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Abstract. We revisit the time-incremental method for proving existence of a quasistatic evolution
in perfect plasticity. We show how, as a consequence of a-priori time regularity estimates on the

stress and the plastic strain, the piecewise affine interpolants of the solutions of the incremental

minimum problems satisfy the conditions defining a quasistatic evolution up to some vanishing error.
This allows for a quicker proof of existence: furthermore, this proof bypasses the usual variational

reformulation of the problem and directly tackles its original mechanical formulation in terms of an

equilibrium condition, a stress constraint, and the principle of maximum plastic work.

1. Introduction

The scope of this note is to revisit and simplify the proof of existence of a quasistatic evolution
in small strain linearized perfect elasto-plasticity. This is done through the use of some a-priori time
regularity estimates. In the usual proof strategy (see [6]) such estimates are instead only available
a-posteriori, after that existence for a variational reformulation of the problem has been established.

For a better explaining, we recall both the classical and the variational formulation of the problem.
We put ourselves for simplicity in the case of no applied volume and surface forces, so that the evolution
is only driven by a prescribed boundary displacement w(t, x), usually taken in W 1,1([0, T ];H1(Ω;Rn)).
Given an open set Ω ⊂ Rn and an open subset Γ0 of ∂Ω, a quasistatic evolution is then a triple
(u(t, x), e(t, x), p(t, x)) satisfying the following conditions:

• Kinematic admissibility: denoting with Eu(t, x) the symmetrised gradient of u , one has{
Eu(t, x) = e(t, x) + p(t, x) in Ω

u(t, x) = w(t, x) on Γ0 ;

• Equilibrium condition and stress constraint: setting σ(t, x) := Ce(t, x), with C the elasticity
tensor, it holds{

div σ(t, x) = 0 in Ω , σ(t, x)ν(x) = 0 on ∂Ω \ Γ0 ,

σD(t, x) ∈ K(x) for every x ∈ Ω .

Here ν(x) is the outward unit normal to ∂Ω, σD the orthogonal projection of σ on the space
of trace-free n× n symmetric matrices Mn×n

D , and K(x) is a convex compact neighborhood

of 0 in Mn×n
D ;

• flow rule: for a.e. x ∈ Ω,
ṗ(t, x) ∈ NK(x)(σD(t, x)) ,

where at the right-hand side we have the normal cone in the sense of Convex Analysis.

By convex duality the flow rule can be equivalently replaced by Hill’s principle of maximum plastic
work:

H(x, ṗ(t, x)) = σD(t, x) : ṗ(t, x)

where H(x, ·) is the support function of the convex set K(x), accounting for the rate of plastic
dissipation, and the colon denotes the scalar product between matrices. Actually, in a rigorous
setting, the issue of correctly defining the duality product between stress and plastic strain fields is
absolutely nontrivial. It is indeed well-known since the seminal paper of Suquet [18] that p takes
in general its values in some space of vector measures, while the stress is typically not continuous.
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Anyway the issue can be overcome (see [11] and [7]). According to this weak spatial regularity of p
(and consequently of ṗ), also the definition of plastic dissipation has to be conveniently modified. In
the case of a homogeneous material, that is K(x) = K for every x , it can be defined according to the
theory of convex function of measures as

H(µ) = H
( µ
|µ|

)
|µ|

for every bounded Radon measure µ , where µ
|µ| is the Radon-Nikodym derivative of µ with respect

to its total variation µ . In the case of heterogeneous materials the issue is more involved and the
definition of a correct dissipation potential requires precise kinematic considerations on the behavior
of admissible stress fields at interfaces [7] or an abstract point of view [17].

Taking the quadratic form Q(e) := 1
2 〈Ce, e〉 associated to C as the elastic energy, and defining

the dissipation functional H(p) as the total variation of the measure H(p) on Ω∪ Γ0 the variational
formulation reinterprets the classical mechanical one within the framework of the variational theory
for rate-independent processes (see [14]). A quasistatic evolution is then regarded as the coupling of
two conditions, namely

• global stability: at each time t the triple (u(t), e(t), p(t)) minimizes Q(η)+H(q−p(t)) among
all (v, η, q) admissible for w(t);
• energy-dissipation balance: for every t

Q(e(t)) +D(0, t; p) = Q(e0) +

∫ t

0

∫
Ω

σ(s, x) :Eẇ(s, x) dtdx

where the total plastic dissipation D is defined as the H -total variation in time of p(t), seen
as a map from a time interval into the space of bounded radon measures.

We stress that this is a derivative free formulation: indeed, the usual a-priori estimates on the energy
only entail that p has bounded variation as a function of the time, while no time regularity can at a
first sight be proved for the elastic strain e . As a consequence of this, for instance, compactness of
the approximating displacement fields in the existence proof is quite a delicate point, since converging
subsequences can be in principle time dependent. Anyway, since globally stable states are unique up
to the plastic strain p , this difficulty can be overcome.

It is quite easy to prove that a classical evolution is a variational one: basically, it suffices to
integrate Hill’s principle to recover the energy balance, while the equilibrium condition and the stress
constraint are the Euler conditions for globally stable states (see for instance [6, Theorem 3.6 and
Theorem 6.1]). The converse is not that easy, since we must first prove that time derivatives exist.
This is however possible, once the energy-dissipation balance holds ([6, Theorem 5.2]).

The purpose of this note is to considerably simplify the path leading to the existence of a classical
evolution. Here we do not introduce a Yosida-regularization of the flow rule as in the classical papers
[9, 13, 18] and we instead revisit the time-incremental minimization scheme used in the existence
proofs of [6] and [7] (see also [3], where thermal effects are taken into account). As usual, indeed, the
time interval [0, T ] is divided into k subintervals (each with vanishing size as k → ∞) by means of
points

0 = t0k < t1k < · · · < tk−1
k < tkk = T ,

and the approximate solution uik , eik , pik at time tik is defined, inductively, as a minimizer of the

functional Q(e) +H(p− pi−1
k ) among all triples (u, e, p) admissible for w(tik). The starting point in

our proof strategy is the following key estimate

‖eik − ei−1
k ‖2 ≤ C‖Ew(tik)− Ew(ti−1

k )‖2 . (1.1)

By the absolute continuity in time of Ew(t), this implies that the piecewise affine interpolants ek(t) of
the eik ’s are a compact sequence in W 1,1([0, T ];L2(Ω;Mn×n

sym )). It also implies equi-absolute continuity
of the piecewise affine interpolants pk(t) and uk(t) (Lemma 3.5) and guarantees the convergence, up to
subsequences, to a limit triple (u(t), e(t), p(t)) of absolutely continuous functions from [0, T ] into the
respective target spaces. It must be mentioned that variants of such estimates have already appeared



