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Abstract. We prove a lower semicontinuity result for polyconvex functionals of the Calculus of
Variations along sequences of maps u : Ω ⊂ Rn → Rm in W 1,m, 2 ≤ m ≤ n, bounded in W 1,m−1

and convergent in L1 under mild technical conditions but without any extra coercivity assumption
on the integrand.

1. Introduction

Let n,m be positive integers, let Ω be an open set of Rn and let u : Ω ⊂ Rn → Rm be a map in
the Sobolev space W 1,p(Ω,Rm) for some p ≥ 1. We denote by ∇u the gradient of the map u, i.e.,
the m× n matrix of the first derivatives of u. The energy functional associated to the map u is an
integral of the type

F (u) =

∫
Ω
f(M`(∇u(x))) dx , (1.1)

where ` = m ∧ n and M`(A) denotes the vector whose components are all the minors of order up
to ` of the gradient matrix A ∈ Rm×n, i.e.,

M`(A) = (A, adj2A, . . . , adjiA, . . . , adj`A) .

For instance, M1(A) = A if ` = 1, while if ` = m = n the “last” component of M`(A) is the
determinant detA of the matrix A.

Energy functionals as in (1.1) are considered in nonlinear elasticity, when ` = m = n = 3; in
particular det∇u takes into account the contribution to the energy given by changes of volume of
the deformation u. The integrand f in (1.1) is assumed to be a convex function; this makes the
integral F consistent with the theory of polyconvex and quasiconvex integrals (see Morrey [24], Ball
[5], see also the book by Dacorogna [7]). We assume that f is bounded below, say f(M`(A)) ≥ 0
for all A ∈ Rm×n.

To fix the ideas let us assume m = n ≥ 2. Then well-known results by Morrey [24] (see also
Acerbi-Fusco [2] and Marcellini [22]) imply that the functional in (1.1) is lower semicontinuous with
respect to the weak convergence in W 1,n(Ω,Rn).

The modelling of cavitation phenomena forces then naturally to consider maps in the Sobolev
class W 1,p(Ω,Rm) for p < n. For instance, deformation maps of the type

u(x) = v(|x|) x
|x|

, (1.2)

with v : [0,∞) → R an increasing smooth function and v(0) > 0, belong to W 1,p(Ω,Rn) for every
p < n, but not to W 1,n(Ω,Rn). An extension of the energy functional outside the space W 1,n(Ω,Rn)
is needed in this case. Different choices have been investigated. Referring to the prototype case of
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the determinant of ∇u in (1.2) (see Ball [5], Fonseca-Fusco-Marcellini [11], [12], Giaquinta-Modica-
Souček [20] and Müller [25]), we recall the so called distributional determinant Det∇u as opposed
to the total variation of the determinant, i.e.,

TV p(u,Ω) := inf

{
lim inf

j

∫
Ω
| det∇uj | dx : (uj)j ⊂W 1,n, uj ⇀ u in W 1,p

}
.

TV p is an extension of the orginal integral, i.e.,

TV p(u,Ω) =

∫
Ω
| det∇u| dx for u ∈W 1,n,

if and only if for every sequence (uj)j ⊂W 1,n converging weakly to u in W 1,p∫
Ω
| det∇u| dx ≤ lim inf

j

∫
Ω
| det∇uj | dx. (1.3)

The lower semicontinuity inequality as in (1.3) for general integrands is the object of investigation
in Theorem 1.1 below under the weak convergence in W 1,p for p < n. Marcellini observed in
[23] that the lower semicontinuity inequality still holds below the critical exponent n. Later on
Dacorogna-Marcellini [8] proved the lower semicontinuity for p > n− 1 (see also [15]), while Malý
[21] exhibited a counterexample in the case p < n−1. Finally, the limit case p = n−1 was addressed
by Acerbi-Dal Maso [1], Dal Maso-Sbordone [9], Celada-Dal Maso [6] and Fusco-Hutchinson [18].
In particular, in [6] the integrand f can be any nonnegative convex function with no coercivity
assumptions.

The situation significantly changes when an explicit dependence either on x and/or on u is also
allowed, since the presence of these variables cannot be treated as a simple perturbation. Results
in this context are due to Gangbo [19], under a structure assumption, and to Fusco-Hutchinson [18]
and Fonseca-Leoni [13], assuming the coercivity of the integrand. More recently, Amar-De Cicco-
Marcellini-Mascolo [3] studied the non-coercive case with u−dependence on the integrand, assuming
the strict inequality p > n− 1.

In this paper we deal with the limit case p = n− 1 and consider integrals of the general form

F (u) =

∫
Ω
f (x, u(x),Mn(∇u(x))) dx.

Other new issues here are that we do not assume coerciveness of the integrand and we allow the
dependence on lower order variables and minors.

Theorem 1.1. Let m = n ≥ 2 and f = f(x, u, ξ) : Ω× Rn × Rσ → [0,∞) be such that

(i) f ∈ C0(Ω× Rn × Rσ) and f(x, u, ·) is convex for all (x, u);
(ii) denoting ξ = (z, t) ∈ Rσ−1 × R, if f(x0, u0, z0, ·) is constant for some point (x0, u0, z0) ∈

Ω× Rn × Rσ−1, then for all (z, t) ∈ Rσ−1 × R

f(x0, u0, z, t) = inf {f(y, v, z, s) : (y, v, s) ∈ Ω× Rn × R} . (1.4)

Then, for every sequence (uj)j ⊂W 1,n(Ω,Rn) satisfying

uj → u in L1 and sup
j
‖uj‖W 1,n−1 <∞ (1.5)

we have

F (u) ≤ lim inf
j

F (uj). (1.6)
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Note that (1.5) assures that u ∈ W 1,n−1(Ω,Rn) for n ≥ 3, and u ∈ BV (Ω,R2) if n = 2; in the
latter case ∇u denotes the approximate gradient of u (see [4, Theorem 3.83]). Let us point out
that assumption (ii) is automatically satisfied both in the autonomous case f = f(ξ) and in the
following coercive case f = f(x, u, ξ) ≥ c |t|, with c > 0 and ξ = (z, t). This is the content of
Corollary 2.3 in the former case, while in the second just note that no such point (x0, u0, z0) exists.

To highlight the main ideas of our strategy we choose to study first autonomous functionals as
in (1.1) for which the proof simplifies. Semicontinuity actually holds in a more general setting, i.e.
under the assumption m ≤ n (see Theorem 3.1). On the other hand, we are not able to remove
the coerciveness assumption when m > n (see Propositions 3.3 and 3.5), a difficulty which was also
present in the papers [6], [3] (details are in Remark 2.9). Further results for m ≤ n are discussed
for some special integrands (see Section 3).

The main tools used in the proof of Theorem 1.1 are: (i) the De Giorgi’s approximation theorem
for convex integrands; (ii) a suitable generalization of a truncation lemma by Fusco-Hutchinson [18]
(see Proposition 2.8); (iii) a measure-theoretic lemma by Celada-Dal Maso [6] (see Lemma 2.5). All
these tools are carefully combined in an argument which exploits assumption (1.4) in the statement
above and the blow-up technique.

