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Boundedness of minimizers for spectral problems in RN

Dario Mazzoleni∗

Abstract – In [8] it was proved that any increasing functional of the first k eigenvalues
of the Dirichlet Laplacian admits a (quasi-)open minimizer among the subsets of RN

of unit measure. In this paper we show that every minimizer is uniformly bounded
by a constant depending only on k,N .
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1. Introduction

This paper deals with the following minimization problem:

(1.1) min
{
F(λ1(A), . . . , λk(A)) : A ⊆ RN , quasi-open, with |A| = 1

}
,

where λi(A) denotes the i-th eigenvalue of the Dirichlet-Laplacian. This spectral
problem is well-studied, for instance when the functional reduces to the projection
on the last coordinate (see [3], [6], [7]).

Theorem A in [8] assures that, if F is increasing in each variable and lower semi-
continuous (l.s.c.), then problem (1.1) has at least a bounded minimizer, where the
boundedness constant depends only on k,N , but not on the functional. Moreover,
in [2], with completely different techniques involving the regularity of shape sub-
solutions of the torsion energy, Bucur was able to prove existence of an optimal set
in the case of F = λk and to show that all optimal sets in this case are bounded
and have finite perimeter.

∗The author warmly thanks Aldo Pratelli for many discussions on the topic of the paper.
This work has been supported by the ERC Starting Grant n. 258685 “AnOptSetCon”.

Dario Mazzoleni, Dipartimento di Matematica, Università degli Studi di Pavia, Via Ferrata,1
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The aim of this note is simply to show that every minimizer for problem (1.1)
has diameter uniformly bounded, depending only on k,N , up to assume the func-
tional F to be weakly strictly increasing, that is, increasing in each variable and
such that for every (x1, . . . , xk), (y1, . . . , yk) ∈ Rk with xi < yi for i = 1, . . . , k

F(x1, . . . , xk) < F(y1, . . . , yk).

The above assumption is necessary in order to avoid the trivial case of a constant
functional, for which every admissible set is a minimizer. We will use the same
notations as in [8] and very similar techniques. The basic idea is that, given a
sequence of admissible sets that γ-converges to a minimizer, either it is uniformly
bounded or it is possible to decrease all the first k eigenvalues of its sets by a
uniform strictly positive constant.

The main result is the following.

Theorem 1.1. Let k,N ∈ N and F : Rk → R be weakly strictly increasing and
l.s.c.. Then every minimizer for problem ( 1.1) is contained in an N -cube QR with
edge of length R = R(k,N).

It is important to highlight that a natural question about optimal sets for (1.1),
even if unrelated with the aim of this paper, is whether they are open and not
only quasi-open. The minimization for this kind of spectral optimization problems
is done among quasi-open sets because they form a class with good compactness
properties with respect to the γ-convergence (see [5]). This regularity issue for
minimizers is a very difficult topic, due to the min-max structure of eigenvalues.
A partial answer to this question was given in [4], where it is proved that for func-
tionals F which are increasingly bi-Lipschitz in each variable, then every solution
is an open set up to measure zero. On the other hand, for the most interesting
functional F = λk, it is only possible to prove that every optimal set admits an
eigenfunction (corresponding to the k-th eigenvalue) which is Lipschitz continuous
in RN .

The paper is organized as follows. In Section 2. we give some useful results
about capacity and quasi-open sets and we present the notations used throughout
the paper. Then in Section 3. we study the “tails” of the minimizing sequence,
while in Section 4. we deal with their “inner part”. At last in Section 5. we put
all the informations together and we prove Theorem 1.1.

2. Notations and preliminary results

First of all we recall the definitions of capacity and of quasi-open sets. For a more
detailed treatment of those subjects, see [7].