A SIMPLIFIED PROOF IN PERFECT PLASTICITY 3

in literature, both in the papers [9, 13, 18] and in [5, Theorem 3.9]. In this last one, they were actually
deduced from the time-incremental problems. Differently from the paper [5], anyway, our results also
fits in the heterogeneous setting, since the abstract formulation of the stress constraint in terms of
a C1 -stable (see Definition 2.1) convex subset of L2(Ω;Mn×n

sym ) also allows for a dependence of the
yield surface on the material point in the reference configuration. The proof of (1.1) relies on an
improved stability estimate (see (3.1)) for the solutions of the incremental minimum problems. The
usage of such an estimate is well-known in sweeping processes (see [10, 12]), and even in the case of
non-quadratic strongly convex energy functionals (see [15, 21]). It arises from the Euler conditions
for the minimum problems (Lemma 3.1), proved in an heterogeneous setting in [17]. However, the
central role of such Euler conditions has been already pointed out and succesfully exploited in [2] for
an alternative approach to existence through vanishing hardening.

As a consequence of (1.1), we recover in Lemma 3.3 another estimate, namely (3.3), which is
fundamental to our proof strategy. It allows us to obtain the inequality

H(ṗk(t)) ≤ 〈σk(t), ṗk(t)〉+ δk , (1.2)

where ṗk are the (a.e. well defined) time derivatives of the piecewise affine intepolants pk , and δk
is a small remainder that vanishes in the limit. This is an approximate version of the ≤ inequality
in Hill’s principle, which is the only nontrivial one because of the stress constraint. With some care,
(1.2) passes to the limit (Theorem 3.7) and existence of a quasistatic evolution is now established.
This bypasses completely the variational reformulation, that can be anyway easily deduced from the
classical one. Besides simplifying the existence proof, we also hope that the introduced technique can
be useful for dealing with related models.

We end up this introduction by a short comparison with another method that allows for an existence
proof, the viscoplastic approximation used by Suquet in [18]. This is the first existence result of the
field, and a very general one, since heterogeneous behavior is allowed. However, there a weak definition
of a solution only in terms of the stress and the displacement is used (see [18, Formula (34)]). The
plastic strain p has indeed been eliminated via some formal integration by parts. This avoids the
issue of defining both the stress-strain duality and the plastic dissipation, at the price of losing the
information on the plastic strain path along an evolution. It has nevertheless been shown in [17] that
viscoplastic approximations converge to a variational evolution as the viscosity parameter ε goes to
0. Furthermore, already in Suquet’s proof a priori time regularity estimates very close in spirit to the
ones in Lemma 3.5 are obtained, with a different technique and in a different context (see also [17,
Theorem 4.14]). It is yet worth mentioning that time incremental minimization carries a small but
significant advantage with respect to viscoplastic approximation. There we are forced to take a more
regular initial displacement u0 ∈ H1(Ω), in order to obtain existence. In the incremental formulation,
instead, the initial displacement u0 has only the natural BD(Ω) regularity, and in particular, we are
not forced to exclude that a plastic deformation is already present also at the boundary. To conclude,
we can therefore remark that the existence proof we provied is given under what we believe to be the
weakest possible assumptions on the data of the problem and on the initial condition.

2. Preliminaries

For basic notation and preliminary results we refer to [17, Section 2]. For the reader’s convenience,
we recall only the main assumptions on the data and the constraints appearing in the definition of a
quasistatic evolution.

The reference configuration Ω is a bounded connected open set in Rn , n ≥ 2, with Lipschitz
boundary ∂Ω = Γ0 ∪ Γ1 ∪ N . We assume that Γ0 and Γ1 are relatively open, Γ0 ∩ Γ1 = Ø,
Hn−1(N) = 0, and

Γ0 6= Ø . (2.1)
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The common boundary ∂Γ0 = ∂Γ1 (topological notions refer here to the relative topology of ∂Ω) will
be assumed to satisfy the Kohn-Temam condition

∂Γ0 = ∂Γ1 is a (N − 2)-dimensional C2 manifold ,

∂Ω is C2 in a neighborhood of ∂Γ0 = ∂Γ1 .
(2.2)

This condition has actually only the role of assuring that (2.11) holds; it could be replaced by any
other sufficient condition for (2.11), like for instance the one considered in [7, Theorem 6.6]. We will
prescribe a Dirichlet boundary condition on Γ0 and a traction condition on Γ1 .

For σ ∈ L2(Ω;Mn×n
sym ) and div σ ∈ L2(Ω;Rn), [σν] denotes the normal trace on ∂Ω, in general

defined as a distribution. When σ ∈ C0(Ω;Mn×n
sym ) we have [σν] = σν where the right-hand side is the

pointwise product between the matrix σ(x) and the normal vector ν(x) at each x ∈ ∂Ω. Denoting
with σD the orthogonal projection of σ on the space of trace-free n× n symmetric matrices Mn×n

D ,

under our assumptions on Ω if σD ∈ L∞(Ω;Mn×n
D ) a tangential component of the trace [σν]⊥ν can

be defined ([7, Section 1.2]). It satisfies

[σν]⊥ν ∈ L∞(∂Ω;Rn) and ‖[σν]⊥ν ‖∞ ≤ ‖σD‖∞ .

The elasticity tensor is a symmetric positive definite continuous linear operator C : L2(Ω;Mn×n
sym )→

L2(Ω;Mn×n
sym ). The stored elastic energy Q : L2(Ω;Mn×n

sym ) → R is given by the quadratic form Q
associated to C

Q(e) :=
1

2
〈Ce, e〉 =

1

2

∫
Ω

(Ce)(x) : e(x) dx .

It follows from the previous assumptions that there exist two positive constants α , β such that

α‖e‖22 ≤ Q(e) ≤ βQ‖e‖22 (2.3)

for every e ∈ L2(Ω;Mn×n
sym ) We will use the following simple algebraic identity, following from the

symmetry of C : if η and η̂ ∈ L2(Ω;Mn×n
sym ) then

Q(η)−Q(η̂) =
1

2
〈C(η + η̂), η − η̂〉 . (2.4)

The stress constraint will be abstractly modelled by a closed convex subset K ∈ L2(Ω;Mn×n
sym ). The

constraint will act on the stress σ only through its deviatoric part, namely

σ ∈ K if and only if σD ∈ KD , (2.5)

where KD ⊂ L2(Ω;Mn×n
D ) is closed convex and satisfy the following property: there exist 0 < r <

R < +∞ such that

{ξ ∈ L∞(Ω;Mn×n
D ) : ‖ξ‖∞ ≤ r} ⊆ KD ⊆ {ξ ∈ L∞(Ω;Mn×n

D ) : ‖ξ‖∞ ≤ R} . (2.6)

In particular, this implies that, if σ ∈ K , then σD ∈ L∞(Ω;Mn×n
D ). We will also assume the following

C1 -stability condition on K .