A resume of the contents of the paper is described next briefly. Section 2 is devoted to some
technical results instrumental in the rest of the paper: we state a version of De Giorgi’s celebrated
approximation theorem, we prove some results concerning truncation for minors and a blow-up type
lemma that will be repeatedly employed to reduce ourselves to target affine functions. In Section 3
we deal with the model case of autonomomus integrands for dimensions m ≤ n and related results.
Finally, in Section 4, we provide the proof of Theorem 1.1.

The research presented in this paper took origin by the work of two different groups, one in
Firenze and the other one in Napoli. Before Summer 2012 the two groups independently reached
quite similar results. Then our colleague Bernard Dacorogna, talking separately with some of us,
pointed out the similarities. What to do: cooperation or competition? We decided to continue to
study together the problem, and this is the reason why the paper has six authors.

2. Definitions and preliminary results

The aim of this section is to introduce some notations and to recall some basic definition and
results which will be used in the sequel.

We begin with some algebraic notation.
Let n,m ≥ 2 and Mm×n be the linear space of all m×n real matrices. For A ∈Mm×n, we denote

A = (Aij), 1 ≤ i ≤ m, 1 ≤ j ≤ n, where upper and lower indices correspond to rows and columns
respectively.

The euclidean norm of A will be denoted by |A|. The number of all minors of any matrix in
Mm×n is given by

σ :=

m∧n∑
i=1

(m
i

)(n
i

)
.

We shall also adopt the following notations. We set Il,k = {α = (α1, . . . , αl) ∈ Nl : 1 ≤ α1 < α2 <
. . . < αl ≤ k}, where 1 ≤ l ≤ k. If α ∈ Il,m and β ∈ Il,n, then Mα,β(A) = det(Aαiβj ).

By Ml(A) we denote the vector whose components are all the minors of order l, and by Ml(A)
the vector of all minors of order up to l.

As usual, Qr(x), Br(x) denote the open euclidean cube, ball in Rn, n ≥ 2, with side r, radius
r and center the point x, respectively. The center shall not be indicated explicitly if it coincides
with the origin.
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We shall often deal in what follows with convergences of measures. As usual, we shall name
local weak ∗ convergence of Radon measures the one defined by duality with Cc(Ω), and weak ∗

convergence the one defined by duality with C0(Ω) on the subset of finite Radon measures.

2.1. Approximation of convex functions. We survey now on an approximation theorem for
convex functions, due to De Giorgi, that plays an important role in the framework of lower semi-
continuity problems (see [10]). Given a convex function f : Rσ → R, σ ≥ 1 a natural number,
consider the affine functions ξ → ai + 〈bi, ξ〉, with ai ∈ R and bi ∈ Rσ, given by

ai :=

∫
Rσ
f(η)

(
(σ + 1)αi(η) + 〈∇αi(η), η〉

)
dη (2.1)

bi := −
∫
Rσ
f(η)∇αi(η)dη, (2.2)

where, for all i ∈ N, αi(ξ) := iσα(i(qi − ξ)), (qi)i = Qσ and α ∈ C1
0 (Rσ) is a non negative function

such that
∫
Rσ α(η)dη = 1.

Lemma 2.1. Let f : Rσ → R be a convex function and ai, bi be defined as in (2.1)-(2.2). Then,

f(ξ) = sup
i∈N

(ai + 〈bi, ξ〉) , for all ξ ∈ Rσ.

The main feature of the approximation in Lemma 2.1 above is the explicit dependence of the
coefficients ai and bi on f . In particular, if f depends on the lower order variables (x, u) regularity
properties of the coefficients ai and bi with respect to (x, u) can be easily deduced from related
hypotheses satisfied by f thanks to formulas (2.1) and (2.2) and Lemma 2.1.

In particular, the following approximation result holds.

Theorem 2.2. Let f = f(x, u, ξ) : Ω × Rm × Rσ → [0,∞), be a continuous function, convex in
the last variable ξ. Then, there exist two sequences of compactly supported continuous functions
ai : Ω× Rm → R, bi : Ω× Rm → Rσ such that, setting for every i ∈ N,

fi(x, u, ξ) := (ai(x, u) + 〈bi(x, u), ξ〉)+ ,

then
f(x, u, ξ) = sup

i
fi(x, u, ξ).

Moreover, for every i ∈ N there exists a positive constant Ci such that

(a) fi is continuous, convex in ξ and

0 ≤ fi(x, u, ξ) ≤ Ci(1 + |ξ|) for all (x, u, ξ) ∈ Ω× Rm × Rσ; (2.3)

(b) if ωi denotes a modulus of continuity of ai + |bi| we have

|fi(x, u, ξ)− fi(y, v, η)| ≤ Ci|ξ − η|+ ωi(|x− y|+ |u− v|)(1 + |ξ| ∧ |η|) (2.4)

for all (x, u, ξ) and (y, v, η) ∈ Ω× Rm × Rσ.

The compactness of the supports of ai and bi is obtained by first approximating f with a mono-
tone sequence fj(x, u, ξ) := mj(x, u)f(x, u, ξ), where mj ∈ Cc(Ω× Rm), mj = 1 on Ωj × {|u| < j}
and mj = 0 on Ω×Rm \ (Ωj+1×{|u| < j+1}), Ωj ⊂⊂ Ωj+1 ⊂⊂ Ω a family of open sets exhausting
Ω; and then applying to each fj De Giorgi’s approximation result in Lemma 2.1.

Finally, by virtue of Lemma 2.1 we can show that the technical assumption stated in (1.4) of
Theorem 1.1 is satisfied by autonomous integrands.

Corollary 2.3. Let f = f(ξ) : Rσ → R be a convex function, and denote ξ = (z, t) ∈ Rσ−1 × R.
If R 3 t 7→ f(z0, t) is bounded from above for some z0 ∈ Rσ−1, then f(z, t) = f(z) for all (z, t) ∈
Rσ−1 × R, i.e. f does not depend on t.
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Proof. By Lemma 2.1 f = supi∈N fi, where fi(ξ) := ai + 〈βi, z〉+ γi t, for constants ai, γi ∈ R and
a vector βi ∈ Rσ−1. Then, if f(z0, ·) is bounded from above, necessarily γi = 0 for all i ∈ N. In
turn, this implies that fi(z, t) = fi(z), the conclusion then follows at once. �

Remark 2.4. More generally, the thesis of Corollary 2.3 holds for lower semicontinuous convex
functions f : X × Y → R, X and Y two real locally convex topological vector spaces. Indeed, such
a function f is the supremum of all continuous affine functionals below f itself.

2.2. A truncation method for minors. We first recall a lemma proved in [6, Lemma 3.2].

Lemma 2.5. Let (µk)k be a sequence of signed Radon measures on Ω. Assume that

(a) there exists T ∈ D′(Ω) such that µk → T in the sense of distributions on Ω;
(b) there exists a positive Radon measure ν such that µ+

k ⇀ ν (locally) weakly∗ in the sense
of measures on Ω.

Then, there exists a Radon measure µ such that T = µ on Ω and µk ⇀ T locally weakly ∗ in the
sense of measures on Ω.

An immediate consequence is the following corollary (see [18, Lemma 2.2], and also [6, Corol-
lary 3.3] for m = n = l).

