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Abstract. In this note we establish the existence of solutions of initial-boundary
value problems for continuity equations with low regularity coefficients. We

also announce a uniqueness result and some related counterexamples.

1. Introduction. We are concerned with the continuity equation

∂tu+ div (bu) = cu+ f, (1)

where b : ]0, T [×Ω→ Rd, c :]0, T [×Ω→ R and f :]0, T [×Ω→ R are given functions
and the unknown is u :]0, T [×Ω→ R. Finally, Ω ⊆ Rd is an open set and div denotes
the divergence computed with respect to the space variable only. The investigation
of (1) in the case when b has low regularity is the object of several recent research
papers. Here we only quote the two milestones provided by the works by DiPerna
and Lions [11] and by Ambrosio [1], which deal with the case when b enjoys Sobolev
and BV regularity, respectively. We refer to the lecture notes by Ambrosio and
Crippa [2] for a more extended bibliography. Both [11] and [1] establish existence
and uniqueness results for the Cauchy problem obtained by coupling (1) with an
initial datum in the case when Ω = Rd. We also point out that these results are
motivated by applications to different classes of nonlinear PDEs, see the lecture
notes by De Lellis [10] and the informal overview by Crippa and Spinolo [9] for the
applications concerning systems of conservation laws.

This note aims at establishing existence of solutions of the initial-boundary value
problem for (1) under weak regularity assumptions on b. More precisely, if all
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functions were smooth up to the boundary then the formulation of our problem
would read as follows: ∂tu+ div(bu) = cu+ f in ]0, T [×Ω

u = ḡ on Γ−

u = ū on {0} × Ω,
(2)

where ū and ḡ are bounded smooth functions and Γ− is the subset of ]0, T [×∂Ω
where the characteristics are entering the domain ]0, T [×Ω. Note, however, that if
b and u are not sufficiently regular (if, for instance, u is only an L∞ function), then
their values on zero-measure sets are not well defined. However, in [8] (see also § 2 in
here) we introduce a distributional formulation of (2) and we consequently provide
a definition of distributional solution, see Definition 2.2 below. This is done by
relying on the theory of normal traces for low regularity vector fields, see the works
by Anzellotti [4], Chen and Frid [6], Chen, Torres and Ziemer [7] and Ambrosio,
Crippa and Maniglia [3]. The main result of this note reads as follows.

Theorem 1.1. Let Ω ⊆ Rd be an open set with uniformly Lipschitz continuous
boundary. Assume that the following conditions hold:

• b ∈ L∞(]0, T [×Ω;Rd) and div b ∈ L∞(]0, T [×Ω);
• c ∈ L∞(]0, T [×Ω) and f ∈ L∞(]0, T [×Ω).

Then for every ū ∈ L∞(Ω) and ḡ ∈ L∞(Γ−) there is a distributional solution of
problem (2).

Three remarks are here in order. First, we refer to the book by Leoni [12,
Definition 12.10] for the definition of open set with uniformly Lipschitz continuous
boundary.

Second, the proof of Theorem 1.1 closely follows an argument due to Boyer [5].
The main novelties of Theorem 1.1 compared to the analysis in [5] are: (i) we replace
the condition div b ≡ 0 with div b ∈ L∞ and (ii) we remove the assumptions that
c ≡ 0 and that Ω is bounded.

Finally, in [8] we prove that the solution of (2) is unique provided that b enjoys
BV regularity up to the boundary of Ω. We also discuss some examples showing
that, if BV regularity is violated, then (2) admits, in general, infinitely many solu-
tions. In particular, this happens even if b enjoys BV regularity in every open set
compactly contained in Ω but the BV regularity deteriorates at the boundary ∂Ω.

This note is organized as follows: in § 2 we provide the distributional formulation
of problem (2) and in § 3 we give the proof of Theorem 1.1.

1.1. Notation.

• Ln : the n-dimensional Lebesgue measure.
• Hm : the m-dimensional Hausdorff measure.
• div b: the distributional divergence of the vector field b :]0, T [×Ω→ Rd, com-

puted with respect to the space variable only.
• ∇ϕ : the gradient of the Sobolev function ϕ :]0, T [×Ω → R, computed with

respect to the space variable only.
• Lp(∂Ω) := Lp(∂Ω, Hd−1).
• Lp(]0, T [×∂Ω) := Lp(]0, T [×∂Ω, L1 ⊗Hd−1).
• Ω̄ : the closure of the set Ω ⊆ Rd.
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2. Distributional formulation of problem (2). We first observe that by inter-
preting the first and the last line of (2) in the sense of distributions we obtain∫ T

0

∫
Ω

u
(
∂tη + b · ∇η

)
dxdt+

∫
Ω

ū η(0, ·)dx +

∫ T

0

∫
Ω

(c u η + f η) dxdt = 0

∀η ∈ C∞c ([0, T [×Ω).

