorem 3.76. The thesis follows by subsequently applying Lemma 3.81,
Lemma 3.82 and Lemma 3.80. 2

For every σ ∈ Σ, since L : ΓI → ΓR+ is measurable, we can define

σL := L#σ ∈ P(ΓR+) (3.23)

and we shall call σL the length parametrized particle motion corresponding to σ.

Remark 3.83. Let us note that, given any σ ∈ Σ, if L(γ) < +∞ for σ−a.e. γ then
the length parametrized σL can be assumed by taking L : ΓR+

→ ΓR+ .

Theorem 3.84. Let (σn)n∈N be a given sequence of length parametrized particle mo-
tions. If (σn(0))n∈N is tight then (σn)n∈N has a narrowly converging subsequence. More-
over, if L(γ) < +∞ for σn-a.e. γ then tightness holds true with respect to the (locally)
uniform convergence on R+.

Proof. Since (σn(0))n∈N is tight, for every ε > 0 there exists a compact subset Kε ⊂ RN

such that, for every n, [σn(0)](RN \Kε) < ε. The set

Hε = {γ ∈ ΓR+ | γ(0) ∈ Kε, γ is Lipschitz cont. with const ≤ 1}
is a compact subset of ΓR+ , as it is readily seen by locally applying Ascoli-Arzelá
Theorem. By hypotheses ∀n: σn(ΓR+ \ Hε) = σn({γ ∈ ΓR+ | γ(0) 6∈ Kε}) < ε. By
the arbitrariness of ε, (σn)n∈N turns out to be a tight sequence, hence by Prokhorov
Theorem it has a narrowly converging subsequence. �

3.6. No-cycle properties. In the following we propose a notion of no-cycle property,
just exploited by other authors (see [5], [6], [37]) in the context of curves or graphs and
recognized as a key property of branched minimizing structures, which works at the
general level of ordered sets. Indeed, in the present approach the no-cycle property is
linked to the flow ordering introduce below in Section 4.

Given any n ∈ N, we use the notation In = {1, 2, . . . , n}. We shall give weak and
strong notions of the no-cycle property.

Definition 3.85. (Weak no-cycle property) We shall say that an ordered set (S,≤)
satisfies the weak no-cycle property if for every x, y ∈ S the order interval [x, y] is
totally ordered by ≤.

The main tool in the following construction is represented by a finite sequence of
points enjoying a suitable property and called oscillating chain.

Definition 3.86. (Oscillating chain). We shall say that a finite sequence C = (xi)i∈In
of terms of (S,≤) is an oscillating chain if any two consecutive terms are comparable.

Definition 3.87. Let C = (xi)i∈In be a given oscillating chain and let I ⊂ In be a
subset made of k consecutive indexes. Then the restriction of C to I (translated to Ik)
is called a sub-chain of C.
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Definition 3.88. Let C = (x1, x2, . . . , xn) be an oscillating chain, the n terms xi will
be called vertices. The terms x1 and xn will be called extreme points of the chain. For
any i ≤ n − 1 let Si = [xi, xi+1] if xi ≤ xi+1, or Si = [xi+1, xi] if xi+1 ≤ xi. We shall
call support of C the set: sptC =

⋃n−1
i=1 Si.

The closeness of two indexes in In and, consequently, of two terms of the chain requires
a suitable definition.

Definition 3.89. The cyclic distance in In is defined by dn(i, j) = (i− j) modn. We
shall say that two indexes i, j ∈ In are close if dn(i, j) ≤ 1.

The optimality of oscillating chains can be formulated as follows.

Definition 3.90. Let C, D be two oscillating chains with the same extreme points.
We say that C is more convenient than D if the number of vertices of C is strictly
smaller than the number of vertices of D and sptC ⊂ sptD.

Definition 3.91. We say that an oscillating chain C is optimal if there are no more
convenient chains than C.

Definition 3.92. We shall say that C = (xi)i∈In is a simple oscillating chain if it is an
optimal oscillating chain with even number of terms, moreover, for every i, xi ≤ xi+1

if i is odd and xi ≥ xi+1 if i is even and any two terms are comparable if and only if
they are close.

Remark 3.93. Note that in particular, if (xi)i∈In is a simple chain x1 and xn must be
comparable. Moreover, if xn < x1 then xn < x2 and this is a contradiction. So x1 ≤ xn
must hold true.

Remark 3.94. Note that every sub-chain of an oscillating chain is an oscillating chain
and every sub-chain of an optimal chain is an optimal chain.

Remark 3.95. Note that the notions of oscillating chain and optimal oscillating chain
are invariant by reversing the relation ≤ in ≥. On the contrary, the notion of simple
chain is not invariant since we have assumed the convention xi ≤ xi+1 if i is odd.
Nevertheless, if the chain is not simple because such a convention does not hold, then
it can be made simple by reversing either the order ≤ or the sequential order of the
terms.

Lemma 3.96. If an ordering enjoys the weak no-cycle property, then every optimal
oscillating chain satisfies the following property:

∀i : i ≤ n− 2 =⇒ xi and xi+2 are not comparable. (3.24)

Proof. Assume by contradiction that xi and xi+2 are comparable. We can always
assume (by, eventually changing ≤ with ≥ and reversing the order of the chain) that
xi ≤ xi+1 and that xi ≤ xi+2. Then [xi, xi+2] ⊂ [xi, xi+1] ∪ [xi+1, xi+2], since xi+1 and
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xi+2 are comparable and [xi, xi+2] is totally ordered by virtue of the weak no-cycle
property. So, by eliminating xi+1 we get a more convenient chain, in contradiction to
the optimality assumption. �

Remark 3.97. The term oscillating chain is fully meaningful when we deal with opti-
mal chains with respect to an ordering satisfying the weak no-cycle property. Indeed,
(3.24) shows in particular that the ordering between xi and xi+1 is opposite to the one
existing between xi+1 and xi+2. In particular, when the weak no-cycle property holds
true, no optimal chain with more than two elements can be monotone.

Remark 3.98. On the contrary, if an ordering does not satisfy the weak no-cycle
property, then, given an order interval [x, y] which is not totally ordered and z ∈ [x, y]
which is not comparable with any other element of the interval, the chain (x, z, y) is
an optimal monotone chain. Indeed the only possible competitor would be (x, y) but
this chain is not more convenient since spt(x, y) = [x, y] 6⊂ [x, z] ∪ [z, y] = spt(x, z, y).
So (3.24) does not hold.

Remark 3.99. Combining the two above remarks we can conclude that the weak
no-cycle property can equivalently be formulated by asking that every optimal chain
satisfies (3.24), that every optimal chain with three elements has not comparable ex-
treme points, or that there exist no totally ordered optimal chains with more than two
elements.

The previous remark suggests the following definition as a stronger case of Defini-
tion 3.85.

Definition 3.100. (Strong no-cycle property) We shall say that an ordered set (S,≤)
satisfies the strong no-cycle property if any optimal chain having more than two terms
has not comparable extreme points .

Remark 3.101. We see from Remark 3.99 that if an ordered set (S,≤) enjoys the
strong no-cycle property, then it also satisfies the weak no-cycle property but, in gen-
eral, the reverse implication does not hold as shown in the the following example.

Example 3.102. Let S = {x1, x2, x3, x4}, with x1 = {0}, x2 = {0, 1, 2}, x3 = {1},
x4 = {0, 1, 3} and ≤ given by the set inclusion ⊂. Then S satisfies the weak no-cycle
property but it does not satisfy the strong no-cycle property since x1 ≤ x4.

Definition 3.103. Let C = (xi)i∈In be a simple oscillating chain in (S,≤). Extending
the notation introduced in Definition 3.88, we set Sn = [x1, xn].

Proposition 3.104. If (S,≤) satisfies the weak no-cycle property but not the strong no-
cycle property, then it contains a simple oscillating chain having at least four elements.

Proof. Assume ≤ enjoys the weak no-cycle property and let C be an optimal chain
with more than two elements and comparable extrema. If n is the number of vertices
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of C, then by Remark 3.99 it follows that n ≥ 4. By restricting the chain to a minimal
sub-chain among the ones having more than two elements and comparable extreme
points, we can obtain that any two elements which are not close are not comparable.
We observe that by Remark 3.97 for two consecutive indexes either the even index
is ≤ than the odd one or vice versa. Without any restriction (see Remark 3.95), we
suppose that every even term is ≥ than the previous odd one. Finally, we have xn ≥ x1,
otherwise we would have xn ≤ x1 ≤ x2, in contradiction to the minimality of C. For
the same reason we have that n is even, otherwise x1 ≤ xn ≤ xn−1. �

Note that the next statement is empty when n < 4, so we shall assume n ≥ 4 in the
proof.

Proposition 3.105. Let C = (xi)i∈In be any simple oscillating chain and let i, j be
two non-close indexes. Then Si ∩ Sj = ∅.