Corollary 2.6. Let 2 ≤ l ≤ m ∧ n, uk, u ∈W 1,∞(Ω,Rm) be maps such that

(a) (uk)k converges to u in L∞(Ω,Rm);
(b) supk ‖Ml−1(∇uk)‖L1 <∞;
(c) there exists c ∈ Rτ , τ =

(
m
l

) (
n
l

)
, such that

sup
k

∫
Ω
〈c,Ml(∇uk)〉+ dx <∞.

Then, Ml−1(∇uk) ⇀Ml−1(∇u) weakly ∗ and 〈c,Ml(∇uk)〉 ⇀ 〈c,Ml(∇u)〉 locally weakly ∗ in the
sense of measures on Ω.

Proof. Passing to a subsequence, not relabeled for convenience, we may suppose that for any
α ∈ Ih,m, β ∈ Ih,n, h ≤ l − 1

Mα,β(∇uk) ⇀ µα,β weakly ∗ in the sense of measures.

We claim that for every α ∈ Ih,m, β ∈ Ih,n, h ≤ l − 1 then

µα,β = Mα,β(∇u)Ln Ω.

To establish the case h = 1 fix a test function ϕ ∈ C∞c (Ω) and α ∈ I1,m, β ∈ I1,n, then in view of
(a) and being u a Sobolev function we have∫

Ω
ϕdµα,β = lim

k

∫
Ω
ϕ
∂uαk
∂xβ

dx = − lim
k

∫
Ω
uαk

∂ϕ

∂xβ
dx = −

∫
Ω
uα

∂ϕ

∂xβ
dx =

∫
Ω
ϕ
∂uα

∂xβ
dx.

By induction, suppose that the result is true for any α ∈ Ih−1,m, β ∈ Ih−1,n with 2 ≤ h ≤ l − 1.
Fix now α ∈ Ih,m, β ∈ Ih,n and a test function ϕ ∈ C∞c (Ω), then∫

Ω
ϕdµα,β = lim

k

∫
Ω
ϕdet

(
∂uαik
∂xβj

)
dx

= − lim
k

∫
Ω
uα1
k det

∂(ϕ, uα2
k , . . . , u

αh
k )

∂(xβ1 , . . . , xβh)
= − lim

k

h∑
j=1

(−1)j−1

∫
Ω
uα1
k

∂ϕ

∂xβj
Mα̂1,β̂j

(∇uk) dx,
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where α̂1 = (α2, . . . , αh), β̂j = (β1, . . . , βj−1, βj+1, . . . , βh). Since uk → u in L∞ and by induction
assumption Mα̂1,β̂j

(∇uk) ⇀Mα̂1,β̂j
(∇u) weakly ∗ in the sense of measures, we have∫

Ω
ϕdµα,β = − lim

k

h∑
j=1

(−1)j−1

∫
Ω
uα1
k

∂ϕ

∂xβj
Mα̂1,β̂j

(∇uk) dx =

∫
Ω
ϕMα,β(∇u) dx,

that gives the claim.
To prove that (〈c,Ml(∇uk)〉)k converges to 〈c,Ml(∇u)〉 locally weakly ∗ in the sense of measures,

we first observe that arguing as before, the induction assumption and conditions in items (a) and
(b) ensure that (Ml(∇uk))k converge in D′(Ω,Rτ ) to Ml(∇u). In particular, (〈c,Ml(∇uk)〉)k
converges to 〈c,Ml(∇u)〉 in D′(Ω).

Then, using assumption (c), Lemma 2.5 yields that up to a subsequence (〈c,Ml(∇uk)〉)k con-
verges locally weakly∗ in the sense of measures to some Radon measure µ with µ = 〈c,Ml(∇u)〉.

Since the limit is independent of the extracted subsequence the convergence for the whole se-
quence follows immediately. �

Remark 2.7. If condition (c) above is strengthened to supk ‖Ml(∇uk)‖L1 < ∞, [18, Lemma 2.2]
establishes the weak* convergence in the sense of measures of (Ml(∇uk))k to Ml(∇u).

The next result is inspired by [18, Proposition 2.5].

Proposition 2.8. Let n ≥ m ≥ 2 and let uj be W 1,m(Ω,Rm) functions and u in W 1,∞(Ω,Rm).
Suppose that uj → u in L1(Ω,Rm) and that for some c ∈ Rσ

sup
j

(
‖Mm−1(∇uj)‖L1 + ‖〈c,Mm(∇uj)〉‖L1

)
<∞.

Then, there exists a sequence (vj)j ∈W 1,m(Ω,Rm) converging to u in L∞(Ω,Rm), such that

Mm−1(∇vj) ⇀Mm−1(∇u), 〈c,Mm(∇vj)〉⇀ 〈c,Mm(∇u)〉 (2.5)

weakly ∗ in the sense of measures. Moreover, an infinitesimal sequence of positive numbers sj exists
such that

{x ∈ Ω : uj(x) 6= vj(x)} ⊆ Aj := {x ∈ Ω : |uj(x)− u(x)| > sj} (2.6)

and

lim
j

∫
Aj

(
1 + |Mm−1(∇vj)|+ |〈c,Mm(∇vj)〉|

)
dx = 0. (2.7)

Proof. Let us first fix some notation that shall be used throughout this proof. If A, B are in Mm×n

and 1 ≤ k ≤ m the components of Mk(A + B) can be written as certain linear combinations of
products of components of the vectorsMi(A) andMk−i(B). We denote these linear combinations
writing

Mk(A + B) =
k∑
i=0

Mi(A)�Mk−i(B), (2.8)

with the convention that M0(A) =M0(B) = 1.
Let 0 < s < t and denote by

ϕs,t(r) :=


1 r ≤ s
t− r
t− s

s ≤ r ≤ t

0 r ≥ t,
and by Φs,t the function

Φs,t(y) := y ϕs,t(|y|) for all y ∈ Rm.
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We set

vjs,t := u+ Φs,t(uj − u).

Note that

Ln({x ∈ Ω : vjs,t 6= uj}) ≤ Ln({x ∈ Ω : |uj − u| ≥ s}) ≤ s−1‖uj − u‖L1 , ‖vjs,t − u‖L∞ ≤ t, (2.9)

and in addition

∇vjs,t = ∇u+DΦs,t(uj − u) ◦ (∇uj −∇u)

where DΦs,t(y) = ϕs,t(|y|)Id+ ϕ′s,t(|y|)
y⊗y
|y| . Note that if 1 ≤ i ≤ m, and α, λ ∈ Ii,m, since y ⊗ y is

a rank one matrix one easily infers that

|Mα,λ(DΦs,t(y))| ≤ (ϕs,t(|y|))i + C|y||ϕ′s,t(|y|)|(ϕs,t(|y|))i−1. (2.10)

Finally, we define

Cj := {x ∈ Ω : ∇(|uj − u|)(x) = 0},
and it is easy to check that

∇vjs,t(x) = ∇u(x) + ϕs,t(|uj(x)− u(x)|)(∇uj(x)−∇u(x))

for Ln a.e. x in Cj .

