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Abstract. We establish local to global results for a function space which is larger than the
well known BMO space, and is also introduced by John and Nirenberg.

1. Introduction

The space of functions of bounded mean oscillation, abbreviated to BMO, is introduced by John
and Nirenberg [11]. In the same paper, John and Nirenberg introduced a larger space of functions.
As opposed to any BMO function, that has exponentially decaying distribution function, a function
in this larger space is known to belong to a weak Lp-space, [11, Lemma 3]; the inclusion being
strict, see [1, Example 3.5]. We extend this weak-type inequality to the case of John domains.
The equivalence of local and global BMO norms is a rather well-known result, due to Reimann
and Rychener [15]. We obtain the corresponding local to global result for the mentioned larger
space of functions.

Let G be a proper open subset of Rn, n ≥ 1. The following condition was introduced in [11]:
Let f : G→ R be a function in L1(G) and let us assume that there exists 1 < p <∞ such that

(1.1) Kpf (G) := sup
P(G)

∑
Q∈P(G)

|Q|

(?
Q

|f(x) − fQ|dx

)p
<∞ ,

where the supremum is taken over all partitions P(G) of G into cubes such that Q ⊂ G for each
Q ∈ P(G), the interiors of these cubes are pairwise disjoint, and G =

⋃
Q∈P(G)Q. We call such

partitions admissible.
It is shown in [11, Lemma 3] that a function satisfying (1.1), with G being a cube Q in Rn,

belongs to a weak Lp(Q)-space. More precisely, there exists a positive constant C, depending
only on n and p, so that for all f ∈ L1(Q),

(1.2) σp |{x ∈ Q : |f(x) − fQ| > σ}| ≤ CKpf (Q)

for each σ > 0. We refer to [6, 17, 1] for other proofs of this result. We also mention papers
[4, 5, 14] where a related discrete summability condition is studied. Moreover, in a recent paper
[2] its relation to condition (1.1) is discussed.
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Let us localize condition (1.1) in the following way. For a function f ∈ L1loc(G), we define the
number

Kpf,loc(G) := sup
Ploc(G)

∑
Q∈Ploc(G)

|Q|

(?
Q

|f(x) − fQ|dx

)p
,

where the supremum is taken over all partitions Ploc(G) of G into cubes such that for each
Q ∈ Ploc(G) a dilated cube λQ ⊂ G, with fixed λ > 1, and these cubes have bounded overlap,
specifically,

sup
x∈G

∑
Q∈Ploc(G)

χQ(x) ≤ N ,

where N ≥ 1 is a finite constant depending on n only. We call such partitions local.
We shall prove a Reimann–Rychener-type local to global result. More precisely, in Theorem 3.1,

we show that there exists a positive constant C, depending on n, p, and λ, such that for all
f ∈ L1(G)

Kpf (G) ≤ CK
p
f,loc(G) .

In the second part of the paper, we consider necessary and sufficient conditions for Euclidean
domains to support the weak-type inequality (1.2). Our main results are stated in Theorem 4.1
and Theorem 5.1.

Acknowledgment. The authors would like to thank Juha Kinnunen for valuable discussions on the
subject and for pointing out the reference [2]. The authors would also like to thank Juha Lehrbäck
for pointing out [8, Lemma 6] to us.

2. Notation and preliminaries

Throughout the paper, a cube Q in Rn is a closed cube with sides parallel to the coordinate
axes. For a cube Q, with side length `(Q), and for λ > 0, we write the dilated cube, with side
length λ`(Q), as λQ. We write χA for the characteristic function of a set A, the boundary of A
is written as ∂A, and |A| is the Lebesgue n-measure of a measurable set A in Rn. The integral
average of f ∈ L1loc(R

n) over a bounded set A with positive measure is written as fA, that is,

fA =

?
A

f dx =
1

|A|

∫
A

f dx .