(3)

The following results is proven in [8] and provides a distributional interpretation
of (2) under the solely assumptions that b, div b, c and f are all bounded.

Lemma 2.1. Let Ω ⊆ Rd be an open set with uniformly Lipschitz continuous
boundary. Assume that b ∈ L∞(]0, T [×Ω;Rd) satisfies div b ∈ L∞(]0, T [×Ω). Then
the following implications hold:

i) there is a unique function, which we denote by Tr b, that belongs to the space
L∞(]0, T [×∂Ω) and satisfies, for every ϕ ∈ C∞c ([0, T [×Rd),∫ T

0

∫
Ω

ϕdiv b dxdt+

∫ T

0

∫
Ω

∂tϕ+ b · ∇ϕdxdt =

∫ T

0

∫
∂Ω

ϕTr b dHd−1dt−
∫

Ω

ϕ(0, ·) dx.

(4)
Also, the function Tr b satisfies the inequality ‖Tr b‖L∞ ≤ ‖b‖L∞ .

ii) Assume moreover that c, f ∈ L∞([0, T [×Ω) and that u ∈ L∞(]0, T [×Ω) sat-
isfies (3). Then there is a unique function, which we denote by Tr(bu), that
belongs to L∞(]0, T [×∂Ω) and satisfies, for every ϕ ∈ C∞c ([0, T [×Rd),∫ T

0

∫
Ω

u
(
∂tϕ+b · ∇ϕ

)
dxdt +

∫ T

0

∫
Ω

(c u+ f)ϕdxdt

=

∫ T

0

∫
∂Ω

ϕTr(bu) dHd−1dt−
∫

Ω

ū ϕ(0, ·) dx.
(5)

Also, the function Tr(bu) satisfies the inequality ‖Tr(bu)‖L∞ ≤ ‖b‖L∞‖u‖L∞ .

Some remarks are here in order. First, if the functions are smooth up to the
boundary, then the Gauss-Green formula implies that Tr b = b·~n and Tr(bu) = ub·~n,
where ~n is the outward pointing unit normal vector to ∂Ω. Second, in [8] we exhibit
an example where Tr b ≡ 0 but Tr(bu) ≡ 1. The vector field b in the example enjoys
BV regularity in every open set compactly contained in Ω, but the BV regularity
deteriorates at the boundary. Finally, based on Lemma 2.1, we can rigorously define
the sets Γ− and Γ0+ by setting

Γ− := {(t, x) ∈]0, T [×∂Ω : Tr b < 0}, Γ0+ := {(t, x) ∈]0, T [×∂Ω : Tr b ≥ 0}.
(6)

We can now introduce the definition of distributional solution of (2).

Definition 2.2. Let Ω ⊆ Rd be an open set with uniformly Lipschitz contin-
uous boundary and assume that b ∈ L∞(]0, T [×Ω;Rd), div b ∈ L∞(]0, T [×Ω),
c ∈ L∞(]0, T [×Ω) and f ∈ L∞(]0, T [×Ω). A distributional solution of problem (2)
is a function u ∈ L∞(]0, T [×Ω) satisfying (3) such that the equality Tr(bu) = ḡTr b
holds on Γ−.
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3. Proof of Theorem 1.1. In the following, we establish the existence of functions
u ∈ L∞(]0, T [×Ω) and β ∈ L∞(Γ0+) such that, for every ϕ ∈ C∞c ([0, T [×Rd),∫ T

0

∫
Ω

u
(
∂tϕ+ b · ∇ϕ

)
dx +

∫ T

0

∫
Ω

(c uϕ+ f ϕ) dxdt

=

∫
Γ−
ϕ ḡTr b dHd−1dt+

∫
Γ0+

ϕβ dHd−1dt−
∫

Ω

ū ϕ(0, ·)dx.
(7)

By comparing the previous expression with (3) and (5) and by recalling Defini-
tion 2.2, we infer that u is a distributional solution of problem (2) and that

Tr(bu)(t, x) =

{
ḡTr b (t, x) ∈ Γ−

β (t, x) ∈ Γ0+.