We now estimate the linear combination of the m-th order minors on the set Ejs,t := {x ∈ Ω :
s < |uj(x)− u(x)| < t} by taking into account (2.8)∫
Ejs,t

|〈c,Mm(∇vjs,t)〉| dx =

∫
Ejs,t∩Cj

|〈c,Mm(∇vjs,t)〉| dx+

∫
Ejs,t\Cj

|〈c,Mm(∇vjs,t)〉| dx (2.11)

≤
m∑
i=0

∫
Ejs,t∩Cj

|〈c,Mm−i(∇u)�Mi(ϕs,t(|uj − u|)(∇uj −∇u))〉| dx

+

m∑
i=0

∫
Ejs,t\Cj

|〈c,Mm−i(∇u)�Mi(DΦs,t(uj − u) ◦ (∇uj −∇u))〉| dx

≤ C
∫
Ejs,t

(
1 + |Mm−1(∇uj)|+ |〈c,Mm(∇uj)〉|

)
dx

+ C

∫
Ejs,t\Cj

(
|Mm−1(DΦs,t(uj − u) ◦ (∇uj −∇u))|+ |〈c,Mm(DΦs,t(uj − u) ◦ (∇uj −∇u))〉|

)
dx,

where C = C(m,n, ‖∇u‖L∞).
An elementary but lengthy algebraic computation shows that if A ∈Mm×m and B ∈Mm×n then

|Mi(A ◦ B)| ≤
∑

α,λ∈Ii,m

∑
β∈Ii,n

|Mα,λ(A)||Mλ,β(B)| for 1 ≤ i ≤ m− 1

Mm(A ◦ B) = (detA)Mm(B).

By taking into account this estimate and (2.10) we conclude that∫
Ejs,t\Cj

|Mm−1(DΦs,t(uj − u) ◦ (∇uj −∇u))| dx

≤
∫
Ejs,t\Cj

(
1 +

C

t− s
|uj − u|

)
|Mm−1(∇uj −∇u))| dx,

and
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Ejs,t\Cj

|〈c,Mm(DΦs,t(uj − u) ◦ (∇uj −∇u))〉| dx

=

∫
Ejs,t\Cj

| det(DΦs,t(uj − u))||〈c,Mm(∇uj −∇u)〉| dx.

Therefore, recalling (2.11) we get∫
Ejs,t

|〈c,Mm(∇vjs,t)〉| dx ≤ C
∫
Ejs,t

(
1 + |Mm−1(∇uj)|+ |〈c,Mm(∇uj)〉|

)
dx

+
C

t− s

∫
Ejs,t\Cj

(
|Mm−1(∇uj)|+ |〈c,Mm(∇uj)〉|

)
|uj − u| dx.

Repeating for the lower order minors the argument used to infer the previous estimate we get∫
Ejs,t

(
|Mm−1(∇vjs,t)|+ |〈c,Mm(∇vjs,t)〉|

)
≤ C

∫
Ejs,t

(
1 + |Mm−1(∇uj)|+ |〈c,Mm(∇uj)〉|

)
dx

+
C

t− s

∫
Ejs,t\Cj

(
|Mm−1(∇uj)|+ |〈c,Mm(∇uj)〉|

)
|uj − u| dx. (2.12)

To deal with the last integral in (2.12) we recall that ∇(|uj − u|) 6= 0 on Ejs,t \Cj , then we use the

coarea formula to get for L1 a.e. t > 0

lim
s↑t

1

t− s

∫
{x∈Ω\Cj : s<|uj−u|<t}

(
|Mm−1(∇uj)|+ |〈c,Mm(∇uj)〉|

)
|uj − u| dx

= lim
s↑t

1

t− s

∫ t

s
dr

∫
{x∈Ω\Cj : |uj−u|=r}

(
|Mm−1(∇uj)|+ |〈c,Mm(∇uj)〉|

) |uj − u|
|∇(|uj − u|)|

dHn−1

= t

∫
{x∈Ω\Cj : |uj−u|=t}

|Mm−1(∇uj)|+ |〈c,Mm(∇uj)〉|
|∇(|uj − u|)|

dHn−1 (2.13)

Let us now denote by C0 a constant such that for all j ∈ N∫ ∞
0

dr

∫
{x∈Ω\Cj : |uj−u|=r}

|Mm−1(∇uj)|+ |〈c,Mm(∇uj)〉|
|∇(|uj − u|)|

dHn−1

=

∫
Ω\Cj

(
|Mm−1(∇uj)|+ |〈c,Mm(∇uj)〉|

)
dx < C0.

We now recall the following elementary fact: If g is a nonnegative measurable function in [0,∞)
with

∫∞
0 g(r) dr ≤ C0, then for every 0 < r1 < r2 there exists a set J of positive measure in (r1, r2)

such that for all r ∈ J
rg(r) ≤ C0

ln(r2/r1)
.

By applying for j sufficiently large this inequality with

0 < r1 = ‖uj − u‖1/2L1 < r2 = ‖uj − u‖1/4L1 < 1

we find tj ∈ (‖uj − u‖1/2L1 , ‖uj − u‖
1/4
L1 ) so that Ln({x ∈ Ω : |uj − u| = tj}) = 0 and

tj

∫
{x∈Ω\Cj : |uj−u|=tj}

|Mm−1(∇uj)|+ |〈c,Mm(∇uj)〉|
|∇(|uj − u|)|

dHn−1 ≤ 4C0

− ln ‖uj − u‖L1

.
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The latter estimate and (2.12) and (2.13) imply that for every j ∈ N sufficiently large there exists

sj ∈ (‖uj − u‖1/2L1 , tj) such that∫
{x∈Ω: sj<|uj−u|<tj}

(
|Mm−1(∇vjsj ,tj )|+ |〈c,Mm(∇vjsj ,tj )〉|

)
dx ≤ 5C0

− ln ‖uj − u‖L1

.

Therefore, we may conclude by choosing vj := vjsj ,tj . Indeed, from (2.9), setting

Aj := {x ∈ Ω : |uj − u| > sj},

we have that

Ln({x ∈ Ω : vj 6= uj}) ≤ Ln(Aj) ≤
1

sj
‖uj − u‖L1 ≤ ‖uj − u‖1/2L1 ,

‖vj − u‖L∞ ≤ tj ≤ ‖uj − u‖1/4L1 ,

and∫
Aj

(
|Mm−1(∇vj)|+ |〈c,Mm(∇vj)〉|

)
dx

=

∫
{x∈Ω: sj<|uj−u|<tj}

(
|Mm−1(∇vj)|+ |〈c,Mm(∇vj)〉|

)
dx

+

∫
{x∈Ω: |uj−u|≥tj}

(
|Mm−1(∇u)|+ |〈c,Mm(∇u)〉|

)
dx

≤ 5C0

− ln ‖uj − u‖L1

+ C

∫
Aj

|Mm(∇u)| dx→ 0.

