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Abstract. We consider the area functional for t-graphs in the sub-Riemannian Heisen-
berg group and study minimizers of the associated Dirichlet problem. We prove that,
under a bounded slope condition on the boundary datum, there exists a unique minimizer
and that this minimizer is Lipschitz continuous. We also provide an example showing
that, in the first Heisenberg group, Lipschitz regularity is sharp even under the bounded
slope condition.

1. Introduction

The area functional for the t-graph of a function u ∈ W 1,1(Ω) in the sub-Riemannian
Heisenberg group Hn ≡ Rnx × Rny × Rt is

A (u) :=

ˆ
Ω
|∇u+ X∗|dL2n ,

where Ω ⊂ Rnx × Rny is an open set and X∗ is the vector field

X∗(x, y) := 2(−y, x),

see [45, 13, 51] for more details. It was shown in [51] that the natural variational setting
for this functional is the space BV(Ω) of functions with bounded variation in Ω; more
precisely, it was proved that the relaxed functional of A in the L1-topology is

A (u) :=

ˆ
Ω
|∇u+ X∗| dL2n + |Dsu|(Ω), u ∈ BV(Ω),

where |Dsu|(Ω) is the total variation in Ω of the singular part of the distributional deriv-
ative of u.

In this paper, we study the minimizers of A under Dirichlet boundary conditions

min{A (u) : u ∈ BV(Ω), u|∂Ω = ϕ} ,
where Ω is assumed to have Lipschitz regular boundary, u|∂Ω is the trace of u on ∂Ω,

ϕ ∈ L1(∂Ω,H2n−1) is a fixed boundary datum and H2n−1 denotes the classical Hausdorff
measure of dimension (2n−1). In our main result, Theorem 1.1 below, we prove existence,
uniqueness and Lipschitz regularity of minimizers assuming that ϕ satisfies the so-called
bounded slope condition (see e.g. [26] or Section 6). We also point out that Lipschitz
regularity is sharp at least in the first Heisenberg group H1, see Example 6.6.
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Our interest in this problem is twofold. On the one side, it fits in a well-established
research stream about minimal-surfaces type problems (isoperimetric problem, existence
and regularity of H-perimeter minimizing sets, Bernstein problem, etc.) in the Heisenberg
group, for which we refer to [35, 50, 44, 49, 20, 21, 43, 48, 6, 7, 33, 34, 22, 51]. On
the other side, we attack the problem with typical tools from the Calculus of Variations,
using the so called Hilbert-Haar (or “Semi-classical” in [26]) approach. This approach has
been recently developed and renewed to study the regularity of minimizers of functionals
starting from the regularity of the boundary datum, without assuming either ellipticity or
growth conditions on the lagrangian; see e.g. [8, 2, 4, 5, 19, 23, 37, 38, 39, 40].

Area minimizers have been widely studied in functional spaces with more regularity
than BV. The functional A has good variational properties such as convexity and lower
semicontinuity with respect to the L1 topology. On the other hand, it is neither coercive
nor differentiable. The lack of differentiability is due to the presence of the so called
characteristic points, i.e. the set of points on the graph of u where the tangent plane to
the graph coincides with the horizontal plane. Equivalently, the set whose projection on
R2n is

Char(u) := {(x, y) ∈ Ω : ∇u(x, y) + X∗(x, y) = 0} .
Notice that, formally, the Euler equation associated with A is

div
∇u+ X∗

|∇u+ X∗|
= 0 in Ω,

which degenerates at points in Char(u). Clearly, the set Char(u) has a prominent role in
studying minimizers’ regularity. Several examples of minimizers with at most Lipschitz
regularity have been provided in H1, see e.g. [46, 14, 47]; more recently, a non-continuous
minimizer was exhibited in [51]. A variety of very interesting results can be found in
[45, 24, 13, 12, 50, 52] (where a priori C2 regularity is assumed for minimizers) and in
[15, 17] (for C1 minimizers), also in connection with the Bernstein problem for t-graphs.
The much more delicate case of minimizers in Sobolev spaces was attacked in [14], where
interesting uniqueness and comparison theorems for minimizers in the space W 1,2 were
proved. Uniqueness results for Sobolev minimizers are proved also in [18].

Concerning the existence issue, the existence of Lipschitz minimizers for the Dirichlet
problem for A was established in [14], by utilizing an elliptic approximation argument,
for C2,α-smooth boundary data on C2,α-smooth and “parabolically-convex” domains. We
have also to mention the papers [45] and [16], about which we will say a few words below.
Notice that the existence of minimizers is in general not guaranteed even for smooth
boundary data on smooth domains, see [51, Example 3.6]. Nevertheless, an existence
result (in BV and for any datum ϕ) was proved in [51] for a penalized functional, see also
Section 3.

In this paper, we consider the Dirichlet problem for the functional A in the space of
functions with bounded variation and we study minimizers under the assumption that
the boundary datum ϕ satisfies a bounded slope condition with constant Q (Q-B.S.C. for
short). This approach is inspired by some classical and well-known results in the Calculus
of Variations that go back to Hilbert and Haar ([32] and [27] respectively) and has been
used by Hartman, Nirenberg and Stampacchia [28, 29, 30, 31, 53]. The main classical result
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in this framework (see e.g. [26, Chapter 1] or, for minimal surfaces, [42]) states that, given
a strictly convex integral functional depending only on the gradient and a boundary datum
satisfying the Q-B.S.C., there exists a unique minimizer in the class of Lipschitz functions
and its Lipschitz constant is not greater than Q. We stress that, in the general statement
in [26], neither growth assumptions nor ellipticity conditions are required whereas these
hypotheses usually play a crucial role for existence and regularity results. In the same
setting, it has been recently proved in [8] that any continuous minimizer in the Sobolev
space W 1,1 is Lipschitz continuous with Lipschitz constant not greater than Q.

The main tools used to prove these results are: the validity of comparison principles
between minimizers, the invariance of minimizers under translations of the domain, and a
Haar-Radò type theorem stating that the maximum among the difference quotients of the
minimizer is attained at the boundary. Subsequent papers ([38, 39]) addressed the problem
of considering functionals that are not strictly convex. The main difficulty, in this case, is
that comparison principles do not hold in their generality (an example can be found in [9]
or in [41]) and it is overcome by detecting special minimizers which instead satisfy them,
see [9, 10, 11, 41]. It is worth remarking that, in all these papers, there are assumptions
guaranteeing the boundedness of the faces of the epigraph of the lagrangian. Concerning
functionals depending also on lower order terms, this approach works for lagrangians of
sum type as f(ξ) + g(z, u), see [4, 3, 10, 23].

In the present paper we use some of the techniques described above but we encounter
new difficulties that we briefly sketch here and will be discussed in details in the following
sections. First of all, we deal with functions of bounded variation and we use ideas of [54],
where functionals depending only on the gradient are considered. The second point is the
dependance of our functional on points of Ω encoded in the vector field X∗. Moreover,
the epigraph of our lagrangian has unbounded faces. All these peculiarities led us to face
many new technical problems that will be considered in sections 4 and 5.

In the framework of the first Heisenberg group H1, the bounded slope condition was
already considered in [45] by S. D. Pauls. Using an approximation scheme by means of
minimal surfaces in the Riemannian approximations of Hn, he showed the existence in
W 1,p(Ω) ∩ C0(Ω) of weak solutions to the Euler equation associated with A .

Before stating our main result let us underline some peculiarities about the bounded
slope condition. On the one hand, it is a quite restrictive assumption because it implies
that, unless ϕ is affine, Ω is convex. On the other hand, the class of functions satisfying
it is quite large, since M. Miranda [42] proved that, if Ω is uniformly convex, then any
ϕ ∈ C1,1 satisfies the Q-B.S.C. for some Q.

Theorem 1.1. Let Ω ⊂ R2n be open, bounded and with Lipschitz regular boundary, and
let ϕ : ∂Ω→ R satisfy the Q-B.S.C. for some Q > 0. Then, the minimization problem

(1) min
{
A (u) : u ∈ BV(Ω), u|∂Ω = ϕ

}
admits a unique solution û. Moreover, û is Lipschitz continuous and Lip(û) ≤ Q+4 sup

z∈Ω
|z|.

