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Elastic deformations on the plane and
approximations
Aldo Pratelli and Simona Puglisi

Summary. The basis for these notes is the course given by the first author in the
week June 20–24, 2011 at the SISSA of Trieste (Italy), during the intensive period
“Nonlinear Hyperbolic PDEs, Dispersive and Transport Equations”.

1.1 Introduction and some history

The aim of these notes is to give a good overview on the problem of the
approximation of homeomorphisms in the plane, with a special emphasis on
some new results.

Let us start briefly describing what is the main problem and its history.
Given a homeomorphism u : Ω → ∆, where Ω and ∆ are open subsets of RN ,
one may want to find an approximation uε : Ω → ∆ of u; this means on one
hand that uε is “good”, e.g. a smooth homeomorphism, and on the other hand
that it is “close” to u, that is, the distance in a suitable sense between u and
uε is small, say d(u, uε) ≤ ε � 1. Probably the most important example of
this situation is when u is the deformation of an elastic object, in particular
a thin elastic plate for N = 2, or an elastic body for N = 3. The main
reason why the existence of a smooth approximation is not trivial is that
one requires uε to be also a homeomorphism, while the standard mollification
with a smoothing kernel does not ensure uε to be a bijection. In particular,
the mollification would work if the function u is assumed to be of class C2,
but this is a too strong assumption for most of the applications: for instance,
in nonlinear elasticity an important situation is that of the piecewise affine
maps, whose second (distributional) derivative is concentrated on a set of zero
measure.

Of course, the whole question heavily depends on what one means by
“good”, and on which is the distance d used to say that uε is “close” to u.
Concerning the first point, a natural choice is of course to ask uε to be smooth
on Ω; but another possibility, which is sometimes preferred in the applications,
is to ask uε to be piecewise affine. We will give our approximation results
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in both contexts; in particular, it is quite clear how to recover a piecewise
affine approximation starting from a smooth one, while the converse is more
complicate. In fact, as we will see later, the first part of these notes is devoted
to give a result which allows to build a smooth approximation from a piecewise
affine one (see Theorem A in Chapter 1.2).

Before passing to observe the possible meaningful choices of the distance
d, let us briefly discuss the first temptative idea that one could have, in order
to build a piecewise affine approximation of u. One can start fixing an arbi-
trary triangulation of Ω, made by many sufficiently small triangles, and then
define uε as the function which corresponds, in every triangle, with the affine
interpolation of the values of u on the vertices. It is immediate to observe that,
as soon as the triangles are small enough, the map uε is arbitrarily close to u,
at least in the L∞ sense; however, no matter how small are the triangles, the
map uε could fail to be injective, as Figure 1.1 shows. An explicit example of
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Fig. 1.1. The interpolations of the map u on the disjoint triangles ABD and BCD
may overlap.

a function with such a bad behaviour on arbitrarily small scales can be found
in [49]. Therefore, even the simplest case when

d(u, v) = ‖u− v‖L∞(Ω) + ‖u−1 − v−1‖L∞(∆) (1.1)

is not straightforward. In this setting, the problem was heavily studied in the
1950s and the 1960s, mainly because of its importance in geometric topology:
the first solution, dealing with the planar case N = 2, was given by Radó [47],
then the problem was solved by Moise [40, 41] and Bing [9] in the spatial case
N = 3. Other positive results in higher dimension have been found by Con-
nell [12], Bing [10], Kirby [35] and Kirby, Siebenmann and Wall [36] (see also
Rushing [48] or Luukkainen [38]), while a negative result in dimension N = 4
has been given by Donaldson and Sullivan [18]. It is to be mentioned that the
strategy to find the approximation, in some of the above-mentioned cases, is
basically the one of the affine interpolations that we described above. As we
said before, the difficult part is not at all to show that the affine interpolation
is close to the original map, because this is trivial: the very hard part is to
show that it is always possible to select a “smart” triangulation which avoids
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the drawback of the figure above. Thanks to these results, basically everything
is known for what concerns the L∞ distance in (1.1).

However, this is not the end the story: indeed, for most applications the
approximation with the distance d given by (1.1) is not enough. In particular,
when dealing with problems in nonlinear elasticity, one wants to obtain a
map uε corresponding to an energy close to that of u. And, even if there
are several possible notions of energy of a configuration, all of them involve
some derivative, and then an L∞ bound for u − uε is not enough. For this
reason, since the 1980s Evans and Ball (see [19, 5, 6]) suggested to try to
prove some approximation result for the case of W 1,p homeomorphisms, with
some distance d which involves also the Lp norm of the derivative, in place of
that given by (1.1): for related functionals, see for instance [4], [7], [13], [50].

It turns out that it is not easy to give bounds to the derivative ofDuε, if the
function uε is obtained through the interpolation procedure described above,
and for this reason the Ball–Evans question remained completely open for
several years. Nevertheless, two positive results essentially using this strategy
came out in recent years. In the first one, Mora-Corral [42] was able to deal
with the case of a planar bi-Sobolev map, which is C2 everywhere except
than in a point (this situation is not simple at all, on the contrary it already
contains most of the difficulties which arise in the general situation). In this
case, it was proved the existence of a piecewise affine approximation uε close
to u with respect to the distance

d(u, v) = ‖u− v‖L∞(Ω) + ‖u−1 − v−1‖L∞(∆) + ‖Du−Dv‖Lp(Ω) ; (1.2)

this was the first positive result for a distance involving the derivative. The
other paper, by Bellido and Mora-Corral [8], proves that if the planar map
u belongs to some Hölder space C0,α, then there exists a piecewise affine
approximation which is close under the C0,β distance, where for any α ∈ (0, 1]
the constant β = β(α) ∈ (0, 1) is explicitely determined. The results by Mora-
Corral and by Bellido and Mora-Corral have been obtained defining uε as a
piecewise affine function on a suitably constructed triangulation; as one can
easily imagine, to find a proper triangulation and to define a corresponding
piecewise affine function uε obtaining also an estimate of Du − Duε (or a
C0,β estimate) is quite more complicate than it already was for the L∞ case
discussed before.

Recently, Iwaniec, Kovalev and Onninen have used a different strategy
to give a positive answer, still in the two-dimensional case. More precisely,
they have considered a W 1,p map u, and they have showed the existence of
a smooth map uε close to u again in the sense of (1.2) –more precisely, they
have used the weaker distance ‖u− v‖W 1,p , but then it is easy to deduce the
validity also for the stronger case of (1.2). Their first result was for p = 2
(see [30]), then they were able to extend their analysis to the case of a generic
1 < p <∞ (see [31]).

The methods used in these two papers are deeply different from what used
in all the preceding works, so let us give a very brief and incomplete idea
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about the proof in [31]. A main tool in their construction is a suitable “p-
harmonic replacement” technique: roughly speaking, this means the following.
Take a W 1,p map u on the open domain Ω, and let A ⊂⊂ Ω be a compactly
supported subdomain; then, it is possible to modify u only inside A in such
a way that the new map remains continuous, it becomes p-harmonic inside
A, and its total energy has not increased. This result is obtained making use
of a generalization due to Alessandrini and Sigalotti of the Radó–Kneser–
Choquet Theorem. The construction of the approximation uε of u is basically
done by finding a suitable partition of the domain in cells, and then applying
repeatedly the p-harmonic replacement and an ad hoc smoothing procedure.

Summarizing, except for the case of p = 1, which is still open, the results by
Iwaniec, Kovalev and Onninen provide the full positive answer to Ball–Evans
question for the distance (1.2) and the dimension N = 2.

Again, also these results are still not enough to cover the relevant cases
corresponding to the nonlinear elasticity, which is the main application one has
in mind. The reason of this, is that the distance given by (1.2) is still not strong
enough to deal with the energy. In fact, the energy related to the map u usually
takes the general form E(u) =

∫
Ω
W (Du) for some functional W : RN×N → R,

and in all the applications one has W (M) → +∞ if detM → 0 (see for
instance [6, pag. 3], but also [3, 51, 20, 44]). Notice that the meaning of this
assumption is simple, since it corresponds to require a high energy to compress
the material (in particular, if the material is incompressible then W (M) =
+∞ whenever detM 6= 1). As a consequence, a small distance d(u, uε) � 1
with the function d given by (1.2) does not ensure that

∣∣E(u)−E(uε)
∣∣� 1, and

of course it is of no use an “approximation” of a map which corresponds to a
significantly different energy. For this reason, one is led to a further definition
of distance, even stronger than (1.2), namely,

d(u, v) = ‖u− v‖L∞(Ω) + ‖u−1 − v−1‖L∞(∆)

+ ‖Du−Dv‖Lp(Ω) + ‖Du−1 −Dv−1‖Lp(∆) ;
(1.3)

this distance is strong enough to give a control on
∣∣E(u)− E(uε)

∣∣ in terms of
d(u, uε) in all the relevant applications. We remark that finding an approxi-
mation result with this last notion of distance was also left as an open problem
in [31, Question 4.2]. The only available result with this distance was recently
obtained by the first author and Daneri in [16], where it is shown that ev-
ery planar bi-Lipschitz map u can be approximated in this strong sense with
either smooth or piecewise affine bi-Lipschitz homeomorphisms (this is Theo-
rem C in Chapter 1.4 of these notes). Notice that the assumption means that
u, u−1 ∈ W 1,∞, while the best possible result that one would like to have, is
with the assumption that u, u−1 ∈W 1,p. This is presently still open.

1.1.1 Plan of the notes

We will start these notes with a short overview on the theory of the map-
pings of finite distortion and of bi-Sobolev mappings, Section 1.1.2: even if
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these notions are not needed to read the rest of the notes, they are strictly
connected with the problem we are dealing with. Then, in Section 1.1.3 we
will list the notation that we are going to use through this work. The main
part of the notes is then divided in three chapters, each devoted to present a
different recent work on the subject described in the introduction.

As we said above, one may want to approximate a homeomorphism with
a smooth one, or with a piecewise affine one. The two things are not easily
equivalent: in fact, while it is rather simple to pass from a smooth approxi-
mation to a piecewise affine one, the converse is much more complicated. In
Chapter 1.2 we will present a recent result by Mora-Corral and the first au-
thor (proven in [43]), which shows how to do so. Actually, the result that we
will prove, Theorem A, is a bit less general than the one in [43], because we
preferred to focus here on the bi-Lipschitz case in order to simplify the con-
struction. We remark also that a related result was already known since the
work by Munkres [45], but there was no explicit estimate of the error, which
is instead essential for our purposes (see in particular (1.6) in Theorem A).

In many different proofs of an approximation theorem, a key ingredient is
an extension result. The main reason is that one seeks for an approximating
map which is still a homeomorphism (this is always the source of all the dif-
ficulties); therefore, once one has solved the problem in a big portion of the
domain, it can be useful to get rid of the remaining part simply taking an
extension of the boundary values. In particular, for our construction we will
need to know the following result: given a bi-Lipschitz function defined on the
boundary of the unit square, there is a bi-Lipschitz extension in the whole
square. Notice that this is exactly the claim of the well-known Kirszbraun
extension Theorem, except that the Lipschitz property is replaced by the bi-
Lipschitz one. And again, being interested also in the inverse makes everything
harder: indeed, while Kirszbraun Theorem holds in a wide generality of spaces,
and the Lipschitz constant does not change with the extension, the stronger
result that we need is known only in dimension 2, and the bi-Lipschitz con-
stant increases significantly. Since this claim is of primary importance for our
construction, Chapter 1.3 will be devoted to present a recent proof by Daneri
and the first author (see [15]). It has to be pointed out that the same result
had been proved already by Tukia [52], with a completely different strategy.
But again, in Tukia’s result there was no estimate on the bi-Lipschitz constant
of the approximation (because the existence was obtained via a compactness
argument), which is instead necessary, while in [15] it is proved that the ex-
tension is at most CL4 bi-Lipschitz for an explicit constant C, see Theorem B.
The exponent 4 is presumably not sharp, obtaining a bi-Lipschitz constant
CL would be a major result.

Finally, in the last part of the notes, Chapter 1.4, we will present the proof
of the main approximation result, Theorem C, which has been recently proved
by Daneri and the first author in [16]: as explained in the introduction, we
prove that every planar bi-Lipschitz map can be approximated by smooth or
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piecewise affine bi-Lipschitz homeomorphisms in the sense of the strongest
distance d in (1.3).

Our strategy in proving all the three results is to give an explicit con-
struction by means of elementary but involved geometric arguments. There-
fore, there is in principle no obstruction to extend all the results even in the
three-dimensional case (while, for instance, the strategy in [30, 31] cannot
be extended since it needs to identify R2 with the complex plane). However,
since many of our arguments are extremely delicate, the extension seems at
the moment quite hard (in particular, for what concerns the bi-Lipschitz ex-
tension Theorem B). The main problem should be that, in the 3-dimensional
situation, many more complicate topological obstructions may arise: in fact,
already for the classical approximation in the L∞ norm described before, the
3-dimensional case is much more complicate than the 2-dimensional one, see
the book [41].

The three main results that we will discuss are quite technical and in-
volved, even if they make only use of elementary geometric facts. To keep
these notes easy to read, we have then tried to simplify as much as possi-
ble the presentation and the details: the interested reader can find the fully
complete results in the above-cited papers, while here some results are not
proved, or not in their full generality. Moreover, each chapter contains a long
preliminary section, where the overall strategy of the construction is described
and the main steps are depicted. Reading each introduction will be enough to
give a flavour of the proof to the quick reader, and it should also considerably
help the more interested reader to follow the complete proof without getting
lost in the technicalities.

1.1.2 Maps of finite distortion and bi-Sobolev functions

In this section, we give a short description of the theory of the maps of
finite distortion and of the bi-Sobolev mappings. Since this is a huge field, we
can only present some aspects, the interested reader can find everything in
the literature (just as an example, we quote here the two monographs [1, 32],
as well as the very recent one [25], other references will be given later).

First of all, we recall that a Jordan curve is any continuous and injective
map γ : S1 → R2, or equivalently, any closed and non self-intersecting curve
in R2, corresponding to C = γ(S1). Any such curve divides R2 \ C in two
disjoint connected open sets: since one of them is bounded, and the other one
is unbounded, the first one is often referred to as the “internal part” of C,
and the second one as the “external part”. For any point x /∈ C, consider the
homotopy class h(x) ∈ Z of the map

S1 3 θ 7→ γ(θ)− x
|γ(θ)− x| ∈ S1 :

it can be proved that h(x) = 0 whenever x belongs to the external part, while
h(x) = ±1 if x is in the internal one. More precisely, either h(x) = 1 for all
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the points in the interior part of the curve, or h(x) = −1 for all of them:
in the first case, it is said that the curve γ is counterclockwise, while in the
second case it is clockwise.

Definition 1.1. Let Ω ⊆ R2 be an open connected set, and u : Ω → R2 be a
homeomorphism onto the image. Let γ be any counterclockwise curve inside
Ω; we say that u is orientation-preserving (resp., orientation-reversing) if the
curve u(γ) is counterclockwise (resp., clockwise).

It can be shown that the above definition does not depend on the choice of
the curve γ. As a consequence, every homeomorphism of a connected planar
set must be either orientation-preserving, or orientation-reversing. To deter-
mine the orientation property of a given homeomorphism, it can be of course
selected any curve γ by the above definition; in particular, if Ω is a Lipschitz
domain and u is continuous up to the boundary, then it is possible to select as
curve the boundary of Ω itself, which is often a useful choice. Notice that, if u
is smooth enough, say u ∈ C2, then being orientation-preserving is equivalent
to have detDu > 0 almost everywhere; in the general case of a bi-Sobolev
function u the situation is much more complicate, as we will see below.

Let us now introduce the concept of distortion of a map. Through this
section Ω ⊆ RN is an open, bounded and connected set, and u : Ω → RN a
map.

Definition 1.2. Let x ∈ Ω be such that Du(x) exists and detDu(x) > 0. The
distortion of u at x is

Ku(x) :=
|Du(x)|N

N
N
2 detDu(x)

.

We remark that sometimes, in the literature, the distortion is defined also
for a point x for which detDu(x) = 0, and in this case one sets Ku(x) = 1.
The presence of the constant NN/2 in the definition has the only purpose of
letting the identity have unit distortion. To understand the meaning of the
distortion, it may help to concentrate for a moment on the two-dimensional
case: the first-order Taylor expansion of u around x maps the unit circle into
an ellipsis of axes a and b ≤ a, while up to rotations one has

Du =
Å
a 0
0 b

ã
.

Therefore, the distortion of u at x is Ku(x) = a2 + b2

2ab
≈ a

b
. In other words,

roughly speaking, the distortion is more or less the quotient between the
greatest and the smallest stretching ratios of Du. A very important feature of
the distortion is the following.
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Lemma 1.3. The distortion satisfies Ku(x) ≥ 1 wherever it is defined, and
equality holds if and only if Du(x) is a multiple of the identity. Moreover, if
both Du(x) and Du−1

(
u(x)

)
exist, then Ku(x) = Ku−1 (u(x)).

This fact is extremely useful; notice that, on the contrary, there is not a precise
link between |Du(x)| and

∣∣Du−1
(
u(x)

)∣∣.
Definition 1.4. Assume that u ∈ W 1,1

loc (Ω), detDu ∈ L1
loc(Ω) and detDu ≥

0 almost everywhere. Then u is said to be of finite distortion. If, in addition,
the distortion Ku belongs to L∞(Ω), we say that u is of bounded distortion,
or that it is quasiregular. If in addition u is a homeomorphism, then it is said
quasiconformal.

The study of mappings of finite distortion has started with the pioneering
works by Ball [2, 3], originally motivated by non-linear elasticity; the theory
is nowadays very rich, a non-complete list of some other important results on
this matter is [14, 17, 21, 22, 23, 27, 24, 25, 26, 28, 29, 33, 34, 37, 38, 39, 51],
where one can find also all the results that we describe below.

Observe that, if the map u is bi-Lipschitz, then it has bounded distortion,
since the bi-Lipschitz constraint implies both an upper and a lower bound for
|Du| and detDu.

A first important property of the maps of finite distortion is that improved
continuity results hold, with respect to usual Sobolev function. More precisely,
recall that in general a Sobolev map f ∈W 1,p(Ω; RN ) is continuous if p > N ,
but not necessarily if p ≤ N . Instead, for a function of finite distortion the
following holds.

Theorem 1.5. If u is of finite distortion and u ∈ W 1,N
loc (Ω), then it is con-

tinuous. The same holds true if u is of finite distortion and eλKu ∈ L1
loc(Ω)

for some λ > 0.

Another important question is whether or not a map satisfies the Luzin
(N) property, which means

|E| = 0 =⇒ |u(E)| = 0 , ∀E ⊆ Ω.

The meaning of this property in the context of the elastic deformations is
that “mass cannot be created from nothing” in an elastic body. Moreover, the
validity of this property is essential, because if it is true then the usual change
of variable formula for integrals holds. In turn, it is quite easy to check that
for a generic map f ∈ W 1,p(Ω; RN ) the Luzin (N) property holds as soon as
p > N , while for p ≤ N this is not necessarily true: a counterexample with
p = N was already known to Cesari [11], and for p < N it is also possible
to build a counterexample which is a homeomorphism, as it essentially comes
from an old idea of Ponomarev [46], see [34]. And again, the assumption of
finite distortion ensures the validity of the property with weaker summability
assumption (see [34, 39]).
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Theorem 1.6. If u is of finite distortion and either u ∈W 1,N
loc (Ω), or eλKu ∈

L1
loc(Ω) for some λ > 0, then u satisfies the Luzin (N) property.

Conversely, the following result is known (see [37]) for the Luzin (N−1)
property, which, for an elastic deformation, means that “mass cannot disap-
pear”.

Theorem 1.7. Assume that u is of finite distortion, Ku ∈ L
N
N−1 (Ω), the

multiplicity of u is essentially bounded and u is not constant. Then the Luzin
(N−1) property

|u(E)| = 0 =⇒ |E| = 0 , ∀E ⊆ Ω,

holds true, and detDu > 0 a.e. in Ω.

We pass now to discuss a strongly linked question, namely, under which
assumptions is it possible to say that detDu > 0 almost everywhere (or
detDu < 0 almost everywhere), for a homeomorphism u: as we already
pointed out before, if u is smooth enough then this is granted. In particu-
lar detDu > 0 a.e. if u is orientation-preserving, and detDu < 0 a.e. if u is
orientation-reversing. The connection between this strict sign condition and
the Luzin (N−1) property is immediate to observe: indeed, assume that the
change of variable formula holds for u, and that detDu = 0 on a set of positive
measure E ⊆ Ω. Then the Luzin (N−1) property does not hold, since

0 =
∫
E

detDu =
∫
u(E)

1 =
∣∣u(E)

∣∣ . (1.4)

Keeping this observation in mind, the sharpness in the claim of Theorem 1.7
becomes evident in view of the following example, presented in [32, Par. 6.5.6]:
there exists a Lipschitz homeomorphism u of finite distortion whose Jacobian
vanishes in a set E ⊆ Ω of positive measure, while |u(E)| = 0 and Ku ∈ Lp(Ω)
for every p < N

N−1 .
Given the homeomorphism u, the easiest strategy to prove that detDu > 0

(or detDu < 0) almost everywhere is to start showing only the weaker in-
equality detDu ≥ 0 (or detDu ≤ 0); then –if the summability of Du and of
Ku is enough– u becomes of finite distortion and then one can apply Theo-
rem 1.7. Let us then list the assumptions under which it is known that either
the inequality detDu ≥ 0 or the inequality detDu ≤ 0 holds a.e. .

Theorem 1.8. Let u : Ω → RN be a homeomorphism. Then one has that
detDu ≥ 0 a.e. , or that detDu ≤ 0 a.e. , if one of the following conditions
hold:

• u ∈W 1,1
loc (Ω), if N = 2 or N = 3;

• u ∈W 1,p
loc (Ω) and p > [N/2], if N > 3.
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In particular, if N ≤ 3 it can be also proved that if u is orientation-preserving
then detDu ≥ 0, while if u is orientation reversing then detDu ≤ 0; the
same is reasonable also in dimension N ≥ 4, but the question is still open.
The sharpness of the assumptions in Theorems 1.7 and 1.8 (in particular, of
the essentially bounded multiplicity to get the strict sign condition) can be
checked in view of the following counterexamples (which can be found in the
papers [22, 27, 23], for a unified treatment see the new monograph [25]).

Example 1.9. There exists a Lipschitz homeomorphism such that detDu = 0
on a set of positive measure; there also exists a Sobolev homeomorphism such
that detDu = 0 almost everywhere: in this last case, then, by (1.4) we observe
that u maps a set of full measure in a set of zero measure, and vice versa.
There exists an approximatively differentiable (but notW 1,1) homeomorphism
u : B → B, being B the unit ball, such that u(x) = x on ∂B but detDu < 0 on
a set of positive measure. There also exists a map (but not a homeomorphism)
u ∈W 1,p(B;B) with p < N which is continuous and satisfies u(x) = x on ∂B,
but detDu < 0 almost everywhere.

The last property that we discuss is the “regularity of the inverse”; roughly
speaking, if u is a homeomorphism, is it possible to deduce summability for
Du−1 from the summability of Du? For general maps, this is never true,
since there are Lipschitz homeomorphisms whose inverse is not even in W 1,1

loc .
However, again the finite distortion allows to obtain better results.

Theorem 1.10. If u ∈ W 1,N−1
loc (Ω) is a homeomorphism of finite distortion,

then u−1 belongs to W 1,1
loc

(
u(Ω)

)
and it is also of finite distortion. If u ∈

W 1,N−1
loc (Ω) is a homeomorphism, then u−1 ∈ BVloc

(
u(Ω)

)
. Moreover, if N =

2 and u ∈ BVloc(Ω) is a homeomorphism, then u−1 ∈ BVloc

(
u(Ω)

)
.

1.1.3 Notation

Let us now give a short list of the common notation that will be used from
now on, in the three main parts of the notes; in addition, every part will need
some further specific notation, which will be presented at the beginning of
each part.

We will always work in dimension 2, and Ω and ∆ will be given open
planar sets. A triangulation of Ω is a locally finite family

{
T i

}
of essentially

disjoint closed triangles whose union is between Ω and its closure, and with the
property that the intersection of two different triangles may be either empty,
or a common vertex, or a common side. A triangulation is said finite if so is
the number of triangles of the partition, while otherwise it is countable; every
open set admits a triangulation, but only polygons admit finite triangulations.

A map u : Ω → ∆ is said piecewise affine if there is a triangulation of Ω
such that u is affine on every triangle of the triangulation. We say that u is
finitely piecewise affine if there exists such a triangulation which is finite.
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We will use L to denote the Lebesgue measure, but often we will write
for brevity |Ω| instead of L (Ω).