Finally, the weak* convergence stated in (2.5) follows from Corollary 2.6 and the boundedness of
(|〈c,Mm(∇vj)〉‖L1)j , in turn implied by (2.6). �

Remark 2.9. Let us point out that the assumption m ≤ n plays a crucial role in the proof of
Proposition 2.8. The reason is essentially of algebraic nature. In fact if m ≤ n and A ∈Mm×m and
B ∈Mm×n from the algebraic equality

Mm(A ◦ B) = (detA)Mm(B) (2.14)

we can trivially estimate 〈c,Mm(A ◦ B)〉 with 〈c,Mm(B)〉.
Instead, when m > n equality (2.14) is replaced by a more complicate expression that involves

suitable linear combinations of higher order minors and it is no longer true that |〈c,Mm(A◦B)〉| ≤
C|〈c,Mm(B)〉|, for some positive constant C depending on A.

We do not know if Proposition 2.8 fails to be true if m > n.

Remark 2.10. For every m and n ∈ N, if the second condition in the statement of Proposition 2.8 is
replaced with supj ‖M`(∇uj)‖L1 <∞, ` = m∧ n, then [18, Proposition 2.5] establishes a stronger

result. More precisely, if supj ‖M`(∇uj)‖L1 < ∞, then the sequence (vj)j defined accordingly,

converges to u in L∞ and satisfies supj ‖M`(∇vj)‖L1 <∞, (2.6), and

lim
j

∫
Aj

(1 + |M`(∇vj)|) dx = 0. (2.15)

Furthermore, (M`(∇vj))j weakly* converges in the sense of measures to M`(∇u).
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2.3. A blow-up type lemma. Let f : Ω × Rm × Rσ → [0,∞) be a continuous function, and
consider

F (v, U) :=

∫
U
f(x, v(x),M`(∇v(x)))dx,

where U is any open subset in Ω, v ∈ W 1,`−1(Ω,Rm), if ` = m ∧ n ≥ 3, v ∈ BV (Ω,Rm) for ` = 2.
In the latter case ∇v is the density of the absolutely continuous part of the distributional gradient
of v (see, for instance, [4, Theorem 3.83]).

We shall show that to infer the lower semicontinuity inequality

F (u) ≤ lim inf
j

F (uj), (2.16)

along sequences (uj)j ⊂W 1,`(Ω,Rm) satisfying

uj → u in L1(Ω,Rm), and sup
j
‖uj‖W 1,`−1 <∞,

we can always reduce ourselves to affine target maps thanks to the next lemma.

Lemma 2.11. Suppose that for Ln a.e. x0 ∈ Ω, and for all sequences εk ↓ 0 and (vk)k ⊂
W 1,`(Q1,Rm) such that

vk → v0 := ∇u(x0) · y in L1(Q1,Rm), and sup
k
‖vk‖W 1,`−1 <∞,

we have

lim inf
k

∫
Q1

f(x0 + εk y, u(x0) + εk vk,M`(∇vk)) dy ≥ f(x0, u(x0),M`(∇u(x0))), (2.17)

then the lower semicontinuity inequality (2.16) holds.

Proof. We employ the blow-up technique introduced by Fonseca & Müller [17]. Without loss of
generality we may assume that

lim inf
j

F (uj) = lim
j
F (uj) <∞,

and define the (traces of the) non negative Radon measures µj(U) := F (uj , U), U ⊆ Ω open. Then,
as supj µj(Ω) < ∞, by passing to a subsequence if necessary, there exists a non negative Radon
measure µ such that µj ⇀ µ weakly ∗ in the sense of measures.

In what follows, by using (2.17) we shall prove that

dµ

dLn
(x) = lim

ε↓0

µ (Qε(x))

Ln(Qε(x))
≥ f(x, u(x),M`(∇u(x))), (2.18)

for Ln a.e. x ∈ Ω. Clearly, given (2.18) for granted, the conclusion easily follows as

lim inf
j

F (uj) = lim inf
j

µj(Ω) ≥ µ(Ω) ≥ F (u).

To this aim we consider the Radon measures νj(U) := ‖uj‖`−1
W 1,`−1(U,Rm)

and suppose that (νj)j
converges weakly ∗ in the sense of measures to a Radon measure ν.

The ensuing properties are satisfied for all x in a set Ω0 of full measure in Ω

dµ

dLn
(x),

dν

dLn
(x) exist finite,

and

lim
ε↓0

1

εn+1

∫
Qε(x)

|u(y)− u(x)−∇u(x) · (y − x)| dy = 0. (2.19)



LOWER SEMICONTINUITY FOR POLYCONVEX INTEGRALS 11

We shall establish (2.18) for all points in Ω0. Thus, with fixed x0 ∈ Ω0, let εk ↓ 0 be any sequence
such that for every k ∈ N we have

µ(∂Qεk(x0)) = ν(∂Qεk(x0)) = 0. (2.20)

By changing variables, (2.19) rewrites for x = x0 as

lim
k

∫
Q1

∣∣∣∣u(x0 + εk y)− u(x0)

εk
−∇u(x0) · y

∣∣∣∣ dy = 0.

The choice of (εk)k in (2.20) yields

dµ

dLn
(x0) = lim

k

µ(Qεk(x0))

εnk
= lim

k
lim
j

1

εnk

∫
Qεk (x0)

f(x, uj ,M`(∇uj))dx

= lim
k

lim
j

∫
Q1

f(x0 + εk y, u(x0) + εk vj,k,M`(∇vj,k))dy, (2.21)

and

dν

dLn
(x0) = lim

k

ν(Qεk(x0))

εnk
= lim

k
lim
j

1

εnk
‖uj‖`−1

W 1,`−1(Qεk (x0),Rm)
= lim

k
lim
j
‖vj,k‖`−1

W 1,`−1(Q1,Rm)
,

(2.22)
where we have set

vj,k(y) :=
uj(x0 + εk y)− u(x0)

εk
.

Clearly, vj,k ∈W 1,`, and by denoting

v0(y) := ∇u(x0) · y

we have that

lim
k

lim
j
‖vj,k − v0‖L1 = 0. (2.23)

A standard diagonalization argument provides a subsequence jk ↑ ∞ for which (2.21), (2.22) and
(2.23) become

vk := vjk,k → v0 L1, sup
k
‖vk‖W 1,`−1 <∞, and

∞ >
dµ

dLn
(x0) = lim

k

∫
Q1

f(x0 + εk y, u(x0) + εk vk,M`(∇vk)) dy,

and thus inequality (2.18) is implied by (2.17). �

3. The model case

In this section we discuss, for m ≤ n, the model case of autonomous functionals of the form

F (v) :=

∫
Ω
f (Mm(∇v(x))) dx.

where v ∈W 1,m−1(Ω,Rm), if n ≥ m ≥ 3, v ∈ BV (Ω,R2) for n ≥ m = 2.
Our result improves upon [6, Theorems 3.1 and 4.1] (see also [16, Theorem 4.1] and [14, Theorem

10]).
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Theorem 3.1. Let 2 ≤ m ≤ n and f : Rσ → [0,∞) be a convex function.
Then, for every sequence (uj)j ⊂W 1,m(Ω,Rm) satisfying

uj → u in L1, and sup
j
‖uj‖W 1,m−1 <∞ (3.1)

we have
F (u) ≤ lim inf

j
F (uj).

