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Abstract. In this Note we prove a family of inequalities for differential
forms in Heisenberg groups H1 and H2, that are the natural counter-
part of a class of div-curl inequalities in de Rham’s complex proved by
Lanzani & Stein and Bourgain & Brezis.

1. Introduction

In [23] Lanzani & Stein proved that the classical sharp Sobolev inequality
(the so-called Gagliardo-Nirenberg inequality)

‖u‖Ln/(n−1)(Rn) ≤ C ‖∇u‖L1(Rn), u ∈ D(Rn)

is the first link of a chain of analogous inequalities for compactly supported
smooth differential h-forms in Rn

‖u‖Ln/(n−1)(Rn) ≤ C
(
‖du‖L1(Rn) + ‖δu‖L1(Rn

)
if h 6= 1, n− 1;(1)

‖u‖Ln/(n−1)(Rn) ≤ C
(
‖du‖L1(Rn) + ‖δu‖H1(Rn)

)
if h = 1;(2)

‖u‖Ln/(n−1)(Rn) ≤ C
(
‖du‖H1(Rn) + ‖δu‖L1(Rn)

)
if h = n− 1,(3)

where d is the exterior differential, and δ (the exterior codifferential) is its
formal L2-adjoint. Here H1(Rn) is the real Hardy space (see e.g. [30]). In
other words, the main result of [23] provides a priori estimates for a div-curl
systems with data in L1(Rn). This result contains in particular the well-
known Burgain-Brezis inequality [7], [8] (see also [31]) for divergence-free
vector fields in Rn. Related results have been obtained again by Burgain-
Brezis in [9] and are applied to the study of div-curl systems and of more
general Hodge systems.

We refer the reader to all previous references for an extensive discussion
about the presence of the Hardy space in (2), (3).

Recently, in [11], Chanillo & Van Schaftingen extented Burgain-Brezis
inequality to a class of vector fields in Carnot groups. Some of the results
of [11] are presented in Theorems 2.3 and 2.4 below.

To keep this paper self-contained, let us recall preliminarily the basic
notions about Carnot groups. A connected and simply connected Lie group
(G, ·) (in general non-commutative) is said a Carnot group of step κ if the
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Lie algebra g of the left-invariant vector fields admits a step κ stratification,
i.e. there exist linear subspaces V1, ..., Vκ such that

g = V1 ⊕ ...⊕ Vκ, [V1, Vi] = Vi+1, Vκ 6= {0}, Vi = {0} if i > κ,

where [V1, Vi] is the subspace of g generated by the commutators [X,Y ] with
X ∈ V1 and Y ∈ Vi. The first layer V1 is the so-called horizontal layer, that
generates g by commutation.

A Carnot group G can be identified, through exponential coordinates,
with the Euclidean space (RN , ·) with a suitable group operation, where N
is the dimension of g.

Carnot groups are endowed with two family of important transformations:
the (left) translation τx : G → G defined as z 7→ τxz := x · z, and the
(non-isotropic) group dilations δλ : G → G, that are associated with the
stratification of g and are automorphisms of the group (see [13], [30] or [6]
for an exhaustive introduction to Carnot groups).

We denote by Q the homogeneous dimension of G, i.e. we set

Q :=
κ∑
i=1

i dim(Vi).

It is well known that Q is the Hausdorff dimension of the metric space G
endowed with any left invariant distance that is homogeneous with respect
to group dilations. In general, Q > N .

The Lie algebra g of G can be identified with the tangent space at the
origin e of G, and hence the horizontal layer of g can be identified with a
subspace HGe of TGe. By left translation, HGe generates a subbundle HG
of the tangent bundle TG, called the horizontal bundle. A section of HG is
called a horizontal vector field. Since, as usually, vector fields are identified
with differential operators, we refer to the elements of V1 as to the horizontal
derivatives. For an horizontal vector field W we can give a natural notion
of horizontal divergence divG (see (8) below).

Among Carnot groups, the simplest but, at the same time, non-trivial
instance is provided by Heisenberg groups Hn, with n ≥ 1, and, in particular,
by the first Heisenberg group H1. Precise definitions will be given later
(see Section 2); let us remind that H1 is a Carnot group of step 2 with
2 generators, and that it is in some sense the “model” of all topologically
3-dimensional contact structures.

More formally, the Heisenberg group H1 can be identified with R3, whith
variables (x, y, t). Set X := ∂x − 1

2y∂t, Y := ∂y + 1
2x∂t, T := ∂t. The

stratification of its algebra h is given by h = V1⊕V2, where V1 = span {X,Y }
and V2 = span {T}.

In spite of the extensive study of differential equations in Carnot groups
(and, more generally, in sub-Riemannian spaces) carried on the last few
decades, very few results are known for pde’s involving differential forms in
groups (see, e.g., [26], [29], [4], [3], [18], [1], [2], [16]).

As a contribution in this direction, in this paper we attack the study
of inequalities (1), (2), (3) for differential forms in Heisenberg groups Hn,
n ≥ 1.
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The scalar case, i.e. the Gagliardo-Nirenberg inequality in Carnot groups,
is already well known, as well as its geometric counterpart, the isoperimetric
inequality: see [14], [15], [10], [19], [24], [25].

A natural setting for div-curl type systems in Heisenberg groups is pro-
vided by the so-called Rumin’s complex (E∗0 , dc) of differential forms in Hn.
In fact, De Rham’s complex (Ω∗, d) of differential forms, endowed with the
usual exterior differential, does not fit the very structure of the group, since
it is not invariant under group dilations, basically since it mixes derivatives
along all the layers of the stratification. Consider for instance the Heisen-
berg group H1, and let dx, dy and θ = dt+ 1

2ydx−
1
2xdy (the contact form

of H1) be the (left invariant) dual covectors of X,Y, T , respectively. If we
write the exterior differential df of a smooth function f in terms of dx, dy
and θ, we obtain

df = (Xf)dx+ (Y f)dy + (Tf)θ,

that is not invariant under group dilations, since dx, dy are homogeneous
of degree 1 with respect to group dilations, whereas θ is homogeneous of
degree 2.

Then, a näıf approach would be to replace d by the “horizontal differen-
tial” dH defined on functions by cutting out the non-horizontal part (Tf)θ,
i.e., by setting

dHf = (Xf)dx+ (Y f)dy

that is homogeneous of degree 1. Unfortunately, dH does not yield a com-
plex, since d2

Hf 6= 0, because of the lack of commutativy of g, and therefore
dH fails to be a good differential for the construction of an intrinsic complex.
Rumin’s complex is meant precisely to overcome this difficulty.

As a matter of fact, the construction of the complex (E∗0 , dc) is rather
technical and will be illustrated in Section 3. However, it is important to
stress here that Rumin’s differential dc may be a differential operator of
higher order in the horizontal derivatives. This property affects crucially
our results, that are therefore a distinct counterpart of those of Lanzani &
Stein.

To give a gist of our results, let us consider for the moment just 1-forms
in H1. We remind that in H1 Rumin’s spaces of forms E∗0 are

E1
0 = span {dx, dy};

E2
0 = span {dx ∧ θ, dy ∧ θ};

E3
0 = span {dx ∧ dy ∧ θ}.

Moreover

dc(α1dx+ α2dy) = (X2α2 − 2XY α1 + Y Xα1)dx ∧ θ
+ (2Y Xα2 − Y 2α1 −XY α2)dy ∧ θ,

and, if we denote by δc the formal L2-adjoint of dc, then

δc(α1dx+ α2dy) := X1α1 +X2α2.

We notice that dc is an operator of order 2 in X and Y , whereas δc is an
operator of order 1 in the same horizontal derivatives.
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In this case we show that there exists C > 0 such that for any divergence-
free 1-form u ∈ D(H1, E1

0) i.e. such that δcu = 0, we have

‖u‖LQ/(Q−2)(H1,E1
0) ≤ C‖dcu‖L1(H1,E2

0).