Definition 2.1. A set F of measurable functions from an open set Ω into an Euclidean space Ξ is
said to be C1 -stable if, for any finite family (fi)i∈I ⊂ F and every family of nonnegative functions
(αi)i∈I ∈ C1(Ω) we have ∑

i

αi = 1 in Ω⇒
∑
i

αifi ∈ F .

Obviously, C1 -stability implies convexity. It is easy to see that whenever the yield surface is
assigned pointwise, that is K is of the form

K := {σ ∈ L2(Ω;Mn×n
sym ) : σD(x) ∈ KD(x) for a.e. x ∈ Ω}

with KD(x) closed convex subset of Mn×n
D , then K is C1 -stable. This formulation of the stress

constraint, already considered in [17], is then suitable both for the homogeneous and the heterogeneous
case.
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A bounded Radon measure p ∈Mb(Ω ∪ Γ0;Mn×n
D ) is said to be an element of the space of plastic

strains ΠΓ0
(Ω) if there exist u ∈ BD(Ω) (the space of functions of bounded deformation, see e.g.

[20]), e ∈ L2(Ω), and w ∈ H1(Ω) such that

Eu = e+ p in Ω ,

p = (w − u)� νHn−1 in Γ0

where ν is the outer unit normal to ∂Ω, � denotes the symmetrized tensor product and the right-
hand side in the second equality is the absolutley continuous measure with respect to Hn−1 having
(w−u)� ν as a density. In such a case we say that the triple (u, e, p) belongs to the set of admissible
plastic strains for the boundary datum w , denoted by A(w). We will extensively use throughout the
paper a notion of generalised duality between the stress and the plastic strain, introduced in [11]. We
collect some of its most important properties in the next proposition.

Proposition 2.2. Let σ ∈ L2(Ω;Mn×n
sym ) , with div σ ∈ Ln(Ω;Rn) , and σD ∈ L∞(Ω;Mn×n

D ) , and let
p ∈ ΠΓ0(Ω) . Define for every ϕ ∈ C∞c (Ω) the distribution

〈[σD : p]Ω, ϕ〉 = −〈ϕσ, e〉 − 〈ϕdiv σ, u〉 − 〈σ, (u�∇ϕ)〉 (2.7)

where u and e are such that (u, e, p) ∈ A(w) . Then [σD : p]Ω ∈Mb(Ω) . Furthermore, setting

[σD : p] := [σD : p]Ω on Ω

[σD : p] := [σν]⊥ν · (w − u)Hn−1 on Γ0 ,

then [σD : p] ∈Mb(Ω∪Γ0) , does not depend on the choice of (u, e, w) such that (u, e, p) ∈ A(w) , and
satisfies the following properties:

(i) if σ ∈ C0
0 (Ω ∪ Γ0) , for any ϕ ∈ C0

0 (Ω ∪ Γ0)

〈[σD : p], ϕ〉 = 〈ϕσD, p〉 ,

where 〈·, ·〉 is the standard duality between continuous functions and measures;
(ii) if pa and [σD : p]a are the absolutely continuous parts of p and [σD : p] , respectively, with

respect to Ln , then

[σD : p]a = σD : pa

Moreover, if p ∈ L1(Ω) , then [σD : p]� Ln and

[σD : p] = (σD : p)Ln , (2.8)

that is the absolutely continuos measure with respect to Ln with density σD : p ;
(iii) for every ϕ ∈ C0(Ω) we have

|〈[(σk)D : p], ϕ〉| ≤ ‖σD‖∞‖p‖Mb(Ω∪Γ0;Mn×n
D )‖ϕ‖∞ ; (2.9)

(iv) if σk ⇀ σ weakly in L2(Ω) , div σk ⇀ div σ weakly in Ln(Ω;Rn) , and (σk)D is uniformly
bounded in L∞(Ω;Mn×n

D ) , then

〈[(σk)D : p], ϕ〉 → 〈[σD : p], ϕ〉

(v) assuming that −div σ = f in Ω , then

〈[σD : p], ϕ〉+ 〈ϕσ, e− Ew〉+ 〈σ, (u− w)�∇ϕ〉 = 〈f, ϕ(u− w)〉Ω (2.10)

for every ϕ ∈ C1(Ω) such that ϕ = 0 in a neighborhood of Γ1 .

Defining the stress-strain duality 〈σD, p〉 by

〈σD, p〉 := [σD : p](Ω ∪ Γ0) ,

if additionally [σν] = g ∈ L∞(Γ1;Rn) , and (2.2) holds, then

〈σD, p〉+ 〈σ, e− Ew〉 = 〈f, u− w〉Ω + 〈g, u− w〉Γ1
. (2.11)
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Proof. We first observe that (2.7) is well defined also in the case of a Lipschitz boundary ∂Ω since

u ∈ L
n

n−1 (Ω) by the Sobolev embedding, and σ ∈ Lr(Ω) for any 1 ≤ r < ∞ by [7, Proposition 6.1].
Then, the first part of the statement can be proved arguing for instance as in [17, Section 2]. The
integration by parts formula (2.11) follows from [7, Theorem 6.5]. �

Remark 2.3. Notice that by (2.8), the stress-strain duality 〈σD, p〉 reduces to the usual duality
between L∞ and L1 when p ∈ L1(Ω;Mn×n

D ), so no ambiguity is hidden in the notation.

In defining the plastic dissipation, we follow the general point of view of [17] including all the
particular cases considered in [6], [16], and [7]. To this end, we recall the definition of supremum of a
family of measures.

Definition 2.4. Let a family of real-valued measures (µα)α∈A ⊂ Mb(X) indexed by some (possibly
uncountable) set A be given. If for every α ∈ A one has |µα| ≤ λ for some positive measure λ
independent of α , the supremum of the measures µα is defined as

(supµα)(B) := sup
{ k∑
i=1

µαi
(Bi) : αi ∈ A for every i

}
,

for every Borel set B ⊂ X , where the supremum in the right-hand side is taken over all k ∈ N and
over all finite Borel disjoint partitions B1, . . . , Bk of B . It is not difficult to see that this defines a
finite Borel measure, that trivially majorizes all the measures µα .