Proof. By Lemma 2.11 it is sufficient to show that

lim inf
k

∫
Q1

f (Mm(∇vk)) dy ≥ f (Mm(∇u(x0))) , (3.2)

for all points x0 of approximate differentiability of u and for all sequences

vk → v0 := ∇u(x0) · y in L1, and sup
k
‖vk‖W 1,m−1 <∞.

Without loss of generality we may assume that the inferior limit in (3.2) is finite.
Furthermore, to infer (3.2) we are left with proving for all i ∈ N

lim inf
k

∫
Q1

fi (Mm(∇vk)) dy ≥ fi (Mm(∇u(x0))) , (3.3)

where fi(ξ) = (ai + 〈bi, ξ〉)+, ai ∈ R, bi ∈ Rσ, are the functions in Lemma 2.1.
As 0 ≤ fi ≤ f and being the inferior limit in (3.2) finite, we infer that

sup
k

∫
Q1

(〈bi,Mm(∇vk)〉)+ dy <∞. (3.4)

Fix now M ≥ ‖v0‖L∞ + 1 and set

vk,M (x) :=

vk(x) if |vk(x)| ≤M

M
vk(x)

|vk(x)|
otherwise.

Note that the sequence (vk,M )k is bounded in W 1,m−1 ∩ L∞, then (〈bi,Mm(∇vk,M 〉))k has a limit
in the sense of distributions. Moreover, (3.1) and (3.4) yield for every M as above

sup
k

∫
Q1

(〈bi,Mm(∇vk,M )〉)+ dy <∞.

Hence, with fixed ρ ∈ (0, 1), by the latter estimate and by Lemma 2.5, Proposition 2.8 applied on
Qρ provides a new sequence (wk)k satisfying all the conclusions there. We do not highlight the
dependence of the various quantities on ρ for the sake of simplicity. In particular, we have∫

Qρ

fi (Mm(∇wk)) dy ≤
∫
Qρ\Ak

fi (Mm(∇vk,M )) dy +

∫
Ak

(|ai|+ |〈bi,Mm(∇wk)〉|)dy

≤
∫
Q1

fi (Mm(∇vk)) dy +

∫
Ak

(|ai|+ |〈bi,Mm(∇wk)〉|)dy. (3.5)

The latter estimates follow from the positivity of fi and recalling that, by the choice of M , for k
sufficiently large we have

{y ∈ Qρ : |vk(y)| > M} ⊆ Ak = {y ∈ Qρ : |vk(y)− v0(y)| > sk} .
Therefore, thanks to (2.7) and (3.5), we get

lim inf
k

∫
Q1

fi (Mm(∇vk)) dy ≥ lim inf
k

∫
Qρ

fi (Mm(∇wk)) dy. (3.6)
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From this inequality, (3.3) follows at once recalling the weak ∗ convergence of (Mm−1(∇wk))k
to Mm−1(∇u(x0)) and of (〈bi,Mm(∇wk)〉)k to 〈bi,Mm(∇u(x0))〉 on Qρ, and finally by letting
ρ ↑ 1. �

A simple variant of the proof of Theorem 3.1 allows us to treat also some special cases when a
dependence on x and u appears (cp. with [19] for m = n and p > n−1, and with [16, Remark 4.3]).
To be precise, let us consider the functional

F (u) =

∫
Ω
h(x, u)f(Mm(∇u(x))) dx. (3.7)

Proposition 3.2. Let m,n, f be as in Theorem 3.1 and F defined by (3.7). If h is a nonnegative
continuous function in Ω× Rm such that either h ≥ c0 > 0 or h ≡ h(x), then

F (u) ≤ lim inf
j

F (uj)

for every sequence (uj)j ⊂W 1,m(Ω,Rm) satisfying

uj → u in L1, and sup
j
‖uj‖W 1,m−1 <∞.

Proof. Let us first assume that h ≡ h(x) is nonnegative and continuous. In this case the result
follows from Theorem 3.1 by a simple continuity and localization argument.

If instead h ≡ h(x, u) ≥ c0 > 0 we use Lemma 2.11 and reduce ourselves to show that

lim inf
k

∫
Q1

h(x0 + εk y, u(x0) + εk vk)f(Mm(∇vk)) dy ≥ h(x0, u(x0))f(Mm(∇u(x0))),

where εk ↓ 0 and vk → v0 = ∇u(x0) · y in L1(Q1), and the liminf on the left hand side can be taken
finite.

Then the inequality above is proved if we show that for all i ∈ N we have

lim inf
k

∫
Q1

h(x0 + εk y, u(x0) + εk vk)fi(Mm(∇vk)) dy ≥ h(x0, u(x0))fi(Mm(∇u(x0))), (3.8)

where fi(ξ) = (ai + 〈bi, ξ〉)+, ai ∈ R, bi ∈ Rσ, are the functions in Lemma 2.1. Note that, since the
above liminf is finite and h ≥ c0, we infer

sup
k

∫
Q1

(〈bi,Mm(∇vk)〉)+ dy <∞. (3.9)

For M ≥ ‖v0‖L∞ + 1 consider the truncated functions

vk,M (x) =

vk(x) if |vk(x)| ≤M

M
vk(x)

|vk(x)|
otherwise,

the sequence (vk,M )k turns out to be bounded inW 1,m−1∩L∞. Therefore, arguing as in Theorem 3.1
and taking into account (3.9) and Lemma 2.5, Proposition 2.8 gives a new sequence (wk)k satisfying
all the conclusions there on Qρ. Thus, using (2.6) and (2.7) as in the proof of (3.6), we get

lim inf
k

∫
Q1

h(x0 + εk y, u(x0) + εk vk)fi (Mm(∇vk)) dy

≥ lim inf
k

∫
Qρ

h(x0 + εk y, u(x0) + εk wk)fi (Mm(∇wk)) dy.
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From this inequality we easily get (3.8), since (h(x0 + εk y, u(x0) + εk wk))k converges uniformly in
Qρ to h(x0, u(x0)), and since for any open subset U ⊆ Qρ

Ln(U)fi(Mm(∇u(x0))) ≤ lim inf
k

∫
U
fi (Mm(∇wk)) dy

thanks to the weak ∗ convergence of (Mm−1(∇wk))k to Mm−1(∇u(x0)) and of (〈bi,Mm(∇wk)〉)k
to 〈bi,Mm(∇u(x0))〉 on Qρ, and finally letting ρ ↑ 1. �

When trying to extend Theorem 3.1 to general integrands depending on lower order variables
some difficulties arise. We have not been able neither to prove such a statement nor to find
counterexamples in such a generality. Instead, we have established lower semicontinuity either
strengthening condition (3.1) (cp. with Proposition 3.3) or adding a further condition on the
integrand (cp. with Theorem 1.1).

In Section 4 we shall establish the lower semicontinuity property under condition (3.1) adding a
mild technical assumption on the integrand f provided the domain and the target space have equal
dimension, that is m = n.

Instead, for all values of m and n, we shall prove below lower semicontinuity without any further
technical assumption on the integrand along sequences that have all the set of minors bounded in
L1. Actually, the latter condition holding true, we need only to suppose convergence in L1, no
bound on any Sobolev norm for the relevant sequence is needed (for a comparison with classical
statements in literature see [1, Theorem 3.5], [6, Theorem 2.2, Corollary 2.3], [9, Theorem 3.1], [18,
Theorem 3.3], and [13, Theorem 1.4, Corollary 1.5] for related results).