Notice that on the left-hand side the Ln/(n−1)-norm of (2) is replaced by

the LQ/(Q−2)-norm, coherently with the fact that dc is an operator of order
2 on 1-forms.

On the other hand, if we assume dcu = 0, then we have

‖u‖LQ/(Q−1)(H1,E1
0) ≤ C‖δcu‖H1(H1),

where H1 is the Hardy space in H1 defined in [13], p.75, and coherently with
the fact that δc is an operator of order 1 on 1-forms.

Eventually, if we consider div-curl system{
dcu = f

δcu = g,

then the sharpest result we can obtain is

‖u‖LQ/(Q−2)(H1,E1
0) ≤ C

(
‖f‖L1(H1,E2

0) + ‖dcg‖H1(H1,E2
0)

)
.

The first step in the proof of these results relies on the fact that the compo-
nents of closed forms in E1

0 can be viewed as components of an horizontal
vector field F with divH F = 0. This make possible to apply a result due
to Chanillo & Van Schaftingen for divergence-free horizontal vector fields in
Carnot groups (see Theorem 2.3 below). Then the result follows thanks to
precise estimates for the fundamental solution of the “Laplace operator” on
E1

0 defined by ∆H,1 := δcdc + (dcδc)
2 (that are proved in [5]).

If we want to pass from H1 to Hn with n > 1, as for the first step of
the proof, the situation becomes increasingly more complex, and, already
for the case n = 2 we rely on a carful use of Cartan’s formula (see Theorem
2.5), as well as in a long sequence of explicit cumbersome computations
whose number growth very fast as n increases. Nevertheless, we believe
that our approach for the Heisenberg group H2 can be used as a model of
the situation for Hn, with n ≥ 3.

This paper is organized as follows: in Section 2 we fix our notations
and we collect some known results about Heisenberg groups. Moreover, we
present two crucial estimates proved by Chanillo & Van Schaftingen ([11])
for “divergence free” horizontal vector fields in Carnot groups, as well as
the classical Cartan’s identity that we use in this paper to reduce ourselves
precisely to the case of “divergence free” horizontal vector fields. In Sec-
tion 3, we sketch the construction of Rumin’s complex of differential forms
in Heisenberg groups, and we remind some properties of the fundamental
solution for a suitable Laplace operator on Rumin’s forms ([4], [5]). Section
4 contains our main results in H1 and H2. Finally, in Section 5 we discuss
the sharpness of our result, and, at same time, we show how they can be
improved for special choices of the data.

Finally, we recall that different generalizations of the global inequalities
proved by Lanzani & Stein and Bourgain & Brezis have been proved in [22]

4



(for the differential complex associated with an involutive elliptic strcture),
and in [33] (for pseudoconvex CR manifolds).

2. Preliminary results

2.1. Notations. We denote by Hn the n-dimensional Heisenberg group,
identified with R2n+1 through exponential coordinates. A point p ∈ Hn is
denoted by p = (x, y, t), with both x, y ∈ Rn and t ∈ R. If p and p′ ∈ Hn,
the group operation is defined as

p · p′ = (x+ x′, y + y′, t+ t′ +
1

2

n∑
j=1

(xjy
′
j − yjx′j)).

If we denote by p−1 the inverse of p, we remind that p−1 = (−x,−y,−t).
Sometimes, we write also pq for p · q.

For a general review on Heisenberg groups and their properties, we refer
to [30], [20] and to [32]. We limit ourselves to fix some notations, following
[17].

For fixed q ∈ Hn and for r > 0, left translations τq : Hn → Hn and non
isotropic dilations δr : Hn → Hn are defined as

(4) τq(p) := q · p and as δr(p) := (rx, ry, r2t).

The Heisenberg group Hn can be endowed with the homogeneous norm
(Koranyi norm)

(5) %(p) =
(
(x2 + y2)2 + t2

)1/4
,

and we define the gauge distance (see [30], p. 638) as

(6) d(p, q) := %(p−1 · q).
It is well known that the topological dimension of Hn is 2n+ 1, since as a

smooth manifold it coincides with R2n+1, whereas the Hausdorff dimension
of (Hn, d) is Q = 2n+ 2.

We denote by h the Lie algebra of the left invariant vector fields of Hn.
The standard basis of h is given, for i = 1, . . . , n, by

Xi := ∂xi −
1

2
yi∂t, Yi := ∂yi +

1

2
xi∂t, T := ∂t.

The only non-trivial commutation relations are [Xj , Yj ] = T , for j = 1, . . . , n.
When n = 1 we just write X := X1 and Y := Y1.

The horizontal subspace h1 is the subspace of h spanned by X1, . . . , Xn

and Y1, . . . , Yn. Coherently, from now on, we refer to X1, . . . , Xn, Y1, . . . , Yn
(identified with first order differential operators) as to the horizontal deriva-
tives. Denoting by h2 the linear span of T , the 2-step stratification of h is
expressed by

h = h1 ⊕ h2.

The vector spaces h can be endowed with an inner product, indicated by
〈·, ·〉, making X1, . . . , Xn, Y1, . . . , Yn and T orthonormal.

Throught this paper, to avoid cumbersome notations, we write also

(7) Wi := Xi, Wi+n := Yi, W2n+1 := T, for i = 1, · · · , n.
5



If f : Hn → R, we denote by ∇Hf the horizontal vector field

∇Hf :=

2n∑
i=1

(Wif)Wi,

whose coordinates are (W1f, ...,W2nf). Moreover, if Φ = (φ1, . . . , φ2n) is an
horizontal vector field, we define divH φ as the real valued function

(8) divH (Φ) :=

2n∑
j=1

Wjφj .

If f is a real function defined in Hn, we denote by vf the function defined
by vf(p) := f(p−1), and, if T ∈ D′(Hn), then vT is the distribution defined
by 〈vT |φ〉 := 〈T |vφ〉 for any test function φ.

Following e.g. [13], we can define a group convolution in Hn: if, for
instance, f ∈ D(Hn) and g ∈ L1

loc(Hn), we set

(9) f ∗ g(p) :=

∫
f(q)g(q−1 · p) dq for q ∈ Hn.

We remind that, if (say) g is a smooth function and L is a left invariant
differential operator, then

L(f ∗ g) = f ∗ Lg.
We remind also that the convolution is again well defined when f, g ∈
D′(Hn), provided at least one of them has compact support (as custom-
ary, we denote by E ′(Hn) the class of compactly supported distributions in
Hn identified with R2n+1). In this case the following identities hold

(10) 〈f ∗ g|φ〉 = 〈g|vf ∗ φ〉 and 〈f ∗ g|φ〉 = 〈f |φ ∗ vg〉
for any test function φ.

If I = (i1, . . . , i2n+1) is a multi–index, we set W I = W i1
1 · · ·W

i2n
2n T i2n+1 .

Furthermore, we set |I| := i1 + · · ·+ i2n + i2n+1 the order of the differential
operator W I , and d(I) := i1 + · · · + i2n + 2i2n+1 its degree of homogeneity
with respect to group dilations.

Suppose now f ∈ E ′(Hn) and g ∈ D′(Hn). Then, if ψ ∈ D(Hn), we have

〈(W If) ∗ g|ψ〉 = 〈W If |ψ ∗ vg〉 = (−1)|I|〈f |ψ ∗ (W I vg)〉

= (−1)|I|〈f ∗ vW I vg|ψ〉.
(11)

Following [12], we remind now the notion of kernel of order α, as well as
some basic properties.

Definition 2.1. A kernel of order α is a homogeneous distribution of degree
α−Q (with respect to group dilations δr as in (4)), that is smooth outside
of the origin.

