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Abstract

There are two different approaches to the Dirichlet minimization problem for variational inte-
grals with linear growth. On the one hand, one commonly considers a generalized formulation in
the space of functions of bounded variation. On the other hand, there is a closely related maxi-
mization problem in the space of divergence-free bounded vector fields, namely the dual problem
in the sense of convex analysis.

In this paper, we extend previous results on the duality correspondence between the general-
ized and the dual problem to a full characterization of their extremals via pointwise extremality
relations. Furthermore, we discuss related uniqueness issues for both kinds of solutions and their
relevance in the regularity theory of generalized minimizers.

Our approach is sufficiently general to cover arbitrary dimensions, non-smooth integrands, and
unbounded, irregular domains.
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1 Introduction

Throughout this paper we fix two positive integers n and N and a non-empty, open set Ω (which is
not necessarily smooth or bounded) in R

n, and we investigate variational integrals of the type

F [w] :=

∫

Ω

f( · ,∇w) dx for w : Ω → R
N ,
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with a given Borel measurable integrand f : Ω×R
Nn → R. We consider the problem to

minimize F in the Dirichlet class W1,1
u0

(Ω,RN ) := u0 Ω
+W1,1

0 (Ω,RN) , (P)

where we permanently assume — for later convenience — that the boundary values are prescribed
with the help of a globally defined function u0 ∈ W1,1

loc(R
n,RN ) with ∇u0 ∈ L1(Ω,RNn). As our main

assumption on the integrand f we impose a linear growth condition1

|f(x, z)| ≤ Ψ(x) + L|z| for all (x, z) ∈ Ω×R
Nn (Lin)

with a [0,∞)-valued function Ψ ∈ L1(Ω) and a constant L ∈ [0,∞). This condition ensures that F is
finite on W1,1(Ω,RN), and in particular that the infimum infW1,1

u0
(Ω,RN ) F of the problem (P) cannot

take the value ∞, while the value −∞ remains possible. However, even if reasonable extra assumptions
on f are made and the infimum is finite, it is not necessarily attained, in other words F need not have
a minimizer in W1,1

u0
(Ω,RN ). For this reason one commonly considers a generalized formulation of (P)

in the space BV of functions of bounded variation. Postponing the introduction of this BV-formulation
and the appropriate concept of generalized minimizers to Section 2.2, for the moment let us just point
out that BV-minimizers exist significantly more often than minimizers in W1,1

u0
(Ω,RN ), but may have

worse uniqueness properties.
In this paper we are concerned with the interplay between the generalized BV-formulation of (P)

and the dual problem in the sense of convex analysis, which is extensively discussed, for instance, in
the monograph [19]. The latter problem involves the conjugate function f∗ : Ω×R

Nn → R ∪ {∞} of
f (with respect to the z-variable), which is given by f∗(x, z∗) := supz∈RNn

[
z∗ · z − f(x, z)

]
, and in

fact, when we set2

L∞
div(Ω,R

Nn) := {τ ∈ L∞(Ω,RNn) : div τ = 0 in the sense of distributions on Ω} ,

Ru0
[τ ] :=

∫

Ω

[
τ · ∇u0 − f∗( · , τ)

]
dx for τ ∈ L∞(Ω,RNn) ,

the dual problem is to
maximize Ru0

in L∞
div(Ω,R

Nn) . (P∗)

We briefly mention that, in many applications, the dual problem can be seen as a maximization
problem for a physically relevant quantity, called the stress tensor; see [37, 23, 34, 36, 19], for instance.
Here we do not further discuss this aspect, but we rather explain another classical way to understand
the relationship between (P) and (P∗): first, by the definition of the conjugate function one has
f(x, z) ≥ z∗ · z − f∗(x, z∗) for all x ∈ Ω and z, z∗ ∈ R

Nn, and thus on the one hand one gets

inf
W1,1

u0
(Ω,RN )

F ≥ inf
w∈W1,1

u0
(Ω,RN )

[
sup

τ∈L∞(Ω,RNn)

∫

Ω

[
τ · ∇w − f∗( · , τ)

]
dx

]
. (1.1)

For convex f one moreover has f(x, z) = f∗∗(x, z) := supz∗∈RNn

[
z∗ · z − f∗(x, z∗)

]
(compare Sec-

tion 3.1), and thus we expect that (1.1) is in fact an equality, which will eventually turn out to be
true3. On the other hand one also has

sup
τ∈L∞

div
(Ω,RNn)

Ru0
= sup

τ∈L∞(Ω,RNn)

[
inf

w∈W1,1
u0

(Ω,RN )

∫

Ω

[
τ · ∇w − f∗( · , τ)

]
dx

]
, (1.2)

1We find it worth remarking that, when Ω is bounded and f is independent of x and convex in z, (Lin) reduces to the
requirement f(z) ≤ L(1 + |z|). In particular, in this case a lower bound of the type f(z) ≥ −L(1 + |z|) is an automatic
consequence of convexity.

2Here, we multiply matrices from RNn in the sense of the Hilbert-Schmidt product, and the distributional divergence
is understood as the adjoint of the gradient operator with respect to this inner product.

3Indeed, equality in (1.1) can be inferred from the following arguments and Theorem 1.1 below or alternatively
from [19, Chapter IX.2].
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since integration by parts shows that the infimum on the right-hand side equals Ru0
[τ ] whenever

div τ = 0 holds (while it equals −∞ otherwise). All in all, we can read off that (P) and (P∗) differ
essentially by the priority of the inf- and the sup-operation on the right-hand sides of (1.1) and (1.2).
Moreover, the inequality inf

[
sup . . .

]
≥ sup

[
inf . . .

]
between these right-hand sides is obvious, so

that by the preceding elementary arguments we have in fact shown

inf
W1,1

u0
(Ω,RN )

F ≥ sup
L∞

div
(Ω,RNn)

Ru0
. (1.3)

Actually, one can even prove that the interchange of inf and sup does not change the resulting value at
all so that equality holds in (1.3); this is a classical result on the duality correspondence between (P)
and (P∗), which is detailed, for instance, in [19], and which we restate in our setting as follows.

Theorem 1.1 (duality formula and existence of a dual solution). Assume that f satisfies (Lin) and

that f(x, · ) : RNn → R is a convex function for L n-a.e. x ∈ Ω. Then the infimum in (P) equals the

supremum in (P∗), that is

inf
W1,1

u0
(Ω,RN )

F = sup
L∞

div
(Ω,RNn)

Ru0
∈ [−∞,∞) . (1.4)

Moreover, whenever the common value is not −∞, then the problem (P∗) has a solution, that is, the

supremum in (1.4) is in fact a maximum.

As already mentioned above, Theorem 1.1 is a special case of more general results in [19]. However,
we want to stress that the proof given there does not only require the abstract duality theory [19,
Chapter III] on the level of functionals, but also the representation [19, Chapter IX.2] of the (bi-)dual
problem in terms of the (bi-)conjugate, which is slightly less elementary. As a side benefit, our methods
yield an alternative proof of Theorem 1.1, which will be provided in Section 4. Though our approach
relies on the same basic tools, we believe that it has a slight advantage over the more classical strategy:
in the special case that f is C1 in z, all measurable selection issues drop out of our argument (compare
Remark 4.3), while a similar simplification of the reasoning in [19] does not seem obvious.

It is well known that the duality formula of Theorem 1.1 leads to characterizations of extremality
in terms of pointwise relations. Let us address this point in detail:

Corollary 1.2 (extremality relations for minimizers in W1,1
u0

(Ω,RN )). Assume that f satisfies (Lin)
and that f(x, · ) : RNn → R is a convex function for L n-a.e. x ∈ Ω. Then, for u ∈ W1,1

u0
(Ω,RN) and

σ ∈ L∞
div(Ω,R

Nn), the following four conditions are equivalent:

u solves (P) and σ solves (P∗) , (1.5)

f( · ,∇u) = σ · ∇u− f∗( · , σ) L
n-a.e. on Ω , (1.6)

σ ∈ ∂zf( · ,∇u) L
n-a.e. on Ω , (1.7)

∇u ∈ ∂z∗f∗( · , σ) L
n-a.e. on Ω . (1.8)

Here, ∂zf and ∂z∗f∗ denote the subdifferentials — as specified in Definition 3.2 below — of f and f∗

with respect to the second variable.

Proof. By the definition of the conjugate function, f( · ,∇u) ≥ σ · ∇u− f∗( · , σ) holds L
n-a.e. on Ω.

Thus, (1.6) is equivalent to the integral identity
∫

Ω

f( · ,∇u) dx =

∫

Ω

σ · ∇u dx−
∫

Ω

f∗( · , σ) dx . (1.9)

Since we assume u ∈ W1,1
u0

(Ω,RN ) and σ ∈ L∞
div(Ω,R

Nn), the first integral on the right-hand side
remains unchanged if we replace u with u0, and thus (1.9) just means F [u] = Ru0

[σ]. By Theorem 1.1,
the last equality characterizes the extremality properties in (1.5), and hence we have established the
equivalence of (1.5) and (1.6).

With the help of (3.1) (which is essentially the definition of the subdifferential) and the equality
f∗∗ = f , (1.6) can be rewritten in the two equivalent forms given in (1.7) and (1.8).
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We emphasize, however, that the preceding reasoning makes essential use of the assumption
u ∈ W1,1

u0
(Ω,RN ), while the existence theory for (P) yields generalized minimizers in BV(Ω,RN )

rather than minimizers in W1,1
u0

(Ω,RN ). This gap is closed by Theorem 2.2 of the present paper,
which provides two types of relations for BV-extremals: The first type of relation simply states
that (1.6), (1.7), (1.8) remain true for all extremals u ∈ BVu0

(Ω,RN ) and σ ∈ L∞
div(Ω,R

Nn) provided
that ∇u is understood as (the density of) the absolutely continuous part of the gradient measure Du.
This answers the question raised in [11, Remark 2.30] and extends more specific results of Bildhauer &
Fuchs [12, 9, 13, 10, 11], which are in turn inspired by previous ideas of Seregin [34, 35, 36]. The second
type of relation involves the singular part Dsu of Du, and combined with (1.6), (1.7), (1.8), it leads
to a complete characterization of extremals in our BV-setting. Though there are strong connections
with previous ideas of Anzellotti [2, 4] and Kohn & Temam [24, 25], we believe that the general form
of the relation for Dsu is new.

We will also demonstrate how the extremality relations can be used in order to recover and extend,
in an elegant way, uniqueness results for u and σ in certain situations. The respective results, stated
in Corollaries 2.3, 2.5, and 2.6, have a concrete application in the regularity theory for the singular
integrals of [8], which originally motivated our investigation of the duality correspondence.

Acknowledgment. The authors would like to thank the referee for the careful reading of the
manuscript and some constructive suggestions, which have led to an improved presentation.

2 Statement of the results

2.1 General notation

Though we mostly stick to standard notations, we briefly comment on a few of them.
We write intA for the topological interior, ∂A for the topological boundary, and A for the topolog-

ical closure of a subset A of Rm (where m is an arbitrary positive integer). In addition, 1A : Rm → R

denotes the characteristic function of A, and oscA h := supx,y∈A |h(y)−h(x)| stands for the oscillation
of a function h on A. Moreover, by BR(x0) := {x ∈ R

m : |x−x0| < R} we denote the open ball with
center x0 and radius R in R

m, while for x0 = 0 we use the abbreviation BR := BR(0). For a family of
sets (Ax)x∈Ω in R

m and x0 ∈ Ω ⊂ R
n, we use the Kuratowski upper limit

lim sup
Ω∋x→x0

Ax :=
⋂

ε>0

⋃

x∈Ω∩Bε(x0)

Nε(Ax)

with the ε-neighborhoodNε(Ax) of Ax in R
m. We remark that the limit set is always closed and differs

in general from the set-theoretic upper limit
⋂

ε>0

⋃
x∈Ω∩Bε(x0)

Ax, which does not take into account

the topology of Rm. Regarding measures, we only work with (possibly signed or vector-valued) Radon
measures on subsets of Rn, which are often given as weighted measures hµ, with weight function h
and non-negative base measure µ, or as restrictions µ A := (1A)µ of µ to a Borel set A in R

n. For a
Radon measure ν, we write νa and νs for the absolutely continuous and the singular part in its Lebesgue
decomposition with respect to the Lebesgue measure L n. Further, if ν is absolutely continuous with
respect to a non-negative Radon measure µ, then dν

dµ stands for the Radon-Nikodým density of ν with

respect to µ, so that we have ν = dν
dµµ. Moreover, ‖w‖p;A is the Lp-norm, taken on a measurable subset

A of Rn with respect to L n (and the Euclidean norm on the finite-dimensional target of w). Finally,
the space BV(Ω,RN ) of functions of bounded variation is defined as the collection of all functions
in L1(Ω,RN ) whose distributional derivative is represented by a finite R

Nn-valued Radon measure.
All further terminology for BV-functions follows closely the one of the monograph [1] — up to a few
additional conventions that are explained in the following subsection.
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2.2 The Dirichlet problem in BV

Recalling that u0 ∈ W1,1
loc(R

n,RN ) with ∇u0 ∈ L1(Ω,RNn) is fixed, we set

w(x) :=

{
w(x) for x ∈ Ω

u0(x) for x ∈ R
n \ Ω

for every w ∈ u0 Ω
+ BV(Ω,RN ), and we introduce the class

BVu0

(
Ω,RN

)
:=

{
w : w − u0 ∈ BV(Rn,RN )

}
.

We stress that, if Ω is a bounded Lipschitz domain, then [1, Corollary 3.89] implies BVu0
(Ω,RN) =

BV(Ω,RN ). For less regular Ω (for instance, in the presence of sharp external cusps), BVu0
(Ω,RN )

can be strictly smaller than BV(Ω,RN ), but it still contains W1,1
u0

(Ω,RN ) and is in particular non-

empty. When considering functions w ∈ BVu0
(Ω,RN), we will understand in the following that the

derivative Dw extends to a measure on Ω which is given by Dw(B) := Dw(B) for all Borel subsets B
of Ω. We denote by Daw := (Dw)a and Dsw := (Dw)s, respectively, the absolutely continuous and the
singular part of this measure (with respect to L n), and we write ∇w for the density of Daw so that
we have the Lebesgue decomposition

Dw = (∇w)L n +Dsw .

For any f : Ω×R
m → R with (Lin), we define the recession function f∞ : Ω×R

Nn → R ∪ {−∞}
by

f∞(x, z) := lim inf
x̃→x
z̃→z
tց0

tf(x̃, z̃/t) for (x, z) ∈ Ω× (RNn \ {0}) (2.1)

and f∞(x, 0) := 0 for x ∈ Ω. We observe that f∞ is positively 1-homogeneous in z. Moreover, under
minor extra hypotheses on f (always ensured in the following by (Con) or a coercivity assumption),
f∞ is finite-valued and lower semicontinuous4 in (x, z) with bound |f∞(x, z)| ≤ L|z|.

Now we are in the position to extend F in a natural way from W1,1
u0

(Ω,RN ) to a class of BV-

functions: indeed, following an idea of [22], for w ∈ BVu0
(Ω,RN) we set

Fu0
[w] :=

∫

Ω

f( · ,∇w) dx +

∫

Ω

f∞
(
· , dDsw

d|Dsw|
)
d|Dsw| ,

where we have involved u0 in order to extend Dw to Ω as explained above. The functional Fu0
will

play a crucial role in the present paper, and in particular it is used to specify the notion of generalized
minimizers as follows.