Notice that, if ϕ satisfies the B.S.C., then it is Lipschitz continuous on ∂Ω: in this sense,
our assumptions on the boundary datum are stronger than those in [16, Theorem A], where
the authors prove the existence and the continuity of BV minimizers on C2,α parabolically
convex domains assuming only the continuity of the boundary datum. Nevertheless, we
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are able to obtain stronger results (namely: uniqueness and Lipschitz regularity of the
minimizer) on (possibly) less regular domains. In fact our result applies, in particular,
when Ω is uniformly convex and ϕ is (the restriction to ∂Ω of) a function of class C1,1: in
this case, as previously mentioned, ϕ automatically satisfies the B.S.C..

We conjecture that, as [16, Theorem A], our main result holds as well for more general
functionals.

We also want to stress a couple of interesting points concerning Theorem 1.1. First,
in contrast with the Semi-Classical Theory, the Lipschitz constant of the minimizer may
a priori be greater than the constant Q given by the bounded slope condition. Second,
Theorem 1.1 is sharp at least in H1 in the sense that, even under the bounded slope
condition, a minimizer might not be better than Lipschitz continuous, see Example 6.6.

The proof of Theorem 1.1 is based on several intermediate results which have an in-
dependent interest. We mention, for instance, a Comparison Principle for minimizers,
Theorem 4.5, which in turn is based on the existence of the (pointwise a.e.) “maximum”
and “minimum” in the family of minimizers, see Proposition 4.4. The uniqueness in The-
orem 1.1 is based on a criterion stated in Proposition 5.1 (for which we have to credit [14])
and on the fact that affine functions are the unique minimizers under their own boundary
datum, see Theorem 5.5.

The structure of the paper is the following. Section 2 contains basic facts about functions
with bounded variation and their traces. In Section 3 we recall several preliminary results
about the functional A . Section 4 is devoted to the study of the set of minimizers and
its structure, with particular regard to comparison principles. In Section 5 we prove the
uniqueness results in Proposition 5.1 and Theorem 5.5. Finally, Section 6 is devoted to
the proof of Theorem 1.1.

2. Functions of Bounded Variation and traces

The aim of this section is to recall some basic properties of the space of functions of
bounded variation; we refer to the monographs [1, 25] for a more extensive account on the
subject as well as for proofs of the results we are going to recall here.

Let Ω be an open set in Rn. We say that u ∈ L1(Ω) has bounded variation in Ω if

(2) sup
{ˆ

Ω
u divϕ dLn : ϕ ∈ C1

c (Ω), ‖ϕ‖ ≤ 1
}
< +∞;

equivalently, if there exist a Rn-valued Radon measure Du := (D1u, . . . ,Dnu) in Ω which
represents the distributional derivative of u, i.e., ifˆ

Ω
u
∂ϕ

∂xi
dLn = −

ˆ
Ω
ϕ dDiu ∀ϕ ∈ C1

c (Ω), ∀i = 1, . . . , n.

The space of functions with bounded variation in Ω is denoted by BV(Ω). By definition,
W 1,1(Ω) ⊂ BV(Ω) and Du = ∇uLn for any u ∈W 1,1(Ω).

We denote by |Du| the total variation of the measure Du; |Du| defines a finite measure
on Ω and the supremum in (2) coincides with |Du|(Ω). It is well-known that BV(Ω) is a
Banach space when endowed with the norm

‖u‖BV := ‖u‖L1 + |Du|(Ω).
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By the Radon-Nikodym Theorem, if u ∈ BV(Ω) one can write Du = Dau+Dsu, where
Dau is the absolutely continuous part of Du with respect to Ln and Dsu is the singular
part of Du with respect to Ln. We denote by ∇u ∈ L1(Ω) the density of Dau with respect
to Ln, so that Dau = ∇uLn. It turns out that, if u ∈ BV(Ω), then u is approximately
differentiable at a.e. x ∈ Ω with approximate differential ∇u(x), i.e.,

lim
ρ→0+

 
B(x,ρ)

|u(y)− ũ(x)− 〈∇u(x), y − x〉 |
ρ

dLn = 0 for Ln-a.e. x ∈ Ω .

We now recall a few basic facts about boundary trace properties for BV functions. As-
sume that Ω ⊂ Rn is a bounded open set with Lipschitz regular boundary; the spaces
Lp(∂Ω), p ∈ [1,+∞], will be always understood with respect to the (finite) measure
Hn−1 ∂Ω, where Hn−1 denotes the (n − 1)-dimensional Hausdorff measure on Rn (see
again [1] or [25]). It is well-known that for any u ∈ BV(Ω) there exists a (unique) function
u|∂Ω ∈ L1(∂Ω) such that, for Hn−1-a.e. x ∈ ∂Ω,

lim
ρ→0+

ρ−n
ˆ

Ω∩B(x,ρ)
|u− u|∂Ω(x)|dLn = lim

ρ→0+

 
Ω∩B(x,ρ)

|u− u|∂Ω(x)|dLn = 0 .

The function u|∂Ω is called the trace of u on ∂Ω. The trace operator u 7→ u|∂Ω is linear

and continuous between (BV(Ω), ‖·‖BV) and L1(∂Ω); actually, it is continuous also when
BV(Ω) is endowed with the (weaker) topology induced by the so-called strict convergence,
see [1, Definition 3.14].

Remark 2.1. It is well-known that, if u1, u2 ∈ BV(Ω), then u := max{u1, u2} and
u := min{u1, u2} belong to BV(Ω); moreover, one can show that

u|∂Ω = max{u1|∂Ω, u2|∂Ω}, u|∂Ω = min{u1|∂Ω, u2|∂Ω} .
The proof of this fact follows in a standard way from the very definition of traces.

Since Du� |Du| we can write Du = σu|Du| for a |Du|-measurable function σu : Ω→
Sn−1. With this notation, one has also

(3)

ˆ
Ω
udivϕdLn = −

ˆ
Ω
〈σu, ϕ〉d|Du|+

ˆ
∂Ω
u|∂Ω 〈ϕ, νΩ〉 dHn−1 ∀ϕ ∈ C1

c (Rn,Rn)

where νΩ is the unit outer normal to ∂Ω.
Finally, we recall the following fact, whose proof stems from (3).

Proposition 2.2 ([25, Remark 2.13]). Assume that Ω and Ω0 are open subsets of Rn with
bounded Lipschitz boundary and such that Ω b Ω0. If u ∈ BV(Ω) and v ∈ BV(Ω0 \ Ω),
then the function

f(x) :=

{
u(x) if x ∈ Ω
v(x) if x ∈ Ω0 \ Ω

belongs to BV(Ω0) and

|Df |(∂Ω) =

ˆ
∂Ω
|u|∂Ω − v|∂Ω|dHn−1 ,

where we have used the notation v|∂Ω to mean (v|∂(Ω0\Ω)) ∂Ω.
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3. The area functional for t-graphs in the Heisenberg group

Before introducing the area functional A with more details, we need some preliminary
notation. For z := (x, y) ∈ Rn × Rn we define

z∗ := (−y, x) ∈ R2n .

Let us state some useful properties of the map z 7→ z∗; we denote by · ,∇ and div the
standard scalar product, gradient and divergence in R2n.

Lemma 3.1. The following properties hold:

(i) if z1, z2 ∈ R2n are linearly dependent, then z1 · z∗2 = 0;
(ii) z1 · z2 = z∗1 · z∗2 for each z1, z2 ∈ R2n;

(iii) if Ω ⊂ R2n is open and f ∈ C∞(Ω), then div (∇f)∗ = 0 on Ω.

Proof. The first two statements are straightforward. To prove (iii), observe that (∇f)∗ =
(−∂n+1f, . . . ,−∂2nf, ∂1f, . . . , ∂nf), thus

div (∇f)∗ = −
n∑
i=1

∂i∂n+if +

n∑
i=1

∂n+i∂if = 0 .

�

Given an open set Ω ⊂ R2n we define the convex functional AΩ : BV(Ω)→ R

AΩ(u) :=

ˆ
Ω
|∇u+ X∗| dL2n + |Dsu|(Ω) ,

where X(z) := 2z and, clearly, X∗(z) = 2z∗.
When the open set Ω is clear from the context, we will simply write A instead of AΩ.