The dissipation measure H(p) ∈ Mb(Ω ∪ Γ0) associated to a plastic strain p ∈ ΠΓ0
(Ω) is defined

as follows:
H(p) = sup{[σD : p] : σ ∈ K , div σ ∈ Ln(Ω;Rn)} , (2.12)

where the supremum is taken in the sense of measures. The plastic dissipation functional H(p) is
then defined as

H(p) := H(p)(Ω ∪ Γ0) . (2.13)

The basic properties of H and H are collected in the next proposition.

Proposition 2.5. Assume (2.1) and (2.2), and let K be a C1 -stable closed convex set in L2(Ω;Mn×n
sym )

satisfying (2.5) and (2.6). Let p ∈ ΠΓ0
(Ω) . Then

H(p) = sup{〈σD, p〉 : σ ∈ K , div σ ∈ Ln(Ω;Rn)} . (2.14)

The measure H(p) and the functional H(p) are nonnegative and satisfy

r |p| ≤ H(p) ≤ R |p| and r‖p‖Mb(Ω∪Γ0;Mn×n
D ) ≤ H(p) ≤ R‖p‖Mb(Ω∪Γ0;Mn×n

D ) , (2.15)

with 0 < r < R given by (2.6). The functional H is positively 1-homogeneous and satifies the triangle
inequality

H(p1 + p2) ≤ H(p1) +H(p2) . (2.16)

Finally, if pk converges weakly∗ to p∞ in Mb(Ω ∪ Γ0;Mn×n
D ) as k → +∞ and there exist bounded

sequences uk ∈ BD(Ω) , wk ∈ H1(Ω;Rn) and ek ∈ L2(Ω;Mn×n
sym ) such (uk, ek, pk) ∈ A(wk) , then

H(p∞) ≤ lim inf
k→+∞

H(pk) . (2.17)

Proof. See, for instance, [17, Proposition 3.1 and 3.2]. �

Remark 2.6. In the case of an homogeneous material, K is of the form

K := {σ ∈ L2(Ω;Mn×n
sym ) : σD(x) ∈ KD a.e.}

with KD a convex compact neighborhood of 0 in Mn×n
D . Then it follows from [6, Proposition 2.4]

that H(p) reduces to the usual convex function of measures H(p) := H
(
p
|p|
)
|p| , with H the support

function of K . In this case, all the properties in the previous proposition can be derived from the
related theory in [8] and [19]. In particular, (2.17) simply follows from Reshetnyak’s Theorem ([1,
Theorem 2.38]).
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In the heterogeneous case, when KD(x) has a piecewise continuous dependence on x , it has been
shown in [17, Theorem 3.7] that H(p) reduces to the explicit formula proposed in [7].

About the initial and boundary data, we make the following assumptions. For simplicity of exposi-
tion, we consider the case of no applied forces, so that the evolution is simply driven by a prescribed
boundary displacement

w ∈W 1,1
loc ([0,+∞);H1(Ω;Rn)) . (2.18)

This is indeed a minor restriction: one can deal with the case of applied forces with similar methods,
provided a uniform safe-load condition (such as, for instance, in [17, (2.26)-(2.28)] is introduced. The
only point where adapting the existence proof could be not straightforward is outlined in Remark
3.8. We put w0 := w(0). The initial datum will be a triple (u0, e0, p0) ∈ A(w0) such that, setting
σ0 := Ce0 , one has {

σ0 ∈ K ,
−div σ0 = 0 in Ω ; [σ0ν] = 0 on Γ1 .

(2.19)

We remark that, differently from [17], here we allow for u0 ∈ BD(Ω) instead of u0 ∈ H1(Ω).
We finally recall the definition of quasistatic evolution. There (and everywhere in what follows),

the time derivative ṗ(t) of an absolutely continuous map p : [0, T ] → Mb(Ω) has to be understood
in the weak∗ sense of [6, Theorem 7.1], since the target space is not reflexive, but is the dual of
a separable Banach space. The same will apply to the time derivative u̇(t) of an absolutely con-
tinuous map u : [0, T ] → BD(Ω). It follows however again from [6, Theorem 7.1] that the maps
t 7→ ‖ṗ(t)‖Mb(Ω∪Γ0;Mn×n

D ) and t 7→ ‖u̇(t)‖BD(Ω) belong to L1([0, T ]) .

Definition 2.7. Assume (2.1) and (2.2). Consider a C1 -stable closed convex set K ⊂ L2(Ω;Mn×n
sym )

satisfying (2.5) and (2.6). Take w as in (2.18), (u0, e0, p0) as in (2.19), and fix T > 0. We say that
(u, e,p) is a quasistatic evolution with prescribed boundary displacement w and initial condition
(u0, e0, p0) in the interval [0, T ] if

u ∈ AC([0, T ];BD(Ω)) ,

e ∈W 1,1([0, T ];L2(Ω;Mn×n
sym )) ,

p ∈ AC([0, T ];Mb(Ω ∪ Γ0;Mn×n
D )) ,

(2.20)

and, setting σ(t) := Ce(t) for every t ∈ [0,+∞), the following conditions are satisfied:

(ev0) Initial condition: (u(0), e(0),p(0)) = (u0, e0, p0).
(ev1) Weak kinematic admissibility : for every t ∈ [0,+∞), we have (u(t), e(t),p(t)) ∈ A(w(t)).
(ev2) Equilibrium condition and stress constraint : for every t ∈ [0,+∞){

σ(t) ∈ K ,
−divσ(t) = 0 in Ω , [σ(t)ν] = 0 on Γ1.

(2.21)

(ev3) Maximum plastic work : for a.e. t ∈ [0,+∞)

H(ṗ(t)) = 〈σD(t), ṗ(t)〉 . (2.22)

Remark 2.8. Since σ ∈ K , the measure H(ṗ(t)) − [σD(t) : ṗ(t)] is positive by definition, therefore
equality (2.22) can be localized and we get that, for a.e. t ∈ [0,+∞),

H(ṗ(t))(B) = [σD(t) : ṗ(t)](B) (2.23)

for every Borel set B ⊂ Ω ∪ Γ0 . This can be interpreted as an abstract dual version of the classical
Prandtl-Reuss flow rule stating that at each time the rate of plastic strain ṗ(t, x), if nonzero, is
normal to the yield surface at σD(t, x). In the case of continuous, piecewise continuous, or even
Sobolev dependence of the yield surface K(x) on the material point x , pointwise versions of the flow
rule have been recovered from (2.23) (see for instance [6, Theorem 6.4], [7, Theorem 3.13], and [17,
Proposition 4.16]).
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3. The existence proof

The following Euler conditions for the incremental problems have been proved in full generality,
that is in the heterogeneous case, in [17, Theorem 4.9]. Their role is however already well-known in
plasticity (see for instance [6, Proposition 3.5] or [2, Assumption 3.1]).