Definition 2.1 (generalized minimizer). Suppose that f fulfills (Lin). A function u ∈ BVu0
(Ω,RN )

is called a generalized minimizer of the Dirichlet problem (P) if we have

Fu0
[u] ≤ Fu0

[w] for all w ∈ BVu0

(
Ω,RN

)
.

We highlight the two main features of this notion, which have originally been observed in [21,
Section 2] under slightly stronger assumptions:

• Existence of generalized minimizers is guaranteed, for instance, if Ω supports the BV0-Poincaré
inequality and ∂Ω has zero L n-measure, and if f is convex in z with (Lin), linearly coercive, and
lower semicontinuous in (x, z). This follows from Reshetnyak’s semicontinuity theorem; compare
Appendix B for details.

4In the literature one can find several variations of the definition (2.1), which do all coincide under the assumptions
of our main results, but may otherwise differ. The main advantage of the variant which we have singled out here is the
general validity of the semicontinuity property, which in turn seems favorable in order to gain the existence of minimizers.
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• Under our assumptions (Lin), (Per), (Con) — the latter two introduced in the next subsection —
the generalization preserves the infimum value of (P) in the sense of

inf
BVu0

(Ω,RN )
Fu0

= inf
W1,1

u0
(Ω,RN )

F . (2.2)

This follows from (a slight variant of) Reshetnyak’s continuity theorem and an approximation
result; see Theorem 3.10 and Lemma 3.12 below.

2.3 Main result: extremality relations for BV-minimizers

Postponing the discussion of non-convex cases to Appendix A, we now state our results under — as
we believe — quite general and sharp assumptions on the domain Ω and the integrand f .

Specifically, for the open set Ω, we do not require boundedness (allowing, at the cost of some
technical complications in Sections 3.2, 3.3, and 4, such natural domains as the whole space, a half-
space, or a strip), but we only impose the mild boundary regularity hypothesis

1Ω ∈ BVloc(R
n) and |D1Ω| = H

n−1 ∂Ω . (Per)

This condition, introduced in [33], will only be relevant in connection with the strict approximation
result of Lemma 3.12, and it can be rephrased by saying that Ω is a set of locally finite perimeter
in R

n such that its topological boundary differs from its reduced boundary only by a set of zero
H n−1-measure. In particular, (Per) implies that ∂Ω is H n−1-σ-finite and has zero L n-measure.

Furthermore, for the integrand f , we rely, in addition to (Lin), on the following continuity hypoth-
esis:

f(x, · ) : RNn → R is a continuous function for L
n-a.e. x ∈ Ω

and the limit lim
x̃→x
z̃→z
tց0

tf(x̃, z̃/t) exists in R for all (x, z) ∈ Ω× (RNn \ {0}) . (Con)

Assumption (Con) is only needed in order to apply Theorem 3.10, a version of the Reshetnyak conti-
nuity result. The first part of (Con) is commonly phrased by saying that f is a Carathéodory function,
and the second part of (Con) can be restated as the requirement that (x, z) 7→ (1−|z|)f(x, z/(1−|z|))
extends from Ω×BNn

1 to a function on (Ω×BNn
1 ) ∪ (Ω×∂BNn

1 ) which is continuous at all points of
Ω×∂BNn

1 . Yet another reformulation of the second part is that the lower limit in (2.1) is indeed a
limit and that the recession function f∞ is jointly continuous in (x, z). For both illustration and later
usage, we also record that (Con) implies the following continuity condition in x:

For all x0 ∈ Ω and ε > 0 there exists a δ > 0 such that for x, x̃ ∈ Ω and z ∈ R
Nn we have

|x−x0|+ |x̃−x0|+ |z|−1 < δ =⇒ |f(x̃, z)− f(x, z)| < ε|z| . (2.3)

We point out that, under the hypothesis that f is convex in z with (Lin), the conditions (Con) and (2.3)
are even equivalent. In particular, (2.3) is trivially satisfied in the case of an x-independent integrand f ,
and hence, in this case, (Con) follows already from convexity and (Lin).

Now we are ready to state our main result.

Theorem 2.2 (extremality relations for generalized minimizers). Assume that Ω satisfies (Per), that f
satisfies (Lin) and (Con), and that f(x, · ) : RNn → R is a convex function for L n-a.e. x ∈ Ω. Then,

for u ∈ BVu0
(Ω,RN) and σ ∈ L∞

div(Ω,R
Nn) we have the following equivalence: u is a generalized

minimizer of (P) and σ a solution of (P∗), if and only if any of the relations

f( · ,∇u) = σ · ∇u− f∗( · , σ) L
n-a.e. on Ω , (2.4)

σ ∈ ∂zf( · ,∇u) L
n-a.e. on Ω , (2.5)

∇u ∈ ∂z∗f∗( · , σ) L
n-a.e. on Ω (2.6)
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holds for ∇u, and, at the same time, Dsu satisfies

f∞
(
· , dDsu

d|Dsu|
)
=

dJσ ·DuKs

d|Dsu| |Dsu|-a.e. on Ω . (2.7)

Here, we use the terminology of Section 2.2, and specifically Du = (∇u)L n + Dsu stands for the

Lebesgue decomposition of the gradient measure Du on Ω. The precise definition of the pairing Jσ ·DuK
is postponed to Section 5.

In order to illustrate the meaning of this statement for a non-smooth f , let us consider, in the
simple case n=N=1 (then L∞

div(Ω,R
Nn) consists of constant functions σ, thus Jσ · DuKs = σDsu),

the integrand f(x, z) = |z| (for which we have ∂zf(x, 0) = [−1, 1] and f∞(x, z) = |z|). In this
situation, (2.5) and (2.7) show that u ∈ BVu0

(Ω,RN ) and σ ∈ L∞
div(Ω,R

Nn) are extremals of (P)
and (P∗) if and only if one of the following three possibilities occurs: either σ ≡ 1 and Du ≥ 0, or
σ ≡ −1 and Du ≤ 0, or σ ∈ (−1, 1) and Du ≡ 0; compare also Remark 5.5. We further observe
that, in this example, (2.4), (2.5), (2.6) do also hold for every constant σ ∈ [−1, 1] and every non-
monotone pure-jump function u. Therefore, the additional relation (2.7) is indeed inevitable in the
characterization of BV-extremals.

In Section 4 we give a partial proof of Theorem 2.2, which establishes the relations (2.4), (2.5), (2.6)
for all extremals u ∈ BVu0

(Ω,RN ) and σ ∈ L∞
div(Ω,R

Nn). The method employed there is based
on approximations and Ekeland’s variational principle, it yields Theorem 1.1 as a byproduct and
remains comparably elementary. The relation (2.7) requires more refined measure-theoretic concepts, in
particular the pairing Jσ·DuK of gradient measures Du and L∞

div-functions σ in the spirit of Anzellotti [2]
(see Definition 5.1). Under additional regularity assumptions on f and Ω, these tools have been
employed in Anzellotti’s subsequent work [4], and the last relation (2.7) follows from the validity
of (2.5) and [4, Theorem 1.3]. In our less regular setting, however, we establish (2.7) and the full
equivalence of Theorem 2.2 only in Section 5 — by a second approach which relies on |Dsu|-a.e.
properties of Jσ ·DuK and which now utilizes Theorem 1.1 as a prerequisite.

We stress that, as already indicated, Theorem 2.2 is not the first duality result in the BV-context:
for instance, under more stringent assumptions on f — namely x-independence, strict convexity, and
C2-regularity with a bound for ∇2f — Bildhauer & Fuchs [12, 10, 11] have proved some regularity
properties of the dual solution and the existence of at least one generalized minimizer which satisfies
the extremality relations (2.4), (2.5), (2.6), while Bildhauer [9] has established uniqueness of the dual
solution under the same hypothesis. One advantage of our Theorem 2.2 is that it recovers the latter
uniqueness result as a direct corollary and under the sole additional hypothesis that f is C1 in the
z-variable:

Corollary 2.3 (uniqueness of σ). Assume that Ω satisfies (Per), that f satisfies (Lin) and (Con),
and that f(x, · ) : RNn → R is a convex C1-function for L n-a.e. x ∈ Ω. If a generalized minimizer

u ∈ BVu0
(Ω,RN ) of (P) exists, then the dual problem (P∗) has a unique solution.

Proof. By the convexity and differentiability assumptions, we are in the case of a single-valued sub-
differential ∂zf(x, z) = {∇zf(x, z)}, and then (2.5) determines σ.

We remark that one may also view— as done in [9] — the uniqueness result as an outcome of a strict
convexity property of the dual problem. In fact, this follows from the two subsequent observations: On
the one hand, the differentiability assumption of the corollary implies that f∗(x, · ) is strictly convex
on5 Im ∂zf(x, · ) :=

⋃
z∈RNn ∂zf(x, z), while on the other hand (2.5) shows that all dual solutions take

values in the latter sets.

5By this strict convexity assertion we mean precisely that f∗(x, · ) is not affine on any line segment with both
endpoints in Im ∂zf(x, · ); compare Proposition 3.8. Notice however that in the generality of our setup f∗(x, · ) can be
finite and non-strictly convex somewhere outside Im ∂zf(x, · ).
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2.4 Further results and applications: regularity and uniqueness criteria

In particular, Theorem 2.2 shows that, if σ is a dual solution, then σ(x) lies in Im ∂zf(x, · ) for L n-a.e.
x ∈ Ω. Working with an arbitrary, but fixed representative of σ, we now require a slightly stronger
inclusion, which roughly means that σ(x) stays away from the boundary of Im ∂zf(x, · ), even when x
runs in an L n-negligible set. With the help of the new extremality relation (2.7), we then infer the
following statement (see the end of Section 5 for details of the proof):

Theorem 2.4 (duality criterion for W1,1-regularity of a generalized minimizer). Assume that Ω sat-

isfies (Per), that f satisfies (Lin) and (Con), and that f(x, · ) : RNn → R is a convex function for

L n-a.e. x ∈ Ω. Furthermore, consider a generalized minimizer u ∈ BVu0
(Ω,RN ) of (P) and a so-

lution σ ∈ L∞
div(Ω,R

Nn) of (P∗). If lim supx→x0
{σ(x)} (that means in our terminology the set of

cluster points of σ(x) when x approaches x0) is contained in the interior of Im ∂zf(x0, · ) for |Dsu|-
a.e. x0 ∈ Ω, then Dsu vanishes on Ω, and hence we have u ∈ W1,1

loc(Ω,R
N ).

Finally, we turn to the case that f is even strictly convex in z. Then, a minimizer in W1,1
u0

(Ω,RN ) is

necessarily unique, while for generalized minimizers u ∈ BVu0
(Ω,RN ) only the absolutely continuous

part (∇u)L n of their gradient is uniquely determined. Clearly, the latter assertion trivially implies
uniqueness of the full gradient Du whenever one can prove W1,1-regularity for all generalized mini-
mizers. While in [7] we have treated a borderline case of this regularity problem, we here discuss less
subtle situations where it can be resolved — in a simpler and more elegant way — via Theorem 2.4.
In particular, this happens in the following corollaries, which have previously been obtained — under
stronger assumptions on f and based on a different strategy from [36, 13] — in [11, Theorem A.9].

Corollary 2.5 (continuity of σ implies uniqueness of Du). Assume that Ω satisfies (Per), that f
satisfies (Lin) and (Con), and that f(x, · ) : RNn → R is a strictly convex function for all x ∈ Ω. If

the dual problem (P∗) has a continuous solution σ ∈ L∞
div(Ω,R

Nn) such that σ(x) ∈ Im ∂zf(x, · ) holds
for all x ∈ Ω, then all generalized minimizers u, v ∈ BVu0

(Ω,RN ) of (P) are in W1,∞
loc (Ω,RN ), and

we have Du=(∇u)L n=(∇v)L n=Dv.

The following derivation of Corollary 2.5 from Theorems 2.2 and 2.4 anticipates some auxiliary
results from Section 3.1.

Proof. Via Proposition 3.8 and Lemma 3.9, the strict convexity assumption implies that Im(x, ∂zf)
is open in Ω × R

Nn, that f∗ is of class C1 in z∗ on Im(x, ∂zf) with single-valued subdifferential
∂z∗f∗(x, z∗) = {∇z∗f∗(x, z∗)}, and that ∇z∗f∗ is locally bounded on Im(x, ∂zf). In view of these
facts, the relation (2.6) determines ∇u = ∇z∗f∗( · , σ) = ∇v, and, involving also the continuity of σ,
we infer ∇u,∇v ∈ L∞

loc(Ω,R
Nn). Finally, the assumptions on σ also guarantee lim supx→x0

{σ(x)} =
{σ(x0)} ⊂ Im ∂zf(x0, · ) for all x0 ∈ Ω, and thus Theorem 2.4 gives Dsu ≡ 0 ≡ Dsv and Du =
(∇u)L n = (∇v)L n = Dv.

Combining the above results we infer:

Corollary 2.6 (uniqueness up to constants of a C1 generalized minimizer). Assume that Ω is connected

and satisfies (Per), that f satisfies (Lin) and (Con), that f is C1 in z with continuous gradient ∇zf
on Ω×R

Nn, and that f(x, · ) : RNn → R is a strictly convex function for all x ∈ Ω. If there exists one
generalized minimizer u ∈ BVu0

(Ω,RN) of (P) which is in C1 in the interior of Ω, then for every
generalized minimizer v of (P) there is a constant c ∈ R

N such that L n-a.e. on Ω we have v = u+c.

Proof. By Theorem 2.2, the existence of the C1 generalized minimizer u and the continuity of ∇zf
give the continuous solution σ := ∇zf( · ,∇u) of the dual problem (P∗). Hence, the assumptions of
Corollary 2.5 are satisfied, and the claim follows from Corollary 2.5 via the connectedness of Ω and
the constancy theorem.
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We emphasize that we have a concrete application of the last corollary in mind: specifically, in
our companion paper [8], which is concerned with certain singular variational integrals, we prove C1-
regularity for one generalized minimizer and then we employ Corollary 2.6 to deduce uniqueness and
C1-regularity for every generalized minimizer. On the one hand, we believe that this approach to
uniqueness is more conceptual and less technical than the direct proof, implemented in [7], of W1,1-
regularity for all minimizers. On the other hand, Corollary 2.6 remains limited to situations where
C1-regularity is within reach, while the corollary does not seem to be applicable in the borderline case
of [7].

Finally, we remark that, when considering generalized minimizers, uniqueness up to constants, as
stated in the last corollary, can only be improved to full uniqueness in quite specific situations. For the
area integrand f(x, z) =

√
1 + |z|2 in codimension N = 1, for instance, Miranda’s boundary continuity

result [28, 29] yields full uniqueness in case of a continuous boundary datum on a Lipschitz domain,
while the examples of Santi [32] and Baldo & Modica [6] show that uniqueness up to constants is
optimal for general data. For a detailed discussion of such non-uniqueness phenomena, we refer also
to [7] and [19, Chapter V.2].

3 Preliminaries

3.1 Convex duality

In this subsection we recall some basic facts from convex analysis; compare, for instance, [19] and [11,
Chapter 2].

Background definitions. As the conjugate function f∗ in our main results can take the value
∞, it is convenient to provide the following statements for extended real-valued functions h : Rm →
R ∪ {−∞,∞} in arbitrary dimension m ∈ N. We define the effective domain domh of such an h as

domh := {z ∈ R
m : h(z) < ∞} .