The generic points will be usually denoted by capital letters, as P, Q and
so on; sometimes, we will write P ≡ (x, y) if we will need to use the orthogonal
coordinates in R2. Only in Chapter 1.2 we will use also polar coordinates, and
this will require a different specific notation (which we will directly introduce
there). The segment joining P andQ will be denoted by PQ, and `(PQ) will be
its length. The triangle having vertices P , Q and R will be denoted by PQR,
and in general P1P2 · · ·Pk will be the polygon whose ordered vertices are the
Pi’s. Given three non-aligned points P , Q and R, we will call P“QR ∈ (0, π)
the corresponding angle. Sometimes, for the ease of presentation, we will write
the value of angles in degrees, with the usual convention that π = 180◦.

The ball centered at P and with radius ρ will be denoted by B(P, ρ), while
the ρ-neighborhood of the set X will be B(X, ρ). Moreover, D(P, ρ) is the
square centered at P , having half-side ρ, and whose sides are parallel to the
coordinate axes: in particular, since we will use it extensively, we will write
for brevity D = D(O, 1/2) to denote the square of unit side centered at the
origin.

Given a matrix M ∈ R2×2, we will consider as usual its norm as |M | =√
M2

11 +M2
12 +M2

21 +M2
22.

The map u : Ω → R2 is said to be L bi-Lipschitz if for every P, Q ∈ Ω
one has

1
L
≤
`
(
u(P )u(Q)

)
`(PQ)

≤ L ;

or course, if u is bi-Lipschitz, then in particular it is a homeomorphism, and
it is always L ≥ 1.
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1.2 Part I: From piecewise affine to smooth

This first chapter is devoted to show an approximation result, which allows
to pass from a piecewise affine homeomorphism to a smooth one. Our result
is basically taken from [43]: in fact, we present here only the particular case of
our interest, namely, the case of bi-Lipschitz maps; the result in [43] is quite
more general, even though the construction is more or less the same.

In this part, we consider a given L bi-Lipschitz map u : Ω → ∆ which is
countably piecewise affine. As we said in Section 1.1.3, this means that Ω is
the locally finite union of essentially disjoint triangles, such that two different
triangles can intersect in a common vertex or in a common side, and that u
is affine on every triangle. The result we are interested in is the following.

Theorem A (From piecewise affine to smooth). Let Ω, ∆ ⊆ R2 be two open
sets, let u : Ω → ∆ be a countably piecewise affine L bi-Lipschitz home-
omorphism, and let 1 ≤ p < ∞. For every ε > 0 there exists a smooth
diffeomorphism v : Ω → ∆ such that

‖v − u‖L∞(Ω) + ‖Dv −Du‖Lp(Ω) + ‖v−1 − u−1‖L∞(u(Ω))

+ ‖Dv−1 −Du−1‖Lp(u(Ω)) ≤ ε .
(1.5)

Moreover, one has that

• v is 100L7/3 bi-Lipschitz ;
• u = v on ∂Ω ;
• if u is orientation-preserving, then so is v ;
• for any 0 ≤ q ≤ 1, it is possible to choose the function v in such a way

that ∣∣Dv(x)
∣∣ ≤13L3−2q ,

∣∣Dv−1
(
u(x)

)∣∣ ≤ 70L1+4q ,

detDv(x) ≥ 1
30
L−4q detDu(x)

(1.6)

(notice the local estimate for Dv and Dv−1, but the pointwise estimate for
detDv) .

A first idea to show this result could be to use a standard regularization
argument, such as the mollification with a smoothing kernel. Unfortunately
this does not work, because it would of course produce smooth functions,
but not diffeomorphisms. More precisely, a mollification can work only if the
second derivatives of u are bounded, which is of course never the case for a
piecewise affine function! This is why we will need the ad hoc construction
presented here; notice that, for what just said, to prove Theorem A we could
also limit ourselves to find an approximation v which is a C2 diffeomorphism,
because then the mollification procedure would complete the proof. However,
we prefer to build directly a smooth diffeomorphism, since it does not require
any particular care more than what the C2 case would.
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The strategy of the proof

In this introductory section we will describe the overall strategy of the
proof of Theorem A.

First of all let us observe that, obviously, the map u is already smooth
inside each triangle of the triangulation, since it is affine. Therefore, the whole
construction has to deal with the problem that, along the sides of the triangles,
the derivative of u has a discontinuity. Let us then concentrate our attention
on a single triangle and its neighbours: our idea is to select a tiny region
around the boundary of the triangle and to let v be a modification of u in this
region, while it will be simply v ≡ u in the big part of the triangle.

Actually, as one can imagine, the real difficulty is around to the vertices.
In fact, along a side only two different triangles meet, and even if Du has a
discontinuity, this is not “too bad”, since the two matrices representing Du in
the two triangles are different but rank-one connected (since u is continuous).
On the other hand, around a vertex an arbitrary number of triangles can meet,
and the different matrices representing Du can be also very different from each
other. For this reason, we need an additional care close to the vertices; hence,
the region around the boundary of the triangle that we addressed before will
be further divided in different parts, either around the vertices or around the
internal parts of the sides.

Let us now be more precise; as Figure 1.3 shows, it will be convenient
to subdivide a triangle and the region around it in four zones, that we will
call Z1, Z2, Z3 and Z4. The first two zones are concentric disks around the
vertices, while the third one is done by rectangoloids along the sides, and
the fourth one is the remaining part of the triangle. The images under v of
these four zones will be correspondingly defined as Z̃1, Z̃2, Z̃3 and Z̃4. Let us
discuss separately the role of each zone.

In the zone Z1, we deal with the fact that many different triangles meet
at a given vertex, say the point a in the figure, and then close to each vertex
there are very different matrices Du. As a consequence, the value of Dv at the
point a will have necessarily nothing to do with these matrices (and hence,
for simplicity we will just choose Dv(a) to be the identity matrix). Then,
we call Z1 a tiny small disk around a, and Z̃1 a correspondingly small disk
around u(a): the map v : Z1 → Z̃1 will only take care of the directions of the
different sides. More precisely, working in polar coordinates, v will act non
trivially only on the angular coordinate of the points. In this way, we will
obtain the following; let us take any side of some triangle starting at a, say
ab, and consider its image under v within the zone Z1: while at the beginning
this image goes in the same direction as ab, because Dv(a) = Id, at the end of
the disk Z1 this image will go correctly in the direction of the side u(a)u(b).

The zone Z2 will then be an annulus centered at a and whose internal
disk is Z1, and it is easy to understand what is the goal of this zone. In fact,
observe that the image of the (external part of the) boundary ∂Z2, under the
map u, is clearly the union of arcs of ellipses, one in the intersection of ∂Z2



14 1 Elastic deformations on the plane and approximations

with each of the triangles which meet at a. This union is continuous, because
so is u, but it is nothing better than continuous because there are corners
where two different arcs meet. We will then aim the image of ∂Z2 under v
to be a smooth curve very close to this union of arcs; to do so, the map v
will this time act non trivially only on the radial coordinate of the points. It
will be possible to define v in such a way that it matches smoothly with the
map already defined in Z1; moreover, close to the external boundary of Z2,
v will be equal to u in the part of each triangle which is not too close to the
sides (precisely, this happens close to ∂Z2 ∩ ∂Z4, compare with Figure 1.3),
while it will be a smooth matching between every two different affine maps
close to the sides (precisely, this happens close to ∂Z2 ∩∂Z3). Notice that the
zone Z̃2 = v(Z2) is a sort of annulus around each vertex u(a), whose internal
boundary is a circle (namely, ∂Z̃1), while the external boundary is a curve
which is done by different arcs of ellipses smoothly joined together.

Furthermore, the zone Z3 is a sort of rectangoloid around the internal
part of each side of some triangle, say ab, whose “short sides” are small arcs
of the circles ∂Z2, and whose “long sides” are two segments parallel to ab.
Since we want to set v ≡ u in the big remaining zone Z4, the values of v
at ∂Z3 are already forced: namely, it must be v = u around the long sides
of each rectangoloid, while around the short sides v must coincide with the
approximation defined in the zone Z2. The definition of v on Z3 will then be a
careful interpolation of the values at the boundary, and we basically have only
to make it in such a way that v remains injective. This will be technically a
bit complicate, but actually this is just mainly because we will have to change
our system of coordinates: indeed, while around the short sides of Z3 the map
v has been defined using a polar system centered at a (for the left short side)
and at b (for the right short side), in the whole rectangoloid we will have
of course to use a different system, namely, a standard orthogonal cartesian
system.

Finally, as already said, we will simply set v ≡ u on the big portion
Z4 of the triangle. In this way, we will have been able to build a smooth
function v, which is still bi-Lipschitz (no more with constant L, but now with
constant 100L7/3), and which is equal to u on every vertex of some triangle.
At this point, the proof of Theorem A will be basically over, because all the
properties follow immediately from the construction. In particular, the main
estimate (1.5), which says that u and v are very close from the “energy” point
of view, follows trivially from the fact that the zones Z1, Z2 and Z3 described
above can be done as small as we wish –without affecting the bi-Lipschitz
constant of v! Therefore the zones Z4, on which v and u coincide, cover an
arbitrarily large percentage of the set Ω, from which the validity of (1.5) is
obvious.
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1.2.1 Preliminary ingredients

Before entering in the core of our proof, we briefly introduce some notation
which will be used only within this part and we present some preliminary,
yet fundamental, observations. In next section, we will go into the proof of
Theorem A.

Notations and first geometric properties

Given a point a ≡ (xa, ya) ∈ R2, ρ > 0 and θ ∈ S1, we will denote
by (ρ, θ)P,a the point in R2 whose polar coordinates with respect to a are
ρ and θ, that is, the point

(
xa + ρ cos θ, ya + ρ sin θ

)
. Since we will use it

several times, we recall the formula of the derivative of a function in polar
coordinates: given two points a ∈ Ω, ã ∈ ∆ and a C1 function F : Ω → ∆

locally expressed as F
(
(ρ, θ)P,a

)
=
(
F1(ρ, θ), F2(ρ, θ)

)
P,ã

, for any z ∈ Ω

satisfying z 6= a, F (z) 6= ã one has (up to a rotation)

DF (z) =

Ü
∂F1

∂ρ

1
ρ

∂F1

∂θ

ρ̃
∂F2

∂ρ

ρ̃

ρ

∂F2

∂θ

ê
, (1.7)

calling ρ = |z − a| and ρ̃ = |F (z)− ã|.

Let us now consider a vertex a ∈ Ω of the triangulation, and let us call
Ti, 1 ≤ i ≤ N , the triangles having a as one vertex. Let δ = δ(a) be a
positive constant, much smaller than the inradius of each of the triangles Ti
with 1 ≤ i ≤ N (this is possible since the triangles can be countably many,
but those meeting at a are only a finite number). Define τ0 : S1 → (0,∞) and
ϕ0 : S1 → S1 so that

u
(
(δ, θ)P,a

)
=
(
δτ0(θ), ϕ0(θ)

)
P,u(a)

.

Hence, (δτ0, ϕ0)P,u(a) is the image of the circle (δ, θ)P,a, which by definition
is the finite union of arcs of ellipses. Notice that by (1.7) we have

Du(x) =
Å
τ0 τ ′0
0 ϕ′0τ0

ã
, Du−1

(
u(x)

)
=

Ü 1
τ0
−

τ ′0
ϕ′0τ

2
0

0
1

ϕ′0τ0

ê
, (1.8)

up to a rotation.

Lemma 1.11. For every θ ∈ S1 one has

1
L
≤ τ0(θ) ≤ L ,

∣∣τ ′0(θ)
∣∣ ≤ L , 1

L2
≤ ϕ′0(θ) ≤ L2 . (1.9)
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Proof. Take θ ∈ S1, let 1 ≤ i ≤ N be such that (δ, θ)P,a ∈ Ti, and call
M ∈ R2×2 the matrix representing Du in the triangle i. By singular value
decomposition, M = RAQ with R,Q ∈ SO(2) and

A =
Å
Li 0
0 `i

ã
, (1.10)

being 1/L ≤ `i ≤ Li ≤ L the minimum and the maximum of |M(ϑ)| for
ϑ ∈ S1. Hence

τ0(θ) =
∣∣AQ(cos θ, sin θ)

∣∣ ∈ ïmin
ν∈S1
|Aν| ,max

ν∈S1
|Aν|
ò

=
[
`i , Li

]
.

Let now ϑ0 , ϑ1 ∈ S1 be the angles corresponding to the rotations Q and R
respectively. Then τ0(θ) =

∣∣(Li cos(θ + ϑ0) , `i sin(θ + ϑ0)
)∣∣, and, hence,

max
θ∈S1

∣∣τ ′0(θ)
∣∣ ≤ (L2

i − `2i
)

max
θ∈S1

cos θ sin θ»
L2
i cos2 θ + `2i sin2 θ

≤ L2
i − `2i
`i

≤ Li .

Concerning ϕ0, by definition one has

ϕ0(θ) = arctan
Å
`i sin(θ + ϑ0)
Li cos(θ + ϑ0)

ã
+ ϑ1 ,

so that a simple calculation gives

ϕ′0(θ) =
Li`i

L2
i cos2(θ + ϑ0) + `2i sin2(θ + ϑ0)

∈
Å
`i
Li
,
Li
`i

ã
⊆
Å

1
L2

, L2

ã
.

Putting together all the previous estimates yields (1.9). ut

Recall that we want to build a smooth approximation v of u; therefore,
we are going to replace the functions τ0 and ϕ0 (which do not remain smooth
across the sides of the triangles) with smooth functions τ and ϕ. Calling θi the
directions corresponding to the sides of the triangles, we fix small constants
λi � |θi − θi+1|, that will be better precised later. A simple mollification
argument gives the following result.

Lemma 1.12. There exist a C∞ function τ : S1 → (0,∞) and a C∞ diffeo-
morphism ϕ : S1 → S1 so that

(i) τ(θi) = τ0(θi), ϕ(θi) = ϕ0(θi), τ ′(θi) = 0 and ϕ′(θi) = max{Li,Li+1}
τ0(θi)

;

(ii) τ ≡ τ0 and ϕ ≡ ϕ0 in
{
θ ∈ S1 : |θ − θi| ≥ λi ∀ 1 ≤ i ≤ N

}
;

(iii) 1
2 ϕ
′
0(θ) ≤ ϕ′(θ) ≤ L2, 1

2 τ0(θ) ≤ τ(θ) ≤ 2τ0(θ) and τ(θ)ϕ′(θ) ≤ 2L for
every θ ∈ S1 ;

(iv) |τ ′(θ)| ≤ 2Li for every θ ∈ S1 such that
(
δ, θ
)
P,a
∈ Ti .
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Proof. The result immediately comes by suitably modifying a regularization
of τ0 and ϕ0, as soon as one checks that, for every 1 ≤ i ≤ N and every θ ∈ S1,

max{Li, Li+1}
τ0(θi)

≤ L2 , ϕ′0(θ) ≤ L2 , τ0(θ)ϕ′0(θ) ≤ L ,
∣∣τ ′0(θ)

∣∣ ≤ L ,
and all these properties are true thanks to (1.9), and by the fact that τ2

0ϕ
′
0 =

`iLi, which in turn is immediate comparing (1.8) and (1.10). ut

The auxiliary function ξ

In our construction, we will extensively use a map ξ which allows to con-
nect in a smooth way two functions having different boundary values. More
precisely, we fix six real parameters x0, x1, y0, y1, α and β, with x0 < x1,
and we are seeking for a smooth function ξ[x0, x1, y0, y1, α, β] : [x0, x1]→ R
satisfying

ξ(x0) = y0 , ξ(x1) = y1 , ξ′(x0) = α , ξ′(x1) = β . (1.11)

It is obvious that it is possible to build such a function, but we want ξ to
depend smoothly on the six parameters, and we also need a good estimate on
the partial derivatives of ξ (which will be denoted by ξ,i for 1 ≤ i ≤ 6). In
fact, by means of a convolution on a suitable piecewise affine function, it is
very simple to give a definition of ξ satisfying the properties below; K ≥ 6 is
an additional free parameter that do not enter in (1.11), but which effects the
definition of ξ. Figure 1.2 depicts how the function ξ looks like.

y1

y1 − β
x1 − x0
K

x0 x0 +
x1 − x0

3
x1 −

x1 − x0
K

x1 −
x1 − x0

3
x1x0 +

x1 − x0
K

y0

y0 + α
x1 − x0
K

y0 +
y1 − y0

3

y1 −
y1 − y0

3

Fig. 1.2. Graph of ξ.

Lemma 1.13. Let x0, x1, y0, y1, α, β ∈ R be such that x0 < x1. The follow-
ing properties hold:

(i)
∣∣ξ′∣∣ ≤ max

ß∣∣α∣∣, ∣∣β∣∣, 2
y1 − y0

x1 − x0

™
.
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(ii) If 0 ≤ α, β ≤ K(y1 − y0)
6(x1 − x0)

, then ξ′ ≥ min
ß
α, β,

y1 − y0

2(x1 − x0)

™
.

(iii) 0 ≤ ξ,3 ≤ 1, 0 ≤ ξ,4 ≤ 1, and ξ,3 + ξ,4 = 1 . Moreover, ξ,3(t) ≤
x1 − t
x1 − x0

,

while ξ,4(t) ≤
t− x0

x1 − x0
.

(iv) 0 ≤ ξ,5 ≤
x1 − x0

K
, and ξ,5(t) = 0 for t ≥ x0 + 1

3
(x1 − x0) . Similarly,

0 ≥ ξ,6 ≥ −
x1 − x0

K
, and ξ,6(t) = 0 for t ≤ x0 + 2

3
(x1 − x0) .

(v) |ξ,1|, |ξ,2| ≤
|ξ′|

x1 − x0

.

1.2.2 Construction

In this section, we will describe with most details the construction of v,
and we will give the proof of Theorem A. The complete proof (of a more
general result) can be found in [43].

We will consider that the triangulation is not finite, and in particular that
the union of the closed triangles is Ω (while in general it might arrive up to
its closure): by the locally finiteness, this means that the triangles become
more and more dense close to the boundary of Ω; this is clearly always true
up to refine the triangulation, and it is also very useful because then all the
triangles are compactly contained in Ω and this allows not to bother with ∂Ω.

Taken a vertex a of the triangulation, we will work in the zone surrounding
a, which will be divided in the four zones Z1, Z2, Z3 and Z4; on each zone,
we will give a different definition of the map v. Thus, we will have to take
care that v is smooth in each zone, but also that it remains smooth in passing
from a zone to the adjacent one. We fix once for all the parameter q ∈ [0, 1].

The zone Z1

Recall that δ = δa has been defined in Section 1.2.1 as a length much
smaller than the inradius of each of the finitely many triangles meeting at a;
we now fix another constant, η = ηa, much smaller than 1/L2. We call then

Z1 = B(a, ηδ) , Z̃1 = B(ã, ηδL1−2q) ,

being ã := u(a). We define then v : Z1 → Z̃1, using polar coordinates as in
Section 1.2.1, as

v
(
(ρ, θ)P,a

)
:=
(
L1−2q ρ, ξ[0, ηδ, θ, ϕ(θ), 0, 0](ρ)

)
P,ã

.

The estimate that we can show for zone Z1 is the following one.
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Lemma 1.14. The function v : Z1 → Z̃1 is a smooth bijection, and for every
point x ∈ Z1 one has

∣∣Dv∣∣ ≤ 13L3−2q , |Dv−1| ≤ 26L1+2q , detDv(x) ≥ detDu(x)
2L4q

. (1.12)

Proof. The smoothness of v (in particular, around the pole a) follows by the
definition and the properties of ξ; hence, to conclude that v is a bijection
between Z1 and Z̃1 it suffices to prove that, for each ρ ∈ (0, ηδ), the smooth
function F (θ) := ξ[0, ηδ, θ, ϕ(θ), 0, 0](ρ) is a bijection from S1 to itself. In fact,
one has F ′ = ξ,3 + ξ,4ϕ

′ by definition, ϕ′ > 0 by Lemma 1.12,
∫ 2π

0
ϕ′ = 2π by

construction, and 0 ≤ ξ,3, ξ,4 ≤ 1, ξ,3 + ξ,4 = 1 by (iii) of Lemma 1.13. This
yields that F ′ > 0 and that

∫ 2π

0
F ′ < 4π, thus it must be

∫ 2π

0
F ′ = 2π and

then the first part of the thesis is concluded.
Let us now pass to consider Dv and Dv−1, which by formula (1.7) are

given by

Dv = L1−2q

Å
1 0
ρξ′ ξ,3 + ξ,4ϕ

′

ã
, Dv−1 = L2q−1

Ç
1 0

− ρξ′

ξ,3+ξ,4ϕ′
1

ξ,3+ξ,4ϕ′

å
.

Concerning ξ′, by (i) of Lemma 1.13 and since in this case α = β = 0 we know
that ∣∣ξ′∣∣ ≤ 2

ϕ(θ)− θ
ηδ

≤ 4
π

ηδ
,

and then
∣∣ρξ′∣∣ ≤ 4π. Moreover, by Lemma 1.12 and (1.9) we get

∣∣ξ,3 + ξ,4ϕ
′∣∣ ≤ |ϕ′| ≤ L2 ,

∣∣ξ,3 + ξ,4ϕ
′∣∣ ≥ `i

2Li
≥ 1

2L2
,

where the last bound holds for every θ ∈ S1 such that (δθ0, ϕ0)P,a ∈ Ti. By
these estimates, and also recalling (1.10), we get

|Dv| ≤ L1−2q
√

1 + 16π2 + L4 ≤ 13L3−2q ,

|Dv−1| ≤ L2q−1
»

1 + 4L4
(
1 + 16π2

)
≤ 26L1+2q

detDv(x) = L2−4q
(
ξ,3 + ξ,4ϕ

′) ≥ L2−4q `i
2Li
≥ `iLi

2L4q
=

detDu(x)
2L4q

,

hence (1.12) is established and the proof is concluded. ut

Remark 1.15. For later convenience we observe that, by the properties of ξ,
for ρ ≤ ηδ close enough to ηδ one has

v
(
(ρ, θ)P,a

)
=
(
L1−2q ρ, ϕ(θ)

)
P,ã

.
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The zone Z2

We now pass to the zone Z2, which is the annulus B(a, δ) \ B(a, ηδ) sur-
rounding Z1, while the zone Z̃2 is defined as

Z̃2 :=
{

(ρ, θ)P,ã : ηδL1−2q ≤ ρ ≤ δτ(ϕ−1(θ))
}
.

Also Z̃2 is surrounding Z̃1, since η has been chosen much smaller than 1/L2.
The function v : Z2 → Z̃2 can be then set as

v
(
(ρ, θ)P,a

)
:=
(
ξ[ηδ, δ, ηδL1−2q, τ(θ)δ, L1−2q, τ(θ)](ρ) , ϕ(θ)

)
P,ã

.

Let us immediately check the behaviour of v close to the boundary of Z2.

Remark 1.16. By the properties of ξ one readily observes the formulas

v
(
(ρ, θ)P,a

)
=
(
L1−2q ρ, ϕ(θ)

)
P,ã

, v
(
(ρ, θ)P,a

)
=
(
ρ τ(θ), ϕ(θ)

)
P,ã

,

respectively valid for ρ ≥ ηδ close enough to ηδ, and for ρ ≤ δ close enough
to δ.

Let us now prove the estimates for v inside Z2.

Lemma 1.17. The function v : Z2 → Z̃2 is a smooth bijection, which matches
smoothly with the function v previously defined in the zone Z1. Moreover, for
every x ∈ Z2 it is∣∣Dv∣∣ ≤ 3L3−2q , |Dv−1| ≤ 33L1+4q , detDv(x) ≥ detDu(x)

16L4q
. (1.13)

Proof. We begin observing that v is smooth because so is ξ; moreover, the two
definitions of v around ∂Z1 coincide, as one can see comparing Remarks 1.15
and 1.16. By definition, v(∂Z2) = ∂Z̃2, thus –since ϕ : S1 → S1 is a bijection–
v is a bijection of Z2 onto Z̃2 if and only if ξ′ > 0 on the whole Z2.

By (1.7) we evaluate

Dv =

Ü
ξ′

1
ρ

(δξ,4 + ξ,6)τ ′(θ)

0
ξ

ρ
ϕ′(θ)

ê
, Dv−1 =

Ü
1
ξ′

− (δξ,4 + ξ,6)τ ′(θ)
ξ′ξϕ′(θ)

0
ρ

ξϕ′(θ)

ê
,

therefore to obtain (1.13) we need to give bounds to ξ′, ξ/ρ, ξ,4 and ξ,6.
Concerning ξ′, property (ii) of Lemma 1.13 tells us that

ξ′ ≥ min
ß
L1−2q, τ(θ),

τ(θ)− ηL1−2q

2(1− η)

™
(1.14)

as soon as
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max
{
L1−2q, τ(θ)

}
(1− η)

K
≤ τ(θ)− ηL1−2q

6
.

Since we can assume the last inequality to be true, up to choose K ≥ 24L2,
we get the validity of (1.14). We have then

1
4L1+2q

≤ τ(θ)
2L2q

≤ ξ′ ≤ L : (1.15)

the lower bound for ξ′ is a consequence of (1.14), recalling (1.9), Lemma 1.12
and the fact that η � 1/L2, while the upper bound is clear by construction.
A first consequence of (1.15) is that ξ′ > 0 and then, as pointed out before, v
is a bijection between Z2 and Z̃2.

