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1. Introduction

This work is devoted to the study of the initial-boundary value problem for
the continuity equation

∂tu+ div (bu) = c u+ f. (1.1)

where b : ]0, T [×Ω → R
d is a given vector field, c :]0, T [×Ω → R and

f :]0, T [×Ω → R are given functions and the unknown is u :]0, T [×Ω → R.
Finally, Ω ⊆ R

d is an open set and div denotes the divergence computed with
respect to the space variable only. Note that, in the particular case when
c = div b and f ≡ 0, equation (1.1) reduces to the transport equation

∂tu+ b · ∇u = 0.

The analysis of (1.1) in the case when b has low regularity has recently drawn
considerable attention: for an overview of some of the main contributions, we
refer to the lecture notes by Ambrosio and Crippa [3]. Here, we only quote the
two main breakthroughs due to DiPerna and Lions [17] and to Ambrosio [2],
which deal with the case when div b is bounded and b enjoys Sobolev and BV
(bounded total variation) regularity, respectively. More precisely, in [17] and [2]
the authors establish existence and uniqueness results for the Cauchy problem
posed by coupling (1.1) with an initial datum in the case when Ω = R

d.
In the classical framework where all functions are smooth up to the boundary,

the initial-boundary value problem is posed by prescribing






∂tu+ div (bu) = c u+ f in ]0, T [×Ω
u = ḡ on Γ−

u = ū at t = 0,
(1.2)
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where ū and ḡ are bounded smooth functions and Γ− is the portion of ]0, T [×∂Ω
where the characteristics are entering the domain ]0, T [×Ω. Note, however,
that if b and u are not sufficiently regular (if, for example, u is only an L∞

function), then their values on negligible sets are not, a priori, well defined.
In § 3.2 we provide the distributional formulation of (1.2) by relying on the
theory of normal traces for weakly differentiable vector fields, see the works
by Anzellotti [6] and, more recently, by Chen and Frid [9], Chen, Torres and
Ziemer [10] and by Ambrosio, Crippa and Maniglia [4].

Our main positive result reads as follows:

Theorem 1.1. Let Ω ⊆ R
d be an open set with uniformly Lipschitz boundary.

Assume that the vector field b satisfies the following hypotheses:

1. b ∈ L∞(]0, T [×Ω;Rd);
2. div b ∈ L∞(]0, T [×Ω);
3. for every open and bounded set Ω∗ ⊆ Ω, b ∈ L1

loc([0, T [;BV (Ω∗;R
d)).

Assume moreover that c ∈ L∞(]0, T [×Ω) and f ∈ L∞(]0, T [×Ω). Then, given

ū ∈ L∞(Ω) and ḡ ∈ L∞(Γ−), problem (1.2) admits a unique distributional

solution u ∈ L∞(]0, T [×Ω).

Some remarks are here in order. First, we recall that Γ− is a subset of
]0, T [×∂Ω and we point out that L∞(Γ−) denotes the space L∞(Γ−, L 1 ⊗ H d−1).

Second, we refer to the book by Leoni [19, Definition 12.10] for the definition
of open set with uniformly Lipschitz boundary. In the case when Ω is bounded,
the definition reduces to the classical condition that Ω has Lipschitz boundary.
This regularity assumption guarantees that classical results on the traces of
Sobolev and BV functions apply to the set Ω, see again Leoni [19] for an
extended discussion.

Third, several works are devoted to the analysis of the initial-boundary value
problem (1.2). In particular, we refer to Bardos [7] for an extended discussion
on the case when b enjoys Lipschitz regularity, and to Mischler [20] for the case
when the continuity equation in (1.2) is the Vlasov equation. Also, we quote
reference [8], where Boyer establishes uniqueness and existence results for (1.2)
and investigates space continuity properties of the trace of the solution on
suitable surfaces. The main assumption in [8] is that b has Sobolev regularity,
and besides this there are the technical assumptions that div b ≡ 0, c ≡ 0 and
that Ω is bounded. See also the analysis by Girault and Ridgway Scott [18]
for the case when b enjoys Sobolev regularity and is tangent to the boundary.
Note that the extension of Boyer’s proof to the case when b has BV regularity
is not straightforward.

Our approach is quite different from Boyer’s: indeed, the analysis in [8] is
based on careful estimates on the behavior of b and u close to the boundary and
involves the introduction of a system of normal and tangent coordinates at ∂Ω,
and the use of a local regularization of the equation. Conversely, as mentioned
above, in the present work we rely on the theory of normal traces for weakly
differentiable vector fields. From the point of view of the results we obtain, the
main novelties of the present work can be summarized as follows.
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• We establish well-posedness of (1.2) (see Theorem 1.1) under the as-
sumptions that b enjoys BV regularity, while in [8] Sobolev regularity
is required. Note, however, that the main novelty in Theorem 1.1 is
the uniqueness part, since existence can be established under the solely
hypotheses that b ∈ L∞(]0, T [×Ω;Rd) and div b, c, f ∈ L∞(]0, T [×Ω)
by closely following the same argument as in [8], see [11] for the techni-
cal details. We point out in passing that, for the Cauchy problem, the
extension of the uniqueness result from Sobolev to BV regularity is one
of the main achievement in Ambrosio’s paper [2]. Also, this extension
is crucial in view of the applications to some classes of nonlinear PDEs
like systems of conservation laws in several space dimensions, see the
lecture notes by De Lellis [14], the overview by Crippa and Spinolo [12]
and the references therein.

• We exhibit some counterexamples (see Proposition 1.2, Theorem 1.3 and
Corollary 1.4 below) showing that, regardless the orientation of b at the
boundary, uniqueness may be violated as soon as b enjoys BV regular-
ity in every open set Ω∗ compactly contained in Ω, but the regularity
deteriorates at the boundary of Ω. Also, as the proof of Theorem 1.3
shows, if BV regularity deteriorates at the domain boundary, it may
happen that the normal trace of b at ∂Ω is identically zero, while the
normal trace of bu is identically 1, see § 3.2 for the definition of normal
trace of b and bu. Note, moreover, that, while in the proof of Proposi-
tion 1.2 we heavily rely on a previous example due to Depauw [16], the
construction of the most surprising of our counter-examples (the one
that we exhibit in the proof of Theorem 1.3) is new and does not rely
on [1, 16].

• In [8, § 7.1], Boyer establishes a space continuity property for the so-
lution of (1.2) in directions trasversal to the vector field b under the
assumption that b enjoys Sobolev regularity. Proposition 3.5 in the
present work ensures that an analogous property holds under BV reg-
ularity assumptions. The property we establish is loosely speaking the
following: assume Σr is a family of surfaces which continuously de-
pend on the parameter r and assume moreover that the surfaces are all
transversal to a given direction. Then the normal trace of the vector
field ub on Σr strongly converges to the normal trace of ub on Σr0 as
r → r0.

Here is our first counterexample. In the statement of Proposition 1.2, Tr b
denotes the normal trace of b along the outward pointing, unit normal vector
to ∂Ω, as defined in § 3.2.

Proposition 1.2. Let Ω be the set Ω :=]0,+∞[×R
2. Then there is a vector

field b :]0, 1[×Ω → R
3 such that

i) b ∈ L∞(]0, 1[×Ω;R3);
ii) div b ≡ 0;
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iii) for every open and bounded set Ω∗ such that its closure Ω̄∗ ⊆ Ω, we

have b ∈ L1([0, 1[;BV (Ω∗;R
3));

iv) Tr b ≡ −1 on ]0, 1[×∂Ω;
v) the initial-boundary value problem







∂tu+ div (bu) = 0 in ]0, 1[×Ω
u = 0 on ]0, 1[×∂Ω
u = 0 at t = 0

(1.3)

admits infinitely many different solutions.