Lemma 3.1. Assume (2.1) and (2.2). Let w ∈ H1(Ω;Rn) . Consider a triple (û, ê, p̂) ∈ A(w) and a
C1 -stable closed convex set K ⊂ L2(Ω;Mn×n

sym ) satisfying (2.5) and (2.6). Then, the following two are
equivalent:

(i) (û, ê, p̂) minimizes Q(e) +H(p− p̂) among all (u, e, p) ∈ A(w) ;
(ii) setting σ̂ := Cê , it holds{

σ̂ ∈ K ,
−div σ̂ = 0 in Ω , [σ̂ν] = 0 on Γ1.

From the Euler conditions we can deduce an improved stability estimate.

Lemma 3.2. Assume (2.1) and (2.2). Let w ∈ H1(Ω;Rn) . Consider a triple (û, ê, p̂) ∈ A(w) and
a C1 -stable closed convex set K ⊂ L2(Ω;Mn×n

sym ) satisfying (2.5) and (2.6). If (û, ê, p̂) minimizes
Q(e) +H(p− p̂) among all (u, e, p) ∈ A(w) , we then have

Q(ê) +Q(e− ê) ≤ Q(e) +H(p− p̂) (3.1)

for all (u, e, p) ∈ A(w) .

Proof. Let σ̂ := Cê . A direct computation gives

Q(ê) +Q(e− ê)−Q(e) = 〈σ̂, ê− e〉 .
Since both ê and e ∈ A(w), and σ̂ satisfies (ii) in Lemma 3.1, the integration by parts formula (2.11)
and (2.14) give

〈σ̂, ê− e〉 = 〈σ̂, (ê− Ew)− (e− Ew)〉 = 〈σ̂, p− p̂〉 ≤ H(p− p̂) ,
proving the statement. �

The existence proof we are going to give rests upon the following key lemma, being in turn a
consequence of the two previous ones.

Lemma 3.3. Let w1 , w2 ∈ H1(Ω;Rn) . Consider two triples (u1, e1, p1) and (u2, e2, p2) in A(w1)
and A(w2) , respectively, such that (u2, e2, p2) minimizes Q(e)+H(p−p1) among all (u, e, p) ∈ A(w2) .
Set σ1 := Ce1 , and σ2 := Ce2 , and assume that σ1 ∈ K , div σ1 = 0 in Ω , and that [σ1ν] = 0 on
Γ1 . Let α and β be as in (2.3). Then

‖e2 − e1‖2 ≤
√
β

α
‖E(w2 − w1)‖2 (3.2)

and

H(p2 − p1) ≤ 1

2
〈(σ1 + σ2)D, p2 − p1〉+ β

(
1 +

√
β

α

)
‖E(w2 − w1)‖22 . (3.3)

Proof. Lemma 3.1 assures that (u1, e1, p1) minimizes Q(e) +H(p− p1) among all (u, e, p) ∈ A(w1).
Testing (3.1) on the admissible triple (u2 − (w2 − w1), e2 − E(w2 − w1), p2) in A(w2) leads to

Q(e1) +Q((e2 − e1)− E(w2 − w1)) ≤ Q(e2 − E(w2 − w1)) +H(p2 − p1) .

Developing the quadratic form Q on both sides, using the symmetry of the tensor C , we get

Q(e1) +Q(e2 − e1) +Q(E(w2 − w1))− 〈σ2 − σ1, E(w2 − w1)〉 ≤
Q(e2) +Q(E(w2 − w1))− 〈σ2, E(w2 − w1)〉+H(p2 − p1) ,

that is
Q(e1) +Q(e2 − e1) + 〈σ1, E(w2 − w1)〉 ≤ Q(e2) +H(p2 − p1) , (3.4)
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Since the triple (u1 + w2 − w1, e1 + E(w2 − w1), p1) belongs to A(w2), by minimality of (u2, e2, p2)

Q(e2) +H(p2 − p1) ≤ Q(e1 + E(w2 − w1)) . (3.5)

Inserting in (3.4) we then have

Q(e1) +Q(e2 − e1) + 〈σ1, E(w2 − w1)〉 ≤ Q(e1 + E(w2 − w1)) .

Developing Q at the right-hand side leads to Q(e2 − e1) ≤ Q(E(w2 − w1)), which implies (3.2) in
view of (2.3).

Observe now, that by (2.4) with η = e1 + E(w2 − w1) and η̂ = e2 , with simple algebraic manipu-
lations and using the symmetry of the tensor C , we have

Q(e1 + E(w2 − w1))−Q(e2) =
1

2
〈σ1 + σ2 + CE(w2 − w1), E(w2 − w1) + e1 − e2〉 =

1

2
〈σ1 + σ2, E(w2 − w1) + e1 − e2〉+

1

2
〈CE(w2 − w1), E(w2 − w1)〉+

1

2
〈CE(w2 − w1), e1 − e2〉 =

1

2
〈σ1 + σ2, E(w2 − w1)− (e2 − e1)〉+Q(E(w2 − w1)) +

1

2
〈σ1 − σ2, E(w2 − w1)〉 .

Inserting in (3.5) we get

H(p2 − p1) ≤ 1

2
〈σ1 + σ2, E(w2 − w1)− (e2 − e1)〉+Q(E(w2 − w1)) +

1

2
〈σ1 − σ2, E(w2 − w1)〉 .

On the other hand, by (2.16), (u2, e2, p2) also minimizes Q(e)+H(p−p2) among all (u, e, p) ∈ A(w2),
so that Lemma 3.1 gives that σ2 ∈ K , div σ2 = 0 in Ω, and that [σ2ν] = 0 on Γ1 . In turn, this
implies that div (σ1+σ2

2 ) = 0 in Ω, and that [(σ1+σ2

2 )ν] = 0 on Γ1 . By (2.11) we then arrive at

H(p2 − p1) ≤ 1

2
〈(σ1 + σ2)D, p2 − p1〉+ +Q(E(w2 − w1)) +

1

2
〈σ1 − σ2, E(w2 − w1)〉 (3.6)

which implies (3.3) in view of (2.3) and (3.2). �

Remark 3.4. Consider the plastic dissipation measures H(p2 − p1) and the stress-strain duality
measure 1

2 [(σ1 + σ2)D : (p2 − p1)] . Since by convexity 1
2 (σ1 + σ2) ∈ K , by (2.12) we have that

H(p2 − p1)− 1

2
[(σ1 + σ2)D : (p2 − p1)] ≥ 0

as a measure. From this and (3.3) we get that for every ϕ ∈ C0
0 (Ω ∪ Γ0) with 0 ≤ ϕ ≤ 1, it holds

〈H(p2 − p1), ϕ〉 ≤ 〈1
2

[(σ1 + σ2)D : (p2 − p1)], ϕ〉+ C2‖E(w2 − w1)‖22 . (3.7)

In particular, 1
2 [(σ1 + σ2)D : (p2 − p1)] is a positive measure up to a higher-order remainder.