The proof of Theorem 1.1 is divided into three steps: in § 3.1 we introduce a second
order approximation and we state an existence result for the approximate problem.
In § 3.2 we establish a priori bounds on the family of approximate solutions and in
§ 3.3 we pass to the limit and obtain a distributional solution of (2).

3.1. Second order approximation. We introduce a family of approximate prob-
lems, whose classical formulation is the following:

∂tuε + div(buε) = ε∆uε + c uε + f on ]0, T [×Ω

ε
∂uε
∂~n

+ (uε − ḡ)
[
Tr b

]−
= 0 on ]0, T [×∂Ω

uε = ū on {0} × Ω.

(8)

In the previous expression, ε > 0 is a parameter, ~n as usual denotes the outward
pointing unit normal vector to ∂Ω and [Tr b]− is the negative part of the function
Tr b. In this section we assume that ū, ḡ and f , besides being bounded, are also
square integrable (see the statement of Lemma 3.2). First, we provide the definition
of weak solution of (8). To this end, we introduce the following notation:

• V : the Sobolev space W 1,2(Ω).
• V ∗ : the dual space of V , endowed with the standard dual norm.
• 〈F, u〉: the duality between F ∈ V ∗ and u ∈ V .
• The bilinear form Bε(t, ·) : V × V → R is defined for L1-a.e. t ∈]0, T [ as

Bε(t, u, v) :=−
∫

Ω

u b(t, ·)∇v dx+ ε

∫
Ω

∇u(t, ·)∇v dx

−
∫

Ω

c u(t, ·)v dx+

∫
∂Ω

u v
[
Tr b

]+
(t, ·) dHd−1,

(9)

where
[
Tr b

]+
denotes the positive part of the function Tr b.

• The functional F(t) ∈ V ∗ is defined for L1-a.e. t ∈]0, T [ by setting

〈F(t), v〉 :=

∫
∂Ω

vḡ
[
Tr b

]−
(t, ·) dHd−1 +

∫
Ω

f(t, ·)v dx (10)

Note that continuity of v 7→ 〈F(t), v〉 follows from the square integrability of
f and from the fact that, under the regularity assumptions we impose on ∂Ω,
the trace map is continuous V → L2(∂Ω), see for example Leoni [12, Theorem
15.23].

The following definition is classical, see for example Salsa [14, §9.3.1].
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Definition 3.1. A weak solution of (8) is a function

uε : [0, T ]→ V

such that

1. uε ∈ L2
(
]0, T [;V

)
and u̇ε ∈ (]0, T [;V ∗), where u̇ε denotes the distributional

derivative of uε.
2. For L1-a.e. t ∈]0, T [,

〈u̇ε(t), v〉+Bε(t,uε(t), v) = 〈F(t), v〉 ∀ v ∈ V. (11)

3. uε(0) = ū

Note that requirement 3 above makes sense since by using requirement 1 we infer
that uε ∈ C0([0, T ];L2(Ω)), see for example Salsa [14, Theorem 7.22]. Also, note
that by the bold letter uε we denote the function taking values in V , while uε is
the real-valued function uε(t, ·) = uε(t).

Remark 1. By relying on standard arguments, we get that any weak solution of (8)
satisfies, for every ϕ ∈ C∞c ([0, T [×Rd),∫ T

0

∫
Ω

uε
(
∂tϕ+ b∇ϕ

)
dxdt− ε

∫ T

0

∫
Ω

∇uε∇ϕdxdt +

∫ T

0

∫
Ω

(c uϕ+ f ϕ) dxdt

= −
∫

Ω

ϕ(0, x)ū dx−
∫ T

0

∫
∂Ω

ḡϕ
[
Tr b

]−
dHd−1dt+

∫ T

0

∫
∂Ω

uεϕ
[
Tr b

]+
dHd−1dt.

(12)

The following lemma provides an existence and uniqueness result for (8).

Lemma 3.2. Assume that b and c verify the same assumptions as in the statement
of Theorem 1.1 and assume moreover that ḡ ∈ L∞(Γ−)∩L2(Γ−), ū ∈ L∞(Ω)∩L2(Ω)
and f ∈ L2(]0, T [×Ω)∩L∞(]0, T [×Ω). Then for any given ε > 0 problem (8) admits
a unique weak solution, in the sense of Definition 3.1.