Proposition 2.2. Let K ∈ D′(Ω) be a kernel of order α.

i) vK is again a kernel of order α;
ii) W`K is a a kernel of order α−1 for any horizontal derivative W`K,

` = 1, . . . , 2n;
iii) If α > 0, then K ∈ L1

loc(Hn).
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2.2. Multilinear algebra. The dual space of h is denoted by
∧1 h. The

basis of
∧1 h, dual to the basis {X1, . . . , Yn, T} is the family of covectors

{dx1, . . . , dxn, dy1, . . . , dyn, θ} where θ := dt−1
2

∑n
j=1(xjdyj−yjdxj) is called

the contact form in Hn.
We indicate as 〈·, ·〉 also the inner product in

∧1 h that makes dx1, . . . , dyn, θ
be an orthonormal basis.

Coherently with the previous notation (7), we set

θi := dxi, θi+n := dyi, θ2n+1 := θ, for i = 1, · · · , n.

We put
∧

0 h :=
∧0 h = R and, for 1 ≤ k ≤ 2n+ 1,∧

k
h := span{Wi1 ∧ · · · ∧Wik : 1 ≤ i1 < · · · < ik ≤ 2n+ 1} =: span Θk,∧k
h := span{θi1 ∧ · · · ∧ θik : 1 ≤ i1 < · · · < ik ≤ 2n+ 1} =: span Θk.

The volume (2n+ 1)-form θ1 ∧ · · · ∧ θ2n+1 will be also written as dV .
The action of a k-covector ϕ on a k-vector v is denoted by 〈ϕ|v〉.
The inner product 〈·, ·〉 extends canonically to

∧
k h and to

∧k h making

both bases Θk and Θk orthonormal. We denote by θki the i-element of the

orthonormal basis Θk, 1 ≤ i ≤
(

2n+1
k

)
.

The same construction can be performed starting from the vector sub-
space h1 ⊂ h, obtaining the horizontal k-vectors and horizontal k-covectors∧

k
h1 := span{Wi1 ∧ · · · ∧Wik : 1 ≤ i1 < · · · < ik ≤ 2n}∧k
h1 := span{θi1 ∧ · · · ∧ θik : 1 ≤ i1 < · · · < ik ≤ 2n}.

The symplectic 2-form dθ ∈
∧2 h1 is dθ = −

∑n
i=1 dxi ∧ dyi.

If 1 ≤ k ≤ 2n+ 1, the Hodge isomorphism

∗ :
∧

k
h←→

∧
2n+1−k

h and ∗ :
∧k

h←→
∧2n+1−k

h,

is defined by

v ∧ ∗w = 〈v, w〉W1 ∧ · · · ∧W2n+1,

ϕ ∧ ∗ψ = 〈ϕ,ψ〉θ1 ∧ · · · ∧ θ2n+1.

If v ∈
∧
k h we define v\ ∈

∧k h by the identity 〈v\|w〉 := 〈v, w〉, and

analogously we define ϕ\ ∈
∧
k h for ϕ ∈

∧k h.
As pointed out in the Introduction, the Lie algebra h can be identified

with the tangent space at the origin e = 0 of Hn, and hence the horizontal
layer h1 can be identified with a subspace of THn

e that we can still denote
by
∧

1 h1. By left translation,
∧

1 h1 generates a subbundle of the tangent
bundle, called the horizontal bundle, that, with a slight abuse of notations,
we still denote by

∧
1 h1. A section of

∧
1 h1 is called a horizontal vector

field.

We recall now the following two results due to Chanillo & Van Schaftingen
that are keystones in our proofs.
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Theorem 2.3 ([11], Theorem 1). Let Φ ∈ D(Hn,
∧

1 h1) be a smooth com-
pactly supported horizontal vector field. If F ∈ L1

loc(Hn,
∧

1 h1) is H-diver-
gence free, then∣∣〈F,Φ〉L2(Hn,

∧
1 h1)

∣∣ ≤ C‖F‖L1(Hn,
∧

1 h1)‖∇HΦ‖LQ(Hn,
∧

1 h1).

Let k ≥ 1 be fixed, and let F ∈ L1(Hn,⊗k
∧

1 h1) belong to the space of
the horizontal k-tensors. We can write

F =
∑
i1,...,ik

Fi1,...,ikWi1 ⊗ · · · ⊗Wik .

We remind that F can be identified with the differential operator

u→ Fu :=
∑
i1,...,ik

Fi1,...,ikWi1 · · ·Wiku.

Moreover, we denote by D(Hn, Sym(⊗k
∧

1 h1)) the subspace of compactly
supported smooth symmetric horizontal k-tensors.

Then Theorem 2.3 is a special instance of the following more general
result.

Theorem 2.4 ([11], Theorem 5). Let k ≥ 1, F ∈ L1(Hn,⊗k
∧

1 h1), Φ ∈
D(Hn,Sym(⊗k

∧
1 h1)).

Suppose ∫
Hn

Fψ dV = 0 for all ψ ∈ D(Hn),

i.e. suppose that ∑
i1,...,ik

Wik · · ·Wi1Fi1,...,ik = 0 in D′(Hn).

Then ∣∣∣ ∫
Hn

〈Φ, F 〉 dV
∣∣∣ ≤ Ck‖F‖L1(Hn,⊗k

∧
1 h1)‖∇HΦ‖LQ(Hn,⊗k

∧
1 h1).

We close this Section by recalling the following classical Cartan’s formula
in Hn (see, e.g., [21], identity (9) p. 21, though with a different normalization
of the wedge product).

Theorem 2.5. Let ω be a smooth h-form of (Ω∗, d) (the usual de Rham’s
complex), and let Z0, Z1, . . . , Zh be smooth vector fields in Hn. Then

〈dω|Z0 ∧ · · · ∧ Zh〉 =
h∑
i=0

(−1)iZi〈ω|Z0 ∧ · · · Ẑi · · · ∧ Zh〉

+
∑

0≤i<j≤h
(−1)i+j〈ω| [Zi, Zj ] ∧ · · · ∧ Ẑi ∧ · · · ∧ Ẑj · · ·〉.

(12)

3. Intrinsic complex and fundamental solution

We summarize now very shortly Rumin’s construction of the intrinsic
complex. Though this theory can be naturally formulated in any Carnot
group, we restrict ourselves to Heisenberg groups. For a general approach,
we refer, for instance, to [29] and [3].
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Definition 3.1. If α 6= 0, α ∈
∧1 h1, we say that α has weight 1, and we

write w(α) = 1. If α = θ, we say w(θ) = 2. More generally, if α ∈
∧h h,

we say that α has pure weight k if α is a linear combination of covectors
θi1 ∧ · · · ∧ θih with w(θi1) + · · ·+ w(θih) = k.

Notice that, if α, β ∈
∧h h and w(α) 6= w(β), then 〈α, β〉 = 0.

We have ([3], formula (16))∧h
h =

∧h,h
h⊕

∧h,h+1
h,

where
∧h,p h denotes the linear span of Θh,p := {α ∈ Θh, w(α) = p}.

Similarly, if we denote by Ωh,p the vector space of all smooth h–forms in

Hn of weight p, i.e. the space of all smooth sections of
∧h,p h, we have

(13) Ωh = Ωh,h ⊕ Ωh,h+1.

The following crucial property of the weight follows from Cartan identin-
tity: see [29], Section 2.1:

Definition 3.2. Let now α =
∑

θhi ∈Θh,p αi θ
h
i ∈ Ωh,p be a (say) smooth form

of pure weight p. Then we can write

dα = d0α+ d1α+ d2α,

where d0α has still weight p, d1α has weight p+1, and d2α has weight p+2.