Proof. We begin by assuming i, j 6= n. Let i < j and suppose by contradiction that
z ∈ Si ∩ Sj, then the sequence (x1, x2, . . . , xi, z, xj+1, . . . xn) has n + i − j + 1 < n
terms and so it is more convenient than C, in contradiction with the assumption C
simple oscillating chain, thus the claim follows. Now let us suppose j = n (and so
i 6= 1, n, n− 1) and distinguish the two following cases. If n = 4 then i = 2 necessarily.
If z ∈ S2 ∩ S4 we deduce x3 ≤ z from z ∈ S2 and z ≤ x4 from z ∈ S4. Therefore
we get x3 ≤ z ≤ x4 which means z ∈ S3. By arguing in the same way one can see
that z ∈ S1 and so one recovers the previous case with i = 1 and j = 3. If n > 4
then i 6= 2 or i 6= n − 2 (we can assume i 6= 2 eventually changing ≤ with ≥ and the
order of the sequence, see Remark 3.95). Let k be the even number in {i, i+ 1}, since
i ≥ 3 we get k > 2 and since i < n − 1 we get k < n. So if z ∈ Si ∩ Sn we have
x1 ≤ z ≤ xk, in contradiction with the assumption C simple oscillating chain, thus the
thesis follows. �

4. Irrigation models

4.1. The irrigation problem. By irrigation problem we mean a special kind of mass
transportation problem characterized by a transport cost which depends on a concave
function of the transported mass. This leads to variational problems whose minimizers
are given by branching curves due to the opposite energetic requirements of keeping
the mass together (the concave cost) and spreading the mass as required by the target
measure. Starting from the papers [37] and [27], various approaches to the problem have
been proposed in the literature (see [5]). In this section we shall show the equivalence
of the minimization problems obtained by taking four different functionals related to
the irrigation problem.

4.2. Synchronous and asynchronous functionals.
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Definition 4.1. The functional F : Σ → R is said to be speed-invariant if F(σ) = F(ν)
for every σ, ν such that σ ∼=S ν (uniformly scaling equivalent).

We shall consider minimization problems involving speed-invariant functionals with
prescribed boundary conditions on a compact interval. Of course the speed-invariance
makes the minimization problems invariant with respect to the choice of the interval.
So we shall speak of min F on Σ(µ, ν) and we shall actually work on ΣI(µ, ν) for any
convenient choice of the compact interval I (I = [0, 1] in most of the cases).

A particular class of speed-invariant functionals is here defined.

Definition 4.2. A (speed invariant) functional F : Σ → R is said to by asynchronous
if F(σ) = F(ν) for every σ, ν such that σ ∼=S̃ ν (fiberwise scaling equivalent).

Let us observe that an asynchronous functional is fully characterized through its
behavior on the set of oriented trajectories, then its analysis can be carried out by
considering length parameterizations. Indeed, for every σ ∈ Σ, we know (see (3.23))
that there exists the length parametrized particle motion σL fiberwise equivalent to
σ. Therefore an asynchronous functional can be studied, without loss of generality, on
the set of length parameterized measures.

Definition 4.3. Any speed-invariant functional F : Σ → R which is not asynchronous
will be called synchronous.

Definition 4.4. A functional F : Σ → R is said to be scaling monotone if F(σ) ≤ F(ν)
for every σ ≤S̃ ν.

The next statement is trivially proved.

Proposition 4.5. If the functional F : Σ → R is scaling monotone then it is asyn-
chronous.

4.3. Irrigation functionals. Let us consider a microscopic motion σ ∈ Σ, to the
aim of introducing the functional costs modeling the irrigation problem, we consider
equivalence classes of fibers as representing the mass carried by the irrigation structure
parameterized with the variable t ∈ R+. More precisely, the equivalence class of fibers
to be considered joint to γ at the time t is given by

[γ]0t = {γ̂ ∈ Γ | γ̂(s) = γ(s) ∀s ≤ t} ,
(as in [27]) or by

[γ]1t = {γ̂ ∈ Γ; | γ̂(t) = γ(t)} .
For α ∈]0, 1[ and k = 0, 1, we introduce the following cost densities.

skσ(γ, t) = σ([γ]kt ))
α−1. (4.25)

Moreover, we define
s2
σ(x) = (aσ(x))

α−1 (4.26)
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and

s3
σ(x) = s3(x) =

{
(mσ(x))

α−1 if mσ(x) < +∞
1 otherwise.

(4.27)

Note that (4.27) implies in any case

s3
σ(x) = mα

σ(x). (4.28)

Then, for k = 0, 1, 2, 3 and α ∈]0, 1[ we introduce the functionals Jkα defined as follows:

Jkα(σ) =

∫
(Γ,σ)×I

skσ(γ(t)) |γ′(t)| dγ dt. (4.29)

By taking a lagrangian parametrization χ : Ω × I → RN on the reference space
(Ω, µΩ), we can express the irrigation functionals (4.29) in terms of χ as

Jkα(χ) =

∫
Ω× I

skα(p, t)

∣∣∣∣∂χ∂t (p, t)

∣∣∣∣ dp dt, (4.30)

where
skα(p, t) = |µΩ([p]kt )|α−1 k = 0, 1, (4.31)

[p]0t = {q ∈ Ω | χ(q, s) = χ(p, s) ∀s ≤ t} , (4.32)

[p]1t = {q ∈ Ω | χ(q, t) = χ(p, t)} , (4.33)

s2
α(p, t) = s2

σ(χ(p, t)) = aσ(χ(p, t))α−1, (4.34)

s3
α(p, t)) = s3

α(χ(p, t)). (4.35)

Let us observe that J0
α is the cost functional of [27], J1

α concerns the approach based
on transport distances of [29] and J2

α is the cost functional of [3].
The functional J3

α is introduced here and it furnishes another description of the
irrigation problem. Let us note that all the above functionals do not depend on the
choice of the lagrangian parametrization χ and are speed-invariant but only J0

α and J1
α

are synchronous functionals
Let us remark that, as one easily sees from the definition, for every α ∈]0, 1[, the

following inequalities hold true

J0
α ≥ J1

α ≥ J2
α ≥ J3

α. (4.36)

Now we are going to study some properties of the the above functionals.

Lemma 4.6. If σ ∈ Σ is a non-spread particle motion then the following representation
formula holds true

J3
α(σ) =

∫
RN

mσ(x)
α dH1. (4.37)
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Proof. By virtue of Area Formula (see [21, Theorem 3.2.6]), we have∫
I

s3(γ(t))|γ′(t)| dt =

∫
RN

s3(x)mγ(x)dH1

and so we get

J3
α(σ) =

∫
(Γ,σ)

(∫
RN

s3(x)mγ(x)dH1

)
dγ. (4.38)

By Definition 3.24, σ admits a H1 σ-finite track T , therefore we can apply Fubini
Theorem and then, using (4.28),

J3
α(σ)=

∫
T

(
s3(x)

∫
(Γ,σ)

mγ(x)dγ

)
dH1 =

∫
RN

s3(x)mσ(x)dH1 =

∫
RN

mσ(x)
αdH1.

�

Let us notice that if σ ∈ Σ is spread, using Theorem B.5 instead of Fubini Theorem
in the above argument, we get∫

RN

mσ(x)
αdH1 ≤ J3

α(σ). (4.39)

Through the same argument used in the proof of the previous lemma, one can prove
the following representation formula.

Lemma 4.7. If σ ∈ Σ is a non-spread particle motion then the following representation
formula holds true

J2
α(σ) =

∫
RN

aσ(x)
α−1mσ(x) dH1. (4.40)

We are going to see in the sequel that the right-hand side of (4.39) is actually equal
to +∞ when σ is spread.

Lemma 4.8. Every σ ∈ Σ such that J3
α(σ) < +∞ is a non-spread particle motion.

Proof. For every Borel set T ⊂ RN let us define

R(T ) =

∫
T

mα
σdH1.

Notice that, by (4.39)
R(T ) ≤ J3

α(σ) < +∞.

We claim that R admits a maximizer T̂ among the Borel sets having H1 σ-finite
measure, indeed if (Tn)n∈N is any maximizing sequence in that class, we take T̂ =

⋃
n Tn

and this set maximizes the functional. We are going to prove that T̂ is a track. Indeed,
if this were not true, using (4.38) we could find γ̂ ∈ ΓI such that∫

γ̂(I)

s3
α(x)dH1 < +∞, H1(γ̂(I) \ T̂ ) > 0.
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In such a case there exists a set of positive measure A ⊂ I such that, for every t ∈ A,
γ̂(t) 6∈ T̂ , γ̂′(t) 6= 0 and s3

α(γ̂(t)) < +∞. Let C = {(γ, t) ∈ Γ × A | γ(t) = γ̂(t)}, C is
Borel measurable. Moreover, since for t ∈ A the t-section of C has a positive measure
because s3

α(γ̂(t)) < +∞, then C has a measure different from zero. By slicing C with

γ-sections we can state that there exists Γ̂ ⊂ Γ with σ(Γ̂) > 0 and such that, for every

γ ∈ Γ̂, the set Aγ = {t ∈ A | γ(t) = γ̂(t)} has a positive measure. For γ ∈ Γ̂ we have

H1(γ(I) ∩ (γ̂(I) \ T̂ )) ≥ H1(γ̂(Aγ)) > 0.

Since, being s3
α(γ̂(t)) > 0, by (4.27) mα

σ(γ̂(t)) > 0, for every γ ∈ Γ̂, t ∈ Aγ, we deduce∫
γ(I)∩(γ̂(I)\T̂ )

mσ(x)dH1 > 0

and so by Fubini Theorem

R(γ̂(I) \ T̂ ) =

∫
(Γ̂,σ)

(∫
γ(I)∩(γ̂(I)\T̂ )

mα
σ(x)dH1

)
dγ > 0.

Then

R(γ̂(I) ∪ T̂ ) > R(T̂ ),

in contradiction to the maximality of T̂ . �

For i = 0, 1, 2, 3 we introduce the set

Σi
0(µ, ν) = {σ ∈ Σ(µ, ν) | J iα(σ) < +∞)}. (4.41)

We have by Lemma 4.8 and by (4.39)

Σ0
0 ⊂ Σ1

0 ⊂ Σ2
0 ⊂ Σ3

0 ⊂ Σ0.

4.4. Loop free particle motions.

Definition 4.9. Let γ ∈ Γ be given. We shall say that x ∈ RN is a loop-point for γ if
there exist t1, t2 ∈ I such that γ(t1) = γ(t2) = x and there exists t ∈ [t1, t2] such that
γ(t) 6= x.