Definition 3.1 (conjugate function). Consider an arbitrary function h : Rm → R ∪ {−∞,∞}. Then

its conjugate function h∗ : Rm → R ∪ {−∞,∞} is given by

h∗(z∗) := sup
ξ∈Rm

[
z∗ · ξ − h(ξ)

]
for all z∗ ∈ R

m .

The conjugate function of h∗ is called the bi-conjugate function and is denoted by h∗∗.

In addition, we record that, if h 6≡ ∞, then h∗ has values in R∪{∞} (while for h ≡ ∞ we evidently
have h∗ ≡ −∞). Moreover, being a pointwise supremum of affine functions, h∗ is always convex and
lower semicontinuous. Finally, for h∗ 6≡ ∞ (or equivalently for h∗∗ 6≡ −∞), it is well known that the
bi-conjugate h∗∗ coincides with the lower semicontinuous, convex envelope of h, that means that it is
the largest lower semicontinuous, convex function R

m → R ∪ {∞} which is nowhere larger than h;
see [19, Proposition I.4.1].

Definition 3.2 (subdifferentiability and subgradients). For a function h : Rm → R ∪ {−∞,∞}, one
defines the subdifferential ∂h(z) of h at a point z ∈ R

m as the set of all z∗ ∈ R
m with

h(ξ) ≥ h(z) + z∗ · (ξ − z) for all ξ ∈ R
m .

One says that h is subdifferentiable at z ∈ R
m if ∂h(z) is non-empty, and then one calls the elements

of ∂h(z) the subgradients of h at z. The collection of all subgradients of h is Im ∂h :=
⋃

z∈Rm ∂h(z).

Clearly, ∂h(z) is always convex and closed in R
m, and the existence of a classical gradient ∇h(z)

implies that ∂h(z) is either empty or the singleton {∇h(z)}.
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Excluding the value −∞, from now on we specialize to functions h : Rm → R ∪ {∞}. Then, for
h 6≡ ∞, we record a useful characterization of subgradients: there holds z∗ ∈ ∂h(z) if and only if the
above supremum in the definition of the conjugate function is attained for the vector ξ = z, in other
words

z∗ ∈ ∂h(z) ⇐⇒ h(z) + h∗(z∗) = z∗ · z . (3.1)

From (3.1) we read off that one has
Im ∂h ⊂ domh∗ , (3.2)

and, for convex and lower semicontinuous h, one can additionally show domh∗ ⊂ Im ∂h. Though
we will not need the latter inclusion let us briefly remark that it can be obtained by applying, for
z∗ ∈ domh∗, the Ekeland type result [19, Theorem I.6.2] to a maximizing sequence for z 7→ z∗ ·z−h(z).

We also record an elementary bound for the quantity

|∂h(z)| := sup
z∗∈∂h(z)

|z∗|

(with the convention |∂h(z)| = 0 for ∂h(z) = ∅).
Lemma 3.3. Consider h : Rm → R∪ {∞} with h 6≡ ∞ and a subset A of R

m. Then, for all interior

points z of A, we have

|∂h(z)| ≤ oscA h

dist(z,Rm \A) .

Proof. It suffices to consider interior points z of A with ∂h(z) 6= ∅ and hence h(z) < ∞. For every
z∗ ∈ ∂h(z), we can choose a ξ ∈ R

m which points in the same direction as z∗ and satisfies |ξ| =
dist(z,Rm \A). Consequently, for every t ∈ (0, 1), we have z+tξ ∈ A and

t|z∗| = z∗ · tξ
|ξ| ≤ h(z+tξ)− h(z)

|ξ| ≤ oscA h

dist(z,Rm \A) .

In the limit t ր 1 this yields the claimed bound for |∂h(z)|.

Subdifferentials of convex functions. Next we turn, specifically, to convex functions h : Rm →
R ∪ {∞}. In this case, it is well known that h is locally Lipschitz continuous and subdifferentiable
on the interior int(domh) of domh; see for instance [19, Corollary I.2.4, Proposition I.5.2]. Moreover,
for z ∈ int(domh), it follows from Lemma 3.3 that the quantity |∂h(z)| is bounded by the Lipschitz
constant of h on an arbitrarily small neighborhood of z, and in particular ∂h(z) is bounded and thus
— as we already observed its closedness — compact. If h is, in addition, lower semicontinuous, then
h is even subdifferentiable on all of domh, and by the above-mentioned interpretation of h∗∗ as the
lower semicontinuous, convex envelope of h, we necessarily have h∗∗ = h on R

m.
In the following we recall some more statements involving subdifferentials of convex functions, but

for convenience and completeness we now sketch the proofs in our setting.

Lemma 3.4 (continuity of the subdifferential). Suppose that h : Rm → R ∪ {∞} is convex and that

zk converges to z in int(domh). Then for every choice of z∗k ∈ ∂h(zk) the sequence (z∗k)k∈N is bounded

in R
m and all its cluster points are contained in ∂h(z).

Proof. In view of the preceding observations, |∂h(zk)| is bounded for k → ∞ by the Lipschitz constant
on a neighborhood of z, so that also z∗k remains bounded. In addition, the inclusion of the cluster points
in ∂h(z) follows straightforwardly from Definition 3.2 and the convergence limk→∞ h(zk) = h(z).

Lemma 3.5 (one-sided directional derivatives give subgradients). Consider a convex function h : Rm →
R ∪ {∞}, z ∈ int(domh), and v ∈ R

m. Then we have

lim
sց0

h(z+sv)− h(z)

s
= z∗v · v for some z∗v ∈ ∂h(z) ,

and in particular the limit exists.
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Proof. By the convexity inequality, the quantity h(z+sv)−h(z)
s

is increasing in s for 0 < s ≪ 1, so that
its limit for s ց 0 exists as asserted. By the definition of the subdifferential, we can moreover bound
the same quantity from above by z∗(s) · v with arbitrarily chosen z∗(s) ∈ ∂h(z+sv) and from below
by z∗ · v with any z∗ ∈ ∂h(z). Involving Lemma 3.4, we choose z∗v ∈ ∂h(z) as a cluster point of the
z∗(s) for s ց 0 and deduce the claimed equality.

Lemma 3.6 (criterion for subgradients). Suppose that h : Rm → R ∪ {∞} is lower semicontinuous.

If z∗0 ∈ R
m satisfies lim|z|→∞[h(z)− z∗0 · z] = ∞, then we have z∗0 ∈ Im ∂h.

Proof. We can assume h 6≡ ∞. Then, direct minimization gives a minimum point z0 of z 7→ h(z)−z∗0 ·z
in R

m. We infer h(z0) + z∗0 · (z−z0) ≤ h(z) for all z ∈ R
m, and thus we get z∗0 ∈ ∂h(z0).

Proposition 3.7 (convexity and openness of Im ∂h). Consider h : Rm → R ∪ {∞}. Whenever we

have z∗0 ∈ int(Im ∂h), then there exist positive constants ε and M such that we have

h(z)− z∗0 · z ≥ ε|z| −M for all z ∈ R
m , (3.3)

and, if h is lower semicontinuous, then int(Im ∂h) is convex in R
m.

Moreover, if h is convex and lower semicontinuous on R
m and strictly convex on domh, then

Im ∂h is open in R
m, and consequently the preceding conclusions remain true with Im ∂h in place of

int(Im ∂h).

Proof. It suffices to prove the claim (3.3) only for z∗0 = 0 ∈ int(Im ∂h) (otherwise we can replace
h with z 7→ h(z) − z∗0 · z). Writing e1, e2, . . . , em for the canonical basis of R

m, we then have
±δe1,±δe2, . . . ,±δem ∈ Im ∂h for some positive δ. Consequently, there exists a constant M such
that h(z) ≥ δ|zi| −M holds for all i ∈ {1, 2, . . . ,m} and z ∈ R

m, where zi denotes the ith component
of z. When we apply the last estimate for each z ∈ R

m with a corresponding i such that |zi| is
maximal, we arrive at (3.3) with ε := δ/

√
m.

Next we show that, for a lower semicontinuous function h and z∗1 , z
∗
2 ∈ int(Im ∂h), also every convex

combination z∗ of z∗1 and z∗2 is contained in int(Im ∂h). First, by (3.3) we have h(z)−z∗1 ·z ≥ ε1|z|−M1

for all z ∈ R
m with positive constants ε1 and M1. In the case (z∗1−z∗) · z ≥ 0 we moreover infer

h(z) − z∗ · z ≥ ε1|z| − M1. As z∗ is a convex combination of z∗1 and z∗2 , in the remaining case
(z∗1−z∗) · z < 0 we have (z∗2−z∗) · z ≥ 0, and we can apply the analogous reasoning with (z∗2 , ε2,M2)
in place of (z∗1 , ε1,M1). All in all we get h(z)− z∗ · z ≥ min{ε1, ε2}|z| −max{M1,M2} for all z ∈ R

m.
Via Lemma 3.6 we deduce z∗ ∈ Im ∂h. Finally, if ξ ∈ R

m is sufficiently small, z∗1+ξ and z∗2+ξ are
contained in Im ∂h, and the previous arguments show that also the convex combination z∗+ξ of z∗1+ξ
and z∗2+ξ is contained in Im ∂h. In conclusion, we have z∗ ∈ int(Im ∂h).

Finally, we turn to the case that the convex and lower semicontinuous function h is strictly convex
on domh, and we establish the validity of (3.3) even for all z∗0 ∈ Im ∂h. To this end, we can assume
h(0) = 0 and z∗0 = 0 ∈ ∂h(0) (the case h ≡ ∞ is trivial, and otherwise we can take z0 ∈ domh with
z∗0 ∈ ∂h(z0) and replace h with z 7→ h(z0 + z)− h(z0)− z∗0 · z). Then h is non-negative, and the strict
convexity implies that ε := min|z|=1 h(z) is positive (if the minimum equals ∞, then ε stands for an
arbitrary positive number). By the convexity inequality we get h(z) ≥ h(z/|z|)|z| ≥ ε|z| whenever
|z| ≥ 1, and (3.3) follows. Given z∗0 ∈ Im ∂h and z∗ ∈ R

m with |z∗−z∗0 | < ε, as a consequence of (3.3)
we have lim|z|→∞[h(z) − z∗ · z] = ∞, and, by Lemma 3.6, we infer z∗ ∈ Im ∂h. Thus, Im ∂h is open,
and the proof of the proposition is complete.

Proposition 3.8 (∂h∗ is the inverse of ∂h). If h : Rm → R∪{∞} is convex and lower semicontinuous,

then for z, z∗ ∈ R
m we have the equivalence

z∗ ∈ ∂h(z) ⇐⇒ z ∈ ∂h∗(z∗) , (3.4)

and, in particular, h∗ is subdifferentiable on Im ∂h. Moreover, if h : Rm → R is strictly convex, then

h∗ is of class C1 on the open set Im ∂h.
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Proof. We assume h 6≡ ∞ and recall h∗ 6≡ ∞. By (3.1), the left-hand of (3.4) is equivalent to
h(z) + h∗(z∗) = z∗ · z, and the right-hand side is equivalent to h∗(z∗) + h∗∗(z) = z · z∗. Taking into
account h∗∗ = h, it thus follows that (3.4) is valid.

Turning to the remaining claim, we first observe that the strict convexity of h implies ∂h(z1) ∩
∂h(z2) = ∅ whenever z1 6= z2 in R

m. By the subdifferentiability of h and the reverse implication
in (3.4), we deduce that in fact ∂h∗(z∗) = {g(z∗)} is a singleton for all z∗ ∈ Im ∂h. By Proposition 3.7
and (3.2), Im ∂h is open and contained in int(domh∗), and then Lemma 3.4 gives continuity of g on
Im ∂h, while Lemma 3.5 identifies g as the classical derivative of h∗.

Finally, we come to the more general case of the x-dependent integrand f : Ω × R
m → R, where

for the remainder of this paper we permanently fix6 m := Nn. In this connection we always consider
conjugate functions and subgradients with respect to the second variable, and we use the terminology

Im(x, ∂zf) :=
⋃

x∈Ω

[
{x} × Im ∂zf(x, · )

]
= {(x, z∗) ∈ Ω×R

m : z∗ ∈ ∂zf(x, z) for some z ∈ R
m} .

Likewise, we abbreviate Im(x, ∂zf, ∂zf) :=
⋃

x∈Ω

[
{x} × Im ∂zf(x, · )× Im ∂zf(x, · )

]
.

Lemma 3.9 (openness of Im(x, ∂zf) and local boundedness of ∇z∗f∗). Suppose that f satisfies (Con)
and that f(x, · ) : Rm → R is a strictly convex function for all x ∈ Ω. Then Im(x, ∂zf) is open in

Ω×R
m, and ∇z∗f∗ is locally bounded on Im(x, ∂zf).

Proof. We consider (x0, z
∗
0) ∈ Im(x, ∂zf), that is x0 ∈ Ω and z∗0 ∈ Im ∂zf(x0, · ). Then Proposition 3.7

gives positive constants ε and M such that we have f(x0, z)−z∗0 ·z ≥ ε|z|−M for all z ∈ R
m. Via (2.3)

we find some δ > 0 such that for all (x, z) ∈ Ω×R
m with |x−x0|+ |z|−1 < δ we have

|f(x, z)− f(x0, z)| ≤ 1
3ε|z| . (3.5)

When we additionally consider an arbitrary z∗ ∈ R
m with |z∗−z∗0 | < 1

3ε, then we get

f(x, z)− z∗ · z > f(x0, z)− z∗0 · z − 2
3ε|z| ≥ 1

3ε|z| −M . (3.6)

With the help of Lemma 3.6 we deduce that all (x, z∗) ∈ Ω ×R
m with |x−x0| < δ and |z∗−z∗0 | < 1

3ε
are contained in Im(x, ∂zf). Thus, the latter set is open.

Turning to the second claim, we initially demonstrate that

the function (x, z∗, ζ∗) 7→ f∗(x, z∗)− f∗(x, ζ∗) is locally bounded on Im(x, ∂zf, ∂zf) . (3.7)

To this end, it is enough to verify that, whenever a sequence (xk, z
∗
k, ζ

∗
k)k∈N in Im(x, ∂zf, ∂zf) converges

to a limit (x0, z
∗
0 , ζ

∗
0 ) in Im(x, ∂zf, ∂zf), then we have

lim sup
k→∞

[
f∗(xk, z

∗
k)− f∗(xk, ζ

∗
k )
]
< ∞ (3.8)

(reversing the roles of z∗k and ζ∗k gives a bound from below). To prove (3.8), in turn, we record
that the definition of the conjugate and (3.5) give the estimate f∗(xk, z

∗
k) ≥ z∗k · z0 − f(xk, z0) ≥

z∗k · z0 − f(x0, z0)− 1
3ε|z0| for an arbitrarily fixed z0 ∈ R

m with |z0|−1 < δ and for sufficiently large k.
From this estimate, we read off

lim inf
k→∞

f∗(xk, z
∗
k) > −∞ . (3.9)

Next, using the finiteness of f∗ on Im(x, ∂zf) and the definition of the conjugate, we choose a sequence
(zk)k∈N in R

m with
f∗(xk, z

∗
k) ≤ z∗k · zk − f(xk, zk) + 1 . (3.10)

6Nevertheless, we sometimes write R
Nn and sometimes R

m depending on whether the matrix structure of z ∈ R
Nn

is relevant at the respective stage or not.
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If we now had lim supk→∞ |zk| = ∞, then (3.6) would give z∗k ·zk−f(xk, zk) ≤ M− 1
3ε|zk| for infinitely

many k, so that the lim inf of the right-hand side of (3.10) would equal −∞. In view of (3.9), this
cannot happen, and thus we necessarily have

sup
k∈N

|zk| < ∞ . (3.11)

Via (3.10) and the definition of the conjugate, we next estimate

f∗(xk, z
∗
k) ≤ (z∗k − ζ∗k) · zk + ζ∗k · zk − f(xk, zk) + 1 ≤ |z∗k − ζ∗k | |zk|+ f∗(xk, ζ

∗
k ) + 1 ,

and with (3.11) at hand, (3.8) and thus (3.7) follow immediately. Therefore, whenever K is a compact
subset of Im ∂zf(x0, · ) for some x0 ∈ Ω, then, for all x in a neighborhood of x0, we have K ⊂
Im ∂zf(x, · ) and oscK f∗(x, · ) is uniformly bounded. By Lemma 3.3, applied with h := f∗(x, · ), local
boundedness of |∂z∗f∗| on Im(x, ∂zf) follows. Finally, taking into account Proposition 3.8, the classical
derivative ∇z∗f∗ with respect to the z∗-variable exists on Im(x, ∂zf), hence |∇z∗f | equals |∂z∗f∗| and
is locally bounded on Im(x, ∂zf).

