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Abstract

We study entire solutions of the complex-valued Ginzburg-Landau equa-
tion in arbitrary dimension. In particular, in dimension 3 and 4, we prove
that entire local minimizers, whose modulus goes to one at infinity, are
necessarily constants and of unit modulus.
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1 Introduction and main results

In this article we study maps u : RN → R2 ' C, N ≥ 3, which are solutions of
the Ginzburg-Landau system

−∆u = u(1− |u|2) (1.1)

subjected to the natural condition at infinity

|u(x)| → 1 as |x| → +∞. (1.2)

In particular, we are interested to entire local minimizers of the Ginzburg-
Landau system (1.1). Let us recall that a weak solution u ∈ H1

loc(RN ,R2) ∩
L4
loc(RN ,R2) of (1.1) is an entire local minimzer if, for every bounded domain

Ω ⊂ RN it minimizes the energy functional
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E(v,Ω) :=

∫
Ω

1

2
|∇v|2 +

1

4
(1− |v|2)2 (1.3)

among all maps v ∈ H1
loc(RN ,R2) ∩ L4

loc(RN ,R2) satisfying v − u ∈ H1
0 (Ω,R2).

Our main result is

Theorem 1.1. Assume N = 3 or 4 and let u ∈ H1
loc(RN ,R2) be a local mini-

mizer of (1.1) satisfying (1.2). Then u is constant and |u| = 1.

The above theorem is a consequence of the following Liouville-type result
concerning entire solutions (not necessarily locally minimizing) of (1.1) .

Theorem 1.2. Assume N ≥ 3 and 0 ≤ α < 2
√
N − 1. Let u ∈ H1

loc(RN ,R2)∩
L3
loc(RN ,R2) be a distribution solution of (1.1) satisfying (1.2) and such that∫

BR(0)

|∇v|2 ≤ CRα ∀R > R0 > 0 (1.4)

for some positive constants C and R0 independent of R.
Then u is constant and |u| = 1.

Theorem (1.2) is not true when N = 2. Indeed (cfr. e.g. [7, 2]) one can
construct a non-constant, degree-one solution of (1.1), satisfying (1.2) and (1.4),
having the form u(x) = f(|x|) x

|x| , for a unique profile f vanishing at zero and

increasing to one at infinity. More precisely this particular solution satisfies∫
BR(0)

|∇u|2 ≤ C logR, for R >> 1. Furthermore, it is well-known [1, 8, 9,

10] that this solution is also the unique (up to symmetries) nontrivial local
minimizer of (1.1). Hence, in view of the above discussion it is natural to
formulate the following :

Question 1. Classify the entire local minimizers of the Ginzburg-Landau equa-
tion (1.1), satisfying condition (1.2), when N ≥ 5.

2 Proofs

Proof of Theorem 1.2. We recall that any distribution solution u ∈ L3
loc(RN ,R2)

of (1.1) is smooth and satisfies the natural bound ‖u‖L∞ ≤ 1 ([5]). We also
recall that in [5] (see Corollary 1.3 therein) we proved that any smooth solution
u of (1.1) such that |∇u| ∈ L2(RN ) must be constant. So, to conclude, we only
need to prove that u has finite Dirichlet energy. To this end, we follow the idea
introduced in [3] to prove a quantization effect for the potential energy in the
two-dimensional case and further developed in [6] to prove some Liouville-type
theorems in dimension N ≥ 3.

From the condition at infinity (1.2) we can find a real number R1 > R0 such
that |u(x)|2 > δ2 ∈ ( α

2
√
N−1

, 1) for |x| ≥ R1. Since u
|u| ∈ C2(RN \ BR1 ,S1)
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and the set RN \ BR1 is open and simply connected, we can find a real-valued
function θ ∈ C2(RN \BR1) such that :

∀ x ∈ RN \BR1
u(x) = |u(x)|eiθ(x) := ρ(x)eiθ(x). (2.1)

Inserting (2.1) into (1.1) we obtain that ρ and θ satisfy the following system
of equations : {

div
(
ρ2∇θ

)
= 0 in RN \BR1 ,

∆ρ = ρ(ρ2 − 1 + |∇θ|2) in RN \BR1
.