Using the standard identification of the Heisenberg group Hn with R2n
z × Rt, there holds

(4) A (u) = |∂Etu|H(Ω× R) ,

where |∂Etu|H(Ω× R) denotes the H-perimeter in Ω× R ⊂ Hn of the t-subgraph

Etu := {(z, t) ∈ Hn : z ∈ Ω, t < u(z)}

of u. See [51] for more details. It was proved in [51] that A is lower semicontinuous with
respect to the L1-convergence and

A (u) = inf

{
lim inf
j→∞

ˆ
Ω
|∇uj + X∗| dL2n : (uj)j∈N ⊂ C1(Ω), uj → u in L1(Ω)

}
.

The following approximation result holds

Proposition 3.2. Let Ω ⊂ R2n be a bounded open set with Lipschitz boundary. Let
u ∈ BV(Ω) with u|∂Ω = ϕ ∈ L1(Ω); then there exists a sequence (uk)k ⊂ C∞(Ω) converging

to u in L1(Ω) and such that

(uk)|∂Ω = ϕ ∀k ∈ N,(5)

AΩ(u) = lim
k→∞

ˆ
Ω
|∇uk + X∗| dL2n.(6)
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Proof. The existence of a sequence (uk)k ⊂ C∞(Ω) converging to u in L1(Ω) and such that
(6) holds was proved in [51, Theorem 3.2], see also [51, Corollary 3.3]. More precisely, this
sequence was constructed in Step 4 of the proof of [51, Theorem 3.2] by imposing certain
conditions on suitably mollified functions, see formulae (3.5)-(3.7) therein. Reasoning as
in [25, Remark 1.18], it can be proved that condition (3.5) of [51] implies that

lim
ρ→0+

ρ−n
ˆ

Ω∩B(z,ρ)
|u− uk| dL2n = 0 for H2n−1-a.e. z ∈ ∂Ω

and (5) follows from the definition of traces. �

We are interested in the existence of minimizers for A under prescribed boundary
conditions. Assuming Ω to be a bounded domain with Lipschitz boundary, we consider

M1 := inf{A (u) : u ∈ BV(Ω), u|∂Ω = ϕ}.(7)

It is known that the infimum M1 might not be attained even for smooth Ω and ϕ, see [51,
Example 3.6].

On the other hand, one can consider the functional

Aϕ,Ω(u) := AΩ(u) +

ˆ
∂Ω
|u|∂Ω − ϕ|dH2n−1

where the integral on the right hand side can be seen as a penalization for u not taking
the boundary value ϕ; this penalization is natural from the viewpoint of the geometry of
Hn as shown in [51, Remark 3.8]. Again, we will simply write Aϕ instead of Aϕ,Ω when
the open set Ω is clear from the context. By using the Direct Method of the Calculus of
Variations (see again [51]), it can be shown that the problem

M2 := min{Aϕ(u) : u ∈ BV(Ω)}

admits always a solution.
Let us show that the Lavrentiev phenomenon does not occur for our minimization

problem.

Proposition 3.3. Let Ω ⊂ R2n be a bounded open set with Lipschitz regular boundary and
ϕ be in L1(∂Ω); then, setting

M3 := inf{A (u) : u ∈ C∞(Ω) ∩W 1,1(Ω), u|∂Ω = ϕ}

we have M1 = M2 = M3, where M1 and M2 are defined above.

Proof. Clearly, one has M3 ≥M1 ≥M2 because

{u ∈ C∞(Ω) ∩W 1,1(Ω) : u|∂Ω = ϕ} ⊂ {u ∈ BV(Ω) : u|∂Ω = ϕ} ⊂ BV(Ω)

and Aϕ coincides with A on {u ∈ BV(Ω) : u|∂Ω = ϕ}. Let u ∈ BV(Ω) with u|∂Ω = ϕ and
consider (uk)k ⊂ C∞(Ω) as in Proposition 3.2. Then

M3 ≤ A (u) = lim
k→∞

A (uk),

which implies M3 ≤ M1 and hence M3 = M1. Finally, the equality M1 = M2 has been
established in [51, Theorem 1.4], and the proof is accomplished. �
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Remark 3.4. One can easily show that, if the boundary datum ϕ is Lipschitz continuous
on ∂Ω, then the equalities

M1 = M2 = M3 = inf{A (u) : u ∈ Lip(Ω), u|∂Ω = ϕ}

hold.

4. The set of minimizers and Comparison Principles

The aim of this section is to establish a Comparison Principle for minimizers of the
area functional with penalization on the boundary. It is well-known that Comparison
Principles are strictly related to uniqueness of solutions and that functionals defined in
the BV space do not exhibit, in general, uniqueness of minimizers, even in the case of a
strictly convex lagrangian. In our case, the lagrangian f(z, ξ) := |ξ + X∗(z)| is not even
strictly convex. The validity of Comparison Principles for non strictly convex functionals
has been studied in [9, 11, 36, 39, 41] in the case of superlinear growth, and it has been
proved for special classes of minimizers. In this section we follow the same ideas, but we
have to overcome some new difficulties that are related both to the properties of BV and
to the fact that the lagrangian depends also on the variable z.

The main Comparison Principle is stated in Theorem 4.5. Its proof is based on several
steps and, in particular, it relies on some inequalities that, in our opinion, have an interest
on their own. For this reason, we enunciate them as separate propositions. The proof of
Theorem 4.5 will then follow in a few lines.

We remark that similar results for functionals with linear growth, depending just on
the gradient and defined in the space of function of bounded variation, have been recently
obtained in [54].

The next two propositions state two inequalities between the values of the area func-
tional at u1, u2, u1 ∨ u2 := sup{u1, u2} and u1 ∧ u2 := inf{u1, u2}. The first one is stated
for the area functional and the second one is for the functional with the penalization on the
boundary. We observe that, when one deals with integral functionals defined in Sobolev
spaces, these inequalities turn out to be equalities, whose proof is straightforward (see
Lemma 5.1 in [41]).

Proposition 4.1. Let Ω ⊂ R2n be a bounded open set with Lipschitz boundary. Let
u1, u2 ∈ BV(Ω) be fixed. Then

A (u1 ∨ u2) + A (u1 ∧ u2) ≤ A (u1) + A (u2) .(8)

Proof. Recalling (4), inequality (8) is equivalent to

|∂Etu1∨u2
|H(Ω× R) + |∂Etu1∧u2

|H(Ω× R) ≤ |∂Etu1
|H(Ω× R) + |∂Etu2

|H(Ω× R)

which follows from [51, Proposition 2.3] on noticing that

Etu1∨u2
= Etu1

∪ Etu2
, Etu1∧u2

= Etu1
∩ Etu2

.

�

The next Proposition is the analogue of the previous one for the functional Aϕ where
the boundary conditions are taken into account.
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Proposition 4.2. Let Ω ⊂ R2n be a bounded open set with Lipschitz regular boundary.
Then, for each u1, u2 ∈ BV(Ω) and ϕ1, ϕ2 ∈ L1(∂Ω) we have

(9) Aϕ1∨ϕ2,Ω(u1 ∨ u2) + Aϕ1∧ϕ2,Ω(u1 ∧ u2) ≤ Aϕ1,Ω(u1) + Aϕ2,Ω(u2)

Proof. Let us fix a bounded open set Ω0 ⊂ R2n with Lipschitz boundary and such that
Ω b Ω0. By [25, Theorem 2.16] it is possible to find f1,f2 in W 1,1(Ω0 \ Ω) such that

f1|∂Ω = ϕ1 and f2|∂Ω = ϕ2 .

Define

v1 :=

{
u1 in Ω

f1 in Ω0 \ Ω,
v2 :=

{
u2 in Ω

f2 in Ω0 \ Ω

so that

v1 ∨ v2 =

{
u1 ∨ u2 in Ω

f1 ∨ f2 in Ω0 \ Ω,
v1 ∧ v2 =

{
u1 ∧ u2 in Ω

f1 ∧ f2 in Ω0 \ Ω.

We have v1, v2, v1 ∨ v2, v1 ∧ v2 ∈ BV(Ω0) and Lemma 4.1 gives

(10) AΩ0(v1 ∨ v2) + AΩ0(v1 ∧ v2) ≤ AΩ0(v1) + AΩ0(v2).