Various constants whose value may change even within a given line are denoted by C.
The family of closed dyadic cubes is written as D. We let Dj be the family of those dyadic

cubes whose side length is 2−j, j ∈ Z. For a proper open set G we fix its Whitney decomposition
W(G) ⊂ D, and writeWj(G) = Dj∩W(G). For a Whitney cube Q ∈ W(G) we write Q∗ = 9

8
Q.

Such dilated cubes have a bounded overlap, with upper bound depending on n only, and they
satisfy

(2.1) 3

4
diam(Q) ≤ dist(x, ∂G) ≤ 6 diam(Q),

whenever x ∈ Q∗. For other properties of Whitney cubes we refer to [16, VI.1].
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For a bounded domain G in Rn, we will construct a chain of cubes

C(Q) = (Q0, . . . , Qk) ⊂ W(G) ,

joining Q0 and Q = Qk, such that Qi , Qj whenever i , j, and there exists a positive finite
constant C = C(n) for which

(2.2) |Q∗j ∩Q∗j−1| ≥ Cmax{|Q∗j |, |Q∗j−1|}

with each j ∈ {1, . . . , k}. A given family {C(Q) : Q ∈ W(G)} with a fixed Whitney cube Q0 is a
chain decomposition of G. A shadow of a Whitney cube R ∈ W(G) is the set

S(R) = {Q ∈ W(G) : R ∈ C(Q)} .

Let us recall the definition of John domains. The condition in Definition 2.3 was first used by
John in [10].

2.3.Definition. A bounded domainG in Rn, n ≥ 2, is a John domain, if there exist a point x0 ∈ G
and a constant βG ≥ 1 such that every point x in G can be joined to x0 by a rectifiable curve
γ : [0, `] → G parametrized by its arc length for which γ(0) = x, γ(`) = x0, ` ≤ βG diam(G),
and for all t ∈ [0, `],

dist(γ(t), ∂G) ≥ t/βG .
The point x0 is called a John center of G, and the smallest constant βG ≥ 1 is called the John
constant of G.

Bounded Lipschitz domains and bounded domains with the interior cone condition are John
domains. Also, the Koch snowflake is a John domain in the plane. Observe that the John constant
is invariant under scaling and translation of G.

The following observation concerning a given John domain G will be relevant to us. There
exist a positive number s = s(n,βG) < n and a constant C = C(n,βG) > 0, such that

(2.4)
∫
B(y,r)

dist(x, ∂G)s−n dx ≤ Crs

for every y ∈ ∂G and for every r > 0. Inequality (2.4) is essentially covered by [8, Lemma 6], but
it is also an immediate consequence of the following three facts:

(1) the boundary ∂G of a John domain is porous in Rn;
(2) the Assouad dimension of a porous set in Rn is strictly less than n, [13];
(3) the Assouad dimension of ∂G coincides with the Aikawa dimension of ∂G; we refer to a

recent paper [12].
Indeed, by (1)–(3), the Aikawa dimension of ∂G is strictly less than n, and inequality (2.4) follows.
The fact that both s and C can be chosen, depending on n and βG only, is straightforward but
tedious to verify. We omit the details.

The following proposition provides a chain decomposition of a given John domain. From now
on, any reference to a chain decomposition will be to the one presented in Proposition 2.5.
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2.5. Proposition. (Chain decomposition) Suppose 1 < p < ∞ and G is a John domain in Rn.
Then there exist constants σ, τ ∈ N and a chain decomposition {C(Q) : Q ∈ W(G)} of G with
the following conditions (1)–(3):

(1) `(Q) ≤ 2τ`(R) for each R ∈ C(Q) and Q ∈ W(G);
(2) ]{R ∈ Wj(G) : R ∈ C(Q)} ≤ 2τ for each Q ∈ W(G) and j ∈ Z;
(3) The following inequality holds,

sup
j∈Z

sup
R∈Wj(G)

1

|R|

∞∑
k=j−τ

∑
Q∈Wk(G)
Q∈S(R)

|Q|(τ+ 1+ k− j)p < σ .

Furthermore, the constants σ and τ depend only on n, p, and the John constant βG.

