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Abstract. We consider the reduced Allen–Cahn action functional, which arises as the sharp
interface limit of the Allen–Cahn action functional and can be understood as a formal action
functional for a stochastically perturbed mean curvature flow. For suitable evolutions of (ge-
neralized) hypersurfaces this functional consists of the integral over time and space of the sum
of the squares of the mean curvature and of the velocity vectors. Given initial and final condi-
tions, we investigate the associated action minimization problem, for which we propose a weak
formulation, and within the latter we prove compactness and lower-semicontinuity properties of
a suitably generalized action functional. Furthermore, we derive the Euler–Lagrange equation
for smooth stationary trajectories and investigate some related conserved quantities. To con-
clude, we analyze the explicit case in which the initial and final data are concentric spheres. In
this particular situation we characterize the properties of the minimizing rotationally symmetric
trajectory in dependence of the given time span.

1. Introduction

Action functionals arise in the large deviation theory for stochastically perturbed ODEs and
PDEs as the lowest order term in a small noise expansion. The value of the action-functional
on a given deterministic path is related to the probability that the solutions of the stochastic
dynamics are close to that path. For prescribed initial and final states, an action minimizer can
be associated with a most likely connecting path.

As a formal approximation of a stochastic mean curvature flow evolution, we consider the
Allen–Cahn equation perturbed by additive noise, i.e.

ε∂tu = ε∆u− 1

ε
W ′(u) +

√
2γη. (1.1)

Here ε, γ > 0 are respectively the interface thickness and noise-intensity parameter, W is a fixed
double-well potential, and η describes a time-space white noise. In general this equation admits
function-valued solutions only in one spatial dimension and a regularization for the noise term is
thus necessary.

The Allen–Cahn action functional has been computed in [8] and in [9],[13], in the case of one
and higher spatial dimensions respectively and can be written as

S̃ε(u) :=

∫ T

0

∫
Ω

(√
ε∂tu+

1√
ε

(
− ε∆u+

1

ε
W ′(u)

))2
dx dt. (1.2)

Expanding the square and observing that the mixed term is a time derivative, one obtains that,
for fixed initial and final data, the action minimization problem is equivalent to the minimization
of the functional

Sε(u) :=

∫ T

0

∫
Ω
ε(∂tu)2 +

1

ε

(
− ε∆u+

1

ε
W ′(u)

)2
dx dt. (1.3)

In a series of papers [6, 10, 13, 14, 23, 20] reduced action functionals, defined as the sharp

interface limit for ε → 0 of S̃ε or Sε, have been considered. In [13] it was shown that not only
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smooth evolutions, but also evolutions that exhibit the nucleation of new components can be
approximated with finite action S̃ε. The latter are given by families Σ = (Σt)t∈(0,T ) that consist
of smooth surfaces and that evolve smoothly except for finitely many ‘singular times’ where a new
component is nucleated in the form of a double interface that subsequently generates a non-zero
enclosed volume. For such evolutions a reduced action has been derived and reads (for a precise
statement see [13])

S̃0(Σ) := c0

∫ T

0

∫
Σt

∣∣~v(x, t)− ~H(x, t)
∣∣2 dHn(x)dt + 4S̃0,nuc(Σ), (1.4)

S̃0,nuc(Σ) := 2c0

∑
i

Hn(Σi), (1.5)

where n+ 1 is the space dimension, Σi denotes the ith component of Σ at its nucleation time, ~v

denotes the normal velocity vector for the evolution (Σt)t∈(0,T ), ~H(t, ·) denotes the mean curvature
vector of Σt, and the constant c0 depends only on the choice of the double-well potential W . The
reduced action functional of Sε is given by

S0(Σ) := c0

∫ T

0

∫
Σt

(
|~v(x, t)|2 + |~H(x, t)|2

)
dHn(x)dt + 2S0,nuc(Σ), (1.6)

S0,nuc(Σ) := 2c0

∑
i

Hn(Σi), (1.7)

where the summation in the last line is now over the singular times at which nucleation or
annihilation occur, and Σi denotes the components which are created or annihilated. In [23], in
the case of one space dimension, a generalization of S0 has been introduced and the Γ–convergence
of Sε to S0 has been proved. In [20] a general compactness statement for the sharp interface limit

of sequences with bounded action S̃ε and initial or final data with uniformly controlled diffuse
surface area has been shown. Moreover, a generalized reduced action functional has been proposed
and a lower bound estimate has been proven.

It is well known [2, 5, 7, 12, 24] that solutions of the Allen–Cahn equation converge to the
evolution by mean curvature flow of phase boundaries. Therefore, the reduced action functional
can formally be considered as a mean curvature flow action functional, although at present no
rigorous connection to a suitable stochastically perturbed mean curvature flow is known. The
goal of this paper is to study such formal mean curvature flow action functional for evolutions
of generalized hypersurfaces. We restrict here to a particular generalization of the functional S0

defined above, which has the property of being invariant under time-inversion. Independently of
the question whether this functional represents an action functional or not, its variational analysis
helps to gain a better understanding of the behavior of the Allen–Cahn action functional itself.
Moreover, variational approaches to study evolutions of surfaces have some interest in its own,
extending classical shape optimization techniques for surfaces to the dynamic case and providing a
different characterization of solutions. Bellettini and Mugnai [3] study a functional closely related

to S̃0 and introduce a concept of variational solutions to mean curvature flow as corresponding
minimizers with respect to given initial conditions. The authors also present a weak form of the
minimum problem, similar to but different from the weak formulation of the functional S0 that
we will develop below.
The regular part of the functional S0 consists of a sum of a Willmore energy term and a velocity
term. The Willmore functional has been studied intensively over the last decades, see for example
[15, 16, 17, 22, 26, 27, 28] and is still an active field of geometric analysis. The minimization
of the velocity part for given initial and final data is related to an L2-geodesic distance between
them. In [18], using minimizing sequences with highly curved structures, it has been shown that
this distance degenerates and is always zero. The Willmore term in the functional S0 penalizes
regions with high curvature and therefore represents a regularization of the velocity term. In the
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minimization of the action functional we therefore see an interesting interplay of a stationary and
of a dynamic contribution.

In this paper we present a variational analysis of a reduced Allen–Cahn action functional. Our
first goal is to prove a compactness and lower semicontinuity theorem, which ensures the appli-
cability of the direct method of the calculus of variations, and consequently gives the existence
of minimizers.
In the class of smooth evolutions a uniform bound on the action for a (minimizing) sequence
does not provide sufficient control to derive a compactness statement in this class. In Section
2 we therefore provide a new generalized formulation in a specific class of evolutions of surface
area measures, and in Section 3 we show compactness and lower semicontinuity properties for
uniformly action bounded sequences of generalized evolutions. Lower-semicontinuity properties
have not been shown in previous formulations of reduced Allen–Cahn action functionals and rep-
resent one main contribution of the present work. The analysis of generalized evolutions and the
application of the direct method of the calculus of variations in the first part of this paper is
complemented in the second part by the study of some properties of the smooth stationary points
for the action functional. We derive the Euler–Lagrange equation for the action-minimization
problem (Section 4) and in Section 5 we study some associated conserved quantities, which reveal
some analogies with Lagrangian mechanics. In Section 6 we consider as a specific example the
problem of finding the action-optimal connection between two concentric circles. We characterize
the minimizers in the class of rotationally symmetric solutions and we describe their minimality
properties in relation to the full class of smooth evolutions. The behavior of these stationary
evolutions with rotational symmetry crucially depends on the time-span which is at disposal to
connect the initial and the final state.

General notation. Let n ∈ N be fixed and consider for T > 0 the space-time domain QT :=
Rn+1 × (0, T ). For a function η ∈ C1(QT ) we respectively denote by ∇η, ∂tη, ∇′η the gradient
with respect to the spatial variables, to the time derivative, and the space-time gradient. In
particular we have ∇′η = (∇η, ∂tη)T .
For a function u ∈ BV (QT ), we denote by ∇u, ∂tu,∇′u the signed measures respectively associa-
ted with the distributional derivative of u in the x, t, and (x, t)-variables. With |∇u|, |∂tu|, |∇′u|
we denote the corresponding total variation measures. For a set E ⊂ Rn+1 of finite perimeter we
denote by ∂∗E the essential boundary of E.

For a family of Radon measures (µt)t∈(0,T ) we denote by µ = µt⊗L1 the product measure, i.e.

µ(η) =

∫ T

0
µt(η(·, t)) dt for all η ∈ C0

c (QT ).

Throughout the paper we identify an integral n-varifold V with its associated weight-measure
µ = µV . For notation on geometric measure theory we refer to the book of Simon [25].

Acknowledgment. We thank Stephan Luckhaus for sharing his insight on weak velocity for-
mulations for evolving measures and Luca Mugnai for stimulating discussions on the subject.

This work was supported by the DFG Forschergruppe 718 Analysis and Stochastics in Complex
Physical Systems.

2. Generalized action functional

A sequence of smooth evolutions with uniformly bounded action S0 does not necessarily con-
verge to a smooth evolution, even up to finitely many singular times. Thus, in order to en-
sure lower semicontinuity and compactness properties for generalized evolutions with uniformly
bounded action, we need to define a suitable class of weak evolutions and a suitably generalized
expression for the action functional in this class.
We recall the definition of L2-flows [20] and in particular a characterization of the velocity for
certain evolutions of varifolds.
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Definition 2.1. Let T > 0 be given. Consider a family µ = (µt)t∈(0,T ) of Radon measures on

Rn+1 and associate to µ the product measure µ := µt⊗L1. We call µ an L2-flow if the following
properties hold:

for almost all t ∈ (0, T )

µt is an integral n-varifold with sup
0<t<T

µt(Rn+1) <∞, (2.1)

µt has weak mean curvature ~H ∈ L2(µt;Rn+1). (2.2)

The evolution µ has a generalized normal velocity ~v ∈ L2(µ;Rn+1), i.e.

t 7→ µt(ψ) is of bounded variation in (0, T ) for all ψ ∈ C1
c (Rn+1), (2.3)

~v(x, t) ⊥ Txµt for µ-almost all (x, t) ∈ QT , (2.4)

sup
η

∣∣∣ ∫
QT

(∂tη +∇η · ~v)dµtdt
∣∣∣ < ∞, (2.5)

where the supremum is taken over all η ∈ C1
c (QT ) with |η| ≤ 1.