Let us now fix a sequence of subdivisions (tik)0≤i≤k of the interval [0, T ] , with

0 = t0k < t1k < · · · < tk−1
k < tkk = T , (3.8)

lim
k→∞

max
1≤i≤k

(ti+1
k − tik) = 0 . (3.9)

For i = 0, . . . , k we set wik := w(tik) and we define uik , eik , and pik by induction. We set (u0
k, e

0
k, p

0
k) :=

(u0, e0, p0), which, by assumption, belongs to A(w0), and for i = 1, . . . , k we define (uik, e
i
k, p

i
k) as a

solution to the incremental problem

min
(u,e,p)∈A(wi

k)
{Q(e) +H(p− pi−1

k )} . (3.10)

The existence of such a minimizer is immediately obtained thanks to the coercivity and lower semi-
continuity in (e, p) of the functional. Moreover, by the triangle inequality (2.16) the triple (uik, e

i
k, p

i
k)

is also a solution of the problem

min
(u,e,p)∈A(wi

k)
{Q(e) +H(p− pik)} . (3.11)
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For i = 0, . . . , k we set σik := Ceik . For every t ∈ [0, T ] we define the piecewise affine interpola-
tions

u∆
k (t) := uik +

(t−tik)

ti+1
k −tik

(ui+1
k − uik) , e∆

k (t) := eik +
(t−tik)

tik−t
i+1
k

(ei+1
k − eik) ,

p∆
k (t) := pik +

(t−tik)

ti+1
k −tik

(pi+1
k − pik) , σ∆

k (t) := σik +
(t−tik)

ti+1
k −tik

(σi+1
k − σik) ,

w∆
k (t) := wik +

(t−tik)

ti+1
k −tik

(wi+1
k − wik) ,

(3.12)

where i is the largest integer such that tik ≤ t . By construction (u∆
k (t), e∆

k (t),p∆
k (t)) ∈ A(w∆

k (t))

(resp. (u̇∆
k (t), ė∆

k (t), ṗ∆
k (t)) ∈ A(ẇ∆

k (t))) for every (resp. a.e.) t ∈ [0, T ] . By Lemma 3.1 and (3.12)
we have

σ∆
k (t) ∈ K, divσ∆

k (t) = 0, [σ∆
k (t)ν] = 0 on Γ1 (3.13)

for every t . We will also later consider a particular piecewise constant interpolation of the stress,
namely

σ̃k(t) :=
1

2
(σik + σi+1

k ) (3.14)

where i is the largest integer such that tik ≤ t . As an almost immediate consequence of (3.2) we have
the following a priori estimates.

Lemma 3.5. There exists C > 0 such that

‖ė∆
k (t)‖2 + ‖ṗ∆

k (t)‖Mb(Ω∪Γ0;Mn×n
D ) + ‖u̇∆

k (t)‖BD(Ω) ≤ C
(
‖Eẇ∆

k (t)‖2 + ‖ẇ∆
k (t)‖L1(Γ0;Rn)

)
for almost every t ∈ [0, T ] . In particular, the sequence

Fk(t) := ‖ė∆
k (t)‖2 + ‖ṗ∆

k (t)‖Mb(Ω∪Γ0;Mn×n
D ) + ‖u̇∆

k (t)‖BD(Ω) (3.15)

is equibounded in L1([0, T ]) and equi-integrable.

Proof. By (3.12) and (3.2) we immediately get

‖ė∆
k (t)‖2 ≤ C‖Eẇ∆

k (t)‖2 (3.16)

for a.e. t ∈ [0, T ] . Since w∆
k is equibounded in H1([0, T ];H1(Rn)), this implies in particular that

supt∈[0,T ] ‖e∆
k (t)‖2 ≤ C for some constant C independent of k .

Since the triple (uik+wi+1
k −wik, eik+E(wi+1

k −wik), pik) belongs to A(wi+1
k ), we have by minimality

and (2.4)

H(pi+1
k − pik) ≤ Q(eik + E(wi+1

k − wik))−Q(ei+1
k ) =

1

2
〈C(eik + E(wi+1

k − wik) + ei+1
k ), eik − ei+1

k + E(wi+1
k − wik)〉 ;

dividing by ti+1
k − tik , using (3.12) and (2.15) we have

r‖ṗ∆
k (t)‖Mb(Ω∪Γ0;Mn×n

D ) ≤ 2β
(

sup
t∈[0,T ]

‖e∆
k (t)‖2 + sup

t∈[0,T ]

‖Ew∆
k (t)‖2

)(
‖Eẇ∆

k (t)‖2 + ‖ė∆
k (t)‖2

)
for a.e. t ∈ [0, T ] , with β the continuity constant of Q . From this and (3.16) we get

‖ṗ∆
k (t)‖Mb(Ω∪Γ0;Mn×n

D ) ≤ C‖Eẇ
∆
k (t)‖2 (3.17)

for a.e. t ∈ [0, T ] .
Finally, by [19, Proposition 2.4 and Remark 2.5], for every u ∈ BD(Ω) there exists a constant C

only depending on Ω and Γ0 such that

‖u‖L1(Ω;Rn) ≤ C‖u‖L1(Γ0;Rn) + C‖Eu‖Mb(Ω;Mn×n
sym ) . (3.18)

Since (u̇∆
k (t), ė∆

k (t), ṗ∆
k (t)) ∈ A(ẇ∆

k (t)), by the previous inequality, (3.16), and (3.17) we get the
existence of a positive constant still denoted by C such that

‖u̇∆
k (t)‖BD(Ω) ≤ C

(
‖Eẇ∆

k (t)‖2 + ‖ẇ∆
k (t)‖L1(Γ0;Rn)

)
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for a.e. t ∈ [0, T ] . Together with (3.16) and (3.17), this implies the first part of the statement. The sec-
ond implication follows by noticing that, since by construction w∆

k → w strongly in W 1,1([0, T ];H1(Ω;Rn)),
the functions

t 7→ ‖Eẇ∆
k (t)‖2 + ‖ẇ∆

k (t)‖L1(Γ0;Rn)

are an equibounded and equi-integrable sequence in L1([0, T ]) . �

In order to prove that the triple (u∆
k (t), e∆

k (t),p∆
k (t)) is converging to a quasistatic evolution in

perfect plasticity we need the following Lemma, essentially proved in [17].