Definition 2.1. Let D be an open set and A ⊂⊂ D a compactly supported
subset. The capacity of A in D is defined as

(2.1) capD(A) = inf

{∫
D

|Dv|2 : v ∈ H1
0 (D), v ≥ 1 in a neighborhood of A

}
.
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Let then A ⊆ RN be a bounded set and let D be an open set such that A ⊂⊂ D.
The set A is called quasi-open if for every ε > 0 there exists an open set A ⊆ Aε ⊂
⊂ D such that capD(Aε \A) < ε. Clearly this definition does not depend on the
choice of D. A generic subset of RN is said to be quasi-open if its intersection
with any ball is a quasi-open bounded set.

For sake of completeness we state and prove here three lemmas dealing with
general properties of capacity.

Lemma 2.2. Let D ⊆ R be an open set and Ω1 ⊆ Ω2 ⊂⊂ D. Then capD(Ω2) ≥
capD(Ω1).

Proof. By definition,
(2.2)

capD(Ω2) = inf

{∫
D

|Dv|2 : v ∈ H1
0 (D), v ≥ 1 in a neighborhood of Ω2

}
.

Since it is clear that the class of function
{
v ∈ H1

0 (D), v ≥ 1 in a neighborhood of Ω2

}
is included in

{
v ∈ H1

0 (D), v ≥ 1 in a neighborhood of Ω1

}
, thus by definition of

infimum we have the thesis.

Lemma 2.3. Let D ⊆ R be an open set and A ⊂⊂ D. Suppose that A is
included in the union of two sets: A ⊆ A1 ∪A2. Then, for all α > 0 we have

capD(A1) + capD(A2) ≤ α ⇒ capD(A) ≤ 2α.

Proof. Let η > 0. By the definition of capacity, it is possible to find two functions
vi ∈ H1

0 (D), such that
∫
D
|Dvi|2 ≤ capD(Ai) + η and vi ≥ 1 on a neighborhood of

Ai, for i = 1, 2. The function v1 + v2 ∈ H1
0 (D) and v1 + v2 ≥ 1 on a neighborhood

of A1 ∪A2, hence we can compute:

capD(A1 ∪A2) ≤
∫
D

|D(v1 + v2)|2 ≤
∫
D

|Dv1|2 +

∫
D

|Dv2|2 + 2

∫
D

Dv1 ·Dv2

≤ 2

∫
D

|Dv1|2 + 2

∫
D

|Dv2|2 ≤ 2(capD(A1) + capD(A2)) + 4η

≤ 2α+ 4η.

In conclusion, by arbitrariness of η, we obtain capD(A) ≤ capD(A1∪A2) ≤ 2α.

Remark 2.4. Throughout this paper, since we are working in a capacitary
setting, all the sets are defined up to zero capacity. This is stronger than working
up to zero Lebesgue measure: we remind that, given a set A ⊆ Rn, cap(A) = 0
implies |A| = 0, but the vice versa is not true in general.

With this last Lemma we prove that a quasi-open set with zero Lebesgue
measure must also have zero capacity. This fact is well-known among experts of
shape optimization, but we did not find any reference for it, so we present here a
simple proof.
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Lemma 2.5. Let A ⊂ RN a quasi-open set such that |A| = 0. Then A has zero
capacity.

Proof. First of all we suppose A to be bounded, and let D be an open set such
that A ⊂⊂ D. We fix ε > 0 and we aim to prove that capD(A) ≤ 2ε. By definition
of quasi-open set (see Definition 2.1), there exists an open set A ⊆ Aε ⊂⊂ D
such that capD(Aε \ A) < ε. We can write A = (A ∩ Aε) ∪ (A \ Aε), and clearly
capD(A \ Aε) = 0 since A ⊆ Aε. Moreover, by Lemma 2.2, capD(A ∩ Aε) ≤
capD(Aε). Since |A| = 0 and A ⊆ Aε, we have that the following sets are equal:{

v ∈ H1
0 (D), v ≥ 1 in a neighborhood of Aε

}
=
{
v ∈ H1

0 (D), v ≥ 1 in a neighborhood of Aε \A
}
.