By Cartan’s formula (12), w(dθhi ) = w(θhi ) (because of their left-invariance),
and then we can write explicitly

d0α =
∑

θhi ∈Θh,p

αidθ
h
i

that does not increase the weight,

d1α =
∑

θhi ∈Θh,p

2n∑
j=1

(Wjαi)θj ∧ θhi

that increases the weight by 1, and

d2α =
∑

θhi ∈Θh,p

(Tαi)θ ∧ θhi ,

that increases the weight by 2.
The following definition of intrinsic covectors (and therefore of intrinsic

forms) is due to M. Rumin ([29], [27]).

Definition 3.3. If 0 ≤ h ≤ 2n+ 1 we set

Eh0 := ker d0 ∩R(d0)⊥ ⊂ Ωh.

It is easy to see that ∗Eh0 = E2n+1−h
0 .

We refer to the elements of Eh0 as to intrinsic h-forms on Hn. Since the
construction of Eh0 is left invariant, this space of forms can be seen as the

space of sections of a fiber subbundle of
∧h h, generated by left translation

and still denoted by Eh0 . In particular Eh0 inherits from
∧h h the scalar

product on the fibers.
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Theorem 3.4 (see [26], [28]). We have:

• E1
0 =

∧1 h1;

• if 2 ≤ h ≤ n then Eh0 =
∧h h1 ∩

(∧h−2 h1 ∧ dθ
)⊥

;

• if n < h ≤ 2n+ 1 then Eh0 = {α = β ∧ θ, β ∈
∧h−1 h1, α ∧ dθ = 0}.

Notice that all forms in Eh0 have weight h if 1 ≤ h ≤ n and weight h+ 1 if
n < h ≤ 2n+ 1.

We denote by Ξh0 = {ξhj } an orthonormal basis of Eh0 . We can take ξ1
j = θj

for j = 1, . . . , 2n.

Remark 3.5. From now on, we shall refer to the components of a form α ∈ E∗0
with respect to the basis Ξ∗0 tout court as to the components of α without
further specifications.

Definition 3.6. If 0 ≤ h ≤ n, 1 ≤ p ≤ ∞, we denote by Lp(Hn, Eh0 ) the
space of all sections of Eh0 such that their components with respect to the
basis Ξh0 belong to Lp(Hn), endowed with its natural norm. Clearly, this
definition is independent of the choice of the basis itself. If h = 0, we write
Lp(Hn) for Lp(Hn, E0

0).
The notation D(Hn, Eh0 ) has the same meaning.

We define now a (pseudo) inverse of d0 as follows (see [3], Lemma 2.11):

Lemma 3.7. If β ∈
∧h+1 h, then there exists a unique α ∈

∧h h∩ (ker d0)⊥

such that
d0α− β ∈ R(d0)⊥.

We set α := d−1
0 β. We notice that d−1

0 preserves the weights.

The following theorem summarizes the construction of the intrinsic dif-
ferential dc (for details, see [29] and [3], Section 2) .

Theorem 3.8. The de Rham complex (Ω∗, d) splits in the direct sum of two
sub-complexes (E∗, d) and (F ∗, d), with

E := ker d−1
0 ∩ ker(d−1

0 d) and F := R(d−1
0 ) +R(dd−1

0 ).

We have

i) Let ΠE be the projection on E along F (that is not an orthogonal
projection). If α ∈ Eh0 , then

• ΠEα = α− d−1
0 d1α if 1 ≤ h ≤ n;

• ΠEα = α if h > n.
ii) ΠE is a chain map, i.e.

dΠE = ΠEd.

iii) Let ΠE0 be the orthogonal projection from
∧∗ h on E∗0 , then

(14) ΠE0 = Id− d−1
0 d0 − d0d

−1
0 , ΠE⊥0

= d−1
0 d0 + d0d

−1
0 .

iv) ΠE0ΠEΠE0 = ΠE0 and ΠEΠE0ΠE = ΠE.

Set now
dc = ΠE0 dΠE : Eh0 → Eh+1

0 , h = 0, . . . , 2n.

We have:

v) d2
c = 0;

10



vi) the complex E0 := (E∗0 , dc) is exact;

vii) dc : Eh0 → Eh+1
0 is an homogeneous differential operator in the hor-

izontal derivatives of order 1 if h 6= n, whereas dc : En0 → En+1
0 is

an homogeneous differential operator in the horizontal derivatives of
order 2.

Remark 3.9. if f ∈ E0
0 (i.e. f is a smooth function), then

dcf =

n∑
j=1

Xjf dxj +

n∑
j=1

Yjf dyj .

Proposition 3.10. Denote by δc = d∗c the formal adjoint of dc in L2(G, E∗0).
Then δc = (−1)h ∗ dc∗ on Eh0 .

Example 3.11. Let H1 ≡ R3 be the first Heisenberg group, with variables
(x, y, t). We have:

E1
0 = span {dx, dy};

E2
0 = span {dx ∧ θ, dy ∧ θ};

E3
0 = span {dx ∧ dy ∧ θ}.

Thus, if α = α1dx+ α2dy ∈ E1
0 , then

(a) dcα = (X2α2 − 2XY α1 + Y Xα1)dx ∧ θ + (2Y Xα2 − Y 2α1 −XY α2)dy ∧ θ

(b) δcα = Xα1 + Y α2.

On the other hand, if α = α13dx ∧ θ + α23dy ∧ θ ∈ E2
0 , then

(c) dcα = (Xα23 − Y α13) dx ∧ dy ∧ θ;

(d) δcα = (XY α13 − 2Y Xα13 − Y 2α23)dx+ (X2α13 + 2XY α23 − Y Xα23)dy.

Example 3.12. Choose now H2 ≡ R5, with variables (x1, x2, y1, y2, t). In
this case (see e.g. [3], Appendix B)

E1
0 = span {dx1, dx2, dy1, dy2};

E2
0 = span {dx1 ∧ dx2, dx1 ∧ dy2, dx2 ∧ dy1, dy1 ∧ dy2,

1√
2

(dx1 ∧ dy1 − dx2 ∧ dy2)}.

The classes E3
0 and E4

0 are easily written by Hodge duality:

E3
0 = span {dy1 ∧ dy2 ∧ θ, dx2 ∧ dy1 ∧ θ, dx1 ∧ dy2 ∧ θ, dx1 ∧ dx2 ∧ θ,

1√
2

(dx1 ∧ dy1 − dx2 ∧ dy2) ∧ θ};

E4
0 = span {dx2 ∧ dy1 ∧ dy2 ∧ θ, dx1 ∧ dy1 ∧ dy2 ∧ θ, dx1 ∧ dx2 ∧ dy2 ∧ θ,

dx1 ∧ dx2 ∧ dy1 ∧ θ}
E5

0 = span {dx1 ∧ dx2 ∧ dy1 ∧ dy2 ∧ θ = dV }.
11



Thus, if α = α1dx1 + α2dx2 + α3dy1 + α4dy2 ∈ E1
0 , we have

(a) dcα = (X1α2 −X2α1)dx1 ∧ dx2 + (Y1α4 − Y2α3)dy1 ∧ dy2

+ (X1α4 − Y2α1)dx1 ∧ dy2 + (X2α3 − Y1α2)dx2 ∧ dy1

+
X1α3 − Y1α1 −X2α4 + Y2α2√

2

1√
2

(dx1 ∧ dy1 − dx2 ∧ dy2).

(b) δcα = X1α1 +X2α2 + Y1α3 + Y2α4.

Definition 3.13. In Hn, following [26], we define the operator ∆H,h on Eh0
by setting

∆H,h =

 dcδc + δcdc if h 6= n, n+ 1;
(dcδc)

2 + δcdc if h = n;
dcδc + (δcdc)

2 if h = n+ 1.

Notice that −∆H,0 =
∑n

j=1(X2
j + Y 2

j ) is the usual sub-Laplacian of Hn.

Set Nh := dim Eh0 . For sake of simplicity, once the basis Ξh0 of Eh0 is fixed,
the operator ∆H,h can be identified with a matrix-valued map, still denoted
by ∆H,h

(15) ∆H,h = (∆ij
H,h)i,j=1,...,Nh

: D′(Hn,RNh)→ D′(Hn,RNh).

