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Abstract

We study entire solutions of the complex-valued Ginzburg-Landau equa-
tion in arbitrary dimension. In particular, in dimension 3 and 4, we prove
that entire local minimizers, whose modulus goes to one at infinity, are
necessarily constants and of unit modulus.
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1 Introduction and main results

In this article we study maps u : RN — R% ~ C, N > 3, which are solutions of
the Ginzburg-Landau system

— Au=u(l— [uf?) (1.1)

subjected to the natural condition at infinity
|u(z)| — 1 as |z| = +oo. (1.2)

In particular, we are interested to entire local minimizers of the Ginzburg-
Landau system (1.1). Let us recall that a weak solution u € H} (RM,R?) N
L} (RN R2) of (1.1) is an entire local minimzer if, for every bounded domain

Q C RV it minimizes the energy functional



1 1
Bw.9) = [ FIVol + 11 o) (1.3)
Q2 4
among all maps v € H} (RN, R?) N LE (RN, R?) satisfying v — u € H} (2, R?).

Our main result is

Theorem 1.1. Assume N =3 or 4 and let u € H. (RY,R?) be a local mini-
mizer of (1.1) satisfying (1.2). Then u is constant and |u| = 1.

The above theorem is a consequence of the following Liouville-type result
concerning entire solutions (not necessarily locally minimizing) of (1.1) .

Theorem 1.2. Assume N >3 and 0 < o < 2y/N — 1. Letu € H} (RN, R?)N
L3

3 (RN R?) be a distribution solution of (1.1) satisfying (1.2) and such that
/ |Vv]? < CR* VR>Ry>0 (1.4)
Br(0)

for some positive constants C and Ry independent of R.
Then u is constant and |u| = 1.

Theorem (1.2) is not true when N = 2. Indeed (cfr. e.g. [7, 2]) one can
construct a non-constant, degree-one solution of (1.1), satisfying (1.2) and (1.4),
having the form u(z) = f (|x|)|5”7|, for a unique profile f vanishing at zero and
increasing to one at infinity. More precisely this particular solution satisfies
fBR(O) |Vu|> < ClogR, for R >> 1. Furthermore, it is well-known [1, 8, 9,
10] that this solution is also the unique (up to symmetries) nontrivial local
minimizer of (1.1). Hence, in view of the above discussion it is natural to
formulate the following :

Question 1. Classify the entire local minimizers of the Ginzburg-Landau equa-
tion (1.1), satisfying condition (1.2), when N > 5.

2 Proofs

Proof of Theorem 1.2. We recall that any distribution solution u € L} (RN, R?)
of (1.1) is smooth and satisfies the natural bound |Ju|p=~ < 1 ([5]). We also
recall that in [5] (see Corollary 1.3 therein) we proved that any smooth solution
u of (1.1) such that |Vu| € L2(RY) must be constant. So, to conclude, we only
need to prove that u has finite Dirichlet energy. To this end, we follow the idea
introduced in [3] to prove a quantization effect for the potential energy in the
two-dimensional case and further developed in [6] to prove some Liouville-type
theorems in dimension N > 3.

From the condition at infinity (1.2) we can find a real number R; > R, such

that |u(z)|*> > 6% € (2\/%,1) for |x| > R;. Since S C%(RN \ Bg,,S")



and the set RV \ Bg, is open and simply connected, we can find a real-valued
function § € C?(R™ \ Bg,) such that :

VeeRY\Bg,  u(x)=|u(z)e?® = px)e?@, (2.1)
Inserting (2.1) into (1.1) we obtain that p and 6 satisfy the following system
of equations :
div (p*V6) =0 in RN\ Bg,,
Ap=p(p?> —1+|V0]?) in RN\ Bpg,.

First we show that, for every R > R;, we have :

00
222 =0 2.3
/aBR” = (2.3)

where v denotes the outer normal to Bg.
Let us consider the vector-field V € C*(RY,RY) given by :

V = u/\% u/\ﬂ
o oxy’ orn

where, for any couple of maps u = (uj,u2) and v = (v1,v2) belonging to
C' (RN, R?), we have let u A v := u1vy — ugv;.
For every R > R; we have :

V~V:/ divV = uNAu =0
BBR BR BR
by (1.1). On the other hand, by using (2.1) we find that V = p?>V# in RY \ Bg,

and (2.3) follows at once.
Next we prove that

/ P*IVO|? < +oo (2.4)
RN\Br,

where R5 is any real number bigger than R;.