Proposition 4.10. Let γ ∈ Γ and x ∈ RN be given. If aγ(x) < mγ(x) < +∞, then x
is a loop-point for γ.

Proof. Since mγ(x) > aγ(x) there exist t1 < t2 so that γ(t1) = γ(t2) = x and since
mγ(x) < +∞ we have γ(t) 6= x for some t ∈ [t1, t2]. �

Definition 4.11. Let σ ∈ Σ be given. We shall say that x ∈ RN is a loop-point for σ
if there exists Γ′ ⊂ Γ with σ(Γ′) > 0 and such that for every γ ∈ Γ′ x is a loop-point
for γ. The set of the loop-points of σ will be denoted by Lσ.

The analogous statement to Proposition 4.10 also holds for particle motions.
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Proposition 4.12. Let σ ∈ Σ and x ∈ RN be given. If aσ(x) < mσ(x) < +∞, then x
is a loop-point for σ.

Proof. Let Γ′ = {γ ∈ Γ | aγ(x) < mγ(x) < +∞}. By Proposition 4.10 x is a loop point
of every γ ∈ Γ′. �

Definition 4.13. We shall say that σ ∈ Σ is loop-free if Lσ = ∅.

Corollary 4.14. Let σ ∈ Σ3
0 be a loop-free particle motion. Then mσ = aσ H1-a.e..

Proof. By (4.39) we have mσ < +∞ H1 a.e., then the thesis follows from Proposi-
tion 4.12. �

Theorem 4.15. If σ ∈ Σ0 is minimal for ≤S̃, then it is loop-free.

Proof. We argue by contradiction, hence assume x is a loop point for σ, so by Defi-
nition 4.11 there exists Γ′ ⊂ Γ with σ(Γ′) > 0 and such that for every γ ∈ Γ′ x is a
loop-point for γ. Let us decompose σ as σ = σ1+σ2, where σ1 = σ Γ′ and σ2 = σ−σ1.
By using the construction in Remark 3.73 we have t1, t2 so that γ(t1) = γ(t2) = x̄ for
σ′1-a.e. γ, where σ′1

∼=S̃ σ1.
Assume σ ∈ ΣI with I = [0, 1] and define ϕ : I → I as follows

ϕ(t) =


t

1−(t2−t1)
if t ≤ t1

t+t2−t1
1−(t2−t1)

if t > t1.
(4.42)

Let σ
′′
1 = ϕ∗#σ

′
1, so σ

′′
1 ≤S σ′1

∼=S̃ σ1. Since σ2 ≤S σ2, by taking σ′ = σ′′1 + σ2 and
applying (3.9) we get σ′ ≤S̃ σ.
The inverse relation between σ and σ′ does not hold true because one can easily see
that mσ′ < mσ on a set of positive measure and so by Theorem 3.62 σ 6≤S̃ σ

′. Indeed,
by the additivity of the density, stated in Lemma 3.67, and its finiteness due to the
condition σ ∈ Σ0, we just have to show that mσ

′′
1
< mσ1 . Let σ̃1, σ̃2 and σ̃3 be the

complementary restrictions of σ1 on [min I, t1], [t1, t2] and [t2,max I], respectively. By
Lemma 3.67 we get mσ

′
1

= mσ1 −mσ̃2 and mσ
′
1

is not zero a.e. because a.e. γ ∈ Γ′ has

a positive length between τ1(γ) and τ2(γ) by definition of loop-point, so J3
α(σ̃2) > 0.

Moreover σ̃2 is non-spread because it is a restriction of σ which is known to enjoy such
a property, so

∫
RN mσ̃2(x) dH1 > 0 follows from (4.37). �

Theorem 4.16. Let (σn)n∈N ⊂ Σ be a decreasing sequence with respect to the relation
≤D and let σn ⇀ σ non-spread. Then mσ(x) ≤ mσ1(x) for H1-a.e. x.

Proof. Firstly we observe that if (σn)n∈N is decreasing with respect to ≤D, then the
sequence of weighted local set-lengths (lσn)n∈N, introduced in Definition D.9, is decreas-
ing in the ordered space of measures. Fix any open subset B ⊂ RN , by Definition D.1
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and Lemma D.4, since the map γ 7→ lγ is l.s.c., we can apply Lemma C.3 thus obtaining

lσ(B) =

∫
(Γ,σ)

lγ(B)dγ ≤ lim inf
n

∫
(Γ,σn)

lγ(B)dγ ≤ lim inf
n

lσn(B).

Since (σn)n∈N is decreasing we have lσ ≤ lσn for every n ∈ N, then, by Proposition D.10
we get mσ ≤ mσn for every n. �

Lemma 4.17. (Σ0(µ, ν),≥D) is a countably inductive set (see Definition A.1).

Proof. Let (σn)n∈N ⊂ Σ0(µ, ν) be a decreasing sequence with respect to the relation
≤D, which is not restrictive to assume to be length parametrized on R+ (see (3.23)).
By Theorem 3.84 there exists a narrowly converging subsequence to a limit σ and by
Theorem 3.28 we know that σ is a non-spread particle motion. Finally, by Theorem 4.16
we get σ ≤D σn for every n ∈ N. �

Theorem 4.18. For every σ ∈ Σ0(µ, ν) there exists a loop-free σ̄ ∈ Σ0 so that σ̄ ≤D σ.

Proof. Let σ ∈ Σ0(µ, ν) be given. By the previous lemma we know that (Σ0(µ, ν),≥D)
is a countably inductive so, by Theorem A.2 considering that J3

α : Σ0(µ, ν) → R is an
increasing function, we have that there exists σ̄ ∈ Σ0(µ, ν), minimal for ≤D so that
σ̄ ≤D σ. By Theorem 4.15 and Corollary 3.66 we know that σ̄ is loop-free. �

4.5. Flow ordering. Let M be the set of the multiplicity functions induced by the
minimizers of J2

α (or J3
α, by Theorem 5.1 below) in Σ(µ, ν). For any fixed a ∈ M, let

Ma be the set of the non-spread particle motions σ such that mσ(x) = a(x) for H1-a.e.
x ∈ RN . Let (coherently with Proposition 3.27)

T0 = {x ∈ RN | a(x) > 0}. (4.43)

By Proposition 3.25 or by Lemma 4.7 T0 has σ-finite H1 measure and by Proposi-
tion 3.27, for every σ ∈ Ma, T0 is the minimal track of σ up to a H1 negligible set.
By Theorem 4.15, every particle motion in Ma is loop-free. We also notice that J3

α is
constant on Ma and Ma is a closed convex set.

Definition 4.19. Let a ∈ M and x, y ∈ RN be given. We say that x ≤a y if there
exists σ ∈ Ma and there exists A ⊂ Γ with σ(A) > 0 such that for every γ ∈ A there
exist t1 ≤ t2 such that γ(t1) = x and γ(t2) = y.

Remark 4.20. By Proposition 3.71, Remark 3.72 and Theorem 3.62, t1 and t2 can be
taken the same for all the orbits γ ∈ A. Let us observe that two points x and y are
in the relation ≤a (in unspecified order) if and only if there exists σ ∈Ma and Γ′ ⊂ Γ
with σ(Γ′) > 0 such that x, y ∈ γ(I), ∀γ ∈ Γ′.

Lemma 4.21. Let (xk)k∈N, (yk)k∈N be two sequences such that, for every k ∈ N,
xk ≤a yk. Then there exists σ ∈ M such that, for every k, there exists Ak ⊂ Γ with
σ(Ak) > 0 and such that for every γ ∈ Ak there exist t1 < t2 such that γ(t1) = xk and
γ(t2) = yk.
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Proof. By definition for every k there exists σk as in Definition 4.19. Then the thesis
follows by taking the measure σ =

∑∞
k=0

1
2kσk and observing that, by convexity, σ ∈

Ma. �

Proposition 4.22. The relation ≤a is an ordering on T0 given by (4.43).

Proof. To prove the transitivity property, let us observe that if x ≤a y and y ≤a z
then by using Lemma 4.21 we know that there exists σ ∈ Σ with a track Tσ such that,
setting

Γ′ = {γ ∈ Γ | ∃ t1 < t2 : γ(t1) = x, γ(t2) = y},

Γ′′ = {γ ∈ Γ | ∃ t1 < t2 : γ(t1) = y, γ(t2) = z},

we have σ(Γ′) > 0, σ(Γ′′) > 0. Then by Lemma 3.74 there exists σ̄ ∈Ma and Γ′′′ ⊂ Γ,
with σ̄(Γ′′′) > 0, such that every curve in Γ′′′ connects x to z.

To prove that ≤a is antisymmetric let us observe that if x ≤a y, y ≤a x and x 6= y,
then by arguing as above with z = x, it results that x is a loop-point (see Defini-
tion 4.11), in contradiction to the minimality of σ as stated in Theorem 4.15. Finally,
the last statement in Remark 4.20 shows that T0 is the domain of the relation ≤ which
is reflexive on such a set. �

Definition 4.23. (Geometric flow curve). Let x, y ∈ RN such that x ≤a y. We shall
call geometric flow curve G with extreme points x to y the order interval [x, y] with
respect to ≤a.

Definition 4.24. (Flow connectedness). Let a ∈ M be given. We say that A ⊂ T0

is flow connected if any two x, y ∈ A belong to an oscillating chain with respect to ≤a

whose support is contained in A.

Remark 4.25. If A is flow connected then every x, y ∈ A are the end points of an
optimal oscillating chain C with respect to ≤a, with a support contained in A.