Writing (f1 ∨ f2)|∂Ω for ((f1 ∨ f2)|∂(Ω0\Ω)) ∂Ω, we have by Proposition 2.2 and Remark
2.1

AΩ0(v1 ∨ v2)

=

ˆ
Ω0

|∇(v1 ∨ v2) + X∗|dL2n + |Ds(v1 ∨ v2)|(Ω0)

=AΩ(v1 ∨ v2) + AΩ0\Ω(v1 ∨ v2) + |Ds(v1 ∨ v2)|(∂Ω)

=AΩ(u1 ∨ u2) + AΩ0\Ω(f1 ∨ f2) +

ˆ
∂Ω
|(u1 ∨ u2)|∂Ω − (f1 ∨ f2)|∂Ω|dH2n−1

=AΩ(u1 ∨ u2) +

ˆ
Ω0\Ω

|∇(f1 ∨ f2) + X∗|dL2n

+

ˆ
∂Ω
|(u1 ∨ u2)|∂Ω − (ϕ1 ∨ ϕ2)| dH2n−1

=Aϕ1∨ϕ2,Ω(u1 ∨ u2) +

ˆ
Ω0\Ω

|∇(f1 ∨ f2) + X∗| dL2n

(11)

where we also utilized Remark 2.1. In a similar way one obtains

AΩ0(v1 ∧ v2) = Aϕ1∧ϕ2,Ω((u1 ∧ u2)) +

ˆ
Ω0\Ω

|∇(f1 ∧ f2) + X∗| dL2n

AΩ0(v1) = Aϕ1,Ω(u1) +

ˆ
Ω0\Ω

|∇f1 + X∗|dL2n

AΩ0(v2) = Aϕ2,Ω(u2) +

ˆ
Ω0\Ω

|∇f2 + X∗|dL2n .

(12)
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Now, (9) will follow from (10), (11) and (12) provided we show thatˆ
Ω0\Ω

|∇(f1 ∨ f2) + X∗|dL2n +

ˆ
Ω0\Ω

|∇(f1 ∧ f2) + X∗| dL2n

=

ˆ
Ω0\Ω

|∇f1 + X∗| dL2n +

ˆ
Ω0\Ω

|∇f2 + X∗|dL2n .

This can be easily seen by using the well-known facts

∇(f1 ∨ f2) = (∇f1)χ{f1≥f2} + (∇f2)χ{f1<f2},

∇(f1 ∧ f2) = (∇f2)χ{f1≥f2} + (∇f1)χ{f1<f2} .

The proof is accomplished. �

Given a bounded open set Ω ⊂ R2n with Lipschitz regular boundary and a function
ϕ ∈ L1(∂Ω) we define

Mϕ := arg min
u

Aϕ,Ω(u) = arg min
u

{
AΩ(u) +

ˆ
∂Ω
|u− ϕ| dH2n−1

}
.

The set Mϕ ⊂ BV(Ω) is not empty by [51, Theorem 1.4].

Corollary 4.3. Let ϕ1, ϕ2 ∈ L1(∂Ω) be such that ϕ1 ≤ ϕ2 H2n−1-a.e. on ∂Ω and assume
that u1 ∈Mϕ1 and u2 ∈Mϕ2. Then (u1 ∨ u2) ∈Mϕ2 and (u1 ∧ u2) ∈Mϕ1 .

Proof. The assumptions that u2 is a minimizer of Aϕ2,Ω and ϕ1 ≤ ϕ2 imply that

(13) Aϕ2,Ω(u1 ∨ u2) ≥ Aϕ2,Ω(u2) .

Analogously we have

(14) Aϕ1,Ω(u1 ∧ u2) ≥ Aϕ1,Ω(u1) .

By Proposition 4.2 it follows that

Aϕ1,Ω(u1 ∨ u2) + Aϕ2,Ω(u1 ∧ u2) = Aϕ1,Ω(u1) + Aϕ2,Ω(u2)

so that equality holds both in (13) and in (14). �

In [39] it has been proved that the set of minimizers of a superlinear convex functional
has a maximum u (resp. a minimum u) defined as the pointwise supremum (infimum) of
the minimizers. These special minimizers are then used to prove one-sided Comparison
Principles. Now, with a different technique required by the use of functions of bounded
variation, we prove a similar result.

Proposition 4.4. Let Ω ⊂ R2n be a bounded open set with Lipschitz regular boundary and
let ϕ ∈ L1(∂Ω). Then, there exists u, u ∈Mϕ such that the inequalities

(15) u ≤ u ≤ u L2n-a.e. in Ω

hold for any u ∈Mϕ.
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Proof. We start by proving that Mϕ is bounded in BV(Ω). Given u ∈ Mϕ, we define
J := Aϕ,Ω(u) <∞; clearly, J depends only on ϕ and not on u. We have

|Du|(Ω) =

ˆ
Ω
|∇u|dL2n + |Dsu|(Ω)

≤
ˆ

Ω
|∇u+ X∗| dL2n +

ˆ
Ω
|X∗|dL2n + |Dsu|(Ω) +

ˆ
∂Ω
|u− ϕ|dH2n−1

=J +

ˆ
Ω
|X∗|dL2n <∞ .

(16)

Moreover, by [25, Theorem 1.28 and Remark 2.14] there exists c = c(n) > 0 such that

‖u‖L1(Ω) ≤ |Ω|1/2n‖u‖L2n/(2n−1)(Ω)

≤ c |Ω|1/2n
(
|Du|(Ω) +

ˆ
∂Ω
|u|∂Ω|dH2n−1

)
≤ c|Ω|1/2n

(
|Du|(Ω) +

ˆ
∂Ω
|u|∂Ω − ϕ| dH2n−1 +

ˆ
∂Ω
|ϕ| dH2n−1

)
= c|Ω|1/2n

(
J +

ˆ
∂Ω
|ϕ|dH2n−1

)
.

where |Ω| := L2n(Ω). This, together with (16), implies that Mϕ is bounded in BV(Ω).
Therefore (see [1, Theorem 3.23]), Mϕ is pre-compact in L1(Ω), i.e., for every sequence

(uh)h∈N ⊂Mϕ there exist u ∈ BV(Ω) and a subsequence (uhk)k∈N such that uhk → u in
L1(Ω). Since Aϕ,Ω is lower semicontinuous with respect to the L1-convergence we have
also

Aϕ,Ω(u) ≤ lim inf
k→∞

Aϕ,Ω(uhk) = J.

We deduce that u ∈Mϕ, i.e., that Mϕ is indeed compact in L1(Ω). Now, the functional

BV(Ω) 3 u 7−→ I(u) :=

ˆ
Ω
u dL2n

is continuous in L1(Ω), hence it admits maximum u and minimum u in Mϕ: let us prove
that u, u satisfy (15) for any u ∈Mϕ.

Assume by contradiction there exists u ∈ Mϕ such that Ω′ := {z ∈ Ω : u(z) > u(z)}
has strictly positive measure. Then, by Corollary 4.3, u ∨ u is in Mϕ. Moreover

ˆ
Ω

(u ∨ u) dL2n =

ˆ
Ω′
udL2n +

ˆ
Ω\Ω′

udL2n >

ˆ
Ω
udL2n

yielding a contradiction. The fact that u ≥ u follows in a similar way. �

Now we can state a Comparison Principle inspired by the results obtained in [39] for
superlinear functionals in Sobolev spaces.

Theorem 4.5. Let Ω ⊂ R2n be a bounded open set with Lipschitz regular boundary; let
ϕ,ψ ∈ L1(∂Ω) be such that ϕ ≤ ψ H2n−1-a.e. on ∂Ω. Consider the functions u, u ∈Mϕ
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and w, w ∈Mψ such that1

(17)
u ≤ u ≤ u L2n-a.e. in Ω, ∀u ∈Mϕ

w ≤ w ≤ w L2n-a.e. in Ω, ∀w ∈Mψ .

Then

(18) u ≤ w and u ≤ w L2n-a.e. in Ω

and, in particular,

u ≤ w L2n-a.e. in Ω, ∀u ∈Mϕ

u ≤ w L2n-a.e. in Ω, ∀w ∈Mψ.

Proof. We have proved in Corollary 4.3 that w ∨ u is a minimizer of Aψ and w ∧ u is a
minimizer of Aϕ. Assumption (17) then gives (18), which allows us to conclude. �

The next result is a consequence of the Comparison Principle. We state it here explicitly
since, in this formulation, it will be useful in the sequel.