Proof. Let us first construct a chain decomposition of G. We fix a Whitney cube Q0 containing
the John center x0 of G. Let Q ∈ W(G) and let us fix a rectifiable curve γ that is parametrized
by its arc length and joins the midpoint xQ of Q and x0.

First assume that Q ∩Q0 , ∅. Then, we join xQ to the midpoint xQ0 of Q0 by an arc that is
contained in Q∪Q0 and whose length is comparable to `(Q). Otherwise there is r > 0 such that
γ(r) lies in the boundary of a Whitney cube P that intersects Q and γ(t) belongs to a cube that
is not intersecting Q whenever t ∈ (r, `(γ)]. Join xQ to xP by an arc whose length is comparable
to `(Q) and is in Q ∪ P. We iterate these steps with Q replaced by P, and we continue until we
reach xQ0 . Let γQ be this composed curve parametrized by its arc length.

It is straightforward to verify that there is a constant ρ ≥ 1, depending on n and βG, such
that for every t ∈ [0, `(γQ)],

(2.6) dist(γQ(t), ∂G) ≥ t/ρ .

Let C(Q) be the chain consisting of cubes R ∈ W(G) such that the midpoint xR = γQ(tR) for
some tR ∈ [0, `(γQ)].

We verify that this chain decomposition of G satisfies conditions (1)–(3).
Condition (1): Let Q ∈ W(G) and R ∈ C(Q). Clearly, we may assume that R , Q. Hence,

if γQ(tR) = xR, then by inequalities (2.6) and (2.1),

`(Q)/2 ≤ tR ≤ ρ dist(γQ(tR), ∂G) = ρ dist(xR, ∂G) ≤ 6ρ
√
n `(R) .

Condition (2): Let Q ∈ W(G) and j ∈ Z. Let R1, . . . , RM ∈ Wj(G) be cubes such that
Ri ∈ C(Q) for every i ∈ {1, . . . ,M}. We number these cubes in the same order as γQ hits their
midpoints. In particular, if γQ(t) = xRM , then γQ([0, t]) joins the midpoints of M cubes whose
side length is 2−j. By (2.6) and (2.1),

(M− 1)2−j ≤ t ≤ ρ dist(γQ(t), ∂G) = ρ dist(xRM , ∂G) ≤ 6ρ
√
n2−j.

It follows that M ≤ 6ρ
√
n+ 1, hence we obtain condition (2).

Let us fix τ = τ(n,βG) ∈ N for which both conditions (1) and (2) are valid.
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Condition (3): Let us first prove that there is a constant C = C(n,βG) > 0 such that, for
each R ∈ W(G),

(2.7)
⋃

Q∈S(R)
Q ⊂ B(yR, C`(R)),

where yR ∈ ∂G is any point satisfying |xR − yR| = dist(xR, ∂G). Consider any cube Q ∈ S(R).
Since R ∈ C(Q), there is tR ∈ [0, `(γQ)] such that xR = γQ(tR). Hence, if x ∈ Q,

|x− yR| ≤ |x− xQ|+ |xQ − xR|+ |xR − yR| .

Observe that |x−xQ| ≤ diam(Q) ≤ 2τ diam(R) and |xR−yR| ≤ 6 diam(R). By inequality (2.6),

|xQ − xR| = |γQ(0) − γQ(tR)| ≤ tR ≤ ρ dist(γQ(tR), ∂G) ≤ 6ρ diam(R) .

Relation (2.7) follows from the previous estimates.
Let ε = n− s > 0, where s = s(n,βG) is given by (2.4); recall that s is related to the Aikawa

dimension of ∂G. Fix j ∈ Z and R ∈ Wj(G). Then, if k ≥ j− τ and Q ∈ Wk(G),

(2.8)
(
`(Q)

`(R)

)ε
(τ+ 1+ k− j)p = 2(τ+1)ε2−(τ+1+k−j)ε(τ+ 1+ k− j)p ≤ C2τε,

where C = C(ε, p) > 0. By inequality (2.8),
∞∑

k=j−τ

∑
Q∈Wk(G)
Q∈S(R)

(
`(Q)

`(R)

)n
(τ+ 1+ k− j)p ≤ C2τε`(R)−(n−ε)

∑
Q∈S(R)

`(Q)n−ε.