This identification makes possible to avoid the notion of currents: we refer
to [3] for this more elegant presentation.

Combining [26] and [5], we obtain the following result.

Theorem 3.14. If 0 ≤ h ≤ 2n + 1, then the differential operator ∆H,h is
hypoelliptic of order a = 2 if h 6= n, n+ 1 and of order a = 4 if h = n, n+ 1
with respect to group dilations.

Moreover for j = 1, . . . , Nh there exists

(16) Kj =
(
K1j , . . . ,KNhj

)
, j = 1, . . . Nh

with Kij ∈ D′(Hn) ∩ E(Hn \ {0}), i, j = 1, . . . , N such that

i) we have ∑
i

∆i`
H,hKij =

{
δ if ` = j
0 if ` 6= j;

ii) if a < Q, then the Kij’s are kernels of type a in the sense of [12], for
i, j = 1, . . . , Nh (i.e. they are smooth functions outside of the origin,
homogeneous of degree a − Q, and hence belonging to L1

loc(Hn), by
by Proposition 2.2). If a = Q, then the Kij’s satisfy the logarithmic
estimate |Kij(p)| ≤ C(1 + | ln ρ(p)|) and hence belong to L1

loc(Hn).
Moreover, their horizontal derivatives W`Kij, ` = 1, . . . , 2n, are ker-
nels of type Q− 1;

iii) when α ∈ D(Hn,RNh), if we set

(17) Kα :=
(∑

j

αj ∗K1j , . . . ,
∑
j

αj ∗KNhj

)
,

then ∆H,hKα = α. Moreover, if a < Q, also K∆H,hα = α.

iv) if a = Q, then for any α ∈ D(Hn,RNh) there exists βα := (β1, . . . , βNh
) ∈

RNh, such that
K∆H,hα− α = βα.

12



Remark 3.15. Coherently with formula (15), the operator K can be identified
with an operator (still denoted by K) acting on smooth compactly supported
differential forms in D(Hn, Eh0 ).

4. Main result

Theorem 4.1. Denote by (E∗0 , dc) the complex of intrinsic forms in H1.
Then there exists C > 0 such that for any h-form u ∈ D(H1, Eh0 ), 0 ≤ h ≤ 3,
satisfying {

dcu = f

δcu = g,

we have

‖u‖LQ/(Q−1)(H1) ≤ C‖f‖L1(H1,E1
0) if h = 0;

‖u‖LQ/(Q−2)(H1,E1
0) ≤ C

(
‖f‖L1(H1,E2

0) + ‖dcg‖H1(H1)

)
if h = 1;

‖u‖LQ/(Q−2)(H1,E2
0) ≤ C

(
‖dcf‖H1(H1,E3

0) + ‖g‖L1(H1,E1
0)

)
if h = 2;

‖u‖LQ/(Q−1)(H1,E3
0) ≤ C‖g‖L1(H1,E2

0) if h = 3.

Proof. First of all, we notice that, since the complex (E∗0 , dc) is invariant
under Hodge-star duality, we may restrict ourselves to forms in Eh0 , with
h = 0, 1. The case h = 0 is well known ([14], [10], [24]). On the other hand,
keeping in mind Theorem 3.14, if u, φ ∈ D(H1, E1

0), we can write

〈u, φ〉L2(H1,E1
0) = 〈u,∆H,1Kφ〉L2(H1,E1

0)

= 〈u, (δcdc + (dcδc)
2)Kφ〉L2(H1,E1

0).
(18)

Consider now the term

〈u, δcdcKφ〉L2(H1,E1
0) = 〈dcu, dcKφ〉L2(H1,E2

0).

If we write f := dcu, then f is a 2-form in E2
0 and therefore it can be

written as f = f1dx ∧ θ + f2dy ∧ θ. Analogously, we can write dcKφ =
(dcKφ)1dx ∧ θ + (dcKφ)2dy ∧ θ. Thus

〈u, δcdcKφ〉L2(H1,E1
0) = 〈f1, (dcKφ)1〉L2(H1) + 〈f2, (dcKφ)2〉L2(H1).

Let us estimate, for instance, the first term of the sum. We remind that,
since f is closed, we have Xf2 − Y f1 = 0 (by Example 3.11, (c)), i.e. if

F := (f2,−f1) then divH F = 0.

Thus, if we choose Φ := (0, (dcKφ)1), we can apply Theorem 1 in [11] to
obtain∣∣〈F,Φ〉∣∣ =

∣∣〈f1, (dcKφ)1〉L2(H1)

∣∣ ≤ C‖dcu‖L1(H1,E2
0)‖∇HdcKφ‖LQ(H1,E2

0).

The term 〈f2, (dcKφ)2〉L2(H1) can be handled in the same way, choosing
Φ := ((dcKφ)2, 0). After all, we obtain

|〈u, δcdcKφ〉L2(H1,E1
0)| ≤ C‖dcu‖L1(H1,E2

0)‖∇HdcKφ‖LQ(H1,E2
0).

Furthermore, ∇HdcKφ can be expressed as a sum of terms with components
of the form

αj ∗W IK̃ij , with d(I) = 3.
13



By Theorem 3.14, iv) and Proposition 2.2, ii) W IK̃ij are kernels of order 1,
so that, by [12], Proposition 1.11 we have

(19) |〈u, δcdcKφ〉L2(H1,E1
0)| ≤ C‖f‖L1(H1,E2

0)‖φ‖LQ/2(H1,E1
0).

Consider now the second term in (18)

〈u, (dcδc)2Kφ〉L2(H1,E1
0) = 〈dcδcu, dcδcKφ〉L2(H1,E1

0).

By Theorem 3.14, formula (17), keeping in mind that δc is an operator of
order 1 in the horizontal derivatives when acting on 1-forms, as well as dc
when acting on 0-forms, the quantity dcδcKφ can be written as a sum of
terms with components of the form

φj ∗W IK̃ij , with d(I) = 2 and φj ∈ D(H1).

On the other hand, if dcδcu = dcg = (dcg)1 dx + (dcg)2 dy, then we are
reduced to estimate

〈(dcg)i, φj ∗W IK̃ij〉L2(H1) = 〈(dcg)i ∗ v(W IK̃ij), φj〉L2(H1),

for i = 1, 2. Moreover,

|〈(dcg)i, φj ∗W IK̃ij〉L2(H1)| ≤ ‖(dcg)i ∗ v(W IK̃ij)‖LQ/(Q−2)(H1)‖φj‖LQ/2(H1).

Notice the W IK̃ij ’s and hence the v(W IK̃ij)’s are kernels of type 2 since
d(I) = 2. Thus, by Theorem 6.10 in [13],

|〈(dcg)i, φj ∗W IK̃ij〉L2(H2)| ≤ C‖dcg‖H1(H1,E1
0)‖φ‖LQ/2(H1,E1

0).

Thus

|〈u, (dcδc)2Kφ〉L2(H1,E1
0)| ≤ C‖dcg‖H1(H1,E1

0)‖φ‖LQ/2(H1,E1
0).(20)

Thus, combining (19) and (20), by duality we obtain eventually

‖u‖LQ/(Q−2)(H1,E1
0) ≤ C

(
‖f‖L1(H1,E2

0) + ‖dcg‖H1(H1,E1
0)

)
,

which cocludes the proof. �

Remark 4.2. The sharpness of the results of previous theorem will be dis-
cussed in Section 5.