Remark 2.2. The definition of generalized velocity for a family of varifolds is motivated by the
classical formula for the time derivative of the localized surface area in the case of a smooth
evolution (Σt)t∈(0,T ) of smooth surfaces

d

dt

∫
Σt

η dHn =

∫
Σt

(
∂tη +∇η · ~v − η~v · ~H

)
dHn ,

for any η ∈ C1
c (QT ). Integrating in time and using the Cauchy–Schwarz inequality, we obtain∣∣∣ ∫ T

0

∫
Σt

(∂tη +∇η · ~v) dHn dt
∣∣∣ ≤ ‖η‖C0(QT )

(∫ T

0

∫
Σt

|~v|2 dHn dt
) 1

2
(∫ T

0

∫
Σt

|~H|2 dHn dt
) 1

2
,

which shows that (2.5) holds in the smooth case.

The evolution of measures t 7→ µt(ψ), ψ ∈ C1
c (Rn+1) can be controlled only in BV ((0, T ))

and therefore the limit of a sequence of evolutions of measures with uniformly bounded action
functional may exhibit jumps in the evolution of limit measures, even in the case that all the
elements of the sequence are smooth. Thus, in order to formulate initial and final conditions
and to be able to preserve them taking limits, we complement the evolution of measures by an
evolution of phases. For the action minimization problem we will therefore consider the following
class of generalized evolutions.

Definition 2.3. Let T > 0 be given as well as two open and bounded subsets Ω(0) ⊂ Rn+1 and
Ω(T ) ⊂ Rn+1 with finite perimeter. LetM =M(T,Ω(0),Ω(T )) be the class of tuples Σ = (µ,u),
µ = (µt)t∈(0,T ), u = (u(·, t))t∈[0,T ], with the following properties:

the evolution µ is an L2-flow in the sense of Definition 2.1,
for almost all t ∈ (0, T )

u(·, t) ∈ BV (Rn+1, {0, 1}), (2.6)

|∇u(·, t)| ≤ µt (2.7)

holds, the evolution of phases u satisfies u ∈ C
1
2 ([0, T ];L1(Rn+1)), u attains the initial and final

data

u(·, 0) = XΩ(0), u(·, T ) = XΩ(T ), (2.8)

and ∫
QT

∂tη(x, t)u(x, t) dx dt =

∫
QT

η(x, t)~v(x, t) · ν(x, t) d|∇u(·, t)| dt (2.9)



MEAN CURVATURE FLOW ACTION FUNCTIONAL 5

holds for all η ∈ C1
c (QT ), where ~v is the generalized velocity of µ and where ν(·, t) denotes the

generalized inner normal on ∂∗{u(·, t) = 1}.

The property (2.9) yields the following estimates.

Lemma 2.1. For Σ ∈ M as above, we have that u ∈ C
1
2 ([0, T ];Lp(Rn+1)) for all 1 ≤ p < ∞.

For almost any 0 ≤ t1 ≤ t2 ≤ T it holds∫
Rn+1

|u(x, t2)− u(x, t1)| dx ≤ ‖~v ‖L2(µ;Rn+1)(t2 − t1)
1
2

(
sup

t1<t<t2
µt(Rn+1)

) 1
2

(2.10)

Moreover, u ∈ BV (QT ) and

(|∇u|+ |∂tu|) (QT ) ≤ 2T sup
0<t<T

µt(Rn+1) +

∫
QT

|~v|2 dµ. (2.11)

Proof. First we deduce from (2.9) that for any ϕ ∈ C1
c ((0, T )) and any ψ ∈ C1

c (Rn+1)∣∣∣ ∫ T

0
∂tϕ(t)

∫
Rn+1

u(x, t)ψ(x) dx dt
∣∣∣ =

∣∣∣ ∫ T

0
ϕ(t)

∫
Rn+1

ψ(x)~v(x, t) · ν(x, t) d|∇u(·, t)| dt
∣∣∣.

Hence, the function t 7→
∫
Rn+1 u(x, t)ψ(x) dx belongs to W 1,2((0, T )) and for almost all 0 < t1 <

t2 < T we have∣∣∣ ∫
Rn+1

(
u(x, t2)− u(x, t1)

)
ψ(x) dx

∣∣∣ ≤ ‖~v ‖L2(µ);Rn+1(t2 − t1)
1
2

(
sup

t1<t<t2
µt(Rn+1)

) 1
2

‖ψ‖C0
c (Rn+1).

Since u(x, t2) − u(x, t1) ∈ BV (Rn+1, {−1, 0, 1}), taking the supremum over ψ ∈ C0
c (Rn+1) with

‖ψ‖ ≤ 1 yields (2.10) and u ∈ C
1
2 ([0, T ];L1(Rn+1)). Since |u(x, t2) − u(x, t1)| ≤ 1 almost

everywhere, we deduce that u ∈ C
1
2 ([0, T ];Lp(Rn+1)) for all 1 ≤ p < ∞. From (2.7) and (2.9)

one gets u ∈ BV (QT ) and (2.11). �

In the class M we now define a generalized action functional.

Definition 2.4. For Σ ∈M, Σ = (µ,u) as above we define

S(Σ) := S+(Σ) + S−(Σ), (2.12)

S+(Σ) := sup
η

[
2|∇u(·, T )|(η(·, T ))− 2|∇u(·, 0)|(η(·, 0))

+

∫
QT

−2
(
∂tη +∇η · ~v

)
+ (1− 2η)+

1

2
|~v − ~H|2 dµt dt

]
, (2.13)

S−(Σ) := sup
η

[
− 2|∇u(·, T )|(η(·, T )) + 2|∇u(·, 0)|(η(·, 0))

+

∫
QT

2
(
∂tη +∇η · ~v

)
+ (1− 2η)+

1

2
|~v + ~H|2 dµt dt

]
, (2.14)

where the supremum is taken over all η ∈ C1(Rn+1 × [0, T ]) with 0 ≤ η ≤ 1.

We remark that S is invariant under the time inversion t 7→ T − t. Since in S± the terms

(1−2η)+
1
2 |~v∓ ~H|

2 are nonnegative, we observe that a bound on the action implies the generalized
velocity property (2.5) and, more precisely, the estimate∣∣∣ ∫

QT

(
∂tη +∇η · ~v

)
dµ
∣∣∣ ≤ 1

2
S(Σ) , (2.15)

for all η ∈ C1
c (QT ) with |η| ≤ 1. By choosing η = 0 in (2.13) and in (2.14), we also have that∫

QT

(|~v|2 + |~H|2) dµt dt ≤ S(Σ). (2.16)
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The functional S takes into account the jumps in the evolution of the generalized surface measures
t 7→ µt (possibly also a discrepancy between |∇u|(·, 0) and limt↓0 µt, and |∇u|(·, T ) and limt↑T µt)
and actually, as we now prove in the following proposition, generalizes the notion of action
functional for the smooth case.

Proposition 2.5. Let Σ = (µ,u) be given by an evolution (Ω(t))t∈[0,T ] of open sets Ω(t) ⊂ Rn+1,
which means

u(·, t) = XΩ(t) and µt := Hn ∂Ω(t).

Assume that (∂Ω(t))t∈[0,T ] represents, outside of a set (possibly empty) of singular times 0 = t0 <
t1 < · · · < tk < tk+1 = T , a smooth evolution of smooth hypersurfaces. Then

S(Σ) =

∫ T

0

∫
∂Ω(t)

(|~v(·, t)|2 + |~H(·, t)|2) dHn dt+ 2

k+1∑
j=0

sup
ψ
|µtj+(ψ)− µtj−(ψ)|, (2.17)

where the supremum is taken over all ψ ∈ C1(Rn+1) with |ψ| ≤ 1 and where we have set µt :=
Hn ∂Ω(0) for t < 0 and µt := Hn ∂Ω(T ) for t > T .

Proof. We have µ-almost everywhere that

− 2
(
∂tη +∇η · ~v

)
+ (1− 2η)+

1

2
|~v − ~H|2 (2.18)

= − 2
(
∂tη +∇η · ~v − η~v · ~H

)
+ (1− 2η)+

1

2
|~v − ~H|2 − 2η~v · ~H. (2.19)

For 0 ≤ η ≤ 1
2 , the sum of the last two terms can be estimated as

(1− 2η)+
1

2
|~v − ~H|2 − 2η~v · ~H =

1

2
|~v − ~H|2 − η(|~v|2 + |~H|2) ≤ 1

2
|~v − ~H|2 , (2.20)

and for 1
2 ≤ η ≤ 1 it holds

(1− 2η)+
1

2
|~v − ~H|2 − 2η~v · ~H = −2η~v · ~H ≤ 2|~v · ~H|X{~v·~H<0} ≤

1

2
|~v − ~H|2. (2.21)

Moreover, for any 0 ≤ j ≤ k, we have that∫ tj+1

tj

∫
Rn+1

2
(
∂tη +∇η · ~v − η~v · ~H

)
dµt dt = 2

∫ tj+1

tj

d

dt

(∫
∂Ω(t)

η(·, t) dHn
)
dt

= 2
(

lim
t↗tj+1

µt(η(·, t))− lim
t↘tj

µt(η(·, t))
)

(2.22)

and therefore

2|∇u(·, T )|(η(·, T ))− 2|∇u(·, 0)|(η(·, 0))−
∫
QT

2
(
∂tη +∇η · ~v − η~v · ~H

)
dµt dt

= 2

k+1∑
j=0

(
µtj+(η(·, tj))− µtj−(η(·, tj)

)

≤ 2
k+1∑
j=0

sup
ψ

(
µtj+(ψ)− µtj−(ψ)

)
, (2.23)

where the supremum is taken over all ψ ∈ C1(Rn+1) with 0 ≤ ψ ≤ 1 and where we have used
that |∇u(·, T )| = µt for all t > T , |∇u(·, 0)| = µt for all t < 0. Thus, using (2.20) and (2.21), we
deduce

S+(Σ) ≤ 1

2

∫ T

0

∫
∂Ω(t)

|~v(·, t)− ~H(·, t)|2 dHn dt+ 2

k+1∑
j=0

sup
ψ

(
µtj+(ψ)− µtj−(ψ)

)
+
. (2.24)
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On the other hand, setting η = 0 except in an arbitrary small neighborhood of the tj ’s and
choosing η(·, tj) to obtain an arbitrarily good approximation of supψ

(
µtj+(ψ)−µtj−(ψ)

)
, we see

that (2.24) is in fact an equality. Similarly, we derive

S−(Σ) =
1

2

∫ T

0

∫
∂Ω(t)

|~v(·, t) + ~H(·, t)|2 dHn dt+ 2
k+1∑
j=0

sup
ψ

(
µtj−(ψ)− µtj+(ψ)

)
+
, (2.25)

where the supremum is taken over all ψ ∈ C1(Rn+1) with 0 ≤ ψ ≤ 1. Summing (2.24) and (2.25),
and using that we have equality in (2.24), we obtain (2.17). �

Remark 2.6. The expression on the right-hand side of (2.17) corresponds to the definition S0 of
the action functional for evolutions which are smooth outside a finite set of points in time.
The proof of Proposition 2.5 shows in particular that S+ penalizes upward jumps of the measure
evolution t 7→ µt and S− penalizes downward jumps.