Theorem 4.26. Let a ∈ M and let x, y, z ∈ RN such that x ≤a y ≤a z. Then for
every σ ∈Ma and for σ-a.e. γ such that x, z ∈ γ(I), it results y ∈ γ(I).

Proof. Given σ as in the thesis, we claim that we can assume, without any restriction,
that the set Γ′′′ of the curves γ so that x, y, z ∈ γ(I) satisfies σ(Γ′′′) > 0. To this
aim we can use Lemma 4.21 and Lemma 3.74 to find a σ̃ ∈ Ma such that σ̃(Γ′′′) > 0,
then the claim follows by replacing σ with 1

2
(σ + σ̃). By Remark 3.72, arguing as in

Remark 4.20, t1 and t2 can be taken the same for all the orbits in Γ′′′. Let σ3 = σ Γ′′′,
σ∗ = σ − σ3 and for every γ̄ ∈ Γ′′′ let Pγ̄ : Γ′′′ → Γ′′′ be defined by

Pγ̄(γ) =

{
γ(t) if t ≤ t1, t ≥ t2
γ̄(t) if t1 ≤ t ≤ t2.
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We set σγ̄ = (Pγ̄)#σ3 + σ∗. We claim that ∀y ∈ RN∫
(Γ′′′,σ3)

mσγ̄ (y)dγ̄ = mσ3(y).

Indeed, since Pγ̄ does not change the multiplicity mγ out of the interval [t1, t2] we
shall restrict the orbits to [t1, t2] and we shall use the notation mγ, mσ to denote the
multiplicity function of a curve γ or a particle motion σ after a restriction to the interval
[t1, t2], i.e. mγ := mγ|[t1,t2]

By the additivity of the multiplicity function (Lemma 3.67)

we deduce ∫
(Γ′′′,σ3)

mσγ̄ (y)dγ̄ = mσ3(y).

Using the additivity of m again, we have ∀y ∈ RN∫
(Γ′′′,σ3)

mσγ̄ (y)dγ̄ = |σ3|
∫

(Γ′′′,σ3)

mγ̄(y)dγ̄ =

∫
(Γ′′′,σ3)

mγ̄(y)dγ̄ = mσ3(y),

proving the claim. By the concavity of mα
σ , we get

J3
α(σ) =

∫
RN

mα
σ(x)dH1 ≥

∫
(Γ′′′,σ3)

(∫
RN

mα
σγ̄

(y)dH1

)
dγ̄ =

∫
(Γ′′′,σ3)

J3
α(σγ̄)dγ̄,

where the equality holds if and only if, for H1-a.e. x: mσγ̄ (x) = mσ(x) for σ3-a.e. γ̄,
i.e. mγ(x) = mσ(x) for σ-a.e. γ ∈ Γ′′′. Since σ is a minimizer for J3

α, we can conclude
that this must be the case.

We set C = {(γ, ξ) ∈ Γ′′′ × T0 | mγ(ξ) 6= mσ(ξ)}. Notice that, by Theorem 3.21
C is a measurable set, then we can apply Fubini Theorem and so, by the previous
argument we have (σ ⊗ H1)(C) = 0. Then, by integrating the H1 measure of the γ
sections we get that for σ-a.e. γ mγ(ξ) = mσ(ξ) for H1-a.e. ξ. Now let us suppose that
there exists a set A ⊂ Γ with σ(A) > 0 so that y 6∈ γ([t1, t3]) for every γ ∈ A. Then
we can claim that there is r > 0 and Br(y), so that the subset Ar ⊂ A, consisting of
the curves γ such that γ([t1, t3]) ∩ Br(y) = ∅, satisfies σ(Ar) > 0. Indeed, if for every
n ∈ N the set A 1

n
has null measure, then σ(

⋃
nA 1

n
) = 0 and, since [t1, t3] is compact,

y ∈ γ([t1, t3]) for almost every γ ∈ A. By fixing r > 0 with σ(Ar) > 0 as claimed,
we can take γ1 such that x, y, z ∈ γ1(([t1, t3]) and γ2 such that x, z ∈ γ2(([t1, t3]),
γ2(([t1, t3])∩Br(y) = ∅ and such that mγ1(ξ) = mσ, mγ2(ξ) = mσ(ξ) for H1-a.e. ξ and
thus mγ1(ξ) = mγ2(ξ) for H1-a.e. ξ. Then we have that x, y, z ∈ γ1(([t1, t3]) and so, if
D = {ξ ∈ γ(I) ∩ Br(y) | mγ1 ≥ 1}, then H1(D) ≥ 2r, but γ2(([t1, t3]) ∩ Br(y) = ∅ and
this is in contradiction to mγ1(ξ) = mγ2(ξ) for H1-a.e. ξ.

�

Corollary 4.27. (Weak no-cycle property). For every a ∈M the flow order ≤a enjoys
the weak no-cycle property.
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Proof. Let G be a given geometric flow curve with extreme points x and y, induced by
a and let ξ, η ∈ G. By definition, we take σ ∈ Ma, so there is a set A with σ(A) > 0
made of curves γ connecting x and y. Then by Theorem 4.26 ξ, η ∈ γ(I) for σ a.e.
γ ∈ A and therefore, by Remark 4.20, they are comparable by ≤a. �

Definition 4.28. Let x, y ∈ RN with x ≤a y be given. We denote by Γxy ⊂ Γ the
set of curves γ such that x, y ∈ γ(I) and ∀γ ∈ Γxy define Ky

x(γ) = γ([τ1, τ2]), where
τ1 = inf{t ∈ I | γ(t) = x} and τ2 = sup{t ∈ I | γ(t) = y}.

Remark 4.29. By Proposition 3.27 for every σ ∈Ma and for σ-a.e. γ ∈ Γxy: K
y
x(γ) ⊂

T0, modulo a H1-negligible set.

Lemma 4.30. With the notation introduced in Definition 4.28, let a ∈ M, σ ∈ Ma

be given and let [x, y] be a given order interval for ≤a. Then for σ-a.e. γ ∈ Γxy:
Ky
x(γ) ⊂ [x, y] H1-a.e..

Proof. Let B = {(γ, z) ∈ Γxy × [x, y] | z 6∈ Ky
x(γ)}. We observe that, by Theorem 3.21

B is Borel measurable and [x, y] ⊂ T0 has a σ-finite H1 measure. Then applying Fubini
Theorem, by Theorem 4.26, we deduce (σ ⊗H1)(B) = 0. Hence we can state that for
σ-a.e. γ ∈ Γxy the order interval [x, y] is contained in Ky

x(γ) modulo a negligible H1

set. �

Lemma 4.31. With the notation introduced in Definition 4.28, let a ∈M, σ ∈Ma be
given, let [x, y] be a given order interval. Then for σ-a.e. γ ∈ Γxy it results Ky

x(γ) ⊂
[x, y] H1 a.e..

Proof. We consider the set C = {(γ, z) ∈ Γxy × (T0 \ [x, y]) | z ∈ Ky
x(γ)}. We observe

that, by the definition of ≤a, for any fixed z the section Cz satisfies σ(Cz) = 0. Then
by applying Fubini Theorem we get, for σ− a.e.γ ∈ Γxy, H1(Ky

x(γ))∩ (T0 \ [x, y]) = 0.
By Remark 4.29 we have that Ky

x(γ) ⊂ [x, y], H1-a.e. �

Corollary 4.32. With the notation introduced in Definition 4.28, let a ∈ M and let
[x, y] be a given order interval for ≤a. Then for every σ ∈ Ma, for σ a.e. γ1, γ2 ∈ Γxy
it results Ky

x(γ1) = Ky
x(γ2).

Proof. By applying the two previous lemmas we have Ky
x(γ1) = Ky

x(γ2) H1-a.e.. Since
the curves γi are continuous, by employing a straightforward continuity arguments we
reach the thesis. �

Corollary 4.33. Let a ∈ M, σ ∈Ma be given, let [x, y] be a given order interval and
let Γxy ⊂ Γ the set of curves connecting x and y. Then for σ a.e. γ ∈ Γxy it results
Ky
x(γ) = [x, y].

Proof. The thesis follows from Corollary 4.32 by the definition of flow ordering and by
Theorem 4.26. �
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Corollary 4.34. Let a ∈ M, σ ∈ Ma be given. Then every order interval is a
connected compact set with finite H1 measure.

Corollary 4.35. If x ≤a y then the order interval [x, y] is isomorphic to a closed
bounded interval of R.

Lemma 4.36. Let C be a given simple oscillating chain with respect to ≤a with more
than two terms. By keeping the notation in Definitions 3.88 and 3.103 we have, for
every i,

H1(Si \
⋃
i6=j

Sj) > 0.

Proof. If i and j are non-close indexes then Si ∩ Sj = ∅ by Proposition 3.105. Note
that xi ∈ Si−1 ∩ Si 6= ∅ and xi+1 ∈ Si ∩ Si+1 6= ∅ and that, by Corollary 4.34, Si is
connected, Si+1 ∩Si−1 = ∅ by Proposition 3.105 and Si+1 and Si−1 are compact. Then
by using Proposition 3.105 we have

H1(Si \
⋃
i6=j

Sj) = H1(Si \ (Si+1 ∪ Si−1)) ≥ dist(Si+1, Si−1) > 0.

�

Theorem 4.37. (Strong no-cycle property) Let a ∈ M and T0 given by (4.43). Then
the ordered set (T0,≤a) satisfies the strong no-cycle property (Definition 3.100).