3.2 Reshetnyak continuity

Next we state a refined version of Reshetnyak’s continuity theorem [30] which requires only the assump-
tions (Lin) and (Con) for the integrand f . In particular, these hypotheses comprise the Carathéodory
property for f and joint continuity of f∞ in (x, z), but we emphasize that they do not imply continuity
of f itself in x, which is imposed in more common versions [21, 17, 27] of the result. Indeed, the drop-
ping of the latter continuity assumption in x seems quite natural, but to our knowledge it has been
carried out only recently by Kristensen & Rindler [26]. Here, we take their corresponding statements
as a starting point and then generalize the result to our setup with a possibly unbounded open set Ω.

Theorem 3.10 (Reshetnyak continuity). Suppose that ∂Ω has zero L n-measure and that f : Ω×R
m →

R satisfies (Con) and (Lin) with Ψ ∈ L1(Ω). Assume moreover that (µk)k∈N weak-∗-converges7 to µ
in the space of finite R

m-valued Radon measures on Ω. If there holds

lim
k→∞

|(̺L n, µk)|
(
Ω
)
= |(̺L n, µ)|

(
Ω
)

for the R
m+1-valued measures (̺L n, µk) and (̺L n, µ) with some positive ̺ ∈ L1(Ω) which is bounded

away from 0 on every bounded subset of Ω, then we also have

lim
k→∞

[∫

Ω

f
(
· , dµa

k

dL n

)
dx+

∫

Ω

f∞
(
· , dµs

k

d|µs
k|
)
d|µs

k|
]
=

∫

Ω

f
(
· , dµa

dL n

)
dx+

∫

Ω

f∞
(
· , dµs

d|µs|
)
d|µs| .

Proof. We fix ε > 0, and — observing that the second condition in (3.12) is satisfied for all but
countably many R — we find a radius R with

|((̺+Ψ)L n, µ)|
(
Ω \ BR

)
≤ ε and |(̺L n, µ)|(Ω ∩ ∂BR) = 0 . (3.12)

Then it follows that we have

lim
k→∞

|(̺L n, µk)|
(
Ω ∩ BR

)
= |(̺L n, µ)|

(
Ω ∩ BR

)
and lim sup

k→∞
|((̺+Ψ)L n, µk)|

(
Ω\BR

)
≤ ε . (3.13)

Next, exploiting the strict positivity assumption on ̺, we fix continuous and positive functions ̺ℓ on
Ω ∩ BR such that ̺/̺ℓ converges to 1 in L1(Ω∩BR) for ℓ → ∞ (for instance, one can choose the ̺ℓ as
mollifications). Then we introduce the auxiliary functions hℓ : Ω ∩ BR ×R×R

m → R by

hℓ(x, t, z) :=

√[
t/̺ℓ(x)

]2
+ |z|2 ,

7In our terminology this convergence means precisely limk→∞

∫

Ω
ϕ dµk =

∫

Ω
ϕ dµk for every continuous function

ϕ : Ω → Rm with compact (or, here equivalently, with bounded) support.
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and we record that hℓ is positively 1-homogeneous in (t, z) and continuous in all variables with 0 ≤
hℓ(x, t, z) ≤

[
1+1/ infΩ∩BR

̺ℓ
]
|(t, z)| (where Ω ∩ BR is compact and thus infΩ∩BR

̺ℓ is positive). By

Reshetnyak’s continuity theorem, as stated in [1, Theorem 2.39]8, we thus obtain

lim
k→∞

∫

Ω∩BR

hℓ

(
· , d(̺L n, µk)

d|(̺L n, µk)|

)
d|(̺L n, µk)| =

∫

Ω∩BR

hℓ

(
· , d(̺L n, µ)

d|(̺L n, µ)|

)
d|(̺L n, µ)| (3.14)

for all ℓ ∈ N. Relying on the 1-homogeneity of hℓ in (t, z), we can split the integrals and use
hℓ(x, ̺(x), z) =

√
[̺(x)/̺ℓ(x)]2 + |z|2 and hℓ(x, 0, z) = |z| to infer

lim
k→∞

|([̺/̺ℓ]L n, µk)|
(
Ω ∩ BR

)
= |([̺/̺ℓ]L n, µ)|

(
Ω ∩ BR

)
,

still for all ℓ ∈ N. We next eliminate the factors ̺/̺ℓ in the last equality. To this end, keeping in mind
the assumption L n(∂Ω) = 0, we estimate

lim sup
k→∞

|(L n, µk)|
(
Ω ∩ BR

)
≤ (|1−̺/̺ℓ|L n)(Ω ∩ BR) + lim sup

k→∞
|([̺/̺ℓ]L n, µk)|

(
Ω ∩ BR

)

= (|1−̺/̺ℓ|L n)(Ω ∩ BR) + |([̺/̺ℓ]L n, µ)|
(
Ω ∩ BR

)
.

By the L1(Ω)-convergence of ̺/̺ℓ, the right-hand side of this estimate converges to |(L n, µ)|
(
Ω ∩ BR

)

for ℓ → ∞. Thus, also relying on an entirely similar bound from below, we deduce

lim
k→∞

|(L n, µk)|
(
Ω ∩ BR

)
= |(L n, µ)|

(
Ω ∩ BR

)
.

In the following we borrow some results and terminology from [26]. By [26, Proposition 1], the assumed
weak-∗-convergence and the last equality imply also the weak-∗-convergence in Y(Ω ∩BR,R

N) of the
elementary Young measures generated by µk to the one generated by µ. To exploit this convergence,
we introduce, for arbitrary M ≥ 0 and the constant L from (Lin), the truncated integrand fM , defined
as

fM (x, z) :=





−M − 2L|z| if f(x, z) < −M − 2L|z|
f(x, z) if |f(x, z)| ≤ M + 2L|z|
M + 2L|z| if f(x, z) > M + 2L|z|

.

Then we have |fM (x, z)| ≤ M+2L|z|, i.e. the linear growth condition required in [26]. With the help
of (Lin) we see that (fM )∞ = f∞ holds and that (Con) carries over from f to fM . Therefore, the
restriction9 of fM to Ω ∩ BR×R

m is a representation integrand in the sense of [26, Section 2.4], and
we are in the position to apply [26, Proposition 2], which yields

lim
k→∞

[∫

Ω∩BR

fM

(
· , dµa

k

dL n

)
dx+

∫

Ω∩BR

f∞
(
· , dµs

k

d|µs
k|
)
d|µs

k|
]

=

∫

Ω∩BR

fM

(
· , dµa

dL n

)
dx+

∫

Ω∩BR

f∞
(
· , dµs

d|µs|
)
d|µs| .

When we observe |f(x, z) − fM (x, z)| ≤ (Ψ(x) − M)+ and send M → ∞, we can replace fM with
f in the last equality. Hence, we get the claimed convergence, but initially with Ω ∩ BR in place
of Ω. Then we employ (Lin), (3.12), and (3.13) in order to control the corresponding integrals over
Ω \Ω ∩ BR ⊂ Ω \BR so that we get the claim up to an error of at most 2(1+L)ε. Taking into account
the arbitrariness of ε, the proof is complete.

Remark 3.11. In fact, a version of Theorem 3.10 holds true for arbitrary open sets Ω (even when

L n(∂Ω) > 0); to formulate this version, one needs to define f , Ψ, and ̺, require the respective

assumptions, and take all integrals on the closure Ω of Ω.

8We remark that the domain of integration in (3.14) is not open as required in [1, Theorem 2.39]. Nevertheless, we
can easily deduce (3.14) from the statement of [1] when we extend ̺ℓ (and thus hℓ) continuously and the measures µk

and µ by 0 to an open neighborhood of the compactum Ω ∩ BR.
9In our setting, (fM )∞ = f∞ is (and needs to be) defined on Ω×R

m, while fM itself is initially only given on Ω×R
m.

In view of L n(∂Ω) = 0, we can however assume that fM extends suitably to Ω×Rm ⊃ Ω ∩BR×Rm; indeed, we can
take fM (x, z) := f∞(x, z) for x ∈ ∂Ω.
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3.3 Strict interior approximation

Starting from a given u ∈ BVu0
(Ω,RN ), we next construct convenient strict approximations (wk)k∈N

in W1,1
u0

(Ω,RN ) such that, in particular, Theorem 3.10 applies for the convergence of the gradient
measures. Basically, the existence of such approximations is a classical result, but a detailed proof
which covers bounded Lipschitz domains Ω seems to have been written down only in [11, Lemma B.2].
A refinement from [33] applies even to non-Lipschitz domains and in fact to every bounded Ω with (Per).
The main difficulty in this regard is already present for u ≡ 1 on Ω but u0 ≡ 0 and then lies in finding
strict approximations with compact support in Ω. By [33, Theorem 1.1], such interior approximations
exist and can be taken as characteristic functions, that means one can find open sets Ωk with spt1Ωk

=
Ωk ⊂ Ω, limk→∞ ‖1Ωk

−1Ω‖L1(Ω) = 0, and limk→∞ |D1Ωk
|(Ω) = |D1Ω|(Ω). With this first result at

hand, an analogous approximation result for an arbitrary BV function u on a bounded Ω with (Per) was
then established in [33, Theorem 1.2]. Taking the latter result as a starting point, we here use a minor
cut-off argument to improve on a technical point: We actually remove the boundedness assumption on
Ω which has been imposed in [33]. Moreover — as a slight but decisive extra feature in the spirit of [5,
Lemma 5.1] — we also achieve the almost-everywhere convergence (3.16) for the absolutely continuous
parts of the gradients. We now state the approximation lemma, which heavily uses the convention of
Section 2.2 that gradient measures of functions on Ω are extended to Ω with the aid of the fixed u0.

Lemma 3.12 (strict and almost-everywhere approximation in BV). Suppose that Ω satisfies (Per)
and consider an arbitrary non-negative ̺ ∈ L1(Ω). For every u ∈ BVu0

(Ω,RN ) there exists a sequence

(wk)k∈N in u0 Ω
+C∞

cpt(Ω,R
N ) ⊂ W1,1

u0
(Ω,RN) such that (wk)k∈N converges to u in u0 Ω

+L1(Ω,RN )

and (Dwk)k∈N weak-∗-converges to Du in the space of finite R
Nn-valued measures on Ω with

lim
k→∞

|(̺L n,Dwk)|
(
Ω
)
= |(̺L n,Du)|

(
Ω
)
, (3.15)

∇wk → ∇u L
n-a.e. in Ω . (3.16)

Proof. For bounded Ω, ̺ ≡ 1, and without (3.16), the statement is just a reformulation of [33, Theo-
rem 1.2]. We will now show how the general statement can be deduced.

Step 1. We prove Lemma 3.12 under the stated assumptions on Ω and ̺, but at first without (3.16).
To this end, we choose, for every k ∈ N, a radius rk ∈ (k, k+1) with the following three properties:
∂Ω intersects ∂Brk in a set of zero H n−1-measure, the two one-sided traces of the extension u ∈
BVloc(R

n,RN ) from Section 2.2 coincide H n−1-a.e. on ∂Brk with its Lebesgue representative (and
hence with each other), and we have

∫

∂Brk

|u−u0| dH
n−1 ≤

∫

Rn\Bk

|u−u0| dx . (3.17)

This choice is possible, as (Per) and the Federer-Vol’pert theorem (see [1, Theorem 3.77, Theorem 3.78,
Remark 3.79]) imply that all but countably many radii have the first two desired properties, while the
following Fubini type argument guarantees the validity of the last property for the radii in a subset of
(k, k+1) with positive L 1-measure: indeed, denoting by S the set of radii for which (3.17) fails, we
have

L
1(S)

∫

Rn\Bk

|u−u0| dx <

∫

S

∫

∂Br

|u−u0| dH
n−1 dr ≤

∫

Rn\Bk

|u−u0| dx ,

hence we get L 1(S) < 1, and the complement of S has positive L 1-measure. Once rk is chosen, it is
not difficult to verify that also

Ωk := Ω ∩ Brk

satisfies the condition (Per). We now set uk := u
Ωk

and write uk for the extension of uk to R
n by the

values of u0. From (3.17) and [1, Theorem 3.84] we infer uk = 1Brk
u+1Rn\Brk

u0 ∈ u0+BV(Rn,RN )
and

|Duk| Ωk = |Du|
(
Ω ∩ Brk

)
+ |u−u0|H n−1

(
Ω ∩ ∂Brk

)
. (3.18)
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In particular, we have uk ∈ BVu0
(Ωk,R

N ), and, analogous to the convention of Section 2.2, we use
Duk in order to extend Duk to a measure on Ωk. Applying [33, Theorem 1.2] to uk on the bounded
set Ωk, we find a sequence (w̃k,ℓ)ℓ∈N in u0 Ωk

+C∞
cpt(Ωk,R

N ) with

lim
ℓ→∞

‖w̃k,ℓ−uk‖1;Ωk
= 0 ,

lim
ℓ→∞

|(L n,Dw̃k,ℓ)|
(
Ωk

)
= |(L n,Duk)|

(
Ωk

)
.

It follows that a subsequence of (Dw̃k,ℓ)ℓ∈N weak-∗-converges in the sense of measures on Ωk, and
the limit measure must be Duk. Next we choose Mk large enough that ̺k := min{̺,Mk} satisfies
‖̺k − ̺‖1;Ω ≤ 1

k
. Then we make use of Theorem 3.10, applied with Ωk in place of Ω, the constant 1

in place of ̺, and the integrand10 (x, z) 7→ |(̺k(x), z)| in place of f . Consequently, we can take ℓ(k)
large enough that

‖w̃k,ℓ(k)−uk‖1;Ωk
≤ 1

k
,

|(̺kL n,Dw̃k,ℓ(k))|
(
Ωk

)
≤ |(̺kL n,Duk)|

(
Ωk

)
+

1

k
,

and via the choice of ̺k, (3.18), and (3.17) we also get

|(̺L n,Dw̃k,ℓ(k))|
(
Ωk

)
≤ |(̺L n,Du)|

(
Ω ∩ Brk

)
+

∫

∂Brk

|u−u0| dH
n−1 +

2

k

≤ |(̺L n,Du)|
(
Ω
)
+

∫

Rn\Bk

|u−u0| dx+
2

k
.