3. Compactness and lower-semicontinuity for uniformly action-bounded
sequences

We now consider sequences of generalized evolutions with uniformly bounded action and con-
strained to fixed given initial and final data. The main results in this section are the following
compactness and lower-semicontinuity statements.

Theorem 3.1. Let T > 0 and let Ω(0) ⊂ Rn+1, Ω(T ) ⊂ Rn+1 be two given open bounded
sets with finite perimeter. Consider a family of evolutions (Σl)l∈N in M(T,Ω(0),Ω(T )), where
Σl = (µl,ul), with

S(Σl) ≤ Λ for all l ∈ N, (3.1)

where Λ > 0 is a fixed constant.
Then there exists a subsequence l → ∞ (not relabeled) and a limit evolution Σ = (µ,u) ∈

M(T,Ω(0),Ω(T )), µ = (µt)t∈(0,T ), u = (u(·, t))t∈[0,T ], such that

ul → u in L1(QT ) ∩ C0([0, T ];L1(Rn+1)), (3.2)

µlt → µt for almost all t ∈ (0, T ) as integral varifolds on Rn+1, (3.3)

µl → µ as Radon measures on QT , (3.4)

and such that u ∈ C0,1/2([0, T ];L1(Rn+1)) and µ� Hn+1.
Moreover it holds

S(Σ) ≤ lim inf
l→∞

S(Σl) . (3.5)

In particular, the minimum of S in M(T,Ω(0),Ω(T )) is attained.

In the remainder of this section we prove Theorem 3.1. The line of the proof follows closely
the arguments in [20], which are themselves based on [13, 14]. However, the setting is here quite
different, as we do not pass to the limit with phase field approximations but with a sequence of
sharp interface evolutions. Furthermore, our generalized action functional is different from the
one in [20]. For these reasons, the proofs need to be adapted. Most of the statements will be
proven in detail and for some others we will refer to the corresponding statements in [20].

Remark 3.2. From (2.15), (2.16), and (3.1) we first obtain the uniform bounds∫
QT

(|~vl|2 + |~Hl|2) dµlt dt ≤ Λ, (3.6)

sup
η∈C1

c (QT )

∣∣∣ ∫
QT

(
∂tη +∇η · ~v

)
dµlt dt

∣∣∣ ≤ 1

2
Λ‖η‖C0

c (QT ). (3.7)
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To the integral varifolds (µlt)t∈(0,T ) we associate the product measures µl := µlt ⊗ L1. As a
first step we show that under the assumptions above we obtain a uniform bound for the area
measures, and that time differences of the area measures are controlled by means of the initial
data and of Λ.

Proposition 3.3. [20, Lemma 5.1] There exist a constant C = C(Ω(0), T,Λ), such that for all
l ∈ N we have

sup
t∈(0,T )

µlt(Rn+1) ≤ C(Ω(0), T,Λ), (3.8)

µl(QT ) ≤ C(Ω(0), T,Λ), (3.9)

and such that for all ψ ∈ C1
c (Rn+1) it holds

sup
l∈N
|∂tµlt(ψ)|((0, T )) ≤ C(Ω(0), T,Λ)‖ψ‖C1

c (Rn+1). (3.10)

Proof. Choosing η(x, t) = ϕ(t), with ϕ ∈ C1
c ((0, T )), from (3.7) we first deduce that Ml : (0, T )→

R+
0 , Ml(t) := µlt(Rn+1) is of bounded variation with

|M ′l |((0, T )) ≤ Λ

2
. (3.11)

Choosing η(x, t) = ϕ(t), with ϕ ∈ C1([0, T ]) not necessarily compactly supported in (0, T ), from
the very definition of S we obtain∣∣∣ lim

t↘0
Ml(t)−Hn(∂∗Ω(0))

∣∣∣ ≤ Λ

2
, (3.12)∣∣∣ lim

t↗T
Ml(t)−Hn(∂∗Ω(T ))

∣∣∣ ≤ Λ

2
, (3.13)

where ∂∗ is the reduced boundary operator. Indeed, setting

ϕk(t) :=

{
1− kt for 0 ≤ t ≤ 1

k

0 otherwise
,

it holds

Λ ≥ −2Hn(∂∗Ω(0)) + 2k

∫ 1
k

0
Ml(t) dt,

Λ ≥ 2Hn(∂∗Ω(0))− 2k

∫ 1
k

0
Ml(t) dt.

Thus, taking the limit k → ∞, we have proven (3.12). Along the same lines its is possible to
obtain (3.13). Using (3.11), (3.12) and (3.13), we can deduce that

µlt(Rn+1) ≤ Hn(∂∗Ω(0)) + Λ

holds, and (3.8) follows, as well as (3.9).
We now fix ψ ∈ C1

c (Rn+1) and from (3.7), with the choice η(x, t) = ϕ(t)ψ(x), we obtain

|Dµlt(ψ)|((0, T )) ≤ 1

2
Λ‖ψ‖C0

c (Rn+1) + sup
|ϕ|≤1

∣∣∣ ∫ T

0
ϕ(t)

∫
Rn+1

∇ψ · ~v(·, t) dµlt dt
∣∣∣

≤ 1

2
Λ‖ψ‖C0

c (Rn+1) + ‖∇ψ‖L2(µ)‖~v ‖L2(µ;Rn+1)

≤
(1

2
Λ +

(
T sup

0<t<T
µlt(Rn+1)

)1/2
Λ1/2

)
‖ψ‖C1

c (Rn+1), (3.14)

where we have used (3.6) and by means of (3.8) the estimate (3.10) now follows. �
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Remark 3.4. Proposition 3.3, Lemma 2.1 and the bound (3.6) yield the uniform bounds∫
Rn+1

|ul(x, t2)− ul(x, t1)| dx ≤ C(Λ, T,Ω(0))(t2 − t1)
1
2 , (3.15)

(|∇ul|+ |∂tul|) (QT ) ≤ C(Λ, T,Ω(0)). (3.16)

Combining Proposition 3.3 and Lemma 2.1, we obtain a compactness statement for the char-
acteristic functions of the sets (Ωt)t∈[0,T ].

Proposition 3.5. [20, Prop 4.1]. There exist a subsequence l→∞ (not relabeled) and a function

u ∈ BV (QT ; {0, 1}), u ∈ C
1
2 ([0, T ];L1(Rn+1)) such that (2.8) and (3.2) hold.

Proof. By (3.16), the compactness Theorem for BV functions ensures the existence of a sub-
sequence l → ∞ and of a function u ∈ BV (QT ), with ul → u in L1(QT ). In particular,
u(x, t) ∈ {0, 1} for almost every (x, t) ∈ QT .

From (3.15), we deduce that (ul)l∈N is uniformly bounded in C
1
2 ([0, T ];L1(Rn+1). Moreover, by

(2.7) for Σl and by (3.8), the family {ul(t) : l ∈ N} is relatively compact in L1(Rn+1) for almost
any t ∈ (0, T ). Applying the Arzela-Ascoli Theorem, we deduce that, possibly after passing to

another subsequence, ul → u in C0([0, T ];L1(Rn+1)), with u ∈ C
1
2 ([0, T ];L1(Rn+1)).

By (3.2), the condition (2.8) for Σl implies that u attains the initial and final data. �

We next show a compactness statement for the evolution of the surface area measures.

Proposition 3.6. [20, Prop 4.2] There exists a subsequence l →∞ (not relabeled) and a family
of Radon measures (µt)t∈(0,T ) on Rn+1 such that (2.3), (2.7) are valid, such that

µlt → µt for all t ∈ (0, T ) as Radon measures on Rn+1, (3.17)

and such that (3.4) holds. Moreover,

sup
t∈[0,T ]

µt(Rn+1) ≤ C(Ω(0), T,Λ) (3.18)

is satisfied.

Proof. We first consider a sequence (ψk)k∈N in C1
c (Rn+1), which is dense in C0

0 (Rn+1) with respect
to the supremum norm. By (3.8) and (3.10), we have that for any fixed k ∈ N the sequence of
functions (t 7→ µlt(ψk))l∈N is uniformly bounded in BV (0, T ). By means of a diagonal argument,
we obtain a subsequence l→∞ and functions mk ∈ BV (0, T ), k ∈ N, such that for all k ∈ N

µlt(ψk) → mk(t) for almost-all t ∈ (0, T ), (3.19)

Dµlt(ψk) → m′k as Radon measures on (0, T ). (3.20)

Let S denote the countable set of times t ∈ (0, T ) where, for some k ∈ N, the measure m′k has an
atomic part. As in [20, Prop. 4.2] one shows that (3.19) holds on (0, T ) \ S and that there exist
Radon measures µt on Rn+1, t ∈ (0, T ) \ S with

µlt → µt as Radon-measures on Rn+1

for the whole sequence selected in (3.19)–(3.20), and for all t ∈ (0, T ) for which (3.19) holds. This
proves (3.17).
For any ψ ∈ C0

0 (Rn+1) the map t 7→ µt(ψ) has no jumps in (0, T ) \ S and, for all ϕ ∈ C1
c ((0, T ))

with |ϕ| ≤ 1, using (3.10) we obtain∣∣∣ ∫
Rn+1

∂tϕ(t)µt(ψ) dt
∣∣∣ =

∣∣∣ lim
l→∞

∫
Rn+1

∂tϕ(t)µlt(ψ) dt
∣∣∣

≤ lim inf
l→∞

|∂tµlt(ψ)| ≤ C(Ω(0), T,Λ) ,

and we have proven (2.3).
Applying the dominated convergence theorem, (3.4) follows. By (3.2) we have ul(·, t) → u(·, t)
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in L1(Rn+1) as l →∞, and (2.7) for Σl, together with (3.3) and the lower-semicontinuity of the
perimeter under L1-convergence, allow to conclude that |∇u(·, t)| ≤ µt, which proves (2.7). �

We next show that the measures (µt)t∈(0,T ) are integral varifolds with weak mean curvature in

L2(µt;Rn+1).