Corollary 4.6. Let Ω ⊂ R2n be a bounded open set with Lipschitz regular boundary and
ϕ,ψ ∈ L∞(∂Ω); let u, u ∈Mϕ and w,w ∈Mψ be as in (17). Then, for every α ∈ R, one
has

u+ α, u+ α ∈Mϕ+α

u+ α ≤ u ≤ u+ α L2n-a.e. in Ω, ∀u ∈Mϕ+α
(19)

and

‖u− w‖L∞(Ω) ≤ ‖ϕ− ψ‖L∞(∂Ω)

‖u− w‖L∞(Ω) ≤ ‖ϕ− ψ‖L∞(∂Ω).
(20)

In particular, the implications

u|∂Ω = ϕ, w|∂Ω = ψ ⇒ ‖u− w‖L∞(Ω) = ‖ϕ− ψ‖L∞(∂Ω)

u|∂Ω = ϕ, w|∂Ω = ψ ⇒ ‖u− w‖L∞(Ω) = ‖ϕ− ψ‖L∞(∂Ω).
(21)

hold.

Proof. The statements in (19) follow at once on noticing that

Aϕ+α,Ω(u+ α) = Aϕ,Ω(u) ∀ u ∈ BV(Ω) .

Let α := ‖ϕ− ψ‖L∞(∂Ω) ∈ R, then

ϕ ≤ ψ + α H2n−1-a.e. in ∂Ω,

and, by (19) and Corollary 4.5, we get

u ≤ w + α and u ≤ w + α L2n-a.e. in Ω.

An analogous argument shows that

w ≤ u+ α and w ≤ u+ α L2n-a.e. in Ω,

whence (20).

1The existence of u, u, w, w is guaranteed by Proposition 4.4.
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If the assumptions in (21) are satisfied, classical properties of traces ensure that the
reverse inequalities in (20) holds, and this gives the validity of the implications in (21). �

5. Uniqueness of special minimizers

This section is devoted to some uniqueness results for minimizers of the area functional.
We have already recalled that, in general, minimizers of functionals defined in BV are
not unique. Comparison principles are particularly interesting in this context. If we
consider the functional with the penalization on the boundary, whenever we detect a
special boundary datum yielding uniqueness of the minimizer we also know that this
minimizer satisfies the Comparison Principle, so that it can be used as a ‘barrier’. We
emphasize this fact in Corollary 5.6, that will be the key point in the proof of the main
result of this paper.

The following uniqueness result can be proved on combining Theorems 5.1, 5.2 and 5.3
in [14]. For the reader’s benefit, we give here a slightly simplified proof.

Proposition 5.1. Let Ω ⊂ R2n be a bounded open set with Lipschitz regular boundary;
fix p ∈ [1, 2] and set p′ := p

p−1 ∈ [2,+∞]. Let ϕ ∈ W 1,p′(Ω) be fixed and consider the

minimization problem

min{A (u) : u ∈ ϕ+W 1,p
0 (Ω)} .(22)

If u ∈W 1,p′(Ω) and v ∈W 1,p(Ω) are minimizers of (22), then

u = v L2n-a.e. in Ω.

Proof. Let us consider the function (u+ v)/2 ∈ ϕ+W 1,p
0 (Ω); we claim that

A
(
u+v

2

)
= 1

2(A (u) + A (v)).(23)

Indeed, the convexity of A gives

A
(
u+v

2

)
≤ 1

2(A (u) + A (v)),

while the reverse inequality follows from the fact that u and v are minimizers for the
problem (22). This proves (23), whenceˆ

Ω
|12∇u+ 1

2∇v + X∗| dL2n =
1

2

ˆ
Ω
|∇u+ X∗|dL2n +

1

2

ˆ
Ω
|∇v + X∗| dL2n .

This in turn implies that

|(∇u+ X∗) + (∇v + X∗)| = |∇u+ X∗|+ |∇v + X∗| a.e. in Ω,

i.e., ∇u + X∗ and ∇v + X∗ are parallel (and with the same direction) L2n-a.e. in Ω. In
particular, by Lemma 3.1 (i) we obtain

0 = (∇u+ X∗)∗ · (∇v + X∗) = ((∇u)∗ −X) · (∇v + X∗) a.e. in Ω .

Thus ˆ
Ω1

((∇u)∗ −X) · (∇v + X∗) dL2n = 0,(24)
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where Ω1 := {z ∈ Ω : u(z) > v(z)}. Let us expand (24) to get

ˆ
Ω1

(∇u)∗ · ∇v dL2n +

ˆ
Ω1

(∇u)∗ ·X∗ dL2n −
ˆ

Ω1

∇v ·X dL2n −
ˆ

Ω1

X ·X∗ dL2n = 0 .

(25)

Lemma 3.1 gives

(∇u)∗ ·X∗ = ∇u ·X and X ·X∗ = 0,

so that (25) becomes

−
ˆ

Ω1

(∇u)∗ · (∇u−∇v) dL2n +

ˆ
Ω1

X · (∇u−∇v) dL2n = 0(26)

where we also used the fact that (∇u)∗ · ∇u = 0. By the classical Stampacchia Theorem,
we have (u− v)+ ∈W 1,p(Ω) and

∇(u− v)+ = (∇(u− v))χΩ1 a.e. in Ω,

hence (26) can be written as

−
ˆ

Ω
(∇u)∗ · ∇(u− v)+ dL2n +

ˆ
Ω
X · ∇(u− v)+ dL2n = 0.

Integrating by parts and using the fact that (u − v)+
|∂Ω = 0 because u|∂Ω = v|∂Ω = ϕ, we

obtain

0 =−
ˆ

Ω
(∇u)∗ · ∇(u− v)+ dL2n +

ˆ
Ω
X · ∇(u− v)+ dL2n

=−
ˆ

Ω
(∇u)∗ · ∇(u− v)+ dL2n −

ˆ
Ω

(u− v)+ divX dL2n

=−
ˆ

Ω
(∇u)∗ · ∇(u− v)+ dL2n − 2n

ˆ
Ω

(u− v)+ dL2n

(27)

We claim that ˆ
Ω

(∇u)∗ · ∇(u− v)+ dL2n = 0.(28)

To this end, consider a sequence (uk)k∈N such that

uk ∈ C∞(Ω) ∩W 1,p′(Ω) and ∇uk
∗
⇀ ∇u in Lp

′
(Ω) as k → +∞.

We have also (∇uk)∗
∗
⇀ ∇u∗, thusˆ

Ω
(∇u)∗ · ∇(u− v)+ dL2n = lim

k→∞

ˆ
Ω

(∇uk)∗ · ∇(u− v)+ dL2n

=

ˆ
Ω

div ((∇u)∗) (u− v)+ dL2n

= 0

by Lemma 3.1 (iii). By (27) and (28) we deduce that (u− v)+ = 0 a.e. on Ω.
On considering Ω2 := {z ∈ Ω : v(z) > u(z)} in place of Ω1, one can similarly prove that

(u− v)− = 0 a.e. on Ω. This completes the proof. �
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We introduce now some notations that will be useful also in the proof of the main
theorem of the paper. Given a subset Ω ⊂ R2n, a function u : Ω → R, a vector τ ∈ R2n

and ξ ∈ R we set

Ωτ := {z ∈ R2n : z + τ ∈ Ω}
uτ (z) := u(z + τ), z ∈ Ωτ

u∗τ,ξ(z) := uτ (z) + 2 〈τ∗, z〉+ ξ, z ∈ Ωτ .

It is easily seen that, given Ω open and u ∈ BV(Ω), then both uτ and u∗τ,ξ belong to

BV(Ωτ ). Moreover, if Ω is bounded with Lipschitz regular boundary one has also

(29) (u∗τ,ξ)|∂(Ωτ ) = (u|∂Ω)τ + 2 〈τ∗, ·〉+ ξ = (u|∂Ω)∗
τ,ξ
.

Remark 5.2. The family of functions u∗τ,ξ has a precise meaning from the viewpoint of
Heisenberg groups geometry. Indeed, it is a matter of computations to observe that the
t-subgraph Etu∗τ,ξ

of u∗τ,ξ coincides with the left translation (−τ, ξ) · Etu (according to the

group law) of the t-subgraph Etu of u by the element (−τ, ξ) ∈ Hn.

Lemma 5.3. Let Ω ⊂ R2n be a bounded open set with Lipschitz regular boundary, ϕ ∈
L1(∂Ω), τ ∈ R2n and ξ ∈ R. Then

Aϕ∗τ,ξ,Ωτ
(u∗τ,ξ) = Aϕ,Ω(u) ∀ u ∈ BV(Ω) .