Proof. By Corollary 4.27 the ordered set (T0,≤a) enjoys the weak no-cycle property.
If (T0,≤a) does not enjoy the strong no-cycle property then by Proposition 3.105 we
can find in such a set a simple oscillating chain having at least four terms. We fix such
an oscillating chain C = (xi)i∈In . By applying Lemma 4.21 we deduce the existence of
σ ∈ Ma such that, for every i, there is a set Γi with mi = σ(Γi) > 0 made of curves
connecting xi to xi+1. Let c = mini mi. We claim that for i 6= j we have σ(Γi∩Γj) = 0,
as follows from Remark 4.20 because two terms of the chain which are not close are
not comparable. Let σi = σ Γi and σ0 = σ −

∑n
i=1 σi. Then mσ =

∑n
i=0mσi

. For
i > 0, [a, b] ⊂ R, we define the functions τ 1

i , τ
2
i : Γi → [a, b] as follows

τ 1
i : γ 7→ inf{t ∈ [a, b] | γ(t) ∈ {xi, xi+1}},
τ 2
i : γ 7→ sup{t ∈ [a, b] | γ(t) ∈ {xi, xi+1}}.

By Remark 3.70 we have that τ 1
i and τ 2

i induce three complementary truncations of σi,
say σ1

i , σ
2
i , σ

3
i , hence for every i: mσi

= mσ1
i
+mσ2

i
+mσ3

i
, H1-a.e. (see Remark 3.70).

By additivity, setting for j = 1, 2, 3 σj =
∑n

i=1 σ
j
i , we get that the measure

∑n
i=1 σi

is decomposed (through the previous mappings) in the complementary truncations
σ1, σ2, σ3. For every i ≥ 1 let

σ±i =
mi ± (−1)ic

mi

σi2.
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Observe that for every i the measures σ2
± =

∑n
i=1 σ

±
i and σ2

0 have the same marginals
and so σ2

± are two competitors of σ2 . Let σ± be the sum of σ0 with the composition
of σ2

± with σ1 and σ3. We have that both σ+ and σ− are competitors of σ and that
σ = 1

2
(σ+ + σ−), so we have mσ(x) = 1

2
(mσ+(x) + mσ−(x)) = a for H1-a.e. x ∈ RN .

By the concavity of the functional we have

J3
α(σ) ≥ 1

2
J3
α(σ

+) +
1

2
J3
α(σ

−), (4.44)

where the equality holds if and only if mσ+ = mσ− H1-a.e.. Let us show that this last
case does not hold. Indeed, let i be even. On the set Γi \

⋃
j 6=i Γj we have mσ+ > mσ−

and this set is not H1-negligible by Lemma 4.36. So the strict inequality holds true in
(4.44), in contradiction to the minimality of σ. �

Definition 4.38. We say that a sequence of geometric flow curves (Gn)n∈N is linked
if for every n ≥ 1 Gn ∩

⋃n−1
i=0 Gi 6= ∅.

Lemma 4.39. Let (Gn)n∈N be any linked sequence of geometric flow curves. Then
∀n ∈ N: G = ∪nk=0Gk is flow connected.

Proof. We proceed by induction on n. If n = 0 the thesis obviously holds. Let us
suppose that the thesis holds for a certain value of n and fix x, y ∈ ∪n+1

i=0 Gi such that
x ∈ ∪ni=0Gi, y ∈ Gn+1. By Definition 4.38 we have that there exists z ∈ Gn ∩ ∪ni=0Gi

and, by the induction hypotheses, there exists an oscillating chain C connecting x, z
in ∪ni=0Gi. Since z also is connectible to y on Gn+1, the thesis follows. �

Theorem 4.40. Let (Gn)n∈N be any linked sequence of geometric flow curves. Then
for every n ∈ N the set Gn ∩ ∪n−1

i=0 Gi is an order interval with respect to ≤a, i.e. it is
a geometric flow curve.

Proof. Let x, y ∈ Gn ∩ ∪n−1
i=0 Gi. By Lemma 4.39 x, y ∈

⋃n−1
i=0 Gi are extreme points of

an oscillating chain whose support is contained in
⋃n−1
i=1 Gi and which, by Remark 4.25

can be assumed to be optimal. Then the strong no-cycle property (Theorem 4.37)
says that such a chain has only the extreme points x and y. Indeed these points
are comparable by virtue of the weak no-cycle property because they are in the same
geometric flow curve Gn. Since the support of the chain is contained in

⋃n−1
i=0 Gi, then

[x, y] ⊂
⋃n−1
i=0 Gi. Since by definition [x, y] ⊂ Gn, it follows that [x, y] ⊂ Gn ∩

⋃n−1
i=0 Gi.

Finally, by Corollaries 4.33 and 4.34 we see that Gn ∩
⋃n−1
i=0 Gi has a minimum and a

maximum so it is a geometric flow curve. �

5. Equivalence of the irrigation models

5.1. Equivalence between J2
α and J3

α.

Theorem 5.1. For every α ∈]0, 1[ the following properties hold true.
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1) infσ∈Σ J
2
α = infσ∈Σ J

3
α.

2) The functionals J2
α and J3

α have the same minima.

Proof. 1) By (4.36) we deduce infσ∈Σ J
3
α ≤ infσ∈Σ J

2
α. On the other hand, let (σn)n∈N

be a minimizing sequence for J3
α, by applying Theorem 4.18 we have the existence of

a loop-free sequence (σ′n)n∈N such that, for every n ∈ N, J2
α(σ

′
n) = J3

α(σ
′
n) ≤ J3

α(σn).
Then

inf
σ∈Σ

J2
α ≤ inf

n
J2
α(σ

′
n) = inf

n
J3
α(σ

′
n) ≤ inf

n
J3
α(σn) = inf

σ∈Σ
J3
α.

2) Let σ ∈ argminJ2
α, then by (4.36) and by assertion 1) we have that J3

α(σ) ≤
J2
α(σ) = infσ∈Σ J

2
α = infσ∈Σ J

3
α and so σ ∈ argminJ3

α. On the other hand, if σ ∈
argminJ3

α then it is minimal with respect to≤D and by Theorem 4.15 and Corollary 3.66
it is loop-free and thus J2

α(σ) = J3
α(σ) = infσ∈Σ J

3
α = infσ∈Σ J

2
α. �

5.2. Existence of minimizers. A simpler version of Theorem 3.21 leads to the fol-
lowing statement.

Lemma 5.2. Let I ⊂ R be a compact interval. Then the mapping (γ, x) 7→ aγ(x) is
upper semicontinuous in ΓI × RN .

Proof. Let us take a sequence (γn, xn)n∈N ⊂ ΓI × RN so that (γn, xn) → (γ, x). If
aγn(xn) = 0 definitively, we have done. Otherwise, if there are infinitely many n ∈ N
so that aγn(xn) = 1, namely there exist tn so that γn(tn) = xn. From the sequence
(tn)n∈N we can extract a subsequence, relabeled as (tn)n∈N, so that tn → t ∈ I. By
(locally) uniform convergence we have γn(tn) = xn → x = γ(t) and so aγ(x) = 1. �

Lemma 5.3. Let (σn)n∈N ⊂ Σ so that J2
α(σn) ≤ c, for every n ∈ N for a given positive

constant c and so that σn ⇀ σ. Then s2
σ ≤ Γ− lim infn s

2
σn

.

Proof. Let us take x̄ ∈ RN and a sequence xn → x̄. Then, by applying the previous
lemma and item 2) of Theorem C.3, since σn ⊗ δxn ⇀ σ ⊗ δx̄, we get

aσ(x̄) =

∫
(Γ,σ)

aγ(x̄)dγ =

∫
(Γ′×RN ,σ⊗δx̄)

aγ(x)dγdx

≥ lim sup
n

∫
(Γ′×RN ,σn⊗δxn )

aγ(x)dγdx = lim sup
n

aσn(xn)

and so, by (4.26), since α < 1, we have

s2
σ(x̄) ≤ lim inf

n
s2
σn

(xn).

Finally, by the arbitrariness of xn → x̄, we have the thesis. �

Lemma 5.4. Let σn ⇀ σ. Then, if γn → γ we have∫
I

s2
σ(γ(t))|γ′(t)|dt ≤ lim inf

n

∫
I

s2
σn

(γn(t))|γ′n(t)|dt.
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Proof. By Lemma D.4 we know that lγn lower semiconverges to lγ and by using the
previous lemma we know that s2

σ ≤ Γ− lim inf s2
σn

, so we can apply 3) of Theorem C.3
from which the thesis follows. �

Lemma 5.5. For any σ ∈ Σ let us define the mapping

fσ : γ 7→
∫
I

s2
σ(γ(t))|γ′(t)|dt.

If σn ⇀ σ then fσ ≤ Γ− lim infn fσn.

Proof. The thesis follows from the previous lemma, passing to the infimum for all the
sequences γn → γ. �

The following result easily follows from the previous lemmas by Theorem C.3, 3).

Corollary 5.6. The functional J2
α is lower semicontinuous in Σ, i.e. for every σn ⇀ σ

it results J2
α(σ) ≤ lim infn J

2
α(σn).

Theorem 5.7. For every α ∈]0, 1[ the functional J2
α admits minimizers.

Proof. If J2
α = +∞ then the thesis trivially follows since any particle motion σ can

be considered to be a minimizer. Then we work with particle motions σ such that
J2
α < +∞ which trivially implies (since aσ ≤ 1) that L(γ) < +∞ for σ-a.e. γ. Since J2

α

is asynchronous then it can be evaluated on the set of length parametrized measures
on R+. If (σn)n∈N is any minimizing sequence, by Theorem 3.84 we have compactness
since (σn(0))n∈N = µ is tight. By Corollary 5.6 we have that J2

α is lower semicontinuous
and so we get the thesis. �

5.3. Synchronization.

Definition 5.8. Let σ ∈ Σ be given. We say that σ is synchronized if J1
α(σ) = J2

α(σ).