Theorem 4.3. Denote by (E∗0 , dc) the complex of intrinsic forms in H2.
Then there exists C > 0 such that for any h-form u ∈ D(H2, Eh0 ), 0 ≤ h ≤ 5,
such that {

dcu = f

δcu = g

we have

‖u‖LQ/(Q−1)(H2) ≤ C‖f‖L1(H2,E1
0) if h = 0;

‖u‖LQ/(Q−1)(H2,E5
0) ≤ C‖g‖L1(H2,E4

0) if h = 5;

‖u‖LQ/(Q−1)(H2,E1
0) ≤ C

(
‖f‖L1(H2,E2

0) + ‖g‖H1(H2)

)
if h = 1;

‖u‖LQ/(Q−1)(H2,E4
0) ≤ C

(
‖f‖H1(H2,E5

0) + ‖g‖L1(H2,E3
0)

)
if h = 4;

‖u‖LQ/(Q−2)(H2,E2
0) ≤ C

(
‖f‖L1(H2,E3

0) + ‖dcg‖L1(H2,E2
0)

)
if h = 2;

‖u‖LQ/(Q−2)(H2,E3
0) ≤ C

(
‖dcf‖L1(H2,E5

0) + ‖g‖L1(H2,E2
0)

)
if h = 3.

14



Proof. As in Theorem 4.1, the cases h = 0 and h = 5 are well known, and
we may restrict ourselves to forms in Eh0 , with h = 1, 2, since the complex
(E∗0 , dc) is invariant under Hodge-star duality.

Case h = 1. If u, φ ∈ D(H2, E1
0), we can write

〈u, φ〉L2(H2,E1
0) = 〈u,∆H,1Kφ〉L2(H2,E1

0)

= 〈u, (δcdc + dcδc)Kφ〉L2(H2,E1
0).

(21)

Consider now the first term in the previous sum,

〈u, δcdcKφ〉L2(H2,E1
0) = 〈dcu, dcKφ〉L2(H2,E2

0).

If we write f := dcu, then 0 = dcf := ΠE0dΠEf = ΠE0ΠEdf , by Theorem
3.8, ii). If we apply ΠE to this equation, we get

(22) 0 = ΠEΠE0ΠEdf = ΠEdf = dΠEf,

by Theorem 3.8, iv), i.e, ΠEf is closed in the usual sense. Moreover, since

f, dcKφ ∈ E2
0 , we can write f =

∑5
`=1 f`ξ

2
` , dcKφ =

∑5
`=1(dcKφ)`ξ

2
` , and

hence we can reduce ourselves to estimate

(23) 〈f`, (dcKφ)`〉L2(H2) for ` = 1, . . . , 5.

Consider now the horizontal 2-tensors F,G ∈ D(H2,⊗2
∧

1 h1) defined as

• F := −
√

2f5

(
X1 ⊗ Y1 − Y1 ⊗X1

)
+ 1

2f4

(
X1 ⊗X2 +X2 ⊗X1

)
+ 1

2f3

(
X1 ⊗ Y2 + Y2 ⊗X1

)
− 1

2f2

(
X2 ⊗ Y1 + Y1 ⊗X2

)
− 1

2f1

(
Y1 ⊗ Y2 + Y2 ⊗ Y1

)
,

• G := −
√

2
2 f5

(
X1 ⊗X2 +X2 ⊗X1

)
+ f3X1 ⊗X1 − f2X2 ⊗X2

+ f1(2Y1 ⊗X1 + Y2 ⊗X2 −X1 ⊗ Y1),

that are identified with the following differential operator

• F := −
√

2f5(X1Y1−Y1X1)+f4X2X1 +f3Y2X1−f2X2 Y1 +f1Y2Y1,
• G := −

√
2f5X2X1 + f3X

2
1 − f2X

2
2 + f1(2Y1X1 + Y2X2 −X1Y1),

since the only nontrivial commutation rules are [X1, Y1] = [X2, Y2] = T . We
claim that

(24)

∫
Hn

Fψ dV =

∫
Hn

Gψ dV = 0 for all ψ ∈ D(Hn),

Suppose for a while (24) holds, and let us achieve the estimate of (23).
Suppose for instance f` = f1. We consider now the symmetric horizontal
2-tensor Φ:

Φ := (dcKφ)1

(
Y1 ⊗ Y2 + Y2 ⊗ Y1

)
,

so that

〈f1, (dcKφ)1〉L2(H2) = 〈F,Φ〉L2(H2,⊗2
∧

1 h1).

By Theorem 2.4∣∣〈f1, (dcKφ)1〉L2(H2)| ≤ ‖F‖L1(H2,⊗2
∧

1 h1)‖∇H(dcKφ)1‖LQ(H2)

≤ ‖f‖L1(H2,E2
0)‖∇HdcKφ‖LQ(H2,E2

0).
(25)

On the other hand, ∇HdcKφ can be expressed as a sum of terms with com-
ponents of the form

φj ∗W IK̃ij with d(I) = 2.
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By Theorem 3.14, iv) and Proposition 2.2, ii) W IK̃ij are kernels of type 0,
so that, by [12], Proposition 1.9 we have

(26) |〈f1, (dcKφ)1〉L2(H2)| ≤ C‖f‖L1(H2,E2
0)‖φ‖LQ(H2,E1

0).

The same arguments applies to f2, f3, f4. As for f5 this argument fails to
work, since f5 is the coefficient of the anti-symmetric term X1⊗Y1−Y1⊗X1

that vanishes against any symmetric Φ. Nevertheless, to estimate f5 we can
use the same argument, replacing however F by G and considering 〈G,Φ〉
with the symmetric horizontal 2-tensor Φ:

Φ :=
√

2 (dcKφ)5

(
X1 ⊗X2 +X2 ⊗X1

)
.

Once the estimate for f1, . . . , f5 are obtained, we get eventually

(27) |〈f, dcKφ〉L2(H2,E2
0)| ≤ C‖f‖L1(H2,E2

0)‖φ‖LQ(H2,E1
0).

Consider now the second term in (21)

〈u, dcδcKφ〉L2(H2,E1
0) = 〈δcu, δcKφ〉L2(H2).

By Theorem 3.14, formula (17), keeping in mind that δc is an operator of
order 1 in the horizontal derivatives when acting on E1

0 the quantity δcKφ
can be written as a sum of terms such as

φj ∗W`K̃ij , with ` = 1, 2, 3, 4.

On the other hand,

〈δcu, φj ∗W`K̃ij〉L2(H2) = 〈g, φj ∗W`K̃ij〉L2(H2) = 〈g ∗ v(W`K̃ij), φj〉L2(H2)

Notice the W`K̃ij ’s and hence the v(W`K̃ij)’s are kernels of type 1. Thus,
by Theorem 6.10 in [13],

|〈δcu, φj ∗W`K̃ij〉L2(H2)| ≤ C‖g‖H1(H2)‖φ‖LQ(H2,E1
0).

Combining this estimate with the one in (27), we get eventually

|〈u, φ〉L2(H2,E1
0)| ≤ C

(
‖f‖L1(H2,E2

0) + ‖g‖H1(H2)

)
‖φ‖LQ(H2,E1

0),

and hence

‖u‖LQ/(Q−1)(H2,E1
0) ≤ C

(
‖f‖L1(H2,E2

0) + ‖g‖H1(H2)

)
.

Thus, to achieve the proof in the case h = 1 we are left to prove the claim
(24).

We prove first that∫
Hn

Fψ dV = 0 for all ψ ∈ D(Hn).

To this end, we apply Cartan’s formula (12) with ω = ΠEf and Z0 = T ,
Z1 = X1, Z2 = Y1. Since ΠEf = f − d−1

0 d1f , and keeping in mind that
dΠEf = 0 (by (22)), we can write
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0 = Z0〈f |Z1 ∧ Z2〉 − Z1〈f |Z0 ∧ Z2〉+ Z2〈f |Z0 ∧ Z1〉

−
(
Z0〈d−1

0 d1f |Z1 ∧ Z2〉 − Z1〈d−1
0 d1f |Z0 ∧ Z2〉+ Z2〈d−1

0 d1f |Z0 ∧ Z1〉
)

− 〈f |[Z0, Z1] ∧ Z2〉+ 〈f |[Z0, Z2] ∧ Z1〉 − 〈f |[Z1, Z2] ∧ Z0〉

−
(
− 〈d−1

0 d1f |[Z0, Z1] ∧ Z2〉+ 〈d−1
0 d1f |[Z0, Z2] ∧ Z1〉 − 〈d−1

0 d1f |[Z1, Z2] ∧ Z0〉
)

:= A1 +A2 +A3 +A4.