The proof of Lemma 3.2 follows by a classical Faedo-Galerkin method (see for
instance [14, §9.3.2]).

3.2. A priori estimates. In this section we establish the estimates we need to
study the convergence ε→ 0+ of the family uε solving (8).

Lemma 3.3. Let uε be the weak solution of problem (8). Then

‖uε(t)‖2L2(Ω) ≤
(
‖ū‖2L2 +

∫
Γ−
ḡ2Trb dHd−1ds+ ‖f‖2L2

)
exp

(
(‖div b‖L∞ + 2‖c‖L∞ + 1)t

)
(13)

for every t ∈]0, T [. Also, ∫ T

0

∫
Ω

|
√
ε∇uε(t, x)|2dxdt ≤ C, (14)

where C is a constant only depending on T , ‖b‖L∞ , ‖divb‖L∞ , ‖ḡ‖L2 , ‖ū‖L2 , ‖c‖L∞
and ‖f‖L2 .

Proof. First, we recall (see e.g. [14, Theorem 7.22]) that∫ t

0

〈u̇ε(s),uε(s)〉ds =
1

2

(
‖uε(t)‖2L2(Ω) − ‖uε(0)‖2L2(Ω)

)
∀ t ∈ [0, T ]. (15)
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Next, we suitably choose the test functions in (4) and we use the density of the
space C∞c (Rd) in W 1,1(Ω) and the continuity of the trace operator from W 1,1(Ω)
onto L1(∂Ω), obtaining that for L1-a.e. t ∈]0, T [∫

Ω

w div b(t, ·) dx+

∫
Ω

b(t, ·)·∇w dx =

∫
∂Ω

wTr b(t, ·) dHd−1 ∀w ∈W 1,1(Ω). (16)

We now choose v := uε(s) as a test function in (11), we integrate over ]0, t[ and we
use (16) with w = u2

ε(s, ·). After straightforward computations, we arrive at

‖uε(t)‖2L2 + 2ε

∫ t

0

∫
Ω

|∇uε|2dxds+

∫ t

0

∫
∂Ω

u2
ε

[
Tr b

]+
dHd−1ds

+

∫ t

0

∫
∂Ω

(uε − ḡ)2
[
Tr b

]−
dHd−1ds

= ‖ū‖2L2 −
∫ t

0

∫
Ω

u2
εdiv b dxds+ 2

∫ t

0

∫
Ω

c u2
εdxds

+

∫ t

0

∫
∂Ω

ḡ2
[
Tr b

]−
dHd−1ds+ 2

∫ t

0

∫
Ω

f uε dxds

≤ ‖ū‖2L2 + (‖div b‖L∞ + 2‖c‖L∞ + 1)

∫ t

0

‖uε(s)‖2L2ds

+

∫ t

0

∫
∂Ω

ḡ2
[
Tr b

]−
dHd−1ds+ ‖f‖2L2 .

Hence, by relying on the Gronwall Lemma we get (13) and then (14).

We now establish a maximum principle

Lemma 3.4. Let uε be the weak solution of problem (8), then

‖uε‖L∞ ≤
(
M + ‖f‖L∞T

)
exp

(
(‖div b‖L∞ + ‖c‖L∞)T

)
, (17)

where
M := max{‖ḡ‖L∞ , ‖ū‖L∞}. (18)

Also,

‖uε[Tr b]+‖L∞ ≤
(
M + ‖f‖L∞T

)
‖b‖L∞ exp

(
(‖div b‖L∞ + ‖c‖L∞)T

)
. (19)

Proof. The argument is divided into four steps.
Step 1: we introduce some preliminary notation and remarks.

i) We set B := ‖div b‖L∞ + ‖c‖L∞ .
ii) We define the function mε by setting

mε(t, x) :=
([
uε(t, x) + (M + ‖f‖L∞t)eBt

]−)2

.