Definition 5.9. Let σ ∈ Σ be given. We say that σ is synchronizable if there exists
σ ∼=S̃ σ which is synchronized.

Theorem 5.10. (Discrete synchronization) Let µ, ν ∈ P(RN) be countably discrete
measures and let σ be a minimizer of J2

α in Σ(µ, ν). Then σ is synchronizable.

Proof. Let µ =
∑

imiδxi
, ν =

∑
jm

′
jδyj

. As a first step we replace σ with a (finitely or

countably) discrete measure equivalent to σ for ∼=S̃ (see Definition 3.39). To this aim,
for every i, j, we set Γij = {γ ∈ Γ[a,b] | γ(a) = xi, γ(b) = yj}, mij = σ(Γij). Let I be
the set of pairs (i, j) such that mij > 0. By virtue of Corollary 4.33, ∀(i, j) ∈ I, σ-a.e.
γ ∈ Γij enjoys the property γ([a, b]) = [xi, yj] and so γ ∼=S γij for a fixed γij ∈ [γ]S.
Then we have σ ∼=S̃ σ

′ =
∑

(i,j)∈I mijδγij
. We proceed by selecting a sequence (γn)n∈I

according to the following rule.
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Let γ0 be one of the curves γij such that mij is maximum. Given γn, let

In =

{
(i, j) ∈ I | γij 6= γk ∀k ≤ n and γij([a, b]) ∩

n⋃
k=0

γk([a, b]) 6= ∅

}
.

If In 6= ∅, we choose as γn+1 one of the curves γij with (i, j) ∈ In, such that the corre-
sponding massmij, which will be denoted bymn+1, is such thatmn+1 = max(i,j)∈In mi,j.
By proceeding recursively in such a way, we get a (possibly finite, if we find n ∈ N
such that In = ∅) sequence (γn)n∈I and we claim that every curve γij which has not
been selected as one of the curves γn satisfies γij([a, b]) ∩ γn([(a, b)]) = ∅ for every n.
Indeed, if we have selected a finite sequence and n is the last index, we should have
In = ∅. Then the assertion trivially holds, otherwise (i, j) ∈ In 6= ∅. If γn has been
defined ∀n ∈ N then γij([a, b]) ∩

⋃
n γn([(a, b)]) 6= ∅ implies the existence of n1 such

that γij([a, b]) ∩ γn1([(a, b)]) 6= ∅. By denoting with mn the mass carried by the curve
γn for every n ∈ N, since

∑
n∈Nmn ≤ 1 then mn → 0 and so there exists n2 such that

for every n > n2 one has mn < mij. By setting n = max{n1, n2}, we can conclude that
γij should have been selected instead of γn+1 and so the claim is proved.

Now we pass to select a new sequence of curves according to the previous rule. No
curve of the new sequence intersects any curve of the previous one. Then we keep up to
select sequences in the same way, a simpler variant of the argument used to prove the
above claim shows that after an at most countable sequence of sequences we employ
all the curves γij. Afterward we go to synchronize each one of the selected sequences.
Since any two curves belonging to different sequences do not intersect, they do not
need to be synchronized among themselves.
Let us show how to synchronize any selected sequence (γn)n∈I . We recursively proceed
by synchronizing all the curves γi by only using injective parameterizations and we
don’t care if they are defined on possibly different intervals since in the end of the
construction we can extend them by a constant value on a common interval. Thus,
given k, we can assume that all the curves γj with j < k have been synchronized.
For every i let Gi = γi([a, b]). By Theorem 4.40, the set G = Gk ∩

⋃
i≤kGi is an

order interval with respect to ≤a, since all the parameterizations γi are injective, each
one of them admits an inverse Ti : Gi ∩ Gk → γ−1

i (Gi ∩ Gk) ⊂ R. By virtue of the
synchronization of the curves γi, all the mappings Ti are coherent, so they admit a
common extension T : G→ R.
We claim that T is a strictly monotone mapping from the flow order to the natural
order of R. Indeed by Corollary 4.35 G is isomorphic to an interval of R and ∀i Gi∩Gk

is isomorphic to a (possibly empty) subinterval. Since for every i Ti := T|Gi∩Gk
is

strictly increasing, then the claim follows from elementary arguments. Therefore T is
injective and its inverse γ = T−1 : T (G) → G is well defined. Since every γi is strictly
monotone from the order of R to the flow order, the sets T (Gi) = Ti(Gi) are closed
intervals covering T (G). On each one of such intervals γ ≡ γi, is absolutely continuous,
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so γ is absolutely continuous. Then γ is a parameterization of G on T (G) which is
bounded and so it can be extended to a parameterization γk of Gk on a larger bounded
interval. �

Remark 5.11. The above theorem has been stated for a minimizer σ of J2
α because

this is the most natural context. However it can be extended without any effort (the
same proof works) to the more general case in which σ is a truncation of a minimizer
σ′. Indeed, in such a case, every curve Gi considered in the proof is also a geometric
flow curve induced by σ′.

Under the assumption that σ is concentrated on non-constant orbits, which will be
kept until the proof of the following Theorem 5.16, we state the following variant of
the Pruning Theorem ([29, Theorem 4.2]).

Theorem 5.12. Let σ ∈ Σ(µ, ν) be a given particle motion concentrated on non-
constant orbits. There exists a sequence (σn)n∈N of truncations of σ with (countably)
discrete marginals µn and νn ∈ P(RN) such that σn ⇀ σ.

Before proving the previous theorem we establish some preliminary results. Let
I = [a, b]. For a.e. γ ∈ Γ let us define the stopping time maps

T−(γ) = sup{t ∈ [0, 1] | γ(s) = const. ∀s ∈ [a, t]},
T+(γ) = inf{t ∈ [0, 1] | γ(s) = const. ∀s ∈ [t, b]}.

Fix ε > 0 and let A be the set of the Borel measurable subsets A of Γ such that there
exists a measurable mapping τ− : A → [a, b], T− ≤ τ− ≤ T− + ε, and a countable set
X such that for σ-a.e. γ ∈ A: γ(τ−(γ)) ∈ X.

Lemma 5.13. A is closed with respect to the countable union.

Proof. Let (An)n∈N be any sequence in A, for every n ∈ N let (τ−)n be as above defined.
Let A =

⋃
nAn, we define the function

τ(γ) = τk(γ) if k = min{n ∈ N | γ ∈ An}.
The map τ is measurable since for every n An and (τ−)n are measurable. �

Corollary 5.14. There exists A ∈ A which is maximum for inclusion, modulo a σ-
negligible set.

Lemma 5.15. σ(A) = 1.

Proof. If the assertion does not hold the set Γ′ = Γ\A has a positive measure σ(Γ′) > 0.
Let, for every δ ≤ ε, Tδ = inf{T−(γ) + δ, b} and let σ′ be the Tδ-left truncation of
σ Γ′. For δ small enough, since σ is concentrated on nonconstant orbits, σ′ cannot be
concentrated on constant orbits. Moreover we have J2

α(σ
′) ≤ J2

α(σ) and so J2
α(σ

′) < +∞
which in turn implies that there exists x ∈ RN such that aσ′(x) > 0. Notice that aσ′(x)
actually is the measure of the set A′ of the curves γ ∈ Γ′ such that γ(t) = x for some
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t ∈ [T−(γ), T−(γ) + ε]. By Proposition 3.69 we can define a Borel measurable function
ϑ : A′ → R such that for every γ ∈ A′: γ(ϑ(γ)) = x. Thus the existence of such a
function shows that A′ ∈ A and this is in contradiction to σ(A′) > 0, A′ ∩ A = ∅ and
to the maximality of A established in Corollary 5.14. �

Proof of Theorem 5.12. Fix ε > 0. By Lemma 5.15 fix τ± : Γ → [a, b] with T− ≤
τ− ≤ T− + ε and T+ − ε ≤ τ+ ≤ T+ such that, if σ is the (τ−, τ+)-truncation of σ, the
marginals are discrete measures. Now, since for ε → 0 σ weakly converge to σ, the
thesis follows. 2

Theorem 5.16. (Synchronization Theorem) If σ ∈ Σ(µ, ν) is a minimizer for J2
α then

it is synchronizable.

Proof. Firstly we observe that the restriction of J2
α to particle motions concentrated

on constant orbits has a density which is different from zero at most on a countable
set and, consequently, this set of particle motions does not affect the value of J2

α and
J1
α. Indeed, by (2.7) we have σ = σm + σs and by (4.25), (4.26), (4.29) we have
J2
α(σ) = J2

α(σm), J1
α(σ) = J1

α(σm). So, it is not restrictive to prove the thesis by
assuming σ is concentrated on non-constant orbits. Then we can apply Theorem 5.12
and so we have a sequence (σn)n∈N of truncations of σ with countably discrete marginals
µn and νn ∈ P(RN) such that σn ⇀ σ. By applying Theorem 5.10 (see Remark 5.11)
to such a sequence we get a new sequence (σ′n)n∈N such that for every n σ′n

∼=S̃ σn (see
Definition 3.39) and so

J1
α(σ

′
n) = J2

α(σ
′
n) = J2

α(σn) ≤ J2
α(σ).

By applying [29, Corollary 3.3], for every natural n we can select σ′′n so that σ′′n
∼=S

σ′n
∼=S̃ σn and σ′′n ⇀ σ′. By applying Proposition 3.44 and Proposition 3.10 we deduce

σ′ ∼=S̃ σ.
By [29, Lemma 4.5] we know that J1

α is lower semicontinuous and so, from σ′′n ⇀ σ′

we have

J1
α(σ

′) ≤ lim inf
n→∞

J1
α(σ

′′
n) = lim inf

n→∞
J1
α(σ

′
n) = lim inf

n→∞
J2
α(σn) ≤ J2

α(σ).