We study now the ratio ξ/ρ: by construction of ξ, one directly obtains

τ(θ)L−2q ≤ min
{
L1−2q, τ(θ)

}
≤ ξ

ρ
≤ max

{
L1−2q, τ(θ)

}
.

It is easy to see that this implies

τ(θ)L−2qϕ′(θ) ≤ ξ

ρ
ϕ′(θ) ≤ 2L3−2q . (1.16)

Indeed, while the lower bound is an immediate consequence of the above
estimate, for the upper bound we have to distinguish two cases: if L1−2q ≤
τ(θ), then by (iii) of Lemma 1.12

ξ

ρ
ϕ′(θ) ≤ τ(θ)ϕ′(θ) ≤ 2L ≤ 2L3−2q ;

on the other hand, if L1−2q ≥ τ(θ), then

ξ

ρ
ϕ′(θ) ≤ L1−2qϕ′(θ) ≤ L3−2q .

Let us now pass to consider ξ,4 and ξ,6: first, by (iii) and (iv) of Lemma 1.13,
we get ∣∣∣δξ,4(ρ) + ξ,6(ρ)

∣∣∣ ≤ ρ ; (1.17)

second, (1.17), (1.16), (iii) of Lemma 1.12, (1.15) and (1.9) yield∣∣∣∣ (δξ,4 + ξ,6)τ ′(θ)
ξ′ξϕ′(θ)

∣∣∣∣ ≤ ρ|τ ′(θ)|
ξ′ξϕ′(θ)

≤ |τ
′(θ)|L2q

ξ′ϕ′(θ)τ(θ)
≤ 2LiL2q

ξ′ϕ′(θ)τ(θ)

≤ 4LiL4q

ϕ′(θ)τ2(θ)
≤ 32LiL4q

ϕ′0(θ)τ2
0 (θ)

=
32L4q

`i
≤ 32L1+4q .

(1.18)

Putting together (1.15), (1.16), (1.17) and (1.18), we obtain then
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|Dv| ≤
…
L2 + τ ′(θ)2 +

(
2L3−2q

)2

≤ 3L3−2q ,

|Dv−1| ≤
√

16L2+4q +
(
32L1+4q

)2 + 16L2+4q ≤ 33L1+4q ,

detDv(x) =
ξξ′ϕ′(θ)

ρ
≥ τ2(θ)ϕ′(θ)

2L4q
≥ τ2

0 (θ)ϕ′0(θ)
16L4q

=
Li`i

16L4q
=

detDu(x)
16L4q

;

since this is exactly the searched estimate (1.13), we have concluded. ut

The zone Z3

It is now time to pass to consider zone Z3. While in zones Z1 and Z2 we
have worked around the vertices of the triangulation, zone Z3 will be around
the sides. Recall that, as we pointed out in the introduction to this section,
since the map u is affine –hence, smooth– in every triangle, the only “problem”
are the irregularity across the sides. In fact, once we will have defined v also
in Z3, thus ruling out vertices and sides, we will simply define v ≡ u in the
remaining part of Ω, which will be called zone Z4. It is also to be pointed
out that Z1, Z2 and Z3 will be chosen to be very small neighborhoods of the
sides, thus eventually v ≡ u in almost the whole set Ω. Figure 1.3 depicts how
the different zones look like inside the triangle Ti = abc; the figure is intended
only to describe the idea, but in fact the construction will be slightly different:
more precisely, the common boundary of Z3 and Z4 will be a suitable curve
instead of a segment.

c

Z4

a

Z3 b

Fig. 1.3. A rough idea of the zones Z3 and Z4 for a triangle Ti (the small zones
around the vertices are Z1 and Z2).

As the figure shows, the zone Z3 is made by N disjoint narrow “stripes”
around the different sides of the triangulation. Thus, we will focus on a single
one, namely, we are going to work around the side ab. By the previous sections,
we have already defined v in the zones Z1 and Z2 corresponding to a and to
b; to distinguish, we will use the subscripts a and b for all the constants and
the functions, for instance we will write δa and δb, λi,a and λi,b, τa and τb and
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so on. To fix the ideas, we assume that both the sides ab and ãb̃ = u(a)u(b)
are horizontal, as well as that a and ã coincide with the origin of R2. We also
call Ti,a = Tj+1,b and Ti+1,a = Tj,b the lower and the upper triangle having
ab as a side.

We take now a small constant h = h(a, b), much smaller both than δa and
than δb. Since all the different constants λ are independent, we assume that

δa sinλi,a < h , δa sinλi+1,a < h ,

δb sinλj,b < h , δb sinλj+1,b < h .
(1.19)

Consider now, as in Figure 1.4 (left), P , Q, R and S the points having distance
h from ab and belonging to the circles ∂B(a, δa) and ∂B(b, δb). Since u is affine
in Ti,a = Tj+1,b and ab is sent into ãb̃, then also ‹P = u(P ) and ‹Q = u(Q) have
the same distance from ãb̃, say h+. Similarly, R̃ = u(R) and S̃ = u(S) have
distance h− from ãb̃: see Figure 1.4 (right). In general, h+ 6= h−. Observe
that the image under u of the circle ∂B(a, δa) (given by

(
δτ0,a, θ0,a

)
P,a

in

polar coordinates) is the union of two ellipses which meet on ãb̃ continuously
but not necessarily in a C1 way: this curve is shown continuous in the figure.
Instead, the image of this circle under v, according to the construction of
Section 1.2.2 and thanks to Remark 1.16, is the smooth curve

(
δτa, ϕa

)
P,ã

;
this curve is shown dotted. Keep in mind that, thanks to assumption (1.19),
the two curves coincide where τ0,a = τa and ϕ0,a = ϕa: thus, they differ only
between P and Q.

h−

P̃

h−h

a

R

h

h

ã

QP

S
R̃

b̃

S̃

Q̃

h+ h+

b
h

Fig. 1.4. First step in the construction of Zones Z3 and Z̃3.

Observe now that, as a simple trigonometric argument shows (see Fig-
ure 1.5), the quantity τa(θi)ϕ′a(θi) represents the speed at which the curve
θ 7→ v

(
(δa, θ)P,a

)
departs from the segment ab; moreover, since τ ′a(θi) = 0

by Lemma 1.12, this speed is vertical. Analogously, the departing speed of
θ 7→ v

(
(δb, θ)P,b

)
is τb(θj)ϕ′b(θj). We can notice that the two speeds are equal,

because recalling (i) of Lemma 1.12 it is

τa(θi,a)ϕ′a(θi,a) = max
{
Li,a, Li+1,a

}
= max

{
Lj+1,b, Lj,b

}
= τb(θj,b)ϕ′b(θj,b) .

(1.20)

For every −h ≤ t ≤ h, we now denote by P (t) the point on ∂B(a, δa) having
distance t from ab, so that P = P (h) and R = P (−h) in Figure 1.4. We define
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δaτa(θi,a)ϕ
′
a(θi,a)ε

εa

δa

δaε
ã

δaτa(θi,a)

ϕ′a(θi,a)ε

Fig. 1.5. Departing speed of the curve θ 7→ v(δ, θ) .

Q(t) in the same way, having Q = Q(h) and S = Q(−h). Since the points P (t)
and Q(t) belong to the boundary of the zones Z2 corresponding to a and b

respectively, we can also set ‹P (t) := v
(
P (t)

)
and ‹Q(t) := v

(
Q(t)

)
. We require

that the functions τa, τb, ϕa and ϕb are such that for every t ∈ (−h, h) the
distance of ‹P (t) and ‹Q(t) from ãb̃ is the same, and we will call t̃ = t̃(t) this
distance. Let us see why this is admissible: defining for every t ∈ (−h, h) the
angles θa(t) and θb(t) so that

δa sin
(
θa(t)

)
= t = δb sin

(
θb(t)

)
, (1.21)

our request means

δaτa
(
θa(t)

)
sin
(
ϕa(θa(t))

)
= t̃ = δbτb

(
θb(t)

)
sin
(
ϕb(θb(t))

)
. (1.22)

In fact, this is admissible because (1.22) is true by definition at t = 0 and at
t = ±h (since as we observed above one has u = v on ∂Z2 close to P , Q, R and
S), and because the necessary condition which comes by differentiating (1.22)
at t = 0, namely,

δaτa(0)ϕ′a(0)θ′a(0) = δbτb(π)ϕ′b(π)θ′b(0) ,

is true. To show the validity of last equality it suffices to recall (1.20) and the
fact that δaθ′a(0) = δbθ

′
b(0) = 1, which in turn is immediate by (1.21). Let us

write down an estimate which will be useful later, and which comes by (1.22)
and differentiating (1.21):

dt̃
dt

= δaθ
′
a

(
τ ′a(θa) sin(ϕa(θa)) + τa(θa) cos(ϕa(θa))ϕ′a(θa)

)
=

1
cos θa

(
τ ′a(θa) sin(ϕa(θa)) + τa(θa) cos(ϕa(θa))ϕ′a(θa)

)
≈ τa(θa)ϕ′a(θa) ∈

Å
`i
4
, 3Li
ã
,

(1.23)

where we have used the facts that τ ′a ≤ 2L and that the angles ϕa(θa) can be
assumed as small as needed up to take a small constant h = h(a, b) –we will
use the latter fact very often in the sequel. A consequence of (1.23) is that
t 7→ t̃ is a bijective map from (−h, h) to (−h−, h+).

Before defining Z3 and Z̃3, we still need some more pieces of notations.
First, for every −h ≤ t ≤ h we call
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χ0(t) := δa cos θa(t) , χ1(t) := ab− δb cos θb(t) , (1.24)

that is, χ0(t) and χ1(t) are the abscissa of P (t) and Q(t) respectively (by ab
we mean the length of ab). As a consequence, the coordinates of the points
P (t) and Q(t) are

P (t) ≡
(
χ0(t), t

)
, Q(t) ≡

(
χ1(t), t

)
.

Observe that in zones Z1 and Z2 it has been very useful to use polar co-
ordinates, since the zones were centered in a particular point; on the other
hand, in the present situation we are working around a segment, thus standard
orthogonal coordinates are better. We define now the rectangoloid

Γ :=
{

(σ, t) ∈ R2 : t ∈ (−h, h) , σ ∈
(
χ0(t), χ1(t)

)}
,

whose boundary is made by two wide horizontal straight sides and two small
circular lateral sides, and the map γ : Γ → R2 given by

γ(σ, t) :=
(
σ, ξ[χ0(t), χ1(t), t, t, tan θa(t),− tan θb(t)](σ)

)
=
(
σ, ξ(σ)

)
.

Notice that, since in the construction of zone Z3 we will use three different
functions ξ, we are giving each of them a different name: we are working now
with ξ, then we will introduce ξ̃ and ξ̂.

Figure 1.6 (left) shows the smooth curve σ 7→ γ(σ, t): notice that this is
“almost” an horizontal curve connecting P (t) and Q(t); but in fact, it has a
nonzero slope at the extremes in order to connect smoothly with the function
defined in Z2. The important properties of γ are shown now.

Lemma 1.18. The map γ : Γ → R2 is smooth, injective and satisfies∣∣Dγ∣∣ ≈ 1 ,
∣∣Dγ−1

∣∣ ≈ 1 , detDγ(x) ≈ 1 . (1.25)

Proof. First of all, let us calculate

dξ
dt

= ξ,1χ
′
0 + ξ,2χ

′
1 + ξ,3 + ξ,4 + ξ,5

(
tan θa(t)

)′ − ξ,6( tan θb(t)
)′
. (1.26)

By (iii) of Lemma 1.13 we know that ξ,3 + ξ,4 = 1; we are going to check that
the other terms are, instead, arbitrarily small. In fact, ξ,1 and ξ,2 become as
small as we wish if h is chosen small, thanks to (i) and (v) of Lemma 1.13 and
since χ1 − χ0 ≈ ab; analogously, also χ′0 and χ′1 are small because by (1.24)
and differentiating (1.21) we get

χ′0(t) = −δa(t) sin
(
θa(t)

)
θ′a(t) = − tan

(
θa(t)

)
, χ′1(t) = tan

(
θb(t)

)
,

so ξ,1χ′0 +ξ,2χ′1 � 1. Concerning ξ,5 and ξ,6, notice that choosing a small h we
get

(
tan θa(t)

)′ ≈ θ′a ≈ 1/δa: as a consequence, and by (iv) of Lemma 1.13, if
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K is big enough then also ξ,5
(

tan θa(t)
)′ − ξ,6( tan θb(t)

)′ � 1. And in turn,
since in every different zone we can use a different K (because the value of
ξ around its extremes do not depend on K), it is admissible to assume K as
big as we need. These bounds and (1.26) ensure that dξ

/
dt ≈ 1. Thus, by

definition of ξ we get in particular that γ is injective. Since the regularity of
γ is immediate from that of ξ, we are only left to show (1.25).

To do so, we observe that
∣∣ξ′∣∣ ≤ max

{
| tan θa(t)|, | tan θb(t)|

}
� 1 by (i)

of Lemma 1.13, and we calculate

Dγ =

Ç
1 ξ

′

0 dξ
dt

å
, Dγ−1 =

Ñ
1 − ξ

′

dξ/dt

0 1

dξ/dt

é
,

so that (1.25) follows. ut

Let us now define Γ̃ ⊆ R2 and γ̃ : Γ̃ → R2 in a very similar way as Γ and γ.
First of all, we define χ̃0(t) and χ̃1(t) so that‹P (t) ≡

(
χ̃0(t), t̃

)
, ‹Q(t) ≡

(
χ̃1(t), t̃

)
,

that is,

χ̃0(t) := δaτa(θa(t)) cos
(
ϕa
(
θa(t)

))
,

χ̃1(t) := δbτb(θb(t)) cos
(
ϕb
(
θb(t)

))
.

(1.27)

Then, we introduce the rectangoloid

Γ̃ :=
{

(σ, t̃) ∈ R2 : t̃ ∈ (−h−, h+) , σ ∈
(
χ̃0(t), χ̃1(t)

)}
,

(recall that t 7→ t̃ is a bijective map, so in this definition in fact t = t(t̃)).
Finally, we define the map γ̃ : Γ̃ → R2 as

γ̃(σ, t̃) :=
(
σ, ξ̃(σ)

)
, (1.28)

where

ξ̃ = ξ
[
χ̃0(t), χ̃1(t), t̃, t̃, tan

(
ϕa
(
θa(t)

))
,− tan

(
ϕb
(
θb(t)

))]
.

Actually, we will eventually slightly modify the definition of ξ̃, the reason will
be clear later but the modification will not effect our next proofs. Figure 1.6
(right) shows the curve γ̃(·, t̃). We can extend Lemma 1.18 to the case of γ̃.

Lemma 1.19. The map γ̃ : Γ̃ → R2 is smooth, injective, and satisfies∣∣Dγ̃∣∣ ≈ 1 ,
∣∣Dγ̃−1

∣∣ ≈ 1 , detDγ̃(x) ≈ 1 . (1.29)
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Q̃(t)

a
t t

b

P (t) Q(t)

ã b̃t̃t̃

P̃ (t)

Fig. 1.6. The curves γ(·, t) and γ̃(·, t̃) .

Proof. The proof is completely similar to that of Lemma 1.18, and it simply
relies on showing that dξ̃

/
dt̃ ≈ 1 and ξ̃′ � 1. The second fact is again an

immediate consequence of (i) of Lemma 1.13, so let us concentrate on the first
one. Exactly as in Lemma 1.18, one observes that ξ̃,3 + ξ̃,4 = 1, one rules out
the terms with ξ̃,5 and ξ̃,6, and one observes that ξ̃,1 and ξ̃,2 are very small.
The only difference with Lemma 1.18 is that in this case it is not true that χ̃′0
and χ̃′1 can be assumed to be arbitrarily small; however, since ξ̃,1 and ξ̃,2 are
small, it is in fact enough to show that χ̃′0 and χ̃′1 are bounded. And in turn,
this is true because by (1.27), and also using (iv) of Lemma 1.12,

χ̃′0 = δaθ
′
a

[
τ ′a(θa) cos

(
ϕa(θa)

)
− τa(θa) sin

(
ϕa(θa)

)
ϕ′a(θa)

]
=

1
cos(θa)

[
τ ′a(θa) cos

(
ϕa(θa)

)
− τa(θa) sin

(
ϕa(θa)

)
ϕ′a(θa)

]
≈ τ ′a(θa) cos

(
ϕa(θa)

)
− τa(θa) sin

(
ϕa(θa)

)
ϕ′a(θa) ≈ τ ′a(θa) .

(1.30)

ut

The last function that we need is Φ : Γ → Γ̃ , defined as

Φ(σ, t) :=
(
ξ
[
χ0(t), χ1(t), χ̃0(t), χ̃1(t), α(t), β(t)

]
(σ), t̃

)
=
(
ξ̂(σ), t̃

)
,

where the constants α and β are given by

α(t) := τa
(
θa(t)

) cos
(
ϕa(θa(t))

)
cos
(
θa(t)

) , β(t) := τb
(
θb(t)

) cos
(
ϕb(θb(t))

)
cos
(
θb(t)

) . (1.31)

Lemma 1.20. The map Φ is a smooth bijection between Γ and Γ̃ . Moreover,∣∣DΦ∣∣ ≤ 5L ,
∣∣DΦ−1

∣∣ ≤ 35L , detDΦ(x) ≥ detDu(x)
15

. (1.32)

Proof. By construction, and observing that α and β are positive, one easily
see that the image of Γ is exactly Γ , so Φ is a smooth onto function. Hence,
to say that Φ is a smooth bijection we only need to check the injectivity,
which by definition reduces to prove that ξ̂′ > 0. If h is small enough, then
α(t) ≈ β(t) ≈ ãb̃

/
ab ≈ τa(θa), hence by (i) and (ii) of Lemma 1.13 we deduce

ξ̂′ ≈ τa(θa) ∈
(
`i, Li

)
, (1.33)

thus in particular the injectivity of Φ follows. To get (1.32), we write down
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DΦ =

Ö
ξ̂′ 0

dξ̂
dt

dt̃
dt

è
, DΦ−1 =

Ö
1
/
ξ̂′ 0

−
dξ̂
/

dt

ξ̂′ · dt̃
/

dt

1
dt̃
/

dt

è
. (1.34)

and since we already have the estimates (1.33) for ξ̂′ and (1.23) for dt̃
/

dt, we
only need to take care of dξ̂

/
dt = ξ̂,1χ

′
0 + ξ̂,2χ

′
1 + ξ̂,3χ̃

′
0 + ξ̂,4χ̃

′
1 + ξ̂,5α

′+ ξ̂,6β
′.

Exactly as in the previous lemmas, all the terms are much smaller than
those concerning ξ̂,3 and ξ̂,4. In fact, we already saw that χ′0 and χ′1 are
arbitrarily small, and (iv) of Lemma 1.13 ensures that so are also ξ̂,5 and ξ̂,6.
Thus, we only need to observe that ξ̂,1 and α′ are bounded (since by symmetry
the same will be true for ξ̂,2 and β′). Concerning ξ̂,1, we readily obtain the
boundedness by (i) and (v) of Lemma 1.13 and by (1.33); on the other hand,
concerning α′ it is enough to recall that δaθ′a ≈ 1 and to derive (1.31) to get

α′ ≈ τ ′a(θa)
δa

,

thus the boundedness. Summarizing, also recalling (1.30) we get

dξ̂
dt
≤ 4

3
max

{
τ ′a(θa), τ ′b(θb)

}
. (1.35)

Finally, assuming by symmetry that τ ′a(θa) ≥ τ ′b(θb), we can evaluate∣∣∣∣ dξ̂
/

dt

ξ̂′ · dt̃
/

dt

∣∣∣∣ ≤ 2
∣∣∣∣ τ ′a(θa)
τa(θa)2ϕ′a(θa)

∣∣∣∣ ≤ 32Li
τa,0(θa)2ϕa,0(θa)

=
32Li
`iLi

=
32
`i
. (1.36)

We conclude (1.32), thus the proof, just inserting the estimates (1.33), (1.23),
(1.35) and (1.36) into (1.34). ut

We are now in position to define the zones Z3 and Z̃3 as

Z3 := γ(Γ ) , Z̃3 := γ̃(Γ̃ ) ,

and the function v : Z3 → Z̃3 as v := γ̃ ◦Φ ◦ γ−1. Putting together the results
of Lemmas 1.18, 1.19 and 1.20, we then easily get the following result.

Lemma 1.21. The function v : Z3 → Z̃3 is a smooth bijection, smoothly
matching with the function v defined in the zone Z2, and for every point
x ∈ Z2 one has∣∣Dv∣∣ ≤ 10L , |Dv−1| ≤ 70L , detDv(x) ≥ detDu(x)

30
. (1.37)

Proof. Thanks to Lemmas 1.18, 1.19 and 1.20, and to estimates (1.25), (1.29)
and (1.32), we already know that v is a smooth bijection and that (1.37) holds.
Thus, we only have to check that the two definitions of v around ∂Z2 ∩ ∂Z3
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match smoothly. Let us do this in the part corresponding to a, since the
situation for b is clearly identical.

Recall that γ, γ̃ and Φ are affine for a while close to the respective bound-
aries; thus for 0 < ε� 1 an elementary calculation gives the exact formulas

γ−1
((
δa + ε, θa(t)

)
P,a

)
=
(
χ0(t) + ε cos θa(t), t

)
,

Φ
(
χ0(t) + ε cos θa(t), t

)
=
(
χ̃0(t) + τa

(
θa(t)

)
ε cos

(
ϕa
(
θa(t)

))
, t̃
)
,

v
((
δa + ε, θa(t)

)
P,a

)
= γ̃

(
χ̃0(t) + τa

(
θa(t)

)
ε cos

(
ϕa
(
θa(t)

))
, t̃
)

=
(
τa
(
θa(t)

)(
δa + ε

)
, ϕa
(
θa(t)

))
P,ã

.

Since the latter, for −1� ε < 0, is exactly the expression of v in Z2 close to
∂Z2 ∩ ∂Z3, as pointed out in Remark 1.16, the proof is finished. ut

The last thing we have to do, is to determine the behaviour of v on ∂Z3 \
∂Z2, which will eventually coincide with ∂Z3 ∩ ∂Z4.

Lemma 1.22. If t < h, t ≈ ±h, then for every σ ∈
(
χ0(t), χ1(t)

)
one has

v
(
γ(σ, t)

)
= u

(
γ(σ, t)

)
.

Proof. Take t < h, t ≈ h, so that by (1.19) it is τa
(
θa(t)) = τa,0(θa(t)

)
and

ϕa
(
θa(t)) = ϕa,0(θa(t)

)
: for those t, Remark 1.16 ensures that v = u around

∂Z2, so by Lemma 1.21 we know v
(
γ(σ, t)

)
= u

(
γ(σ, t)

)
as soon as σ is close

enough to χ0(t) or to χ1(t). Take, instead, a generic σ ∈
(
χ0(t), χ1(t)

)
. Calling

for brevity
Å
ζ ψ
0 ω

ã
the matrix corresponding to Du in the triangle Ti, we have

u
(
γ(σ, t)

)
= u

(
σ, ξ(σ)

)
=
(
ζσ + ψξ(σ), ωξ(σ)

)
,

while on the other side,

v
(
γ(σ, t)

)
= γ̃

(
Φ(σ, t)

)
= γ̃

(
ξ̂(σ), t̃

)
=
(
ξ̂(σ), ξ̃

(
ξ̂(σ)

))
.

Hence, we have to show

ξ̂(σ) = ζσ + ψξ(σ) , ξ̃
(
ξ̂(σ)

)
= ωξ(σ) . (1.38)

Concerning the left equality, evaluating

ζσ + ψξ(σ) = ζσ + ψξ[χ0, χ1, t, t, tan θa,− tan θb](σ)
= ζσ + ξ[χ0, χ1, ψt, ψt, ψ tan θa,−ψ tan θb](σ)
= ξ[χ0, χ1, ζχ0 + ψt, ζχ1 + ψt, ζ + ψ tan θa, ζ − ψ tan θb](σ) ,

we reduce ourselves to show
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χ̃0 = ζχ0 + ψt , χ̃1 = ζχ1 + ψt , α = ζ + ψ tan θa , β = ζ − ψ tan θb .

And in turn, while the first and second equality hold true because u
(
P (t)

)
=‹P (t) and u

(
Q(t)

)
= ‹Q(t), the third and the fourth are immediately deduced

by the fact, already observed, that the equality must be true for every σ close
enough to χ0 or χ1. As a consequence, the left identity in (1.38) has been
established.

Concerning the right identity, we start observing that

t̃ = ωt , α tan
(
ϕa(θa)

)
= ω tan θa , β tan

(
ϕb(θb)

)
= ω tan θb ,

since the first equality comes immediately by the expression of u, while the
second (and, equivalently, the third) comes by (1.31), (1.21) and (1.22) as

α tan
(
ϕa(θa)

)
= τa(θa)

sin
(
ϕa(θa)

)
cos θa

=
t̃

δa cos θa
=

ωt

δa cos θa

=
ωδa sin

(
θa
)

δa cos θa
= ω tan

(
θa
)
.