In fact for all x ∈ RN and η > 0, dist(x,Aε) < η if and only if dist(x,Aε \A) < η.
At last, thanks to Lemma 2.3, we have:

capD(A) = capD((A ∩Aε) ∪ (A \Aε)) ≤ 2ε,

and by arbitrariness of ε we conclude.
If A is not bounded, we consider for all R > 0, A∩B(R), where B(R) denotes the
ball of radius R centered in the origin and we can prove, with the above argument,
that capB(2R)(A ∩ B(R)) = 0 for all R > 0. Hence again A is a set with zero
capacity.

Throughout the paper we will not need advanced tools about γ-convergence
(for more details see [7]), we remind only that, given a sequence of open sets with
unit measure (Ωn)n such that

(2.3) Ωn
γ→ Ω, as n→ +∞,

then λi(Ωn)→ λi(Ω) as n→∞ for all i ∈ N.
It is well-known (see [1]) that there exists a constant M = M(k,N) > 0

such that for all Ω ⊆ RN , λk(Ω)
λ1(Ω) ≤M . Since we are interested in the minimization

problem (1.1), we define K = Mλk(BN ) and we can consider sets with λk(Ω) ≤ K,

otherwise λ1(Ω) ≥ λk(Ω)
M ≥ λk(BN ), hence F(Ω) > F(BN ), where BN denotes the

unit ball in RN . Note that the constant K depends only on k,N .
Now we give some definitions, following [8]. First of all we fix a small positive

constant m̂ = m̂(k,N) ∈ (0, 1/4) such that

(4m̂)
2
N

λ1(BN )
K ≤ 1

2
.

Let Ω ⊆ RN be an open set with unit measure and, for every t ∈ R,

Ωlt :=
{

(x, y) ∈ Ω : x < t
}
, Ωt :=

{
y ∈ RN−1 : (t, y) ∈ Ω

}
,

Ωrt :=
{

(x, y) ∈ Ω : x > t
}

;
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notice that Ωlt and Ωrt are subsets of RN , while Ωt is a subset of RN−1. On the
other hand, given 0 ≤ m ≤ |Ω| and 0 ≤ m1 ≤ m2 ≤ |Ω|, we define the level
τ(Ω,m) ∈ R and the width W (Ω,m1,m2) as

τ(Ω,m) := inf
{
t ∈ R :

∣∣Ωlt∣∣ ≥ m} , W (Ω,m1,m2) := τ(Ω,m2)− τ(Ω,m1) .

Observe that one surely has −∞ < τ(Ω,m) < +∞ whenever 0 < m < |Ω|, as well
as W (Ω,m1,m2) < +∞ if 0 < m1 ≤ m2 < |Ω|. At last, we remark that, even if
we are working with sets defined up to sets of zero capacity, the definitions above
are stable up to sets of zero Lebesgue measure.

3. Boundedness of the “tails”

Throughout this Section and the next one we consider a generic open set with unit
measure Ω ⊂ RN such that λk(Ω) ≤ K. We study the “tail” of the set Ω, i.e.
the set Ωlτ(Ω,m̂). In particular we focus on the horizontal projection. We set for

brevity t = τ(Ω, 2m̂) and for every t ≤ t we define

(3.1) Ω+(t) = Ωrt , Ω−(t) = Ωlt, ε(t) = HN−1(Ωt).

It is easy to see that

(3.2) m(t) = |Ω−(t)| =
∫ t

−∞
ε(s) ds ≤ 2m̂.

As usual, we call {u1, u2, . . . , uk} an orthonormal set of eigenfunctions with unit
L2 norm and corresponding to the first k eigenvalues of Ω. Then we define, for
every 1 ≤ i ≤ k and every t ≤ t,
(3.3)

δi(t) =

∫
Ωt

|Dui(t, y)|2 dHN−1(y), δ(t) =

k∑
i=1

δi(t), φ(t) =

∫ t

−∞
δ(s) ds.

Moreover, for any t ≤ t̄, we define the cylinder Q(t), as

(3.4) Q(t) :=
{

(x, y) ∈ RN : t− σ(t) < x < t, (t, y) ∈ Ω
}

=
(
t− σ(t), t

)
× Ωt ,

where for any t ≤ t̄ we set

(3.5) σ(t) = ε(t)
1

N−1 .