Proposition 3.7. [20, Thm. 4.3] For any t ∈ (0, T ) the limit measure µt is an integral varifold

with weak mean curvature ~H(·, t) ∈ L2(µt;Rn+1) and for almost all t ∈ (0, T )

µlt → µt (l→∞) as varifolds. (3.21)

The sequence (µl, ~Hl)l∈N converges to (µ, ~H) as measure function pairs, i.e.∫ T

0

∫
M l

t

η(., t) · ~Hl(., t) dHn dt →
∫
QT

η(., t) · ~H(., t) dµt dt (3.22)

holds for all η ∈ C0
c (Rn+2

0,T ;Rn+1). Moreover, we have the estimates∫
Rn+1

|~H(·, t)|2 dµt ≤ lim inf
l→∞

∫
M l

t

|~Hl(·, t)|2 dHn for almost all t ∈ (0, T ), (3.23)∫
QT

|~H|2 dµ ≤ lim inf
l→∞

∫ T

0

∫
M l

t

|~Hl(·, t)|2 dHn dt. (3.24)

Proof. By (3.6) and Fatous Lemma we have

h(t) := lim inf
l→∞

∫
Rn+1

|~Hl(·, t)|2 dHn ∈ L1(0, T )

and in particular h(t) < ∞ for almost every t ∈ (0, T ). We fix such t ∈ (0, T ) and from Allards
compactness Theorem (see [1]) we deduce that there exists a subsequence l′ →∞ and an integral

varifold µ̃t with weak mean curvature ~H(·, t) ∈ L2(µ̃t;Rn+1) such µl
′
t → µ̃t as varifolds, and such

that ∫
|~H(·, t)|2 dµ̃t ≤ h(t) = lim inf

l→∞

∫
Rn+1

|~Hl(·, t)|2 dHn. (3.25)

From (3.3) we deduce that µt = µ̃t. In particular, µt is an integral varifold with weak mean
curvature in L2(µt;Rn+1) which satisfies (3.23). The estimate (3.24) follows from (3.23) and
Fatou’s Lemma. Since an integral varifold is uniquely determined by its mass measure, we see
that the whole sequence l → ∞ from (3.3) converges to µt in the varifold topology. This shows
(3.21).
The fact that the measure-function pair converges is shown as in [20, Thm. 4.3] by an identifica-
tion argument of point-wise limits of

−
∫
Rn+1

~Hl(·, t) · ξ dµlt, ξ ∈ C1
c (Rn+1)

(where at first the subsequence depends on time) and by an application of Lebesgue dominated
convergence theorem. Thus (3.22) is proven. �

In the next step we show that the limit evolution has a generalized velocity.

Proposition 3.8. [20, Thm. 4.4] There exists a subsequence l → ∞ and a function ~v ∈
L2(µ;Rn+1) such that (µl, ~vl) → (µ,~v) as measure-function pairs, i.e.

lim
l→∞

∫ T

0

∫
M l

t

~vl(·, t) · η(·, t) dHn dt =

∫
QT

~v(·, t) · η(·, t) dµt dt. (3.26)
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Moreover, we have the estimate∫
QT

|~v(·, t)|2 dµt dt ≤ lim inf
l→∞

∫ T

0

∫
M l

t

|~vl(·, t)|2 dHn dt , (3.27)

and ~v is the generalized speed of the evolution (µt)t∈(0,T ) in the sense of Definition 2.1.

Proof. From (3.1) for Σl, the convergence (3.4) and the compactness and lower semicontinuity
property for measure-function pairs [11, Theorem 4.4.2], we conclude the existence of a subse-
quence l→∞ and a limit ~v ∈ L2(µ;Rn+1) satisfying (3.26) and (3.27).
By (3.7), (3.1) for Σl, (3.26) and (3.27) we deduce that for any η ∈ C1

c (QT ) with |η| ≤ 1∣∣∣ ∫
QT

(∂tη(·, x) +∇η(·, x) · ~v(·, t)) dµt dt
∣∣∣

≤ lim inf
l→∞

∣∣∣ ∫
QT

(∂tη(·, x) +∇η(·, x) · ~vl(·, t)) dµlt dt
∣∣∣ ≤ Λ

2
.

We therefore obtain (2.5). It remains to show that ~v(x, t) is normal to Txµt for µ−almost all
(x, t) ∈ QT . The proof follows as in [20, Lemma 6.3] by an adaption of [19, Proposition 3.2]. �

In order to show that the limit evolution of phases satisfies (2.9) we need some preparations.
First, for r > 0 and (x0, t0) ∈ QT , we define the cylinders

Qr(t0, x0) := Bn+1(x0, r)× (t0 − r, t0 + r).

Proposition 3.9. [20, Prop 8.1] The measure µ is absolutely continuous with respect to Hn+1,

µ � Hn+1. (3.28)

Proof. The proof is an adaption of [20, Prop 8.1], in the present case we just have to substitute
(8.16) in that paper by the following argument. For t0 ∈ (0, T ), x0 ∈ Rn+1 the monotonicity
formula [16, (A.6)] yields that for any 0 < r < r0 < min{t0, T − t0}

1

r

∫ t0+r

t0−r
r−nµt

(
B(x0, r)

)
dt

≤ 2

r

∫ t0+r

t0−r
r−n0 µt

(
Bn
r0(x0)

)
dt+ C

1

r

∫ t0+r

t0−r

∫
Rn+1

|~H(·, t)|2 dµt dt.

The proof then proceeds as in [20]. �

We now need to show that the generalized tangent plane of µ exists Hn+1-almost everywhere
on ∂∗{u = 1}. To this aim, we first prove the following relation between the measures µ and
|∇′u|.

Proposition 3.10. [20, Prop. 8.2] For the total variation measure |∇′u| we have

|∇′u| ≤ gµ, (3.29)

for a function g ∈ L2(µ). In particular, |∇′u| is absolutely continuous with respect to µ. Moreover,
the tangent plane to µ exists at Hn+1-almost-all points of ∂∗{u = 1}.

Proof. By (2.9), (2.7) and (3.2) we deduce that for any η ∈ C1
c (QT ) with |η| ≤ 1∣∣∣ ∫

QT

−∂tηu dLn+2
∣∣∣ (3.30)

=
∣∣∣ lim
l→∞

∫
QT

−∂tηul dLn+2
∣∣∣ ≤ lim inf

l→∞

∫
QT

|η|(·, t)|~vl(·, t)| dµlt dt. (3.31)
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By (3.6) and [11, Theorem 4.4.2], there exists a subsequence l → ∞ and g̃ ∈ L2(µ), g̃ ≥ 0 such
that (µl, |~vl|)→ (µ, g̃) as l→∞ and such that∫

QT

g̃2 dµ ≤
∫
QT

|~vl|2 dµl ≤ Λ.

By (3.31) we therefore get ∣∣∣ ∫
QT

−∂tηu dLn+2
∣∣∣ ≤ ∫

QT

|η|g̃ dµ,

which shows that

|∂tu| ≤ g̃µ. (3.32)

Similarly, we find∣∣∣ ∫
QT

−∇ηu dLn+2
∣∣∣ =
∣∣∣ lim
l→∞

∫
QT

−∇ηul dLn+2
∣∣∣

= lim
l→∞

∣∣∣ ∫
QT

ηνl|∇ul|
∣∣∣

≤ lim inf
l→∞

∫
QT

|η|(·, t) dµlt dt =

∫
QT

|η|(·, t) dµ,

which yields |∇u| ≤ µ. Putting this together with (3.32), we obtain (3.29) and deduce that |∇′u|
is absolutely continuos with respect to µ.
The final statement has been proved in Proposition [20, Proposition 8.3]. �

Proposition 3.11. For the limit phase function u in (3.2) the equation (2.9) holds.

Proof. We first observe that ~v ∈ L1(|∇u|), since by (3.27), (3.29), and Proposition 3.10∫
QT

|~v| d|∇u| ≤
∫
QT

|~v| d|∇′u| ≤
∫
QT

g|~v| dµ

≤ ‖g‖L2(µ)‖~v ‖L2(µ) < ∞.

For ~v ∈ L2(µ;Rn+1) there exist a sequence ε → 0, with ~vε ∈ C0
c (Rn+1;Rn+1) and ~vε → v in

L2(µ,Rn+1). By [20, Proposition 3.3] we know that for µ-almost all (x, t) ∈ QT at which the
tangential plane of µ exists the vector(

~v(x, t)
1

)
∈ Rn+1 × R is perpendicular to T(x,t)µ. (3.33)

By Proposition 3.10, this implies (
1
~v

)
· ν ′ = 0 |∇′u| − a.e. , (3.34)

where ν ′ denotes the generalized inner normal of {u = 1} on ∂∗{u = 1}. It follows that∫
QT

η

(
1
~v

)
· ν ′d|∇′u|dt = 0 , (3.35)

hence ∣∣∣ ∫
QT

η

(
1
~vε

)
· ν ′d|∇′u|

∣∣∣ =
∣∣∣ ∫

QT

η

(
0

~vε − ~v

)
· ν ′d|∇′u|

∣∣∣
≤ ||η||C0(QT )

∫
QT

η|~vε − ~v|dµ→ 0 for ε→ 0 .

(3.36)
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Therefore it holds

0 = lim
ε→0

∫
QT

η

(
1
~vε

)
· ν ′d|∇′u| = − lim

ε→0

∫
QT

(∂tηu+∇ · (η~vε)u)dxdt

= lim
ε→0

∫
QT

(−∂tηu+ η~vε · ∇u)dxdt = −
∫
QT

∂tηudxdt+

∫
QT

η~v · νd|∇u|dt
(3.37)

which proves (2.9). �

We are now in the position to complete the proof of Theorem 3.1, in particular we are able to
show the lower-semicontinuity of the action functional.