By a slight abuse of notation, in the following we denote by m′ε the function

2
[
uε(t, x) + (M + ‖f‖L∞t)eBt

]−
. Note that, for L1-a.e. t ∈]0, T [, mε ∈ L1(Ω)

and m′ε ∈ V = W 1,2(Ω) since[
uε + (M + ‖f‖L∞t)eBt

]− ≤ max{−uε, 0}.
In the following we also use the formula

uεm
′
ε =

(
uε + (M + ‖f‖L∞t)eBt

)
m′ε −MeBtm′ε − ‖f‖L∞ t eBtm′ε

= 2mε −MeBtm′ε − ‖f‖L∞ t eBtm′ε.
(20)
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iii) We choose a sequence of smooth cut-off functions {ψn}n∈N. More precisely,
we require that, for every n ∈ N, ψn ∈ C∞c (Rd) and

0 ≤ ψn(x) ≤ 1, |∇ψn(x)| ≤ 1/n ∀x ∈ Rd and ψn ≡ 1 on Bn(0).

In the previous expression, Bn(0) denotes the ball of radius n and center at 0
in Rd.

iv) Finally, we observe that for every n ∈ N and L1−a.e. t ∈]0, T [∫ t

0

〈u̇ε(s) +B
(
M + ‖f‖L∞s

)
eBs + ‖f‖L∞eBs,m′εψn〉 ds

=

∫
Ω

mε(t, x)ψn(x) dx−
∫

Ω

([
ū+M)

]−)2

ψn(x) dx.

This formula can be established by relying on an approximation argument,
see for example the analysis in the book by Lions and Magenes [13, Section
2.2].

Step 2: we use equation (11). First, we observe that by applying (16) with
w = vuε(t, ·) we infer that equation (11) implies

〈u̇ε, v〉+
∫

Ω

uεv div b dx+

∫
Ω

v b · ∇uε dx+ ε

∫
Ω

∇uε∇v dx

+

∫
∂Ω

uεv[Tr b]−dHd−1 −
∫

Ω

c u vdx

=

∫
∂Ω

ḡv[Tr b]−dHd−1 +

∫
Ω

f v dx ∀ v ∈ V and L1 − a.e. t ∈]0, T [.

(21)

Next, we fix n ∈ N and we apply (16) with w = mε(t, ·)ψn, obtaining∫
Ω

mεψndiv b dx+

∫
Ω

m′εψn b · ∇uε dx =

∫
∂Ω

mεψn Tr b dHd−1 −
∫

Ω

mε b · ∇ψndx.

(22)
Hence, by plugging v := m′ε(t, ·)ψn as a test function in (21) and by using (20)
and (22) we obtain

〈u̇ε,m′εψn〉+

∫
Ω

mεψndiv b dx−
∫

Ω

MeBtm′εψndiv b dx−
∫

Ω

‖f‖L∞t eBtm′ε ψn div b dx

+

∫
∂Ω

mεψn[Tr b]+dx+ 2ε

∫
Ω

χε|∇uε|2ψn dx

−
∫

Ω

2mεψn c dx +

∫
Ω

MeBtm′εψn c dx+

∫
Ω

‖f‖L∞t eBtm′ε ψn c dx +Rn

=

∫
∂Ω

ψn[Tr b]−
(
mε +m′ε

(
ḡ + (M + ‖f‖L∞t)eBt − (uε + (M + ‖f‖L∞t)eBt)

))
dHd−1

+

∫
Ω

f m′εψn,

(23)

where χε is the characteristic function of the set where uε + (M + ‖f‖L∞t)eBt ≤ 0
and

Rn := −
∫

Ω

mεb · ∇ψn dx+ ε

∫
Ω

m′ε∇uε · ∇ψn dx.
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Step 3: we establish an estimate on the time integral of the first and third term
in (23). We fix τ ∈]0, T [ and we integrate in time to get∫ τ