(28)

By our choice of Zi, trivially, A3 = A4 = 0, since each term of the sum
vanishes. Indeed, we have [T,X1] = [T, Y1] = 0 and [X1, Y1]∧T = T ∧T = 0.
Moreover, in A1 the second and the third term vanish since T∧X1 and T∧Y1

have weight 3 whereas f has weight 2. In A2 the first term vanishes since
d−1

0 d1f has weight 3 whereas X1 ∧ Y1 has weight 2. Then

0 = A1 +A2 = T 〈f |X1 ∧ Y1〉+X1〈d−1
0 d1f |T ∧ Y1〉 − Y1〈d−1

0 d1f |T ∧X1〉.

Keeping in mind that

ξ2
1 = dx1 ∧ dx2, ξ2

2 = dx1 ∧ dy2, ξ2
3 = dx2 ∧ dy1, ξ2

4 = dy1 ∧ dy2,

ξ2
5 =

1√
2

(dx1 ∧ dy1 − dx2 ∧ dy2),

(29)

(see Example 3.12) a straightforward computation gives:

A1 =
Tf5√

2
.

On the other hand, let us compute explicitly d1f . We have:

d1f = (X1f3 −
X2f5√

2
+ Y1f1)dx1 ∧ dx2 ∧ dy1

− (
X1f5√

2
+X2f2 − Y2f1)dx1 ∧ dx2 ∧ dy2

+ (X1f4 − Y1f2 +
Y2f5√

2
)dx1 ∧ dy1 ∧ dy2

+ (X2f4 + Y2f3 +
Y1f5√

2
)dx2 ∧ dy1 ∧ dy2

Moreover,

d0(dx1 ∧ θ) = dx1 ∧ dx2 ∧ dy2, d0(dx2 ∧ θ) = −dx1 ∧ dx2 ∧ dy1,

d0(dy1 ∧ θ) = −dx2 ∧ dy1 ∧ dy2, d0(dy2 ∧ θ) = dx1 ∧ dy1 ∧ dy2,

so that

dx1 ∧ θ = d−1
0 (dx1 ∧ dx2 ∧ dy2), dx2 ∧ θ = −d−1

0 (dx1 ∧ dx2 ∧ dy1),

dy1 ∧ θ = −d−1
0 (dx2 ∧ dy1 ∧ dy2), dy2 ∧ θ = d−1

0 (dx1 ∧ dy1 ∧ dy2).
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Hence

A2 = X1〈d−1
0 d1f |T ∧ Y1〉 − Y1〈d−1

0 d1f |T ∧X1〉

= −X1〈(X2f4 + Y2f3 + (
Y1f5√

2
))dy1 ∧ θ|T ∧ Y1〉

+ Y1〈(
X1f5√

2
+X2f2 − Y2f1)dx1 ∧ θ|T ∧X1〉

= X1X2f4 −X1Y2f3 +
X1Y1f5√

2
− Y1X1f5√

2
− Y1X2f2 − Y1Y2f1

= X1X2f4 +X1Y2f3 +
Tf5√

2
− Y1X2f2 − Y1Y2f1

Therefore,

0 = A1 +A2 =
√

2Tf5 +X1X2f4 +X1Y2f3 − Y1X2f2 + Y1Y2f1.

Hence the first identity in (24) is proved. The second identity in (24) can
be proved analogously by choosing, in the Cartan’s formula (12), ω = ΠEf
and Z0 = T , Z1 = X1, Z2 = X2.

Case h = 2. If u, φ ∈ E2
0 are smooth compactly supported forms, then we

can write

〈u, φ〉L2(H2,E2
0) = 〈u,∆H,2Kφ〉L2(H2,E2

0)

= 〈u, (δcdc + (dcδc)
2)Kφ〉L2(H2,E2

0).
(30)

Consider now the term

〈u, δcdcKφ〉L2(H2,E2
0) = 〈dcu, dcKφ〉L2(H2,E3

0).

Let us write f := dcu. We can write f =
∑

` f`ξ
3
` , where

ξ3
1 = dx1 ∧ dx2 ∧ θ, ξ2

2 = dx1 ∧ dy2 ∧ θ,
ξ2

3 = dx2 ∧ dy1 ∧ θ, ξ2
4 = dy1 ∧ dy2 ∧ θ,

ξ2
5 =

1√
2

(dx1 ∧ dy1 − dx2 ∧ dy2) ∧ θ,
(31)

As above, 0 = dcf = ΠE0dΠEf , and hence dΠEf = 0. But, on 3-forms
ΠEf = f , since f has weight 4, that is already the maximum weight among
all (even not intrinsic) 3-forms in H2, so that eventually df = 0. Again

〈dcu, dcKφ〉L2(H2,E3
0) =

∑
`

〈f`, (dcKφ)`〉L2(H2).

As above, we prove that for any ` = 1, 2, 3, 4, 5, f` is one of the components
of an horizontal vector field with vanishing horizontal divergence. However,
the subsequent estimates are different from the case h = 1 because of the
different order of the operators involved.

Consider now the following horizontal fields in H2:

• F = (2f3,−
√

2f5, 2f1, 0);
• G = (−

√
2f5,−2f2, 0, 2f1);

• K = (0, 2f4,
√

2f5, 2f3).
18



We claim that

(32) divH F = divH G = divH K = 0.

Notice each component of f appears at least once as a component of one of
the horizontal vector fields F,G,K.

Suppose now for a while (32) holds, and let us achieve the estimate of
〈f`, (dcKφ)`〉L2(H2). Suppose for instance f` = f1. We define a new horizon-
tal vector field Φ as

Φ := (0, 0, (dcKφ)1, 0),

so that

〈f1, (dcKφ)1〉L2(H2) = 〈F,Φ〉L2(H2,HH2).

By Theorem 2.3∣∣〈f1, (dcKφ)1〉L2(H2)| ≤ ‖f‖L1(H2,E2
0)‖∇HdcKφ‖LQ(H2,E2

0)

On the other hand, ∇HdcKφ can be expressed as a sum of terms with com-
ponents of the form

φj ∗W IK̃ij , with d(I) = 3,

since dc : E2
0 → E3

0 is an operator of order 2 in the horizontal derivatives.

By Theorem 3.14, iv) and Proposition 2.2, ii) W IK̃ij are kernels of type 1,
so that, by [12], Proposition 1.11 we have

|〈f1, (dcKφ)1〉L2(H2)| ≤ C‖f‖L1(H2,E3
0)‖φ‖LQ/2(H2,E2

0).

The same argument can be carried out for all the components of f , yielding

(33) |〈f, dcKφ〉L2(H2,E3
0)| ≤ C‖f‖L1(H2,E3

0)‖φ‖LQ/2(H2,E2
0).

Consider now the second term in (30). We have

〈u, (dcδc)2Kφ〉L2(H2,E2
0) = 〈dcδcu, dcδcKφ〉L2(H2,E2

0)

= 〈dcg, dcδcKφ〉L2(H2,E2
0).