Proof of Theorem 3.1. The compactness statements have already been proven above. The L2-
flow property has been shown in Proposition 3.6, Proposition 3.7, and Proposition 3.8. The
assertions (2.6) and (2.8) have been proved in Proposition 3.5, the property (2.7) in Proposition

3.6, and (2.9) in Proposition 3.11. Moreover, u ∈ C0,1/2([0, T ];L1(Rn+1)) follows by Lemma 2.1,
and µ � Hn+1 by (3.28). Therefore it remains to show the lower-semicontinuity statement. By
(3.22), (3.26) we deduce the weak measure-function-pair convergences

(µl, ~vl − ~Hl) → (µ,~v − ~H), (µl, ~vl + ~Hl) → (µ,~v + ~H) as l→∞.
The lower-semicontinuity property for quadratic functionals under the weak measure-function-
pair convergence (see [11, Theorem 4.4.2]) implies that for any η̃ ∈ C0(Rn+1 × [0, T ]) with η̃ ≥ 0∫

QT

η̃|~v − ~H|2 dµ ≤ lim inf
l→∞

∫
QT

η̃|~vl − ~Hl|2 dµl, (3.38)∫
QT

η̃|~v + ~H|2 dµ ≤ lim inf
l→∞

∫
QT

η̃|~vl + ~Hl|2 dµl. (3.39)

Using (2.8) for Σl and (3.26), we deduce for any η ∈ C1(Rn+1 × [0, T ]) with 0 ≤ η ≤ 1

2|∇u(·, T )|(η(·, T ))− 2|∇u(·, 0)|(η(·, 0))

+

∫
QT

−2
(
∂tη +∇η · ~v

)
+ (1− 2η)+

1

2
|~v − ~H|2 dµt dt

≤ lim inf
l→∞

[
2|∇ul(·, T )|(η(·, T ))− 2|∇ul(·, 0)|(η(·, 0))

+

∫
QT

−2
(
∂tη +∇η · ~vl

)
+ (1− 2η)+

1

2
|~vl − ~Hl|2 dµlt dt

]
≤ lim inf

l→∞
S+(Σl).

By taking the supremum over η we deduce

S+(Σ) ≤S+(Σl).

Similarly we obtain S−(Σ) ≤ S−(Σl) and therefore (3.5). Together with the properties proved
above this implies (3.1) and thus Σ ∈M(T,Ω(0),Ω(T )). �

4. Smooth stationary points of the action functional

In the following we consider smooth evolutions of smooth hypersurfaces in Rn+1 and charac-
terize stationary points, as well as some conserved quantities along stationary trajectories, for
the action functional. In this part it is more convenient to describe evolutions by families of
embeddings. We introduce the following setting.

Definition 4.1. Consider a smooth n-dimensional compact, orientable manifold M without
boundary. Let φ : M × [0, T ] → Rn+1 be a smooth one parameter family of embeddings φt :=
φ(·, t), t ∈ [0, T ]. By Σ := (Σt)t∈[0,T ], where Σt := φt(M), we denote the evolution of the
hypersurfaces associated to φ. In slight abuse of notation, we use the same symbols which we
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used in the previous sections for the evolutions of the surface area measure and of the inner set.
The family of Riemannian measures on M induced via pullback by the parametrizations φt, for
t ∈ [0, T ], will be denoted with (µ̄t)t∈[0,T ]. Once more in a slight abuse of notation, we denote

by ν : M × [0, T ] → Rn+1 the family of inner unit normals ν(·, t) of the sets enclosed by the
hypersurfaces Σt, and by v(·, t), H(·, t) : M → Rn+1 the scalar normal velocity and the scalar
mean curvature of Σt given respectively by

v(x, t) := ∂tφ(x, t) · ν(x, t), H(x, t) := ~HΣt(φ(x, t)) · ν(x, t) ,

for x ∈ M and t ∈ [0, T ]. We say that (φε)−ε0<ε<ε0 is a smooth normal variation of φ which
preserves initial and final data, if the φε are given by a smooth map Φ : M × [0, T ]× (−ε0, ε0) →
Rn+1 as φε = Φ(·, ·, ε) and if

φ0 = Id, ∂ε|ε=0φ
ε = fν,

φε(·, 0) = φ(·, 0), φε(·, T ) = φ(·, T ) for all − ε0 < ε < ε0,

where f : M × [0, T ] → Rn+1, with f(·, 0) = f(·, T ) = 0, is smooth. We set φεt = φε(·, t) =
Φ(·, t, ε) and denote by µ̄εt , ν

ε(·, t), t ∈ [0, T ], −ε0 < ε < ε0, the pullback measures and the normal
field associated with φε, and by vε, Hε the scalar velocity and scalar mean curvature fields on
M× [0, T ] associated to φε. Finally, we call the vector field X := fν the variation field associated
to the given variation and set Xt := X(·, t).
Remark 4.2. Note that if Σ is given by a smooth evolution of smooth embeddings φ as above,
the action functional S reduces to

S(φ) := S(Σ) =

∫ T

0

∫
M

(
v2(·, t) + H2(·, t)

)
dµ̄t dt. (4.1)

4.1. Variation Formulae. In this section we make some preliminary computations which will
be needed for the deduction of the smooth Euler-Lagrange equation for the functional S. For
the notation and the fundamental identities from differential geometry, we refer to the appendix.
In the following ∇ and ∆ refer respectively to the Levi-Civita covariant derivative and to the
associated Laplace-Beltrami operator.

Lemma 4.3. The following variation formulae hold:

∂ε|ε=0dµ̄εt = −HX · νdµ̄t = −Hfdµ̄t , (4.2)

∂ε|ε=0ν
ε = −∇f , (4.3)

∂ε|ε=0Hε = ∆f + f |A|2 . (4.4)

Proof. If we denote with g and gε the Riemannian metrics induced respectively by the embeddings
φ and φε in Rn+1, we have

∂ε|ε=0g
ε
ij = ∂ε|ε=0(∂iφ

ε
t · ∂jφεt ) = ∂i(X · ∂jφt) + ∂j(X · ∂iφt)− 2(X · ∂2

ijφt)

= ∂i(X · ∂jφt) + ∂j(X · ∂iφt)− 2ΓrijX · ∂rφ− 2hijX · ν
= −2hijX · ν = −2fhij .

Since by definition gεij(g
ε)jk = δki , we get

∂ε|ε=0(gε)ij = 2fhij .

Using the formula ∂ε det(Aε) = det(Aε) tr[A−1
ε ∂εAε] we obtain the following equation which

describes the variation of the induced Riemannian measure

∂ε|ε=0dµ̄εt = ∂ε|ε=0

√
det(gε) =

√
det(g)gij∂ε|ε=0g

ε
ij

2

=
−2
√

det(g)gijhij
2

X · ν

= −Hfdµ̄t .
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For the variation of the normal vector to the hypersurface we get

∂ε(ν
ε · ∂iφεt )|ε=0 = −ν · ∂i∂ε|ε=0φ

ε
t = −ν · ∂i(fν) = −∂if,

consequently it holds
∂ε|ε=0ν

ε = −∇f .
In order to compute the variation of the mean curvature, we start computing the variation of the
second fundamental form (see (7.2) in the Appendix),

∂ε|ε=0hεij = ∂ε|ε=0(νε · ∂2
ijφ

ε
t ) = −∇f · ∂2

ijφt + ν · ∂2
ijX . (4.5)

By (7.3) and (7.2) we obtain

∇f · ∂2
ijφt = ∇f · (Γrij∂rφ+ hijν) = ∇rfΓrij , (4.6)

ν · ∂2
ijX = ν · ∂2

ij(fν) = ∂2
ijf + fν · ∂2

ijν

= ∂2
ijf − fν · ∂i(hjrgrp∂pφt)

= ∂2
ijf − fhjrg

rphpi. (4.7)

From equations (4.5) - (4.7) we finally deduce that

∂ε|ε=0hεij = ∇2
ijf − fhjrg

rphpi.

It then follows that for the variation of the scalar mean curvature we have

∂ε|ε=0Hε = ∂ε|ε=0(gij)εhij + gij∂ε|ε=0hεij = ∆f + f |A|2 .
�

4.2. The first Variation of S. We now compute the Euler–Lagrange equation for S.

Theorem 4.4. Let φ be a smooth evolution of smooth embeddings and consider a normal variation
(φε)−ε0<ε<ε0 with associated variation field fν as in Definition 4.1. Then the first variation of
S at φ in the direction of f is given by

δS(φ)(f) =
d

dε

∣∣∣
ε=0
S(φε) =

∫ T

0

∫
M
f
[
− ∂tv + ∆H + H|A|2 − H3

2
+
v2H

2

]
dµ̄tdt. (4.8)

Consequently, the Euler-Lagrange equation for a smooth stationary point φ of S is given by

∂tv = ∆H + H|A|2 − H3

2
+
v2H

2
. (4.9)

Proof. We start by computing the variation of the normal speed.

∂ε|ε=0v
ε = ∂t∂ε|ε=0φ

ε
t · ν + ∂tφt · ∂ε|ε=0ν

ε = ∂t(fν) · ν = ∂tf. (4.10)

Using equations (4.2), (4.4) and (4.10), we obtain

d

dε

∣∣∣
ε=0
S(φε) =

∫ T

0

∫
M

[
∂tfv + H∆f + Hf |A|2 − (v2 + H2)

fH

2

]
dµ̄tdt . (4.11)

Observing that
d

dt

∫
M
fvdµ̄t =

∫
M

[
∂tfv + f∂tv − fv2H

]
dµ̄t ,

we get ∫ T

0

∫
M
∂tfv dµ̄tdt =

∫ T

0

∫
M
f
[
− ∂tv + Hv2

]
dµ̄tdt . (4.12)

Substituting (4.12) into (4.11), we deduce

d

dε

∣∣∣
ε=0
S(φε) =

∫ T

0

∫
M
f
[
− ∂tv + ∆H + H|A|2 − H3

2
+
v2H

2

]
dµ̄tdt ,

which concludes the proof. �
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5. Symmetries and Conserved Quantities

In this section we will analyze some particular variations and deduce certain properties of the
stationary points of the action functional which are often less obvious from the Euler–Lagrange
equation. In particular, we characterize some conserved quantities along smooth evolutions which
are stationary points.

5.1. Energy Conservation. The functional S can be formally seen as the sum of a kinetic and a
potential term depending on the curvature, integrated with respect to a time dependent measure.
By analogy with Lagrangian mechanics, one can write the formally associated Hamiltonian and
can check whether energy conservation along stationary trajectories holds. We actually obtain
the following property.