Now we introduce wk ∈ u0 Ω
+C∞

cpt(Ω,R
N ) as the extension of w̃k,ℓ(k) from Ωk to Ω via the values of

u0. Then the preceding estimates readily yield

‖wk−u‖1;Ω ≤ 1

k
+ ‖u−u0‖1;Ω\Bk

and

|(̺L n,Dwk)|
(
Ω
)
≤ |(̺L n,Dw̃k,ℓ(k))|

(
Ωk

)
+

∫

Ω\Bk

|(̺,∇u0)| dx

≤ |(̺L n,Du)|
(
Ω
)
+

2

k
+

∫

Rn\Bk

[
|(̺,∇u0)|+ |u−u0|

]
dx .

Since u−u0 is in BV(Rn,RN), we infer that (wk)k∈N converges to u in u0 Ω
+ L1(Ω,RN) with

lim sup
k→∞

|(̺L n,Dwk)|
(
Ω
)
≤ |(̺L n,Du)|

(
Ω
)
,

and this in turn implies — via a standard argument with subsequences — that (Dwk)k∈N weak-∗-
converges to Du in the sense of measures on Ω. By the lower semicontinuity of the total variation, we
arrive at (3.15).

Step 2. We finally establish the full statement of Lemma 3.12 including (3.16). To this end we now
denote

Ωk :=
{
x ∈ Ω ∩ Bk : dist(x, ∂Ω) > k−1,

}
,

10The approximations ̺k are needed, since the integrand (x, z) 7→ |(̺(x), z)| does not satisfy the relevant assump-
tion (Con) in Theorem 3.10 if ̺ is unbounded on Ωk.
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and we first consider mollifications uk ∈ W1,1(Ω2k,R
N) of u such that we have11

‖uk − u‖1;Ω2k
≤ k−2 for all k ∈ N ,

∇uk → ∇u L
n-a.e. in Ω ,

lim sup
k→∞

|(̺L n,Duk)|(Ω2k) ≤ |(̺L n,Du)|(Ω) .

Moreover, by the preceding Step 1 we can also find a sequence (w̃k)k∈N in u0 Ω
+ C∞

cpt(Ω,R
N) such

that we have

‖w̃k − u‖1;Ω ≤ k−2 ,

|(̺L n,Dw̃k)|
(
Ω
)
≤ |(̺L n,Du)|

(
Ω
)
+

1

k

for all k ∈ N. We record that (Dw̃k)k∈N weak-∗-converges to Du in the sense of measures on Ω. Now,
for all k ∈ N, we choose cut-off functions ηk ∈ C∞

cpt(Ω) which satisfy 1Ωk
≤ ηk ≤ 1Ω2k

and |∇ηk| ≤ 4k

on Ω. Introducing wk := ηkuk + (1−ηk)w̃k ∈ u0 Ω
+ C∞

cpt(Ω,R
N ) we observe that (wk)k∈N converges

to u in L1(Ω,RN ) and that (3.16) is valid. Then for fixed ℓ ∈ N and k ≥ ℓ we find

|(̺L n,Dwk)|
(
Ω
)
≤ |ηk(̺L n,Duk)|

(
Ω
)
+ |(1−ηk)(̺L

n,Dw̃k)|
(
Ω
)
+

∫

Ω

|(uk−w̃k)⊗∇ηk| dx

≤ |(̺L n,Duk)|(Ω2k) + |(̺L n,Dw̃k)|
(
Ω \ Ωℓ

)
+ 8k−1 ,

where we estimated the last term via the fast convergences of uk and w̃k and the bound for |∇ηk|.
Splitting |(̺L n,Dw̃k)|(Ω \Ωℓ) = |(̺L n,Dw̃k)|(Ω)− |(̺L n,Dw̃k)|(Ωℓ) we now send first k to ∞ and
use the lower semicontinuity of the total variation on the open Ωℓ to arrive at

lim sup
k→∞

|(̺L n,Dwk)|
(
Ω
)
≤ |(̺L n,Du)|(Ω) + |(̺L n,Du)|

(
Ω \ Ωℓ

)
.

Then we send also ℓ to ∞, and we conclude

lim sup
k→∞

|(̺L n,Dwk)|
(
Ω
)
≤ |(̺L n,Du)|

(
Ω
)
.

As usual, we deduce that (Dwk)k∈N weak-∗-converges to Du in the sense of measures on Ω, and the
lower semicontinuity of the total variation gives (3.15).

Remark 3.13. If Ω, f , and ̺ satisfy the assumptions of Theorem 3.10 and Lemma 3.12, then the

approximations of Lemma 3.12 have the following property, which we record for later usage: whenever

for a Borel set B in R
n we have (L n+|Du|)(Ω ∩ ∂B) = 0, then there holds

lim
k→∞

∫

Ω∩B

f( · ,∇wk) dx =

∫

Ω∩B

f( · ,∇u) dx+

∫

Ω∩B

f∞
(
· , dDsu

d|Dsu|
)
d|Dsu| , (3.19)

where, in the case that f is positively 1-homogeneous in its second variable, the right-hand side

simplifies to
∫
Ω∩B

f
(
· , dDu

d|Du|

)
d|Du|. Indeed, in order to prove (3.19), one uses the semicontinu-

ity of the total variation on the relatively open sets Ω ∩ intB and Ω \ B to deduce the convergence

limk→∞ |(̺L n,Dwk)|(Ω ∩ intB) = |(̺L n,Du)|(Ω ∩ intB) (compare with [20, Theorem 1.9.1]); then
one concludes by Theorem 3.10, with Ω ∩ intB in place of Ω.

11In connection with the a.e. convergence observe that the ∇uk are mollifications of the measure Du = (∇u)L n+Dsu;
the mollifications of ∇u converge L n-a.e. to ∇u, while the mollifications of Dsu converge L n-a.e. to 0.
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4 The duality formula and the extremality relation for ∇u

We start with a separation lemma from functional analysis which we have chosen to state for all
p ∈ (1,∞). We will use this lemma only for p = 2 (and alternatively we could use it for every other
fixed choice of p > 1), but we want to emphasize that the statement does not carry over to the case
p = 1 which will cause slight technical complications later on.

Lemma 4.1 (separation lemma). Consider δ > 0, p ∈ (1,∞), a convex set C in L∞(Ω,Rm), and a

closed subspace S of Lp(Ω,Rm) such that ‖Φ‖1;Ω ≤ M‖Φ‖p;Ω holds for all Φ ∈ S and a constant M .

If for every Φ ∈ S \ {0} there is some τΦ ∈ C with

∫

Ω

τΦ · Φdx < δ‖Φ‖p;Ω ,

then there also exists some τ ∈ C with
∫

Ω

τ · Φdx < δ‖Φ‖p;Ω for all Φ ∈ S \ {0} .

Proof. In view of the assumed inequality ‖Φ‖1;Ω ≤ M‖Φ‖p;Ω, the specification 〈Rτ,Φ〉 :=
∫
Ω τ · Φdx

defines a continuous linear operator R : L∞(Ω,Rm) → S∗. We now prove the claimed implication by
a contradiction argument. Indeed, if the conclusion were wrong, we would have ‖Rτ‖S∗ ≥ δ for every
τ ∈ C. By the Hahn-Banach separation theorem (see for instance [19, Corollary I.1.1]) we could then
separate the convex set R(C) from the open ball with radius δ and center 0 in S∗, meaning that we
would have

〈
F,Rτ

〉
≥ δ for all τ ∈ C and some F ∈ S∗∗ with ‖F‖S∗∗ = 1. As we are assuming

1 < p < ∞, the space Lp(Ω,Rm) and its closed subspace S are reflexive, and F would coincide with
the evaluation on some Φ ∈ S such that ‖Φ‖p;Ω = 1. Hence, we would get

∫

Ω

τ · Φdx =
〈
Rτ,Φ

〉
=

〈
F,Rτ

〉
≥ δ = δ‖Φ‖p;Ω for all τ ∈ C .

Clearly, the existence of such a Φ would contradict our premise, and the lemma is proved.

The next lemma, based on Ekeland’s variational principle, is crucial for our approach.

Proposition 4.2 (approximative solutions). Assume that f satisfies (Lin) and that f(x, · ) : Rm → R

is a convex function for L
n-a.e. x ∈ Ω. Furthermore, consider ε, χ ∈ (0,∞) and a closed subspace S

of L2(Ω,Rm) such that ‖Φ‖1;Ω ≤ M‖Φ‖2;Ω holds for all Φ ∈ S and a constant M . Then, for every

ŵ ∈ L1(Ω,Rm) with ∫

Ω

f( · , ŵ) dx ≤ inf
Θ∈ŵ+S

∫

Ω

f( · ,Θ)dx+ ε

there exist approximative solutions v̂ ∈ ŵ + S and τ ∈ L∞(Ω,Rm) such that we have

∫

Ω

f( · , v̂) dx ≤ inf
Θ∈ŵ+S

∫

Ω

f( · ,Θ)dx+ 2ε , (4.1)

‖v̂ − ŵ‖2;Ω ≤ χ , (4.2)

τ(x) ∈ ∂zf(x, v̂(x)) for L
n-a.e. x ∈ Ω , (4.3)

∫

Ω

τ · Φdx ≤ 2ε

χ
‖Φ‖2;Ω for all Φ ∈ S . (4.4)

Proof. By the convexity assumption, f(x, · ) is a continuous function for L
n-a.e. x ∈ Ω, and we

infer with the help of (Lin), the inequality ‖Φ‖1;Ω ≤ M‖Φ‖2;Ω, and the assumed ε-minimality of ŵ
that Θ 7→

∫
Ω f( · ,Θ)dx is finite, continuous, and bounded from below on the complete metric space
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(ŵ + S, ‖ · ‖2;Ω). An application of Ekeland’s variational principle [18, Theorem 1.1] thus yields a
function v̂ ∈ ŵ + S with

‖v̂ − ŵ‖2;Ω ≤ χ ,
∫

Ω

f( · , v̂) dx ≤
∫

Ω

f( · ,Θ)dx+
ε

χ
‖Θ− v̂‖2;Ω for all Θ ∈ ŵ + S . (4.5)

In particular, we get
∫
Ω f( · , v̂) dx ≤

∫
Ω f( · , ŵ) dx + ε ≤ infΘ∈ŵ+S

∫
Ω f( · ,Θ)dx + 2ε, and thus (4.1)

and (4.2) are verified. When we test (4.5) with Θ = v̂ − sΦ, where s > 0 and Φ ∈ S are arbitrary, we
deduce

−
∫

Ω

f( · , v̂ − sΦ)− f( · , v̂)
s

dx ≤ ε

χ
‖Φ‖2;Ω . (4.6)

For L n-a.e. x ∈ Ω, we now use Lemma 3.5 to find some τΦ(x) with

τΦ(x) ∈ ∂zf(x, v̂(x)) ,

−τΦ(x) · Φ(x) = lim
sց0

f(x, v̂(x)− sΦ(x)) − f(x, v̂(x))

s
.

(4.7)

We immediately observe from (4.7) that τΦ · Φ is Lebesgue measurable, while on the other hand it
is not evident that τΦ itself is measurable. We claim however that one can modify the τΦ so that
they become Lebesgue measurable, while (4.7) still holds for L n-a.e. x ∈ Ω. Indeed, let us briefly
sketch how this last claim can be justified using the theory of measurable multifunctions as described
in [31]: first, by [31, Corollary 2X]12 the multifunction Γ: Ω → R

m with Γ(x) := ∂zf(x, v̂(x)) is closed-
valued and Lebesgue measurable — in one of the equivalent senses of [31, Proposition 1A]. Similarly,
also ΥΦ(x) := {z∗ ∈ R

m : z∗ · Φ(x) = τΦ(x) · Φ(x)} defines a closed-valued Lebesgue measurable
multifunction ΥΦ : Ω → R

m (this follows from the measurability of τΦ · Φ and can be easily verified
with the help of [31, Corollary 1.D]). By [31, Theorem 1.M] also the pointwise intersection Γ ∩ΥΦ is
closed-valued and Lebesgue measurable. Moreover, the existence of the above τΦ shows that the values
of Γ∩ΥΦ are non-empty. Hence, by [31, Theorem 1.C] we can choose a Lebesgue measurable selection
τ̃Φ : Ω → R

m with τ̃Φ(x) ∈ Γ(x) ∩ ΥΦ(x) for L
n-a.e. x ∈ Ω. By the definitions of Γ and ΥΦ, the last

inclusion shows that (4.7) still holds with τ̃Φ in place of τΦ. A posteriori we can thus assume that the
τΦ themselves are all measurable with (4.7). It follows from (Lin) and Lemma 3.3 (applied, for every
(x, z) ∈ Ω×R

Nn, with h := f(x, · ) and A := BΨ(x)+|z|(z)) that |∂zf | is bounded on Ω×R
Nn. Hence,

we read off from (4.7) that we can see τΦ as an element of L∞(Ω,Rm), and dominated convergence
in (4.6) gives ∫

Ω

τΦ · Φdx ≤ ε

χ
‖Φ‖2;Ω .

We are thus in the position to apply Lemma 4.1 with p = 2, δ = 2ε
χ
, the convex set

{
ϑ ∈ L∞(Ω,Rm) : ϑ(x) ∈ ∂zf(x, v̂(x)) for L

n-a.e. x ∈ Ω
}
,

and the closed subspace S of L2(Ω,Rm). The lemma then gives a function τ ∈ L∞(Ω,Rm) with
τ(x) ∈ ∂zf(x, v̂(x)) for L n-a.e. x ∈ Ω and with

∫

Ω

τ · Φdx ≤ 2ε

χ
‖Φ‖2;Ω for all Φ ∈ S .

Thus we have established (4.3) and (4.4), and the proof of the proposition is complete.

12Notice also that, as our integrands f are always Borel measurable, the normality assumption in [31, Corollary 2X]
is satisfied as a consequence of [31, Theorem 2F].
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Remark 4.3. If f is of class C1 in z, then the proof of Proposition 4.2 simplifies considerably.

Indeed, neither measurable selections nor Lemma 4.1 are needed in this situation, as the manifest

choice τ := ∇zf( · , v̂) satisfies (4.7) for all Φ ∈ S.

Next we turn to the proof of Theorem 1.1, in which the existence of the approximative solutions
of Proposition 4.2 will be exploited in order to apply the following simple lemma.

Lemma 4.4. Assume that f satisfies (Lin). If for some sequences (vk)k∈N in u0 Ω
+ W1,1(Ω,RN )

and (τk)k∈N in L∞(Ω,RNn) we have

τk(x) ∈ ∂zf(x,∇vk(x)) for L
n-a.e. x ∈ Ω ,

lim sup
k→∞

∫

Ω

τk · (∇u0 −∇vk) dx ≥ 0 ,
(4.8)

and if (τk)k∈N weak-∗-converges in L∞(Ω,RNn) to a limit σ ∈ L∞
div(Ω,R

Nn), then we have

Ru0
[σ] ≥ lim inf

k→∞
F [vk] .