Proposition 3.3. Let m and n ≥ 2, ` = m ∧ n, and f = f(x, u, ξ) : Ω × Rm × Rσ → [0,∞),
Ω ⊂ Rn open, be in C0(Ω× Rm × Rσ), and such that f(x, u, ·) is convex for all (x, u) ∈ Ω× Rm.

Then, for every sequence (uj)j ⊂W 1,`(Ω,Rm) satisfying

uj → u in L1, and sup
j
‖M`(∇uj)‖L1 <∞, (3.10)

we have

F (u) ≤ lim inf
j

F (uj).

Proof. We can argue analogously to Lemma 2.11 and infer that to conclude we need to show

lim inf
k

∫
Q1

f(x0 + εk y, u(x0) + εk vk,M`(∇vk)) dy ≥ f(x0, u(x0),M`(∇u(x0))), (3.11)

along sequences (vk)k ⊂W 1,` satisfying

vk → v0 = ∇u(x0) · y in L1, and sup
k
‖M`(∇vk)‖L1 <∞.

Thus, we can apply [18, Proposition 2.5] (cp. with Remarks 2.7 and 2.10) that provides a sequence
(wk)k ⊂ W 1,∞ converging to v0 uniformly in Q1, such that M`(∇wk) ⇀M`(∇u(x0)) weakly* in
the sense of measures and satisfying (2.15).

In particular, by assuming that the left hand side in (3.11) is finite, for all functions fi in
Theorem 2.2, estimate (2.3) yields∫

Q1

fi(x0 + εk y, u(x0) + εk wk,M`(∇wk)) dy

≤
∫
Q1

fi(x0 + εk y, u(x0) + εk vk,M`(∇vk)) dy + Ci

∫
{vk 6=wk}

(1 + |M`(∇wk)|) dy,
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and moreover (2.4) gives∫
Q1

fi(x0, u(x0),M`(∇wk)) dy

≤
∫
Q1

fi(x0 + εk y, u(x0) + εk wk,M`(∇wk)) dy + ωi(εk(1 + ‖wk‖L∞))

∫
Q1

(1 + |M`(∇wk)|) dy.

Thus, the convexity of fi(x0, u(x0), ·), the weak* convergence of the minors and (2.15) imply that

lim inf
k

∫
Q1

fi(x0 + εk y, u(x0) + εk vk,M`(∇vk)) dy

≥ lim inf
k

∫
Q1

fi(x0, u(x0),M`(∇wk)) dy ≥ fi(x0, u(x0),M`(∇u(x0))).

Hence, inequality (3.11) follows. �

Remark 3.4. Note that the counterexample constructed in [19, Theorem 3.1] shows that a contin-
uous, or better a lower-semicontinuous, dependence of the integrand f on the lower order variables
is needed.

We point out that if we restrict to maps from Rn to itself with positive determinants, assumption
(3.1) implies the local boundedness in L1 of all the minors up to order n thanks to Müller’s
isoperimetric inequality (cp. with (3.10)). Indeed, [26, Lemma 1.3] states that for every u ∈
W 1,n(Ω,Rn) and x0 ∈ Ω and for a.e. r ∈ (0,dist(x0, ∂Ω)) one has∣∣∣∣∣

∫
Br(x0)

det∇u dx

∣∣∣∣∣
n−1
n

≤ C(n)

∫
∂Br(x0)

|Mn−1(∇u)| dHn−1.

Thus, if det∇u ≥ 0 Ln a.e. on Ω, by integrating this inequality on (0, R), with R < dist(x0, ∂Ω),
we get ∣∣∣∣∣∣

∫
BR

2
(x0)

det∇u dx

∣∣∣∣∣∣
n−1
n

≤ C(n)

R

∫
BR(x0)

|Mn−1(∇u)| dx.

Therefore, given a sequence (uj)j ⊂W 1,n(Ω,Rn) with positive determinants and bounded inW 1,n−1

we infer that for every Ω′ ⊂⊂ Ω

sup
j
‖Mn(∇uj)‖L1(Ω′,Rσ) <∞.

This observation leads to the following lower semicontinuity result for which we introduce some
further notation: if ξ ∈ Rσ we write ξ = (z, t) ∈ Rσ−1 × R.

Proposition 3.5. Let m = n ≥ 2, Ω ⊂ Rn open, and f = f(x, u, z, t) : Ω×Rn ×Rσ−1 × [0,∞)→
[0,∞) be in C0(Ω×Rn ×Rσ−1 × [0,∞)), and such that f(x, u, ·) is convex for all (x, u) ∈ Ω×Rn.

Then, for every sequence (uj)j ⊂W 1,n(Ω,Rn) satisfying

uj → u in L1, det∇uj ≥ 0 Ln a.e. in Ω, and sup
j
‖∇uj‖W 1,n−1 <∞,

we have
F (u) ≤ lim inf

j
F (uj).

Note that the lower semicontinuity property established in Proposition 3.5 above is also en-
joyed by functionals with densities relevant in applications to elasticity, i.e. satisfying in addition
f(x, u, z, t) ↑ ∞ as t ↓ 0.
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4. The general case for m = n

In this section we address the case of integrands depending on the full set of variables in case
m = n. More precisely, we consider the functional

F (v) :=

∫
Ω
f (x, v(x),Mn(∇v(x))) dx,

where v ∈ W 1,n−1(Ω,Rn), if n = m ≥ 3, v ∈ BV (Ω,R2) for n = m = 2. Below we give the proof
of Theorem 1.1, a result that improves upon [3, Theorem 4.2] and [6, Theorems 3.1 and 4.1].

To begin with, we comment on assumption (1.4) by considering a simple functional with integrand
a positive piecewise affine function

I(u) =

∫
Ω

(a(x, u) + b(x, u) det∇u)+ dx.

In this particular case condition (1.4) becomes

b(x, u) = 0 =⇒ a(x, u) ≤ 0.

Moreover, we recall that assumption (1.4) is satisfied if f is coercive in t, or if f is autonomus, i.e.
f = f(ξ) (see Corollary 2.3).

Before proving Theorem 1.1 we recall the notation ξ = (z, t) ∈ Rσ−1 × R if ξ ∈ Rσ. Note also
that condition (1.5) in Theorem 1.1 assures that the limit function u ∈ BV (Ω,R2) if n = 2, and
u ∈W 1,n−1(Ω,Rn) for n ≥ 3.

Proof of Theorem 1.1. We split the proof into several intermediate steps.

Step 1. Reduction to affine target maps

By Lemma 2.11 to infer (1.6) we are left with proving

lim inf
k

∫
Q1

f(x0 + εk y, u(x0) + εk vk,Mn(∇vk)) dy ≥ f(x0, u(x0),Mn(∇u(x0))). (4.1)

along sequences satisfying

vk → v0 := ∇u(x0) · y L1, and sup
k
‖vk‖W 1,n−1 <∞,

for all points x0 of approximate differentiability of u. As usual we can assume that the left hand
side in (4.1) is finite.