Some remarks are here in order. First, since the vector field b is divergence-
free, then any solution of (1.3) is a solution of the transport equation

∂tu+ b · ∇u = 0

satisfying zero boundary and initial conditions. Second, the proof of Propo-
sition 1.2 is, basically, a reformulation of an intriguing construction due to
Depauw [16] which was inspired by a previous example by Aizenman [1].

Finally, note that property iv) in the statement of Proposition 1.2 states that
the vector field b is inward pointing at the boundary ∂Ω. This fact is actually
crucial for our argument because it allows us to build on Depauw’s construction.

When the vector field is outward pointing, one could heuristically expect
that the solution would not be affected by the loss of regularity of b at the
domain boundary. Indeed, in the smooth case the solution is simply “carried
out” of the domain along the characteristics and, consequently, the behavior of
the solution inside the domain is not substantially affected by what happens
close to the boundary. Hence, one would be tempted to guess that, even in the
non smooth case, when Tr b > 0 on the boundary the solution inside the domain
is not affected by boundary behaviors and uniqueness should hold even when
the BV regularity of b deteriorates at the boundary. The example discussed in
the statement of Theorem 1.3 shows that this is actually not the case and that,
even if b is outward pointing at ∂Ω, then uniqueness may be violated as soon
as the BV regularity deteriorates at the boundary.

Theorem 1.3. Let Ω be the set Ω :=]0,+∞[×R
2. Then there is a vector field

b :]0, 1[×Ω → R
3 such that

i) b ∈ L∞(]0, 1[×Ω;R3);
ii) div b ≡ 0;
iii) for every open and bounded set Ω∗ such that its closure Ω̄∗ ⊆ Ω, we

have b ∈ L1([0, 1[;BV (Ω∗;R
3));

iv) Tr b ≡ 1 on ]0, 1[×∂Ω;
v) the initial-boundary value problem

{

∂tu+ div (bu) = 0 in ]0, 1[×Ω
u = 0 at t = 0

(1.4)

admits infinitely many different solutions.
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We make some observations. First, the proof of Theorem 1.3 does not use
Depauw’s example [16] and it relies on a new construction. The basic idea
of the proof is the following. In the case when b is smooth, if Tr b > 0 then
b is outward pointing at the domain boundary and hence the solution of the
continuity equation is “carried out” the domain along the characteristic lines.
Conversely, in the proof of Theorem 1.3 we construct a nontrivial solution u
which roughly speaking “enters” the domain ]0, 1[×Ω, although Tr b > 0. This
nontrivial solution satisfies u(t, x) ≥ 0 for a.e. (t, x) ∈]0, 1[×Ω, but Tr (bu) < 0.
This apparently self-contradictory behavior is possible because the vector field
b is constructed in such a way that there are infinitely many regions where b is
inward pointing and infinitely many regions where b is outward pointing. These
regions mix at finer and finer scales as one approaches the domain boundary
and this accounts for the breakdown of the BV regularity. The key point in the
construction is that, although the total “averaged” effect is that b is outward
pointing at the domain boundary, the presence of infinitely many regions where
b is inward pointing allows to construct a nontrivial solution u “entering” the
domain.

Second, by a trivial modification of the proof one can exhibit a vector field
b satisfying properties i), ii), iii) and v) above and, instead of property iv),
Tr b ≡ 0 on ]0, 1[×∂Ω. Hence, even in the case when b is tangent at the domain
boundary, uniqueness may be violated as soon as the BV regularity deteriorates
at the domain boundary.

Third, since Tr b ≡ 1 on ]0, 1[×∂Ω, then in (1.4) we do not prescribe the
value of the solution u at the boundary. Note that by a slight abuse of notation
we still term (1.4) “initial-boundary value problem” because the equation is
defined in a domain with a non trivial boundary. Also, this is consistent with
Definition 3.4.

Finally, in the proof of Theorem 1.3 we exhibit infinitely many different
solutions of (1.4) and in general different solutions attain different values on
]0, 1[×∂Ω. However, by refining the proof of Theorem 1.3 we obtain the follow-
ing result.

Corollary 1.4. Let Ω be the set Ω :=]0,+∞[×R2, then there is a vector

field b : ]0, 1[×Ω → R
3 satisfying requirements i), . . . , iv) in the statement of

Theorem 1.3 and such that (1.4) admits infinitely many solutions that satisfy

Tr (bu) ≡ 0 on ]0, 1[×∂Ω.

The additional condition Tr (bu) ≡ 0 in the corollary can be heuristically
interpreted as (a weak version of) u ≡ 0 on ]0, 1[×∂Ω.

We also point out that, again by a trivial modification of the proof, one can
exhibit a vector field b satisfying properties i), ii), iii) and v) in the statement
of Corollary 1.4 and, instead of property iv), Tr b ≡ 0 on ]0, 1[×∂Ω. Also, for
any given real constant k, one can actually construct infinitely many solutions
of (1.4) that satisfy Tr (bu) = k on ]0, 1[×∂Ω.
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Outline. The paper is organized as follows. In § 2 we recall some results on
normal traces of vector fields established in [4]. In § 3 we establish the unique-
ness part of the proof of Theorem 1.1 and the space continuity property. In
§ 4 we construct the counter-examples that prove Proposition 1.2, Theorem 1.3
and Corollary 1.4.

Notation.

• L n: the n-dimensional Lebesgue measure.
• H m: the m-dimensional Hausdorff measure.
• µ E: the restriction of the measure µ to the measurable set E.
• 1E : the characteristic function of the set E.
• Ω: an open set in R

d having uniformly Lipschitz continuous boundary.
• L∞(]0, T [×∂Ω) := L∞(]0, T [×∂Ω,L 1 ⊗ H d−1), where we denote with
⊗ the (tensor) product of two measures.

• div b: the distributional divergence of the vector field b :]0, T [×Ω → R
d,

computed with respect to the x ∈ Ω variable only.
• DivB: the standard “full” distributional divergence of the vector field
B. In particular, when B :]0, T [×Ω → R

d+1, then DivB is the diver-
gence computed with respect to the (t, x) ∈]0, T [×Ω variable .

• ∇ϕ : the gradient of the smooth function ϕ :]0, T [×Ω → R
d, computed

with respect to the x ∈ Ω variable only.
• Tr (b,Σ): the normal trace of the vector field b on the surface Σ ⊆ Ω,
as defined in [4] (see also § 2 in here).

• Tr b: the normal trace of the vector field b on ]0, T [×∂Ω, defined as
in § 3.2.

• |x|: the Euclidian norm of the vector x ∈ R
d.

• supp ρ: the support of the smooth function ρ : RN → R.
• BR(0): the ball of radius R > 0 and center at 0.
• M∞(Λ): the class of bounded, measure-divergence vector fields, namely
the functions B ∈ L∞(Λ;RN ) such that, for every R > 0, the distribu-
tional divergence DivB is a bounded Radon measure on the bounded
open set BR(0) ∩ Λ ⊆ R

N .

2. Normal traces of bounded, measure-divergence vector fields

We collect in this section some definitions and properties concerning weak
traces of measure-divergence vector fields. Our presentation follows [4, §3].

Given an open set Λ ⊆ R
N , we denote by M∞(Λ) the family of bounded,

measure-divergence vector fields, namely the functions B ∈ L∞(Λ;RN ) such
that the distributional divergence DivB is a bounded Radon measure on
Λ ∩BR(0), for every R > 0.

We first define the normal trace of B on the boundary ∂Λ.

Definition 2.1. Assume that Λ ⊆ R
N is a domain with uniformly Lipschitz

continuous boundary. Let B ∈ M∞(Λ), then the normal trace of B on ∂Λ can
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be defined as a distribution by the identity

〈Tr(B, ∂Λ), ϕ〉 =
∫

Λ
∇ϕ ·B dx+

∫

Λ
ϕd(DivB) ∀ϕ ∈ C∞

c (RN ). (2.1)

This definition is consistent with the Gauss-Green formula if the vector field
B is sufficiently smooth. In this case the distribution is induced by the inte-
gration of B · ~n on ∂Λ, where ~n is the outward pointing, unit normal vector to
∂Λ.