Proposition 5.1. Let φ : M × [0, T ] → Rn+1 be a stationary point of the Functional S in the
class of smooth evolutions with prescribed initial and final data. Then the quantity

E(φt) :=

∫
M

(v2 −H2) dµ̄t, t ∈ [0, T ] (5.1)

does not depend on t. We thus can define E(φ) := E(φt), t ∈ [0, T ] as the energy of the stationary
point φ.

Proof. Let us consider a time reparametrization for φ of the form φε(·, t) = φ(·, tε), tε := t+ εη,
with η ∈ C∞0 (0, T ). One easily checks that the action of φε is given by

S(φε) =

∫ T

0

∫
M

((vε)2 + (Hε)2)dµ̄εt dt =

∫ T

0

∫
M

( v2

1 + εη′
+ (1 + εη′)H2

)
dµ̄tdt. (5.2)

For the corresponding first variation of S we get

d

dε

∣∣∣
ε=0
S(φε) =

∫ T

0
η′(t)

∫
M

(−v2 + H2)dµ̄tdt. (5.3)

Since φ has been supposed to be stationary, the thesis follows. �

Remark 5.2. It is also possible to deduce the energy conservation from equations (4.2), (4.4) and
(4.10). Actually,

d

dt

∫
M

(v2 −H2) dµ̄t =

∫
M

[
2v(∆H + H|A|2 − H3

2
+
v2H

2
)−

− 2H(∆v + v|A|2)− (v2 −H2)vH)
]
dµ̄t = 0 .

(5.4)

The fact that the energy conservation follows just by the invariance under time reparametrization,
suggests that the energy should be conserved also in settings which are more general than the
smooth one.

5.2. Conformal Variations. We next investigate conformal variations of the form

φ(x, t, ε) = ea(t,ε)φ(x, t), (5.5)

where a : [0, T ]× R→ R is a smooth function which satisfies

a(t, 0) = 0 for all t ∈ [0, T ], (5.6)

a(0, ε) = a(T, ε) = 0 for all − ε0 < ε < ε0. (5.7)

We define α(t) := ∂ε|ε=0a(t, ε) for t ∈ [0, T ]. The following lemma describes the variation under
(5.5) of the geometric quantities appearing in S.
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Lemma 5.3. Consider an evolution φ and a variation φεt as in (5.5)-(5.7). For all t ∈ [0, T ] we
then have:

∂ε|ε=0dµ̄εt = nα(t)dµ̄t, (5.8)

∂ε|ε=0v
ε(·, t) = α′(t)φt · ν(·, t) + α(t)v(·, t), (5.9)

∂ε|ε=0Hε = −α(t)H. (5.10)

Proof. For the embeddings φεt , the induced metric on the corresponding embedded submanifold
in Rn+1 reads

gεij(·, t) = e2a(t,ε)gij(·, t) , (5.11)

hence
∂ε|ε=0g

ε
ij(·, t) = 2α(t)gij(·, t) ,

and

∂ε|ε=0dµ̄
ε
t =

1

2
tr(∂ε|ε=0g

ε
ij(·, t))dµ̄t = nα(t)dµ̄t .

Moreover, since νε(x, t) = ν(x, t), we deduce that

∂ε|ε=0ν
ε(·, t) · ∂jφt = 0 .

For the normal speed, we have

∂ε|ε=0v
ε(·, t) = ∂ε|ε=0(∂tφ

ε
t · νε(·, t))|ε=0 = ∂t(α(t)φt · ν = α′(t)φt · ν(·, t) + α(t)v(·, t) . (5.12)

For the mean curvature, since the function α does not depend on the space variables, we obtain
that

Hε = e−a(·,ε)H (5.13)

and we deduce (5.10). �

By means of Lemma 5.3, we are able to compute the variation of the kinetic term in S.

Proposition 5.4. Let φ : M × [0, T ] → Rn+1 be a trajectory and φεt be a variation as in (5.5)-
(5.7). For all t ∈ [0, T ] we have

d

dε

∣∣∣
ε=0

∫ T

0

∫
M

(vε)2dµ̄εt dt

= 2

∫ T

0
α(t)

∫
M

(−∂tvφ · ν + vφ · ∇v + v2Hφ · ν +
n

2
v2)dµ̄tdt, (5.14)

d

dε

∣∣∣
ε=0

∫ T

0

∫
M

(Hε)2dµ̄εtdt =
(
n− 2

) ∫ T

0
α(t)

∫
M

H2dµ̄tdt, (5.15)

d

dε

∣∣∣
ε=0
S(φε)

= 2

∫ T

0
α(t)

∫
M

[
− ∂tvφ · ν + vφ · ∇v + v2Hφ · ν +

n

2
v2 +

(n
2
− 1
)

H2
]
dµ̄tdt . (5.16)

Proof. From Lemma 5.3 we get

d

dε

∣∣∣
ε=0

∫ T

0

∫
M

(vε)2 dµ̄εt dt = 2

∫ T

0

∫
M

[
v(α′〈φ, ν〉+ αv) +

n

2
αv2

]
dµ̄t dt. (5.17)

By an integration by parts in the first of the three terms in the integrand on the right-hand side,
and (4.2), (4.3) we obtain∫ T

0

∫
M
vα′φ · νdµ̄tdt =

∫ T

0

∫
M

[−∂tvαφ · ν − v2α+ vαφ · ∇v + v2Hαφ · ν] dµ̄tdt

+
[ ∫

M
v αφ · νdµ̄t

]T
0
.
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Using equation (5.7) we deduce (5.14). By (5.11) and (5.13) we obtain

d

dε

∣∣∣
ε=0

∫ T

0

∫
M

(Hε)2 dµεt dt =
d

dε

∣∣∣
ε=0

∫ T

0

∫
M

H2e(−2+n)a(·,ε) dµt dt

=

∫ T

0
(−2 + n)α(t)

∫
M

H2 dµt dt,

which gives (5.15). Together with (5.14) we finally deduce (5.16). �

Remark 5.5. We conclude that trajectories that are stationary for the kinetic part of the action
along conformal variations as above satisfy∫

M
(−∂tvφt · ν + vφt · ∇v + v2Hφt · ν +

n

2
v2)dµ̄t = 0 . (5.18)

On the other hand it holds

d

dt

∫
M
vφt · νdµ̄t =

∫
M

[∂tvφt · ν + v2 − vφt · ∇v〉 − v2Hφt · ν〉]dµ̄t . (5.19)

Adding equations (5.18) and (5.19) we obtain that for all t ∈ [0, T ]

d

dt

∫
M
vφt · νdµ̄t = (1 +

n

2
)

∫
M
v2dµ̄t . (5.20)

Integrating over time, we find[ ∫
M
vφt · νdµ̄t

]T
0

= (1 +
n

2
)

∫ T

0

∫
M
v2dµ̄tdt . (5.21)

For n = 2 the Willmore functional is invariant under dilations, and in this case the variation of
the whole action functional coincides with the variation of its kinetic part.

We are now in the position to prove an equality which can be used to deduce the Hamilton-
Jacobi equation associated to S.

Proposition 5.6. For S−stationary trajectories, the following equation holds true:[ ∫
M
vφt · νdµ̄t

]T
0

=

∫ T

0

∫
M

[(
1 +

n

2

)
v2 +

(n
2
− 1
)

H2
]
dµ̄tdt = 2TE(φ) + nS(φ) , (5.22)

where E(φ) denotes the energy defined in (5.1).

Proof. Since we are considering an S−stationary trajectory, from equation (5.16) we have that∫
M

[
(−∂tvφt · ν + vφt · ∇v + v2Hφt · ν +

n

2
v2 +

(n
2
− 1
)

H2
]
dµ̄t = 0 . (5.23)

adding (5.19) and (5.23) we get

d

dt

∫
M
vφt · νdµ̄t =

∫
M

[(
1 +

n

2

)
v2 +

(n
2
− 1
)

H2
]
dµ̄t = 2E(φ) +

n

2

∫
M

(v2 + H2)dµ̄t (5.24)

and the thesis follows integrating over time. �

5.3. Isometric variations. We now consider variations of the form

φεt (x) = O(t, ε)φt(x) for x ∈M, t ∈ [0, T ],−ε0 < ε < ε0,

O(t, ε) ∈ SO(n+ 1), O(t, 0) = O(0, ε) = O(T, ε) = Id for all − ε0 < ε < ε0, t ∈ [0, T ].
(5.25)

It is clear that these variations leave the area element and the mean curvature invariant. There-
fore, considering the first variation of the action functional, we obtain the following property.
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Proposition 5.7. If a trajectory undergoes a variation as in (5.25), the first variation of S reads
as

d

dε

∣∣∣
ε=0
S(φε) = 2

∫ T

0

∫
M

(A′(t)φt(x)) · ∂tφtdµ̄tdt , (5.26)

where A(t) = ∂ε|ε=0O(ε, t).

Proof. For the normal speed of the evolution φε we compute

vε = ∂tφ
ε
t · νε(·, t) = ∂t

(
O(t, ε)φt

)
·O(t, ε)ν(·, t),

∂ε|ε=0v
ε = ∂t

(
A(t)φt

)
· ν(·, t) + ∂tφt ·A(t)ν(·, t).

Since A(t) is an antisymmetric matrix for any t ∈ [0, T ] we deduce

d

dε

∣∣∣
ε=0

S(φε) = 2

∫ T

0

∫
M
v(·, t)

(
∂t
(
A(t)φt

)
· ν(·, t) + ∂tφt ·A(t)ν(·, t)

)
dµ̄tdt

= 2

∫ T

0

∫
M

(
∂t
(
A(t)φt

)
· ∂tφt − (A(t)∂tφt) · ∂tφt

)
dµ̄tdt,

(5.27)

and the thesis follows. �

Stationarity with respect to the variations of the form (5.25) can be interpreted as conservation
of the angular momentum.

Corollary 5.8. Let φ be a stationary point of S. Then the angular momentum∫
M
v(·, t)

(
ν(·, t)⊗ φt − φt ⊗ ν(·, t)

)
dµ̄t , (5.28)

does not depend on time.

Proof. Consider equation (5.26) and choose A(t) = f(t)A, with f ∈ C∞c (0, T ) arbitrary and A an
arbitrary antisymmetric matrix. With this choice, from the stationarity of φ we obtain

A :
d

dt

∫
M
v(·, t)ν(·, t)⊗ φt dµ̄t = 0 , (5.29)

which coincides with the thesis. �

Remark 5.9. If φ0(·) and φT (·) are both round spheres, being φ(·, 0) and φ(·, T ) parallel to
ν(·, 0) and ν(·, T ) respectively, the integrand in the formula for the angular momentum vanishes
pointwise, and thus the angular momentum itself is zero. Notice however that the vanishing of
the angular momentum does not imply that the trajectory is at every time a round sphere, even
if if the initial and final data are both round spheres. This point will be clarified in the following
section.