Proof. We record that f∗ is convex and lower semicontinuous in its second variable, and (Lin) gives the
lower bound f∗(x, z∗) ≥ −Ψ(x) with the L1-function Ψ. In this situation, [16, Theorem 3.20]13 guaran-
tees upper semicontinuity of ϑ 7→ −

∫
Ω
f∗( · , ϑ) dx with respect to weak-∗-convergence in L∞(Ω,RNn),

and thus we get

Ru0
[σ] =

∫

Ω

[
σ · ∇u0 − f∗( · , σ)

]
dx ≥ lim sup

k→∞

∫

Ω

[
τk · ∇u0 − f∗( · , τk)

]
dx . (4.9)

From the first part of (4.8) and (3.1) we deduce f( · ,∇vk) + f∗( · , τk) = τk · ∇vk. With the help of
this equality we can rewrite (4.9) as

Ru0
[σ] ≥ lim sup

k→∞

[ ∫

Ω

f( · ,∇vk) dx +

∫

Ω

τk · (∇u0 −∇vk) dx

]
,

and the claim follows via the second part of (4.8) .

We remark that, in Lemma 4.4, neither vk ∈ W1,1
u0

(Ω,RN ) nor div τk = 0 is assumed, and thus the
functions vk and τk need not be admissible competitors in (P) and (P∗), respectively. Nevertheless,
when applying the lemma in the following, we will utilize Proposition 4.2 to choose at least the vk
admissible. In this way we now provide a

Proof of Theorem 1.1. By (Lin), infW1,1
u0

(Ω,RN ) F = ∞ cannot happen, and if we have infW1,1
u0

(Ω,RN ) F =

−∞, the claim follows from (1.3). Thus, we now assume that the infimum is finite. From the continuity
of f in z and from (Lin), we get that F is continuous with respect to the W1,1-norm on Ω, and thus
we can find a sequence (wk)k∈N in the dense subset u0 Ω

+C∞
cpt(Ω,R

N ) of W1,1
u0

(Ω,RN ) such that we
have limk→∞ F [wk] = infW1,1

u0
(Ω,RN ) F . Since each wk−u0 vanishes near the boundary of Ω, we can

moreover choose an increasing sequence (Gk)k∈N of bounded open subsets of Ω with
⋃∞

k=1 Gk = Ω
and such that wk = u0 holds on Ω \Gk. In addition, we take a null sequence (εk)k∈N in (0,∞) with
F [wk] ≤ infW1,1

u0
(Ω,RN ) F + εk, and we set

χk := 1 + ‖∇wk −∇u0‖2;Ω ,

W1,2
0;Gk

(Ω,RN ) := {ϕ ∈ W1,2
0 (Ω,RN ) : ϕ ≡ 0 on Ω \Gk} ,

Sk := {∇ϕ : ϕ ∈ W1,2
0;Gk

(Ω,RN )} .
13Actually, [16, Theorem 3.20] is not directly formulated for case of weak-∗-convergence in L∞, but it implies the

required statement (compare [16, Remark 3.25]). This follows easily from the fact that weak-∗-convergence in L∞

comprises — at least on subsets of finite measure — weak convergence in Lp for all p < ∞.
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With the help of Poincaré’s inequality and weak compactness, it follows that Sk is a closed subspace
of L2(Ω,RNn). Furthermore, we have ‖Φ‖1;Ω ≤

√
L n(Gk) ‖Φ‖2;Ω for all Φ ∈ Sk and

∫

Ω

f( · ,∇wk) ≤ inf
Θ∈∇wk+Sk

∫

Ω

f( · ,Θ)dx+ εk .

For each fixed k ∈ N, we can thus apply Proposition 4.2 with the constants εk, χk, the subspace Sk,
and and the L1-function ∇wk. Consequently, we find v̂k ∈ ∇wk + Sk, which we can directly write as
v̂k = ∇vk with vk ∈ u0 Ω

+W1,2
0;Gk

(Ω,RN ) ⊂ W1,1
u0

(Ω,RN ), and τk ∈ L∞(Ω,RNn) such that

‖∇vk −∇wk‖2;Ω ≤ χk ,

τk(x) ∈ ∂zf(x,∇vk(x)) for L
n-a.e. x ∈ Ω ,

∫

Ω

τk · ∇ϕdx ≤ 2εk
χk

‖∇ϕ‖2;Ω for all ϕ ∈ W1,2
0;Gk

(Ω,RN ) . (4.10)

As |∂zf | is bounded on Ω × R
Nn via (Lin) and Lemma 3.3, (τk)k∈N is a bounded sequence in

L∞(Ω,RNn). Possibly passing to a subsequence, we can assume that (τk)k∈N weak-∗-converges to
a limit σ in L∞(Ω,RNn). Since every ϕ ∈ C∞

cpt(Ω,R
N ) is for k ≫ 1 in W1,2

0;Gk
(Ω,RN ) and εk/χk tends

to 0, we easily infer from (4.10) that we have σ ∈ L∞
div(Ω,R

Nn). Using (4.10) once more and recalling
the precise choice of the χk, we moreover have

∫

Ω

τk · (∇vk −∇u0) dx ≤ 2εk
χk

‖∇vk −∇u0‖2;Ω

≤ 2εk
χk

[
‖∇vk −∇wk‖2;Ω + ‖∇wk −∇u0‖2;Ω

]
≤ 4εk −→

k→∞
0 ,

so that all assumptions of Lemma 4.4 are available. By the latter lemma, we thus conclude

Ru0
[σ] ≥ lim inf

k→∞
F [vk] ≥ inf

W1,1
u0

(Ω,RN )
F .

Taking (1.3) into account, we see that σ solves the dual problem (P∗), and that we have in fact equality
in the last estimate.

Similar in spirit and also based on Proposition 4.2, but choosing as the starting sequence (wk)k∈N

the refined approximations of Lemma 3.12, we next establish a part of Theorem 2.2.

Proof that (2.4), (2.5), (2.6) hold for all extremals u and σ, in the situation of Theorem 2.2. For the
following we fix some positive ̺ ∈ L1(Ω) which is bounded away from 0 on every bounded subset of
Ω. This function is only needed in order to apply Theorem 3.10. Starting from a given generalized
minimizer u for F in W1,1

u0
(Ω,RN ) we then work with the sequence (wk)k∈N of Lemma 3.12. From

Theorem 3.10 and the minimizing property of u we deduce

lim
k→∞

F [wk] = lim
k→∞

∫

Ω

f(∇wk) dx =

∫

Ω

f(∇u) dx+

∫

Ω

f∞
( dDsu

d|Dsu|
)
d|Dsu| = Fu0

[u] ≤ inf
W1,1

u0
(Ω,RN )

F .

Now we take a null sequence (εk)k∈N in (0,∞) with F [wk] ≤ infW1,1
u0

(Ω,RN ) F + εk, and we also fix

a Borel representative of a solution σ ∈ L∞
div(Ω,R

Nn) of the dual problem (P∗). Setting fσ(x, z) :=
f(x, z)− σ(x)z, we observe that fσ is Borel measurable, convex in z, and satisfies (Lin) (possibly with
L+‖σ‖∞;Ω in place of L). Using div σ = 0 in the first step and the duality formula of Theorem 1.1 in
the last one, we get

∫

Ω

fσ( · ,∇wk) dx = F [wk]−
∫

Ω

σ · ∇u0 dx

≤ εk + inf
W1,1

u0
(Ω,RN )

F −
∫

Ω

σ · ∇u0 dx = εk −
∫

Ω

f∗( · , σ) dx . (4.11)
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Moreover, by the definition of the conjugate function we have

−f∗(x, σ(x)) ≤ f(x, z)− σ(x) · z = fσ(x, z) for all (x, z) ∈ Ω×R
Nn

so that in fact there holds

−
∫

Ω

f∗( · , σ) dx ≤
∫

Ω

fσ( · ,Θ)dx for all Θ ∈ L1(Ω,RNn) . (4.12)

Next, we choose an increasing sequence (Gk)k∈N of bounded open subsets of Ω with
⋃∞

k=1 Gk = Ω.
When we introduce the closed subspace

L2
Gk

(Ω,RNn) := {Φ ∈ L2(Ω,RNn) : Φ ≡ 0 on Ω \Gk}

of L2(Ω,RNn), we can combine (4.11) and (4.12) to obtain in particular

∫

Ω

fσ( · ,∇wk) dx ≤ inf
Θ∈∇wk+L2

Gk
(Ω,RNn)

∫

Ω

fσ( · ,Θ)dx+ εk .

Similar to the above proof of Theorem 1.1, we apply Proposition 4.2 — but this time with fσ in place of
f and

√
εk in place of χ — to find for each k ∈ N some v̂k ∈ ∇wk+L2

Gk
(Ω,RNn) and τk ∈ L∞(Ω,RNn)

with

‖v̂k −∇wk‖2;Ω ≤ √
εk , (4.13)

τk(x) ∈ ∂zfσ(x, v̂k(x)) for L
n-a.e. x ∈ Ω , (4.14)

∫

Ω

τk · Φdx ≤ 2
√
εk ‖Φ‖2;Ω for all Φ ∈ L2

Gk
(Ω,RNn) . (4.15)

From (4.15) we conclude that (τk)k∈N converges to 0 in L2
loc(Ω,R

Nn), and by (4.13) (v̂k−∇wk)k∈N

converges to 0 in L2(Ω,RNn). Passing to a subsequence we can assume that these convergences hold
also L n-a.e. on Ω, and — taking into account the extra information of (3.16) — it follows that (v̂k)k∈N

converges L n-a.e. to ∇u. Using these convergences and (4.14), and applying Lemma 3.4 pointwisely,
we infer

0 ∈ ∂zfσ(x,∇u(x)) for L
n-a.e. x ∈ Ω .

Recalling the definition of fσ, we have ∂zfσ(x,∇u(x)) = ∂zf(x,∇u(x)) − σ(x), and hence we finally
arrive at (2.5). With the help of (3.1) and the equality f∗∗ = f , we see that (2.4) and (2.6) hold as
well.

5 A pairing of σ and Du and the extremality relation for Ds
u

In this section we prove the full statements of Theorems 2.2 and 2.4. To this end, we follow ideas of
Anzellotti [2] (compare also [14, 25]), and we introduce, for u ∈ BVu0

(Ω,RN) and σ ∈ L∞
div(Ω,R

Nn),
a pairing of the gradient measure Du and the possibly discontinuous function σ. Indeed, imposing the
assumption (Per) on Ω, we use the approximations from Lemma 3.12 and integration by parts in order
to handle an up-to-the-boundary version of Anzellotti’s pairing. In the first place, these tools allow to
show continuity of the linear functional

C∞
cpt(R

n) → R, ϕ 7→
∫

Ω

ϕσ · ∇u0 dx−
∫

Ω

σ · ((u−u0)⊗∇ϕ) dx

(and its extension to C0
cpt(R

n)) in the sup-norm. In view of the Riesz representation theorem for
continuous linear functionals on C0

cpt, we can then give the following variant of [2, Definition 1.4,
Theorem 1.5].
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Definition 5.1 (up-to-the-boundary pairing of Du and σ). Suppose that Ω satisfies (Per). For every

u ∈ BVu0
(Ω,RN) and σ ∈ L∞

div(Ω,R
Nn) we define Jσ · DuK as the uniquely determined signed Radon

measure on Ω such that
∫

Ω

ϕdJσ ·DuK =

∫

Ω

ϕσ · ∇u0 dx−
∫

Ω

σ · ((u−u0)⊗∇ϕ) dx holds for all ϕ ∈ C∞
cpt(R

n) .

We stress that the up-to-the boundary feature in this definition lies in the fact that only ϕ ∈
C∞

cpt(R
n), but not sptϕ ⊂ Ω, is required; as a result, Definition 5.1 incorporates the possible deviation

of u from the boundary values prescribed by u0, or, in other words, it takes into account the measure
Du ∂Ω.

However, when sptϕ ⊂ Ω holds, then integration by parts and standard approximation of u0 give∫
Ω
ϕdJσ ·DuK = −

∫
Ω
σ · (u ⊗∇ϕ) dx for all ϕ ∈ C∞

cpt(Ω), so that our pairing Jσ ·DuK coincides on Ω
with Anzellotti’s original one. Therefore, from [2, Theorem 2.4] we can deduce the representation

Jσ ·DuKa = (σ · ∇u)L n Ω (5.1)

of the absolutely continuous part of Jσ ·DuK. Approximation, based on Lemma 3.12 with Ψ ≡ 0, also
yields (compare with [2, Theorem 1.5, Corollary 1.6])

|Jσ ·DuK| ≤ ‖σ‖∞;Ω|Du| (5.2)

as an inequality of measures on Ω, and hence the existence of the density dJσ·DuK
d|Du| follows. In addition,

the usage of test functions ϕ with ϕ ≡ 1 on large balls, gives the equality

Jσ ·DuK
(
Ω
)
=

∫

Ω

σ · ∇u0 dx . (5.3)

Finally, we have the following statements, which are crucial for our purposes:

Theorem 5.2 (|Du|-a.e. density control on Jσ · DuK). Suppose that Ω satisfies (Per). Consider u ∈
BVu0

(Ω,RN ) and σ ∈ L∞
div(Ω,R

Nn), and a common Lebesgue point14 x0 of dDu
d|Du| and

dJσ·DuK
d|Du| with

respect to |Du| in Ω. If σ ∈ K holds L n-a.e. on a neighborhood of x0 in Ω, for some closed convex

set K in R
Nn, then there exists σ0 ∈ K with

dJσ ·DuK

d|Du| (x0) = σ0 ·
dDu

d|Du| (x0) . (5.4)

Corollary 5.3. Suppose that Ω satisfies (Per) and that (Lin) and (Con) hold for f . Then, for all

u ∈ BVu0
(Ω,RN ) and σ ∈ L∞

div(Ω,R
Nn) such that f∗( · , σ) < ∞ holds L n-a.e. on Ω, we have

f∞
(
· , dDu

d|Du|
)
≥ dJσ ·DuK

d|Du| |Du|-a.e. on Ω . (5.5)

Before turning to the proofs of Theorem 5.2 and Corollary 5.3, let us highlight their most decisive
feature: indeed, for L n-a.e. x0 ∈ Ω with ∇u(x0) 6= 0, one can directly read off from (5.1) that

dJσ ·DuK

d|Du| (x0) = σ(x0) ·
∇u(x0)

|∇u(x0)|
= σ(x0) ·

dDu

d|Du| (x0)

14We call x0 ∈ sptµ a Lebesgue point of a µ-measurable function G : Ω → Rm with respect to a non-negative Radon
measure µ in Ω if there exists a z0 ∈ Rm with

lim
Rց0

1

µ
(

Ω ∩ BR(x0)
)

∫

Ω∩BR(x0)
|G− z0|dµ = 0 .