We now quote [4, Proposition 3.2].

Lemma 2.2. The above defined distribution is induced by an L∞ function on

∂Λ, which we can still call Tr(B, ∂Λ), with

‖Tr(B, ∂Λ)‖L∞(∂Λ) ≤ ‖B‖L∞(Λ). (2.2)

Moreover, if Σ is a Borel set contained in ∂Λ1 ∩∂Λ2 and if ~n1 = ~n2 on Σ, then

Tr(B, ∂Λ1) = Tr(B, ∂Λ2) H
N−1 − a.e. on Σ. (2.3)

Starting from the identity (2.3), it is possible to introduce the notion of
normal trace on general bounded, oriented, Lipschitz continuous hypersurfaces
Σ ⊆ R

N . Indeed, once the orientation of ~nΣ is fixed, we can find Λ1 ⊆ R
N such

that Σ ⊆ ∂Λ1 and the normal vectors nΣ and n1 coincide. Then we can define

Tr−(B,Σ) := Tr(B, ∂Λ1). (2.4)

Analogously, if Λ2 ⊆ R
N is an open subset such that Σ ⊆ ∂Λ2, and ~n2 = −~nΣ,

we can define
Tr+(B,Σ) := −Tr(B, ∂Λ2). (2.5)

Note that we have the formula

(DivB) Σ =
(

Tr+(B,Σ)− Tr−(B,Σ)
)

H
N−1 Σ. (2.6)

In particular, Tr+ and Tr− coincide H N−1-a.e. on Σ if and only if Σ is a
(DivB)-negligible set. Note, moreover, that the measure (DivB) Σ does not
depend on the orientation of Σ. By recalling definition (2.5), one can verify
that this is consistent with property (2.6).

We now go over some space continuity results established in [4, §3]. We first
recall the definition of a family of graphs.

Definition 2.3. Let I ⊆ R be an open interval. A family of oriented surfaces
{Σr}r∈I ⊆ R

N is a family of graphs if there are

• a bounded open set D ⊆ R
N−1;

• a Lipschitz function f : D → R;
• a system of coordinates (x1, · · · , xN )

such that the following holds. For every r ∈ I,

Σr =
{

(x1, . . . , xN ) : f(x1, . . . , xN−1)− xN = r
}

and Σr is oriented by the normal (−∇f, 1)/
√

1 + |∇f |2.
We now quote [4, Theorem 3.7].
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Theorem 2.4. Let B ∈ M∞(RN ) and let {Σr}r∈I be a family of graphs as in

Definition 2.3. Given r0 ∈ I, we define the functions α0, αr : D → R by setting

α0(x1, . . . , xN−1) := Tr−(B,Σr0)
(

x1, . . . , xN−1, f(x1, . . . , xN−1)− r0
)

and

αr(x1, . . . , xN−1) := Tr+(B,Σr)
(

x1, . . . , xN−1, f(x1, . . . , xN−1)− r
)

.

Then we have

αr
∗
⇀ α0 weakly∗ in L∞(D,L N−1 D) as r → r+0 .

3. Proof of Theorem 1.1

3.1. Preliminary results. In this section we establish some results that are
preliminary to the distributional formulation of problem (1.2).

Lemma 3.1. Let B be a locally bounded vector field on R
N and let {ρε}0<ε<1

be a standard family of mollifiers satisfying supp ρε ⊆ Bε(0) for every ε ∈]0, 1[.
The divergence of B is a locally finite measure if and only if for any K

compact in RN there exists a positive constant C such that the inequality

‖DivB ∗ ρε‖L1(K) ≤ C (3.1)

holds uniformly in ε ∈]0, 1[.
Proof. If DivB is a locally finite measure the inequality (3.1) is satisfied on any
compact K for some constant C independent from ε.

On the other hand, the sequence (DivB) ∗ ρε = Div (B ∗ ρε) converges to
DivB in the sense of distributions and the uniform bound (3.1) implies that we
can extract a subsequence which converges weakly in the sense of measures. �

Lemma 3.2. Let Λ ⊆ R
N be an open subset with uniformly Lipschitz continu-

ous boundary and let B belong to M∞(Λ). Then the vector field

B̃(z) :=

{

B(z) z ∈ Λ
0 otherwise

belongs to M∞(RN ).

Proof. We only need to check that the distributional divergence of B̃ is a locally
bounded Radon measure. Given ε ∈]0, 1[ we define the ε-neighborhood of ∂Λ
as

∂Λε = {z ∈ R
N : dist(z, ∂Λ) < ε}.

Any compact subset K of RN can be decomposed as follows:

K =
(

K ∩ (Λ \ ∂Λε)
)

∪
(

K ∩ ∂Λε

)

∪
(

K \ (Λ ∪ ∂Λε)
)

. (3.2)

Also, note that Div (B̃ ∗ ρε) is zero on K \ (Λ ∪ ∂Λε) and that its L1 norm is
uniformly bounded on K ∩ (Λ \ ∂Λε). Moreover,

∫

K∩∂Λε

|div (B̃ ∗ ρε)| dz ≤
∫

K∩∂Λε

|B̃| ∗ |∇ρε| dz

≤ ‖B̃‖L∞(RN )‖∇ρε‖L1(RN )L
N (K ∩ ∂Λε).

(3.3)
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We observe that ‖B̃‖L∞(RN ) = ‖B‖L∞(Λ), that L N (K ∩ ∂Λε) ≤ C∗ε and that

‖∇ρε‖L1(RN ) ≤ C∗∗/ε for suitable constants C∗ > 0 and C∗∗ > 0. Hence,
∫

K∩∂Λε

|div (B̃ ∗ ρε)| dz ≤ ‖B‖L∞(Λ)C∗C∗∗

and by relying on Lemma 3.1 we conclude. �

3.2. Distributional formulation of problem (1.2). We can now discuss the
distributional formulation of (1.2). The following result provides a distribu-
tional formulation of the normal trace of b and bu on ]0, T [×∂Ω.
Lemma 3.3. Let Ω ⊆ R

d be an open set with uniformly Lipschitz boundary and

let T > 0. Assume that b ∈ L∞(]0, T [×Ω;Rd) is a vector field such that div b
is a finite Radon measure on ]0, T [×(Ω ∩ BR(0)) for every R > 0. Then there

is a unique function, which in the following we denote by Tr b, that belongs to

L∞(]0, T [×∂Ω) and satisfies
∫ T

0

∫

∂Ω
Tr b ϕ dH d−1dt =

∫ T

0

∫

Ω
b · ∇ϕdxdt+

∫ T

0

∫

Ω
ϕd(div b)

∀ϕ ∈ C∞
c ([0, T [×R

d).

(3.4)

Also, if w ∈ L∞(]0, T [×Ω), c ∈ L∞(]0, T [×Ω) and f ∈ L∞(]0, T [×Ω) satisfy
∫ T

0

∫

Ω
w
(

∂tη + b · ∇η
)

dxdt+

∫ T

0

∫

Ω
fη dxdt +

∫ T

0

∫

Ω
cwη dxdt = 0

∀η ∈ C∞
c (]0, T [×Ω),

(3.5)

then there are two uniquely determined functions, which in the following we

denote by Tr (bw) ∈ L∞(]0, T [×∂Ω) and w0 ∈ L∞(Ω), that satisfy
∫ T

0

∫

∂Ω
Tr (bw)ϕdH d−1dt−

∫

Ω
ϕ(0, ·)w0 dx

=

∫ T

0

∫

Ω
w
(

∂tϕ+ b · ∇ϕ
)

dxdt+

∫ T

0

∫

Ω
fϕdxdt +

∫ T

0

∫

Ω
cwϕdxdt

∀ϕ ∈ C∞
c ([0, T [×R

d).