We let also Ω̃(t) = Ω+(t) ∪Q(t), and we introduce ũi ∈W 1,2
0

(
Ω̃(t)

)
as

(3.6) ũi(x, y) :=


ui(x, y) if (x, y) ∈ Ω+(t) ,

x− t+ σ

σ
ui(t, y) if (x, y) ∈ Q(t) .

We restate here without proof some useful Lemmas from [8], which will be
essential for our analysis.
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Lemma 3.1 ([8], Lemma 2.3). Let Ω be an open set of unit volume, with
λk(Ω) ≤ K. Then for all 1 ≤ i ≤ k and t ≤ t, the following inequalities hold:

(3.7)

∫
Ω−(t)

u2
i ≤ C1ε(t)

1
N−1 δi(t),

∫
Ω−(t)

|Dui|2 ≤ C1ε(t)
1

N−1 δi(t),

for some C1 = C1(k,N).

Lemma 3.2 ([8], Lemma 2.5). For every t ≤ t and 1 ≤ i ≤ k, one has

(3.8) R(ũi, Ω̃(t)) ≤ λi(Ω) + C2ε(t)
1

N−1 δi(t).

Moreover, for every i 6= j ∈ {1, 2 . . . , k}, one has

(3.9)

∣∣∣∣∣
∫

Ω̃(t)

ũiũj +Dũi ·Dũj

∣∣∣∣∣ ≤ C2

(
ε(t)

3
N−1 + ε(t)

1
N−1

)√
δi(t)δj(t),

for some C2 = C2(k,N).

Lemma 3.3 ([8], Lemma 2.6). There exist a small constant ν = ν(k,N) < 1
and a constant C3 = C3(k,N) such that, if ε(t), δi(t) ≤ ν for every i = 1, . . . , k
and t ≤ t, then

(3.10) λj(Ω̃(t)) ≤ λj(Ω) + C3ε(t)
1

N−1 δ(t) ∀1 ≤ j ≤ k.

For our purposes, a slightly different version of the above Lemma is preferrable.

Lemma 3.4. There exist a constant C̃3 = C̃3(k,N) such that, if t ≤ t, then

(3.11) λj(Ω̃(t)) ≤ λj(Ω) + C̃3

(
ε(t)

N
N−1 + δ(t)

N
N−1

)
∀1 ≤ j ≤ k.

Proof. It is clear that, thanks to Lemma 3.3, whenever ε(t), δi(t) ≤ ν for all

i = 1, . . . , k, then the thesis is true with C̃3 = C3, since ε(t)
1

N−1 δ(t) ≤ ε(t)
N

N−1 +

δ(t)
N

N−1 .
We can now focus on the case when either ε(t) > ν or δi(t) > ν for some

i. Then, we remind that, since the first eigenfunction has not orthogonality con-
straints, Lemma 3.2 assures:

λ1(Ω̃(t)) ≤ λ1(Ω) + Cε(t)
1

N−1 δi(t).

It is well-known (see [1] or the appendix of [8]) that there is a constant M =

M(k,N) > 0 such that λk(Ω)
λ1(Ω) ≤ M for all Ω ⊂ RN . Hence we can write, for all

1 ≤ j ≤ k:

λj(Ω̃(t)) ≤Mλ1(Ω̃(t)) ≤M
(
λ1(Ω) + Cε(t)

1
N−1 δ(t)

)
.
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Moreover it is possible to find a big constantA = A(k,N), such thatMK ≤ Aν
N

N−1

and then, defining C̃3 = A+MC, we can conclude the computations above:

λj(Ω̃(t)) ≤M
(
K + Cε(t)

1
N−1 δ(t)

)
≤ Aν

N
N−1 +MCε(t)

1
N−1 δ(t)

≤ λj(Ω) +Aν
N

N−1 +MCε(t)
1

N−1 δ(t) ≤ λj(Ω) + C̃3

(
ε(t)

N
N−1 + δ(t)

N
N−1

)
.