For such points, the value z0 is uniquely determined, is called the Lebesgue value of G at x0, and is denoted by G(x0).
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holds, so that the validity of (5.4) with the ‘concrete’ value σ0 = σ(x0) is obvious for |Dau|-a.e.
x0. However, the crucial point of Theorem 5.2 — which will enable us to deal with the extremality
relation (2.7) for Dsu — is that it gives (5.4) not only for |Dau|-a.e. x0, but also for |Dsu|-a.e. x0. We
believe that it is possible to deduce the latter assertion — which is clearly more subtle, as σ cannot be
evaluated |Dsu|-a.e. — from an adaption of Anzellotti’s aureate representation formula [3, Theorem 3.6]

for dJσ·DuK
d|Du| (stated for N = 1, see also [4, Fact 1.1] and [14, Proposition 1.6]). However, the adaption

to our case of an up-to-a-non-smooth-boundary pairing would require a considerable effort, and we
prefer to follow a more elementary line of argument. Our approach yields a less precise information

about dJσ·DuK
d|Du| , which however still suffices for our purposes:

Proof of Theorem 5.2. We assume 0 ∈ K (otherwise we fix some z∗0 ∈ K, and in view of J(σ−z∗0)·DuK =
Jσ ·DuK − z∗0 ·Du, we can pass from K to {z∗−z∗0 : z∗ ∈ K} and from σ to σ−z∗0), and we work with
approximations wk of Lemma 3.12, corresponding to an arbitrarily fixed, positive Ψ ∈ L1(Ω). Using
the L1-convergence of the wk and integration by parts in Definition 5.1, we get

∫

Ω

ϕdJσ ·DuK = lim
k→∞

∫

Ω

ϕσ · ∇wk dx for all ϕ ∈ C∞
cpt(R

n) .

Approximating the characteristic functions of balls with such test functions ϕ and keeping (5.2) in
mind, this implies, in a standard way,

Jσ ·DuK
(
Ω ∩ BR(x0)

)
= lim

k→∞

∫

Ω∩BR(x0)

σ · ∇wk dx whenever |Du|
(
Ω ∩ ∂BR(x0)

)
= 0 . (5.6)

Here, the last requirement is fulfilled for all but countably many R, and we tacitly understand in the
following that it is met by all radii in our computations. We now introduce the Lebesgue value

v :=
dDu

d|Du| (x0) with |v| = 1 .

Writing pv⊥ : RNn → R
Nn for the orthogonal projection on the orthogonal complement of v, we then

split
σ · ∇wk = (σ · v)(v · ∇wk)+ − (σ · v)(v · ∇wk)− + pv⊥(σ) · pv⊥(∇wk)

and estimate the resulting terms on the right-hand side of (5.6) separately. For one term, we use
Remark 3.13, with the integrand (x, z) 7→ |pv⊥(z)|, and the inequality |pv⊥(z)| = |pv⊥(z−v)| ≤ |z−v|
to get

lim sup
k→∞

∣∣∣∣
∫

Ω∩BR(x0)

pv⊥(σ) · pv⊥(∇wk) dx

∣∣∣∣ ≤ ‖σ‖∞;Ω lim
k→∞

∫

Ω∩BR(x0)

|pv⊥(∇wk)| dx

= ‖σ‖∞;Ω

∫

Ω∩BR(x0)

∣∣∣pv⊥

( dDu

d|Du|
)∣∣∣d|Du|

≤ ‖σ‖∞;Ω

∫

Ω∩BR(x0)

∣∣∣ dDu

d|Du| − v
∣∣∣ d|Du| .

(5.7)

Arguing analogously with (x, z) 7→ (v · z)− and (v · z)− ≤ |z−v|, we also get

lim sup
k→∞

∣∣∣∣
∫

Ω∩BR(x0)

(σ · v)(v · ∇wk)− dx

∣∣∣∣ ≤ ‖σ‖∞;Ω lim
k→∞

∫

Ω∩BR(x0)

(v · ∇wk)− dx

= ‖σ‖∞;Ω

∫

Ω∩BR(x0)

(
v · dDu

d|Du|
)
−
d|Du|

≤ ‖σ‖∞;Ω

∫

Ω∩BR(x0)

∣∣∣ dDu

d|Du| − v
∣∣∣ d|Du| .

(5.8)
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In order to treat the remaining term, we set M := max{z∗ · v : z∗ ∈ K , |z∗| ≤ ‖σ‖∞;Ω}, and we
get 0 ≤ M ≤ ‖σ‖∞;Ω (as we supposed 0 ∈ K). Now we take R sufficiently small that inclusion
σ ∈ K holds in Ω ∩ BR(x0). Then, Remark 3.13, applied with (x, z) 7→ (v · z)+, and the inequality
(v · z)+ = v · z + (v · z)− ≤ v · z + |z−v| give

lim sup
k→∞

∫

Ω∩BR(x0)

(σ · v)(v · ∇wk)+ dx ≤ M lim
k→∞

∫

Ω∩BR(x0)

(v · ∇wk)+ dx

= M

∫

Ω∩BR(x0)

(
v · dDu

d|Du|
)
+
d|Du|

≤ M

∫

Ω∩BR(x0)

[
v · dDu

d|Du| +
∣∣∣ dDu

d|Du| − v
∣∣∣
]
d|Du| .

(5.9)

Collecting the estimates (5.6), (5.7), (5.8), (5.9), we arrive at

Jσ ·DuK
(
Ω ∩ BR(x0)

)
≤ Mv ·Du

(
Ω ∩ BR(x0)

)
+ 3‖σ‖∞;Ω

∫

Ω∩BR(x0)

∣∣∣ dDu

d|Du| − v
∣∣∣ d|Du| .

Now we divide on both sides by |Du|(Ω ∩ BR(x0)) and take the limit for R ց 0. Recalling that x0 is

a Lebesgue point of dDu
d|Du| with Lebesgue value v and also a Lebesgue point of dJσ·DuK

d|Du| (in particular

x0 ∈ spt |Du|, so that for 0 < R ≪ 1 we are not dividing by 0), we obtain

dJσ ·DuK

d|Du| (x0) ≤ Mv · v .

Recalling |v| = 1 and the choice of M , this implies

dJσ ·DuK

d|Du| (x0) ≤ σM · v

for some σM ∈ K. Using, as a substitute for (5.9), a very similar estimate from below, we can also
find a σm ∈ K with

dJσ ·DuK

d|Du| (x0) ≥ σm · v ,

and, together, the two last inequalities show that (5.4) holds, when we take σ0 ∈ K as a suitable
convex combination of σM and σm.

In order to deduce the statement of Corollary 5.3, the following simple continuity lemma will be
useful to cope with the x-dependence of the integrand f .

Lemma 5.4. Suppose that g : Ω × R
m → R is continuous. Then, for every (x0, z0) ∈ Ω × R

m and

every ε > 0, there exists a δ > 0 such that we have

∂zg(x, z0) ⊂ Nε(∂zg(x0, z0)) for all x ∈ Ω with |x−x0| < δ .

Here, we used Nε( · ) for the ε-neighborhood of a set.

Proof. We may assume z0 = 0. In order to prove the lemma by contradiction, we now suppose that
the claim fails for some x0 ∈ Ω and some ε > 0. Then we can find a sequence (xk)k∈N in Ω, converging
to x0, and a sequence (z∗k)k∈N in R

m such that z∗k ∈ ∂zg(xk, 0) and dist(z∗k, ∂zg(x0, 0)) ≥ ε hold for all
k ∈ N. As g(xk, 0) and g(xk, z

∗
k/|z∗k|) remain bounded for k → ∞, the estimate

g(xk, 0) + |z∗k| = g(xk, 0) + z∗k · z∗k/|z∗k| ≤ g(xk, z
∗
k/|z∗k|)

gives boundedness of (z∗k)k∈N, hence a subsequence (z∗kl
)l∈N converges to a limit z∗0 ∈ R

m. For the
limit, we have on the one hand dist(z∗0 , ∂zg(x0, 0)) ≥ ε, while on the other hand we infer

g(x0, z) = lim
l→∞

g(xkl
, z) ≥ lim

l→∞
g(xkl

, 0) + z∗kl
· z = g(x0, 0) + z∗0 · z

for all z ∈ R
m, so that we get z∗0 ∈ ∂zg(x0, 0). This contradiction ends the proof of the lemma.
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Proof of Corollary 5.3. It suffices to show that (5.5) holds at every common Lebesgue point x0 of
dDu
d|Du| and

dJσ·DuK
d|Du| with respect to |Du| in Ω. To see this, we first record that, by the definition of the

conjugate function, we have tf(x, z/t) ≥ σ(x) · z − tf∗(x, σ(x)) for all (x, z) ∈ Ω×R
Nn and all t > 0.

Sending t to 0 and recalling that in view of (Con) the lower limit in (2.1) is in fact a limit, we infer

f∞(x, z) ≥ σ(x) · z for all z ∈ R
Nn

whenever x ∈ Ω is such that f∗(x, σ(x)) is finite. By assumption, the last finiteness requirement is
available, and we thus have σ(x) ∈ ∂zf

∞(x, 0), for L n-a.e. x ∈ Ω. For an arbitrary ε > 0, we now
apply Lemma 5.4 to f∞ (which under (Lin) and (Con) is jointly continuous in (x, z)), and we infer
that σ(x) ∈ Nε(∂zf

∞(x0, 0)) holds for L n-a.e. x in a neighborhood of x0 in Ω. At this stage we
employ Theorem 5.2 with the closure of the convex set Nε(∂zf

∞(x0, 0)) in place of K, and we infer

dJσ ·DuK

d|Du| (x0) = σ0 ·
dDu

d|Du| (x0) for some σ0 ∈ Nε(∂zf∞(x0, 0)) .

As a consequence, we can find a subgradient σ∗ ∈ ∂zf
∞(x0, 0) with |σ∗−σ0| ≤ ε, and we get

dJσ ·DuK

d|Du| (x0) = σ0 ·
dDu

d|Du| (x0) ≤ σ∗ ·
dDu

d|Du| (x0) + ε
∣∣∣ dDu

d|Du| (x0)
∣∣∣ ≤ f∞

(
x0,

dDu

d|Du| (x0)
)
+ ε .

Sending ε to 0, the proof is complete.

Building on Theorem 1.1 and Corollary 5.3, we can provide a short

Proof of Theorem 2.2. As in the proof of Corollary 1.2, for all u ∈ BVu0
(Ω,RN ) and σ ∈ L∞

div(Ω,R
Nn),

it follows from the definition of the conjugate function that

f( · ,∇u) ≥ σ · ∇u− f∗( · , σ) holds L
n-a.e. on Ω . (5.10)

Turning to the singular part, we first record that dDsu
d|Dsu| =

dDu
d|Du| holds |Dsu|-a.e. on Ω. In addition, (5.2)

implies |Jσ ·DuKs| ≤ ‖σ‖∞;Ω|Dsu|, and therefore the density dJσ·DuKs

d|Dsu| is well-defined and |Dsu|-a.e. equal
to dJσ·DuK

d|Du| . With these observations at hand, Corollary 5.3 shows that

f∞
(
· , dDsu

d|Dsu|
)
≥ dJσ ·DuKs

d|Dsu| holds |Dsu|-a.e. on Ω (5.11)

whenever f∗( · , σ) < ∞ is valid L n-a.e. on Ω.
After these initial remarks we now proceed with the proof of the claimed equivalence. First, from

Theorem 1.1, (2.2), and the definition of Ru0
, we infer that extremality of u and σ means nothing but

Fu0
[u] =

∫

Ω

[
σ · ∇u0 − f∗( · , σ)

]
dx .

When we write out the left-hand side and make use of (5.3) and (5.1) on the right-hand side, this
equality becomes

∫

Ω

f( · ,∇u) dx+

∫

Ω

f∞
(
· , dDsu

d|Dsu|
)
d|Dsu| =

∫

Ω

[
σ · ∇u− f∗( · , σ)

]
dx+ Jσ ·DuKs

(
Ω
)
. (5.12)

As we have the pointwise estimates (5.10) and (5.11) for the integrands, (5.12) holds if and only if
equality occurs in these estimates, or, in other words, if and only if (2.4) and (2.7) hold (where we
have also exploited that (5.12) implies the finiteness condition on f∗( · , σ) which is needed for (5.11)).
Hence, we have shown that extremality of u and σ is equivalent to the combination of (2.4) and (2.7).
In view of (3.1) and f∗∗ = f , we can also use (2.5) or (2.6) as a substitute for (2.4), and the proof is
complete.
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Remark 5.5 (extremality relations in the 1-homogeneous case). If, in the situation of Theorem 2.2,
f(x, · ) : RNn → R is positively 1-homogeneous for L n-a.e. x ∈ Ω, then the extremality relations can

be restated in the alternative form

f
(
· , dDu

d|Du|
)
=

Jσ ·DuK

d|Du| |Du|-a.e. on Ω and f∗( · , σ) ≡ 0 L
n-a.e. on Ω .

This follows from (5.1) via the observations that f∞ equals f and that f∗ takes only the values 0 and

∞. We also refer to [15] for a further analysis of the 1-homogeneous case.

Finally, we turn to the proof of Theorem 2.4, based on the observation that (5.5) can be improved,
in certain cases, by the strict inequality of the following lemma.

Lemma 5.6. Suppose that Ω satisfies (Per) and that (Lin) and (Con) hold for f . Consider u ∈
BVu0

(Ω,RN ), σ ∈ L∞
div(Ω,R

Nn), and a common Lebesgue point x0 ∈ Ω of dDu
d|Du| and

dJσ·DuK
d|Du| with

respect to |Du|. If we have

lim sup
Ω∋x→x0

{σ(x)} ⊂ int(Im ∂zf(x0, · )) ,

then we have the strict inequality

f∞
(
x0,

dDu

d|Du| (x0)
)
>

dJσ ·DuK

d|Du| (x0) .

Proof. Clearly, int(Im ∂zf(x0, · )) is open in R
Nn, and by (Lin) and Lemma 3.3 (applied for every

z ∈ R
Nn with A = B1+|z|(z)) it is also bounded. Consequently, the closed subset lim supx→x0

{σ(x)}
is contained, for sufficiently small δ > 0, in the interior of the inner parallel set

Kδ := {z∗ ∈ R
Nn : dist(z∗,RNn \ Im ∂zf(x0, · )) ≥ δ} ,

and σ ∈ Kδ holds on a neighborhood of x0. Moreover, convexity of int(Im ∂zf(x0, · )) follows from
Proposition 3.7, so that Kδ is a closed convex set in R

Nn. Therefore, by Theorem 5.2 there exists
σ0 ∈ Kδ with

dJσ ·DuK

d|Du| (x0) = σ0 ·
dDu

d|Du| (x0) . (5.13)

In particular, σ0 lies in the interior of Im ∂zf(x0, · ), hence Proposition 3.7 yields positive constants ε
and M such that f(x0, z)− σ0 · z ≥ ε|z| −M holds for all z ∈ R

Nn. Involving (Con) we infer

f∞(x0, z)− σ0 · z = lim
tց0

t
[
f(x0, z/t)− σ0 · z/t

]
≥ ε for 0 6= z ∈ R

Nn ,

and with the choice z = dDu
d|Du|(x0) we get in particular

f∞
(
x0,

dDu

d|Du| (x0)
)
> σ0 ·

dDu

d|Du| (x0) . (5.14)

Combining (5.13) and (5.14) we arrive at the claimed strict inequality.

Finally, Theorem 2.4 is obtained by a straightforward comparison of the extremality relation (2.7)
for Dsu and the strict inequality of Lemma 5.6:

Proof of Theorem 2.4. As already observed in the proof of Theorem 2.2, the equalities dDsu
d|Dsu| =

dDu
d|Du|

and dJσ·DuKs

d|Dsu| = dJσ·DuK
d|Du| hold |Dsu|-a.e. on Ω. Therefore, Lemma 5.6 yields

f∞
(
· , dDsu

d|Dsu|
)
>

dJσ ·DuKs

d|Dsu| |Dsu|-a.e. on Ω .