(3.6)

Three remarks are here in order. First, note that requirement (3.5) is nothing
but the distributional formulation of the equation

∂tw + div (bw) = cu+ f in ]0, T [×Ω. (3.7)

Second, a possible heuristic interpretation of Lemma 3.3 is the following. If
equation (3.7) is satisfied inside the domain ]0, T [×Ω, then the initial datum of
w and the normal trace of bw at the domain boundary are uniquely defined, at
least in a distributional sense. Finally, note that the existence of the function
w0 follows from Lemma 1.3.3 in [13], the novelty of Lemma 3.3 is establishing
the existence of the function Tr (bw).
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Proof. We first establish the existence of a function Tr b satisfying (3.4). Note
that the uniqueness of such a function follows from the arbitrariness of the test
function ϕ. We define the vector field B : Rd+1 → R

d+1 by setting

B(t, x) :=

{

(1, b) (t, x) ∈]0, T [×Ω
0 elsewhere in R

d+1 (3.8)

and we note that DivB
∣

∣

]0,T [×Ω
= div b, therefore B satisfies the hypotheses of

Lemma 3.2 provided that Λ :=]0, T [×Ω. Hence, B ∈ M∞(Rd+1). We apply
Lemma 2.2 and we observe that Tr (B, ∂Λ)

∣

∣

{0}×Ω
≡ −1. We can then conclude

by setting

Tr b := Tr (B, ∂Λ)
∣

∣

]0,T [×∂Ω

and by observing that, since ϕ ∈ C∞
c ([0, T [×R

d), then

−
∫

Ω
ϕ(0, x)dx =

∫ T

0

∫

Ω
∂tϕdxdt.

The existence of the function Tr (bw) satisfying (3.6) can be established by
setting

C(t, x) :=

{

(w, bw) (t, x) ∈]0, T [×Ω
0 elsewhere in R

d+1 (3.9)

and observing that condition (3.5) implies that DivC
∣

∣

]0,T [×Ω
= cu+ f. We can

then conclude by using the same argument as before, by setting

w0 := −Tr (C, ∂Λ)
∣

∣

{0}×Ω
and Tr (bw) := Tr (C, ∂Λ)

∣

∣

]0,T [×∂Ω
. (3.10)

�

We now provide the precise formulation of problem (1.2). In the following
definition the functions u0, Tr (bu) and Tr b are defined as in Lemma 3.3.

Definition 3.4. Let Ω ⊆ R
d be an open set with uniformly Lipschitz boundary.

Assume that b ∈ L∞(]0, T [×Ω;Rd) is a vector field such that div b is a finite
Radon measure on ]0, T [×(Ω ∩ BR(0)) for every R > 0. Assume furthermore
that c, f ∈ L∞(]0, T [×Ω). A distributional solution of (1.2) is a function
u ∈ L∞(]0, T [×Ω) such that

i) u satisfies equation (3.5);
ii) u0 = ū;
iii) Tr (bu) = ḡTr b on the set Γ− which is defined as follows:

Γ− :=
{

(t, x) ∈]0, T [×∂Ω : (Tr b)(t, x) < 0
}

.

3.3. Proof of Theorem 1.1. First, we observe that the existence of a solution
of (1.2) is established in [11] by closely following an argument due to Boyer [8].
More precisely, in [11] we introduce a second order approximation of (1.2) and
we establish an existence and uniqueness result for the approximate problem by
relying on classical parabolic techniques. Next, we establish suitable uniform
a-priori estimates and pass to the limit.
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Second, we point out that, by linearity, establishing uniqueness amounts to
show that, if f ≡ 0, ḡ ≡ 0 and ū ≡ 0, then the solution of problem (1.2) satisfies
u ≡ 0. The argument is organized in two main steps: in § 3.3.1 we show that,
under the hypotheses of Theorem 1.1, distributional solutions of (1.2) enjoy
renormalization properties. Next, in § 3.3.2 we conclude by relying on a by now
standard argument based on the Gronwall Lemma.

3.3.1. Renormalization properties. We assume ū ≡ 0 and f ≡ 0 and we proceed
according to the following steps.

Step 1: we use the same argument as in Ambrosio [2] to establish renormal-
ization properties “inside” the domain. More precisely, the Renormalization
Theorem [2, Theorem 3.5] implies that the function u2 satisfies

∫ T

0

∫

Ω
u2

(

∂tψ + b · ∇ψ
)

dxdt+

∫ T

0

∫

Ω
u2(2c− div b)ψ dxdt = 0

∀ψ ∈ C∞
c ([0, T [×Ω).

(3.11)

Step 2: we establish a trace renormalization property.
First, we observe that by combining hypothesis 3 in the statement of Theo-

rem 1.1 with Theorem 3.84 in the book by Ambrosio, Fusco and Pallara [5] we
obtain that the vector field B defined as in (3.8) satisfies B(t, ·) ∈ BV (Ω∗) for
every open and bounded set Ω∗ ⊆ R

d and for L 1-a.e. t ∈]0, T [.
Next, we recall that the proof of Lemma 3.3 ensures that the vector field uB

belongs to M∞(Rd+1). We can then apply [4, Theorem 4.2], which implies the
following trace renormalization property:

Tr (u2b)(t, x) =















(

Tr (ub)

Tr b

)2

Tr b Tr b(t, x) 6= 0

0 Tr b(t, x) = 0.

(3.12)

Some remarks are here in order. First, to define Tr (u2b) we recall (3.11), use
Lemma 3.3 and set

Tr (u2b) := Tr (u2B, ∂Λ)
∣

∣

]0,T [×∂Ω
, (3.13)

where Λ =]0, T [×Ω.
Second, note that, strictly speaking, the statement of [4, Theorem 4.2] re-

quires that the vector field B has BV regularity with respect to the (t, x)-
variables, which in our case would imply some control on the time derivative of
b. However, by examining the proof of [4, Theorem 4.2] and using the particular
structure of the vector field B one can see that only space regularity is needed
to establish (3.12).
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Step 3: by combining (3.11) with (3.13) and recalling Lemma 3.3 we infer
that

∫ T

0

∫

∂Ω
Tr (u2b)ϕdH d−1dt =

∫ T

0

∫

Ω
u2

(

∂tϕ+ b · ∇ϕ
)

dxdt

+

∫ T

0

∫

Ω
u2(2c− div b)ϕdxdt ∀ϕ ∈ C∞

c ([0, T [×R
d).

(3.14)

3.3.2. Conclusion of the proof of Theorem 1.1. We conclude by following a by
now standard argument, see for example the expository work by De Lellis [15,
Proposition 1.6]. Also, note that in the remaining part of the proof we use [13,
Lemma 1.3.3] and we identify u2 with its representative satisfying that the map
t 7→ u2(t, ·) is continuous in L∞

loc(Ω) endowed with the weak∗ topology. We
proceed according to the following steps.

Step A: we fix t̄ ∈]0, T [ and we construct a sequence of test functions ϕn as
follows. First, we choose a function h : [0,+∞[→ R such that

h ∈ C∞
c ([0,+∞[), h ≥ 0 and h′ ≤ 0 everywhere in [0,+∞[. (3.15)

Next, we set
ν(t, x) := h

(

|x| − ‖b‖L∞ |t− t̄|
)

(3.16)

and we observe that ν satisfies

∂tν = ‖b‖L∞h′, ∇ν =
x

|x|h
′ for L

d+1-a.e. (t, x) ∈ ]0, t̄ [×R
d.

We recall that h′ ≤ 0 and we conclude that

∂tν+b ·∇ν ≤ (‖b‖L∞ −‖b‖L∞)h′ = 0 for L
d+1-a.e. (t, x) ∈ ]0, t̄ [×R

d. (3.17)

We then choose a sequence of cut-off functions χn ∈ C∞
c ([0,+∞[) satisfying

χn ≡ 1 on [0, t̄ ], χn ≡ 0 on [ t̄+ 1/n,+∞[, χ′
n ≤ 0 everywhere on [0,+∞[.