Therefore, recalling the properties of ξ, the right identity in (1.38) reduces to

ξ̃
(
ξ̂(σ)

)
= ξ
[
χ0(t), χ1(t), t̃, t̃, α(t) tan

(
ϕa(θa(t))

)
,−β(t) tan

(
ϕb(θb(t))

)]
(σ) ,

Unfortunately, the above equality is not true. Nevertheless, since σ 7→ ξ̂(σ) is
bijective, we can take the equality as a definition for ξ̃, instead of that given
in (1.28). Roughly speaking, this modified definition corresponds to taking,
in the definition of ξ given in Section 1.2.1, a sort of “double convolution”
instead of the convolution. It is easy to check that this “new” definition of ξ
does not effect neither the properties (1.11), nor the validity of Lemma 1.13.
As a consequence, all our previous proofs concerning ξ̃ remain perfectly valid,
and then (1.38) has become true, and the proof is completed. ut

The zone Z4 and the proof of Theorem A

Completing the definition of v is now an easy task: first of all, since we
already have the zones Z1, Z2 and Z3 in Ω, we simply define Z4 as the re-
maining part. Analogously, Z̃4 is defined as the remaining part of ∆. Notice
again that Z4 and Z̃4 consist of the “interior parts” of all the triangles in Ω
and ∆ respectively, and also that choosing the independent constants δ and
h very small one has that Z4 and Z̃4 fill almost all Ω and ∆: in fact Ω \ Z4

is a small neighborhood of the 1-skeleton of the triangulation of Ω. We con-
clude our definition of v by setting v ≡ u on Z4; thanks to Remark 1.16 and
to Lemma 1.22, v is a smooth bijection between Ω and ∆. To conclude this
section, we then only need to give the proof of Theorem A.
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Proof (of Theorem A). Let u be a piecewise affine L bi-Lipschitz homeomor-
phism and consider a compatible triangulation (which is admissible to take
countable, as observed at the beginning of our construction). Let v be the map
described through this section: we have that v is a smooth bijection between
Ω and ∆, as well as the validity of (1.6), just putting together the results of
Lemmas 1.14, 1.17, 1.21 and (1.22).

The fact that u = v on ∂Ω, as well as that v is orientation-preserving if
so is u, are obvious by construction; instead, the fact that v is 100L7/3 bi-
Lipschitz just follows by selecting the exponent q = 1/3 in (1.6). Therefore,
we only miss (1.5).

To show (1.5), observe that for any x one has by construction that the
points u(x) and v(x) belong to triangles having at least a point in common;
hence, one has ‖u−v‖L∞ ≤ ε/4 as soon as all the triangles in ∆ have diameter
less than ε/8. And by refining the triangulation if necessary, we can obviously
assume that this is true. In the same way, we can also assume ‖u−1−v−1‖L∞ ≤
ε/4. Let us now pass to the term

‖Dv −Du‖Lp(Ω) =
Å∑

i∈N
‖Dv −Du‖pLp(Ti)

ã1/p

≤
(
L+ 100L7/3

)Å∑
i∈N

L
({
x ∈ Ti : u(x) 6= v(x)

})ã1/p

.

Since for every triangle Ti we can let the set
{
x ∈ Ti : u(x) 6= v(x)

}
be as

small as we wish, up to decrease the (independent) constants δ and h, it is
admissible to assume ‖Dv − Du‖Lp ≤ ε/4 and, in the very same way, also
‖Dv−1 −Du−1‖Lp ≤ ε/4. As a consequence we have shown also the validity
of (1.5) and then the proof is concluded. ut

Remark 1.23. Notice that the assumption p < ∞ was essential in the above
proof. And in fact, the claim of Theorem A is clearly false for p =∞.
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1.3 Part II: Bi-Lipschitz extension Theorem

This part of the notes is devoted to show the following bi-Lipschitz exten-
sion result; through this chapter, we will write for brevity D = D(O, 1/2) to
denote the square of unit side centered at the origin.

Theorem B (bi-Lipschitz extension). Let u : ∂D → R2 be a L bi-Lipschitz
map. Then there exists a CL4 bi-Lipschitz extension v : D → R2, and in
particular if u is finitely piecewise affine there exists such a CL4 bi-Lipschitz
extension which is also finitely piecewise affine. Moreover, there exists also
an extension v of u which is smooth; this smooth extension can be taken bi-
Lipschitz with constant CL28/3 if u is finitely piecewise affine, or with constant
CL112/3 in general.

The complete proof of this result is quite involved, and beyond the purpose
of these notes; we will limit ourselves to give a quite precise idea of how the
construction works, but leaving many details without a formal justification.
The interested reader can find the complete work in the paper [15].

The strategy of the proof

In this section we give a more or less complete overview of the strategy that
we will follow in the proof. In fact, while on one hand the proof is extremely
involved and technically complicate, on the other hand the ideas behind the
construction are quite simple, and the tools used in the proof are elementary.
We try to present all the main ideas in this introduction.

First of all, we point out that we will consider almost only the finitely
piecewise affine case, because the general case will be eventually obtained
through a quite simple limiting procedure. Thus, the image u(∂D) of the
boundary of the unit square is a closed curve in R2 (more precisely, a polygon,
since we think u to be piecewise affine), which then divides R2 in two parts,
a bounded one and an unbounded one. We will call ∆ the first one, so that
actually u : ∂D → ∂∆ is a L bi-Lipschitz function, and the extension must
necessarily be a bi-Lipschitz map v : D → ∆.

Let us start considering for a moment a very peculiar case, namely, when
∆ is strictly convex. In this case, there is an obvious way to build a piecewise
affine extension v of u. Namely, take a point O in the interior of the set ∆,
say, the barycenter, and for every segment AB in ∂D on which u is affine
define v in the triangle ABO as the unique affine function coinciding with u
on AB and such that u(O) = O. Equivalently, we can also simply say that
the image of the generic segment AO in D is the segment connecting u(A) to
O in ∆, and that v must be affine in every triangle ABO. The two points of
view are clearly completely equivalent, but the latter is easier to extend when
∆ is not convex.

Think now about the general case, when ∆ has clearly no reason to be
convex. In this case, we can still fix a point O inside ∆, and try to imagine
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how the image of a given segment AO in D should look like. Of course, it can
not be a segment, if ∆ is not convex; but we can guess that it must be some
polygonal curve, connecting u(A) to the point O remaining entirely inside ∆.
In particular, this curve will have to avoid being too close to ∂∆, in order not
to increase too much the bi-Lipschitz constant of v. Of course, if we consider
all the “vertices” Ai of D (not only the four vertices of the squares, but all the
extremes of segments where u is affine) then all the different piecewise affine
curves between u(Ai) and O will have to be disjoint, except for the final point
which is always O by definition. Moreover, two “consecutive” curves will not
only have not to intersect, but also they need never to become too close or too
far from each other, because this would let the Lipschitz constant of v or of
v−1 explode. This is more or less the main idea of our construction; actually,
our biggest concern will be to construct suitable “good paths”, that is, the
piecewise affine curves just introduced. Let us now describe our proof more in
detail, following the ten big steps in which the proof is divided (corresponding
to ten sections of this chapter).

Our first concern is to find a suitable point O = u(O) to follow the idea
described above. Actually, we will see that it is better to find, instead, a
suitable “central ball” B̂, which will be the image of a suitable part of D more
or less close to the center O of D. At the end, we will see that often O = u(O)
will be the center of this ball B̂, but in some cases it will be some other point
of B̂. This central ball will be entirely contained in ∆, but its boundary will
intersect the boundary of ∆ in at least two points. For instance, Figure 1.7
shows a possible situation, where ∆ is the polygon, B̂ is the ball, and its
boundary intersects the boundary of ∆ in the four points A, B, C and D.
Finding a suitable ball B̂ and studying its properties will be the scope of
Step I.

We divide then the set ∆ in two parts: one is the “internal polygon”, that
is, the polygon whose vertices are the points of the boundary of the central
ball which belong to ∂∆, and one is all the rest. In particular, this second
part is of course the union of some essentially disjoint polygons, each of which
having has boundary a part of ∂∆ and a side of the internal polygon. We
will define “primary sector” each of these polygons: for instance, in Figure 1.7
the internal polygon is the white quadrilateral, while the primary sectors are
the four coloured polygons. Notice that the internal polygon can reduce to a
segment, if the points of ∂B̂ ∩ ∂∆ are only 2. Step II will be devoted to give
all the necessary definitions about the primary sectors and to point out their
first properties.

We concentrate now on a given primary sector, say, the one which con-
tains the segment AB in its boundary: since the map v has to be piecewise
affine, this sector will have to be subdivided in triangles. Hence, in Step III
we will partition the sector in a finite union of essentially disjoint triangles,
and we will also introduce a partial order between them. Figure 1.9 shows a
sector subdivided in triangles, and the partial order is such that the triangles
numbered there between 1 and 10 are an increasing sequence.
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DA

B

C

Fig. 1.7. A polygon with four (coloured) primary sectors.

We can then start building the “good paths” introduced above. More pre-
cisely, taken a vertex P on the boundary of the primary sector, in Step IV we
will define a piecewise affine path which starts from P and arrives somewhere
on the segment AB; this path will be affine on each of the triangles defined
in Step III. Since, if we call P ∈ ∂D the point such that u(P ) = P , the path
build here will be the image under v of the first part of the segment PO,
then to get the bi-Lipschitz property for v we will have to take care that the
different vertices P will have to influence each other. This is probably the
most complicate step in the original proof of the theorem (but in these notes,
we skip many details in the proof of this step).

The next Step V will be devoted to provide a bound on the lengths of the
paths constructed in Step IV: this is clearly a technical information needed to
obtain our further estimates.

As we just said above, for any vertex P = u(P ) ∈ ∂∆ the extension v
will send the first part of the segment PO onto the path defined in Step IV.
However, we will notice that the best way to do so will not be to do so at con-
stant speed, because this would eventually worsen the estimate of Theorem B.
Therefore, in Step VI we will give a non constant and carefully constructed
“speed function”; as before, the speed function corresponding to any vertex
will influence those corresponding to the other vertices.

Putting everything together, we have then a bi-Lipschitz function defined
on all the good paths inside the primary sector, and extending it in the piece-
wise affine way we will then get a bi-Lipschitz function defined in the whole
primary sector. Step VII will be devoted to give the precise definition and to
check the properties of this map.

Since we have now different bi-Lipschitz functions between suitable parts
of the square D and each of the primary sectors, what is needed now is to
send the remaining central part of D onto the internal polygon inscribed in the
central ball. This will be fairly easy in most of the situations, such as the one
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depicted in Figure 1.7; however, the general case can be much more tricky, for
instance when the internal polygon degenerates to a segment. In Step VIII we
will show how to deal all the possible cases, and then we will have concluded
the construction of a finitely piecewise affine extension v : D → ∆ in the case
of a finitely piecewise affine map u : ∂D → ∂∆.

To conclude the complete proof, we will now only need two very simple
last steps. In Step IX, we will build an extension for a bi-Lipschitz map u
which is not finitely piecewise affine. To do so, we will approximate u with a
sequence of finitely piecewise affine functions uj which uniformly converge to
u; then, we will apply the construction of the Steps I–VIII to get extensions
vj of each uj ; and finally, we will only have to check that the sequence vj
uniformly converge to a function v, which is as needed.

The last Step X will provide us with a smooth extension. In fact, if u is
finitely piecewise affine we will only need to apply Step VIII and Theorem A,
while for a generic function u we will apply Step IX and Theorem C.

Some notation

As in the other parts, there is some specific notation which is needed only
within this part, and we briefly list it here.

We will use capital letters to refer to points in the square D, as A, B, C
and so on, and bold capital letters to refer to points in ∆, as A, B, C and so
on. For a quick comprehension and a shorter notation, we will use the same
letter (bold or not) to denote points in D and in ∆ which are sent to each
other by u or v. This means that if P ∈ ∂D is a point on the boundary of the
square, then the letter P is always used to denote the point u(P ). Similarly,
if Q ∈ D is inside the square, then Q = v(Q).

For any two points P, Q ∈ ∂D, we call as usual PQ the segment joining
P and Q, which lies inside D; instead, by P̃Q we denote the shortest path
between P and Q on ∂D; in the particular case when P and Q are opposite, by
P̃Q we may refer to each of the two possible paths, and we will clarify which
one when needed. Moreover, `(PQ) and `(P̃Q) are the lengths of the segment
PQ and of the curve P̃Q respectively: notice that `(P̃Q) ∈ [0, 2]. Concerning
points P = u(P ) and Q = u(Q) in ∂∆, to be consistent we will consider the
segment PQ, having length `(PQ), only if it is entirely contained inside ∆.
In addition, the curve P̄Q is defined as u(P̃Q), and its length is again called
`(P̄Q): notice that P̄Q might happen not be the shortest path between P
and Q on ∂∆.

1.3.1 Step I: The central ball B̂

As anticipated above, we start considering the case when u is finitely
piecewise affine; this will be the assumption of the Steps I–VIII, and only in
Steps IX and X we will consider the general case.
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In this first step, we select the “central ball” B̂, which is contained in ∆
and whose boundary touches ∂∆ in at least two points. Among all the balls
with this property, we are going to select one which is not too small (however,
we will not simply take the biggest possible one, because this would eventually
give rise to a worse estimate in Theorem B). Our result is then the following.

Lemma 1.24. There exists an open ball B̂ ⊆ ∆ such that the intersection
∂B̂∩∂∆ consists of N ≥ 2 points A1, A2, . . .AN , taken in the anti-clockwise
order on the circle ∂B̂, and with the property that for every 1 ≤ i ≤ N the
path ˚�AiAi+1 does not intersect other points Aj than Ai and Ai+1.

Some preliminary remarks are now in order. First of all, since the ball
B̂ is entirely contained in ∆, then also the points Ai on ∂D are ordered, in
particular in the anti-clockwise sense if u is orientation-preserving and in the
clockwise sense if u is orientation-reversing. Thus, the assumption that for
every i the path ˚�AiAi+1 is the one which does not intersect other points
Aj is equivalent to say that ∂D is the essentially disjoint union of the paths˚�AiAi+1, with the usual convention N + 1 ≡ 1. In addition, we can observe
also what follows.

Remark 1.25. If N = 2 in Lemma 1.24, then it is surely `(A1A2) = 2, that
is, the points A1 and A2 are opposite; otherwise, if N ≥ 3, then the maximal
distance `

(
ĂiAj

)
between two vertices is at least 4/3. Thus, whatever N is,

the radius of the central ball must be at least 2
3L .

Moreover, take any ball B ⊆ ∆ whose boundary intersects ∂∆ in at least
two points. The choice B̂ = B satisfies the claim of Lemma 1.24 unless there is
an arc of length 2 in ∂D which does not contain any of the points of ∂∆∩∂B.

We now depict the proof of the lemma.

Proof (of Lemma 1.24). Recall that ∆ is a polygon, take any point A ∈ ∂∆
which is not a vertex and let B = B(A) ⊆ ∆ be the biggest ball containing A
in its boundary; thus, ∂B∩∂∆ must contain at least another point B 6= A. As
a consequence, the set S of all the pairs (A,B) ∈ ∂∆ contained in the bound-
ary of some ball B = B(A, B) ⊆ ∆ is not empty (and, of course, symmetric).
Since S is a compact subset of (∂∆)2, there exists a pair (A,B) maximizing
`(ÃB); notice carefully that we are maximizing `(ÃB), not `(ĀB).

Observe now that, if `(ÃB) = 2, then any ball B̂ ⊆ ∆ containing both A
and B in its boundary satisfies our claim thanks to Remark 1.25.

We assume then that `(ÃB) < 2; among all the balls B ⊆ ∆ whose
boundary contains both A and B, we call B̂ one which maximizes the radius
(in most examples there is only one such ball, but it is not always the case).

Making use of the maximality of `(ÃB) among pairs (A, B) ∈ S, and of
the maximality of the radius of B̂ among the admissible balls corresponding
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to A and B, a geometric argument shows that there is some point P ∈
∂B̂ ∩ ∂∆ \ ĀB.

Consider now the three points A, B and P on ∂D. By definition of the
paths and by construction, P does not belong to the path ÃB. Moreover, since
the length `(ÃB) is maximal, then ÃP cannot contain ÃB, or, equivalently,
B is not contained in ÃP ; for the same reason, also A is not contained in B̃P .
This immediately implies that every path of length 2 in ∂D contains at least
one between A, B and P . And in turn, Remark 1.25 says that this gives our
thesis. ut

1.3.2 Step II: Sectors and primary sectors

In this second step we present the definition of the “sectors” in ∆, and in
particular of the “primary sectors”, studying their simplest main properties.
The first definition is the following.

Definition 1.26. Consider two points A and B in ∂∆ with the property that
the open segment AB entirely lies in ∆. We call sector between A and B
the subset of ∆ enclosed by AB and by the path ĀB.

Recall that, if A and B are opposite in D, then each of the two paths
connecting A and B can be referred to as ĀB; as a consequence, in this case
each of the two parts in which ∆ is subdivided by AB is a primary sector.

Consider now the central ball B̂ given by Lemma 1.24, and call again Ai,
1 ≤ i ≤ N the (ordered) points of ∂B̂ ∩ ∂∆. By construction, each open
segment AiAi+1 is entirely contained in B̂, thus in ∆. As a consequence, we
can give a name to the corresponding particular case of sectors.

Definition 1.27. We call primary sector each of the sectors S(AiAi+1).

By Lemma 1.24 we readily get that the different primary sectors S(AiAi+1)
are essentially disjoint. More precisely, ∆ is the essentially disjoint union of
the N primary sectors and the possibly degenerate polygon A1A2 . . .AN (to
visualize the situation, one can look back at Figure 1.7). Let us observe a
couple of easy properties of the sectors.

Remark 1.28. Let A, B, C, D be four points in ∂∆. If C, D ∈ ĀB, then
one has C̄D ⊆ ĀB. Moreover, if both the open segments AB and CD lie in
the interior of ∆, then it is also S(CD) ⊆ S(AB).

A second very useful property, which will be used several times in our next
proofs, is that the lengths of the paths in ∂D and of the corresponding paths
in ∆ can be bounded by each other. More precisely, let P and Q be two points
in ∂∆ such that the closed segment PQ is entirely contained in ∆. Since D is
a square, then `(PQ) ≤ `(P̃Q) ≤

√
2`(PQ), and since u is L bi-Lipschitz it is
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also `(PQ)/L ≤ `(PQ) ≤ L`(PQ), as well as `(P̃Q)/L ≤ `(P̄Q) ≤ L`(P̃Q).
In particular, we deduce that

`
(
P̃Q
)
≤
√

2L `(PQ) . (1.39)

Observe that, of course, for the above estimate to be true it is crucial
that P̃Q is the shortest of the two paths in ∂D connecting P and Q. In fact,
the reason why our definition of the central ball in Step I requires that every
path ˚�AiAi+1 does not contain other points Aj , is that then we can use the
estimate (1.39) inside every primary sector S(AiAi+1).

1.3.3 Step III: Subdivision of a sector in triangles

To build our extension v of u, the next ingredient that we need is to
subdivide every primary sector in a finite number of triangles. Through this
Step, S(AB) will be a fixed primary sector in ∆.

Definition 1.29. Given three points P , Q and R in S(AB), the triangle
PQR is said an admissible triangle if each of its open sides is entirely con-
tained either in ∆, or in ∂∆. Moreover, the segment PR is said the exit side
of the admissible triangle PQR if P̄R = P̄Q ∪ Q̄R.

Figure 1.8 enlightens the meaning of the definition, showing five triangles in
the sector S(AB); the triangles 1 and 3 are not admissible because they have
a side which is not entirely contained neither in ∆ nor in ∂∆: in particular, a
side of triangle 1 (resp., triangle 3) has an open side whose intersection with
∆ is half of the side (resp., a single point). On the other hand, the remaining
triangles are admissible, and an arrow indicates the exit side. As the figure
illustrates, and as one can readily deduce from the definition, every admissible
triangle admits exactly an exit side. Notice also that every admissible triangle
can have either one, or two, or three sides which are contained in ∆, and in
particular so is always the exit side.

Let us briefly clarify a point in our notation. Recalling that u is assumed
to be finitely piecewise affine, we will call sides of D and of ∆ all the segments
on which the restriction of u is affine, and vertices their extremes. Observe
that this does not coincide with the usual sense of the words “side” and
“vertex” for polygons: in particular, there can be segments which are sides of
the polygon ∂D or ∂∆, but which are in fact a finite union of sides according
to our convention. We are now in position to state the main result of this step.

Lemma 1.30. There exists a partition of S(AB) in a finite number of ad-
missible triangles such that:

a) each vertex in ĀB is vertex of some triangle of the partition,
b) for each triangle PQR of the partition, whose exit side is PR, the or-

thogonal projection of Q on the straight line through PR lies in the closed
segment PR (equivalently, the angles P“RQ and R“PQ are at most π/2).
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Fig. 1.8. Some (admissible or not) triangles in a sector.

For brevity, we are giving here only a brief sketch of the proof of this result
(as of many of the technical results of our construction). However, it is useful
to describe the main tool that one has to use, namely, the “weight” of the
sectors. More precisely, let S(CD) be a sector, and call m ∈ N the number
of its sides. For every vertex P ∈ C̄D, call P⊥ its orthogonal projection on
the straight line passing trough C and D. If there exists some vertex P such
that P⊥ belongs to the closed segment CD and the open segment PP⊥ lies
inside ∆, then we say that the weight of S(CD) is m. Otherwise, if no such
vertex P exists, we say that the weight of S(CD) is m+ 1

2 .

Proof (of Lemma 1.30). If the weight of S(AB) is 2, which is the minimal
possible weight of a sector, then the sector is in fact a triangle and the claim
is true simply considering the partition given by the triangle itself.

Let us then argue by induction on the (semi-integer) weight of a sector;
assume then that S(AB) has weight k > 2, and that the proof has already
been obtained for all the weights smaller than k. First of all, consider the case
when k is integer: by definition of weight, there exists a point P ∈ ĀB such
that the segment PP⊥ is entirely contained in ∆ and P⊥ ∈ AB. Therefore,
the sector S(AB) is the essentially disjoint union of the two sectors S(AP )
and S(PB) and of the triangle APB. Moreover, each of the two sectors has
weight strictly less than k, so by assumption the claim is already separately
true on each of them. The searched partition of S(AB) is then obtained by
putting together the two partitions of S(AP ) and S(PB) and the triangle
APB.

Assume, instead, that k is not integer. Take now a point V ∈ ĀB which
is not a vertex, and which is then contained in some side of the sector, say
V ∈ PQ ⊆ ĀB. We can then split the side PQ into the two sides PV and
V Q; in other words, we arbitrarily decide to start considering also V as a
vertex of the sector S(AB): observe that this is clearly admissible, though,
doing so, the total number of vertices and sides increases by 1, becoming then
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k+ 1
2 (correspondingly, the weight of the sector S(AB), which was previously

k, becomes now k+ 1
2 or k+1). It is simple to show that, by carefully choosing

the point V , we can obtain that the sector S(AB) is the union of the two
(possibly degenerate) sectors S(AV ) and S(V B) with the triangle AV B,
and the weight of each of the sectors is at most k − 1

2 (thus smaller not only
of the new weight of the sector S(AB), but also of the old one!). Again,
the inductive assumption allows then to obtain the claim. Notice that our
procedure may increase the total number of sides, but only a finite number of
times, so this is not a problem at all. ut

From now on, we will always consider the sector S(AB) with a given
partition as in Lemma 1.30. An explicit example of such a partition is shown
in Figure 1.9. A last couple of definitions are needed to conclude this step.
First of all, the triangles of the partition admit a natural partial order, induced
by the relation which says that the two triangles PRQ and PQS satisfy
PRQ ≤ PQS if the common side PQ is the exit side of PQR. It is easy
to observe that this relation is well-defined, and it is equivalent to say that
PQR ≤ STU if and only if the points P , Q and R all belong to the path
S̃U , being SU the exit side of STU . Moreover, there is a unique greatest

T2

T10T7

T8 T9

T1

P

A

B

Fig. 1.9. A sector, its partition in triangles, and the natural sequence related to P .

element for this order, namely, the triangle having as exit side the segment
AB. In addition, every triangle of the partition has exactly a unique successor,
except the maximizer. Since the triangles are finitely many, in our future
constructions we will argue recursively, considering a generic triangle and
assuming that all the smaller triangles have been already treated. We give
now the last definition.
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Definition 1.31. For every P ∈ ĀB, we call natural sequence of triangles
related to P the sequence

(
T 1, T 2, . . . , T N

)
, where T 1 is the minimal

triangle of the partition containing P , T i+1 is the successor of T i for any
1 ≤ i ≤ N − 1, and T N is the maximal triangle. Of course, N = N(P ).