On the other hand, by (2.1), (2.7), and (2.4), we may conclude that∑
Q∈S(R)

`(Q)n−ε ≤ C
∫
B(yR,C`(R))

dist(x, ∂G)s−n dx ≤ C`(R)n−ε,

where C = C(n, ε, βG) > 0, and condition (3) follows. �

3. A local to global result

In this section, we prove the following Reimann–Rychener-type local to global result.

3.1. Theorem. Suppose G is a proper open subset of Rn, n ≥ 2. If f ∈ L1(G) and 1 < p <∞,
then

Kpf (G) ≤ CK
p
f,loc(G) ,

where a positive constant C depends on n, p, and λ.

Let us begin with a preliminary lemma, which is useful also in Section 4.
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3.2. Lemma. Let H be a John domain in Rn, f ∈ L1(H), and 1 < p <∞. Then(?
H

|f(x) − fQ∗
0
|dx

)p
+

(?
H

|f(x) − fH|dx
)p

≤ C

|H|
∑

Q∈W(H)

|Q∗|
(?

Q∗
|f(x) − fQ∗|dx

)p
,

where Q0 is the fixed cube in the chain decomposition of H. Moreover, a positive constant C
depends on n, p, and the John constant βH.

Proof. Observe that∫
H

|f(x) − fH|dx ≤ 2
∫
H

|f(x) − fQ∗
0
|dx

≤ 2
∑

Q∈W(H)

∫
Q∗
|f(x) − fQ∗|dx+ 2

∑
Q∈W(H)

|Q||fQ∗ − fQ∗
0
| .(3.3)

Let us estimate the first term on the right-hand side in (3.3). By Hölder’s inequality,∑
Q∈W(H)

∫
Q∗
|f(x) − fQ∗|dx

≤ C

 ∑
Q∈W(H)

|Q|


1/p ′  ∑

Q∈W(H)

|Q|
(?

Q∗
|f(x) − fQ∗|dx

)p
1/p

≤ C|H|1/p ′
 ∑
Q∈W(H)

|Q∗|
(?

Q∗
|f(x) − fQ∗ |dx

)p
1/p

,

(3.4)

where p ′ = p/(p− 1) is the conjugate exponent to p.
To estimate the second term on the right-hand side in (3.3), we use a chain C(Q) = (Q0, . . . , Qk)

joining the cube Q0 to Qk = Q ∈ W(H). Hence,

(3.5)
∑

Q∈W(H)

|Q||fQ∗ − fQ∗
0
| ≤

∑
Q∈W(H)

|Q|
k∑
i=1

|fQ∗
i
− fQ∗

i−1
|.

Here, by property (2.2), for any i ∈ {1, . . . , k}

|fQ∗
i
− fQ∗

i−1
| ≤
?
Q∗
i
∩Q∗

i−1

|f− fQ∗
i
|dx+

?
Q∗
i
∩Q∗

i−1

|f− fQ∗
i−1

|dx

≤ C
i∑

j=i−1

?
Q∗
j

|f(x) − fQ∗
j
|dx .
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By the fact that there are no duplicates in C(Q), i.e., Qi , Qj if i , j, we obtain∑
Q∈W(H)

|Q||fQ∗ − fQ∗
0
| ≤ C

∑
Q∈W(H)

|Q|
k∑
i=1

i∑
j=i−1

?
Q∗
j

|f(x) − fQ∗
j
|dx

≤ C
∑

Q∈W(H)

|Q|
∑
R∈C(Q)

?
R∗
|f(x) − fR∗ |dx

≤ C
∑

R∈W(H)

∑
Q∈S(R)

|Q|
?
R∗
|f(x) − fR∗|dx

≤ C
∑

R∈W(H)

∫
R∗
|f(x) − fR∗ |dx ,

where the last inequality is a consequence of inequality (2.7). We may estimate as in connection
with (3.4). This completes the proof. �

3.6. Remark. The following inequality, interesting as such, follows from Lemma 3.2. Let Q be a
cube and f ∈ L1(Q). Then, for every 1 < p <∞,(?