Proof. Using e.g. [1, Remark 3.18], it is not difficult to prove that Duτ = `τ#(Du), where
`τ is the translation z 7→ z − τ and `τ# denotes the push-forward of measures via `τ . In
particular

∇uτ = (∇u)τ = ∇u ◦ `−1
τ and Dsuτ = `τ#(Dsu) ,

hence

Du∗τ,ξ =
(
∇u ◦ `−1

τ + 2τ∗
)
L2n + `τ#(Dsu) .

Therefore

Aϕ∗τ,ξ,Ωτ
(u∗τ,ξ)

=

ˆ
Ωτ

|(∇u ◦ `−1
τ ) + 2τ∗ + X∗|dL2n + |`τ#(Dsu)|(Ωτ ) +

ˆ
∂Ωτ

|(u∗τ,ξ)|∂(Ωτ ) − ϕ∗τ,ξ|dH2n−1.

We now use (29) and the equality

2τ∗ + X∗(z) = 2(τ + z)∗ = (X∗ ◦ `−1
τ )(z) ∀z ∈ R2n

to get, with a change of variable,

Aϕ∗τ,ξ,Ωτ
(u∗τ,ξ)

=

ˆ
Ωτ

|∇u+ X∗| ◦ `−1
τ dL2n + |`τ#(Dsu)|(`τ (Ω)) +

ˆ
∂Ωτ

∣∣(u|∂Ω − ϕ
)
τ

∣∣ dH2n−1

=

ˆ
Ω
|∇u+ X∗| dL2n + |Dsu|(Ω) +

ˆ
∂Ω
|u|∂Ω − ϕ|dH2n−1

=Aϕ,Ω(u) .

�
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Corollary 5.4. Under the same assumptions of Lemma 5.3: if u and u are as in Propo-
sition 4.4, then (u)∗τ,ξ, (u)∗τ,ξ ∈Mϕ∗τ,ξ

and

(u)∗τ,ξ ≤ u ≤ (u)∗τ,ξ L2n-a.e. in Ωτ ,∀u ∈Mϕ∗τ,ξ
.

The next theorem states that, whenever we fix an affine boundary datum, the functional
with the penalization on the boundary has a unique minimizer that is the affine function
itself. This is one of the main tools in the proof of Theorem 1.1.

Theorem 5.5. Let Ω ⊂ R2n be a bounded open set with Lipschitz regular boundary and
let L : R2n → R be an affine function, i.e., L(z) = 〈a, z〉 + b for some a ∈ R2n, b ∈ R.
Then L is the unique solution of

min{AL,Ω(u) : u ∈ BV(Ω)}.(30)

Proof. We divide the proof into several steps.
Step 1: reduction to the case L = 0.

Setting τ := a∗/2 ∈ R2n and ξ = −b, one has L∗τ,ξ ≡ 0. By Lemma 5.3 and Corollary 5.4,

the fact that L is the unique solution of (30) is equivalent to the fact that 0 is the unique
minimizer of the problem

min{A0,Ωτ (u) : u ∈ BV(Ωτ )}.
In view of this, we can henceforth assume that L = 0.

Step 2: L = 0 is a minimizer for (30).
Let u ∈ BV(Ω); by the dominated convergence theorem we haveˆ

Ω

〈
σu,

X∗

|X∗|

〉
d|Du| = lim

ε→0

ˆ
Ω

〈
σu,

X∗

|X∗|+ε

〉
d|Du|

= lim
ε→0

[
−
ˆ

Ω
u div

(
X∗

|X∗|+ε

)
dL2n +

ˆ
∂Ω
u|∂Ω

〈
νΩ,

X∗

|X∗|+ε

〉
dH2n−1

]
=

ˆ
∂Ω
u|∂Ω

〈
νΩ,

X∗

|X∗|

〉
dH2n−1 ,

where we have used the fact that div
(

X∗

|X∗|+ε
)

= 0. Thus

A0,Ω(u) =

ˆ
Ω
|∇u+ X∗| dL2n + |Dsu|(Ω) +

ˆ
∂Ω
|u|∂Ω|dH2n−1

≥
ˆ

Ω

〈
∇u+ X∗, X∗

|X∗|

〉
dL2n +

ˆ
Ω

〈
σu,

X∗

|X∗|

〉
d|Dsu|+

ˆ
∂Ω
|u|∂Ω|dH2n−1

=

ˆ
Ω

〈
σu,

X∗

|X∗|

〉
d|Du|+

ˆ
Ω

〈
X∗, X∗

|X∗|

〉
dL2n +

ˆ
∂Ω
|u|∂Ω|dH2n−1

=

ˆ
Ω
|X∗|L2n +

ˆ
∂Ω
|u|∂Ω|

(
1 + sgn(u|∂Ω)

〈
νΩ,

X∗

|X∗|

〉)
dH2n−1

≥
ˆ

Ω
|X∗|L2n = A0,Ω(0) ,

(31)

which proves that L = 0 is a minimizer of (30).
Step 3: if Ω = B(0, R) for some R > 0, then L = 0 is the unique minimizer of (30).
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Since Ω is a ball centered at the origin, we have 〈νΩ,
X∗

|X∗|〉 = 0 and, discarding its third

line, (31) can be rewritten as

A0,Ω(u) =

ˆ
Ω
|∇u+ X∗| dL2n + |Dsu|(Ω) +

ˆ
∂Ω
|u|∂Ω|dH2n−1

≥
ˆ

Ω

〈
∇u+ X∗, X∗

|X∗|

〉
dL2n +

ˆ
Ω

〈
σu,

X∗

|X∗|

〉
d|Dsu|+

ˆ
∂Ω
|u|∂Ω|dH2n−1

=

ˆ
Ω
|X∗|L2n +

ˆ
∂Ω
|u|∂Ω| dH2n−1

≥
ˆ

Ω
|X∗|L2n = A0,Ω(0) ,

(32)

Let u ∈ BV(Ω) be a minimizer for (30); then (by Step 2) A0,Ω(u) = A0,Ω(0) and the two
inequalities in (32) must be equalities. In particular, one has u|∂Ω = 0 andˆ

Ω
|∇u+ X∗|dL2n =

ˆ
Ω

〈
∇u+ X∗, X∗

|X∗|

〉
dL2n ,

|Dsu|(Ω) =

ˆ
Ω
〈σu, σu〉 d|Dsu| =

ˆ
Ω

〈
σu,

X∗

|X∗|

〉
d|Dsu| ,

so that σu = X∗

|X∗| |D
su|-a.e. and there exists a measurable function λ : Ω→ [0,+∞) such

that

σu|∇u|+ X∗ = ∇u+ X∗ = λ X∗

|X∗| L
2n-a.e on Ω .

All in all, there exists a |Du|-measurable function λ̃ : Ω→ R such that

σu = λ̃X∗ |Du|-a.e. in Ω.(33)

We claim that, up to the choice of a representative, any function u satisfying (33) is 0-
homogeneous, i.e., it satisfies u(z) = u(tz) for any z ∈ B(0, R) and t ∈ (0, 1); roughly
speaking, (33) says indeed that u has null radial derivative, which suggests its 0-homoge-
neity. Recalling that u|∂Ω = 0, this would be enough to conclude that u ≡ 0.

Consider the map

F : [0, R)× S2n−1 → Ω = B(0, R)

(ρ, θ) 7−→ ρθ

The claimed 0-homogeneity of u is clearly equivalent to the fact that u0 := u ◦ F :
[0, R]× S2n−1 → R admits a representative which does not depend on ρ. Thus, it will be
enough to prove that for any f0 ∈ C∞c ((0, R)× S2n−1) there holds

(34)

ˆ
(0,R)×S2n−1

u0
∂f0

∂ρ
d(L1 ⊗ µ) = 0 ,

where µ is the Haar measure on S2n−1. Define f ∈ C∞c (B(0, R) \ {0}) by f(z) := (f0 ◦
F−1)(z) = f0(|z|, z|z|) for any z ∈ B(0, R) \ {0}; notice that((∂f0

∂ρ

)
◦ F−1

)
(z) =

∂f0

∂ρ

(
|z|, z
|z|

)
=
〈
∇f(z),

z

|z|

〉
.
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By a change of variable we getˆ
(0,R)×S2n−1

u0
∂f0

∂ρ
d(L1 ⊗ µ)

=

ˆ
(0,R)×S2n−1

u(F (ρ, θ))

((∂f0

∂ρ

)
◦ F−1

)
(F (ρ, θ))

1

ρ2n−1
ρ2n−1 d(L1 ⊗ µ)(ρ, θ)

=

ˆ
B(0,R)

u(z)
〈
∇f(z),

z

|z|
〉 1

|z|2n−1
dL2n(z)

=
2n∑
i=1

ˆ
B(0,R)

u(z)
zi
|z|2n

∂f

∂zi
(z) dL2n(z)

=−
ˆ
B(0,R)

u(z) f(z)

[
2n∑
i=1

∂

∂zi

(
zi
|z|2n

)]
dL2n(z)−

ˆ
B(0,R)

f(z)〈σu(z), z〉 1

|z|2n
d|Du| .