We are now in position to state and prove the main Lemma of this section.
For sake of simplicity, we call Ω̂(t) = |Ω̃(t)|−1/N Ω̃(t) the modified set rescaled till
unit measure.

Lemma 3.5. Let Ω be an open set of unit volume, with λk(Ω) ≤ K and t ≤ t.
Then there exists a constant C4 = C4(k,N) such that exactly one of the following
situations happens.

(1) m(t) ≤ C4

(
ε(t)

N
N−1 + δ(t)

N
N−1

)
.

(2) (1) does not hold and for all 1 ≤ i ≤ k, λi(Ω̂(t)) < λi(Ω). Moreover for
every m̃ > 0 such that m(t) ≥ m̃, there exists an η = η(N, m̃) such that for
all 1 ≤ i ≤ k,

λi(Ω̂(t)) < λi(Ω)− η.

Proof. From Lemma 3.4 we have

λi(Ω̃(t)) ≤ λi(Ω) + C̃3

(
ε(t)

N
N−1 + δ(t)

N
N−1

)
∀1 ≤ i ≤ k,

moreover, putting in account that |Ω̃(t)| = |Ω+(t)|+ |Q(t)| = 1−m(t) + ε(t)
N

N−1

and the scaling of the eigenvalues, then for all 1 ≤ i ≤ k

λi(Ω̂(t)) ≤
(

1−m(t) + ε(t)
N

N−1

) 2
N
(
λi(Ω) + C̃3

(
ε(t)

N
N−1 + δ(t)

N
N−1

))
≤ λi(Ω)− 2

N
λ1(BN )m(t) +

2K

N
ε(t)

N
N−1 + C̃3

(
ε(t)

N
N−1 + δ(t)

N
N−1

)
− 2

N
m(t)C̃3

(
ε(t)

N
N−1 + δ(t)

N
N−1

)
+

2

N
C̃3ε(t)

N
N−1

(
ε(t)

N
N−1 + δ(t)

N
N−1

)
.

(3.12)

Then ifm(t) ≤ C4

(
ε(t)

N
N−1 + δ(t)

N
N−1

)
, condition (1) holds true; otherwisem(t) >

C4

(
ε(t)

N
N−1 + δ(t)

N
N−1

)
and we can choose C4 ≥ 1 so that m(t) ≥ ε(t)

N
N−1 . Thus

from the two last terms of (3.12), we have

− 2

N
m(t)C̃3

(
ε(t)

N
N−1 + δ(t)

N
N−1

)
+

2

N
C̃3ε(t)

N
N−1

(
ε(t)

N
N−1 + δ(t)

N
N−1

)
≤ 0.
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This allows us to conclude, choosing C4 ≥ 2K+NC̃3

λ1(BN ) and obtaining:

λi(Ω̂(t))− λi(Ω) ≤ −λ1(BN )

N
m(t) < 0,

that is condition (2). Moreover if m(t) ≥ m̃, then we can improve the above
estimate:

λi(Ω̂(t))− λi(Ω) ≤ −λ1(BN )

N
m̃ = −η(N, m̃) < 0,

and the proof is concluded.

We introduce the following notations. Given an open set Ω as in the hypotheses
of Lemma 3.5, we set

(3.13) t̂ = sup
{
t ∈ (−∞, t) : condition (2) of Lemma 3.5 holds for t

}
,

with the usual convention that t̂ = −∞ if condition (2) is false for every t ≤ t. If
t̂ > −∞, then m(t̂) > 0 and we choose some t? ∈ [t̂− 1, t̂] for which condition (2)
holds. The following Lemma concludes this Section.

Lemma 3.6. Let (Ωn)n be as in the hypotheses of Lemma 3.5 and Ωn
γ→ Ω.

(a) If there exists a subsequence (not relabeled) such that, for all n, m(t?(n)) ≥
m̃ > 0 for some m̃ > 0, then Ω is not optimal for problem ( 1.1).