Lemma 3.6. Let u : [0, T ]→ BD(Ω) , e : [0, T ]→ L2(Ω) , p : [0, T ]→Mb(Ω ∪ Γ0) , and w : [0, T ]→
H1(Ω;Rn) be absolutely continuous mappings such that (u(t), e(t),p(t)) ∈ A(w(t)) for every t . Con-
sider four sequences uk : [0, T ] → BD(Ω) , ek : [0, T ] → L2(Ω;Mn×n

sym ) , pk : [0, T ] → Mb(Ω ∪ Γ0) ,

and wk : [0, T ]→ H1(Ω;Rn) of equi-absolutely continuous mappings such that (uk(t), ek(t),pk(t)) ∈
A(wk(t)) for every t and every k ∈ N . Assume that

uk(t) ⇀ u(t) weakly∗ in BD(Ω), ek(t) ⇀ e(t) weakly in L2(Ω;Mn×n
sym )

pk(t) ⇀ p(t) weakly∗ in Mb(Ω ∪ Γ0;Mn×n
D ), wk(t) ⇀ w(t) weakly in H1(Ω;Rn)

for every t ∈ [0, T ] . Let ϕ ∈ C1(Ω) such that ϕ = 0 in a neighborhood of Γ1 . Then the functions
t→ 〈H(ṗk(t)), ϕ〉 , t→ H(ṗk(t)) , t→ 〈H(ṗ(t)), ϕ〉 and t→ H(ṗ(t)) all belong to L1([0, T )) and∫ T

0

〈H(ṗ(t)), ϕ〉 dt ≤ lim inf
k→∞

∫ T

0

〈H(ṗk(t)), ϕ〉 dt and

∫ T

0

H(ṗ(t)) dt ≤ lim inf
k→∞

∫ T

0

H(ṗk(t)) dt .

(3.19)

Proof. By [6, Lemma 5.5] we have (u̇(t), ė(t), ṗ(t)) ∈ A(ẇ(t)) and (u̇k(t), ėk(t), ṗk(t)) ∈ A(ẇk(t))
for a.e. t and every k . Therefore all the involved integrands are well-defined. They also belong to
L1([0, T ]) by [17, Lemma 4.6]. The first inequality in (3.19) can be deduced arguing exactly as in
the proof of [17, Lemma 4.15]. The second one is an easy consequence of the first one, since H(ṗ(t))
and H(ṗk(t)) are positive measures on Ω ∪ Γ0 whose total mass is given by H(ṗ(t)), and H(ṗk(t)),
respectively. �

We can finally state and prove the announced result.

Theorem 3.7. Assume (2.1) and (2.2). Let w be as in (2.18), and assume that u0 , e0 , p0 , and
σ0 satisfy (2.19). Consider a C1 -stable closed convex set K ⊂ L2(Ω;Mn×n

sym ) satisfying (2.5) and

(2.6), and the functional H defined in (2.13). Define (u∆
k (t), e∆

k (t),p∆
k (t)) as in (3.12). Then,

up to a subsequence independent of t , u∆
k (t) ⇀ u(t) weakly∗ in BD(Ω) , e∆

k (t) ⇀ e(t) weakly in
L2(Ω;Mn×n

sym ) , and p∆
k (t) ⇀ p(t) weakly∗ in Mb(Ω ∪ Γ0;Mn×n

D ) for every t ∈ [0, T ] . Furthermore
(u(t), e(t),p(t)) is a quasistatic evolution with datum w and initial condition (u0, e0, p0) .

Proof. Let Fk be defined as in (3.15). By Lemma 3.5 and the Dunford-Pettis Theorem, we can assume
that Fk → F weakly in L1([0, T ]) . For all t1 und t2 ∈ [0, T ] it holds now

‖e∆
k (t2)− e∆

k (t1)‖2 ≤
∫ t2

t1

Fk(s) ds ; (3.20)

hence, since e∆
k (0) = e0 and Fk are equibounded and equi-integrable. e∆

k (t) is an equibounded and
equicontinuous sequence from [0, T ] to L2(Ω;Mn×n

sym ). By the Arzelà-Ascoli Theorem, possibly taking

a (not relabelled) subsequence we get the existence of a function e : [0, T ]→ L2(Ω;Mn×n
sym ) such that

e∆
k (t) ⇀ e(t) weakly in L2(Ω;Mn×n

sym ) for every t ∈ [0, T ] . Therefore, setting σ(t) := Ce(t), we
obviously have

σ∆
k (t) ⇀ σ(t) weakly in L2(Ω;Mn×n

sym ) (3.21)

for every t ∈ [0, T ] . It follows from (3.13) and the convexity of K that

σ(t) ∈ K, divσ(t) = 0, [σ(t)ν] = 0 on Γ1 (3.22)
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for every t ∈ [0, T ] . Furthermore, by (3.20), the weak lower semicontinuity of the norm, and the weak
convergence of Fk to F we have

‖e(t2)− e(t1)‖2 ≤
∫ t2

t1

F (s) ds

for all t1 und t2 ∈ [0, T ] . Therefore, e is an absolutely continuous function from [0, T ] to L2(Ω;Mn×n
sym ).

Since the target space is reflexive, the results in [4, Appendix] imply that e ∈W 1,1([0, T ];L2(Ω;Mn×n
sym ).

Now, let MT be the supremum of the integrals
∫ T

0
‖ṗ∆

k (t)‖Mb(Ω∪Γ0;Mn×n
D ) dt , which is finite by

Lemma 3.5, and set

BT := {p ∈Mb(Ω ∪ Γ0;Mn×n
D ) : ‖p‖Mb(Ω∪Γ0;Mn×n

D ) ≤ ‖p0‖Mb(Ω∪Γ0;Mn×n
D ) +MT } .

There exists a distance dT on BT inducing the weak∗ convergence such that

dT (p, q) ≤ ‖p− q‖Mb(Ω∪Γ0;Mn×n
D ) for every p, q ∈ BT . (3.23)

Since p∆
k (t) ∈ BT for all t ∈ [0, T ] , using the estimate

dT (p∆
k (t2),p∆

k (t1)) ≤ ‖p∆
k (t2)− p∆

k (t1)‖Mb(Ω∪Γ0;Mn×n
D ) ≤

∫ t2

t1

Fk(s) ds

and arguing as in the previous step, we deduce the existence of p(t) ∈ AC([0, T ];Mb(Ω ∪ Γ0;Mn×n
D ))

such that 1

p∆
k (t) ⇀ p(t) weakly∗ in Mb(Ω ∪ Γ0;Mn×n

D ) (3.24)

for every t ∈ [0, T ] .
The existence of a function u ∈ AC([0, T ];BD(Ω) such that u∆

k (t) ⇀ u(t) weakly∗ in BD(Ω)
for every t follows now from (3.18) with similar arguments as before. Now, the initial condi-
tion (ev0) of Definition 2.7 is trivially satisfied by the triple (u(t), e(t),p(t)). Since, for every t ,
(u∆

k (t), e∆
k (t),p∆

k (t)) ∈ A(w∆
k (t)), by [6, Lemma 2.1] we infer that (u(t), e(t),p(t)) ∈ A(w(t)), so

also condition (ev1) is satisfied. Taking into account (3.22), it only remains to show that H(ṗ(t)) =
〈σ(t), ṗ(t)〉 for a.e. t ∈ [0, T ] . Since the inequality