Comparing this inequality with (2.7), we conclude |Dsu|(Ω) = 0.
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Remark 5.7 (criterion for the absence of singular parts on subsets and at the boundary). By sim-

ilar arguments, one can also establish a slight refinement of Theorem 2.4, which works under the

same basic assumptions on Ω, f , u, and σ, but on arbitrary measurable subsets A of Ω: Namely, if

lim supΩ∋x→x0
{σ(x)} ⊂ int(∂zf

∞(x0, 0)) holds for |Dsu|-a.e. x0 ∈ A, then we have |Dsu|(A) = 0. In

this statement, ∂zf
∞(x0, 0) has replaced the set Im ∂zf(x0, · ) in the original theorem. For x0 ∈ Ω, we

have int(∂zf
∞(x0, 0)) = int(Im ∂zf(x0, · )) and this replacement makes no difference, but ∂zf

∞(x0, 0)
makes still sense for x0 ∈ ∂Ω when f(x0, · ) is not defined. Thus, in the refined statement we can even

allow A ∩ ∂Ω 6= ∅.
We believe that the refinement in this remark could possibly be useful in order to prove, in specific

cases, that generalized minimizers attain the boundary values of u0 on (parts of ) ∂Ω, but we have not

explored this in detail.

A Non-convex problems and relaxation

In this section, we restrict ourselves to bounded Ω and Ψ (so that we can quote suitable auxiliary
results from the literature), and we point out that a weakening of the convexity assumptions on f
is possible in Theorem 1.1, in Theorem 2.2 and consequently in Corollary 2.3, and in Theorem 2.4
(while the strict convexity in Corollaries 2.5 and 2.6 seems inevitable). It should however be noted
that, under these weaker assumptions, no general existence results for (P) can be expected; hence, the
practicability of the following general results is in fact limited to more specific situations.

To describe the new set of assumptions, we utilize quasiconvex functions in the sense of [16, Defini-
tion 5.1 (ii)], and we recall that the quasiconvex envelope Qf : Ω×R

Nn → [−∞,∞) of f (with respect
to the z-variable) is defined at (x, z) ∈ Ω×R

Nn by

Qf(x, z) := sup
{
g(z) : g : RNn → R is quasiconvex with g ≤ f(x, · ) on R

Nn
}

(with the usual convention sup ∅ = −∞). Furthermore, for a Carathéodory15 function f : Ω×R
Nn → R

with
− L(1+|z|) ≤ Qf(x, z) ≤ f(x, z) ≤ L(1+|z|) , (A.1)

also Qf has the Carathéodory property, and setting QF [w] :=
∫
ΩQf( · ,∇w) dx we will rely one the

well-known relaxation formula
inf

W1,1
u0

(Ω,RN )
QF = inf

W1,1
u0

(Ω,RN )
F , (A.2)

which can be inferred, for instance, from [16, Proposition 9.5, Theorem 9.8]. If we now require, as
the decisive hypothesis of this appendix, that Qf is convex in the z-variable, then we can apply the
preceding results with Qf in place of f , and — as will be clarified in the following — in view of (A.2) we
can hope to come up with the same conclusions. Here, the convexity assumption on Qf is equivalent
to the equality Qf = f∗∗ and is much weaker than the analogous assumption for f itself: indeed,
convexity of Qf in z holds generally true for a large class of rotationally symmetric integrands [16,
Theorem 6.30], and most importantly it is tautologically satisfied in the cases N = 1 and n = 1, where
quasiconvexity reduces to convexity. Thus, in the following we accept the convexity requirement for
Qf as a reasonable hypothesis in order to state:

Corollary A.1. For bounded Ω, the conclusions of Theorem 1.1 remain true if we solely impose the

hypotheses that f is a Carathéodory function with (A.1) and that Qf(x, · ) is convex for L n-a.e. x ∈ Ω.

Corollary A.2. For bounded Ω, Theorem 2.2 (except for the backward implication in case that (2.6)
is used) and Theorem 2.4 remain true if we solely impose the following conditions on the integrand:

f is a Carathéodory function with (A.1), Qf(x, · ) is convex for L n-a.e. x ∈ Ω, and (Con) holds for

Qf in place of f .

15Indeed, it suffices for both the relaxation formula and our purposes in this section if f is not Carathéodory, but
only Borel measurable; compare [16, Remark 9.9 (ii)]. Nevertheless, we have decided to work with the Carathéodory
property, as it is commonly postulated in the statement of the relaxation formula.
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The remaining deficit in these statements lies in the fact that further hypotheses — most notably
the validity of (Con) for Qf and less severely the requirement (A.1) — are formulated in terms of
Qf rather than f . While in general it does not seem easy to overcome this point and to provide
good criteria in terms of f itself, we stress that the problem automatically disappears in the case of
an x-independent integrand f : indeed, when we assume convexity of Qf and the growth condition
f(z) ≤ L(1+z) and exclude the trivial situation infW1,1

u0
(Ω,RN ) F = −∞ (which in this case happens if

and only if Qf ≡ −∞), then (Con) for Qf and (A.1) are automatically satisfied.

Proof of Corollaries A.1 and A.2. From the assumption Qf = f∗∗ and the general equality f∗∗∗ = f∗

(which in turn follows from the convexity and lower semicontinuity of f∗; compare the beginning of
Section 3.1) we infer (Qf)∗ = f∗. Consequently, f∗, Ru0

, and the solutions of the dual problem (P∗)
are completely invariant under passage from f to Qf .

Clearly, under the assumptions stated in Corollary A.1 we can apply Theorem 1.1 with Qf in place
of f , and and keeping the above invariance in mind we infer the equality

inf
W1,1

u0
(Ω,RN )

QF = sup
L∞

div
(Ω,RNn)

Ru0

and the existence of a dual solution. Involving (A.2) it follows that the claims of Theorem 1.1 hold in
the generality of Corollary A.1.

Turning to Corollary A.2, let us first show that every generalized minimizer u of F is also a
generalized minimizer of QF (with respect to the same u0) with

Qf( · ,∇u) = f( · ,∇u) L
n-a.e. on Ω , (A.3)

(Qf)∞
(
· , dDsu

d|Dsu|
)
= f∞

(
· , dDsu

d|Dsu|
)

|Dsu|-a.e. on Ω . (A.4)

To this end, we observe — with the specifications of Section 2.2 — that, if u ∈ BVu0
(Ω,RN) minimizes

Fu0
, then we also have

QFu0
[u] ≤ Fu0

[u] = inf
BVu0

(Ω,RN )
Fu0

≤ inf
W1,1

u0
(Ω,RN )

F = inf
W1,1

u0
(Ω,RN )

QF = inf
BVu0

(Ω,RN )
QFu0

.

Here, the first inequality follows from Qf ≤ f and (Qf)∞ ≤ f∞, the second one from BVu0
(Ω,RN) ⊃

W1,1
u0

(Ω,RN ), and the equalities result from the minimality of u, (A.2), and (2.2) (which in turn exploits

the assumptions (Lin) and (Con) for Qf). All in all, this reasoning shows that u minimizes QFu0
; in

particular, the first inequality is in fact an equality, which in turn results in (A.3) and (A.4).
At this stage, we apply Theorem 2.2 with Qf in place of f , and we deduce

Qf( · ,∇u) = σ · ∇u− f∗( · , σ) , L
n-a.e. on Ω (A.5)

(Qf)∞
(
· , dDsu

d|Dsu|
)
=

dJσ ·DuKs

d|Dsu| |Dsu|-a.e. on Ω (A.6)

for all generalized minimizers u of QF and all dual solutions σ, where we have used (Qf)∗ = f∗

once more. By the preceding argument, (A.5) and (A.6) hold in particular for generalized minimizers
u of F , and (2.6) follows once we recall Qf = f∗∗ and (3.1). Furthermore, we can use (A.3) to
deduce also (2.4), then (2.5) follows again via (3.1), and via (A.4) we also obtain (2.7). Thus, we have
established the forward implication of Theorem 2.2 under the present assumptions.

Coming to the backward implication of Theorem 2.2, we first observe that we can still pass
from (2.5) to (2.4) via (3.1). Therefore, it suffices to deal with the case that u ∈ BVu0

(Ω,RN )
and σ ∈ L∞

div(Ω,R
Nn) satisfy (2.4) and (2.7). In view of Qf ≤ f we then deduce that (A.5) and (A.6)

hold, initially only with ‘≤’ in place of the equality sign. However, in view of f∗ = (Qf)∗ and Corol-
lary 5.3, the converse inequalities are generally valid, and thus also the equalities in (A.5) and (A.6)
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are true. Therefore, Theorem 2.2 implies that u is a generalized minimizer of QF and that σ is a
dual solution. Moreover, by combining (A.5) and (A.6) with (2.4) and (2.7), also (A.3) and (A.4) are
available, and then taking into account Qf ≤ f once more, we conclude that u is also a generalized
minimizer of F . This completes the proof of the backward implication.

Finally, the conclusion of Theorem 2.4 can be extended by a very similar reasoning, which also
relies on the inclusion16

int(Im ∂zf(x0, · )) ⊂ int(Im ∂zQf(x0, · )) for all x0 ∈ Ω . (A.7)

We will not discuss further details, except for the following proof of (A.7): for z∗0 ∈ int(Im ∂zf(x0, · )),
Proposition 3.7 yields positive constants ε and M such that f(x0, z) ≥ z∗0 · z + ε|z| − M holds for
all z ∈ R

Nn. Since the right-hand side of this inequality is convex in z, the definition of Qf implies
Qf(x0, z) ≥ z∗0 · z + ε|z| − M for all z ∈ R

Nn, and then Lemma 3.6 gives z∗0 ∈ Im ∂zQf(x0, · ). We
have thus shown int(Im ∂zf(x0, · )) ⊂ Im ∂zQf(x0, · ), and (A.7) follows, since the set on the left-hand
side is open.

B A general existence result

We say that Ω supports the BV0-Poincaré inequality if
∫

Ω

|w| dx ≤ C|Dw|(Ω) (B.1)

holds for all w ∈ BV0(Ω) with a fixed, finite constant C. Here, |Dw|(Ω) is evaluated in the sense of
Section 2.2, that is via the extension w of w with value zero on R

n \ Ω.
Clearly, Ω supports the BV0-Poincaré inequality whenever Ω is bounded, while, for unbounded Ω,

we have the following simple criteria:

Lemma B.1. If, for some δ > 0, the δ-neighborhood Nδ(Ω) does not contain arbitrarily large balls,

that is supx∈Rn dist(x,Rn \ Nδ(Ω)) < ∞, then Ω supports the BV0-Poincaré inequality. Conversely,

if Ω supports the BV0-Poincaré inequality, then Ω does not contain arbitrarily large balls.

Proof. We first establish (B.1) under the assumption that M := supx∈Rn dist(x,Rn \ Nδ(Ω)) is finite.
Then R

n can be covered by countably many balls BM (x1), BM (x2), BM (x3), . . . with the bounded-
overlap property

∑∞
i=1 1B3M (xi) ≤ (4n)n, and we can find new centers yi ∈ BM (xi) with Bδ(yi)∩Ω = ∅.

A standard version of the Poincaré inequality holds for BV-functions on B2M (yi) which vanish on
Bδ(yi), with a constant Cδ,M , which depends only on n, δ, and M , and in particular, for w ∈ BV0(Ω),
this inequality applies to the restrictions of w to B2M (yi). As B2M (y1), B2M (y2), B2M (y3), . . . still
cover Rn with the bounded-overlap property

∑∞
i=1 1B2M (yi) ≤ (4n)n, summation of these inequalities

gives (B.1) with C = (4n)nCδ,M .
Conversely, if Ω contains arbitrarily large balls, then, testing (B.1) with the characteristic functions

of these balls, we find that (B.1) cannot hold with a finite constant C.

With the lemma at hand, we can establish the following existence result for generalized minimizers,
in the sense of Section 2.2, on quite general, possibly unbounded domains Ω.

Theorem B.2 (existence of generalized minimizers). Suppose that Ω supports the BV0-Poincaré in-

equality, that ∂Ω has zero L n-measure, that f : Ω×R
Nn → R is convex in z and lower semicontinuous

in (x, z), and that f satisfies (Lin) and the linear coercivity condition

f(x, z) ≥ − ℓ(z) + ε|z| for all (x, z) ∈ Ω×R
Nn

with a linear function ℓ, and a fixed constant ε > 0. Then, a generalized minimizer of (P) exists.

16The inclusion (A.7) is in fact an equality, but, for our purposes, this observation is not needed.
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Proof. We start by recording

∫

Ω

∇w dx +Dsw
(
Ω
)
=

∫

Ω

∇u0 dx for w ∈ BVu0

(
Ω,RN

)
. (B.2)

This can be checked by testing the definition of the distributional derivative with a ϕ ∈ C∞
cpt(R

n)
such that ϕ ≡ 1 on BR and |ϕ|+ |∇ϕ| ≤ 1 on R

n hold; one gets |D(w−u0)|(BR) ≤ ‖w−u0‖1;Rn\BR
+

|D(w−u0)|(Rn \ BR), and sending R → ∞ one infers (B.2).
Next we observe that it suffices to treat the case of the coercivity condition

f(x, z) ≥ ε|z| for (x, z) ∈ Ω×R
Nn . (B.3)

Indeed, if this condition does not hold, we replace f by (x, z) 7→ f(x, z)+ℓ(z). Correspondingly, the role
of f∞ is taken over by (x, z) 7→ f∞(x, z) + ℓ(z), in view of (B.2) the functional Fu0

on BVu0
(Ω,RN )

is only changed by the additive constant
∫
Ω ℓ(∇u0) dx, and the existence of a generalized minimizer is

not affected.
Assuming (B.3) and following essentially [21], we now introduce f̄ : Ω× [0,∞)×R

Nn → [0,∞) by
setting

f̄(x, t, z) :=





f∞(x, z) for t = 0, x ∈ Ω

tf(x, z/t) for t > 0, x ∈ Ω

lim inf x̃→x
z̃→z

tf(x̃, z̃/t) for t > 0, x ∈ ∂Ω

Then f̄ is convex and positively 1-homogeneous in (t, z), lower semicontinuous in (x, t, z), and by
definition of f̄ we have f̄( · , 1, · ) = f( · , · ) on Ω×R

Nn and f̄( · , 0, · ) = f∞( · , · ) on Ω×R
Nn. This

implies (compare [21])

∫

Ω

f̄
(
· , d(L n,Dw)

d|(L n,Dw)|
)
d|(L n,Dw)| = Fu0

[w] for w ∈ BVu0

(
Ω,RN

)
. (B.4)

Now we consider a minimizing sequence (wk)k∈N for Fu0
in BVu0

(Ω,RN). By (B.3), we infer
that |Dwk|(Ω) remains bounded, and using (B.1) for the components of wk − u0 Ω

∈ BV0(Ω,R
N ),

we see that also ‖wk − u0‖1;Ω remains bounded. By compactness and Rellich’s theorem we find a
limit u ∈ BVu0

(Ω,RN) such that, possibly after passage to a subsequence, wk converges L n-a.e. to
u, and Dwk weak-∗-converges to Du in the space of finite R

Nn-valued Borel measures on Ω. It follows
from Reshetnyak’s semicontinuity theorem [1, Theorem 2.38]17 that the functionals in (B.4) are lower
semicontinuous with respect to this convergence. Therefore, we conclude Fu0

[u] ≤ lim infk→∞ Fu0
[wk],

and u is a generalized minimizer of (P).
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