(b) If there exists a subsequence such that t̂(n) = −∞ for all n, then there exists
R1 = R1(k,N) > 0 such that W (Ω, 0, m̂) ≤ R1.

(c) If there exists a subsequence such that m(t?(n)) → 0 as n → ∞, then we
have again W (Ω, 0, m̂) ≤ R1.

Proof. We introduce the following subsets of (t̂(n), t(n)) for all n ∈ N:

An1 = {t ∈ (t̂(n), t(n)) : ε(t) ≥ δ(t)}, An2 = {t ∈ (t̂(n), t(n)) : ε(t) < δ(t)}.

Then, using Lemma 3.5, it is clear that for all t ∈ An1 , m(t) ≤ 2C4ε(t)
N

N−1 , while

for all t ∈ An2 , thanks to Lemma 3.1 and reminding (3.3), φ(t) ≤ 2C1δ(t)
N

N−1 .
Hence, since ε(t) = m′(t) and δ(t) = φ′(t), we can work as in the proof of Lemma
2.2 from [8] and deduce that |An1 ∪An2 | ≤ C5 = C5(k,N).

If we are in case (b), since t̂(n) = −∞ for all n, then W (Ωn, 0, m̂) ≤ |An1∪An2 | ≤
C5 and the same is true for the γ-limit Ω.

On the other hand, if case (c) happens, in principle there could be some pieces
of the limit Ω outside the bounded strip, but Lemma 2.5 assures that Ω must
have zero capacity and not only zero Lebesgue measure outside the bounded strip.
More precisely, we can choose (up to translations) the origin such that m(0) = m̂.
Since Ω corresponds to a capacitary measure µ, case (c) implies

µ = 0 in
{

(x, y) ∈ R× RN−1 : x < −C5

}
.
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Hence W (Ω, 0, m̂) ≤ C5.
At last we consider case (a). Thanks to Lemma 3.5, we have that for all n and

for all 1 ≤ i ≤ k,
λi(Ω̂(t?(n))) < λi(Ω)− η.

Hence, since we are supposing F to be weakly strictly increasing, we have a se-
quence (Ω̂(t?(n)))n such that

inf
n
F(Ω̂(t?(n))) < F(Ω),

thus Ω can not be optimal for (1.1).

Remark 3.7. Applying Lemma 3.6 to a sequence of open sets (Ωn)n∈N sat-
isfying the hypotheses of Lemma 3.5 and which γ-converges to Ω∗, since (a), (b)
and (c) cover all the possible situations, we deduce

W (Ω∗, 0, m̂) ≤ R1(k,N).

4. Boundedness of the “interior”

To start with, we give the analogous of the definitions (3.1), (3.2) and (3.3) of
Section 3. that we need now. More precisely, for every m ∈ (m̂, 1− m̂

2 ), we set for
brevity

t0 :=
τ(Ω,m+ m̂

2 ) + τ(Ω,m− m̂)

2
, t̄ :=

τ(Ω,m+ m̂
2 )− τ(Ω,m− m̂)

2
;

keep in mind that, since m ∈ (m̂, 1− m̂
2 ), then −∞ < τ(Ω,m−m̂) < τ(Ω,m+ m̂

2 ) <
+∞. For any 0 ≤ t ≤ t̄, we define

Ω+(t) := Ωlt0−t ∪ Ωrt0+t , Ω−(t) := Ωrt0−t ∩ Ωlt0+t = Ω \ Ω+(t) ,

ε(t) := HN−1(Ωt0−t) +HN−1(Ωt0+t) , m(t) :=
∣∣Ω−(t)

∣∣ =

∫ t

0

ε(s) ds ≤ 3

2
m̂ .

Moreover, having fixed an orthonormal set
{
u1, u2, . . . , uk

}
of eigenfunctions

with unit L2 norm corresponding to the first k eigenvalues of Ω, for every 1 ≤ i ≤ k
and 0 ≤ t ≤ t̄ we define

δi(t) :=

∫
Ωt0−t

|Dui|2 +

∫
Ωt0+t

|Dui|2 , µi(t) :=

∫
Ωt0−t

u2
i +

∫
Ωt0+t

u2
i .