(3.18)
Finally, we set

ϕn(t, x) := χn(t)ν(t, x) (t, x) ∈ [0, T [×R
d

and we observe that ϕn ≥ 0 everywhere on [0,+∞[×R
d and that ϕn is com-

pactly supported in [0, T [×R
d provided that n is sufficiently large.

Step B: we use ϕn as a test function in (3.14). First, we observe that by
recalling that ḡ ≡ 0 and by using the renormalization property (3.12) we obtain
that the left hand side of (3.14) is nonnegative, namely

0 ≤
∫ T

0

∫

Ω
u2νχ′

ndxdt+

∫ T

0

∫

Ω
χnu

2
(

∂tν + b · ∇ν
)

dxdt

+

∫ T

0

∫

Ω
(2c− div b)u2 νχn dxdt .

Next, we let n→ +∞ and by recalling properties (3.17) and (3.18) we obtain
∫

Ω
ν(t̄, ·)u2(t̄, ·)dx ≤ (2‖c‖L∞ + ‖div b‖L∞)

∫ t̄

0

∫

Ω
ν u2dxdt.
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We can finally conclude by using the Gronwall Lemma and the arbitrariness of
the function h in (3.16). This concludes the proof of Theorem 1.1. �

3.4. Space continuity property. We now state the analogue of the space
continuity property established in the Sobolev case by Boyer in [8, § 7.1].

Proposition 3.5. Let b, c and f be as in the statement of Theorem 1.1,

u ∈ L∞(]0, T [×Ω) be the distributional solution of (1.2) and B ∈ M∞(Rd+1)
be the same vector field as in (3.8). Given a family of graphs {Σr}r∈I ⊆ R

d as

in Definition 2.3, we fix r0 ∈ I and we define the functions γ0, γr :]0, T [×D → R

by setting

γ0(t, x1, . . . , xd−1) := Tr−(uB, ]0, T [×Σr0)
(

t, x1, . . . , xd−1, f(x1, . . . , xd−1)− r0
)

and

γr(t, x1, . . . , xd−1) := Tr+(uB, ]0, T [×Σr)
(

t, x1, . . . , xd−1, f(x1, . . . , xd−1)− r
)

.

Then

γr → γ0 strongly in L1(]0, T [×D) as r → r+0 . (3.19)

Proof. The argument is organized in three steps.
Step 1: we make some preliminary considerations and introduce some no-

tation. With a slight abuse of notation, we consider b as a vector field defined
on R

d+1, set equal to zero out of ]0, T [×Ω.
By combining hypothesis 3 in the statement of Theorem 1.1 with [5, Theorem

3.84] we obtain that b(t, ·) ∈ BVloc(R
d) for L 1-a.e. t ∈ R. Hence, the classical

theory of BV functions (see for instance [5, Section 3.7]) ensures that the outer
and inner traces b(t, ·)+Σr

and b(t, ·)−Σr
are well-defined, vector valued functions

for L 1-a.e. t ∈ R and for every r.
Step 2: given B as in (3.8), we define the functions β0, βr :]0, T [×D → R

by setting

β0(t, x1, . . . , xd−1) := Tr−(B, ]0, T [×Σr0)
(

t, x1, . . . , xd−1, f(x1, . . . , xd−1)− r0
)

and

βr(t, x1, . . . , xd−1) := Tr+(B, ]0, T [×Σr)
(

t, x1, . . . , xd−1, f(x1, . . . , xd−1)− r
)

.

We claim that

βr → β0 strongly in L1(]0, T [×D) as r → r+0 . (3.20)

To establish (3.20), we first observe that by using [5, Theorem 3.88] and an
approximation argument one can show that for every r ∈ I we have

βr = b+Σr
· ~m, and β0 = b−Σ0

· ~m for L
d-a.e. (t, x) ∈]0, T [×D.

In the previous expression, ~m = (−∇f, 1)/
√

1 + |∇f |2 is the unit normal vector
defining the orientation of Σr. Also, by again combining [5, Theorem 3.88] with
an approximation argument we get that

∫ T

0

∫

D

|βr − β0|dx1 . . . dxd−1
dt ≤

∫ T

0
|Db(t, ·)|(S)dt,
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which implies (3.20). In the previous expression, |Db(t, ·)| denotes the total
variation of the distributional derivative of b(t, ·), and S is the set

S :=
{

(x1, . . . , xd−1, xd) : (x1, . . . , xd−1) ∈ D and

f(x1, . . . , xd−1)− r < xd < f(x1, . . . , xd−1)− r0

}

.

Step 3: we conclude the proof of Proposition 3.5. First, we observe that
due to Theorem 2.4 we have that

γr ⇀ γ0 weakly in L2(]0, T [×D) as r → r+0 . (3.21)

Next, we recall that γr is the normal trace of uB and that βr is the trace of B,
so that by applying [4, Theorem 4.2] we get

γ2r = βrTr
+(u2B, ]0, T [×Σr) and γ20 = β0Tr

−(u2B, ]0, T [×Σr0). (3.22)

By combining (3.20) with the uniform bound ‖βr‖L∞ ≤ ‖b‖L∞ we infer
that βr → β0 strongly in L2(]0, T [×D). Then we apply Theorem 2.4 to
Tr+(u2B, ]0, T [×Σr) and hence by recalling (3.22) we conclude that

γ2r ⇀ γ20 weakly in L2(]0, T [×D) as r → r+0 . (3.23)

By using (3.21), we get that (3.23) implies that γr → γ0 strongly in
L2(]0, T [×D) and from this we eventually get (3.19). �

4. Counter-examples

4.1. Some notation and a preliminary result. For the reader’s conve-
nience, we collect here some notation we use in this section.

• Throughout all § 4, Ω denotes the set ]0,+∞[×R
2.

• We use the notation (r, y) ∈]0,+∞[×R
2 or, if needed, the notation

(r, y1, y2) ∈ ]0,+∞[ × R × R to denote points in Ω.
• div denotes the divergence computed with respect to the (r, y)-variable.
• Div denotes the divergence computed with respect to the (t, r, y)-
variable.

• divy denotes the divergence computed with respect to the y variable
only.

• We decompose ]0, 1[×Ω as ]0, 1[×Ω = Λ+ ∪ Λ− ∪ S, where
Λ+ := {(t, r, y) ∈]0, 1[×Ω : r > t} (4.1)

and
Λ− := {(t, r, y) ∈]0, 1[×Ω : r < t}, (4.2)

while S is the surface

S := {(t, r, y) ∈]0, 1[×Ω : r = t}. (4.3)

We also observe that, owing to [13, Lemma 1.3.3], up to a redefinition of u(t, x)
in a negligible set of times, we can assume that the map t 7→ u(t, ·) is continuous
from ]0, 1[ in L∞(Ω) endowed with the weak-∗ topology, and in particular

u(t, ·) ∗
⇀ u0 in L∞(Ω) as t→ 0+,
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where u0 the value attained by u at t = 0, as in Lemma 3.3.

4.2. Proof of Proposition 1.2. The proof is organized in three steps.
Step 1: we recall an intriguing example due to Depauw [16] which is pivotal

to our construction. Note that that, in this step, r should be regarded as a time

variable, while y ∈ R
2 is the only space variable.