Our claim (34) is then a consequence of the equality

2n∑
i=1

∂

∂zi

(
zi
|z|2n

)
= 0

and the fact that σu(z) = (λ̃X∗)(z) is |Du|-a.e. orthogonal to z.
Step 4: L = 0 is the unique minimizer of (30) for general Ω.

Let u ∈ BV(Ω) be a minimizer of (30) and let R > 0 be such that Ω b B(0, R). Let us
define

u0(z) :=

{
u(z) if z ∈ Ω
0 if z ∈ B(0, R) \ Ω .

By Step 2, also L = 0 is a minimizer, i.e., A0,Ω(u) = AΩ(0); thus

A0,B(0,R)(u0) =

ˆ
Ω
|∇u+ X∗|dL2n + |Dsu|(Ω) +

ˆ
B(0,R)\Ω

|X∗|dL2 + |Dsu0|(∂Ω)

= AΩ(u) + AB(0,R)\Ω(0) +

ˆ
∂Ω
|u|∂Ω|dH2n−1

= A0,Ω(u) + AB(0,R)\Ω(0)

= AΩ(0) + AB(0,R)\Ω(0) = AB(0,R)(0) = A0,B(0,R)(0) .

Therefore, u0 is a minimizer of A0,B(0,R); by Step 3, this implies that u0 = 0, i.e., that

u = 0 L2n-a.e. on Ω, as desired. �

The next Corollary is a special comparison principle for affine functions and, in partic-
ular shows that affine functions satisfy a comparison principle both from above and from
below.

Corollary 5.6. Let Ω ⊂ R2n be a bounded open set with Lipschitz boundary, ϕ ∈ L1(∂Ω)
and L : R2n → R be an affine function, i.e., L(z) = 〈a, z〉+ b for some a ∈ R2n, b ∈ R.

i) Assume that ϕ ≤ L H2n−1-a.e. on ∂Ω. Then, for any minimizer u ∈Mϕ of Aϕ, we
have u ≤ L L2n-a.e. in Ω.
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ii) Assume that that ϕ ≥ L H2n−1-a.e. on ∂Ω. Then, for any minimizer u ∈Mϕ of Aϕ,
we have u ≥ L L2n-a.e. in Ω.

Proof. Both claims follow immediately from Theorem 4.5 when we observe that the set ML

consists of just one element that is L itself, so that, following the notations of Proposition
4.4, L = L = L. �

6. The Bounded Slope Condition

We recall the well-known definition of Bounded Slope Condition (see [31]) for boundary
data. In particular we refer to [26] also for some classical results that we will summarize
next.

Definition 6.1. We say that a function ϕ : ∂Ω→ R satisfies the bounded slope condition
with constant Q > 0 (Q-B.S.C. for short, or simply B.S.C. when the constant Q does not
play any role) if for every z0 ∈ ∂Ω there exist two affine functions w+

z0 and w−z0 such that

w−z0(z) ≤ ϕ(z) ≤ w+
z0(z) ∀z ∈ ∂Ω,

w−z0(z0) = ϕ(z0) = w+
z0(z0)

Lip(w−z0) ≤ Q and Lip(w+
z0) ≤ Q,

(35)

where Lip(w) denotes the Lipschitz constant of w.

We also recall that a set Ω ⊂ R2n is said to be uniformly convex if there exists a positive
constant C = C(Ω) and, for each z0 ∈ ∂Ω, a hyperplane Πz0 passing through z0 such that

|z − z0|2 ≤ C dist(z,Πz0) ∀z ∈ ∂Ω,

where dist(z,Ω) := inf{|z − w| | w ∈ Ω}. It is worth noticing that, if ∂Ω is of class C2,
this condition holds if and only if all principal curvatures of ∂Ω are strictly positive, see
[26] for details.

Remark 6.2. We collect here some facts on the B.S.C.

a) If ϕ : ∂Ω → R satisfies the B.S.C. and is not affine, then Ω has to be convex (see
[26, page 20]) and ϕ is Lipschitz continuous on ∂Ω. Moreover, if ∂Ω has flat faces,
then ϕ has to be affine on them.

This property seems to say that the B.S.C. is a quite restrictive assumption. Anyhow the
following one, due to M. Miranda [42] (see also [26, Theorem 1.1]), shows that the class
of functions satisfying the B.S.C. on a uniformly convex set is quite large.

b) Let Ω ⊂ Rn be open, bounded and uniformly convex; then every ϕ ∈ C1,1(Rn)
satisfies the B.S.C. on ∂Ω.

We denote by f, g the functions defined, respectively, by f(z) := supz0∈∂Ωw
−
z0(z) and

g(z) := infz0∈∂Ωw
+
z0(z). We underline that f is a convex function, g is a concave function

and both are Lipschitz with Lipschitz constant not greater than Q.

Lemma 6.3. Let Ω ⊂ R2n be an open bounded set with Lipschitz regular boundary; assume
that ϕ ∈ L1(∂Ω) satisfies the Q-B.S.C. Then, for any u ∈Mϕ there holds

i) u|∂Ω = ϕ;

ii) f ≤ u ≤ g L2n-a.e. in Ω;
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iii) u is also a minimizer of AΩ in BV(Ω) with u|∂Ω = ϕ.

Proof. i) For every z0 ∈ ∂Ω, let w+
z0 and w−z0 be as in Definition 6.1. By Corollary 5.6, we

have that w−z0 ≤ u ≤ w
+
z0 L

2n-a.e. in Ω. Recalling (35) we obtain

|u(z)− ϕ(z0)| ≤ Q|z − z0| L2n-a.e. z ∈ Ω,∀z0 ∈ ∂Ω.(36)

Therefore,

1

ρ2n

ˆ
Ω∩B(z0,ρ)

|u− ϕ(z0)|dL2n ≤ Q

ρ2n

ˆ
Ω∩B(z0,ρ)

|z − z0| dL2n(z) ≤ Qρ(37)

and letting ρ→ 0+ in (37) we conclude that u|∂Ω = ϕ.

ii) Fix a Lebsgue point z̄ ∈ Ω of u. Since f is a convex function, there exists ξ ∈ R2n

such that f(z) ≥ f(z̄) + ξ · (z − z̄) := h(z) for every z ∈ Ω. The function h is affine and
h ≤ ϕ on ∂Ω; then Corollary 5.6 implies that u ≥ h L2n-a.e. in Ω. Considering the mean
integral on a ball centered at z̄ we obtain 

B(z̄,ρ)
u(z)dL2n ≥

 
B(z̄,ρ)

h(z)dL2n

and, passing to the limit as ρ→ 0+, we get u(z̄) ≥ f(z̄). One can argue in a similar way
to prove that u ≤ g L2n-a.e. in Ω.

Finally, the proof of iii) is straightforward. �

Remark 6.4. If Ω′ ⊂ Ω are open bounded domains with Lipschitz regular boundary and
u ∈ BV(Ω), we use the notation Au,Ω′ to denote the functional Au|∂Ω′ ,Ω

′ . Let us prove

that, if u is a minimizer of Aϕ,Ω with ϕ = u|∂Ω, then u is also a minimizer of Au,Ω′ .
Let us write Γ := ∂Ω′ ∩ Ω and ∂Ω = ∆1 ∪∆2, where

∆1 := ∂Ω ∩ ∂Ω′ and ∆2 := ∂Ω \ ∂Ω′ .