Then we define again δ(t) =
∑k
i=1 δi(t), and we set again

φ(t) :=

k∑
i=1

∫
Ω−(t)

|Dui|2 =

∫ t

0

δ(s) ds .

Unluckily, it is not possible to prove the analogous of Lemma 3.1 in the very
same way, but a little modification is needed.
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Lemma 4.1 ([8], Lemma 2.9). There exists a small constant ν = ν(k,K,N) < 1
such that, if Ω is as in Lemma 3.5, m ∈ (m̂, 1 − m̂

2 ) and 0 ≤ t ≤ t is such that
ε(t), δ(t) ≤ ν, then for every 1 ≤ i ≤ k one has:∫

Ω−(t)

u2
i ≤ Cε(t)

1
N−1 δi(t) ,

∫
Ω−(t)

|Dui|2 ≤ Cε(t)
1

N−1 δi(t) .(4.1)

In analogy with Section 3., we give the following definitions. We consider the
“internal cylinders”

Q1 :=
(
t0 − t, t0 − t+ σ1

)
× Ωt0−t , Q2 :=

(
t0 + t− σ2, t0 + t

)
× Ωt0+t ,

where

σ1 = HN−1(Ωt0−t)
1

N−1 , σ2 = HN−1(Ωt0+t)
1

N−1 .

The set Ω̃(t) is defined as

Ω̃(t) :=
{

(x, y) ∈ RN : either x ≤ t0,
(
x− t+ σ1, y

)
∈ Ω+(t) ∪Q1 ,

or x ≥ t0,
(
x+ t− σ2, y

)
∈ Ω+(t) ∪Q2

}
.

Notice that∣∣Ω̃(t)
∣∣ =

∣∣Ω+(t)
∣∣+
∣∣Q1

∣∣+
∣∣Q2

∣∣ = 1−m(t) +HN−1
(
Ωt0−t

) N
N−1 +HN−1

(
Ωt0+t

) N
N−1

≤ 1−m(t) + ε(t)
N

N−1 .

Moreover, we define again the rescaled set

Ω̂(t) :=
∣∣Ω̃(t)

∣∣− 1
N Ω̃(t) .

In analogy with Lemma 3.5 we can state the following. Unluckily we have to
keep in account also the case in which ε(t) or δ(t) are greater than ν, but clearly
the proof is completely equal to Lemma 3.5.

Lemma 4.2. Let Ω be a set as in Lemma 3.5 and let 1 ≤ t ≤ t. There exists
a constant C6 = C6(k,N) such that exactly one of the three following conditions
hold:

(1) max {ε(t), δ(t)} > ν;

(2) (1) does not hold and m(t) ≤ C6

(
ε(t)

N
N−1 + δ(t)

N
N−1

)
;

(3) (1) and (2) do not hold and for every 1 ≤ i ≤ k, one has λi(Ω̂(t)) < λi(Ω).
Moreover if m(t) ≥ m̃ for some m̃ > 0, then there exists η = η(N, m̃) > 0

such that, for every 1 ≤ i ≤ k, one has λi(Ω̂(t)) < λi(Ω)− η.
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In order to prove the last Lemma, analogous to Lemma 3.6, we define t̂ as
in (3.13) by setting

t̂ := sup
{

1 ≤ t ≤ t̄ : condition (3) of Lemma 4.2 holds for t
}
,

with the convention that, if condition (3) is false for every 1 ≤ t ≤ t, then t̂ = 1.
Moreover if t̂ > 1, then we choose some t? ∈ (t̂−1, t̂] for which condition (3) holds.

Lemma 4.3. Let (Ωn)n be as in the hypotheses of Lemma 3.5, Ωn
γ→ Ω and

m ∈ (m̂, 1− m̂
2 ).