Q

|f(x) − fQ|dx

)p
≤ C

|Q|
∑

R∈W(Q)

|R∗|

(?
R∗
|f(x) − fR∗ |dx

)p
,

where W(Q) refers to Whitney decomposition of the interior of Q and C is a positive constant
depending only on n and p.

Proof of Theorem 3.1. Let us fix an admissible partition P(G) of G into cubes. For each cube
Q ∈ P(G) we form a local partition Ploc(Q) = {R∗ : R ∈ W(Q)}. We write

Ploc(G) =
⋃

Q∈P(G)
Ploc(Q).

It is straightforward to verify that Ploc(G) is a local partition of G. In particular, for each
R∗ ∈ Ploc(Q) with Q ∈ P(G), the inclusions λR∗ ⊂ Q ⊂ G are valid for 1 < λ < 10

9
.

By applying Remark 3.6 and observing that for each R∗ ∈ Ploc(G) there is at most one cube
Q ∈ P(G) such that R∗ ∈ Ploc(Q), we obtain∑

Q∈P(G)

|Q|
(?

Q

|f(x) − fQ|dx
)p

≤ C
∑

Q∈P(G)

∑
R∗∈Ploc(Q)

|R∗|
(?

R∗
|f(x) − fR∗ |dx

)p

≤ C
∑

R∗∈Ploc(G)

|R∗|
(?

R∗
|f(x) − fR∗ |dx

)p
≤ CKpf,loc(G) .

The proof is completed by taking the supremum over all admissible partitions P(G). �
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3.7. Remark. The construction of the Whitney decomposition that is described in Section 2 yields
Theorem 3.1 for all 1 < λ < 10

9
. A simple modification of the definition for dilated cubes Q∗

allows one to extend this range to every 1 < λ < 5
4
. It possible to use the general Whitney

decomposition based on Stein [16, pp. 167–170] in order to obtain the result for any λ ≥ 5
4
.

4. A sufficient condition for a weak-type inequality

In this section, we show that cubes can be replaced by John domains in inequality (1.2).

4.1. Theorem. Suppose that G is a John domain in Rn. If f ∈ L1(G) and 1 < p <∞, then the
following weak-type inequality is valid

σp|{x ∈ G : |f(x) − fG| > σ}| ≤ CKpf,loc(G)

for all σ > 0, where a positive constant C depends on n, p, λ, and the John constant βG.

Proof. Recall that Q0 is a fixed cube which is used to construct a chain decomposition of G, see
Proposition 2.5. By the triangle inequality for each x ∈ G,

|f(x) − fG| ≤ |fQ∗
0
− fG|+

∣∣∣∣∣∣∣f(x) −
∑

Q∈W(G)

fQ∗χQ(x)

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣
∑

Q∈W(G)

fQ∗χQ(x) − fQ∗
0

∣∣∣∣∣∣∣
=: g1(x) + g2(x) + g3(x) .

Hence, for a fixed σ > 0, we have
σp|{x ∈ G : |f(x) − fG| > σ}| ≤ σpF1(σ) + σ

pF2(σ) + σ
pF3(σ)

where we have written
Fj(σ) = |{x ∈ G : gj(x) > σ/3}|

for j ∈ {1, 2, 3}. We shall next estimate these three terms.
If |fQ∗

0
− fG| ≤ σ/3, then F1(σ) = 0. Otherwise, by Lemma 3.2,

σpF1(σ) ≤ 3p|G|
(?

G

|f(x) − fQ∗
0
|dx

)p
≤ C

∑
Q∈W(G)

Kpf (Q∗) ≤ CK
p
f,loc(G).