Notice that the natural sequence of triangles related to any point P is well-
defined; an example is given in Figure 1.9, with the triangles

(
T 1, . . . , T 10

)
.

1.3.4 Step IV: The good paths inside the sectors

The fourth is the main and most complicate step of the whole construction;
what we want to do here, is to define suitable piecewise affine paths inside
the sector S(AB), starting from each vertex P ∈ ĀB and ending on the
segment AB. The meaning of these paths is evident: calling as usual P =
u−1(P ) ∈ ∂D, our extension v will send the first part of the segment PO onto
this piecewise affine path. Since this definition will provide the map v on some
one-dimensional “skeleton” inside the square D, the paths corresponding to
different points must not become too far nor too close to each other. Let us
first give the definition of what are the admissible paths for our strategy.

Definition 1.32. Take a point P ∈ ĀB, and let
(
T 1, T 2, . . . , T N

)
be

the corresponding natural sequence of triangles as in Definition 1.31. A good
path corresponding to P is any piecewise affine path PP 1P 2 · · ·PN such that
every P i belongs to the exit side of T i.

A precise idea of what a good path is can be taken from Figure 1.10,
where the sector S(AB) is subdivided in triangles as in Step III, and two
good paths corresponding to the points P and Q are drawn. We can now

P 1

Q

Q2

Q1

E

C

D

P

P 3 P 4

P 2 P 5
P 7

Q3

B

A

P 6

Fig. 1.10. A sector with two good paths corresponding to P and Q.

present the result of this step.
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Lemma 1.33. There exist a good path PP 1P 2 · · ·PN corresponding to each
vertex P of ĀB, being N = N(P ), so that the following holds:

(i) for any 1 ≤ i ≤ N(P ), the angle between the segment P i−1P i and the
side of T i to which P i−1 belongs (resp., the exit side of T i) is at least
arcsin

(
1

6L2

)
(resp., at least 15◦);

(ii) `
(
P̆PN

)
:= `(PP 1) + `(P 1P 2) + · · ·+ `(PN−1PN ) ≤ 4 `

(
ĀB

)
;

(iii) assume that for some 1 ≤ i ≤ N(P ) and 1 ≤ j ≤ N(Q) the points P i

and Qj belong to the same exit side of some triangle; then

`
(
P̃Q
)

7L
≤ `
(
P iQj

)
≤ `
(
P̄Q

)
and, if i < N(P ), then

`
(
P i+1Qj+1

)
≤ `
(
P iQj

)
;

(iv) the piecewise affine paths PP 1P 2 · · ·PN are pairwise disjoint .

Using the situation of Figure 1.10 as an example, we can quickly observe
the meaning of (i)–(iv) in the lemma above. Property (i), for the point P and
i = 3, which corresponds to the triangle T = CDE, means that

P 3
”P 2D ≥ arcsin

Å
1

6L2

ã
, P 3

”P 2E ≥ arcsin
Å

1
6L2

ã
,

P 2
”P 3C ≥ 15◦ , P 2

”P 3E ≥ 15◦ .

Property (ii) means `
(
P̆P 7

)
≤ 4 `

(
ĀB

)
, denoting P̆P 7 := PP 1P 2 · · ·P 7.

In the same way, `
(
Q̆Q3

)
≤ 4 `

(
ĀB

)
. Property (iii) means

`
(
P̃Q
)

7L
≤ `
(
P 7Q3

)
≤ `
(
P 6Q2

)
≤ `
(
P̄Q

)
.

Observe that, as in the figure, whenever the points P i and Qj belong to the
exit side of the same triangle T , then also P i+1 and Qj+1 belong to the exit
side of the (unique) successor of T ; therefore, the same will be true for all
the points P i+k and Qj+k until reaching the maximal triangle having AB
as exit side. In particular, N(P ) −N(Q) = i − j. Finally, property (iv) just
means that P̆P 7 and Q̆Q3 do not intersect each other.

Let us now give a very short description of the different parts of the proof.

Proof (of Lemma 1.33). The thesis is obtained by an induction over the weight
of the structure. In fact, assume that the lemma has been already proved for
all the structures of weight less than that of S(AB) (which is emptily true if
the weight is 2), and let ABC be the maximal triangle with respect to the
order introduced in Step III.
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By definition, the segment BC can lie entirely in ∆, or entirely in ∂∆;
in the first case, S(BC) is a sector having a weight strictly less than that of
S(AB), then by inductive assumption we already have piecewise affine paths
starting from every point P ∈ B̄C and arriving up to BC, and satisfying (i)–
(iv). In the second case, the same is emptily true with the trivial empty paths.

In any case, one has then only to connect the points PN−1 on BC with
the segment AB (the very same has to be done, of course, also with AC in
place of BC). To do so, it is necessary to consider carefully all the possible
positions of C with respect to A and B, and this is done in different steps.

Step A. Definition of C1.
First of all, we have to define the point C1 ∈ AB; we start calling C+

and C− the points on the straight line passing through A and B and being
at a distance `

(
BC

)
from B, and `

(
AC

)
from A respectively. Then, we call‹C1 ∈ AB the point satisfying

`
(
ÃC
)

`
(
ÃB
) =

`(A‹C1)
`
(
AB

) ;

finally, we set C1 to be the point in C−C+ which is closest to ‹C1: in other
words, C1 = ‹C1 if ‹C1 ∈ C+C−, while C1 = C+ (resp. C1 = C−) if ‹C1

is above C+ (resp. below C−). Having defined the point C1, we have then
to consider the points PN−1 on the segment BC. This is done in a different
way, depending on how the situation is.

Step B. The case when C1 = C+.

This is the easiest case to treat. In fact, for every vertex P ∈ B̄C, cor-
responding to a point PN−1 ∈ BC, we let PN ∈ BC1 be the point satisfy-
ing `(BPN ) = `(BPN−1), so that in particular all the different segments
PN−1PN are parallel to CC1. In this case property (iv) is clearly true,
and one can easily check the validity of also (i)–(iii), recalling that either
BC ∈ ∂∆, or the validity of (i)–(iii) is true by assumption on the sector
S(BC).

Step C. The case when C1 6= C+ and A“BC ≥ 15◦.
If C1 6= C+, it is convenient to distinguish the two cases when the angle

A“BC is bigger or smaller than 15◦. In the first case, for every point PN−1 ∈
BC, corresponding to the vertex P ∈ B̄C, we let PN ∈ BC1 be the point
such that

`
(
BPN

)
= min

ß
`
(
BPN−1

)
, `
(
BC1

)
−
`
(
P̃C
)

7L

™
, (1.40)

being as usual P ∈ ∂D be given by P = u−1(P ). It is again possible (though
not so immediate), by some geometric arguments, to check that all the prop-
erties (i)–(iv) hold true.
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Step D. The case when C1 6= C+ and A“BC ≤ 15◦.
This is the hardest case to handle, since by the smallness of the angle

A“BC the definition (1.40) does not work. To obtain the thesis in this situa-
tion, one has to perform a delicate geometric construction, basically shrinking
the segments on BC to fit into BC1, though with a shrinking parameter
which depends on the point. However, one eventually proves the validity of
the searched properties (i)–(iv). ut

1.3.5 Step V: The lengths of the good paths

This step is devoted to find a bound for the good paths P̆PN given by
Lemma 1.33. In fact, thanks to property (ii) of that lemma, we already know
that for every vertex P ∈ ĀB one has `(P̆PN ) ≤ 4`

(
ĀB

)
. However, it is

easy to understand that this bound is not satisfactory if the point P is close
to A or to B. In fact, consider two points P and Q in ĀB which are close
to each other, and call N = N(P ) and M = N(Q). Since the map v that we
want to define must be bi-Lipschitz, then the paths P̆PN and Q̇QM must
remain close to each other, and their lengths must be similar. In the particular
case when Q = A, it is clearly M = 0 and the path Q̇QM degenerates to
the single point A, having then 0 length; therefore, when P approaches A (or
B), then also the length of P̆PN must be very small, and so in that case the
bound `(P̆PN ) ≤ 4`

(
ĀB

)
is not enough.

For this reason, we can look back more carefully at the construction of
Step IV, obtaining the following estimate.

Lemma 1.34. For any P ∈ ĀB it is `
(
P̆PN

)
≤ 113 min

{
`
(
ĀP

)
, `
(
P̄B

)}
.

Also in this case we are not going to present the proof, but we can quickly
explain the overall idea. Taken a point P ∈ ĀB, let us consider all the
different triangles of the natural sequence of triangles

(
T 1, T 2, . . . , T N

)
related to P , according to Definition 1.31. Call for brevity AiBi the exit
side of T i, being Ai the point in ĀP and Bi the one in P̄B: in particular,
AN = A and BN = B. For consistency, call also A0B0 the side of T 1 which
contains P = P 0. Recalling the construction of the partition of triangles of
Step III, it is clear that the exit side of any triangle T i coincides with a (non-
exit) side of the following triangle T i+1; as a consequence, the exit sides of
T i and T i+1 have exactly one common point, thus either Ai+1 = Ai or
Bi+1 = Bi. Suppose for simplicity that `(P̄B) ≤ `(ĀP ): then the claim of
Lemma 1.34 can be written as

N−1∑
i=0

`(P iP i+1) ≤ 113
Å
`(P 0B0) +

N−1∑
i=0

`(BiBi+1)
ã
, (1.41)
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and this expression of the thesis is evidently particularly useful to start a
sort of comparison argument. More precisely, let 0 ≤ i < N be a generic
index: if Bi+1 6= Bi, then an essentially trigonometric argument based on (i)
of Lemma 1.33 gives `(P iP i+1) ≤ 4`(BiBi+1), and in turn this is clearly
a good inequality in order to obtain (1.41). On the other hand, if Bi =
Bi+1, this does not help the validity of (1.41) since `(P iP i+1) > 0 while
`(BiBi+1) = 0. However, it is reasonable to guess that the property Bi =
Bi+1 cannot hold too often; in fact, by (iii) of Lemma 1.33 we know that
`(P i+1Bi) = `(P i+1Bi+1) ≤ `(P iBi), and then if Bi = Bj then the length
`(P̆ iP j) cannot be excessively large. Basically, proving Lemma 1.34 means
giving a quantitative estimate to this rough argument.

T 8

A0

P ≡ P 0

B0−5

T 3T 2

T 1

B6−8

T 6

T 7

B9

T 9 T 10

T 11

A11
A1

A2 A3

A5−6

A7

A12 ≡ A

B10−12 ≡ B

A8−10
T 12T 5

T 4

A4

Fig. 1.11. A natural sequence of triangles T i with the points Ai and Bi and the
angles θ± .

Thanks to the above observations, our strategy will be to group the differ-
ent triangles T i of the natural sequence in different categories, more or less
with the aim of studying what happens for all the triangles sharing the same
point Bi. We will then subdivide (see Figure 1.11) the natural sequence of tri-
angles into sequences of consecutive triangles U =

(
T i, T i+1, . . . , T i+j

)
called “units”, and similarly we will further subdivide the units into con-
secutive “systems of units” S =

(
U i, U i+1, . . . , U i+j

)
, and finally the

systems into “blocks of systems” B =
(
S i, S i+1, . . . , S i+j

)
. This pro-

cedure will eventually allow to get (1.41), hence proving Lemma 1.34.

1.3.6 Step VI: The speed of the paths

In this step we aim to set the “speed” at which the first part of a seg-
ment PO in D should be mapped onto the piecewise affine path P̆PN . To
explain what this actually means, consider a given vertex P ∈ ĀB and let
ψ : [0,M ] → S(AB) be the arc-length parametrization of the path P̆PN
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found in Step IV, being M the length of the path. The preliminary idea that
one could have, is to define the extension v on the first part of the segment
PO as v

(
tO + (1 − t)P

)
:= ψ(t). Of course, this can work only if M < 1,

which is not always true, and the first correction that comes in one’s mind
is to define, instead, v

(
tO + (1 − t)P

)
:= ψ(τt) for a suitable constant τ so

that τM < 1. In other words, one would like to map the segment PO on the
path P̆PN at constant speed τ . However, some examples show that this is
not the right choice: in fact, if the shape of ∆ is spiraling first in one direction,
and then in the other one, then there are pairs of points P and Q which are
close to each other, but such that v

(
tO+ (1− t)P

)
and v

(
tO+ (1− t)Q

)
are

far away for some suitable t. To avoid this problem, one can realize that it is
necessary to map the segments in D at variable speed; since the drawback of
using a constant speed is only in how the different good paths behave with
respect to each other, the speeds corresponding to different vertices will have
to influence each other –see (1.46) below. Let us then present how we will
proceed: first of all, call Σ the union of all the paths P̆PN found in Step IV
and corresponding to the different vertices P ∈ ĀB, which is a disjoint union
by construction. We introduce then the following notation.

Definition 1.35. The function τ : Σ → R+ is said a possible parametriza-
tion if for every vertex P ∈ ĀB it is

• τ(P ) = 0 ,
• for each vertex P ∈ ĀB and each 0 ≤ i < N(P ), the restriction of τ to

the closed segment P iP i+1 is affine .

Moreover, for any S belonging to the open segment P iP i+1, we shall write

τ ′(S) :=
τ(P i+1)− τ(P i)
`
(
P iP i+1

) .

Observe that τ ′ corresponds to the inverse of the constant speed of the
parametrization τ within the segment P iP i+1. The result of this step is the
following.

Lemma 1.36. There exists a possible parametrization τ such that

1
60L

≤ τ ′(S) ≤ 1 ∀S ∈ Σ , (1.42)

if P i and Qj belong to the same exit side of a triangle, then
|τ(P i)− τ(Qj)| ≤ 170L `

(
P̄Q

)
.

(1.43)

Proof. Since τ(P ) = 0 for every vertex P ∈ ĀB, defining τ is equivalent to
define τ ′; we will build the searched function arguing again by induction over
the weight of the sector.

Step A. The case when the weight of S(AB) is 2.
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If the weight of the sector is 2, then the sector is in fact a triangle, and
we simply set τ ′ ≡ 1 on all Σ. The validity of (1.42) is clearly true; concern-
ing (1.43), we only have to consider two vertices P and Q and the points
P 1 and Q1 on AB. But then τ(P 1) = `

(
PP 1

)
and τ(Q1) = `

(
QQ1

)
, and

then (iii) of Lemma 1.33 and the triangular inequality yield

|τ(P 1)− τ(Q1)| =
∣∣`(PP 1

)
− `
(
QQ1

)∣∣ ≤ `(PQ)+ `
(
P 1Q1

)
≤ 2`

(
PQ

)
,

so (1.43) is verified.

Step B. The case when the weight of S(AB) is at least 3.
Consider now the general case of a sector of weight at least 3, and let

ABC be the maximal triangle in the sense of the order between triangles. By
inductive assumption, it is admissible to assume that the map τ is already
defined in both the sectors S(AC) and S(BC) and satisfies (1.42) and (1.43)
within the respective sectors; hence, we only have to define τ (or τ ′) in Σ ∩
ABC. Notice that, given two generic vertices P and Q on ĀB, and calling
N = N(P ) and M = N(Q), we already know by inductive assumption that∣∣τ(PN−1)− τ(QM−1)

∣∣ ≤ 170L `
(
PQ

)
. (1.44)

This estimate is true not only when PN−1 and QM−1 belong both to AC or
both to BC, in which case (1.44) directly comes from (1.43), but also when
one of the points lies in AC and the other one in BC: indeed, to get (1.44) in
this case just apply (1.43) once to PN−1 and C, and once to C and QM−1.

Before defining τ , we start considering the temptative map τ̃ given by
setting τ̃ = τ on S(AC) ∪ S(BC), and τ̃ ′ ≡ 1/(60L) on ABC: in other
words, for any vertex P we are defining

τ̃(PN ) = τ(PN−1) +
1

60L
`
(
PN−1PN

)
. (1.45)

It is clear that τ̃ satisfies (1.42), but it might not verify (1.43); hence, we give
the definition of τ as

τ(PN ) := τ̃(PN ) ∨max
{
τ̃(QM )− 170L `

(
P̄Q

)
: Q ∈ ĀB

}
. (1.46)

It is immediate to observe that, since τ(PN ) ≥ τ̃(PN ), then τ ′ ≥ τ̃ ′ =
1/(60L) in Σ ∩ABC, so the first half of (1.42) is true. Concerning (1.43), it
is a direct consequence of

τ(PN ) ≥ τ(QM )− 170L `
(
P̄Q

)
; (1.47)

and in turn, if τ(QM ) = τ̃(QM ) then

τ(PN ) ≥ τ̃(QM )− 170L `
(
P̄Q

)
= τ(QM )− 170L `

(
P̄Q

)
,

so (1.47) is true. On the other hand, if τ(QM ) = τ̃(RK) − 170L `
(
Q̄R

)
for

some R ∈ ĀB with K = N(R), then
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τ(PN ) ≥ τ̃(RK)− 170L `
(
P̄R

)
≥ τ̃(RK)− 170L `

(
P̄Q

)
− 170L `

(
Q̄R

)
= τ(QM )− 170L `

(
P̄Q

)
,

hence (1.47) is again true.
Summarizing, to finish the proof we have to check the second half of (1.42),

namely, that τ ′ ≤ 1, or equivalently that τ(PN ) − τ(PN−1) ≤ `
(
PN−1PN

)
for every vertex P . This is the hardest part of the proof of this lemma, and we
skip it here; basically, assuming the existence of a vertex P such that τ(PN )−
τ(PN−1) > `

(
PN−1PN

)
, and using carefully (1.44), (1.45) and (1.46), we can

provide the required absurd. ut

1.3.7 Step VII: The extension v onto the primary sector S(AB)

In this Step we finally give the definition of the map v from a suitable sub-
set DAB of D onto the primary sector S(AB) (in fact, we will call such func-
tion uAB instead of directly v, the reason will appear clear in next Step VIII).
The idea is to use the good paths of Step IV and the speeds found in Step VI
to send a 1−skeleton Σ inside D onto the setΣ already used in Step VI, which
is simply the union of the good paths P̆PN ; then, we extend this preliminary
map to the whole DAB in the piecewise affine way. For a picture of the con-
struction, see Figure 1.12; some care is needed to do everything precisely, and
to check that everything works.

O

A

uAB
DAB

B B
S(AB)

A

Fig. 1.12. The function uAB : DAB → S(AB) .

We can directly start with the relevant definitions. First of all, taken any
vertex P ∈ ÃB, we want to define the points Pi in PO for every 1 ≤ i ≤
N(P ), in order to set uAB(Pi) = P i: to do so, we make use of the “possible
parametrization” τ constructed in Step VI, in the sense that we let

0 < tP,i :=
τ(P i)
10L

≤ 4
5
, Pi = tP,iO + (1− tP,i)P . (1.48)

The fact that tP,i ≤ 4/5 can be easily observed making use of (1.42) of
Lemma 1.36, (ii) of Lemma 1.33, and the Lipschitz property of u, since
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τ(P i) ≤ τ(PN ) ≤
N∑
j=1

`
(
P j−1P j

)
= `
(
P̆PN

)
≤ 4 `

(
ĀB

)
≤ 4L `

(
ÃB
)
≤ 8L .

We can then define the 1-skeleton Σ ⊆ D and the set DAB . Concerning Σ, it
is simply the union of the piecewise affine paths P̆PN . Moreover, enumerating
for a moment the vertices of ÃB as P 0 ≡ A, P 1 , . . . , PW−1, PW ≡ B, and
calling N(i) = N(P i), the set DAB is the polygon whose boundary is the
union of ÃB with the path AP 1

N(1)P
2
N(2) · · ·P

W−1
N(W−1)B, see again Figure 1.12.

We now define the map uAB from Σ to Σ by setting uAB(Pi) = P i

for every vertex P ∈ ĀB and every 1 ≤ i ≤ N(P ), and extending in the
piecewise affine way: this map is injective by (iv) of Lemma 1.33. Finally,
we want to extend uAB from the whole DAB to the whole S(AB); to do so,
it is convenient to consider two consecutive vertices P and Q on ĀB, and
restrict our attention on the quadrilateral PQQMPN and on the corresponding
polygon whose boundary is PQ∪Q̇QM ∪QMPN ∪P̆NP , where again we call
N = N(P ) and M = N(Q). Observe that DAB (resp., S(AB)) is the union of

P i

Qj
Qj+1

PN−M

O
Pi

P i+1PN
P

Q

Qj+1

QM

Qj

Pi+1

QP

A

PN

QM

B

PN

QM
O

A

B

P

Q

P i+1 PN

QM

PN−M

Q

P

Pi+1
PN−M

Pi

P i

uAB

uAB

Fig. 1.13. Passing from uAB : Σ → Σ to uAB : DAB → S(AB) .

these quadrilaterals (resp., polygons) over all the consecutive pairs of vertices.
To extend uAB to the whole DAB , let us assume by symmetry that N > M
(observe that N = M is impossible, since N > M is equivalent to say that
the triangle of the partition found in Step III which contains the side PQ has
Q in its exit side, and in turn this exit side must contain exactly one between
P and Q). The quadrilateral PQQMPN is then naturally subdivided into the
triangles PiPi+1Q for all 0 ≤ i < N−M , and the quadrilaterals PiPi+1Qj+1Qj
with j = i− (N −M) for N −M ≤ i < N . Looking at Figure 1.13, it is then
easy to imagine how we will extend the map uAB , already defined from Σ to
Σ, to be a map from DAB to S(AB). In fact, for every 0 ≤ i < N −M we
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let uAB to be the unique affine function sending the triangle PiPi+1Q onto
the triangle P iP i+1Q, while for every N −M ≤ i < N we let uAB to be
the unique affine function sending the triangle PiPi+1Qj+1 (resp. Qj+1QjPi)
onto the triangle P iP i+1Qj+1 (resp. Qj+1QjP i). It is immediate from the
construction that the map uAB : DAB → S(AB) is finitely piecewise affine
and bijective, as well as that uAB = u on ÃB = ∂D∩DAB . The main result of
this step is to give the following precise bound on the bi-Lipschitz constant of
uAB , which is boring to check but only needs elementary geometric estimates.

Lemma 1.37. The map uAB : DAB → S(AB) is CL4 bi-Lipschitz.

1.3.8 Step VIII: The extension v onto the whole D

In Step VII we have been finally able to define a bi-Lipschitz function
uAB from DAB to S(AB) for every primary sector S(AB). We have now to
put together all these different maps and to complete the definition; recall
from Step I (in particular, keep in mind Figure 1.7) that ∆ is the disjoint
union of the different primary sectors, plus an internal polygon. Similarly, by
the construction of Step VII (see Figure 1.12) it is immediate to realize that
D is the disjoint union of the different sets DAB , plus an internal polygon.
It is then easy to imagine a very simple way to define the whole extension
v, depicted in Figure 1.14: we set v = uAB in each set DAB , and then we
send the “internal polygon” in D onto the “internal polygon” in ∆ in the
clear piecewise affine way (more precisely, we send each triangle QjQj+1O ⊆
D onto the corresponding triangle QjQj+1O ⊆ ∆, being O the center of
the central ball B̂). Unfortunately, the situation is not always as one can
see in the figure: indeed, as we already pointed out, it may happen that
there are only two primary sectors, and then the “internal polygon” in ∆ in
fact degenerates to a segment; of course, this prevents our easy construction,
because the internal polygon in ∆ is never degenerate, containing by (1.48) at
least a region of width 1/5 around the center. And this is not the unique bad
possibility: another one is that there is indeed a non-empty internal polygon
in ∆, but it does not contain the center of the central ball B̂, and then the
definition given above makes no sense. Let us then quickly give the proof of
Theorem B for the finitely piecewise affine case.

Proof (of Theorem B, finitely piecewise affine case). Let us conclude our con-
struction for the case when u is finitely piecewise affine, that we have treated
since Step I on. We apply Lemma 1.24 to get the central ball B̂ and the N
points Ai, 1 ≤ i ≤ N in its boundary, so that also the N primary sectors
are defined; let us also call for brevity r the radius of the central ball. For
every 1 ≤ i ≤ N , let us call −r < di < r the signed distance between AiAi+1

and the center of B̂, with the convention that the sign is positive if the center
does not belong to S(AiAi+1), and negative otherwise: for instance, in the
situation of Figure 1.14 all the four distances di are positive. We can then
show our thesis considering three different possibilities.
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Fig. 1.14. The “easy case”.

Step A. The case when di ≥ r/4 for each 1 ≤ i ≤ N .
This is the “easy case”: enumerate as {Pj} all the vertices in ∂D, and

call P j the corresponding vertices in ∂∆. Moreover, as in Figure 1.14, for
every j call for brevity Qj = (Pj)M and Qj = (P j)M , being M = N(P ).
Finally, call O the center of B̂. Observe now that the “internal polygon” in
D (resp., in ∆) is the essentially disjoint union of all the triangles QjQj+1O
(resp., QjQj+1O). Let then v be the finitely piecewise affine function which
corresponds with uAiAi+1 on each DAiAi+1 , and which moves in the affine way
every triangle QjQj+1O on QjQj+1O. Thanks to the assumption di ≥ r/4,
recalling Lemma 1.37 and by simple geometric arguments, it is easy to show
that this map is CL4 bi-Lipschitz.