In [16], Depauw explicitly exhibits a time dependent vector field d :]0, 1[×R
2 → R

2

satisfying the following properties:

a) d ∈ L∞(]0, 1[×R
2;R2).

b) For every r > 0, d(r, ·) is piecewise smooth and, for almost every y ∈ R
2,

the characteristic curve trough y is well defined.
c) divyd ≡ 0.
d) d ∈ L1

loc

(

]0, 1[;BVloc(R
2;R2)

)

, but d /∈ L1
(

[0, 1[;BVloc(R
2;R2)

)

. Namely,
the BV regularity deteriorates as r → 0+.

e) The Cauchy problem
{

∂rw + divy(dw) = 0 on ]0, 1[×R
2

w = 0 at r = 0
(4.4)

admits a nontrivial bounded solution, which in the following we denote
by v(r, y).

Step 2: we exhibit a vector field b satisfying properties i), . . . , v) in the
statement of Theorem 1.3. We recall that the sets Λ+, Λ− and S are defined
by (4.1), (4.2) and (4.3), respectively. We define the vector field b :]0, 1[×Ω →
R
3 by setting

b(t, r, y) :=

{ (

1, d(r, y)
)

if r ≤ 1
(

1, 0
)

if r > 1
(4.5)

In the previous expression, d is Depauw’s vector field as in Step 1, extended
to the constant vector field (1, 0) for r > 1. By relying on properties a), c) and
d) in Step 1 one can show that b satisfies properties i), ii), iii) in the statement
of Proposition 1.2.

Next, we recall that the initial-boundary value problem (1.3) admits the
trivial solution u ≡ 0 and that the linear combination of solutions is again a
solution. Hence, establishing property v) in the statement of Proposition 1.2
amounts to exhibit a nontrivial solution of (1.3). We define the function u by
setting

u(t, r, y) :=

{

v(r, y) in Λ−

0 in Λ+,
(4.6)

where v is the same function as in Step 1.
Step 3: we show that the function u is a distributional solution of (1.3). We

set C := (u, bu) and we observe that by construction DivC ≡ 0 on Λ+. Also,
property e) in Step 1 implies that DivC ≡ 0 on Λ−. Finally, by recalling (2.6)
we infer that DivC S = 0 since the normal trace is 0 on both sides.

We are left to show that the initial and boundary data are attained. First,

we observe that u(t, ·) ∗
⇀ 0 as t→ 0+ and hence u0 ≡ 0 by the weak continuity
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of u with respect to time. Next, we fix an open and bounded set D ⊆ R
2 and

we define the family of graphs {Σr}r∈]0,1[ ⊆]0, 1[×Ω by setting

Σr :=
{

(t, r, y1, y2) : t ∈]0, 1[ and (y1, y2) ∈ D
}

. (4.7)

The orientation is given by the vector (0,−1, 0, 0). We point out that require-

ment e) in Step 1 implies that v(r, ·) ∗
⇀ 0 as r → 0+. Hence, by recalling that

b is given by (4.5), we obtain that Tr+(C,Σr)
∗
⇀ 0 as r → 0+. By recalling

Theorem 2.4, we infer that Tr−(C,Σ0) ≡ 0. On the other hand, by looking
at the proof of Lemma 3.3 we realize that Tr−(C,Σ0) = Tr (bu) on ]0, 1[×∂Ω.
This concludes the proof of Proposition 1.2. �

4.3. Proof of Theorem 1.3. The proof is divided in three main steps:

(1) in § 4.3.1 we construct the auxiliary vector field βk, which will serve as
a “building block” for the construction of the vector field b;

(2) in § 4.3.2 we define the vector field b;
(3) finally, in § 4.3.3 we exhibit a non trivial solution of (1.4). Since the

problem is linear, any linear combination of solutions is also a solution
and hence the existence of a nontrivial solution implies the existence of
infinitely many different solutions.

4.3.1. Construction of the vector field βk. We fix k ∈ N and we construct the
vector field βk, which is defined on the cell

(r, y1, y2) ∈ ]0, 4 · 2−k[×]0, 4 · 2−k[×]0, 4 · 2−k[.

We split the r-interval ]0, 4 · 2−k[ into four equal sub-intervals and we proceed
according to the following steps.
Step 1: if r ∈]0, 2−k[, we consider a “three-colors chessboard” in the (y1, y2)-
variables at scale 2−k as in Figure 1, left part. The vector field βk attains
the values (1, 0, 0), (−5, 0, 0) and (0, 0, 0) on dashed, black and white squares,
respectively. Note that βk satisfies

div βk ≡ 0 on ]0, 2−k[×]0, 4 · 2−k[×]0, 4 · 2−k[ (4.8)

since βk is piecewise constant and tangent at its discontinuity surfaces.
Here is the rigorous definition of βk: we set

Dk :=
⋃

n,m=0,1

](2n)2−k, (2n + 1)2−k[×](2m)2−k, (2m+ 1)2−k[

and

Bk :=
⋃

n,m=0,1

](2n+ 1)2−k, (2n + 2)2−k[×](2m+ 1)2−k, (2m+ 2)2−k[. (4.9)
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Figure 1. The vector field βk(r, y1, y2) for different values of
r: the dashed, black and white squares are the region where βk
attains the values (1, 0, 0), (−5, 0, 0) and (0, 0, 0), respectively.

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
������
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

y2y2y2

y1y1y1
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Note that Dk and Bk are represented in the left part of Figure 1 by dashed and
black regions, respectively. Next, we define

βk(r, y1, y2) :=























(1, 0, 0) if (y1, y2) ∈ Dk

(−5, 0, 0) if (y1, y2) ∈ Bk

(0, 0, 0) elsewhere on
]

0, 4 · 2−k
[

×
]

0, 4 · 2−k
[

(4.10)

Step 2: if r ∈]2−k, 2 · 2−k[, then the heuristic idea to define βk is that we
want to (i) horizontally leftward slide the rightmost dashed squares and (ii)
horizontally rightward slide the leftmost black squares. The final goal is that
at r = 2 · 2−k we have reached the configuration of the vector field described in
Figure 1, center part. The nontrivial issue is that we also require that

div βk ≡ 0 on ]0, 2 · 2−k[×]0, 4 · 2−k[×]0, 4 · 2−k[. (4.11)

To achieve (4.11), we employ the construction illustrated in Figure 2: the vector
field βk attains the value (1, 0, 0) on the horizontal part of the dashed region, the
value (1,−1, 0) on the inclined part of the dashed region and the value (0, 0, 0)
elsewhere. Note that (4.11) is satisfied because βk is piecewise constant and
it is tangent at its discontinuity surfaces on the interval r ∈]2−k, 2 · 2−k[. We
conclude by recalling (4.8) and by observing that the normal trace is continuous
at the discontinuity surface r = 2−k and hence no divergence is created there.
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Figure 2. The vector field βk(r, y1, y2) for y2 ∈]0, 2−k[ and
y2 ∈]2 · 2−k, 3 · 2−k[. The field βk attains the value (1,−1, 0)
in the inclined dashed region.
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r = 2 · 2−k

r

y1

Here is the rigorous definition of βk for r ∈]2−k, 2 · 2−k[:

βk(r, y1, y2) :=























































































(1, 0, 0) if (y1, y2) ∈]0, 2−k[×]0, 2−k[
or (y1, y2) ∈]0, 2−k[×]2 · 2−k, 3 · 2−k[

(1,−1, 0) if −r + 3 · 2−k < y1 < −r + 4 · 2−k

and y2 ∈]0, 2−k[ or y2 ∈]2 · 2−k, 3 · 2−k[

(−5, 0, 0) if (y1, y2) ∈]3 · 2−k, 4 · 2−k[×]2−k, 2 · 2−k[
or (y1, y2) ∈]3 · 2−k, 4 · 2−k[×]3 · 2−k, 4 · 2−k[

(−5,−5, 0) if r < y1 < r + 2−k

and y2 ∈]2−k, 2 · 2−k[ or y2 ∈]3 · 2−k, 4 · 2−k[

(0, 0, 0) elsewhere on
]

0, 4 · 2−k
[

×
]