Let us focus on the term σpF2(σ). By applying inequality (1.2),

σpF2(σ) =
∑

Q∈W(G)

σp|{x ∈ int(Q) : g2(x) > σ/3}|

≤
∑

Q∈W(G)

σp|{x ∈ Q∗ : |f(x) − fQ∗| > σ/3}| ≤ C3p
∑

Q∈W(G)

Kpf (Q∗) ≤ CK
p
f,loc(G).

Let us estimate the remaining term σpF3(σ) as follows

σpF3(σ) = σ
p

∑
Q∈W(G)

|{x ∈ int(Q) : |fQ∗ − fQ∗
0
| > σ/3}|
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=
∑

Q∈W(G)
|fQ∗−fQ∗

0
|>σ/3

σp|Q| ≤ 3p
∑

Q∈W(G)

|Q||fQ∗ − fQ∗
0
|p.

Estimating as in connection with (3.5), we end up having

|fQ∗ − fQ∗
0
|p ≤ C

 ∑
R∈C(Q)

?
R∗
|f(x) − fR∗|dx


p

.

We use condition (1) of the chain C(Q) in Proposition 2.5. Then we write for j ≤ k+ τ

1 = (τ+ 1+ k− j)−1(τ+ 1+ k− j),

apply Hölder’s inequality, and finally use inequality

sup
k∈Z

k+τ∑
j=−∞(τ+ 1+ k− j)−p

′
<∞ ,

to conclude that

σpF3(σ) ≤ C
∞∑

k=−∞
∑

Q∈Wk(G)

|Q|


k+τ∑
j=−∞

∑
R∈Wj(G)
R∈C(Q)

?
R∗
|f(x) − fR∗|dx


p

≤ C
∞∑

k=−∞
∑

Q∈Wk(G)

|Q|
k+τ∑
j=−∞(τ+ 1+ k− j)p


∑

R∈Wj(G)
R∈C(Q)

?
R∗
|f(x) − fR∗|dx


p

.

(4.2)

By condition (2) in Proposition 2.5 and Hölder’s inequality, for any Q ∈ W(G) and j ∈ Z,

∑
R∈Wj(G)
R∈C(Q)

?
R∗
|f(x) − fR∗|dx ≤


∑

R∈Wj(G)
R∈C(Q)

1


1/p ′ 

∑
R∈Wj(G)
R∈C(Q)

(?
R∗
|f− fR∗|

)p
1/p

≤ C


∑

R∈Wj(G)
R∈C(Q)

Kpf (R∗)
|R∗|


1/p

.

(4.3)
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If we substitute the estimate obtained in (4.3) to (4.2), and observe that R ∈ C(Q) if and only if
Q ∈ S(R), we bound σpF3(σ) as follows

σpF3(σ) ≤ C
∞∑

k=−∞
∑

Q∈Wk(G)

|Q|
k+τ∑
j=−∞(τ+ 1+ k− j)

p
∑

R∈Wj(G)
R∈C(Q)

Kpf (R∗)
|R∗|

= C
∞∑

j=−∞
∑

R∈Wj(G)

Kpf (R∗)
|R|

∞∑
k=j−τ

∑
Q∈Wk(G)
Q∈S(R)

|Q|(τ+ 1+ k− j)p

≤ C
∞∑

j=−∞
∑

R∈Wj(G)

Kpf (R∗) ≤ CK
p
f,loc(G),

where we used condition (3) in Proposition 2.5. The claim follows. �

We formulate the preceding theorem for locally integrable functions; the proof is otherwise the
same, but term g1 is omitted and we choose c = fQ∗

0
.

4.4. Theorem. Suppose that G is a John domain in Rn. If f ∈ L1loc(G) and 1 < p < ∞, then
the following weak-type inequality is valid

(4.5) inf
c∈R

sup
σ>0

σp|{x ∈ G : |f(x) − c| > σ}| ≤ CKpf,loc(G) ,

where a positive constant C depends on n, p, λ, and the John constant βG.