Therefore we can conclude that J1
α(σ

′) ≤ J2
α(σ) = J2

α(σ
′) with σ′ ∼=S̃ σ. �

5.4. Equivalence of the irrigation functionals. The previous results concerning
the equivalence of the irrigation functionals are summarized in the following statement.

Theorem 5.17. We have

M = argminΣ(µ,ν) J
3
α = argminΣ(µ,ν) J

2
α 6= ∅,

such a set is closed with respect to ∼=S̃ and, more precisely, it is the closure of argminΣ(µ,ν) J
1
α

with respect to ∼=S̃. Finally, if µ = δS then

argminΣ(µ,ν) J
1
α = argminΣ(µ,ν) J

0
α
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and therefore
inf

Σ(µ,ν)
J0
α = inf

Σ(µ,ν)
J1
α = inf

Σ(µ,ν)
J2
α = inf

Σ(µ,ν)
J3
α.

Appendix A. Countably inductive sets

Definition A.1. We shall say that a partially ordered set (E,≤) is countably inductive
if every increasing sequence in E has an upper bound.

Let (E,≤) be a countably inductive set and let f : E → R be a given bounded
function. Let us define the mapping s : E → R as follows

∀x ∈ E : s(x) = sup
y≥x

f(y). (A.45)

Note that s is a monotone decreasing function and that for every x ∈ E: f(x) ≤ s(x),
where the equality holds if x is a maximal element. Moreover, if f is a strictly increasing
function, then s(x) ≤ f(x) is equivalent to the maximality of x.

Theorem A.2. If (E,≤) is a countably inductive set and there exists a strictly in-
creasing function f : E → R, then for every x ∈ E there exists m ∈ E such that x ≤ m
and m is maximal.

Proof. Of course it is not restrictive to assume f bounded. Given x ∈ E, let us
recursively choose an increasing sequence (xn)n∈N by setting x0 = x and by taking, for
any n ≥ 1, using the definition of s, an element xn ≥ xn−1 so that

f(xn) > s(xn−1)−
1

n
. (A.46)

Since (E,≤) is countably inductive, the sequence (xn)n∈N has an upper bound m and
since s and f are monotone we have from (A.46) s(m) ≤ f(m). Thus m is maximal.

�

Appendix B. Integration Order Inequality

Definition B.1. Let (E,B) be a measurable space. We shall say that a positive measure
µ is semifinite if for every measurable subset A ∈ B such that µ(A) > 0 there exists a
measurable subset X ⊂ A such that 0 < µ(X) < +∞.

Note that the semifiniteness property is implied by the σ-finiteness property. A re-
markable example of a semifinite measure which is not σ-finite is given by the Hausdorff
measure Hα on the σ-algebra of Borel subsets of the euclidean space RN when α < N
(see [30, Theorem 8.13]). The result is sharp in the sense that Hα is not semifinite on
the σ-algebra of Carathéodory measurable sets (see also [22, Corollary 439H]).

Lemma B.2. If µ is a semifinite positive measure on (E,B) and if A ∈ B, µ(A) = +∞,
∀a ∈ R+ there exists X ∈ B, X ⊂ A such that a < µ(X) < +∞.
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Proof. If the thesis is not true, we have that a = supµ(X) < +∞, where the sup is
taken over the set {X ∈ B | X ⊂ A, µ(X) < +∞}. So ∀n ∈ N there exists Xn ∈ B such
that Xn ⊂ A, a − 1

n
≤ µ(Xn) ≤ a and one can easily prove that X =

⋃
nXn satisfies

X ∈ B, X ⊂ A and µ(X) = a. So µ(A \ X) = +∞ and therefore the semifiniteness
property implies that there is Y ∈ B, Y ⊂ A \X with 0 < µ(Y ) < +∞. By additivity,
a < µ(X ∪ Y ) < +∞, in contradiction to the definition of a. �

Let (E,B) be a measurable space and letM(E) be the space of the positive measures
defined on the σ-algebra B. Given µ ∈M(E), we introduce the following notation

Fµ = {ν ∈M(E) | ν ≤ µ, ν(E) < +∞}. (B.47)

Lemma B.3. If µ is a positive semi-finite measure then it is the supremum of a family
of measures with finite masses, i.e. µ = supFµ.

Proof. Let A ∈ B and a < µ(A). By Lemma B.2 there is X ⊂ A with a < µ(X) <
+∞. So we have a < µ(X) = µ X(A) ≤ supν∈Fµ

ν(A). By the arbitrariness of a,
µ(A) ≤ supν∈Fµ

ν(A). �

Proposition B.4. Let (E,B) be a measurable space, µ ∈M(E) and let f : E → R be
a positive and measurable mapping. If µ is semi-finite, then∫

E

f dµ = sup
ν∈Fµ

∫
E

f dν. (B.48)

Proof. Since µ = supFµ, then for every measurable subset A, by taking f = 1A we
have ∫

E

f dµ = µ(A) = sup
ν∈Fµ

ν(A) = sup
ν∈Fµ

∫
E

f dν.

If s : E → R is any positive measurable step function, by additivity we get

sup
ν∈Fµ

∫
E

s dν =

∫
E

s dµ.

Then, given any positive measurable function f , we get by definition∫
E

f dµ = sup
s≤f

∫
s dµ = sup

s≤f
sup
ν∈Fµ

∫
E

s dν ≤ sup
ν∈Fµ

∫
E

f dν,

where the sup is taken on all the positive measurable step functions s ≤ f . �

Theorem B.5. (Integration Order Inequality) Let (E1,B1, µ), (E2,B2, ν) be two mea-
sure spaces. Assume µ is semi-finite, ν σ-finite and let f : E1 × E2 → R+ be B1 × B2

measurable. Then∫
E1

(∫
E2

f(x, y) dν

)
dµ ≤

∫
E2

(∫
E1

f(x, y) dµ

)
dν. (B.49)
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Proof. Since µ is semi-finite, we have from Proposition B.4∫
E1

(∫
E2

f(x, y) dν

)
dµ = sup

µ′∈Fµ

∫
E1

(∫
E2

f(x, y) dν

)
dµ′.

By applying Fubini-Tonelli Theorem ([34, Theorem 8.8]) to the integral on the right
hand side, we get∫

E1

(∫
E2

f(x, y) dν

)
dµ = sup

µ′∈Fµ

∫
E2

(∫
E1

f(x, y) dµ′
)
dν ≤

∫
E2

(∫
E1

f(x, y) dµ

)
dν.

�

Let us note that in general the reverse inequality of (B.49) does not hold (see [34,
Counterexample 8.9 b)] )

Appendix C. Semiconvergence of measures

Definition C.1. Let (µn)n∈N and µ be given Radon measures on a metric space X.
We shall say that µn is lower semiconvergent (respectively upper semiconvergent) to µ
if the following conditions respectively hold:

Lsc) For every open set A ⊂ X: µ(A) ≤ lim inf
n→∞

µn(A).

Usc) For every closed set C ⊂ X: µ(C) ≥ lim sup
n→∞

µn(C).

Notice that if µ and (µn)n∈N are probability measures then Lsc and Usc are both
equivalent to the narrow convergence (see [14, Theorem 11.1.1]), whereas, in general,
the narrow convergence is equivalent to Lsc and Usc simultaneously satisfied (see [28]).

Let us recall (see [12, Definition 4.1]) that the Γ-lower limit of a sequence of functions
(Fh)h∈N from a topological space X into R is defined as the function

(Γ− lim inf
h→∞

Fh)(x) = sup
U∈N (x)

lim inf
h→∞

inf
y∈U

Fh(y), (C.50)

where N (x) denotes the set of all open neighborhoods of x in X. The following char-
acterization of the Γ-lower limit will be useful in the sequel.

Proposition C.2. Let (Fh)h∈N be a sequence of functions from a topological space X
in R and let F = Γ− lim infh→∞ Fh. Then

F = sup{ϕ : X → R | ϕ l.s.c., ϕ ≤ Fh def.} = sup
k∈N

ϕk, (C.51)

where ϕk = sc−(infh≥k Fh) and sc−f denotes the lower semicontinuous envelope of f .



IRRIGATION PROBLEMS 48

Proof. Let us observe that by (C.50) if (Gh)h∈N is a sequence of functions from X into
R such that Gh ≤ Fh definitively, then

Γ− lim inf
h→∞

Gh ≤ Γ− lim inf
h→∞

Fh.

Moreover we know (see [12, Remark 4.1]) that if the functions Fh(x) are a constant
sequence, i.e. Fh(x) = f(x) ∀x ∈ X and ∀h ∈ N, then Γ − lim infh→∞ Fh = sc−f .
Therefore if ϕ : X → R is any lower semicontinuous function such that ϕ ≤ Fh
definitively, then

ϕ(x) ≤ Γ− lim inf
h→∞

Fh. (C.52)

We fix x ∈ X such that F (x) < +∞ and ε > 0. By (C.50) there exists an open set
U ∈ N (x) such that

lim inf
k→∞

inf
y∈U

Fk(y) ≥ F (x)− ε

and so there is k ∈ N such that ∀k > k: infy∈U Fk(y) > F (x)− ε.
Let

ϕ(x) =

{
F (x)− ε if x ∈ U
−∞ if x 6∈ U.

We have ϕ ≤ Fk ∀k > k and, since ϕ is lower semicontinuous, we have ϕ ≤ ϕk. So
∀x ∈ X and ∀ε > 0 there exists k ∈ N such that F (x) − ε ≤ ϕk(x) which implies by
the arbitrariness of x and ε

F ≤ sup
k∈N

ϕk. (C.53)

The thesis follows by (C.52) and (C.53). �

Theorem C.3. Let (µn)n∈N and µ be given Radon measures on a metric space X. The
following assertions are equivalent.