H(ṗ(t)) ≥ 〈σD(t), ṗ(t)〉
simply follows by (3.22) and the definition of H , it suffices to prove that∫ T

0

H(ṗ(t)) dt ≤
∫ T

0

〈σD(t), ṗ(t)〉 dt . (3.25)

To this end, we introduce the piecewise constant interpolation σ̃k(t) defined in (3.14). Fix t ∈ [0, T ]
and for fixed k let i be the largest integer such that tik ≤ t . By construction we have

σ̃k(t) = σ∆
k

(
tik + ti+1

k

2

)
so that, by (3.9) and the equicontinuity of σ∆

k

‖σ̃k(t)− σ∆
k (t)‖2 =

∥∥∥∥∥σ∆
k

(
tik + ti+1

k

2

)
− σ∆

k (t)

∥∥∥∥∥
2

→ 0 (3.26)

when k → +∞ , uniformly with respect to t ∈ [0, T ] . In particular ‖σ̃k(t)‖2 is equibounded and

σ̃k(t) ⇀ σ(t) weakly in L2(Ω;Mn×n
sym ) for every t ∈ [0, T ] . From this, since Eẇ∆

k → Eẇ strongly in

L1([0, T ];L2(Ω;Mn×n
sym )), by dominated convergence we deduce that

lim
k→∞

∫ T

0

〈σ̃k(t), Eẇ∆
k (t)〉 dt = lim

k→∞

∫ T

0

〈σ̃k(t), Eẇ(t)〉 dt =

∫ T

0

〈σ(t), Eẇ(t)〉 dt . (3.27)

1since the target space is neither separable nor reflexive, p ∈ AC([0, T ];Mb(Ω;Mn×n
D )) does not imply that p ∈

W 1,1([0, T ];Mb(Ω ∪ Γ0;Mn×n
D )) .
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On the other hand, using (3.26) and the weak lower semicontinuity of Q one has

lim inf
k→∞

∫ T

0

〈σ̃k(t), ė∆
k (t)〉 dt = lim inf

k→∞

∫ T

0

〈σ∆
k (t), ė∆

k (t)〉 dt =

lim inf
k→∞

Q(e∆
k (t))−Q(e0) ≥ Q(e(t))−Q(e0) =

∫ T

0

〈σ(t), ė(t)〉 dt .
(3.28)

Putting together (3.27) and (3.28), by means of the integration by parts formula (2.11), (3.13) and
(3.22) we get to

lim sup
k→∞

∫ T

0

〈(σ̃k)D(t), ṗ∆
k (t)〉 dt = lim sup

k→∞

∫ T

0

〈σ̃k(t), Eẇ∆
k (t)− ė∆

k (t)〉 dt

≤
∫ T

0

〈σ(t), Eẇ(t)− ė(t)〉 dt =

∫ T

0

〈σD(t), ṗ(t)〉 dt .
(3.29)

We finally set

δk := max
0≤i≤k

∫ ti+1
k

tik

‖Eẇ(t)‖2 dt→ 0

because of (3.9). By positive 1-homogeneity of H , (3.3) and (3.12) we get

H(ṗ∆
k (t)) ≤ 〈(σ̃k)D(t), ṗ∆

k (t)〉+ δkβ

(
1 +

√
β

α

)
‖Eẇ∆

k (t)‖2

for a.e. tik ≤ t ≤ t
i+1
k . Therefore∫ T

0

H(ṗ∆
k (t)) dt ≤

∫ T

0

〈σ̃k(t), ṗ∆
k (t)〉 dt+ δkβ

(
1 +

√
β

α

)∫ T

0

‖Eẇ∆
k (t)‖2 dt .

Since δk → 0 and Eẇ∆
k → Eẇ strongly in L1([0, T ];L2(Ω;Mn×n

sym )), (3.25) follows now from (3.19)
and (3.29). �

Remark 3.8. While considering a nonzero volume force f(t), under the usual assumptions, does not
really change the proof of the previous theorem, a minor difficulty has to be overcome in the case
where a nonzero surface force g(t) ∈ H1([0, T ];L∞(Γ1;Rn)) is given. Actually, in this case, (3.29)
may be no longer satisfied. Indeed, considering the piecewise affine interpolations g∆

k of g , from the
condition [σ∆

k (t)ν] = g∆
k (t) on Γ1 and integrating by parts according to (2.11), an additional term∫ T

0

〈g∆
k (t), u̇∆

k (t)− ẇ∆
k (t)〉Γ1

dt

appears. This latter is in general neither continuous nor semicontinuous. Roughly speaking, this is
because the trace of u∆

k (t) on Γ1 may be not compact in L1(Γ1;Rn), although u∆
k (t) is weakly∗

compact in BD(Ω). The trace operator is indeed not continuous with respect to weak∗ convergence.
The proof is to be modified as follows: by an integration by parts argument using (2.10), we first

prove that

lim sup
k→∞

∫ T

0

〈[(σ̃k)D(t) : ṗ∆
k (t)], ϕ〉 dt ≤

∫ T

0

〈[σD(t) : ṗ(t)], ϕ〉 dt

for every ϕ ∈ C1(Ω) such that ϕ = 0 in a neighborhood of Γ1 . By (3.7) and (3.19) this gives∫ T

0

〈H(ṗ(t)), ϕ〉 dt ≤
∫ T

0

〈[σD(t) : ṗ(t)], ϕ〉 dt .

Considering now a sequence ϕj ∈ C∞(Ω), with 0 ≤ ϕj ≤ 1 in Ω and ϕj = 0 in a neighborhood of

Γ1 , such that ϕj(x) → 1 for every x ∈ Ω ∪ Γ0 , we eventually get (3.25) by (2.9) and the dominated
convergence theorem.
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[19] Temam R.: Mathematical problems in plasticity. Gauthier-Villars, Paris, 1985. Translation of Problèmes

mathématiques en plasticité. Gauthier-Villars, Paris, 1983.

[20] Temam R., Strang G.: Duality and relaxation in the variational problem of plasticity. J. Mécanique, 19 (1980),
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