Step B. The case when −r/2 ≤ di < r/4 for some 1 ≤ i ≤ N .
Suppose now that there is some 1 ≤ i ≤ N for which −r/2 < di < r/4:

then, it is impossible that dj ≤ −r/2 for any other j. Also in this case we call
O the center of B̂, but we define v in a different way than in Step A above.
More precisely, take any 1 ≤ i ≤ N : if di ≥ r/4, then we define the map v
in the whole triangle AiAi+1O as before. Instead, if di < r/4, as for i = 1 in
Figure 1.15 (left), then we give the following definition: first of all we call, as
in the figure, C ∈ ∂B̂ the point in the axis of AiAi+1, M the middle point of
AiAi+1, and D ∈ OC the point having distance r/4 from O. Then, we call
Φ : S(AiAi+1) → S(AiAi+1) the bi-Lipschitz and piecewise affine function
which moves the triangle AiAi+1C onto the quadrilateral AiDAi+1C, and
leaves the rest of the sector fixed. Finally, we set v = Φ ◦ uAiAi+1 on DAiAi+1 ,
and for every vertex Qj ∈ ∂DAiAi+1 we define again v as the affine map
moving the triangle QjQj+1O onto the triangle QjQj+1O, being this time
Qj = Φ

(
uAiAi+1(Qj)

)
. It is again possible, by means of simple but boring

geometric arguments, to check that v is still CL4 bi-Lipschitz.

Step C. The case when di < −r/2 for some 1 ≤ i ≤ N .
The last possible case is when there exists some 1 ≤ ī ≤ N for which

rī < −r/2, as it happens for ī = 1 in Figure 1.15 (right): notice that in this
case such ī is unique, and ri ≥ r/2 for all i 6= ī. In this case, O will not be
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Fig. 1.15. The other two cases.

the center of B̂. More precisely, as in the figure, set the following definitions:
let M be the midpoint of AīAī+1, C ∈ B̂ be the point such that the triangle
AīAī+1C is equilateral, and D and O be the two points dividing CM in
three equal parts. Our map v will be such that v(O) = O as usual.

More precisely, as in Step B above we define Φ : S(AīAī+1)→ S(AīAī+1)
the piecewise affine bi-Lipschitz map which moves the triangle AīAī+1C onto
the quadrilateral AīDAī+1C, and which is the identity in the rest of the
sector. Then, for all i 6= ī, we define v on the triangle AiAi+1O as in Step A
(the only difference being that this time the point O has changed), while in
the triangle AīAī+1O we define v as in Step B. As before, checking that v is
CL4 bi-Lipschitz only requires elementary geometric calculations. ut

1.3.9 Step IX: The general case of a bi-Lipschitz map u

In this step we can very quickly give the proof of the general case of
Theorem B, when u is just a bi-Lipschitz map and one seeks for a CL4 bi-
Lipschitz extension.

Proof (of Theorem B, general case). Let u : ∂D → R2 be a L bi-Lipschitz map.
Then there exists a sequence {uj}j∈N of 4L bi-Lipschitz maps uj : ∂D → R2

which are finitely piecewise affine and uniformly converge to u for j →∞: this
is a very easy consequence of Lemma 1.50 below, which is a purely geometric
result (not using at all the results of the present chapter, of course). We can
then apply the result proved in Step VIII, finding for every j an extension
vj : D → R2 which is CL4 bi-Lipschitz and finitely piecewise affine, and
which coincides with uj on ∂D. By trivial compactness, and possibly up to
a subsequence, the functions vj uniformly converge to a CL4 bi-Lipschitz
function v : D → R2, and by construction v = u on ∂D. ut
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1.3.10 Step X: The smooth extension

We can now conclude with the last claim of Theorem B, which says that
it is also possible to find a smooth extension of u.

Proof (of Theorem B, smooth extension). We are only left to show that, if
u : ∂D → R2 is a L bi-Lipschitz map, then there exists a smooth extension,
bi-Lipschitz with constant CL28/3 if u is finitely piecewise affine, or with
constant CL112/3 in general. To prove this claim, we first take a CL4 bi-
Lipschitz extension v0 of u: this is possible for a generic u thanks to Step IX,
while if u is finitely piecewise affine this is given by Step VIII, and in this
case v0 is also finitely piecewise affine. We must then approximate v0 with a
smooth v.

If u is finitely piecewise affine, and then so is v0, then the existence of the
required smooth approximation v of v0 is ensured by Theorem A, and the
bi-Lipschitz constant of v is at most 100(CL4)7/3 = CL28/3.

On the other hand, if u is generic, then the existence of the smooth ap-
proximation v of v0 is given by Theorem C, and in this case its bi-Lipschitz
constant is C2(CL4)28/3 = CL112/3.

In both cases, v clearly fulfills all the requirement of the theorem, so the
proof is finally complete. ut
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1.4 Part III: Approximation Theorem

This last part of the notes is devoted to present our core result, namely,
the Approximation Theorem; the claim is the following.

Theorem C (Approximation for bi-Lipschitz homeomorphisms). Let Ω and
∆ be two planar bounded open sets, and let u : Ω → ∆ be a L bi-Lipschitz
homeomorphism; let also ε̄ > 0 and 1 ≤ p <∞. Then, there exists a piecewise
affine or smooth bi-Lipschitz homeomorphism v : Ω → ∆ such that u = v on
∂Ω and

‖u− v‖L∞ + ‖u−1 − v−1‖L∞ + ‖Du−Dv‖Lp + ‖Du−1 −Dv−1‖Lp ≤ ε̄ .
(1.49)

In particular, there exists such a map v which is C1L
4 bi-Lipschitz and (count-

ably) piecewise affine, and another such map v which is C2L
28/3 bi-Lipschitz

and smooth, being C1 and C2 geometric constants not depending on u, Ω, ∆.
Notice that in the above result, since v = u on ∂Ω, if u is orientation-

preserving then so is v. In particular, if Ω is simply connected then we already
pointed out that u (then, also v) must be either orientation-preserving or
orientation-reversing.

We also remark that in Theorem C we are speaking about a generic count-
ably piecewise affine approximation, not about a finitely piecewise affine one,
that is, associated to a finite triangulation. But in fact, it is clear that a finite
piecewise affine approximation v as in the Theorem is impossible unless Ω has
polygonal boundary, and u is already finitely piecewise affine on ∂Ω. However,
if this is the case, then there exists in fact a finitely piecewise affine approxima-
tion (thus, roughly speaking, the finitely piecewise affine interpolation exists
as soon as this existence is not clearly impossible).

Theorem D (Finitely piecewise affine approximation). Let Ω and ∆ be two
planar polygonal open sets, and let u : Ω → ∆ be a L bi-Lipschitz home-
omorphism which is finitely piecewise affine on ∂Ω. Then, there exists a
finitely piecewise affine approximation v : Ω → ∆ as in Theorem C which
is C1C

′(Ω)L4 bi-Lipschitz.
In these notes, we will present a complete proof of the above two theorems,

but we will not keep track of the geometric constants C1 and C2, since we
will directly call C any big geometrical constant, possibly changing from line
to line. A complete proof with also explicit estimates for C1 and C2 can be
found in [16]. Notice however that, while the constants C1 and C2 are purely
geometric, the constant C ′(Ω) of Theorem D depends on Ω. On the depen-
dence of C ′(Ω) on the domain, and on the unavoidability of this dependence,
see Remark 1.53.

The strategy of the proof

Let us give a description of how the proof of Theorem C works. First of
all, we observe that it is enough to find a piecewise affine approximation v of
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u, since then the existence of a smooth approximation will be simply given
by Theorem A. Then, let us keep in mind the following observation already
done at the beginning of the introduction: if we consider a triangulation of Ω,
there is an obvious way to define a piecewise affine function v similar to u,
namely, the affine interpolation of u in every triangle. It is obvious that v is
very close to u, together with its inverse, in L∞, and it is reasonable to hope
that the two functions are close also in W 1,p. But unfortunately, this idea can
not lead to a formal proof because there is no reason why v should be still a
homeomorphism –recall the situation given in Figure 1.1; and, as we said in
the introduction, even taking finer and finer triangulations will not give the
guarantee of the existence of some one-to-one interpolation v.

Nevertheless, the idea for proving the Theorem comes from considering a
bit more the above rough strategy. The first observation is the following: let
x be a “good point” in Ω, that is, a Lebesgue point for Du whose image is
a Lebesgue point for Du−1. The very definition of Lebesgue points suggests
that, around x, the map u must be very close to an affine function; and it
is easy to guess that, if an affine function is orientation preserving and not
“too flat”, then a map which is close enough to it will also be orientation
preserving: this fact will be formally proved thanks to the “L∞ Lemma” 1.44.
Therefore, for suitably small triangles taken around a “good point” x, there
is no danger of the bad behaviour described above.

The second observation is the following: taking many Lebesgue points and
building arbitrary triangles around each of them is quite complicate, because
the triangles would tend to overlap and/or to leave “holes” with a crazy
shape, and this would be hard to work with. Instead, a much better idea is to
do exactly the opposite: first, we select a nice and easy-to-deal triangulation
in Ω, and then, we just divide the triangles in two categories, those which
are “good triangles” (this will mean, roughly speaking, that the above bad
behaviour does not occur neither in the triangle nor in triangles around it),
and the other which are “bad ones”. We can then define v as the standard
interpolation in the union of the “good triangles”, and leave the definition to
be done later in the rest of Ω. In particular, the “nice triangulations” that
we will take are given as follows: we fill a big portion of Ω with a regular
tiling of squares all having the same side –and we imagine every square to
be divided in two triangles by a diagonal. The good news here is that, since
almost every point is a Lebesgue point, it can be proved that most of the
squares built above are in fact made by two good triangles, and we will call
them “Lebesgue squares”; more precisely, Proposition 1.43 will show that, if
the side of the squares of the tiling is small enough, then an arbitrarily large
portion of Ω will be filled by Lebesgue squares (see Figure 1.16, left), and
then the simple affine interpolation v introduced above works. The strategy
described up to now is the goal of the first part of the proof, Section 1.4.1.

Observe that then, with the first part of our construction, we have already
found a suitable definition of v in an arbitrarily large portion of Ω, say Ωε.
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The second part of the proof, contained in Section 1.4.2, will then deal with
the small portion Ω \Ωε left out from the first part. Unfortunately, as one can
easily guess, the situation in this remaining set will be quite more complicate.
A good news is that, since the set on which we have to work is very small,
and since u is a Lipschitz function, in extending the map v to the whole Ω
one does not have to worry about the validity of the estimate (1.49), since it
will automatically holds for any extension. Thus, we will be done if we can
just find any extension of v in Ω \Ωε.

Our idea now is to profit from Theorem B: more precisely, let us write the
set Ω \ Ωε as a countable union of squares, with sides becoming smaller and
smaller to approach ∂Ω (recall that, instead, the squares built in the first part
were all with the same sides): Figure 1.16, right, gives an idea of how this will
be done. The utility of Theorem B at this stage is clear: instead of defining v
on the whole Ω \Ωε, small but 2-dimensional, it is enough to define it on the
1-dimensional skeleton of the triangulation of Ω \Ωε, which is a locally finite
union of curves; of course, we have to make a definition which is piecewise
affine, and which matches with the function v already defined in ∂Ωε.

The correct definition of the map v on the above-mentioned 1-skeleton will
be the most complicate step for the second part of the proof, Section 1.4.2
(see in particular Proposition 1.46). In particular, we will let v be a suitable
interpolation of u on points of the skeleton (actually, each side of some square
will need to be subdivided in a possibly big number of segments). Our defini-
tion will be fairly easy to give while in the interior of the different sides of the
squares, while it will become extremely delicate around the “crosses” between
different sides; the reason of this difficulty is that the different sides joining
at a generic vertex will need to have disjoint images.

Once having completed all the steps described up to now, Theorem C will
easily follow in the piecewise affine case, and as we said above the smooth
case will then just follow applying Theorem A. Finally, the generalization
of the result to the finitely piecewise affine case, contained in Theorem D,
will basically only require us another little effort, and this will be done in
Section 1.4.3.

Notation and Definitions

Let us now list here some definitions which are needed only for the proof
of the approximation result, and thus which will only be used within this part.

Definition 1.38 (Right polygon and r-piecewise affine function). We
say that a bounded open set Ω′ ⊆ R2 is a right polygon of side-length 2r (or
simply an r-polygon) if ∂Ω′ is the essentially disjoint union of finitely many
segments Γi, each of which having length 2r and being parallel to one of the
coordinate directions e1, e2. Moreover, a bi-Lipschitz function u : Ω′ → R2 is
said r-piecewise affine on ∂Ω′ if u is affine on every segment Γi.
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For reasons that will be clear during the construction, it will be useful
to work not directly with triangles of some triangulation, but instead with
squares. Recall that we denote by D(z, r) the square centered at z ∈ R2, half-
side r and sides parallel to e1 and e2; for the sake of brevity, through this part,
once we will have a collection of squares {D(zα, rα)}α∈N, we will sometimes
denote the generic element simply by Dα. Instead of generic triangulations,
then, we will deal with “tilings”, according to the next definition.

Definition 1.39 (Tiling). If Ω ⊆ R2 is a bounded open set, a tiling of Ω
is any locally finite collection of closed squares {D(zα, rα)}α∈N whose union
is comprised between Ω and closΩ and such that, ∀α 6= β ∈ N, Dα ∩ Dβ is
either empty, or a common vertex of Dα and Dβ, or a side of one of them.
We call adjacent two squares of the tiling if their intersection is nonempty.

Observe that some sets may admit a finite tiling (for instance, all the right
polygons), but usually a set Ω admits only countable tilings.

In our construction, we will subdivide Ω in a right polygon Ω′ ⊂⊂ Ω and
a countable tiling of Ω \ Ω′, locally finite in Ω. Let us give the appropriate
definition.

Definition 1.40 (r-Tiling of a right polygon and tiling of (Ω,Ω′)). For
any r-polygon Ω′, we call r-tiling of Ω′ the (unique) tiling {D(zα, r)}α∈I (r)

made by squares having all half-side r. If Ω is a bounded open set and Ω′ ⊂⊂ Ω
is a r-polygon, any tiling {D(zj , rj)}j∈N of Ω such that r ∈ rjN for every j ∈ N
and whose restriction to Ω′ is the r-tiling of Ω′ is called a tiling of (Ω,Ω′).

Figure 1.16 shows a set Ω, a r-polygon Ω′ ⊂⊂ Ω, the r-tiling of Ω′ and a
(finite subset of a) tiling of (Ω,Ω′). We give now the last two definitions: we

Ω′

Ω Ω

Fig. 1.16. Left: the r-tiling of an r-polygon Ω′ ⊂⊂ Ω. Right: a tiling of (Ω,Ω′):
the r-tiling of Ω′ is dark.

call “grid” the skeleton of a tiling, and we call “interpolation” of a function
with respect to a tiling the piecewise affine function which is affine on the
grid.
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Definition 1.41 (Grid). The grid of the tiling {Dα}α∈N of some set Ω is
the union of all the sides of the squares. We call side and vertex of the grid
any side or vertex of any of the squares of the tiling.

Definition 1.42 ((Ω′, r)-interpolation of u). Given an r-right polygon Ω′

and its r-tiling {Dα}α∈I (r)
, we call (Ω′, r)-interpolation of u the finitely

piecewise affine function v : Ω′ → v(Ω′) ⊆ R2 which equals u on the vertices
of the tiling and which, for every square Dα of the tiling, is affine on the
two right triangles forming Dα and having both as hypothenuse the north-
west/south-east diagonal of Dα.

1.4.1 Approximation on the “Lebesgue squares”

In this section we will determine an r-tiling made be some “good” squares,
and we will define the approximation there. Our goal is to prove the following
result. Through the section, Ω and u will always be a set and a function as
in the assumptions of Theorem C.

Proposition 1.43. For every ε > 0 there is a right polygon Ωε ⊂⊂ Ω of side-
length 2r such that the (Ωε, r)-interpolation v : Ωε → v(Ωε) ⊆ R2 is L + ε
bi-Lipschitz and satisfies

∆ε := v(Ωε) ⊂⊂ ∆ , (1.50)

‖v − u‖L∞(Ωε) + ‖v−1 − u−1‖L∞(∆ε) + ‖Du−Dv‖Lp(Ωε)

+ ‖Du−1 −Dv−1‖Lp(∆ε) ≤ ε ,
(1.51)

L (Ω \Ωε) ≤ ε , L (∆ \∆ε) ≤ ε , d(Ωε,R2 \Ω) ≥ 4r , (1.52)

‖v − u‖L∞(Ωε) ≤
√

2r
3L3

. (1.53)

To show this proposition, and in particular to ensure the injectivity of
v, we will select only squares Dα such that u is uniformly close to an affine
function on the nine squares around Dα. More precisely, each of these affine
functions will correspond to the differential of u at some Lebesgue points for
Du in Dα. This is why we will denote these squares as “Lebesgue squares”.

The plan of this section is the following: first we will show Lemma 1.44,
which says that, if on some square Du is close in average to some bi-
Lipschitz matrix M , then u is uniformly close to some affine function uM
with DuM = M . Then, in Lemma 1.45 we will find the set Ωε, which will
be obtained as union of “Lebesgue squares” of side r on which we can apply
Lemma 1.44. Finally, we will prove that the (Ωε, r)-interpolation of u satisfies
the requirements of Proposition 1.43.
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The L∞ Lemma

Here we present a fundamental L∞ result that we will need to show Propo-
sition 1.43. In the following, we will call for brevity R2×2

L the set of those 2×2
matrices which are “L bi-Lipschitz”; more precisely, M ∈ R2×2

L if for every
vector v ∈ R2 one has

|v|
L
≤M(v) ≤ L|v| .

Lemma 1.44. For every η > 0 there exists δ = δ(η) > 0 with the following
property: given any z̄ ∈ Ω, M ∈ R2×2

L and ρ > 0 such that D(z̄, ρ) ⊂⊂ Ω and

−
∫
D(z̄,ρ)

|Du(z)−M | dz ≤ δ, (1.54)

there exists an affine function uM : R2 → R2 with DuM = M and such that

|u(z)− uM (z)| ≤ η ρ
3

∀ z ∈ D(z̄, ρ) . (1.55)

Proof. We assume for simplicity z̄ = u(z̄) = (0, 0) ∈ R2 and, fixed a constat
R� 1 to be specified later, we set

B1 :=
ß
x ∈

[
− ρ, ρ

]
:
∫ ρ

−ρ
|Du(x, t)−M | dt ≤ ρRδ

™
,

B2 :=
ß
y ∈

[
− ρ, ρ

]
:
∫ ρ

−ρ
|Du(t, y)−M | dt ≤ ρRδ

™
.

Observe that the above integrals make sense because all the horizontal and
vertical sections of u are bi-Lipschitz, since so is u. Property (1.54) and Fubini–
Tonelli Theorem give∣∣[−ρ, ρ] \B1

∣∣ ≤ 4ρ
R
,

∣∣[−ρ, ρ] \B2
∣∣ ≤ 4ρ

R
. (1.56)

Calling then uM (z) = Mz and writing for simplicity ϕ(z) = u(z)−uM (z), we
can evaluate, for every x1, x2 ∈ B1 and y1, y2 ∈ B2,∣∣ϕ(x1, y1)− ϕ(x2, y2)

∣∣
≤
∣∣ϕ(x1, y1)− ϕ(x2, y1)

∣∣+
∣∣ϕ(x2, y1)− ϕ(x2, y2)

∣∣
≤
∫ x2

x1

∣∣Du(t, y1)−M
∣∣ dt+

∫ y2

y1

∣∣Du(x2, t)−M
∣∣ dt ≤ 2ρRδ .

(1.57)

Take now any point z ≡ (x, y) ∈ D(z̄, ρ): thanks to (1.56), we can take x1 ∈ B1

and y1 ∈ B2 so that∣∣x− x1

∣∣ ≤ 4ρ
R
,

∣∣y − y1

∣∣ ≤ 4ρ
R

;
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recalling that u and uM are L bi-Lipschitz, and thus ϕ is 2L-Lipschitz, we
deduce ∣∣ϕ(x, y)− ϕ(x1, y1)

∣∣ ≤ 8
√

2ρL
R

. (1.58)

Applying the same argument to (0, 0), we find x2 ∈ B1 and y2 ∈ B2 so that

∣∣ϕ(x2, y2)
∣∣ =

∣∣ϕ(0, 0)− ϕ(x2, y2)
∣∣ ≤ 8

√
2ρL
R

. (1.59)

Putting together (1.57), (1.58) and (1.59), we immediately get

∣∣ϕ(x, y)
∣∣ ≤ 16

√
2ρL
R

+ 2ρRδ ≤ η ρ
3
,

where the last inequality is true as soon as we choose first R big enough and
then δ small enough. This gives us (1.55), thus concluding the proof. ut

A large right polygon made of Lebesgue squares

Our next objective is to find a r-right polygon Ω′ ⊂⊂ Ω almost filling
the whole Ω and done by squares D(zα, r) such that assumption (1.54) of
Lemma 1.44 is true in the bigger squares D(zα, 3r). Later on, Proposition 1.43
will be shown with such a right polygon.

Lemma 1.45. For any η > 0 there exist r = r(η) > 0 and a r-polygon
Ω(η) ⊂⊂ Ω such that L

(
Ω \ Ω(η)

)
≤ η, and each square D(zα, r) of the

r-tiling satisfies

D(zα, 5r) ⊂⊂ Ω , −
∫
D(zα,3r)

|Du(z)−M | dz ≤ δ , (1.60)

for a suitable M = M(α) ∈ R2×2
L , being δ = δ(η) given by Lemma 1.44.

Proof. First of all, pick some r0 > 0 and some r0-polygon Ω0 ⊂⊂ Ω such that
L
(
Ω \ Ω0

)
≤ η/2 and that every square of the r0-tiling of Ω0 satisfies the

inclusion in (1.60). For any r satisfying r0 ∈ rN, the set Ω0 is also a r-polygon,
and we can all {D(zα, r)}α∈I 0(r)

the corresponding r-tiling. Let then

I (r) :=
{
α ∈ I 0(r) : −

∫
D(zα,3r)

|Du−M | ≤ δ for some M = M(α) ∈ R2×2
L

}
,

Ω(η) :=
⋃

α∈I (r)
D(zα, r) .

Since by construction
{
D(zα, r)

}
r∈I (r)

is the r-tiling of the r-right polygon
Ω(η) and the upper bound of (1.60) holds true, we are only left to find a
suitable r = r(η) so that L

(
Ω0 \Ω(η)

)
≤ η/2.
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To this aim, apply the Lebesgue Differentiation Theorem to Du to find
that, for L -a.e. z ∈ Ω0, there exists r(z) > 0 such that D(z, 4r(z)) ⊆ Ω0 and

−
∫
D(z,ρ)

∣∣Du(w)−Du(z)
∣∣ dw ≤ δ

2
∀ 0 < ρ ≤ 4r(z) ;

select than r = r(η) so small that, calling

A(r) :=
{
z ∈ Ω0 : r(z) ≤ r

}
,

one has L
(
A(r)

)
≤ η/2. We claim that, for each α ∈ I 0(r),

L
(
D(zα, r) \A(r)

)
> 0 =⇒ α ∈ I (r) : (1.61)

this will immediately yield the thesis, since then

L
(
Ω0 \Ω(η)

)
= L

Å⋃
α∈I 0(r)\I (r)

D(zα, r)
ã
≤L

(
A(r)

)
≤ η

2
.

Therefore, we need to show (1.61). To do so, take α ∈ I 0(r) and assume that
L
(
D(zα, r) \ A(r)

)
> 0: then, let M = Du(z) for some z ∈ D(zα, r) \ A(r).

By definition of A(r) and r(z) we get

−
∫
D(zα,3r)

|Du−M | = 1
36r2

∫
D(zα,3r)

|Du−M | ≤ 1
36r2

∫
D(z,4r)

|Du−M |

=
64
36
−
∫
D(z,4r)

|Du−M | ≤ 8
9
δ ,

thus (1.61) is obtained recalling the definition of I (r), and then the proof is
concluded. ut

Proof of Proposition 1.43

We are now ready to present the proof of Proposition 1.43, which basically
consists in showing that, if η = η(ε) is small enough, then the set Ωε = Ω(η)
given by Lemma 1.45 satisfies the required properties.

Proof (of Proposition 1.43). Let ε > 0 be a given constant, and let η = η(ε)
be a sufficiently small constant, whose value will be precised later. Define now
δ := δ

(
η(ε)

)
as in Lemma 1.44, as well as r := r

(
η(ε)

)
and Ωε := Ω(η(ε)) as

in Lemma 1.45. We will prove the proposition with this choice of Ωε.
Let us then briefly fix some notation to be used only within this proof.