1) µn is lower semiconvergent to µ;

2) For every positive lower semicontinuous f : X → R:

∫
X

f dµ ≤ lim inf
n→∞

∫
X

f dµn;

3) For every (fn)n∈N and f positive functions defined on X and satisfying the
inequality: f≤Γ−lim inf

n→∞
fn, the following inequality holds true∫

X

f dµ ≤ lim inf
n→∞

∫
X

fn dµn.

Proof. 1) ⇒ 2). Let f : X → R be positive and lower semicontinuous. By definition,∫
X
f dµ = sup

∫
X
s dµ, among the simple functions s ≤ f . Since f is lower semicon-

tinuous we can easily restrict to consider s =
∑

i ci1Ai
, where ci ≥ 0 and the Ai are
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open sets. Then by Definition C.1∫
X

s dµ =
∑
i

ciµ(Ai) ≤ lim inf
n

∑
i

ciµn(Ai)

= lim inf
n

∫
X

s dµn ≤ lim inf
n→∞

∫
X

f dµn.

2) ⇒ 3). Let ϕ : X → R be any lower semicontinuous function such that ϕ ≤ fn
definitively. Then by item 2)∫

X

ϕ dµ ≤ lim inf
n→∞

∫
X

ϕ dµn ≤ lim inf
n→∞

∫
X

fn dµn.

Therefore by (C.51) and by monotone convergence∫
X

f dµ ≤
∫
X

sup
k→∞

ϕk dµ = lim
k→∞

∫
X

ϕk dµ ≤ lim inf
n→∞

∫
X

fn dµn.

3) ⇒ 1). Let A ⊂ X be an open set, then the characteristic function 1A is lower
semicontinuous. So if we set, for every n ∈ N, fn = 1A, then we have by [12, Remark
4.1] 1A = Γ−lim infn→∞ fn. So by 3) we get µ(A) =

∫
X

1Adµ ≤ lim infn→∞
∫
X

1Adµn =
lim infn µn(A). �

We notice that in [8, Proposition 5.5] it was essentially proved that if X is compact
and µn weakly converges to µ, than statement 3) of the previous theorem holds true. It
is worth comparing this result with Fatou Lemma: the pointwise limit of the functions
is replaced by Γ-lower limit but one can work with a weakly converging sequence of
measures instead of a fixed measure.

Appendix D. Length measures

In this section we will discuss the two notions of length measures which have been
used in this paper. Let us recall that H1 denotes the one-dimensional Hausdorff mea-
sure ([21], [30]).
Given an orbit γ, we introduce the following Borel measure, used in Section 3.

Definition D.1. For any γ ∈ Γ(I) we define the local orbit-length lγ as follows

∀B ∈ B(RN) : lγ(B) =

∫
γ−1(B)

|γ′(t)|dt. (D.54)

The total length of γ is given by

L(γ) = lγ(RN). (D.55)

Proposition D.2. For every γ ∈ Γ(I), lγ � H1 and
dlγ
dH1

= mγ.
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Proof. The thesis follows by applying the Area Formula (see [21, Theorem 3.2.6]).
Indeed, for any B ∈ B(RN), let A = γ−1(B), the Area Formula gives

lγ(B) =

∫
A

|γ′(t)|dt =

∫
RN

N(γ|A, x)dH1 =

∫
B

mγ(x)dH1, (D.56)

where N(γ|A, x) = mγ|A
(x) is the the multiplicity function. �

Definition D.3. The restriction H1 B to any B ∈ B(RN), defined by

H1 B(A) = H1(B ∩ A), ∀A ∈ B(RN),

will be called local set-length. For B = γ(I), γ ∈ Γ(I), we introduce the notation
hγ(A) = [H1 γ(I)](A).

The local set-length is absolutely continuous with respect to H1 and we have

H1 B(A) =

∫
A

1BdH1,

that is 1B is the Radon-Nikodym derivative of H1 B. Therefore

dhγ
dH1

= 1γ(I) = aγ. (D.57)

Proposition D.4. If γn is locally uniformly convergent to γ then lγn is lower semi-
convergent to lγ.

Proof. Let B ⊂ RN be a fixed open set and let γn → γ locally uniformly. Since γ−1(B)

is an open set, we can set γ−1(B) =
⋃
h

◦
Kh, where (Kh)h∈N is an increasing sequence

of compact sets. The locally uniform convergence of γn implies

γ−1(B) ⊂
⋃
n

◦︷ ︸︸ ︷⋂
i≥n

γ−1
i (B) .

Therefore, for every h ∈ N there exists nh ∈ N such that Kh ⊂ γ−1
n (B) for every

n ≥ nh. For every fixed Kh we can state∫
◦
Kh

|γ′(t)| dt ≤ lim inf
n→∞

∫
◦
Kh

|γ′n(t)| dt ≤ lim inf
n→∞

∫
γ−1

n (B)

|γ′n(t)| dt = lγn(B).

By passing to the supremum with respect to h we get the thesis. �

Given any subset X ⊂ RN , we define the distance function dX(x) = d(x,X). There
exists a strict relation between the distance function and the Hausdorff metric d,
namely

‖ dX − dY ‖∞,RN = sup
x∈RN

|dX(x)− dY (x)| = d(X, Y ).
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Definition D.5. We shall say that a sequence (Kn)n∈N of subsets of RN locally con-

verges in the Hausdorff distance to a set K, in symbols Kn
dloc−→ K, if (dKn)n∈N lo-

cally uniformly converges to the function dK, i.e. if, for every compact C ⊂ RN ,
‖ dKn − dK ‖∞,C→ 0 as n→∞.

Analogously to Proposition D.4 we prove the following statement.

Proposition D.6. (Local Golab Theorem) Let (Kn)n∈N ⊂ RN be any sequence of

connected sets such that Kn
dloc−→ K and let µn = H1 Kn ∀n ∈ N, µ = H1 K. Then

µn is lower semiconvergent to µ.

Proof. We refer to the proof of [32, Theorem 10.19] (Golab Theorem) where it is proved
that the connectedness implies the uniform concentration property with respect to one
dimensional Hausdorff measure, which lets to see Golab Theorem as a particular case of
[32, Theorem 10.14]. Notice that such a theorem is stated in the global case (A = RN)
but, since the uniform concentration property has a local nature (it automatically
extends to the traces on any open set), then also the thesis trivially holds in the local
case. �

Remark D.7. Regarding the previous theorem, we also refer to the papers [28] and
[13] for a more explicit (in this sense) statement of [32, Theorem 10.14] and to [8,
Theorem 3.3].

Notice that though uniform convergence of orbits implies Hausdorff convergence of
the trajectories, in general it is not true that local uniform convergence of orbits implies
local Hausdorff convergence of the trajectories. Nevertheless, we get lower semiconti-
nuity of the local set-length hγ by arguing as follows.

Let B ⊂ RN be any given open set. For every compact J ⊂ I we define the mapping
FJ : Γ → R as follows:

FJ : γ 7→ H1(γ(J) ∩B).

Proposition D.8. For every open set B ⊂ RN the mapping

F : γ 7→ H1(γ(I) ∩B) = sup{FJ(γ) | J ⊂ I, J compact} (D.58)

is lower semicontinuous with respect to the locally uniform convergence.

Proof. Since the local uniform convergence of the orbits implies the uniform conver-
gence of the restrictions to any compact set J and, subsequently, the Hausdorff conver-
gence of the image set γ(J), by the local semicontinuity of the length (Proposition D.6)
we can state that for every J the mapping FJ is l.s.c. with respect to the locally uniform
convergence. The thesis follows. �
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The previous notions of length measures lead to corresponding notions in terms of
particle motions.

Definition D.9. Let σ ∈ Σ be a non-spread particle motion. We define the weighted
local orbit-length lσ as follows

∀B ∈ B(RN) : lσ(B) =

∫
(Γ,σ)

lγ(B)dγ.

Proposition D.10. For every non-spread σ ∈ Σ, lσ � H1 and
dlσ
dH1

= mσ.

Proof. For any fixed Borel set B ∈ B(RN), using Proposition 3.25 and Proposition D.2,
we have, by using a H1 σ-finite track T for σ,

lσ(B) =

∫
(Γ,σ)

lγ(B)dγ =

∫
(Γ,σ)

(∫
B

mγ(x)dH1

)
dγ

=

∫
(Γ,σ)

(∫
B∩T

mγ(x)dH1

)
dγ

=

∫
B∩T

(∫
(Γ,σ)

mγ(x)dγ

)
dH1 =

∫
B

mσ(x)dH1.

�

Definition D.11. Let σ ∈ Σ be a non-spread particle motion. We define the weighted
local set-length hσ as follows

∀B ∈ B(RN) : hσ(B) =

∫
(Γ,σ)

hγ(B)dγ.

Analogously to Proposition D.10 we state the following property.

Proposition D.12. For every non-spread σ ∈ Σ, hσ � H1 and
dhσ
dH1

= aσ.

Proof. Let B ⊂ RN be any Borel set and T be a H1 σ−finite track of σ, by applying
Proposition 3.25, (D.57) and Fubini Theorem, we have, as in Proposition D.10,

hσ(B) =

∫
(Γ,σ)

H1(γ(I) ∩B) dγ =

∫
(Γ,σ)

(∫
B∩T

aγ(x) dH1

)
dγ

=

∫
B∩T

(∫
(Γ,σ)

aγ(x) dγ

)
dH1 =

∫
B

aσ(x) dH1.

�
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