5. Necessary conditions for a weak-type inequality

We study necessary conditions for the validity of weak-type inequality (4.5) on domains. In
Theorem 5.1, a necessary condition is formulated in terms of a Poincaré inequality. Corollary 5.6
addresses the necessity of the John condition.

5.1. Theorem. Suppose that n/(n − 1) ≤ p < ∞, and that G is a bounded domain in Rn,
n ≥ 2, for which the inequality

(5.2) inf
c∈R

sup
σ>0

σp|{x ∈ G : |f(x) − c| > σ}| ≤ CKpf,loc(G)

holds for all f ∈ L1loc(G). Then G satisfies the (q∗, q)-Poincaré inequality (5.4) with p = q∗ =
nq/(n− q), where 1 ≤ q < n.

Proof. It is enough to verify that G satisfies the weak (q∗, q)-Poincaré inequality. That is, for all
locally Lipschitz functions f in G,

(5.3) inf
c∈R

sup
σ>0

σq
∗|{x ∈ G : |f(x) − c| > σ}| ≤ C

(∫
G

|∇f(x)|q dx
)q∗/q

.
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By applying inequality (5.3) and [7, Theorem 4], we may conclude that G satisfies the (q∗, q)-
Poincaré inequality:

(5.4)
∫
G

|f(x) − fG|q
∗
dx ≤ C

(∫
G

|∇f(x)|q dx
)q∗/q

,

where f is in the Sobolev space W1,q(G).
Therefore, let us prove inequality (5.3). This will be a consequence of the (q∗, q)-Poincaré

inequality on cubes in G. Namely, there is a local partition Ploc(G) such that

inf
c∈R

sup
σ>0

σq
∗|{x ∈ G : |f(x) − c| > σ}| ≤ C

∑
Q∈Ploc(G)

|Q|
(?

Q

|f(x) − fQ|dx
)q∗

≤ C
∑

Q∈Ploc(G)

∫
Q

|f(x) − fQ|q
∗
dx

≤ C
∑

Q∈Ploc(G)

(∫
Q

|∇f(x)|q dx
)q∗/q

.

Since q∗/q = n/(n− q) > 1, we obtain the desired inequality (5.3). �

5.5. Remark. We may also conclude the following weak fractional Sobolev–Poincaré inequality.
Suppose that inequality (5.2) holds for all f ∈ L1loc(G) with n/(n− δ) < p <∞ and δ ∈ (0, 1).
By estimating as in the proof of Theorem 5.1, and applying [9, Theorem 4.10], we find that

inf
c∈R

sup
σ>0

σq
∗,δ|{x ∈ G : |f(x) − c| > σ}| ≤ C

( ∫
G

∫
G

|f(x) − f(y)|q

|x− y|n+δq
dydx

)q∗,δ/q
for all f ∈ L1loc(G), where p = q∗,δ = nq/(n− δq) and 1 < q < n/δ.

We recall from [3, Definition 3.2] that a domain G with a fixed point x0 satisfies a separation
property if there exists a constant C0 such that for each x ∈ G there is a curve γ joining x and
x0 in G so that for each t either

γ([0, t]) ⊂ B := B(γ(t), C0 dist(γ(t),Rn \G))

or each y ∈ γ([0, t]) \ B belongs to a different component of G \ ∂B than x0. As an example,
for simply connected planar domains, the separation property is automatically valid.

The following corollary is a consequence of Theorem 4.4, Theorem 5.1, and [3, Theorem 1.1].

5.6. Corollary. Suppose that G is a bounded domain in Rn, n ≥ 2, satisfying a separation
property. Assume further that n/(n− 1) ≤ p <∞. Then the weak-type inequality

inf
c∈R

sup
σ>0

σp|{x ∈ G : |f(x) − c| > σ}| ≤ CKpf,loc(G)

holds for every f ∈ L1loc(G) if, and only if, G is a John domain.
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