(2.2)

First we show that, for every R > R1, we have :∫
∂BR

ρ2 ∂θ

∂ν
= 0 (2.3)

where ν denotes the outer normal to BR.
Let us consider the vector-field V ∈ C1(RN ,RN ) given by :

V =

(
u ∧ ∂u

∂x1
, . . . , u ∧ ∂u

∂xN

)
where, for any couple of maps u = (u1, u2) and v = (v1, v2) belonging to
C1(RN ,R2), we have let u ∧ v := u1v2 − u2v1.

For every R > R1 we have :∫
∂BR

V · ν =

∫
BR

divV =

∫
BR

u ∧∆u = 0

by (1.1). On the other hand, by using (2.1) we find that V = ρ2∇θ in RN \BR1

and (2.3) follows at once.
Next we prove that ∫

RN\BR2

ρ2|∇θ|2 < +∞ (2.4)

where R2 is any real number bigger than R1.
For any R > R2 we denote by θR the mean value of θ on the sphere ∂BR

and by ΩR the open set BR \BR2
.

Multiplying the first equation of (2.2) by θ − θR , integrating over ΩR and
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using (2.3) we get:∫
ΩR

ρ2|∇θ|2 =

∫
∂ΩR

ρ2 ∂θ

∂ν
(θ − θR)

=

∫
∂BR

ρ2 ∂θ

∂ν
(θ − θR)−

∫
∂BR2

ρ2 ∂θ

∂ν
(θ − θR)

=

∫
∂BR

ρ2 ∂θ

∂ν
(θ − θR)−

∫
∂BR2

ρ2 ∂θ

∂ν
θ + 0

=

∫
∂BR

ρ2 ∂θ

∂ν
(θ − θR) + C ≤

∫
∂BR

∣∣∣∣∂θ∂ν
∣∣∣∣ |(θ − θR)|+ C

≤
(∫

∂BR

|(θ − θR)|2
) 1

2

(∫
∂BR

∣∣∣∣∂θ∂ν
∣∣∣∣2
) 1

2

+ C, (2.5)

where C is a constant independent of R.
Since the second eigenvalue of −∆SN−1 over the unit sphere SN−1 ⊂ RN is

N − 1 (cfr. e.g. [4]), we get

∫
ΩR

ρ2|∇θ|2 ≤
(

R2

N − 1

∫
∂BR

|∇T θ|2
) 1

2

(∫
∂BR

∣∣∣∣∂θ∂ν
∣∣∣∣2
) 1

2

+ C

≤ R√
N − 1

(
1

2

∫
∂BR

|∇T θ|2 +
1

2

∫
∂BR

∣∣∣∣∂θ∂ν
∣∣∣∣2
)

+ C

=
R

2
√
N − 1

∫
∂BR

|∇θ|2 + C ≤ R

2δ2
√
N − 1

∫
∂BR

ρ2 |∇θ|2 + C,

which is equivalent to :

∀R > R2 e(R) ≤ R

2δ2
√
N − 1

e
′
(R) + C, (2.6)

where we have let e(R) :=
∫

ΩR
ρ2|∇θ|2.

Set µ := 2δ2
√
N − 1. Then µ > α and from (2.6) we obtain :

∀R > R2

(
R−µ(e(R)− C)

)′
≥ 0.

By integrating the latter we see that either :

∀R > R2 e(R)− C ≤ 0 (2.7)

or there exists R3 ≥ R2 and γ > 0 such that :

∀R > R3 e(R)− C ≥ γRµ.

Since the latter is impossible by assumption (1.4), we deduce that (2.7) must
hold. This implies the desired conclusion (2.4).
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Now we observe that