6. The spherical Case

In this section, we will study the problem of finding optimal trajectories connecting concentric,
round n−spheres in Rn+1. We will characterize optimal spherical trajectories, which are evolutions
that at each t ∈ [0, T ] consist of a round sphere. We also determine conditions under which the
optimal trajectory in the class of spherical trajectories is an absolute minimizer of the action
functional.



20 A. MAGNI AND M. RÖGER

6.1. Some Formulae for Graphs over Spheres. Let φ : Sn → Rn+1 be a smooth embedding
which can be parametrized as a graph over Sn. This means that there exists a smooth function
r : Sn → R such that

φ(x) = r(x)x , x ∈ Sn . (6.1)

The following equations follow from (6.1) by direct computations.

Proposition 6.1. If φ : Sn → Rn+1 is a smooth embedding of Sn into Rn+1, which is parametrized
as a graph over the unit n−sphere, we have that the naturally induced metric on φ(Sn) is given
by

γij = r2τij + ∇̂ir∇̂jr , (6.2)

where τij is the standard metric on the unit sphere in Rn+1 with associated Levi-Civita connection

∇̂ and measure dµ̂. The inverse of the induced metric reads

γij =
1

r2

(
τ ij − ∇̂ir∇̂jr

r2 + |∇̂r|2

)
. (6.3)

The inner unit normal normal vector to the embedded surface is

ν(x) = − 1√
r2 + |∇̂r|2

(rx− τ ij∇̂ir∇̂jr) (6.4)

and the second fundamental form is given by

hij = ν · ∂2
ijφ =

1√
r2 + |∇̂r|2

(r2τij + 2∇̂ir∇̂jr − r∇̂i∇̂jr) , (6.5)

while the mean curvature can be expressed as

H =
1

r2(r2 + |∇̂r|2)3/2

[
(n+ 1)r2|∇̂r|2 + nr4 + r∇̂i∇̂jr∇̂ir∇̂jr − r∆̂r(r2 + |∇̂r|2)

]
. (6.6)

Finally, the induced area element is given by

dµ̄ = rn−1
√
r2 + |∇̂r|2 dµ̂ . (6.7)

6.2. First variation around spherical trajectories. In this section we will study the first
variation of the action functional in the following family of trajectories.

Definition 6.2. Given three positive real numbers T , R0, and RT , we say that a smooth map
φ0 : Sn× [0, T ]→ Rn+1, which for any fixed t ∈ [0, T ] is an embedding of Sn in Rn+1, is a spherical
trajectory connecting the concentric n−spheres of radii R0 and RT , if there exists a smooth map
r0 : [0, T ]→ R such that

φ0(x, t) = r0(t)x , x ∈ Sn , (6.8)

with r0(0) = R0 and r0(T ) = RT .

We now compute the first variation of the action functional around an arbitrary spherical
trajectory. Without any loss of generality, we can restrict to variations which are graphs over
spheres at any time.

Lemma 6.3. Let T , R0, RT be positive real numbers and let r0 : [0, T ] → R be a function
defining a spherical trajectory φ0 as in (6.8). Let ρ : Sn × [0, T ] → R be a smooth function with
ρ(·, 0) = ρ(·, T ) = 0 for any x ∈ Sn and ε a real number. Define rε : Sn × [0, T ] → R so that
rε(x, t) = r0(t)+ερ(x, t) and define φε : Sn× [0, T ]→ Rn+1 as φε(x, t) = (r0(t)+ερ(x, t))x. Then
it holds

d

dε

∣∣∣
ε=0
S(φε) = −

∫ T

0

∫
Sn

[2r̈0r
n
0 + nṙ2

0r
n−1
0 − n2(n− 2)rn−3

0 ]ρdµ̂dt , (6.9)
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where the dot denotes the partial derivative with respect to t and µ̂ is the surface measure of the
standard unit n−sphere in Rn+1. As a consequence, for any stationary spherical trajectory, the
function r0 satisfies the ordinary differential equation

2r̈0r
n
0 + nṙ2

0r
n−1
0 − n2(n− 2)rn−3

0 = 0 . (6.10)

Proof. Let us define Qε := r2
ε + |∇̂rε|2. From the definition of normal speed and (6.4) we have

v2
ε := (∂tφε · νε)2 = Q−1

ε (ṙεx · (rεx− τ ij∇̂irε∇̂jx))2

= Q−1
ε (ṙεx, rεx)2 = Q−1

ε ṙ2
εr

2
ε .

(6.11)

Moreover, from (6.6) and since ∇̂rε = ε∇̂ρ,we have that

Hε = r−2
ε Q−3/2

ε [(n+ 1)ε2r2
ε |∇̂ρ|2 + nr4

ε + ε3rε∇̂2
ijρ∇̂iρ∇̂jρ− εrε∆̂ρQε] , (6.12)

which we rewrite as Hε = r−2
ε Q

−3/2
ε Wε, where we have denoted with Wε all the terms in between

the square brackets.
For convenience, let us rewrite the action as

S(φε) :=

∫ T

0

∫
Sn

(v2
ε + H2

ε)dµ̄
ε
tdt =

∫ T

0

∫
Sn

(Kε + Pε)dµ̂dt , (6.13)

with Kε := ṙ2
εr
n+1
ε Q

−1/2
ε and Pε := rn−5

ε Q
−5/2
ε W 2

ε . Differentiating, we get

∂ε|ε=0Kε = 2ṙ0r
n
0 ρ̇+ (n+ 1)ṙ2

0r
n−1
0 ρ− ṙ2

0r
n−1
0 ρ (6.14)

and

∂ε|ε=0Pε = n2(n− 5)rn−3
0 ρ− 5n2rn−3

0 ρ+ 2nrn−3
0 (4nρ− ∆̂ρ)

= n2(n− 2)rn−3
0 ρ+ 2nrn−3

0 ∆̂ρ .
(6.15)

The thesis follows by summing the two contributions and integrating by parts. �

Remark 6.4. (1) Note that (6.10) characterizes the Euler–Lagrange equation of S restricted to the
class of spherical symmetric evolutions. Moreover, equation (6.10) follows already from energy
conservation along a spherical trajectory. Actually, in the case of spherical trajectories, (5.1)
implies

d

dt
(ṙ2

0r
n
0 − n2rn−2

0 ) = 0 , (6.16)

which is equivalent to (6.10). Since energy conservation is a consequence of stationarity with
respect to time reparametrization, and since the class of spherical trajectories is invariant under
time reparametrization, energy conservation is clearly a necessary condition for the stationarity
of spherical trajectories. Here it is also sufficient.

(2) In the case of a spherical trajectory the Euler–Lagrange equation (4.9) reduces to (6.10).
Thus, a spherical trajectory which is critical in the class of spherical evolutions is also critical in
the larger class of smooth trajectories.

Remark 6.5. In the case n = 1, equation (6.16) is equivalent to (ṙ2
0r0−r−1

0 ) = E, with E ∈ R. The
solutions to this equation coincide with the rotationally symmetric minima of S given by Okabe
in [21]. We also notice, that the three classes of solution given by Okabe correspond respectively
to the cases E < 0, E = 0, and E > 0.
If n = 2, from (6.16) we obtain an explicit formula for r0 (assuming without any loss of generality
that R0 > RT ),

r0(t) =

√
R2

0 −R2
T

T
t+R2

0. (6.17)

In particular, the unique stationary spherical solution is a time rescaled mean curvature flow. In
the following it will be convenient to compare T with the time TMCF (R0, RT ) which is needed to
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join two concentric 2−dimensional round spheres in R3 having radii R0 and RT by (time reversed)
mean curvature flow. This time is given by

TMCF = TMCF (R0, RT ) =
|R2

0 −R2
T |

4
. (6.18)

6.3. Second variation around spherical trajectories. We further investigate stationary
spherical trajectories and in particular we determine conditions under which they are local minima
of the action functional in the class of general smooth evolutions.

Lemma 6.6. In the situation of Lemma 6.3, we have that

d2

dε2

∣∣∣
ε=0
S(φε) =

∫ T

0

∫
Sn

[2ρ̇2rn0 + ((n+ 1)(n− 2) + 2)ṙ2
0r
n−2
0 ρ2 + 2(rn0 )̇(ρ2)̇− ṙ2

0r
n−2
0 |∇̂ρ|2

+ n2(n− 2)(n− 3)rn−4
0 ρ2 + (3n2 − 8n)rn−4

0 |∇̂ρ|2 + 2rn−4
0 (∆̂ρ)2]dµ̂dt .

(6.19)

Proof. Adopting the same notation as in the proof of Lemma 6.3, we have that Kε = ṙ2
εr
n+1
ε Q

−1/2
ε .

Consequently, we make the following preliminary computations

∂ε|ε=0r
n+1
ε = (n+ 1)rn0 ρ, ∂2

ε

∣∣∣
ε=0

rn+1
ε = n(n+ 1)rn−1

0 ρ2 ,

∂ε|ε=0ṙ
2
ε = 2ṙ0ρ̇, ∂2

ε

∣∣∣
ε=0

ṙ2
ε = 2ρ̇2 ,

∂ε|ε=0Q
−1/2
ε = −r−2

0 ρ, ∂2
ε

∣∣∣
ε=0

Q−1/2
ε = r−3

0 (2ρ2 − |∇̂ρ|2) .

This way, we have that

∂2
ε

∣∣∣
ε=0

Kε = 2rn0 ρ̇
2 + n(n+ 1)ṙ2

0r
n−2
0 ρ2 + ṙ2

0r
n−2
0 (2ρ2 − |∇̂ρ|2)

+ 4(n+ 1)ṙ0r
n−1
0 ρ̇ρ− 4ṙ0r

n−1
0 ρ̇ρ− 2(n+ 1)ṙ2

0r
n−2
0 ρ2

= 2rn0 ρ̇
2 + ((n− 2)(n+ 1) + 2)ṙ2

0r
n−2
0 ρ2 + 4nṙ0r

n−1
0 ρ̇ρ− ṙ2

0r
n−2
0 |∇̂ρ|2 .