0

〈u̇ε,m′εψn〉 dt−
∫ τ

0

∫
Ω

m′εMeBtψndiv b dxdt−
∫ τ

0

∫
Ω

‖f‖L∞ t eBtm′εψndiv b dx dt

+

∫ τ

0

∫
Ω

M eBtm′ε ψn c dxdt+

∫ τ

0

∫
Ω

‖f‖L∞ t eBtm′ε ψn c dx−
∫ τ

0

∫
Ω

f m′εψn dx

=

∫ τ

0

〈u̇ε +B(MeBt + ‖f‖L∞t+ ‖f‖L∞eBt,m′εψn〉 dt

−
∫ τ

0

∫
Ω

m′εψnMeBt
(
B + div b− c

)
dxdt

−
∫ τ

0

∫
Ω

‖f‖L∞ t eBt (B + div b− c)m′εψn

−
∫ τ

0

∫
Ω

‖f‖L∞eBtm′ε ψn dx dt−
∫ τ

0

∫
Ω

f m′εψn dx

=

∫
Ω

mε(τ, x)ψn(x) dx−
∫

Ω

(
[
ū+M

]−)2
ψn dx

−
∫ τ

0

∫
Ω

m′εψnMeBt
(
B + div b− c

)
dxdt

−
∫ τ

0

∫
Ω

‖f‖L∞ t eBt(B + div b− c)m′ε ψn dx dt

−
∫ τ

0

∫
Ω

(
‖f‖L∞eBt + f

)
m′ε ψn dx dt

≥
∫

Ω

mε(τ, x)ψn(x) dx.

(24)

To get the last inequality, we have used that ū + M ≥ 0, B + div b − c ≥ 0,
‖f‖L∞eBt + f ≥ 0 and that m′ε ≤ 0.
Step 4: we conclude the proof of Lemma 3.4. First, we point out that the convexity
of the function z 7→ ([z]−)2 implies that

mε+m
′
ε

(
ḡ + (M + ‖f‖L∞t)eBt − (uε + (M + ‖f‖L∞t)eBt)

)
≤
([
ḡ + (M + ‖f‖L∞t)eBt

]−)2

= 0.

Next, we observe that∫
∂Ω

mεψn[Tr b]+ dHd−1 + 2ε

∫
Ω

χε|∇uε|2ψndx ≥ 0.

Hence, by time integrating (23) and combining (24) with the above observations we
obtain∫

Ω

mε(τ, x)ψn(x)dx+

∫ τ

0

∫
Ω

mεψn(div b− 2c) dxdt+

∫ τ

0

Rndt ≤ 0. (25)

Next, we observe that, by recalling estimates (13), (14) and the bounds on ψn, we
get

lim
n→+∞

∫ τ

0

Rndt→ 0.



A NOTE ON THE IBVP FOR CONTINUITY EQUATIONS 9

Hence, by letting n→ +∞ in (25) and applying the Gronwall Lemma, we conclude
that uε(τ, x) + eBτ (M + ‖f‖L∞ τ) ≥ 0 for Ld+1-a.e. (τ, x) ∈ Ω. By using an
analogous argument, we obtain that uε(τ, x) ≤ eBτ (M + ‖f‖L∞ τ) for Ld+1-a.e.
(τ, x) ∈]0, T [×Ω and this concludes the proof of (17). Finally, by combining (17)
with (23) we get (19).

3.3. Conclusion of the proof of Theorem 1.1. We proceed in two steps.
Step A: we prove Theorem 1.1 under the additional assumptions ḡ ∈ L2(Γ−),
ū ∈ L2(Ω) and f ∈ L2(]0, T [×Ω). By applying Lemma 3.2 and recalling Remark 1,
we deduce that, for every ε > 0, there is a function {uε} satisfying (12). By re-
lying on Lemma 3.4, we infer that the families {uε} and {uε[Tr b]+} are weakly-∗
compact in L∞(]0, T [×Ω) and in L∞(Γ0+), respectively. By recalling the a priori
estimate (14), we can pass to the limit in (12) and obtain a couple (u, β) satisfy-
ing (7).
Step B: we remove the assumptions ḡ ∈ L2(Γ−), ū ∈ L2(Ω) and f ∈ L2(]0, T [×Ω).

Given a function ū ∈ L∞(Ω), we can construct a sequence {ūk}k∈N such that

‖ūk‖L∞ ≤ ‖ū‖L∞ ; ūk ∈ L2 for every k; ūk → ū for Ld-a.e. x ∈ Ω. (26)

For example, we can take ūk := ū1Ωk
, where {Ωk}k∈N is a sequence of open bounded

sets invading Ω. We analogously construct sequences {ḡk}k∈N and {fk}k∈N ap-
proaching ḡ and f , respectively. We term {uk, βk}k∈N the corresponding sequence of
functions satisfying (7), constructed as in Step A. Note that by recalling (17), (19)
and (26) we infer that the sequences {uk}k∈N and {βk}k∈N are weakly-∗ compact
in L∞(]0, T [×Ω) and in L∞(Γ0+), respectively. Hence, by extracting converging
subsequences we conclude the proof of Theorem 1.1.
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