∫
RN\BR2

|∇ρ|2ϕ2 =

∫
RN\BR2

2ϕ(1− ρ)∇ρ∇ϕ

+

∫
RN\BR2

ρ(1− ρ)(ρ2 − 1 + |∇θ|2)ϕ2 −
∫
∂BR2

∂ρ

∂ν
(1− ρ)ϕ2 (2.8)

for every ϕ ∈ C2
c (RN ). Just multiply the second equation of (2.2) by ϕ2(1− ρ)

and integrate by parts. (2.8) can also be written as

∫
RN\BR2

[
|∇ρ|2 + ρ2|∇θ|2

]
ϕ2 =

∫
RN\BR2

2ϕ(1− ρ)∇ρ∇ϕ

+

∫
RN\BR2

ρ|∇θ|2ϕ2 +

∫
RN\BR2

ρ(1− ρ)(ρ2 − 1)ϕ2 −
∫
∂BR2

∂ρ

∂ν
(1− ρ)ϕ2,

(2.9)

which gives

∫
RN\BR2

[
|∇u|2 +

ρ

ρ+ 1
(|u|2 − 1)2

]
ϕ2 =

∫
RN\BR2

2ϕ(1− ρ)∇ρ∇ϕ

+

∫
RN\BR2

ρ|∇θ|2ϕ2 −
∫
∂BR2

∂ρ

∂ν
(1− ρ)ϕ2. (2.10)

Choosing in (2.10) ϕ = ξR(x) = ξ( xR ), with ξ a fixed smooth function
satisfying 0 ≤ ξ ≤ 1, ξ(x) = 1 for |x| ≤ 1 and ξ(x) = 0 for |x| ≥ 2, we have for
every R > R2

δ

2

∫
BR\BR2

|∇u|2 + (1− |u|2)2 ≤
∫
RN\BR2

2ξR(1− ρ2)∇ρ∇ξR

+ δ−1

∫
RN\BR2

ρ2|∇θ|2ξ2
R −

∫
∂BR2

∂ρ

∂ν
(1− ρ). (2.11)

On the other hand, multiplying (1.1) by uξR and integrating by parts yields

∫
RN

[
|∇u|2 + (1− |u|2)2

]
ξR+

1

2

∫
RN

(1−|u|2)∆ξR =

∫
RN

(1−|u|2)ξR. (2.12)

Since ‖u‖L∞ ≤ 1, standard elliptic estimates imply ‖∇u‖L∞ ≤ CN , where
CN is a positive constant depending only on N . Using this in (2.11), togheter
with (2.4), we get for every R > R2
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∫
BR\BR2

|∇u|2 + (1− |u|2)2 ≤ C
′
(1 +RN−1) (2.13)

where C
′

is a positive constant independent of R. Combining (2.13) and(2.12)
we have for every R > R2∫

BR

(1− |u|2) ≤ C
′′
(1 +RN−1) (2.14)

where C
′′

is a positive constant independent of R. Using the latter information
into (2.11) yields∫

BR\BR2

|∇u|2 + (1− |u|2)2 ≤ C
′′′

(1 +RN−2) (2.15)

where again, C
′′′

is a positive constant independent of R. Iterating this proce-
dure, after a finite number of steps, we find the existence of a constant C > 0,
independent of R, such that∫

BR\BR2

|∇u|2 + (1− |u|2)2 ≤ C ∀R > R2. (2.16)

Thus |∇u| ∈ L2(RN ), which concludes the proof.

Proof of Theorem 1.1. Let us prove that∫
BR

|∇u|2 ≤ CRN−1 ∀R > 1, (2.17)

for some constant C > 0 independent of R.
Indeed, let ψR ∈ C2

c (RN ) satisfy 0 ≤ ψR ≤ 1, ψR(x) = 1 for |x| ≤ R − 1,
ψR(x) = 0 for |x| ≥ R, ‖∇ψR‖L∞ ≤ 2 and consider the map

vR := ψR(1− u) + u (2.18)

Using the local minimality of u over the ball BR and vR as a competitor we
have

E(u,BR) ≤ E(vR, BR) =

∫
BR

1

2
|∇vR|2 +

1

4
(1− |vR|2)2

=

∫
BR\BR−1

1

2
|∇vR|2 +

1

4
(1− |vR|2)2 ≤ CNLN (BR \BR−1) = C

′

NR
N−1

(2.19)

6



where LN denotes the N−dimensional Lebesgue measure and C
′

N is a positive
constant depending only on the dimension N . This proves (2.17).

Since N = 3 or 4, we have that α := N − 1 < 2
√
N − 1. This enables us to

apply Theorem (1.2) to reach the conclusion.
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