Let us now distinguish two cases:

(a) there exists z0 ∈ Rσ−1 such that t 7→ f(x0, u(x0), z0, t) is constant;

(b) no such a point exists.

Step 2. Proof in case (a)
In this case we apply assumption (ii) in the statement and use at once Theorem 3.1 to get

lim
k

∫
Q1

f(x0 + εk y, u(x0) + εk vk,Mn(∇vk)) dy

≥ lim inf
k

∫
Q1

g(Mn−1(∇vk)) dy ≥ g(Mn−1(∇u(x0))) = f(x0, u(x0),Mn(∇u(x0))),

where we have denoted by g the convex function g(z) := f(x0, u(x0), z, t) (cp. with (1.4)).
Step 3. Proof in case (b)
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Let us now recall that by the approximation Theorem 2.2 there exist three sequences of continuous
function with compact support, ai, γi : Ω×Rn → R and βi : Ω×Rn → Rσ−1 such that, setting for
all i ∈ N and (x, u, z, t) ∈ Ω× Rn × Rσ−1 × R,

fi(x, u, z, t) = (ai(x, u) + 〈βi(x, u), z〉+ γi(x, u) t)+ ,

we have
f(x, u, z, t) = sup

i∈N
fi(x, u, z, t).

Therefore, to prove (4.1) it is enough to show that for all i ∈ N

lim
k

∫
Q1

f(x0 + εk y, u(x0) + εk vk,Mn(∇vk)) dy ≥ fi(x0, u(x0),Mn(∇u(x0))). (4.2)

To this aim note that there exists j ∈ N such that γj(x0, u(x0)) 6= 0 since otherwise we would fall
in case (a).

Without loss of generality we may assume γj(x0, u(x0)) > 0. Otherwise, we replace the functions
vk = (v1

k, . . . , v
n
k ) with (−v1

k, v
2
k, . . . , v

n
k ), the coefficient γj(x, u) with −γj(x,−u1, . . . , un) and the

remaining coefficients aj and βj accordingly.
Fix now M > ‖v0‖L∞ + 1 and set

vk,M (x) :=

vk(x) if |vk(x)| ≤M

M
vk(x)

|vk(x)|
otherwise.

(4.3)

Then, as 0 ≤ fj ≤ f , for all k we have∫
{y∈Q1: |vk|≤M}

fj(x0 + εk y, u(x0) + εk vk,M ,Mn(∇vk,M )) dy

≤
∫
Q1

f(x0 + εk y, u(x0) + εk vk,Mn(∇vk)) dy. (4.4)

Therefore, since the sequence (vk,M )k is bounded in W 1,n−1(Q1,Rn) we deduce that

sup
k

∫
{y∈Q1: |vk|≤M}

(γj(x0 + εk y, u(x0) + εk vk) det∇vk,M )+ dy <∞.

Recalling the choice γj(x0, u(x0)) > 0, the continuity of γj yields for k sufficiently large

sup
k

∫
{y∈Q1: |vk|≤M}

(det∇vk,M )+ dy <∞,

in turn implying

sup
k

∫
Q1

(det∇vk,M )+ dy <∞.

An application of Lemma 2.5 gives that, up to a subsequence not relabeled for convenience, the
sequence (det∇vk,M )k converges locally weakly* in the sense of measures in Q1. In particular,
(det∇vk,M )k is bounded in L1

loc(Q1). Hence, with fixed ρ ∈ (0, 1), Proposition 2.8 provides se-
quences sk ↓ 0 and (wk)k in W 1,n(Qρ,Rn) satisfying conclusions (2.5), (2.6) and (2.7) there. Note
that, for k sufficiently large, recalling the choice of M , we have

{y ∈ Qρ : |vk(y)| > M} ⊆ Ak = {y ∈ Qρ : |vk(y)− v0(y)| > sk} .
Therefore, estimate (2.3) and equation (4.4) imply for all i ∈ N∫

Qρ

fi(x0 + εk y, u(x0) + εk wk,Mn(∇wk)) dy
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≤
∫
Qρ\Ak

fi(x0 + εk y, u(x0) + εk vk,M ,Mn(∇vk,M ) dy + Ci

∫
Ak

(1 + |Mn(∇wk)|) dy

≤
∫
{y∈Qρ: |vk|≤M}

fi(x0 + εk y, u(x0) + εk vk,M ,Mn(∇vk,M )) dy + Ci

∫
Ak

(1 + |Mn(∇wk)|) dy

≤
∫
Q1

f(x0 + εk y, u(x0) + εk vk,Mn(∇vk)) dy + Ci

∫
Ak

(1 + |Mn(∇wk)|) dy.

The convergence of (wk)k to v0 in L∞, the latter inequality, (2.7) and (2.4) imply

lim inf
k

∫
Q1

f(x0 + εk y, u(x0) + εk vk,Mn(∇vk)) dy ≥ lim inf
k

∫
Qρ

fi(x0, u(x0),Mn(∇wk)) dy.

In turn, from this and by taking into account that (Mn(∇wk))k converges toMn(∇u(x0)) weakly*
in the sense of measures on Qρ, by the convexity of fi(x0, u(x0), ·) we get

lim
k

∫
Q1

f(x0 + εk y, u(x0) + εk vk,Mn(∇vk)) dy ≥ ρn fi(x0, u(x0),Mn(∇u(x0))),

from which (4.2) follows straightforwardly as ρ ↑ 1. �

In case the integrand depends only on the determinant, the same conclusion holds under a local
version of the condition in (1.4).

Proposition 4.1. Let f = f(x, u, t) : Ω× Rn × R→ [0,∞) be such that

(i) f ∈ C0(Ω× Rn × R), and f(x, u, ·) is convex for all (x, u),
(ii) if f(x0, u0, ·) is constant with respect to t ∈ R for some point (x0, u0), then

f(x0, u0, t) = h(x0, u0)

where

h(x, u) := sup
δ>0

hδ(x, u)

and for all δ > 0

hδ(x, u) := inf {f(y, v, t) : (y, v, t) ∈ Bδ(x, u)× R} .

Then, for every sequence (uj)j ⊂W 1,n(Ω,Rn) satisfying

uj → u in L1, and sup
j
‖uj‖W 1,n−1 <∞

we have

F (u) ≤ lim inf
j

F (uj).

Proof. We argue as in Theorem 1.1: first using the blow-up type Lemma 2.11 to reduce to inequality
(4.1). At this point we distinguish as before the two cases (a) and (b). The latter is dealt with as
before, while for case (a) we argue as follows.

Fix M > 0 and consider the function vk,M in (4.3). Then,∫
Q1

f(x0 + εky, u(x0) + εkvk,M ,det∇vk,M )dy

≤
∫
Q1

f(x0 + εky, u(x0) + εkvk, det∇vk)dy + C Ln({y ∈ Q1 : |vk| ≥M}).
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In turn, for any δ > 0, by definition of hδ we get

lim inf
k

∫
Q1

f(x0 + εky, u(x0) + εkvk,M , det∇vk,M )dy ≥ hδ(x0, u(x0)),

and the conclusion then follows as f(x0, u(x0), t) = supδ hδ(x0, u(x0)) for all t ∈ R. �
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