0, 4 · 2−k
[

(4.12)
Step 3: if r ∈]2 · 2−k, 3 · 2−k[, the heuristic idea is defining βk in such a way
that (i) we push up the lower black region in Figure 1, central part, (ii) we
pull down the upper dashed region in Figure 1, central part and (iii) we satisfy
the requirement that βk is divergence-free. This is done by basically using the
same construction as in Step 2. Note that at r = 3 · 2−k we have reached the
configuration described in Figure 1, right part.
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Here is the rigorous definition of βk for r ∈]2 · 2−k, 3 · 2−k[:

βk(r, y1, y2) :=







































































(1, 0, 0) if (y1, y2) ∈]0, 2 · 2−k[×]0, 2−k[

(1, 0,−1) if y1 ∈]0, 2 · 2−k[
and −r + 4 · 2−k < y2 < −r + 5 · 2−k

(−5, 0, 0) if (y1, y2) ∈]2 · 2−k, 4 · 2−k[×]3 · 2−k, 4 · 2−k[

(−5, 0,−5) if y1 ∈]2 · 2−k, 4 · 2−k[
and r − 2−k < y2 < r

(0, 0, 0) elsewhere on
]

0, 4 · 2−k
[

×
]

0, 4 · 2−k
[

Step 4: if r ∈]3 · 2−k, 4 · 2−k[, then we consider the “three colors chessboard”
in the (y1, y2)-variables at scale 2 · 2−k illustrated in Figure 1, right part. The
vector field βk attains the value (1, 0, 0), (−5, 0, 0) and (0, 0, 0) on dashed, black
and white regions, respectively.

Here is the rigorous definition of βk for r ∈]3 · 2−k, 4 · 2−k[:

βk(r, y1, y2) :=























(1, 0, 0) if (y1, y2) ∈]0, 2 · 2−k[×]0, 2 · 2−k[

(−5, 0, 0) if (y1, y2) ∈]2 · 2−k, 4 · 2−k[×]2 · 2−k, 4 · 2−k[

(0, 0, 0) elsewhere on
]

0, 4 · 2−k
[

×
]

0, 4 · 2−k
[

Note that by construction

div βk ≡ 0 on ]0, 4 · 2−k[×]0, 4 · 2−k[×]0, 4 · 2−k[. (4.13)

4.3.2. Construction of the vector field b. We now define the vector field b by
using as a “building block” the vector field βk defined in § 4.3.1. We proceed
in two steps.
Step A: we extend βk to ]0, 22−k [×R

2 by imposing that it is 22−k-periodic in
both y1 and y2, namely we set

βk(r, y1 +m22−k, y2 + n22−k) := βk(r, y1, y2) (4.14)

for every m,n ∈ Z and (y1, y2) ∈
]

0, 22−k
[

×
]

0, 22−k
[

. We recall (4.13) and

we observe that βk is tangent at the surfaces y1 = m22−k and y2 = n22−k,
m,n ∈ Z. We therefore get

div βk ≡ 0 on ]0, 22−k[×R
2. (4.15)

Step B: we define the vector field b. To this end, we introduce the decompo-
sition

]0, 1[:= N ∪
∞
⋃

k=3

Ik, (4.16)

where N is an L 1-negligible set and

Ik :=]22−k, 23−k[, k ≥ 3.
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We then set

b(t, r, y1, y2) :=







βk(r − 22−k, y1, y2) if r ∈ Ik

(1, 0, 0)1D + (−5, 0, 0)1B if r ≥ 1.
(4.17)

In the previous expression, 1D denotes the characteristic function of the set

D :=
{

(t, r, y1, y2) : β3(1/2, y1, y2) · (1, 0, 0) = 1
}

and 1B is the characteristic function of the set

B :=
{

(t, r, y1, y2) : β3(1/2, y1, y2) · (1, 0, 0) = −5
}

.

Some remarks are here in order. First, note that actually the vector field b is
constant with respect to t. Second, the most interesting behavior occurs for
r ≤ 1. Indeed, the vector field b behaves like β3 on the interval r ∈]1/2, 1[,
like β4 on the interval r ∈]1/4, 1/2[, like β5 on the interval r ∈]1/8, 1/4[, and
so on. Loosely speaking, as r → 0+ the r-component of vector field b oscillates
between the values 1, −5 and 0 on a finer and finer “three-colors chessboard”.
The vector field b is constant in r for r > 1 and it is defined in such a way that
no divergence is created at the surface r = 1.

Finally, we recall (4.15) and we observe that the vector field is continuous at
the surfaces r = 23−k, k ≥ 3. Also, for r > 1 the vector field b is tangent at the
discontinuity surfaces. Hence,

div b ≡ 0 on ]0, 1[×Ω. (4.18)

4.3.3. Construction of a nontrivial solution of (1.4). To exhibit a nontrivial
solution of (1.4) we proceed as follows: first, we give the rigorous definition,
next we make some heuristic remark and finally we show that u is actually a
distributional solution of (1.4).

We recall the decomposition ]0, 1[×Ω = Λ+ ∪ Λ− ∪ S, where Λ+, Λ− and
S are defined by (4.1), (4.2) and (4.3), respectively. We define the function
u :]0, 1[×Ω → R by setting

u(t, r, y1, y2) :=

{

1 (t, r, y1, y2) ∈ Λ− and b(t, r, y1, y2) · (1, 0, 0) = 1
0 elsewhere in ]0, 1[×Ω.

(4.19)

The heuristic idea behind this definition is as follows. We have defined the vec-
tor field b in such a way that, although b is overall outward pointing (namely,
Tr b > 0), there are actually countably many regions where b is inward point-
ing (namely its r-component is strictly positive) which accumulate and mix at
the domain boundary: these regions are represented by the dashed square in
Figure 1. The function u is defined in such a way that u is transported along
the characteristics (which are well-defined for a.e. (r, y) in the domain interior)
and it is nonzero only on the regions where b is inward pointing. As a result,
although b is overall outward pointing, it actually carries into the domain the
nontrivial function u. This behavior is made possible by the breakdown of the
BV regularity of b at the domain boundary.
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We now show that u is a distributional solution of (1.4). First, we observe

that u(t, ·) ∗
⇀ 0 as t → 0+ and hence the weak continuity of u with respect to

the time implies that the initial datum is satisfied.
We then set C := (u, bu) and we observe that DivC = 0 on Λ+ because

C is identically 0 there. Next, we recall that the vector field b is constant
with respect to t and, by using (4.19), we infer that u is also constant with
respect to t in Λ−. Hence, showing that DivC ≡ 0 in Λ− amounts to show that
div (bu) ≡ 0 in Λ−. This follows by the same argument that we have used to
infer that div b = 0 for r < 1.

Finally, we observe that the normal vector to the surface S is (up to an
arbitrary choice of the orientation) ~n := (1/

√
2,−1/

√
2, 0, 0). Hence, by con-

struction the normal trace of C is zero on both sides of the surface S and hence
DivC S = 0. This concludes the proof of Theorem 1.3.

As a side remark, we point out that by relying on Theorem 2.4 one can show
that Tr (bu) = −1/4 on ]0, 1[×∂Ω. �

4.4. Proof of Corollary 1.4. We first describe the heuristic idea underlying
the construction of the vector field b. Loosely speaking, we proceed as in the
proof of Theorem 1.3, but we modify the values of the “building block” βk
on the subinterval r ∈]0, 2−k[. Indeed, instead of defining βk as in Step 1 of
§ 4.3.1, we introduce nontrivial components in the (y1, y2)-directions. These
non-trivial components are reminiscent of the construction in Depauw [16] and
the resulting vector field can be actually regarded as a localized version of
Depauw’s vector field. In particular, they enable us to construct a solution
that oscillates between 1, −1 and 0 and undergoes a finer and finer mixing as
r → 0+.