(6.20)

For Pε = rn−5
ε Q

−5/2
ε W 2

ε , we compute

∂ε|ε=0r
n−5
ε = (n− 5)rn−6

0 ρ, ∂2
ε

∣∣∣
ε=0

rn−5
ε = (n− 5)(n− 6)rn−7

0 ρ2 ,

∂ε|ε=0Q
−5/2
ε = −5r−6

0 ρ, ∂2
ε

∣∣∣
ε=0

Q−5/2
ε = 5r−7

0 (6ρ2 − |∇̂ρ|2) ,

∂ε|ε=0Wε = 4nr3
0ρ− r3

0∆ρ, ∂2
ε

∣∣∣
ε=0

Wε = 2r2
0[(n+ 1)|∇̂ρ|2 + 6nρ2 − 3ρ∆̂ρ] ,

∂ε|ε=0W
2
ε = 2nr7

0(4nρ− ∆̂ρ),

∂2
ε

∣∣∣
ε=0

W 2
ε = 4nr6

0[(n+ 1)|∇̂ρ|2 + 6nρ2 − 3ρ∆̂ρ] + 2r6
0(4nρ− ∆̂ρ)2 .

By the previous computations, we can conclude that

∂2
ε

∣∣∣
ε=0

Pε = n2(n− 2)(n− 3)rn−4
0 ρ2 + (3n2 − 8n)rn−4

0 |∇̂ρ|2 + 2rn−4
0 (∆̂ρ)2+ (6.21)

+ rn−4
0 (−4n2 + 12n)∇̂ · (ρ∇̂ρ). (6.22)

If we now sum the equations (6.20) and (6.21), and integrate over space and time, the thesis
follows after imposing the boundary conditions on ρ. �

We now fix n = 2 and consider the stationary spherical evolution r0. By (6.16), the integral
over the third term in (6.19) vanishes. Evaluating (6.19) in r0 for spatially homogeneous ρ, we
observe that the second variation is positive definite. This shows that for n = 2 the spherical
stationary point r0 determined by (6.10) is the unique minimizer in the class of smooth spherical
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evolutions. We will call r0 the associated S-optimal spherical trajectory.
Equation (6.19) considerably simplifies for n = 2. In this case, we can actually prove that the
optimal spherical trajectory is not always a minimizer of the action functional.

Theorem 6.7. Let n = 2. For two given positive real numbers R0 and RT , the S−optimal
spherical trajectory connecting the two concentric spheres of radii R0 and RT over the time in-
terval [0, T ] is a local minimizer of S if T ≥ 1

3

√
3TMCF , where TMCF was defined in (6.18).

Furthermore, there exists 0 < T1 ≤ 1
3

√
3TMCF such that for all 0 < T < T1 the optimal spherical

trajectory connecting the given data is a not a local minimizer of S.

Proof. For n = 2, equation (6.19) reads

d2

dε2

∣∣∣
ε=0
S(φε) =

∫ T

0

∫
S2

[2ρ̇2r2
0 + 2ṙ2

0ρ
2 − ṙ2

0|∇̂ρ|2 + 2r−2
0 ((∆̂ρ+ ρ)2 − ρ2)]dµ̂dt , (6.23)

where partial integration with respect to both spatial and time variables has been performed and
where we have used that (6.17) implies (r2

0 )̈ = 0. We now choose ρ(x, t) = η(t)ψl(x), where
η ∈ C∞0 ([0, T ]) is arbitrary and where ψl : S2 → R, l ∈ N0, denotes the l−th spherical harmonic
associated to the standard metric on S2, for which holds ∆ψ = −l(l + 1)ψ. Substituting ṙ2

0 with
its explicit expression given by equation (6.17) and recalling (6.18), we get

d2

dε2

∣∣∣
ε=0
S(φε) = 4π

∫ T

0

[
2η̇2r2

0 +
η2

r2
0

(
4(2− l(l + 1))

T 2
MCF

T 2
+ 2((l(l + 1)− 1)2 − 1)

)]
dt . (6.24)

One computes that the term in the large round brackets is for all l ∈ N0 nonnegative if T ≥
1
3

√
3TMCF . Since we can expand any perturbation in a series of spherical harmonics with time

dependent coefficients and since the expression on the right-hand side of (6.23) splits in a sum of
the corresponding expressions of the spherical harmonics, we have shown that the second variation
is positive definite for T ≥ 1

3

√
3TMCF . On the other hand, for any η ∈ C∞0 ([0, T ]) and l ≥ 2 fixed,

we can choose 0 < T � 1 such that the corresponding second variation becomes negative. �

Remark 6.8. Theorem 6.7 shows that for any pair of given concentric spherical data, the pre-
scribed amount of time to join them determines whether the optimal spherical trajectory is a
local minimum for the action functional or not. The non-minimality of some critical spherical
trajectories can be understood remembering that there exist evolutions which make the velocity
contribution in the action functional arbitrarily small (as shown in [18]), and that at the same
time the round spheres in R3 are the only absolute minimizers for the Willmore functional in
the class of compact surfaces without boundary. If the amount of time given to connect the
initial with the final data is sufficiently small, the possibility to make the velocity contribution
arbitrarily close to zero compensates a non optimal curvature term. On the other hand, if the
given amount of time is sufficiently large, the Willmore minimizing property of the round spheres
favors the spherically symmetric evolutions.

We complement the previous result and show a global minimizing property for the S-optimal
trajectory connecting two concentric spheres in R3.

Theorem 6.9. Let n = 2. Let R0 > RT > 0 and T > 0 be positive real numbers. If T ≥
TMCF (R0, RT ), the S−optimal spherical trajectory connecting the two concentric round 2−spheres
of radii R0 and RT over the time interval [0, T ] is a global minimum for S in the class of smooth
evolutions.

Proof. We first observe that for any c ∈ R we have

8π(R2
0 −R2

T ) = 2

∫ T

0

∫
M
vH dµ̄tdt =

∫ T

0

∫
M

(
− 1

c
(v − cH)2 +

1

c
v2 + cH2

)
dµ̄tdt.
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Thus, we obtain∫ T

0

∫
M

(v2 + H2)dµ̄tdt = 8πc(R2
0 −R2

T ) +

∫ T

0

∫
M

(v − cH)2dµ̄tdt+ (1− c2)

∫ T

0
H2dµ̄tdt

≥ 8πc(R2
0 −R2

T ) + (1− c2)

∫ T

0

∫
M

H2dµ̄tdt ,

(6.25)

where the equality holds if and only if

v = cH (6.26)

at each point in space and time. Moreover, if (6.26) holds, the initial and final conditions force
the solution to have spherical symmetry at any time. Since

∫
M H2dµ̄t ≥ 16π, as spheres are the

unique minimizer of the Willmore energy for smooth embeddings of M , we deduce from (6.25)
that ∫ T

0

∫
M

(v2 + H2)dµ̄tdt ≥ max
c2≤1

(
8πc(R2

0 −R2
T ) + 16(1− c2)πT

)
.

Explicit calculations show that the maximum on the right hand side is uniquely attained for
c∗ = TMCF

T (note that by assumption c∗ ≤ 1), and that we thereby obtain the estimate∫ T

0

∫
M

(v2 + H2)dµ̄tdt ≥ 16π
(T 2

MCF

T
+ T

)
. (6.27)

The value of the right-hand side coincides with the value of the action functional evaluated at r0

and the optimality is proven. �

Remark 6.10. The proof of Theorem 6.9 shows that the S-optimal spherical trajectory is optimal
also in the class of non-vanishing evolutions which are piecewise smooth and have a continuous
area function t 7→ µ̄t(M). In a final remark we compare the S-optimal spherical trajectory with
a non-smooth evolution which vanishes on some positive time interval.

Remark 6.11. Let the sphere with radius R0 evolve by mean curvature flow until it vanishes at

TMCF (R0) =
R2

0
4 . Consider then a point nucleation at T − TMCF (RT ) = T − R2

T
4 , which evolves

by time–reversed MCF up to the time T . This way, at time t = T we reach the sphere of
radius RT (notice that this kind of trajectory is well defined under the further assumption T ≥
max{TMCF (R0), TMCF (RT )}). The value of the action functional for this particular trajectory is
given by 8π(R2

0 +R2
T ), which is twice the sum of the area of the initial and final data. Comparing

this value with the value of the action functional at the S-optimal smooth spherical solution,

which by (6.27) is given by the value 16π
(
T 2
MCF
T + T

)
, we see that if T > (R0+RT )2

4 the value of

the action for the non-smooth trajectory is smaller than the value for the smooth one. Collecting
all the results, we obtain the following picture. For T < TMCF (R0, RT ) the minimum of the action
functional is attained, but we can not say wether its minimum points are smooth or spherically

symmetric trajectories. For TMCF (R0, RT ) ≤ T ≤ (R0+RT )2

4 , the optimal smooth spherically

symmetric connection is the absolute action minimizer. For T > (R0+RT )2

4 the optimal smooth
rotationally symmetric evolution is still a local minimizer, nevertheless the absolute minimum of
the action functional is attained at evolutions which are not smooth and could have nucleations.

7. Appendix. Notations and results from differential geometry

Let M be an n-dimensional smooth differentiable manifold without boundary and consider a
smooth immersion φ : M → Rn+1. Denoting with (x1, ..., xn) a local coordinate system on M
and ( ∂

∂x1
, ..., ∂

∂xn
) := (e1, ..., en) the associated base for the tangent space, the Riemannian metric

g induced by φ on M via pullback reads as follows:

gij := ∂iφ · ∂jφ , (7.1)
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where · denotes the standard scalar product in Rn+1. We will denote with ∇ the covariant
derivative associated to the Levi-Civita connection of g.
Since φ(M) has codimension one in Rn+1, it follows that M is orientable and at each point of
φ(M) there is a well defined smooth inner unit normal vector field which we call ν. We define
the second fundamental form of φ(M) according to

A = (hij)ij := (ν · ∂2
ijφ)ij , (7.2)

which implies that A is a symmetric 2-tensor on φ(M).
The mean curvature of the couple (M,φ) is defined as the trace of the second fundamental form

and is denoted by ~H, while the scalar mean curvature is given by H := ~H · ν.
Within this setting, the Gauss-Weingarten relations read

∂2
ijφ = Γkij∂kφ+ hijν and ∂iν = −hikg

kl∂lφ . (7.3)

The Bianchi identities for the curvature tensor of the immersed manifold are equivalent to

∇ihjk = ∇jhik . (7.4)
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