First of all we call, as in the statement, v : Ωε → ∆ε the (Ωε, r)-interpolation
of u (see Definition 1.42) on the right polygon Ωε. Then, for any α ∈ I (r), we
pick Mα ∈ R2×2

L for which the upper bound of (1.60) holds true. Lemma 1.44,
applied with ρ = 3r, provides then us with an affine function uα : R2 → R2

such that Duα = Mα and
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uα(C)u(D)

uα(D)

u(A)

Fig. 1.17. The functions u, v and uα on a square.

∣∣u− uα∣∣ ≤ ηr on D(zα, 3r) (1.62)

(Figure 1.17 depicts the functions u, v and uα). We can then start the proof,
which will be divided in some steps for clarity.

Step I. For any α ∈ I (r), v
(
D(zα, r)

)
⊆ u

(
D(zα, 3r)

)
.

Let α ∈ I (r); keeping in mind (1.62) and recalling the definition of v, we
get that

v
(
D(zα, r)

)
⊆ B

(
uα
(
D(zα, r)

)
, ηr
)
, (1.63)

where, for any set X ⊆ R2, B(X, r) is the r-neighborhood of X. Similarly, we
get that

u
(
D(zα, 3r)

)
⊇
{
x : B(x, ηr) ⊆ uα

(
D(zα, 3r)

)}
.

Hence, the step is concluded if

B
(
uα
(
D(zα, r)

)
, ηr
)
⊆
{
x : B(x, ηr) ⊆ uα

(
D(zα, 3r)

)}
,

which can be rephrased as

B
(
uα
(
D(zα, r)

)
, 2ηr

)
⊆ uα

(
D(zα, 3r)

)
.

And in turn, recalling that Duα ≡Mα ∈ R2×2
L , the latter inclusion is true as

soon as η < 1/L.
We underline that, by this step and (1.60), we also have ∆ε ⊂⊂ ∆, that

is, (1.50) holds.

Step II. Injectivity of v.
For any α ∈ I (r), applying (1.62) as in Step I we deduce that v is injective

on D(zα, 3r) ∩ Ωε as soon as η < 1/L. In particular, it is impossible that
v(z1) = v(z2) if z1 6= z2 belong to two adjacent squares of the r-tiling of
Ωε. To prove the injectivity of v, then, we have to consider two non-adjacent
squares D(zα, r) and D(zβ , r) and to show that v

(
D(zα, r)

)
∩v
(
D(zβ , r)

)
= ∅.
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And in turn, this is immediate to observe, arguing as in Step I and using (1.62)
and (1.63).

Step III. Estimate for ‖v − u‖L∞(Ωε) and for ‖v−1 − u−1‖L∞(∆ε).
Let us take a generic square Dα of the r-tiling of Ωε. Thanks to (1.62),

we know that ‖u − uα‖L∞(Dα) ≤ ηr. On the other hand, since v and uα are
both affine on the two right triangles forming Dα, and since v = u on the
vertices of those triangles, again (1.62) tells us that ‖v − uα‖L∞(Dα) ≤ ηr;
hence ‖v − u‖L∞(Dα) ≤ 2ηr. Since this is true for every α, we get

‖v − u‖L∞(Ωε) ≤ 2ηr ≤ ε

4L
(1.64)

provided that η (and hence also r) is small enough.
Since v is injective by Step II, the uniform estimate for v−1 − u−1 is now

easy: taken a generic point w = v(z) ∈ ∆ε, with z ∈ Ωε, the L bi-Lipschitz
property of u and (1.64) yield∣∣u−1(w)− v−1(w)

∣∣ =
∣∣u−1(v(z))− u−1(u(z))

∣∣ ≤ L∣∣v(z)− u(z)
∣∣ ≤ ε

4
,

so that
‖u−1 − v−1‖L∞(∆ε) ≤

ε

4
. (1.65)

Step IV. Estimate for ‖Dv −Du‖Lp(Ωε).
Since by construction |Du| ≤ L and |Dv| ≤

√
2L, we start observing that

‖Dv −Du‖pLp(Ωε)
=

∑
α∈I (r)

‖Dv −Du‖pLp(Dα)

≤
(
3L
)p−1 ∑

α∈I (r)

‖Dv −Du‖L1(Dα)

≤
(
3L
)p−1 ∑

α∈I (r)

(
‖Dv −Duα‖L1(Dα) + ‖Duα −Du‖L1(Dα)

)
.

(1.66)

By (1.60) we know that, for each α ∈ I (r),

‖Du−Duα‖L1(Dα) =
∫
D(zα,r)

∣∣Du−Mα

∣∣
≤ 36r2−

∫
D(zα,3r)

∣∣Du−Mα

∣∣ ≤ 36δr2 = 9δ
∣∣Dα∣∣ . (1.67)

Let us now study ‖Dv−Duα‖L1(Dα): consider the triangle T = z1z2z3, where

z1 ≡ zα +
(
− r,−r

)
, z2 ≡ zα +

(
r,−r

)
, z3 ≡ zα +

(
r, r
)
.

Since both v and uα are affine on T , then Dv − Duα is a constant linear
function on T . Recalling again (1.62), let us then calculate
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∣∣∣ =

∣∣∣(v(z2)− v(z1)
)
−
(
uα(z2)− uα(z1)

)∣∣∣
=
∣∣∣(u(z2)− u(z1)

)
−
(
uα(z2)− uα(z1)

)∣∣∣ ≤ 2ηr ,

and similarly∣∣∣(Dv|T −Duα)(2re2)
∣∣∣ =

∣∣∣(v(z3)− v(z2)
)
−
(
uα(z3)− uα(z2)

∣∣∣ ≤ 2ηr .

We deduce that ‖Dv−Duα‖L∞(T ) ≤
√

2η, and repeating the same argument
for all the triangles in which D(zα, 3r) ∩Ωε is divided we get∥∥Dv −Duα∥∥L∞(D(zα,3r)∩Ωε)

≤
√

2η . (1.68)

Inserting this estimate and (1.67) into (1.66), we get

‖Dv −Du‖pLp(Ωε)
≤
(
3L
)p−1(9δ +

√
2η
) ∑
α∈I (r)

∣∣Dα∣∣
=
(
3L
)p−1(9δ +

√
2η
)∣∣Ωε∣∣ ≤ Åε4ãp , (1.69)

where as usual the last inequality holds true as soon as η, hence also δ, is
small enough.

Step V. Bi-Lipschitz estimate for v.
Let z, z′ ∈ Ωε, and let α be such that z ∈ D(zα, r). Suppose first that

z′ ∈ D(zα, 3r): in this case, by the definition of v, by (1.68) and by the fact
that uα is L bi-Lipschitz, we directly obtainÅ

1
L
−
√

2η
ã∣∣z − z′∣∣ ≤ ∣∣v(z)− v(z′)

∣∣ ≤ (L+
√

2η
)∣∣z − z′∣∣ . (1.70)

If, instead, z′ /∈ D(zα, 3r), and then |z−z′| ≥ 2r, then the L∞ estimate (1.64)
gives on one hand∣∣v(z)− v(z′)

∣∣ ≤ ∣∣u(z)− u(z′)
∣∣+
∣∣v(z)− u(z)

∣∣+
∣∣v(z′)− u(z′)

∣∣
≤ L

∣∣z − z′∣∣+ 4ηr ≤
(
L+ 2η

)∣∣z − z′∣∣ , (1.71)

and on the other hand∣∣v(z)− v(z′)
∣∣ ≥ ∣∣u(z)− u(z′)

∣∣− ∣∣v(z)− u(z)
∣∣− ∣∣v(z′)− u(z′)

∣∣
≥
Å

1
L
− 2η

ã∣∣z − z′∣∣ . (1.72)

Putting together (1.70), (1.71) and (1.72), we obtain that v is L+ε bi-Lipschitz
if η is small enough.

Step VI. Estimate for ‖Dv−1 −Du−1‖Lp(∆ε).
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Keep in mind the elementary fact that, for any two invertible matrices A
and B, one has

∣∣B−1 − A−1
∣∣ ≤ ∣∣A−1

∣∣∣∣B−1
∣∣∣∣B − A∣∣. Fix then any α ∈ I (r);

recalling that u and uα are L bi-Lipschitz, the result of Step I, Duα ≡Mα on
Dα and (1.60), we get

‖Du−1 −Du−1
α ‖L1(v(Dα)) =

∫
v(D(zα,r))

∣∣Du−1(z)−Du−1
α (z)

∣∣ dz
≤ L2

∫
u(D(zα,3r))

∣∣Du(u−1(z)
)
−Mα

∣∣ dz ≤ L4

∫
D(zα,3r)

∣∣Du(w)−Mα

∣∣ dw
= 36r2L4−

∫
D(zα,3r)

∣∣Du−Mα

∣∣ ≤ 36r2L4δ = 9L4δ
∣∣Dα∣∣ .

On the other hand, since uα is L bi-Lipschitz by definition while v is (L+ ε)
bi-Lipschitz by Step V, and by (1.68), for any z ∈ Dα we obtain∣∣∣Dv−1

(
v(z)

)
−Du−1

α

(
v(z)

)∣∣∣ ≤ L(L+ ε
)√

2 η ≤ 2L2η ,

which since z is generic gives∥∥Dv−1 −Du−1
α

∥∥
L∞(v(Dα))

≤ 2L2η .

Arguing as in (1.66) we get then

‖Dv−1 −Du−1‖pLp(∆ε)
≤
(
3L
)p−1 ∑

α∈I (r)

‖Dv−1 −Du−1‖L1(v(Dα))

≤
(
3L
)p−1 ∑

α∈I (r)

2L2η
∣∣v(Dα)

∣∣+ 9L4δ
∣∣Dα∣∣

=
(
3L
)p−1

(
2L2η

∣∣∆ε

∣∣+ 9L4δ
∣∣Ωε∣∣) ≤ Åε4ãp ,

(1.73)

where as usual the last estimate holds possibly decreasing η and then also δ.

Step VII. Conclusion.
We are finally ready to conclude the proof of Proposition 1.43. The fact

that v is L+ ε bi-Lipschitz is given by Step V; the validity of (1.50) has been
observed in Step I; the estimate (1.51) follows adding (1.64), (1.65), (1.69)
and (1.73); the first and the third inequality in (1.52) follow by Lemma 1.45,
while the second one follows by the first, by the bi-Lipschitz property of u,
and by the L∞ estimate (1.64); finally, concerning (1.53), it suffices to recall
that ‖v − u‖L∞(Ωε) ≤ 2ηr by (1.64) and then choose η ≤

√
2/(6L3). ut

1.4.2 Approximation out of “Lebesgue squares”

This section is devoted to the proof of Theorem C; thanks to Proposi-
tion 1.43, we are left to define a suitable countably piecewise affine approx-
imation of u out of the r-polygon Ωε. Even though the construction will
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be quite involved, the scheme is extremely simple: first of all, we will cover
Ω \Ωε with a suitable (locally finite) tiling; then, we will define a bi-Lipschitz
piecewise affine approximation of u on the grid of this tiling; finally, we will
extend the approximation to the interior of the squares of the grid by means
of Theorem B. The main result of this section is the following.

Proposition 1.46. Let vε : Ωε → ∆ε be a piecewise affine bi-Lipschitz func-
tion as in Proposition 1.43. Then there exists a C1L

4 bi-Lipschitz countably
piecewise affine function ṽε : Ω \Ωε → ∆ \∆ε, satisfying ṽε ≡ u on ∂Ω, and
ṽε ≡ vε on ∂Ωε.

Let us directly see how Theorem C easily follows as a consequence of
Propositions 1.43 and 1.46.

Proof (of Theorem C). Take ε̄ > 0, let ε = ε(ε̄) to be specified later, and
apply Proposition 1.43 to get an r-polygon Ωε ⊂⊂ Ω and a piecewise affine
bi-Lipschitz function vε : Ωε → ∆ε; apply then Proposition 1.46 to find a
C1L

4 bi-Lipschitz function ṽε : Ω \ Ωε → ∆ \ ∆ε. We define v : Ω → ∆ as
v ≡ vε on Ωε and v ≡ ṽε on Ω \ Ωε: since vε and ṽε are bi-Lipschitz with
constant L+ ε and C1L

4 respectively, and since ṽε ≡ vε on ∂Ωε, we have that
v is a bi-Lipschitz homeomorphism with constant C1L

4. It remains to show
that v satisfies (1.49), and by (1.51) we only have to consider what happens
in Ω \Ωε. Since ṽε is bi-Lipschitz with constant C1L

4, (1.52) implies

‖Dv −Du‖Lp(Ω\Ωε) ≤ ‖Dv −Du‖L∞(Ω\Ωε)
∣∣Ω \Ωε∣∣1/p

≤
(
L+ C1L

4
)
ε1/p ,

(1.74)

and similarly

‖Dv−1 −Du−1‖Lp(∆\∆ε) ≤
(
L+ C1L

4
)
ε1/p . (1.75)

Concerning the L∞ estimates, since
∣∣Ω \ Ωε∣∣ ≤ ε then for every z ∈ Ω \ Ωε

there exists z′ ∈ Ωε such that |z − z′| ≤
√
ε/π, hence (1.51) gives

|v(z)− u(z)| ≤ |v(z)− v(z′)|+ |v(z′)− u(z′)|+ |u(z′)− u(z)|

≤
(
L+ C1L

4
)… ε

π
+ ‖vε − u‖L∞(Ωε) ≤

(
L+ C1L

4
)… ε

π
+ ε .

Arguing in the same way to bound
∣∣v−1(w)−u−1(w)

∣∣ for a generic w ∈ ∆\∆ε

yields

max
{
‖v−u‖L∞(Ω\Ωε), ‖v

−1−u−1‖L∞(∆\∆ε)

}
≤
(
L+C1L

4
)… ε

π
+ε . (1.76)

Putting together (1.74), (1.75) and (1.76), we obtain the validity of (1.49)
provided that ε = ε(ε̄) is sufficiently small. The required countably piecewise
affine approximation has then been found. Concerning the smooth one, it can
be obtained simply applying Theorem A to v. ut
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Let us now work on the proof of Proposition 1.46, for which we will need
some more notation. Recalling that Ωε is a r-polygon for some r = r(ε),
we select a suitable tiling

{
Dj = D(zj , rj)

}
j∈N of (Ω,Ωε), in the sense of

Definition 1.40 (hence, {Dj} is a tiling of Ω whose restriction to Ωε coincides
with the r-tiling of Ωε). We only want that the tiling {Dj} verifies

rj = r ∀ j : closDj ∩ ∂Ωε 6= ∅ , (1.77)
Dj ⊂⊂ Ω ∀ j ∈ N , (1.78)

which is clearly possible thanks to (1.52). Notice that (1.78) forces the tiling
to be countable and not finite, and the squares to become smaller and smaller
when approaching ∂Ω. Of course, if Ω were a r-right polygon, instead of (1.78)
one could have asked the tiling to be finite, and (1.77) could have been im-
proved asking rj = r for every j: we will discuss this possibility more in detail
in Remark 1.52, since this will be the basis to show Theorem D.

From now on, then, we fix a tiling of (Ω,Ωε) satisfying (1.77) and (1.78),
and we denote by Q its associated 1-dimensional grid in the sense of Defini-
tion 1.41. We also set Q′ = Q∩ (Ω \ closΩε), which is the part of the grid on
which we really need to work. In words, Q′ is the 1-dimensional set made by
all the sides of the grid Q which lie in Ω \ closΩε.

Let now wα be the generic vertex of Q′, thus the generic vertex of the
grid Q which does not belong to Ωε (but it may belong to ∂Ωε!). The point
wα is of the form wα = zj + (±rj ,±rj) for some j, and it is an extreme of
either three or four sides of Q. To shorten the notation, we will denote the
other extremes of these sides by wiα with 1 ≤ i ≤ ī(α), and then ī(α) ∈ {3, 4}.
Finally, we will denote by `α the minimum of the lengths of the sides wαwiα.
In particular, if wα /∈ ∂Ωε then wα is one extreme of either three or four sides
of Q′ ⊆ Q. On the other hand, if wα ∈ ∂Ωε then by (1.77) it is extreme of
four sides of Q, either one or two of these four sides lie in Q′, and `α = r.

Theorem B tells us that, to obtain the piecewise affine function ṽε of
Proposition 1.46, we can limit ourselves to define it, in a suitable way, on the 1-
dimensional grid Q′. This is exactly what we will do, and our main ingredients
will be the following two lemmas. The first one (Lemma 1.50) states that, on
any given segment inside Ω, u can be uniformly approximated as well as
desired with suitable piecewise affine 4L bi-Lipschitz functions. While this is
clearly of primary importance to define the piecewise affine approximation ṽε
of u on the sides of Q′, it is still not enough. In fact, some additional care is
needed to treat the “crosses” of Q′ (that is, the regions around the vertices),
in order to ensure that ṽε is injective on the whole Q′. This will be obtained
thanks to the second result (Lemma 1.51).

Before stating the two lemmas, a couple of pieces of notation more are
needed.

Definition 1.47 (Interpolation of u). Let pq ⊂⊂ Ω be a segment, and
let {zizi+1}0≤i<N be N essentially disjoint segments whose union is pq, with
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z0 = p and zN = q. We call interpolation of u (related to the segments
{zizi+1}0≤i<N ) the finitely piecewise affine function upq : pq → R2 defined by

upq

(
zi + t

(
zi+1 − zi

))
= u(zi) + t

(
u(zi+1)− u(zi)

)
for every 0 ≤ i < N and every 0 ≤ t ≤ 1.

Definition 1.48 (Adjusted function and crosses). Let {ξα}α∈N be a se-
quence such that for any α one has 3Lξα ≤ `α. For any α ∈ N and any
1 ≤ i ≤ ī(α), we define ξiα as the biggest number such that

∣∣∣u(wα)− u
(
wα + ξiα(wiα − wα)

)∣∣∣ ≤ ξα if wαwiα ⊆ Q′ ,∣∣∣u(wα)− vε
(
wα + ξiα(wiα − wα)

)∣∣∣ ≤ ξα if wαwiα ⊆ Q \ Q′ .

We call then adjusted function the map uadj : Q → R2 defined as follows.
First, we set uadj = vε on Q \Q′. Then, let wαwβ be a side of Q′, thus being
wβ = wiα and wα = wjβ for two suitable 1 ≤ i ≤ ī(α) and 1 ≤ j ≤ ī(β). We
define

uadj

(
wα + t(wβ − wα)

)
:=

u(wα) + t
ξiα

(
u
(
wα + ξiα(wβ − wα)

)
− u(wα)

)
in (0, ξiα) ,

u
(
wα + t(wβ − wα)

)
in (ξiα, 1− ξ

j
β) ,

u(wβ) + (1−t)
ξj
β

(
u
(
wβ + ξjβ(wα − wβ)

)
− u(wβ)

)
in (1− ξjβ , 1).

In words, for any side in Q′, uadj coincides with u in the internal part of the
side, while the two parts closest to the vertices wα and wβ are replaced with
segments. Moreover, for any vertex wα of Q′ we will define its associated cross
as

Zα =
ī(α)⋃
i=1

{
wα + t(wiα − wα) : 0 ≤ t ≤ ξiα

}
.

Remark 1.49. Some remarks are in order at this moment. First of all, since u
is L bi-Lipschitz on the whole Ω, and vε is L bi-Lipschitz on every segment
wαw

i
α ⊆ Q \ Q′, the choice 3Lξα ≤ `α directly implies 0 < ξiα ≤ 1/3 for

any α and any 1 ≤ i ≤ ī(α). As a consequence, two different crosses have
always empty intersection. For the same reason, each of the ī(α) extremes of
the cross Zα has a distance at least ξα/L from wα. Finally, we claim that
B(u(wα), ξα) ∩ B(u(wβ), ξβ) = ∅ for all different α and β. Indeed, assuming
without loss of generality that `α ≥ `β , we have

∣∣u(wβ)−u(wα)
∣∣ ≥ `α/L, and

then
ξα + ξβ ≤

`α
3L

+ `β
3L
≤ 2`α

3L
<
∣∣u(wβ)− u(wα)

∣∣ .
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Lemma 1.50. Let pq ⊂⊂ Ω be a segment; then for every δ > 0 there exists
a map uδpq : pq → ∆ which is a 4L bi-Lipschitz interpolation of u with the
property that ‖uδpq − u‖L∞(pq) ≤ δ.

Lemma 1.51. There exists a sequence {ξα}α∈N such that the associated ad-
justed function uadj : Q → R2 is 18L bi-Lipschitz and uadj(Q) ⊆ ∆.

Let us immediately see how Proposition 1.46 follows from Lemmas 1.50
and 1.51; later, we will show the two lemmas.

Proof (of Proposition 1.46). The scheme of the proof is the following: first of
all, we take an adjusted function uadj : Q → R2 as in Definition 1.48, where
the sequence {ξα}α∈N is chosen as in Lemma 1.51. Since this function uadj is
piecewise affine around the crosses but not in the interior of the sides, we pass
to a new function u′adj : Q → ∆, coinciding with u′adj near the crosses but
injective and piecewise affine, by the aid of Lemma 1.50. Finally, the function
ṽε : Ω \ Ωε → ∆ \∆ε is obtained by extending u′adj in the interior of all the
squares forming Ω \Ωε thanks to Theorem B. The proof is divided in several
steps for clarity.

Step I. Definition of u′adj : Q → ∆.
Let {ξα}α∈N be a sequence as in Lemma 1.51, and let uadj : Q → R2

be the corresponding adjusted function according to Definition 1.48, which is
18L bi-Lipschitz and whose image is contained in ∆. We want to introduce
the function u′adj : Q → ∆. We start setting u′adj ≡ uadj ≡ vε on Q\Q′; then,
let wαwβ be a generic side in Q′, and call pq the internal segment of wαwβ ,
that is, p and q are the extremes of the segment wαwβ \

(
Zα ∪ Zβ

)
. Let now

δ = δ(α, β) be a small constant, to be precised later; we set then u′adj = uadj

on the external part of the segment, i.e., wαwβ \ pq, and u′adj = uδpq on pq,
where uδpq is the interpolation given by Lemma 1.50.

Let us study the map u′adj: by construction, it is clearly a continuos and
countably piecewise affine function on Q; moreover, since the different con-
stants δ(α, β) can be chosen independently from each other and very small,
and since every internal segment pq is compactly supported in Ω, we can also
assume that u′adj(Q) ⊆ ∆. Notice that u′adj has been obtained by glueing the
4L bi-Lipschitz functions uδpq and the 18L bi-Lipschitz function uadj, thus by a
trivial geometric argument u′adj is 18

√
2L-Lipschitz (but, a priori, it could be

not bi-Lipschitz and not even injective!). In fact, we aim to show that u′adj is
bi-Lipschitz (so, in particular, injective); more precisely, for every two points
z, z′ ∈ Q we will show that∣∣u′adj(z)− u′adj(z

′)
∣∣ ≥ 1

CL
|z − z′| ; (1.79)

this will be the content of the Steps II–IV, where we will consider the different
possible reciprocal positions of z and z′; we recall that C is a sufficiently
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large purely geometric constant, whose value may increase from line to line.
Eventually, in Step V we will define vε by extending u′adj to the interior of all
the squares of the tiling of Ω \ Ωε, and we will check that this map satisfies
the requirement of the proposition.

Step II. The case in which z ∈ pq ⊆ wαwβ , z′ /∈ wαwβ .
We start considering what happens if one of the points, say z, is in the

internal segment pq of some side wαwβ , while z′ does not belong to the side
wαwβ . We can further subdivide the case into two subcases: if z′ does not
belong to any internal segment (hence, either z′ belongs to some cross, or
z′ ∈ Ωε), then u′adj(z

′) = uadj(z′) and then Lemma 1.51 gives∣∣u′adj(z)− u′adj(z
′)
∣∣ =

∣∣uδpq(z)− uadj(z′)
∣∣

≥
∣∣uadj(z)− uadj(z′)

∣∣− ∣∣uδpq(z)− uadj(z)
∣∣

=
∣∣uadj(z)− uadj(z′)

∣∣− ∣∣uδpq(z)− u(z)
∣∣

≥ 1
18L
|z − z′| − δ(α, β) ≥ 1

CL
|z − z′|

provided that

δ(α, β) ≤
min

{
ξα, ξβ

}
20L2

(1.80)

(keep in mind that, as pointed out in Remark 1.49, we know that |z − z′| ≥
ξα/L). Hence, (1.79) is proved in this first subcase.

Consider now the other subcase, namely, when z′ belongs to some other
internal segment p′q′ ⊆ wα′wβ′ . In that case, we again know that |z − z′| ≥
ξα/L, as well as |z − z′| ≥ ξα′/L; hence, by (1.80) we directly have∣∣u′adj(z)− u′adj(z

′)
∣∣ =

∣∣uδpq(z)− uδ′p′q′(z′)∣∣
≥
∣∣u(z)− u(z′)

∣∣− ∣∣u(z)− uδpq(z)
∣∣− ∣∣u(z′)− uδ

′

p′q′(z
′)
∣∣

≥ 1
L
|z − z′

∣∣− δ(α, β)− δ(α′, β′) ≥ 1
CL
|z − z′| ,

and again (1.79) is established.