(a) If there exists a subsequence (not relabeled) such that, for all n, m(t?(n)) ≥
m̃ > 0 for some m̃, then Ω can not be optimal for problem ( 1.1).

(b) If there exists a subsequence such that t̂(n) = 1 for all n, then there esists
R2 = R2(k,N) > 0 such that W (Ω,m− m̂,m) ≤ R2.

(c) If there exists a subsequence such that m(t?(n)) → 0 as n → ∞, then we
have again W (Ω,m− m̂,m) ≤ R2.

Proof. First of all (see [8, Lemma 2.8]) it is admissible to assume

m(t) > 0 ∀ t > 0 .(4.2)

We define A and B as

An : =
{
t ∈ (t̂(n), t̄(n)) : condition (1) of Lemma 4.2 holds for t

}
,

Bn : =
{
t ∈ (t̂(n), t̄(n)) : condition (2) of Lemma 4.2 holds for t and m(t) > 0

}
.

The same argument of the proof of Lemma 2.8 in [8] gives then

(4.3)
∣∣An∣∣+

∣∣Bn∣∣ ≤ C7 = C7(k,K,N), ∀n .

Then it is possible to conclude as in Lemma 3.6. If we are in case (b), since
t̂(n) = 1 for all n, then W (Ωn,m− m̂,m) ≤ |An ∪ Bn| ≤ C7 + 2 and the same is
true for the γ-limit Ω.

On the other hand, if case (c) happens, in principle there could be some pieces
of the limit Ω outside the bounded strip, but Lemma 2.5 assures that Ω must
have zero capacity and not only zero Lebesgue measure outside the bounded strip.
More precisely, we know that Ω corresponds to a capacitary measure µ and we call

µ̃ := µx(τ(Ω,m− m̂), τ(Ω,m)),

in order to restrict ourselves to the strip we are interested in. In the hypothesis of
case (c) we have that

µ̃ = 0 in
{

(x, y) ∈ R× RN−1 : τ(Ω,m− m̂) < x < C7 + 2
}
.
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Hence W (Ω,m− m̂,m) ≤ C7 + 2.
At last we consider case (a). Analogously to Lemma 3.5, we have that for all

n and for all 1 ≤ i ≤ k,
λi(Ω̂(t?(n))) < λi(Ω)− η.

Hence, since we are supposing F to be weakly strictly increasing, we have a se-
quence (Ω̂(t?(n)))n such that

inf
n
F(Ω̂(t?(n))) < F(Ω),

so Ω can not be optimal for (1.1).

5. Proof of the main Theorem

We are now in position to prove the main Theorem.

Proof of Theorem 1.1. Let Ω∗ be a minimizer for problem (1.1); we aim to
show that it is contained in an N -cube QR with edge of length R = R(k,N). We
consider a sequence (Ωn)n of open sets with unit measure and such that λk(Ωn) ≤
K for all n, which γ-converges to the set Ω∗.

First of all we apply Lemma 3.6 and we have that W (Ω∗, 0, m̂) ≤ R1, otherwise
we contradict the optimality of Ω∗.
Then we apply Lemma 4.3 with m = 2m̂ and we have that W (Ω∗, m̂, 2m̂) ≤ R2.
We can iterate the application of Lemma (4.3) with m = lm̂ (l ≥ 3) till lm̂ ≤ 1− m̂

2 ,
thus obtaining, with a possible last application when m = 1− m̂:

W (Ω∗, 0, 1− m̂) ≤ R1 + lR2.

Now we can apply the above estimate to the symmetric of the set Ω∗ with respect
to the plane {x = 0}, thus obtaining:

W (Ω∗, m̂, 1) ≤ R1 + lR2.

In conclusion we proved that W (Ω∗, 0, 1) ≤ 2R1 + 2lR2. Now we repeat the whole
construction for all the other coordinates (e2, . . . , eN ) instead of the first one. At
the end, we have proved that the set Ω∗ must be contained in an N -cube QR with
edge of length R = 2R1 + 2lR2, thus the Theorem is proved.
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