The technical argument is organized in two steps: in § 4.4.1 we introduce
the “localized version” of Depauw vector field, while in § 4.4.2 we conclude the
proof of Corollary 1.4. Before proceeding, we introduce the following notation:

• Qk is the square (y1, y2) ∈]0, 2−k[×]0, 2−k [;
• Sk is the square (y1, y2) ∈]0, 22−k[×]0, 22−k[.

4.4.1. A localized version of Depauw [16] vector field. We construct the vector
field αk, which is defined on the cell (r, y1, y2) ∈]0, 2−k[×Qk. Also, for this
construction we regard r as a time-like variable and we describe how a given
initial datum evolves under the action of αk. The argument is divided into
steps.

Step 1: we construct the “building block” ak, which is defined on the square
(y1, y2) ∈]− 2−2−k, 2−2−k[×]− 2−2−k, 2−2−k[ by setting

ak(y1, y2) =

{

(0,−2y1) |y1| > |y2|
(2y2, 0) |y1| < |y2| . (4.20)

Note that ak takes values in R
2, it is divergence free and it is tangent at the

boundary of the square.
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Figure 3. The action of the vector field αk(r, ·) on the solution
zk on the interval r ∈]0, 2−2−k[. The solution zk attains the
values 1 and −1 on black and white regions, respectively.

z̄k αk(r, ·) zk(2
−2−k, ·)

2−2−k
y1y1y1

y2y2y2

Step 2: we define the function z̄k : Qk → R by considering the chessboard
illustrated in Figure 3, left part. The function z̄k attains the value −1 and 1
on white and black squares, respectively.

Step 3: we begin the construction of the vector field αk :]0, 2−k [×Qk → R
2.

If r ∈]0, 2−2−k[, then αk(r, ·) is defined by setting

αk(r, y1, y2) =















ak(y1 − 2−1−k, y2 − 2−1−k)
if (y1, y2) ∈]2−2−k, 3 · 2−2−k[×]2−2−k, 3 · 2−2−k[

(0, 0) elsewhere on Qk.

(4.21)

See Figure 3, central part, for a representation of the values attained by αk on
the interval r ∈]0, 2−2−k[.

We term zk the solution of the problem
{

∂rzk + divy(αkzk) = 0 in ]0, 2−k [×Qk

zk = z̄k at r = 0,
(4.22)

where z̄k is defined as in Step 2. Note that by construction divyαk = 0 and
therefore the first line of (4.22) is actually a transport equation. Hence, the
value attained by the function zk can be determined by the classical method
of characteristics. In particular, the function zk(2

−2−k, ·) is represented in Fig-
ure 3, right part, and it attains the values 1 and −1 on black and white squares,
respectively.

Step 4: if r ∈]2−2−k, 3 · 2−2−k[, then αk(r, ·) is defined by setting

αk(r, y1, y2) = ak(y1 − i2−2−k, y2 − j2−2−k)

if

(y1, y2) ∈](i− 1)2−2−k, (i+ 1) · 2−2−k[×](j − 1)2−2−k, (j + 1) · 2−2−k[,

where i, j can be either 1 or 3. See Figure 4, central part, for a representation
of the values attained by αk on the interval r ∈]2−2−k, 3 · 2−2−k[. Note that by
construction divyαk ≡ 0 on ]0, 3 ·2−2−k [×Qk and hence the solution zk of (4.22)
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Figure 4. The action of the vector field αk(r, ·) on the solution
zk on the interval r ∈]2−2−k, 3 · 2−2−k[. The solution zk attains
the values 1 and −1 on black and white regions, respectively.

zk(2
−2−k, ·) αk(r, ·) zk(3 · 2−2−k, ·)

y1y1y1

y2y2y2

Figure 5. The action of the vector field αk(r, ·) on the solution
zk on the interval r ∈]3·2−2−k, 4·2−2−k[. The solution zk attains
the values 1 and −1 on black and white regions, respectively.

zk(3 · 2−2−k, ·) αk(r, ·) zk(4 · 2−2−k, ·)
y1y1y1

y2y2y2

evaluated at r = 3 · 2−2−k is as in Figure 4, right part: as usual, the black and
white squares represent the regions where zk(3 · 2−2−k, ·) attain the values 1
and −1, respectively.

Step 5: if r ∈]3 · 2−2−k, 4 · 2−2−k[, then αk(r, ·) is again defined by (4.21).
Hence, the values attained by zk(2

−k, ·) are those represented in Figure 5, right
part.

4.4.2. Conclusion of the proof. Loosely speaking, the proof of Corollary 1.4 is
concluded by combining the construction described in § 4.4.1 with the proof of
Theorem 1.3. The argument is divided in four steps.

Step A: we define the vector field β̃k and the solution uk on (r, y1, y2) ∈
]0, 2−k[×Sk, where Sk is the square ]0, 22−k [×]0, 22−k[.
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We recall the definition of Bk provided by (4.9) and we set

β̃k(r, y1, y2) :=







































































(

1, αk(r, y1, y2)
)

(y1, y2) ∈]0, 2−k[×]0, 2−k[

(

1, αk(r, y1 − 2 · 2−k, y2)
)

(y1, y2) ∈]2 · 2−k, 3 · 2−k[×]0, 2−k[

(

1, αk(r, y1, y2 − 2 · 2−k)
)

(y1, y2) ∈]0, 2−k[×]2 · 2−k, 3 · 2−k[

(

1, αk(r, y1 − 2 · 2−k, y2 − 2 · 2−k)
)

(y1, y2) ∈]2−k, 3 · 2−k[×]2−k, 3 · 2−k[

(−5, 0, 0) (y1, y2) ∈ Bk

(0, 0, 0) elsewhere in Sk

Note that, basically, the definition of β̃k is obtained from (4.10) by changing
the value of the vector field on Dk and inserting as a component in the (y1, y2)-
directions the vector field αk constructed in § 4.4.1.

Also, we define the function uk by setting

uk(r, y1, y2) :=























































zk(r, y1, y2) (y1, y2) ∈]0, 2−k[×]0, 2−k[

zk(r, y1 − 2 · 2−k, y2) (y1, y2) ∈]2 · 2−k, 3 · 2−k[×]0, 2−k [

zk(r, y1, y2 − 2 · 2−k) (y1, y2) ∈]0, 2−k[×]2 · 2−k, 3 · 2−k[

zk(r, y1 − 2 · 2−k, y2 − 2 · 2−k) (y1, y2) ∈]2 · 2−k, 3 · 2−k[×]2 · 2−k, 3 · 2−k[

0 elsewhere in Sk,

where zk is the same function as in § 4.4.1.
Step B: we define the vector field β̃k and the solution uk for (r, y1, y2) ∈

]2−k, 22−k[×Sk.
We set β̃k(r, y1, y2) := βk(r, y1, y2), where βk denotes the same vector field as

in § 4.3.1. The function uk satisfies

∂ruk + divy(β̃kuk) = 0.

Since divyβ̃k = 0, the values attained by uk for (r, y1, y2) ∈]2−k, 22−k[×Sk can
be computed by the classical method of characteristics. To provide an heuristic
intuition of the behavior of uk, we refer to Figure 1, center and right part, and
we point out that uk attains the value 0 on white and black areas, while on
dashed areas it attains the same values as in Figure 5, right part.

Step C: we extend β̃k and uk to ]0, 22−k[×R
2 by periodicity by proceeding

as in (4.14).
Step D: we finally define a vector field b and the function u. We recall the

decomposition (4.16) and we define b as in (4.17), replacing βk with β̃k. Also,
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we define u by setting

u(t, r, y1, y2) =

{

uk(r,y1, y2) in Λ−, when r ∈ Ik
0 in Λ+.

By arguing as in the proof of Theorem 1.3, one can show that u and b satisfy
requirements i), . . . , v) in the statement of Theorem 1.3 and that moreover
Tr (bu) ≡ 0. This concludes the proof of Corollary 1.4. �
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