For any R > Ry we denote by 6 the mean value of 6 on the sphere Bg
and by Qg the open set Br \ Bg,.

Multiplying the first equation of (2.2) by 6 — 0 , integrating over Qg and




using (2.3) we get:
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where C' is a constant independent of R.
Since the second eigenvalue of —Agn-1 over the unit sphere S¥=1 ¢ RY is

N —1 (cfr. e.g. [4]), we get
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which is equivalent to :

252\/ 8Br

VR>R R < ———
TN e

where we have let e(R) := [, p*|V0]>.
Set p1:=262y/N — 1. Then p > « and from (2.6) we obtain :
VR>Ry, (R "(e(R)—C)) >0.
By integrating the latter we see that either :
VR > Ry e(R)—C <0 (2.7)
or there exists R3 > Ro and v > 0 such that :
VR > Rs e(R) — C > ~vR*.

Since the latter is impossible by assumption (1.4), we deduce that (2.7) must
hold. This implies the desired conclusion (2.4).



Now we observe that

/ Vp? = / 20(1 = p)VpVe
RN\Bg, RN\Bpg,

0]
s e p@ -1 vt - [ La-ge @)
RN\Bg, dBR, OV

for every p € C2(RY). Just multiply the second equation of (2.2) by ©?(1 — p)
and integrate by parts. (2.8) can also be written as

/ IVl + 2 IVEP] ¢ = / 20(1 — p)VpVep
RN\Bg, RN\Bg,
o
+/ _ p| VO +/ p(L=p)(p* = 1)¢? —/ 8*'0(1 - )¢,
RV\Bp, RN\Br, OBR, v
(2.9)

which gives

Lo s e =17 2= [ 2= vove
RN\Br, p+1 RN\Br,
2 2 dp 2
+ [ plVOTeT - 7, L= P¥". (210)
RN\Bx, dBg, OV

Choosing in (2.10) ¢ = &r(x) = &(F), with £ a fixed smooth function

satisfying 0 < € <1, &(z) = 1 for |z| <1 and &(z) = 0 for |z| > 2, we have for
every R > Ry

5
s / IVl + (1 — [u?)? g/ 26n(1 — P)VpVen
Br\Br,

RN\ Bg,

_ 0
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On the other hand, multiplying (1.1) by ur and integrating by parts yields

— |u 2 1 —u2 = —u2
L IR+ 0= g [ a=tuP)aca= [ 0-lP)en @212

Since ||u||pe < 1, standard elliptic estimates imply ||Vul||p~ < Cp, where
Cy is a positive constant depending only on N. Using this in (2.11), togheter
with (2.4), we get for every R > R»



/ IVul> + (1 - [u>)? <’ 1+ RN (2.13)
Br\Br,

where C” is a positive constant independent of R. Combining (2.13) and(2.12)
we have for every R > Ry

/ (1—|u®)<C"(1+RV (2.14)
Br

where C” is a positive constant independent of R. Using the latter information
into (2.11) yields

/ IVul? + (1= u?)? <" (1+ RN?) (2.15)
Br\Br,

where again, " isa positive constant independent of R. Iterating this proce-
dure, after a finite number of steps, we find the existence of a constant C' > 0,
independent of R, such that

/ Vul> + (1 - |u[>)><C  VR>R,. (2.16)
Br\Br,

Thus |Vu| € L%(RY), which concludes the proof.

Proof of Theorem 1.1. Let us prove that

/ |Vul> <CRN=' VR >1, (2.17)
Br

for some constant C' > 0 independent of R.
Indeed, let ¢¥p € C2(RY) satisfy 0 < ¢ < 1, Ygr(x) = 1 for |z| < R -1,
Yr(x) =0 for |x| > R, ||[V¢r| L~ < 2 and consider the map

vr:=9Yr(l—u)+u (2.18)

Using the local minimality of v over the ball Br and vy as a competitor we
have

1 1
S1Vunl? + (1= [orf)?

E(u, Br) < E(vr, Br) :/ 4

Br
1 1 ’
_ / SIVur? + 1(1 ~ Jun’)? < OwLa(Br\ Bpoa) = Cy R
Br\Br-1
(2.19)



where Ly denotes the N—dimensional Lebesgue measure and C;V is a positive
constant depending only on the dimension N. This proves (2.17).
Since N = 3 or 4, we have that o := N — 1 < 24/N — 1. This enables us to
apply Theorem (1.2) to reach the conclusion.
O
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