We notice now that dcg is a dc-closed form in E2
0 , and then we can repeat

the arguments leading to (25) for f in the case h = 1, obtaining

(34)
∣∣〈dcg, dcδcKφ〉L2(H2,E2

0)

∣∣ ≤ ‖dcg‖L1(H2,E2
0)‖∇HdcδcKφ‖LQ(H2,E2

0)

As above, ∇HdcδcKφ can be expressed as a sum of terms with components
of the form

φj ∗W IK̃ij , with d(I) = 3,

since δc : E2
0 → E1

0 is an operator of order 1 in the horizontal derivatives, as

well as dc : E1
0 → E2

0 . By Theorem 3.14, iv) and Proposition 2.2, ii) W IK̃ij

are kernels of type 1, so that, by [12], Proposition 1.11 we have∣∣〈dcg, dcδcKφ〉L2(H2,E2
0)

∣∣ ≤ C‖dcg‖L1(H2,E2
0)‖φ‖LQ/2(H2,E2

0).

Combining this estimate with the one in (33), we get eventually

|〈u, φ〉L2(H2,E2
0)| ≤ C

(
‖f‖L1(H2,E3

0) + ‖dcg‖L1(H2,E2
0)

)
‖φ‖LQ/2(H2,E2

0),

and hence

‖u‖LQ/(Q−2)(H2,E2
0) ≤ C

(
‖f‖L1(H2,E3

0) + ‖dcg‖L1(H2,E2
0)

)
.
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Thus, to achieve the proof in the case h = 2 we have to prove the claim
(32).

To prove that divH F = 0, we apply now Cartan’s formula (12) with ω = f
and Z0 = X1, Z1 = X2, Z2 = Y1, Z3 = T .

Keeping in mind the commutation rules, we have

0 = Z0〈f |Z1 ∧ Z2 ∧ Z3〉 − Z1〈f |Z0 ∧ Z2 ∧ Z3〉
+ Z2〈f |Z0 ∧ Z1 ∧ Z3〉 − Z3〈f |Z0 ∧ Z1 ∧ Z2〉
− 〈f |[Z0, Z1] ∧ Z2 ∧ Z3〉+ 〈f |[Z0, Z2] ∧ Z1 ∧ Z3〉
− 〈f |[Z0, Z3] ∧ Z1 ∧ Z2〉 − 〈f |[Z1, Z2] ∧ Z0 ∧ Z3〉
+ 〈f |[Z1, Z3] ∧ Z0 ∧ Z2〉 − 〈f |[Z2, Z3] ∧ Z0 ∧ Z1〉
= Z0〈f |Z1 ∧ Z2 ∧ Z3〉 − Z1〈f |Z0 ∧ Z2 ∧ Z3〉
+ Z2〈f |Z0 ∧ Z1 ∧ Z3〉 − Z3〈f |Z0 ∧ Z1 ∧ Z2〉
+ 〈f |T ∧X2 ∧ T 〉
= X1〈f |X2 ∧ Y1 ∧ T 〉 −X2〈f |X1 ∧ Y1 ∧ T 〉
+ Y1〈f |X1 ∧X2 ∧ T 〉 − T 〈f |X1 ∧X2 ∧ Y1〉

(35)

By (31), identity (35) becomes

0 = X1f3 −
1√
2
X2f5 + Y1f1, i.e. divH F = 0.

This proves the first identity in (32). To prove the remaining two identities
in (32), we apply again Cartan’s formula as above with Z0 = X1, Z1 =
X2, Z2 = Y2, Z3 = T and Z0 = Y1, Z1 = X2, Z2 = Y2, Z3 = T , respectively.
This achieves the proof of the theorem. �

5. Sharp results: some remarks

Let us consider, for instance, the following estimates in H1 stated in The-
orem 4.1: there exists a constant C > 0 so that

‖u‖LQ/(Q−2)(H1,E1
0) ≤ C

(
‖f‖L1(H1,E2

0) + ‖dcg‖H1(H1)

)
if h = 1;

‖u‖LQ/(Q−2)(H1,E2
0) ≤ C

(
‖dcf‖H1(H1,E3

0) + ‖g‖L1(H1,E1
0)

)
if h = 2;

The presence of the terms dcg and dcf might seem somehow artificial, but
is due to the fact that, on 1-forms, dc has order 2, whereas δc has order 1
(dually, on 2-forms, dc has order 1, whereas δc has order 2). By the way, also

the norm in LQ/(Q−2) in the left hand side is due to the presence of a second
order operator in the right hand side. We notice also that if we consider, for
instance, co-closed 1-forms (i.e. we assume g = 0), then a straightforward
homogeneity argument shows that the exponent Q/(Q−2) is sharp. On the
other hand, if f = 0 or g = 0, then the statement can be sharpened. More
precisely, the can state the following result:

Theorem 5.1. Let u ∈ D(H1, Eh0 ) solve the system{
dcu = f

δcu = g.
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If h = 1 and f = 0, then

‖u‖LQ/(Q−1)(H1,E1
0) ≤ C‖g‖H1(H1).

If h = 2 and g = 0, then

‖u‖LQ/(Q−1)(H1,E2
0) ≤ C‖f‖H1(H1,E3

0).

Proof. Suppose h = 1. The proof for h = 2 follows by Hodge duality. In the
case h = 1 identity (18) read as

(36) 〈u, φ〉 = 〈u, (dcδc)2Kφ〉 = 〈g, δcdcδcKφ〉.

Arguing as above, the term δcdcδcKφ can be written as a sum of terms of
the form

φj ∗W IKij ,

where d(I) = 3 and hence the W IKij ’s are kernels of type 1. Thus, by (10)
〈u, φ〉 can be written as a sum of terms of the form

〈g ∗ v(W IKij), φ〉,

where the v(W IKij) are again kernels of type 1, by Proposition 2.2. i).
Thus, we can achieve the proof of the assertion by Proposition 6.10 in [13].

�

A slightly different argument can be carried out for 2-forms and 3-forms
in H2.

Theorem 5.2. Let u ∈ D(H2, Eh0 ) solve the system{
dcu = f

δcu = g.

If h = 2 and f = 0, then

‖u‖LQ/(Q−1)(H2,E2
0) ≤ C‖g‖L1(H2,E1

0).

If h = 3 and g = 0, then

‖u‖LQ/(Q−1)(H2,E3
0) ≤ C‖f‖L1(H2,E4

0).

Proof. Suppose h = 2. The proof for h = 3 follows by Hodge duality. In the
case h = 2 identity (30) read as

〈u, φ〉L2(H2,E2
0) = 〈u,∆H,2Kφ〉L2(H2,E2

0) = 〈u, (dcδc)2Kφ〉L2(H2,E2
0)

= 〈g, δcdcδcKφ〉L2(H2,E1
0).

Since δcg = 0, we can apply Theorem 2.3, and we get∣∣〈u, φ〉L2(H2,E2
0)

∣∣ ≤ C‖g‖L1(H2,E1
0)‖∇HδcdcδcKφ‖LQ(H2,E1

0)

≤ C‖g‖L1(H2,E1
0)‖φ‖LQ(H2,E2

0),

by [12], Proposition 1.9, since ∇HδcdcδcK is a kernel of type 0. Then we can
conclude by duality as in Theorem 4.3.

�
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and weighted Poincaré inequalities for Hörmander vector fields. Ann. Inst. Fourier
(Grenoble), 45(2):577–604, 1995.

[16] Bruno Franchi, Enrico Obrecht, and Eugenio Vecchi. On a class of semilinear evolution
equations for vector potentials associated with Maxwell’s equations in Carnot groups.
Preprint, 2012.

[17] Bruno Franchi, Raul Serapioni, and Francesco Serra Cassano. Regular submanifolds,
graphs and area formula in Heisenberg groups. Adv. Math., 211(1):152–203, 2007.

[18] Bruno Franchi and Maria Carla Tesi. Wave and Maxwell’s equations in Carnot groups.
Commun. Contemp. Math., 14(5):1250032, 62, 2012.

[19] Nicola Garofalo and Duy-Minh Nhieu. Isoperimetric and Sobolev inequalities for
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