Notice that ∂Ω′ = Γ ∪ ∆1. We also denote by ui, uo : Γ → R the “inner” and “outer”
(with respect to Ω′) traces of u on Γ, i.e.,

ui := (u|∂Ω′) Γ and uo := (u|∂(Ω\Ω′)) Γ .

Assume by contradiction that u is not a minimizer of Au,Ω′ ; then, there exists v ∈ BV(Ω′)
such that

0 < Au,Ω′(u)−Au,Ω′(v)

= AΩ′(u)−AΩ′(v)−
ˆ
∂Ω′
|v|∂Ω′ − u|∂Ω′ |dH2n−1

= AΩ′(u)−AΩ′(v)−
ˆ

Γ
|v|∂Ω′ − ui| dH2n−1 −

ˆ
∆1

|v|∂Ω′ − ϕ| dH2n−1 .

(38)

We will reach a contradiction if we show that the function w ∈ BV(Ω) defined by

w := v on Ω′, w := u on Ω \ Ω′

satisfies Aϕ,Ω(u)−Aϕ,Ω(w) > 0.
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Let us compute

Aϕ,Ω(u) = AΩ(u) = AΩ′(u) + AΩ\Ω′(u) + |Dsu|(Γ)

= AΩ′(u) + AΩ\Ω′(u) +

ˆ
Γ
|uo − ui| dH2n−1

(we have used the assumption ϕ = u|∂Ω) and

Aϕ,Ω(v) = AΩ′(v) + AΩ\Ω′(u) + |Dsw|(Γ) +

ˆ
∂Ω
|w|∂Ω − ϕ|dH2n−1

= AΩ′(v) + AΩ\Ω′(u) +

ˆ
Γ
|v|∂Ω′ − uo| dH2n−1 +

ˆ
∆1

|v|∂Ω − ϕ|dH2n−1 .

Therefore

Aϕ,Ω(u)−Aϕ,Ω(v)

= AΩ′(u)−AΩ′(v) +

ˆ
Γ

(
|uo − ui| − |v|∂Ω′ − uo|

)
dH2n−1 −

ˆ
∆1

|v|∂Ω − ϕ|dH2n−1

≥AΩ′(u)−AΩ′(v)−
ˆ

Γ
|v|∂Ω′ − ui| dH2n−1 −

ˆ
∆1

|v|∂Ω′ − ϕ| dH2n−1

> 0

by (38), as desired.

We are now in position to prove our main result.

Proof of Theorem 1.1. We divide the proof into several steps.
Step 1. We denote by u the (pointwise a.e.) maximum of the minimizers of Aϕ,Ω in BV

(see Theorem 4.3). Lemma 6.3 implies that f ≤ u ≤ g L2n-a.e. in Ω and u = ϕ = f = g
on ∂Ω; in particular, u is also a minimizer for (1).

Let τ ∈ R2n be such that Ω ∩ Ωτ 6= ∅; following the notations introduced in Section
5, we consider the function u∗τ,0, which we denote by u∗τ to simplify the notation. Let us
consider the set Ω ∩ Ωτ . By Remark 6.4, u is a minimizer of Au,Ω∩Ωτ and, by Corollary
5.4 and Remark 6.4, u∗τ is a minimizer of Au∗τ ,Ω∩Ωτ . Let z ∈ ∂(Ω∩Ωτ ), then either z ∈ ∂Ω
or z ∈ ∂Ωτ .
If z ∈ ∂Ω, then z + τ ∈ Ω and the inequality (36) in Lemma 6.3 implies that

(39) u(z)−Q|τ | ≤ u(z + τ) ≤ u(z) +Q|τ | .

Otherwise, z ∈ ∂Ωτ and z = (z + τ)− τ ∈ Ω, and Lemma 6.3 implies again (39).
So we have proved that (39) holds for any z ∈ ∂(Ω ∩ Ωτ ), hence

u(z)−Q|τ |+ 2〈τ∗, z〉 ≤ u(z + τ) + 2〈τ∗, z〉 ≤ u(z) +Q|τ |+ 2〈τ∗, z〉 .

Setting M := Q+ 2 supz∈Ω |z|, one has

u(z)−M |τ | ≤ u∗τ (z) ≤ u(z) +M |τ | for any z ∈ ∂(Ω ∩ Ωτ )

and, by Corollary 4.6,

u(z)−M |τ | ≤ u∗τ (z) ≤ u(z) +M |τ | for L2n-a.e. z ∈ Ω ∩ Ωτ .
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This is equivalent to

u(z)−M |τ | − 2〈τ∗, z〉 ≤ u(z + τ) ≤ u(z) +M |τ | − 2〈τ∗, z〉 for L2n-a.e. z ∈ Ω ∩ Ωτ

and, setting K := M + 2 supz∈Ω |z|,

u(z)−K|τ | ≤ u(z + τ) ≤ u(z) +K|τ | for L2n-a.e. z ∈ Ω ∩ Ωτ

Step 2. We claim that the inequality |u(z) − u(z̄)| ≤ K|z − z̄| holds for any Lebesgue
points z, z̄ of u. We define τ := z̄ − z; then Ω ∩ Ωτ 6= ∅ and, arguing as in Step 1, we
obtain

|u(z′ + τ)− u(z′)| ≤ K|τ | for L2n-a.e. z′ ∈ Ω ∩ Ωτ .

Let ρ > 0 be such that B(z, ρ) ⊂ Ω ∩ Ωτ and B(z̄, ρ) ⊂ Ω ∩ Ωτ ; then

|u(z)− u(z̄)| =

∣∣∣∣∣ limρ→0

( 
B(z,ρ)

u(z′)dz′ −
 
B(z̄,ρ)

u(z′)dz′

)∣∣∣∣∣
≤ lim
ρ→0

 
B(z,ρ)

∣∣u(z′)− u(z′ + τ)
∣∣ dz′ ≤ K|z − z̄|.

Step 3. We have proved that u, the maximum of the minimizer of Aϕ, has a rep-
resentative that is Lipschitz continuous on Ω, with Lipschitz constant not greater than
K = Q + 4 supz∈Ω |z|. The same argument leads to prove that u, the minimum of the
minimizers of Aϕ, has a representative that is Lipschitz continuous on Ω, with Lipschitz
constant not greater than K. The uniqueness criterion in Proposition 5.1 (with p = 1)
implies that u = u L2n-a.e. on Ω. If u is another minimizer of Aϕ, we have by Proposition
4.4 that u ≤ u ≤ u L2n-a.e. on Ω. This concludes the proof. �

Remark 6.5. The bound Q + 4 supz∈Ω |z| on the Lipschitz constant of the minimizer
might not be optimal. Actually, we do not even know whether, in contrast with the
classical case (see[26, Theorem 1.2]), there are examples of minimizers of A satisfying the
Q-B.S.C. whose Lipschitz constant is larger than Q.

The following examples show that, at least in the case n = 1, Theorem 1.1 is sharp, in
the sense that minimizers might not be better than Lipschitz regular.

Example 6.6. It was proved2 in [14, Example 7.2] that the Lipschitz function

u(x, y) :=

{
2xy if y > 0
0 if y ≤ 0

is a minimizer of Au|∂Ω,Ω on any bounded open set Ω with Lipschitz regular boundary.
Let us prove that u|∂Ω satisfies the B.S.C. on the open set

Ω := {(x, y) ∈ R2 : x2 − 1 < y < 1− x2} .
Upon setting ϕ(x, y) := x(y − x2 + 1), one can easily check that u(x, y) = ϕ(x, y) for any
(x, y) ∈ ∂Ω; moreover, Ω is uniformly convex and ϕ ∈ C∞(R2), thus u|∂Ω satisfies the
B.S.C. on Ω because of Remark 6.2 (b). By Theorem 1.1, u is the unique minimizer of
Aϕ,Ω on BV(Ω); notice that u is not better than Lipschitz continuous on Ω.

2Up to an easy adaptation.
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Example 6.7. The previous example provides a nonsmooth minimizer of A on a non-
smooth domain; it is anyway possible to exhibit nonsmooth minimizers also on smooth
domain. Indeed, it was proved in [47, Example 3.4] that the C1,1 function u(x, y) :=
−2xy + y|y| minimizes A (under boundary conditions given by u itself) on any bounded
domain Ω ⊂ R2 with Lipschitz regular boundary. Notice that, by Remark 6.2 (b), u
satisfies a B.S.C. on any smooth and uniformly convex domain.
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