Step III. The case in which z ∈ pq ⊆ wαwβ , z′ ∈ wαwβ .
Consider the situation when z again belongs to the internal segment pq ⊆

wαwβ , but now also z′ belongs to the same side wαwβ . If also z′ is in the
internal part pq, then (1.79) is immediate since u′adj coincides with uδpq both
in z and in z′, and uδpq is 4L bi-Lipschitz by Lemma 1.50. Assume then that
z′ ∈ wαp (if z′ ∈ qwβ the situation is clearly the same).

By Definition 1.48, u′adj(z
′) = uadj(z′) lies in the segment u(wα)u(p), which

is a radius of the ball B
(
u(wα), ξα

)
. Hence, for every point s outside the same

ball, a trivial geometric argument tells us that

∣∣s− uadj(z′)
∣∣ ≥ ∣∣s− u(p)

∣∣+
∣∣u(p)− uadj(z′)

∣∣
3

. (1.81)
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We cannot directly apply this estimate to u′adj(z) = uδpq(z), because this point
might lie within the ball; however, by the Definition 1.47 of interpolation, we
know that uδpq(z) belongs to a segment u(p̃)u(q̃), for two points p̃, q̃ ∈ pq; and
in turn, by Definition 1.48 of ξiα, we have that both u(p̃) and u(q̃) are outside
the ball B

(
u(wα), ξα

)
. Summarizing, uδpq(z) belongs to a segment whose both

extremes are outside the ball. As a consequence, if∣∣uδpq(z)− u(wα)
∣∣ ≥ ξα ,

then we can apply estimate (1.81) with s = uδpq(z); and otherwise, if∣∣uδpq(z)− u(wα)
∣∣ < ξα ,

a simple geometric argument provides

ξα −
∣∣uδpq(z)− u(wα)

∣∣� ∣∣uδpq(z)− u(p)
∣∣ ,

if δ(α, β) is small enough with respect to ξα. This fact together with (1.81)
readily gives

∣∣uδpq(z)− uadj(z′)
∣∣ ≥ ∣∣uδpq(z)− u(p)

∣∣+
∣∣u(p)− uadj(z′)

∣∣
4

=

∣∣uδpq(z)− uδpq(p)∣∣+
∣∣uadj(p)− uadj(z′)

∣∣
4

since u(p) = uδpq(p) = uadj(p). Using again the fact that uδpq is 4L bi-Lipschitz
and uadj is 18L bi-Lipschitz, as well as that z, p and z′ are aligned, we obtain∣∣u′adj(z)− u′adj(z

′)
∣∣ =

∣∣uδpq(z)− uadj(z′)
∣∣

≥
∣∣uδpq(z)− uδpq(p)∣∣

4
+

∣∣uadj(p)− uadj(z′)
∣∣

4

≥
|z − p

∣∣
16L

+
|p− z′|

72L
≥ |z − z

′|
72L

.

Hence, (1.79) is checked also in this case.

Step IV. The case in which neither z nor z′ are in some internal segment.
The last case that we have to consider, to prove (1.79), is when neither z

nor z′ belong to some internal segment; therefore, both z and z′ belong either
to some cross, or to Q \ Q′. By definition, this means that u′adj(z) = uadj(z),
as well as u′adj(z

′) = uadj(z′); and then, since uadj is 18L bi-Lipschitz by
Lemma 1.51, (1.79) is already known. Summarizing, we have shown that (1.79)
is valid, and then u′adj : Q → ∆ is CL bi-Lipschitz.

Step V. Conclusion.
We can now finally define the searched function ṽε : Ω \ Ωε → ∆ \ ∆ε.

To do so, consider each square Dj ⊆ Ω \Ωε: since we have a CL bi-Lipschitz
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function on ∂Dj ⊆ Q, namely, u′adj, we can define ṽε on Dj as a CL4 bi-
Lipschitz extension by means of Theorem B. Notice that, since ṽε = u′adj on
∂Dj for every j, then ṽε is globally continuous, countably piecewise affine,
and it satisfies ṽε = u on ∂Ω and ṽε = u′adj = vε on ∂Ωε. Moreover, for each
square Dj ⊆ Ω \ Ωε one has ∂

(
ṽε(Dj)

)
= u′adj(∂Dj), and this yields at once

that the image of ṽε is exactly ∆ \∆ε, and that ṽε is injective. In turn, the
injectivity implies that ṽε is globally CL4 bi-Lipschitz, since it is so on every
square. The thesis is then concluded. ut

We now make a quick remark, which we will need to show Theorem D.

Remark 1.52. Assume that Ω is a right polygon of side-length 2r̄ and that u
is r̄-piecewise affine on ∂Ω, according to Definition 1.38. Consider then the r-
polygon Ωε given by Proposition 1.43: by the construction of Section 1.4.1, it
is not restrictive to assume that r̄ ∈ rN and that Ωε is a subset of the r-tiling
of Ω. Therefore, we can repeat verbatim the construction of Proposition 1.46
using, as tiling, the r-tiling of Ω: hence, we are replacing assumptions (1.77)
and (1.78) by asking that the tiling is finite, and that rj = r for all the squares
of the tiling –see the remark right after (1.78). Notice that this makes sense
because, since u is already r̄-piecewise affine on the boundary of the r̄-polygon
Ω, then there is no need for the tiling to use smaller and smaller squares
approaching the boundary. Consequently, the bi-Lipschitz approximation ṽε
built in Proposition 1.46 is in this case finitely piecewise affine instead of
countably piecewise affine. We also remark that the assumption that u is r̄-
piecewise affine on ∂Ω is unavoidable, since otherwise the map ṽε could not
coincide with u on ∂Ω.

To conclude the proof of Theorem C, we then only need to give the proofs
of Lemma 1.50 and of Lemma 1.51.

Proof (of Lemma 1.50). Fix a small number ρ > 0, to be precised later; define
t0 = 0 and z0 = p, and then, recursively,

ti+1 := max
{
ti < t ≤ 1 :

∣∣u(zi)− u
(
p+ t(q − p)

)∣∣ ≤ ρ} ,
zi+1 := p+ ti+1(q − p) .

This defines a finite sequence of points z0 = p, z1, . . . zN = q in pq, being
N = N(p, q, ρ). Hence, we define uδpq as the interpolation of u associated with
the sequence {zi}, according to Definition 1.47: by definition, uδpq is finitely
piecewise affine, and moreover it is L-Lipschitz because so is u. Since u is
uniformly continuous on pq, the bound ‖u−uδpq‖L∞(pq) ≤ δ is true as soon as
ρ is small enough. To conclude, we then only have to check that∣∣uδpq(z)− uδpq(z′)∣∣ ≥ 1

4L
|z − z′| (1.82)

for every z, z′ in pq.
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First of all, if both z and z′ belong to the same segment zizi+1, then (1.82)
holds true because on that segment uδpq is affine and u is L bi-Lipschitz.

Then, we can assume that z ∈ zizi+1 and z′ ∈ zjzj+1 with j > i. If
j = i+ 1, then an immediate geometric argument ensures that

uδpq(z)Ÿ�uδpq(zi+1)uδpq(z
′) = uδpq(zi)Ÿ�uδpq(zi+1)uδpq(zi+2)

= u(zi)◊�u(zi+1)u(zi+2) ≥ π

3
,

and then

∣∣uδpq(z)− uδpq(z′)∣∣ ≥ ∣∣uδpq(z)− uδpq(zi+1)
∣∣

2
+

∣∣uδpq(zi+1)− uδpq(z′)
∣∣

2

= |z − zi+1|
∣∣u(zi)− u(zi+1)|

2|zi − zi+1|
+ |zi+1 − z′|

∣∣u(zi+1)− u(zi+2)|
2|zi+1 − zi+2|

≥ |z − z
′|

2L
,

thus (1.82) is again checked.
Finally, let us assume that j > i + 1; but then, uδpq(z

′) belongs to the
segment u(zj)u(zj+1), and both u(zj) and u(zj+1) are outside the two balls
B(u(zi), ρ)∪B(u(zi+1), ρ), while uδpq(z) ∈ u(zi)u(zi+1). A simple consequence
is that ∣∣uδpq(z)− uδpq(z′)∣∣ ≥ √3ρ/2 ,

and this yields

∣∣u(zi)− u(zj+1)
∣∣ ≤ ∣∣uδpq(z)− uδpq(z′)∣∣+ 2ρ ≤

Å
1 +

4
3

√
3
ã∣∣uδpq(z)− uδpq(z′)∣∣

≤ 4
∣∣uδpq(z)− uδpq(z′)∣∣ ,

which in turn implies

∣∣uδpq(z)− uδpq(z′)∣∣ ≥ ∣∣u(zi)− u(zj+1)
∣∣

4
≥
∣∣zi − zj+1

∣∣
4L

≥
∣∣z − z′∣∣

4L
.

Therefore, we have shown the validity of (1.82) in every possible case, and
this concludes the proof. ut

Proof (of Lemma 1.51). Take a vertex wα of the grid Q′, and fix a constant
ξα ≤ `α/(3L), with ξα = `α/(3L) if wα ∈ ∂Ωε. Since `α ≤ 2r for every α, in
particular we have

ξα ≤
2r
3L

. (1.83)

Define now ξiα as in Definition 1.48 and, for any 1 ≤ i ≤ ī(α), let pi =
wα + ξiα

(
wiα − wα

)
. We claim that for every α it is
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u(wα)u(pi) ⊂⊂ ∆ ∀ 1 ≤ i ≤ ī(α) : (1.84)

in fact, if wα ∈ ∂Ωε, then (1.84) is already ensured by (1.53) and (1.52) in
Proposition 1.43; on the other hand, if wα ∈ Ω \ ∂Ωε then (1.84) becomes
true possibly up to decrease the value of ξα.

Let now uadj be the adjusted function corresponding to the sequence {ξα},
as in Definition 1.48; since uadj(Q) ⊆ ∆ thanks to (1.84), to obtain the thesis
we only have to show that

|z − z′|
18L

≤
∣∣uadj(z)− uadj(z′)

∣∣ ≤ 18L|z − z′| . (1.85)

for every z, z′ ∈ Q. We will do it in some steps.

Step I. For all α, u−1
adj

(
closB

(
u(wα), ξα

))
= Zα.

In this first step we aim to show that, for any α and for any z ∈ Q, we
have

∣∣uadj(z) − u(wα)
∣∣ ≤ ξα if and only if z ∈ Zα. If z ∈ Zα, then z ∈ wαpi

for some 1 ≤ i ≤ ī(α), and since uadj is affine in the segment wαpi, while∣∣uadj(pi)− u(wα)
∣∣ = ξα, then of course

∣∣uadj(z)− u(wα)
∣∣ ≤ ξα.

Suppose, on the other hand, that z /∈ Zα, so that we have to prove that∣∣uadj(z)− u(wα)
∣∣ > ξα.

If z ∈ wαwiα for some 1 ≤ i ≤ ī(α), then there are three possibilities. First,
if wαwiα ⊆ Q \ Q′, then uadj = vε is affine on the whole side wαwiα, so the
claim is trivial. Second, if wαwiα ⊆ Q′ and z belongs to the cross Zβ associated
to the vertex wβ = wiα, then uadj(z) belongs to the ball B

(
u(wβ), ξβ

)
, which

does not intersect B
(
u(wα), ξα

)
by Remark 1.49, thus the claim again follows.

Third, if wαwiα ⊆ Q′ and z /∈ Zβ , then uadj(z) = u(z), thus the claim is again
true by the definition of ξiα.

To finish this step, we have then to consider a point z /∈ Zα which does not
belong to any side of Q having wα as one extreme. We distinguish again some
possibilities. First, if z belongs to the cross Zβ for some β, then again the
claim is true since B

(
u(wα), ξα

)
∩ B
(
u(wβ), ξβ

)
= ∅ by Remark 1.49. Second,

if z does not belong to any cross and z ∈ Q′, then uadj(z) = u(z) so the
claim is true because, using the bi-Lipschitz property of u and the fact that
ξα ≤ `α/(3L), we have

u(z) ∈ B
(
u(wα), ξα

)
=⇒

∣∣z − wα∣∣ ≤ `α
3
,

which is impossible because |z−wα| > `α. Third and last, assume that z does
not belong to any cross and z ∈ Q\Q′. If this is the case, then uadj(z) = vε(z),
|z − wα| ≥ 2r by construction and by (1.77), and then (1.53) and (1.83) give∣∣uadj(z)− u(wα)

∣∣ =
∣∣vε(z)− u(wα)

∣∣ ≥ ∣∣u(z)− u(wα)
∣∣− ∣∣u(z)− vε(z)

∣∣
≥
∣∣z − wα∣∣

L
−
√

2r
3L3

≥ r

L
> ξα ,

thus the first step is concluded.



1.4 Part III: Approximation Theorem 75

We fix now two points z, z′ ∈ Q: the proof of Lemma 1.51, thus also of
Theorem C, will follow once we show the validity of (1.85). We will do this in
next steps, considering all the possible mutual positions of z and z′.

Step II. Validity of (1.85) if z, z′ ∈ Zα.
Let us first suppose that both z and z′ belong to a same cross Zα. By

construction, uadj is L bi-Lipschitz on each segment wαpi, hence to show (1.85)
we can assume without loss of generality that z ∈ wαp

1 and z′ ∈ wαp
2.

Therefore, we readily have∣∣uadj(z)− uadj(z′)
∣∣ ≤ ∣∣uadj(z)− uadj(wα)

∣∣+
∣∣uadj(wα)− uadj(z′)

∣∣
≤ L

(
|z − wα|+ |wα − z′|

)
≤
√

2L |z − z′| .
(1.86)

On the other side, to estimate
∣∣uadj(z)−uadj(z′)

∣∣ from below, assume without
loss of generality that∣∣uadj(wα)− uadj(z)

∣∣ ≤ ∣∣uadj(wα)− uadj(z′)
∣∣ ,

and define z′′ ∈ wαz′ so that∣∣uadj(wα)− uadj(z)
∣∣ =

∣∣uadj(wα)− uadj(z′′)
∣∣ ,

which is uniquely defined since uadj is affine in the segment wαz′.
Since the triangle uadj(wα)uadj(z)uadj(z′′) is isosceles, then

uadj(z)ÿ�uadj(z′′)uadj(z′) ≥
π

2
. (1.87)

The validity of (1.85) will follow at once as soon as we prove that∣∣uadj(z)− uadj(z′′)
∣∣∣∣z − z′′∣∣ ≥ 1

2L
, (1.88)

because in this case, also recalling (1.87) and the fact that uadj is L bi-Lipschitz
on the segment z′z′′ ⊆ wαp2, we get

∣∣uadj(z)− uadj(z′)
∣∣ ≥ √2

2

(∣∣uadj(z)− uadj(z′′)
∣∣+
∣∣uadj(z′′)− uadj(z′)

∣∣)
≥
√

2
2

Å |z − z′′|
2L

+
|z′′ − z′|

L

ã
≥
√

2
4L
|z − z′| ,

which recalling (1.86) allows us to write, whenever z and z′ are under the
assumptions of this step,

√
2

4L
|z − z′| ≤

∣∣uadj(z)− uadj(z′)
∣∣ ≤ √2L|z − z′| , (1.89)

which is in turn stronger than (1.85). Summarizing, to conclude this step we
only need to prove the validity of (1.88).
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As usual, we have to consider three possible cases. First, if both wαp1 and
wαp

2 are contained in Q′, then by definition and recalling the definition of z′′∣∣uadj(z)− uadj(z′′)
∣∣∣∣z − z′′∣∣ =

∣∣uadj(p1)− uadj(p2)
∣∣∣∣p1 − p2

∣∣ =

∣∣u(p1)− u(p2)
∣∣∣∣p1 − p2

∣∣ ≥ 1
L
,

so (1.88) holds true. Second, if both wαw
1
α and wαw

2
α belong to Q \Q′, then

since vε is L+ ε bi-Lipschitz we have∣∣uadj(z)− uadj(z′′)
∣∣∣∣z − z′′∣∣ =

∣∣vε(z)− vε(z′′)∣∣∣∣z − z′′∣∣ ≥ 1
L+ ε

,

so again (1.88) holds true. Finally, assume that wαw1
α ⊆ Q′ while wαw2

α ⊆
Q \ Q′. In this case, it must clearly be wα ∈ ∂Ωε, hence by Remark 1.49 we
know that |p1 − wα| and |p2 − wα| are both at least ξα/L = 2r/(3L2), which
implies

|p1 − p2| ≥ 2
√

2
r(3L2)

.

Therefore, recalling again (1.53) we have∣∣uadj(z)− uadj(z′′)
∣∣∣∣z − z′′∣∣ =

∣∣uadj(p1)− uadj(p2)
∣∣∣∣p1 − p2

∣∣ =

∣∣u(p1)− vε(p2)
∣∣∣∣p1 − p2

∣∣
≥
∣∣u(p1)− u(p2)

∣∣∣∣p1 − p2
∣∣ −

∣∣u(p2)− vε(p2)
∣∣∣∣p1 − p2

∣∣
≥ 1
L
−
√

2r/(3L3)
2
√

2r/(3L2)
=

1
2L

,

thus (1.88) has been checked in all the three possible cases and this step is
concluded.

Step III. Validity of (1.85) if for all α one has z, z′ /∈ intZα.
Let us assume now that neither z nor z′ belong to the interior of any

cross. In this case, we have uadj(z) = u(z) if z ∈ Q′, or uadj(z) = vε(z) if
z ∈ Q \ Q′, and the same holds for z′. Since u is L bi-Lipschitz while vε is
L+ ε bi-Lipschitz, the validity of (1.85) is obvious if both z, z′ ∈ Q′, as well
as if both z, z′ ∈ Q \ Q′. Therefore, we have to concentrate only on the case
in which z ∈ Q′, z′ ∈ Q \ Q′.

In this case, the main observation is that |z−z′| ≥ 2
√

2r/(3L2), since both
z and z′ must be at distance at least 2r/(3L2) from any vertex wα ∈ ∂Ωε,
because they do not belong to any cross Zα. As a consequence, again by (1.53)
we get∣∣uadj(z)− uadj(z′)

∣∣ =
∣∣u(z)− vε(z′)

∣∣ ≥ ∣∣u(z)− u(z′)
∣∣− ∣∣u(z′)− vε(z′)

∣∣
≥ |z − z

′|
L

−
√

2r
3L3

≥ |z − z
′|

2L
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and∣∣uadj(z)− uadj(z′)
∣∣ =

∣∣u(z)− vε(z′)
∣∣ ≤ ∣∣u(z)− u(z′)

∣∣+
∣∣u(z′)− vε(z′)

∣∣
≤ L |z − z′|+

√
2r

3L3
≤
Å
L+

1
2L

ã
|z − z′| ,

thus also in this case (1.85) is proven. In particular, under the assumptions of
this step one has

|z − z′|
2L

≤
∣∣uadj(z)− uadj(z′)

∣∣ ≤ 3
2
L |z − z′| . (1.90)

Step IV. Validity of (1.85) if z ∈ Zα and for all β one has z′ /∈ intZβ.
Let us now consider the case when z belongs to some cross Zα (say, z ∈

wαp
1), while z′ does not belong to the interior of any cross. To obtain the

above estimate in (1.85), we start with the trivial geometric observation that
there exists 1 ≤ i ≤ ī(α) such that

|z − z′| ≥
√

2
2

(
|z − pi|+ |pi − z′|

)
,

not necessarily being i = 1. As a consequence, we apply estimate (1.89) of
Step II for the points z and pi –both belonging to Zα– and the estimate (1.90)
of Step III for the points pi and z′ –none of which belonging to the interior of
some Zβ– to get∣∣uadj(z)− uadj(z′)

∣∣ ≤ ∣∣uadj(z)− uadj(pi)
∣∣+
∣∣uadj(pi)− uadj(z′)

∣∣
≤
√

2L|z − pi|+ 3
2
L|pi − z′| ≤ 3

2

√
2L|z − z′| .

We now have to show the below estimate in (1.85), and we start recalling that
by Step I we have

uadj(z) ∈ closB
(
u(wα), ξα

)
, uadj(z′) /∈ B

(
u(wα), ξα

)
.

As already observed in (1.81), a trivial geometric argument ensures then that

∣∣uadj(z)− uadj(z′)
∣∣ ≥ ∣∣uadj(z)− uadj(p1)

∣∣+
∣∣uadj(p1)− uadj(z′)

∣∣
3

. (1.91)

Thus, using the L bi-Lipschitz property of uadj in the segment wαp1, and the
estimate (1.90) of Step III for p1 and z′, we get

∣∣uadj(z)− uadj(z′)
∣∣ ≥ |z − p1|

3L
+
|p1 − z′|

6L
≥ |z − z

′|
6L

.

Summarizing, under the assumptions of this step we have
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|z − z′|
6L

≤
∣∣uadj(z)− uadj(z′)

∣∣ ≤ 3
2

√
2L|z − z′| , (1.92)

hence in particular (1.85) is again checked.

Step V. Validity of (1.85) if z ∈ Zα and z′ ∈ Zβ.
We face now the last possible situation, that is, when z and z′ belong to

two different crosses. The argument will be very similar to that of Step IV;
indeed, to get the above estimate in (1.85) we again start observing that for
some 1 ≤ i ≤ ī(α) it must be

|z − z′| ≥
√

2
2

(
|z − pi|+ |pi − z′|

)
.

Therefore, applying estimate (1.89) of Step II to the points z, pi ∈ Zα, and
estimate (1.92) of Step IV to the points z′ ∈ Zβ and pi –which does not belong
to the interior of any cross– we find∣∣uadj(z)− uadj(z′)

∣∣ ≤ ∣∣uadj(z)− uadj(pi)
∣∣+
∣∣uadj(pi)− uadj(z′)

∣∣
≤
√

2L|z − pi|+ 3
2

√
2L|pi − z′| ≤ 3L|z − z′| .

Finally, to get the below estimate in (1.85) we use again (1.91), which holds
true exactly as in Step IV, together with the L bi-Lipschitz property of uadj

in wαp
1 and the estimate (1.92) of Step IV for p1 and z′, obtaining

∣∣uadj(z)− uadj(z′)
∣∣ ≥ |z − p1|

3L
+
|p1 − z′|

18L
≥ |z − z

′|
18L

.

We have then established the validity of (1.85) in all the possible cases, hence
the proof is concluded. ut

1.4.3 Finitely piecewise affine approximation on polygonal
domains

This last section is devoted to present a proof of Theorem D, which will be
very short since only a simple modification of the arguments of Section 1.4.2
is needed.

Proof (of Theorem D). We begin by considering the particular case when Ω
is a r̄-right polygon and u is r̄-piecewise affine on ∂Ω according to Defini-
tion 1.38. As already underlined in Remark 1.52, we can then slightly modify
the proofs of Proposition 1.43 and Proposition 1.46 to get what the following
results: first of all, there exist some r such that r̄ ∈ rN, a r-right polygon
Ωε ⊂⊂ Ω which is part of the r-tiling of Ω, and a L + ε bi-Lipschitz and
finitely piecewise affine function vε : Ωε → R2 for which (1.50), (1.51), (1.52)
and (1.53) hold. And second, there exists also a finitely piecewise affine map
ṽε : Ω \ Ωε → ∆ \ ∆ε which is C1L

4 bi-Lipschitz and which coincides with
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u on ∂Ω and with vε on ∂Ωε. Therefore, gluing vε and ṽε exactly as done
in the proof of Theorem C, the very same proof provides the required C1L

4

bi-Lipschitz and (finitely) piecewise affine approximation of u.
Consider now, instead, the general situation of a polygon Ω with a map u

which is finitely piecewise affine on ∂Ω. Of course, there exist a right polygon“Ω and a (finitely) piecewise affine and bi-Lipschitz map Φ : Ω → “Ω, having bi-
Lipschitz constant C = C(Ω). The map u◦Φ−1 is a CL bi-Lipschitz map from
the right polygon “Ω to ∆, which is piecewise affine on the boundary. Then, the
first part of the proof applied in “Ω gives an approximation v : “Ω → ∆ which
is finitely piecewise affine and C1C

4L4 bi-Lipschitz. Finally, v ◦ Φ : Ω → ∆ is
a C1C

5L4 bi-Lipschitz approximation of u as desired. Summarizing, we have
concluded the proof setting C ′(Ω) = C5. ut

Remark 1.53. The fact that the constant in Theorem D depends on Ω could
seem at first glance unsatisfactory, since in the other results we have got
purely geometric constants. On the other side, it is not possible to find a
constant which does not depend on the polygon; more precisely, it is easy
to observe that, for any polygon Ω, the best constant C ′(Ω) (that is, the
smallest one, corresponding to the “smartest” choice of “Ω and Φ in the above
proof) depends on the geometric features of Ω, such as the minimum and the
maximum angles of its boundary, which in turn cannot be a priori bounded by
any power of L. However, the construction above enlightens that C ′(Ω) = 1
whenever Ω is a right polygon.
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